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Abstract

Since the establishment of software en-
gineering as a professional discipline,
there has been a consistent demand for
standardization of software development
methodologies. Software architecture, en-
compassing the organization and hierar-
chy of system elements, has always been a
pivotal concern in this field. Historically,
early software systems predominantly fol-
lowed what is now recognized as the mono-
lithic approach. However, by the 1970s,
doubts began to surface regarding the
universality of this monolithic paradigm,
leading to a shift towards the development
of more modular systems.

The term “microkernel” was coined in
1981, gaining traction throughout the
1980s. Since then the popularity of this
approach has waned, resulting in a de-
crease in published works and research
in the area. However, many applications
today still inadvertently employ aspects
of microkernel architecture, and solutions
to similar problems often bear striking re-
semblances to those devised in the 1980s.

The purpose of this study was to
conduct an analysis of contemporary
approaches to microkernel architecture.
This work contains a comprehensive ex-
amination of fundamental principles, con-
cepts, and components of microkernel ar-
chitecture, supplemented by illustrative
examples. As a proof of concept, a pro-
totype application utilizing microkernel
architecture has been developed. The pro-
cess of prototype creation confirmed sev-
eral advantages associated with this ap-
proach, notably its high modularity, ex-
tensibility, and fault tolerance.

Keywords: microkernel architecture,
plugin architecture, software architecture,
webhooks, spring boot, java

Supervisor: Ing. Kyrylo Bulat
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Abstrakt

Od zavedeni softwarového inzenyrstvi jako
profesni discipliny existuje konzistentni
poptavka po standardizaci metodik vy-
voje softwaru. Softwarova architektura,
zahrnujici organizaci a hierarchii prvku
systému, byla vzdy klicovym zajmem v
této oblasti. Historicky se rané softwa-
rové systémy prevazné ridily tim, co je
nyni uznavano jako monoliticky pristup.
Nicméné jiz v 70. letech zacaly vznikat
pochybnosti o univerzalnosti tohoto mo-
nolitického paradigmatu, coz vedlo k pte-
chodu k vyvoji moduldrnéjsich systémii.

Termin “mikrojadro” byl poprvé pouzit
v roce 1981 a ziskal na popularité béhem
80. let. Od té doby vsSak popularita tohoto
pristupu upadla, coz vedlo k poklesu pub-
likovanych praci a vyzkumu v této oblasti.
Nicméné mnoho aplikaci dnes neptimo
vyuziva prvky architektury mikrojadra a
feseni podobnych problémiu c¢asto pripo-
minaji ty, které byly vyvinuty v 80. letech.

Cilem tohoto studia bylo provést ana-
lyzu soucasnych pristupi k architekture
mikrojadra. Tato priace obsahuje kom-
plexni zkoumaéni zdkladnich principu, kon-
ceptll a komponent mikrojadrové archi-
tektury, doplnéné ilustrativnimi ptiklady.
Jako diikaz konceptu byla vyvinuta proto-
typova aplikace vyuzivajici architekturu
mikrojadra. Proces tvorby prototypu po-
tvrdil nékolik vyhod spojenych s timto
pristupem, zejména jeho vysokou modula-
ritou, rozsiritelnosti a odolnosti vuci chy-
bam.

Klicova slova: architektura mikrojadra,
architektura plugint, softwarova
architektura, webhooks, spring boot, java

Pfeklad nazvu: Architektura
mikrojadra a jeji pouzitelnost ve vyvoji
aplikaci



Contents

1 Introduction

1.1 Motivation . .................
1.2 Objectives ..................
1.3 Architectures Overview . ......
1.3.1 Monolithic Architecture. ...
1.3.2 Microkernel Architecture. ..
1.3.3 Service-Oriented Architecture.
1.3.4 Microservices Architecture . ..

2 Analysis

2.1 Comparison and Evaluation . . .

2.1.1 Comparative Evaluation

Criteria ............ ... ......
2.1.2 Comparative Evaluation . ..

2.2 Case Studies and Industry

Applications ..................
2.2.1 Eclipse IDE . .............
2.22 GNU Emacs..............
2.2.3 Shopify ........ .. .. ...
2.2.4 Wordpress ...............
2.2.5 Chromium ...............
226 Yarn ...
2.2.7 MINIX Operating System . . .
2.2.8 Summary ................

2.3 Analysis of Microkernel

Architecture ..................
2.3.1 Topology ................
2.3.2 Core System .............
2.3.3 Plug-in Components. .. ....
2.3.4 Registry .................
2.3.5 Contracts ................
2.3.6 Extension Points . .........

3 Prototype

3.1 Existing Solutions ...........
3.1.1 Make.com................
3.1.2 Zapier .......... ... .....
3.1.3 Hookdeck ................

3.2 Architecture ................

3.3 Technologies ................

34 Design ....... ... ..

3.5 Implementation..............
3.5.1 Registry .................
3.5.2 Contracts ................
3.5.3 Extension Points . .........
3.5.4 Scenarios ................

3.6 Testing and Evaluation .......

1l

B & & €8l k8] =

vii

4 Conclusion
A Bibliography

B Acronyms

&2E

May 22, 2024



Figures

1.1 Basic topology of monolithic
layered architecture.[6].........
1.2 Basic topology of microkernel
architecture.[6] ...............
1.3 Basic topology of service-oriented
architecture.[6] ...............
1.4 Basic topology of microservices
architecture.[6] ............... (g
2.1 Relationships between apps,
merchants, developers, and
Shopify[13]. .................
2.2 Integrating the app within
Shopify[13]. .................
2.3 Basic components of the
microkernel architecture[6]. . . . .
2.4 Layered core system (Technically
partitioned)[6]. ..............
2.5 Modular core system (Domain
partitioned)[6]. ..............
2.6 Embedded user interface (Single
deployment)[6]. ..............
2.7 Separate user interface (Multiple
deployment units)[6]. .........
2.8 Separate user interface (Multiple
deployment units, both
Microkernel)[6]. ..............
2.9 Shared library plug-in
implementation[6]. ...........
2.10 Package or namespace plug-in
implementation[6]. ...........

2.11 Remote plug-in access using
Representational State Transfer
(REST)[6]. ......covvvvienn.

2.12 Plugin and core data storage[0].

2.13 Sequence diagram of adding a

new plug-in..................
3.1 Prototype class diagram. ... ...

3.2 Prototype deployment diagram.
3.3 Abstract scenario execution

sequence diagram.............
3.4 Scenario 1 execution sequence

diagram. ....................
3.5 Scenario 2 execution sequence

diagram. ....................
May 22, 2024

viii

Tables

2.1 Overall comparison of

architectural approaches.. ... ..
3.1 Definition of integration test

Scenario 1. ..................
3.2 Definition of integration test

Scenario 2. ..................



Listings
2.1 Extension for the standard
extension point
org.eclipse.ui.menus. ......
2.2 Internal editor extension definition
for org.eclipse.ui.editors. .

2.3 WordPress action example. . . ..

2.4 WordPress filter example. . .. ..

3.1 Response body with information
about the plugin. ............

3.2 Task execution response body. .

3.3 ScenarioExecutionService
implementation. .............

3.4 ScenarioExecutionService
runScenario method
implementation. .............

3.5 ScenarioExecutionService
executeTask method
implementation. .............

3.6 ScenarioExecutionService
taskHandler method

implementation. .............
3.7 User’s JavaScript for the Scenario

1, scenariol-preprocessorl.js . . .
3.8 User’s JavaScript for the Scenario

1, scenariol-preprocessor2.js . . .
3.9 User’s JavaScript for the Scenario

1, scenariol-preprocessor3.js . . .
3.10 User’s JavaScript for the

Scenario 1,

scenariol-preprocessor4.js . . ...
3.11 User’s JavaScript for the

Scenario 2,

scenariol-preprocessorl.js . . ...
3.12 User’s JavaScript for the

Scenario 2,

scenariol-preprocessor2.js . . ...

ix

May 22, 2024



May 22, 2024



Chapter 1

Introduction

The quest to find and standardize best practices and approaches has always
been an integral part of the software development industry. One of the
objects of such activity is software architecture. The first discussions on
the topic emerged in the late 1960s. The term “software architecture” itself
was first coined at a NATO-sponsored conference on software engineering
techniques in 1969. Notable figures among the conference attendees included
Edsger W. Dijkstra and Niklaus Wirth. At that time, the term “architecture”
was used in the context of the physical structure of computer systems, i.e
hardware architecture. By 1990s the concept of software architecture as a
separate discipline emerged]1].

At the inception of modern computing, software architectures predomi-
nantly followed a naive monolithic design philosophy. Monolithic architectures
encapsulated the entire functionality of an application within a single code-
base, often resulting in tightly coupled systems that were challenging to
extend, scale, or maintain. However, as the software landscape matured
and the demands on applications became more diverse and dynamic, the
limitations of monolithic architectures became increasingly apparent.

Discussion of alternative approaches capable of addressing the problems
associated with monolithic architecture began as early as the 1970s[2]. Among
the emerging approaches, microkernel architecture stands out. The term
“microkernel” specifically appeared no later than 1981 when it was used by
Richard F. Rashid[3]. Microkernel architecture reached its peak popularity in
the late 1980s and early 1990s before declining. In our opinion, this decline
was somewhat unjustified, and within the scope of this work, we attempted
to revive interest in this approach and demonstrate its applicability in the
modern world.

B 1.1 Motivation

The selection of appropriate software architecture is a crucial decision in
the development process, as it significantly affects the scalability, maintain-
ability, and overall performance of the system. Among various architectural
approaches, the microkernel architecture is a compelling option due to its
modular approach. This work aims to explore the details of microkernel

1 May 22, 2024



1. Introduction

architecture and explain its practical implications in software development.

The research aims to address the increasing need for software systems that

are robust, adaptable, and extensible as technology advances. Developers
face challenges in creating software that can seamlessly adapt to changing
requirements and environments. The microkernel architecture, which isolates
core functionalities into independent modules, offers a promising solution to
these challenges. The aim is to gain a thorough understanding of the strengths
and potential drawbacks of this approach by analysing its architecture and
real-world applications in an objective manner.

. 1.2 Objectives

The primary objectives of this work are as follows:

1.

Compare with other architectures.

Conduct an evaluative and conceptual comparison of microkernel archi-
tecture with monolithic, service-oriented, and microservices architectures.
This comparative analysis, in conjunction with the other objectives, will
help more accurately identify the strengths and weaknesses of microkernel
architecture, as well as its applicability in application development.

Examine case studies and industry applications.

Examine existing case studies and real-world applications where micro-
kernel architecture has been implemented successfully. This will enable
a better understanding of the strengths of microkernel architecture in
real working applications.

Analyse microkernel architecture.

To provide an in-depth examination of the microkernel architecture,
exploring its core principles, concepts and components. This detailed
analysis aims to provide a thorough understanding of how microkernel
architecture functions at its foundational level, shedding light on its
unique characteristics and design principles.

Practical application in software development.

Utilising the acquired knowledge, develop a proof-of-concept prototype
of an application with a microkernel architecture. This prototype will
showcase the practical application of microkernel architecture and its
advantages in specific scenarios.

May 22, 2024 2



1.3. Architectures Overview

. 1.3 Architectures Overview

This section provides a brief introduction to monolithic, microkernel, service-
oriented and microservices architectures for further comparison.

Il 1.3.1 Monolithic Architecture

Monolithic architecture is a classic approach. All application functionality
is integrated into a seamless unit. This means that all components such as
the user interface, business logic and data access are combined into a single
executable or code base.[4, [5]

Figure 1.1|illustrates the basic topology of a monolithic layered architec-
ture.

Presentation Layer

Business Layer

Persistence Layer

Database Layer

Figure 1.1: Basic topology of monolithic layered architecture.|6]
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1. Introduction

Il 1.3.2 Microkernel Architecture

In a microkernel architecture, the system core implements a minimum set
of basic functions, and additional functionality is attached in the form of
plug-ins. This provides a high degree of flexibility, as developers can extend
or modify the system’s functionality by adding or removing plug-ins without

having to modify the core.[6]
Figure 1.2 illustrates the basic topology of a microkernel architecture.
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Figure 1.2: Basic topology of microkernel architecture. [0]
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1.3. Architectures Overview

Il 1.3.3 Service-Oriented Architecture

In a service-oriented architecture, an application is divided into independent
services that provide specific functionality. Services interact with each other
through explicit interfaces, and a central component (service bus) facilitates
communication between them. This allows better isolation of functionality
and increases system flexibility.[6]

illustrates the basic topology of a service-oriented architecture.

| e || B || B |[ B || B |

Business
Services
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[ Integration Hub ]
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Figure 1.3: Basic topology of service-oriented architecture.[6]
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1. Introduction

I 1.3.4 Microservices Architecture

A microservices architecture breaks down an application into small, self-
contained services, each responsible for a specific domain. Services can be
developed, deployed and scaled independently. This simplifies upgrades and
maintenance, and allows different technologies to be used for each service.[5]

illustrates the basic topology of a microservices architecture.

Client Request

!

Client Request

!

Client Request

!

API Layer
Service Service Service
‘ Module ‘ ‘ Module | Module |
‘ Module ‘ ‘ Module | Module |

Y

0

Figure 1.4: Basic topology of microservices architecture. [6]
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Chapter 2

Analysis

In this chapter, we will conduct an analysis of microkernel architecture,
comparing it with other architectural approaches based on specific criteria
and their conceptual differences. We will also examine successful use cases
of applying this architecture in the development of modern applications. In
conclusion, a more detailed analysis of microkernel architecture will be carried
out from the perspective of principles, concepts, and its components. This
analysis will provide a deeper understanding of the principles of microkernel
architecture, revealing its unique characteristics and design principles, which
will be useful to us in developing a prototype application later on.

. 2.1 Comparison and Evaluation

In this section, we will conduct a comparative analysis of microkernel ar-
chitecture with other popular architectural approaches, which will bring us
closer to a better understanding of the features and advantages of microkernel
architecture in various software development scenarios.

Il 2.1.1 Comparative Evaluation Criteria

To assess the microkernel architecture and compare it with other architectural
approaches, it is necessary first to define the criteria for the comparative
evaluation of these architectural approaches.

The following non-functional requirements have been chosen as evaluation
criteria [l

1. Deployability.

Definition: The ease with which the architecture can be deployed in
different environments.

Importance: A highly deployable architecture ensures flexibility and
adaptability across various systems.

2. Elasticity.

these criteria were taken from the book [6]
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2. Analysis

Definition: The ability of the architecture to dynamically scale resources
based on demand.

Importance: Elasticity is crucial for handling varying workloads effi-
ciently and optimising resource utilisation.
3. Evolutionary.

Definition: The capacity of the architecture to evolve and adapt to
changing requirements over time.

Importance: An evolutionary architecture supports long-term sustain-
ability and accommodates future enhancements.
4. Fault Tolerance.

Definition: The system’s ability to continue operating and providing
services in the presence of faults or errors.

Importance: Fault tolerance ensures system reliability and minimises
disruptions due to unexpected failures.
5. Modularity.

Definition: The extent to which the architecture is divided into inde-
pendent and interchangeable modules.

Importance: Modularity enhances maintainability, as changes in one
module do not affect others, promoting code reusability.
6. Overall Cost.

Definition: The total cost associated with developing, deploying, and
maintaining the architecture.

Importance: A consideration of the overall cost helps in making in-
formed decisions regarding resource allocation and budgeting.
7. Performance.

Definition: The efficiency and speed with which the architecture exe-
cutes its functions.

Importance: Performance is critical for achieving responsiveness and
meeting user expectations.
8. Reliability.

Definition: The ability of the architecture to consistently perform its
intended functions without failures.

Importance: Reliable systems build trust among users and stakeholders,
ensuring consistent and dependable operation.

9. Scalability.

Definition: The capability of the architecture to handle an increasing
workload by adding resources.

May 22, 2024 8
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11.

2.1. Comparison and Evaluation

Importance: Scalability is vital for accommodating growth and pre-
venting performance degradation under higher loads.
Simplicity.

Definition: The degree of simplicity and clarity in the design and
implementation of the architecture.

Importance: A simple architecture is easier to understand, maintain,
and troubleshoot, reducing the likelihood of errors.
Testability.

Definition: The ease with which the architecture can be tested to ensure
its correctness and reliability.

Importance: Testability facilitates the identification and resolution of
issues during development and maintenance phases.

When comparing architectural approaches for each criterion, a rating will be

assigned on a scale of low, medium, to high, where “low” indicates that the ar-
chitecture does not meet the characteristic well, “medium?” indicates moderate
alignment, and “high” indicates that it is one of its primary advantages.

2.1.2 Comparative Evaluation

Based on the selected evaluation criteria, let’s conduct a comparative analysis
of microkernel architecture with monolithic, service-oriented, and microser-
vices architectures.

1.

Monolithic Architecture

Deployability (low)

Monolithic architectures, although easier to deploy in a single environ-
ment with less configuration, often present challenges during deployment.
The deployment process for a monolith can be complex, requiring the
entire application to be deployed as a single unit. This can result in
increased risks and efforts in preparing for deployment[6}, 5, [7], 4].

Elasticity (low)

Monolithic architectures have limitations in scaling, especially in terms
of horizontal scaling. Scaling the entire monolith can be challenging
because resources are allocated to the entire application rather than
specific components|3, [7].

Evolutionary (low)

Due to their tightly integrated nature, monolithic architectures can be
difficult to adapt to changing requirements. Changes and updates may
require changes to the entire application. This makes it less flexible in
responding to changing business needs|[7}, 4].

9 May 22, 2024
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10.

11.

Fault Tolerance (low)

Due to its monolithic nature, a monolithic architecture has low fault
tolerance. A failure in one part of the system can easily break the entire
system|[4, [7].

Modularity (low)

Although it is possible to structure a monolithic application with internal
modularity, it is usually deployed and maintained as a single, tightly
coupled unit. This reduces the ability to independently update or replace
specific modules]4].

Overall Cost (high)

The monolithic architecture is simple in terms of development, deploy-
ment, and maintenance. However, it is important to note that as the
application grows, the overall complexity and resulting cost increase
significantly[4].

Performance (high)

Monolithic architectures often have a high level of performance because
all of the elements of the system are tightly integrated into a single unit.
As a result, communication between components is usually more efficient
than in distributed systems[4].

Reliability (medium)

Monolithic architectures are typically reliable, but there are risks asso-
ciated with the deployment and testing process. As a result, rigorous
testing is essential to ensure the reliability of the entire application[7].

Scalability (low)

In monolithic architectures, scalability is typically limited to vertical
scaling, which involves adding more resources (CPU, memory) to a single
node to scale the entire application. Horizontal scaling, which distributes
the load across multiple nodes, is more challenging]7, [5].

Simplicity (high)

Monolithic architectures are relatively simple to develop and maintain.
However, as the application grows and becomes more complex, this
simplicity can diminish[4] [7].

Testability (medium)

Although testing individual components may seem easier, testing the
entire application as a single unit can be challenging[4l [6].

May 22, 2024 10



2.1. Comparison and Evaluation

Microkernel Architecture

Deployability (medium)

The modular nature of microkernel architecture enables a high level of
deployability, where the system core and plugins can be developed, tested,
and deployed independently of each other. However, deployment of the
core system can be difficult and risky due to its monolithic nature[6].

Elasticity (low)

As for flexibility, due to the architectural characteristics of microkernel
architecture, where the core is a critical component of the system, this
criterion is not well-supported|[6].

Evolutionary (high)

Microkernel architectures are designed to be modular, allowing for easier
evolution and adaptation to changing requirements. This modularity en-
ables the development of new plugins or components without necessarily
affecting the entire system]§].

Fault Tolerance (medium)

Microkernel architectures enhance fault tolerance through component
isolation. If a plugin or component fails, it should not affect the entire
system. However, if the system core fails, the entire application may
cease to function[6].

Modularity (high)

Modularity is a fundamental characteristic of microkernel architectures.
The system is designed to have a minimal core and additional plugins or
modules that can be added or modified independently|§].

Overall Cost (medium)

In the process of development it is necessary to think over the design of
the system in advance, because in case of any errors in terms of design
their correction in the future can lead to big problems, especially when
the application is already working and modules are written for it by
third-party developers. Backward compatibility issues will also have to
be addressed during system support[6].

Performance (medium)

Microkernel architectures may introduce some overhead due to inter-
component communication[6].

Reliability (medium)

Modularity in microkernel architectures enhances reliability by isolating
components, preventing failures in one part of the system from affecting
others. However, a level of dependency is introduced by relying on a
central core[6, [8, [9].
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10.

11.

Scalability (low)

Like monolithic architectures, microkernel architectures may have limita-
tions in scalability due to the central nature of the core, which can pose
challenges in scaling the system horizontally[6].

Simplicity (high)

The microkernel architecture emphasises simplicity by focusing on essen-
tial services in the core. The modular structure contributes to a clear
and understandable overall design, further enhancing the simplicity of
the microkernel architecture[6] [9].

Testability (high)

The modularity of microkernel architectures enhances testability. Fach
module, including the core, can be tested independently, making it easier
to identify and fix problems in specific components without affecting the
entire system|[6, [9].

Service-Oriented Architecture

Deployability (low)

Deploying Service-Oriented Architecture (SOA) can be challenging. De-
veloping and deploying services independently can add complexity and
coordination overhead[10].

Elasticity (medium)

The capacity to independently scale services enhances adaptability, but
coordinating and managing these autonomous components can restrict
its full potential[10].

Evolutionary (low)

The modular nature of services enables updates, but maintaining compat-
ibility and orchestrating changes across services can be challenging[10].
Fault Tolerance (medium)

The use of independent services can mitigate the impact of failures. How-
ever, vulnerabilities may still arise due to coordination and dependencies
between services[10].

Modularity (medium)

The challenges of coordinating and managing the interactions between
services affect the overall modularity, even though the services are de-
signed as independent modules[10].

Overall Cost (low)

Due to the distributed nature and complex topology of SOA, the overall
cost of development, deployment, and maintenance is high[10].

May 22, 2024 12
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11.

2.1. Comparison and Evaluation

Performance (low)

SOA may have limitations in terms of performance due to the distributed
nature of services and associated communication overhead, which can
result in lower performance[6].

Reliability (low)

Although the independence of services can enhance localised reliability,
challenges in coordination and potential points of failure across services
can negatively impact the overall system reliability[10].

Scalability (high)

The capacity to scale services independently according to specific re-
quirements contributes to scalability, despite potential coordination
challenges[10].

Simplicity (low)

SOA is a distributed architecture with a complex topology, which makes
it challenging to develop, deploy, and maintain. The management of com-
munication between services, handling dependencies, and coordinating
updates all contribute to its low simplicity[6].

Testability (low)

Coordination challenges and the need for comprehensive integration
testing may hinder the independent testing of services, which can impact
the overall testability of the architecture[6].

Microservices Architecture

Deployability (high)

Microservices architecture is known for its deployability. The devel-
opment and deployment of independent microservices allow for a high
degree of flexibility and agility. Contributing to a seamless deployment
process, changes to individual microservices can be deployed without
affecting the entire system[5].

Elasticity (high)

Each microservice can be scaled independently based on specific de-
mands, enabling efficient resource allocation and adaptability to varying
workloads. This scalability enhances the overall responsiveness of the
architecture[7].

Evolutionary (high)

The modular nature of microservices makes updating and introducing
new services easy without disrupting the entire system. This flexibility
supports continuous evolution of the architecture in response to changes
in business requirements|5].
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4. Fault Tolerance (high)

The use of microservices reduces the impact of failures, as issues in one
microservice do not affect others. This decentralisation contributes to a
robust and fault-tolerant system[4].

5. Modularity (high)

Each microservice is designed as an independent module with well-defined
interfaces, promoting flexibility and ease of management through a high
level of modularity. This approach allows for independent development,
maintenance, and updates[5].

6. Overall Cost (low)

The distributed nature of microservice architecture makes it difficult to
properly divide into bounded contexts and deal with data consistency
issues, resulting in high overall costs[5].

7. Performance (low)

Microservices architecture can introduce performance overhead due to
inter-service communication[5]. However, this impact is often outweighed
by the benefits of scalability and fault tolerance. Efficient design and
communication strategies can mitigate performance concerns.

8. Reliability (high)

The reliability of a system is enhanced through the isolation of services in
a Microservices architecture. This is because failures in one microservice
do not affect others, resulting in a highly reliable system. Additionally,
the decentralised nature of microservices minimises the risk of system-
wide outages[7, 5], 4].

9. Scalability (high)

The architecture’s ability to independently scale each microservice is a
key strength, enabling efficient resource utilisation and responsiveness to
varying workloads|7, 4, [5].

10. Simplicity (low)

Microservices architecture can introduce complexities in managing dis-
tributed systems, inter-service communication, and potential consistency
challenges. Although powerful and flexible, coordinating and orchestrat-
ing microservices can make it less simple compared to monolithic or less
distributed architectures[d].

11. Testability (medium)

Each microservice can be tested independently, enabling effective unit
testing and isolation of potential issues. This modular approach simplifies
the identification and resolution of problems during the testing phase,
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contributing to the overall reliability of the system. Nevertheless, consid-
ering that microservice architecture is distributed, testing the system as
a whole can be quite a challenging task and requires automation|5, [4].
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Il Overall Comparison

Table 2.1| shows the final comparison of the architectures based on the
specified criteria.

Table 2.1: Overall comparison of architectural approaches.

Criteria Monolith  Microkernel SOA Microservices

Deployability low medium low high
Elasticity low low medium high
Evolutionary low high low high
Fault Tolerance low medium medium high
Modularity low high medium high
Overall Cost high medium low low
Performance high medium low low
Reliability medium medium low high
Scalability low low high high
Simplicity high medium low low

Testability medium high low medium

When comparing a monolithic architecture with a microkernel architecture,
it is evident that the main difference lies in the fact that the core in a
microkernel architecture typically implements only the minimum necessary
functionality. This allows for easy extension or modification through plug-ins,
resulting in a high level of modularity and evolutionary capability. However,
this comes at the cost of performance and simplicity.

Comparing microkernel architecture with service-oriented and microservices
architectures may seem strange, as the former is of the monolithic type and
the latter are of the distributed type. However, microkernel architecture can
also be distributed in the context of remote plugin connectivity.

One can find some similarities between microkernel architecture and service-
oriented architecture. For instance, in service-oriented architecture, there is
a central component responsible for communication between services called
a service bus. In contrast, in microkernel architecture, the core is responsi-
ble for this. Both architectures discourage direct communication between
services/plugins.

When comparing microkernel and microservices architectures, it is evident
that in the context of microservices architecture, there is no central node,
communication between services usually takes place directly or through a
message broker.

It is important to note that among the compared architectures, only the
microkernel architecture provides mechanisms at the conceptual level for
extending or modifying core behaviour. This feature makes the microkernel
architecture appealing in situations where a flexible system that can adapt
to different usage scenarios is required.
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. 2.2 Case Studies and Industry Applications

Microkernel architecture has found practical application in a variety of do-
mains, demonstrating its effectiveness in diverse contexts. Below are notable
case studies and industry applications showcasing the versatility and benefits
of microkernel-based systems.

B 2.2.1 Eclipse IDE

Eclipse, a widely used open-source IDE, uses a microkernel-based architecture
known as the Rich Client Platform (RCP). The RCP separates the core
functionality (the microkernel) from the rest of the Integrated Development
Environment (IDE), allowing for modularity and extensibility through plug-
ins. This design choice allows developers to customise their development
environment and seamlessly integrate additional functionality[11].

Bl 2.2.2 GNUEmacs

GNU Emacs is a text editor that is highly extensible and versatile. Its
microkernel-like architecture sets it apart from other text editing tools. The
core functionality provides essential text editing capabilities, while Emacs’s
strength lies in its extensibility through Emacs Lisp. This extensible design
allows users to tailor Emacs to their specific needs, seamlessly integrating
additional features and functionalities[12].

Bl 2.2.3 Shopify

Shopify is a leading e-commerce platform known for its microkernel-inspired
architecture, which has been instrumental in its success. The microkernel at
the core of Shopify handles essential e-commerce functionalities, providing
a strong foundation for online businesses. What distinguishes Shopify is its
extensive ecosystem of plugins and apps that enable users to customise and
extend their e-commerce stores.

Shopify’s architecture is unique in that it is built around the capability
for third-party developers to create plugins[13]. This approach has turned
the platform into a thriving marketplace for a diverse range of applications,
from payment gateways to marketing tools. The microkernel architecture
of Shopify is not only modular but also distributed. Third-party plugins
are developed and maintained on external servers and interact with the core
system through well-defined Application Programming Interfaces (APIs).

This distributed microkernel architecture provides several advantages to
Shopify. It ensures that the core remains lightweight and efficient as additional
functionalities are handled externally. Additionally, it allows for seamless
updates and improvements to the platform without disrupting the services
provided by third-party plugins. The platform’s versatility has been enhanced
by the thriving ecosystem of developers contributing to Shopify’s plugin
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marketplace, which has fueled its continuous evolution as a leading e-commerce
solution. The success of Shopify is closely linked to its microkernel-inspired
architecture, which allows businesses to customise their online stores with a
wide range of external plugins.

Figure 2.1]illustrates the relationship among apps, merchants, developers,
and Shopify.

HEREHANT Installs and

ﬁ interacts with your
app

APP

b

Extends the merchant

Adds features to experience inside the .
. . Integrates with
enhance the customer Shopify admin or third-party services
buying experience Shopify Point of Sale P Y
(P0S)
CUSTOMER SHOPIFY THIRD-PARTY SERVICES

& 8 &

Figure 2.1: Relationships between apps, merchants, developers, and Shopify[13].
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Figure 2.2| shows the impact of the app on the customer experience,
the user experience of the shop owner in the Shopify admin panel, and the

integration with third party services.

MERCHANT

Installs app to add
functionality to
their store

STORE

L

SHOPIFY

2

DEVELOPER

&

Provides APIs that
enable developers to

extend store
features

| |

APP

Connects with
Shopify APIs to
extend store
features

Builds an app to
meet merchant needs

Figure 2.2: Integrating the app within Shopify[13].
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B 2.2.4 Wordpress

WordPress is a popular Content Management System (CMS) with a microkernel-
like architecture that has contributed to its widespread use. The core engine
of WordPress provides fundamental content management capabilities. What
distinguishes WordPress is its extensive ecosystem of plugins, which allows
for robust extensibility. The modular approach of WordPress allows users
to easily extend and customise their websites by integrating additional fea-
tures, such as e-commerce solutions and Search Engine Optimization (SEO)
tools[14] [15].

The ability to augment the core functionality with plugins has been a
significant factor in WordPress’s popularity among users and developers alike.
The extensibility of WordPress has democratised website creation, allowing
users with varying technical expertise to customise their sites to specific needs
without the need for complex coding. The thriving community of plugin
developers has further enriched the WordPress ecosystem, fostering innovation
and continually expanding the platform’s capabilities. The enduring success
of WordPress can be attributed to its microkernel-inspired architecture and
extensibility, which have made it the preferred CMS for millions of websites
worldwide.

B 2.2.5 Chromium

Chromium is the open source project behind the widely used Google Chrome
browser. It features a microkernel-inspired multi-process architecture. Core
functionality is divided into multiple processes, each responsible for specific
tasks, increasing both security and stability. In particular, Chromium’s
extensibility is a key strength, allowing developers to extend its capabilities
through a rich ecosystem of plug-ins. This microkernel approach enables
seamless integration of additional features and functionality, empowering users
to customise their browsing experience and fostering a thriving community of
extensions that contribute to the browser’s versatility and user experience[16),
17].

B 226 Yarn

Yarn is a widely used JavaScript package manager that follows a microkernel
architecture. Its lightweight core focuses on essential package management
tasks. What sets Yarn apart is its emphasis on extensibility through a robust
plugin system. This allows developers to customise their package management
workflows with a variety of plugins, ensuring flexibility and efficiency[18] [19].

It’s interesting to note that plugin support only appeared in the second
version of Yarn. Here is what Maél Nison, one of the Yarn maintainers, writes
about it plugins:

Still, in the case of popular open-source projects, I believe using
a modular architecture offers some very strong advantages that go
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far beyond the idea that people may have in mind when thinking
about plugins. More than just a way to open your project to new
features, they also provide crucial structure and support, helping
those projects to stand the test of time[20)].

Il 2.2.7 MINIX Operating System

MINIX was developed by Andrew S. Tanenbaum and initially positioned as
an educational operating system that implements a microkernel architecture.
The goal was also to create an operating system with high availability, fault
tolerance, and comprehensibility, at a time when other operating systems
contained millions of lines of code in C/C++, compiled as a monolithic kernel
where approximately 70% of the code consisted of device drivers written by
third-party developers, where a bug in one of the millions of lines could render
the entire system inoperable. Tanenbaum saw this as a problem, namely
a problem in the architectural approach. As a result, the MINIX 3 kernel
was able to achieve 4000 lines of code in the kernel, with the remaining
functionality moved to user-mode processes with restrictions on what they
could do and how they could communicate with other processes. Interestingly,
without MINIX, Linux might not have emerged[9].

B 2.2.8 Summary

Summarizing, the examples provided demonstrate the wide applicability of
microkernel architecture across various domains such as software development,
web applications, browsers, operating systems, and package managers. The
advantages of microkernel architecture, including modularity, security, relia-
bility, and adaptability, make it a valuable choice for critical applications. The
examples cited above showcase the broad benefits of microkernel architecture
in diverse fields, underscoring its versatility and applicability across different
software development scenarios.
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. 2.3 Analysis of Microkernel Architecture

The microkernel architecture, also referred to as a plugin architecture, has re-
mained a prominent approach to software development for several decades|6].
Initially coined in the domain of operating systems, the term “microker-
nel” denotes the strategy of minimizing the kernel’s scope by delegating
non-essential functionalities to user space through modules. The primary
objectives encompass maintaining a lean core, delineating distinct areas of
responsibility, ensuring modularity, bolstering fault tolerance, and facilitating
system extensibility[6, 9, 21].

When scrutinizing microkernel architecture in applications beyond the
operating system realm, it’s crucial to acknowledge that the prefix “micro”
can be somewhat misleading since it doesn’t always imply a diminutive size.

This investigation predominantly delves into microkernel architecture within
higher-level applications, distinct from operating systems.

Four cardinal principles can be delineated for microkernel architecture[6), (9,
21]:

1. Minimal Core: Striving for a compact core that handles essential
functions, relegating non-critical tasks to external modules.

2. Separation of Responsibilities: Demarcating distinct functional
domains within the system, enhancing clarity and maintainability.

3. Modularity: Promoting a modular design where functionalities are
encapsulated within independent units, facilitating flexibility and ease of
development.

4. Extensibility and Fault Tolerance: Ensuring the system’s ability to
accommodate future enhancements seamlessly while resiliently handling
errors and failures.
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l 2.3.1 Topology

In the context of applications beyond the operating system level, microkernel
architecture is a relatively simple monolithic structure comprising two key
architectural components: the core and plug-in components[6]. The general

topology of microkernel architecture is depicted in |Figure 2.3:

Plug-in / \ Plug-in

Component Component
Y Y
Plug-in Plug-in
Component Core System Component
A——— A———
Y Y
Plug-in Plug-in
Component -\ / Component
A——— A———

Figure 2.3: Basic components of the microkernel architecture[d].
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Il 2.3.2 Core System

At its core system, the microkernel architecture defines the basic system
functionality, often described as the minimum requirements for initiating
system operations[6l 9, 21]. For instance, the Eclipse IDE has a core system
that is similar to a basic text editor, capable of opening, modifying, and
saving files. However, it is the integration of plug-ins that transforms Eclipse
into a fully functional and practical product[6] [11].

An alternative interpretation of the core system is to define the application’s
general processing flow or “happy path®”, which is characterised by minimal
or no custom processing. This approach involves extracting the cyclomatic
complexity from the core system and relocating it to distinct plug-in compo-
nents. This strategy improves the system’s extensibility, maintainability, and
testability [6].

The foundational system can be structured using either a layered archi-
tecture or a modular monolith, depending on its size and complexity|[6].
Figure 2.4 depicts the layered separation.

oy oy
Plug-in / Core System \ Plug-in
Component Component
\ / . : \ /
‘ Presentation Layer ‘
oy - g oy
Plug-in ‘ . ‘ Plug-in
Component _ TR T _ Component
\ / . : \ /
‘ Persistence Layer ‘
oy - g oy
Plug-in Plug-in
Component \ / Component
A —— A ——

Figure 2.4: Layered core system (Technically partitioned)[6].

%Happy path” is a term used in software testing that denotes the primary, most typical,
and successful path of executing a program or functionality without encountering any issues
Or errTors.

May 22, 2024 24



2.3. Analysis of Microkernel Architecture

Alternatively, the core system may be partitioned into distinct, indepen-

dently deployed domain services, as depicted in [Figure 2.5, Each of these
domain services would encompass specific plug-in components tailored to its

particular domain|6].

Core System

Plug-in / \ Plug-in
Component P < Component
Domain Domain
Component Component
Y Y
Plug-in Domain Domain Plug-in
Component Component Component | Component
A——— T A———
Domain Domain
O Component Component O
Plug-in || - S S Plug-in
Component _K /_ Component
b A p —

Figure 2.5: Modular core system (Domain partitioned)|[d].

If an application includes a user interface, the presentation layer can be
integrated into the core, be an independent component, or even implement a
microkernel architecture for potential extension through plug-ins. All three
scenarios are depicted in [Figure 2.6, Figure 2.7 and Figure 2.8[0].
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Figure 2.6: Embedded user interface (Single deployment)|[6].
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Figure 2.7: Separate user interface (Multiple deployment units)[6].
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Figure 2.8: Separate user interface (Multiple deployment units, both Microker-

nel)[6].
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Il 2.3.3 Plug-in Components

Plug-in components serve as autonomous entities, housing specialised pro-
cessing, additional features, and custom code designed to augment or extend
the core system. They play a crucial role in isolating volatile code, thereby
enhancing the maintainability and testability of the application. An ideal
characteristic of plug-in components is their independence from each other,
free from interdependencies|6, [21].

Communication between plug-in components and the core system typically
follows a point-to-point model, where the connection resembles a method
invocation or function call to the entry-point class of the plug-in. It is
also quite common for communication to be realised using an event-based
model, where plugins subscribe and react to certain events in the system.
Furthermore, plug-in components can exist in either compile-based or runtime-
based forms. Runtime plug-ins offer the advantage of dynamic addition or
removal without necessitating the redeployment of the core system or other
plug-ins. On the other hand, compile-based plug-in components, though
simpler to manage, require redeployment of the entire monolithic application
when modified, added, or removed[6].

During point-to-point communication, components are typically represented
as shared libraries (Java archive (JAR), Dynamic-link library (DLL), Gem),
package names in Java, or namespaces in other languages. |[Figure 2.9
illustrates an example utilising JAR archives[6].

module. jar
A

Y
Shared '/ \ Shared

Library Library
Shared Core System Shared
Library y Library
Shared Shared

Library .\ / Library

Figure 2.9: Shared library plug-in implementation[6].

One of the simplest ways to organise components is by using packages or
namespaces within a single codebase, as illustrated in Figure 2.10. When
adopting such a component organisation, careful consideration should be given
to the naming conventions for packages or namespaces. One recommended
approach involves employing the following template for naming packages
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and namespaces: app.plugin.<domain>.<context>. The second element
(plugin) facilitates the clear identification of the component as a plugin, the
third component (domain) corresponds to the component’s domain, and the
fourth element (context) specifies the particular plugin[6].

app.plugin.<domain>.<context>
\

Plug-in /— \ Plug-in
Component Component
oy oy
Plug-in Plug-in
Component Core System Component
e S e S
oy oy
Plug-in Plug-in
Component .\ / Component
e S e S

Figure 2.10: Package or namespace plug-in implementation[6].

Plug-in components do not always communicate with the core through
point-to-point; communication can also be remote, facilitated by REST
requests or messages. In such cases, each plugin component serves as a
service, communicating remotely with the core. While this approach may
seem to increase overall scalability, it is not the case; we still have a microkernel
architecture with its monolithic core through which all communication passes
(illustrated in |[Figure 2.11)[6].

Plug-in 1 { \ | Plug-in

Core System

1 | Plug-in
<(RES {RES Component

./

Figure 2.11: Remote plug-in access using REST][6].

Plug-in
Component

The utilisation of a remote access approach for accessing plug-in compo-
nents implemented as distinct services offers several advantages. It enhances
overall component decoupling, affording improved scalability and throughput.
Furthermore, this approach enables runtime modifications without reliance
on specialised frameworks such as OSGi (used in Eclipse IDE), Jigsaw, or
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Prism. Additionally, it facilitates asynchronous communication with plug-ins,
potentially leading to a substantial enhancement in overall user responsiveness,
contingent upon the specific scenario[6].

Despite the advantages of this approach, it has explicit drawbacks. Remote
plugin connection shifts the microkernel architecture from the realm of mono-
liths to the domain of distributed architectures, making it more complex for
development, testing and deployment. Remote communication also adds cost
to the entire system, complicating the final deployment topology. Additionally,
this approach introduces communication-related issues. If a plugin fails to
work or is inaccessible due to network problems, the request simply won’t
be executed, a scenario that cannot occur in a monolithic deployment[6].
However, there are business cases where this is necessary. One such case
is Shopify, a service whose business is largely built on plugins that extend
its functionality and relies on third-party developers deploying plugins to
developer servers. Another example is GitHub Copilot product, which is
implemented as a plugin for many text editors and IDEs, with the core
functionality, the Artificial Intelligence (AI) itself, implemented on a remote
server.

Regarding data storage, it is not common in microkernel architecture for
plugins to have a shared repository. Typically, each component of the system,
including the system core, has its own storage. If there is a need to share data
between different plugins, the system core usually takes responsibility for
this. The main goal of this approach is to reduce coupling between plugins.

Figure 2.12|illustrates this approach[6].

L
Plug-in Plug-in
g Data
Component Component
P P Store
Core System
Plug-in Plug-in
g Data
Component Component
P P ) Store

Figure 2.12: Plugin and core data storage[6].

B 2.3.4 Registry

The core needs to be aware of connected plugins and how it can obtain
information about them. One commonly used solution for this is the use of a
plugin registry component[6, 2I]. The registry stores information about each
connected plugin, including details such as the name, contract information
(input and output data), and communication protocol information (if plugins
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are connected remotely)[6].

This component can be a part of the core or external. Ready-made
comprehensive solutions can also serve as plugin registries, and some examples
include etcd, Eureka, Zookeeper, and Consul.

Internally, the plugin registry can be a simple hash map, where the key is
the hash or name of the plugin, and the value is a reference to the connected
component[6]. Alternatively, it can be a complex solution with registry and
discovery functionality, similar to the ones mentioned above.

The basic sequence diagram for adding a new plugin through the user

interface is presented in [Figure 2.13

sd Plugin Registration /

Userinterface CoreSystem Registry

|.____

addPlugin(pluginPackage)

registerPlugin{pluginDetails)

storePlugininfo(pluginDetails)

Figure 2.13: Sequence diagram of adding a new plug-in.

B 2.3.5 Contracts

In the realm of software development, contracts serve as essential components
for delineating integration points within an architectural framework. These
contracts manifest in various formats and play integral roles throughout the
software design process. In essence, a contract can be defined as the standard-
ized structure utilized by different architectural components to communicate
crucial information and dependencies|22].

One of the fundamental concepts of a microkernel architecture is the use of
contracts between plugin components and the system’s core. These contracts
represent an agreement on input and output data during communication
between the core and plugin components and often relate to specific domains
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or functionalities within the core. It is assumed that only standard contracts,
which are strictly defined in the system, are used. If a plugin component has
been developed by third-party developers, it may have a custom contract.
In such cases, an adapter can be used without modifying the third-party
component[6].

Contracts can be implemented in various ways, such as using Extensible
Markup Language (XML), JavaScript Object Notation (JSON), Protocol
Buffers, Data Transfer Objects (DTOs), or interfaces[6], 22].

B 2.3.6 Extension Points

Another crucial concept in microkernel architecture is Extension Points.
Extension Points allow plug-ins to inject their logic into various parts of
the system and alter its behaviour. Access to extension points is typically
provided through the system core’s API.

The documentation for the Eclipse IDE provides an excellent metaphor
describing extensions and extension points:

The simplest metaphor for describing extensions and extension points
1s electrical outlets. The outlet, or socket, is the extension point; the
plug, or light bulb that connects to it, the extension[23)].

Implementations of this concept can vary depending on the product. For
example, in the Eclipse IDE, extension points define a contract, usually a
combination of XML and a Java interface, to which extensions must adhere.
If a plugin wants to connect to a specific extension point, it needs to im-
plement this contract in its extension. The Eclipse IDE also allows plugins
to define their own extension points, enabling them to extend each other’s
functionality[23].

In Eclipse IDE, extending extension points typically occurs through the
use of extensions and extension points in the plugin.xml file[23].

Listing 2.1 demonstrates the extension of the standard extension point
org.eclipse.ui.menus|24].

Listing 2.1: Extension for the standard extension point org.eclipse.ui.menus.

<extension id="add.item" point="org.eclipse.ui.menus">
<menuContribution
locationURI="menu:someorg.somemenu.id?after=additions">
<command
commandId="someorg.someid.someCommand"
icon="icons/anything.png"
id="someorg.someid.BasicCmdItem"
label="Simple Item"
mnemonic="8">
</command>
</menuContribution>
</extension>

33 May 22, 2024



2. Analysis

In [Listing 2.2| the definition of an internal extension for
org.eclipse.ui.editors is presented|25].

Listing 2.2: Internal editor extension definition for org.eclipse.ui.editors.
<extension point="org.eclipse.ui.editors">
<editor
id="com.xyz.XMLEditor"
name="Fancy XYZ XML editor"
icon="./icons/XMLEditor.png"
extensions="xml"
class="com.xyz.XMLEditor"
contributorClass="com.xyz.XMLEditorContributor"
symbolicFontName="org.eclipse.jface.textfont"
default="false">
</editor>
</extension>

In WordPress, for example, extension points are implemented using hooks.
WordPress hooks come in two types: action and filter. To use actions and
filters, we need to define a callback and then register it using the WordPress
hook for a specific action or filter[14] [15].

Actions are used to perform specific tasks without taking any input or
returning any values. On the other hand, filters are used to modify data. A
filter-type hook takes data as input and returns modified data[l4] [15].

Similar to Eclipse IDE, WordPress has predefined extension points and
also allows plugins to create their own extension points.

In Listing 2.3| and [Listing 2.4/ examples of action and filter registration
in WordPress are presented |26, [27].

Listing 2.3: WordPress action example.
function wporg_callback() {
// do something
3

add_action( 'init', 'wporg_callback' );

Listing 2.4: WordPress filter example.

function wporg_filter_title( $title ) {
return 'The ' . $title . ' was filtered';
}
add_filter( 'the_title', 'wporg filter_title' );

The functions add__action and add__filter can also take priority as the

third parameter, influencing the order of execution of actions and filters|26],
217].
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Prototype

In this chapter, we will implement a proof-of-concept prototype of an ap-
plication using a microkernel architecture to demonstrate its effectiveness
in developing applications that require maximum flexibility in extending
functionality, which, as we defined in [Section 2.1.2| is its strength.

In order to illustrate the advantages of the microkernel architecture, it was
determined that an engine for task automation “AutomationWizard” should
be implemented. The user will be able to create and execute scenarios based
on the functionality provided by third-party plugins. Given that scenarios
and tasks can differ, the microkernel architecture approach appears to be
the most suitable in this context and will enable the potential of the plugin
architecture to be realised.

Next, to begin with, we will explore existing solutions for task automation,
which can assist us in designing the prototype.

. 3.1 Existing Solutions

There are off-the-shelf solutions for task automation that also apply plugin
architecture. These solutions provide the user with the ability to create
and execute scenarios using third-party plugins, making them flexible and
customisable to meet specific needs. Let’s take a look at some of them to
identify the benefits and features of plugin architecture in the context of task
automation.

B 3.1.1 Make.com

Make.com is a web service that facilitates the automation of business processes
through the use of no-code automation. Users can create scenarios using
pre-built blocks and execute them on a schedule, manually, using custom
webhooks, or based on events triggered by specific blocks (apps). Additionally,
Make.com provides a convenient method for users to create custom blocks
and modules by configuring them in JSON through a user-friendly interface.
Make.com provides its own markup language, mustache-like in appearance,
which enables the execution of JavaScript expressions within a sandbox
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environment. This language also includes predefined functions and variables,
which collectively constitute a Domain-Specific Language (DSL)][2§].

B 3.1.2 Zapier

Zapier is another web service for automating business processes. It is similar
to Make.com, but at the time of writing this work, it only supports extensions
in beta mode and in the context of creating custom actions for existing
applications[29)].

B 3.1.3 Hookdeck

Hookdeck is a web service for the management of webhooks. It enables users
to configure the flow between webhooks in a flexible manner, to create their
own filters and transformations described in JSON and JavaScript, and to run
them in a sandbox[30]. In comparison to Make.com and Zapier, Hookdeck
provides a lower-level abstraction, whereas Make.com and Zapier essentially
wrap webhooks in blocks.

. 3.2 Architecture

Within this prototype, a microkernel architecture with remote plugins will
be implemented, where all communication between the core and plugins will
be based on REST API and webhooks. This approach was mentioned in
Section 2.3.3. Compared to the mentioned services Make.com and Hookdeck,
our prototype will be something in between. We will also utilize webhooks
for asynchronous communication at its core. Plugins will implement the
necessary interfaces and contracts for interaction with the core and provide
their extension points in the form of actions and triggers, which essentially will
also be webhooks. Such an approach will allow plugin developers to develop
them in any language, using any technologies and deployment environments,
as long as they implement a predefined interface for interaction with the core.

. 3.3 Technologies

The system core is implemented in Java using the Spring Boot framework.
Since in the context of the prototype, the core communicates with plugins
via REST API and no serious computations are performed on the core side,
Spring Boot is the optimal choice. Hibernate is used for persistence, and
Mayven is used for dependency management. The embedded H2 database was
chosen as the database because it does not require additional configuration
and installation, simplifying the deployment of the prototype. Nashorn is
used to run user JavaScript in a sandbox for data filtering, transformation
and controlling scenario execution. Quartz is used to implement the ability to
schedule scenarios, as it allows for job persistence and dynamic modification.
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Additionally, Spring WebFlux is used as the Hypertext Transfer Protocol
(HTTP) client for asynchronous request sending. For basic authentication
and authorization, Spring Security is used with JSON Web Token (JWT)
tokens.

B 34 Design

The core of the prototype is a multi-layered application where layers are
separated technically rather than by domains, as previously discussed in
[Section 2.3.2| This approach is typical when developing REST services
with Spring Boot. Given that the prototype’s communication is essentially
based on REST APIs and webhooks, such separation of layers is optimal.

represents a class diagram showing the entities in our prototype,
their attributes, and the relationships between them.

class Class Diagram
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Figure 3.1: Prototype class diagram.

Let’s break down the entities and their relationships a bit further. The
Plugin entity represents, as the name suggests, the plugin itself and basic
information about it. Plugins in the system are registered by users, so each
plugin has an author. Upon registration, a plugin also registers triggers and
actions, represented in the diagram as Trigger and Action entities. Triggers
represent events of the plugin to which the core can subscribe for subsequent
scenario execution, while actions are actions provided by the plugin to be
executed within the context of a scenario.

The Scenario entity stores basic information about the scenario, its status,
launch type (scheduled, manual, triggered by plugin event, or user event
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through a custom webhook), trigger payload (in case of plugin trigger launch
type) as well as the sequence of tasks required to be executed within the
scenario context.

The Task entity references a plugin action that needs to be executed, as
well as user JavaScript in Base64 for execution in a sandbox. This is necessary
to allow the user to modify the payload between tasks, filter it, or terminate
scenario execution based on certain conditions.

The ScenarioExecution and TaskExecution entities store information
about the context of a specific scenario execution. This is necessary to avoid
a tight coupling between execution and configuration, allowing configuration
changes to be made to a scenario without affecting already launched scenarios
with the old configuration. Additionally, ScenarioExecution has an envi-
ronment field where the common environment for all executed tasks within
the scenario execution is stored, allowing data sharing between tasks.

The deployment of the application is quite simple and intentionally simpli-
fied within the scope of the prototype. The deployment diagram is shown in

Figure 3.2, In a real-world application, deployment would be more complex
and would involve components such as load balancers, caches, databases, etc.

deployment Deployment Diagram /

wdevicen
Client

Browser E

Dy
Plugins can be written in different
languages, use different
‘ 0. technologies and run in different
environments, as long as they
HTTP implementthe REST API required
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Server

«executionEnvironment»
VM

adevicen
PluginServer

HTTP

Nashorn 1 B Plugin @

DBC_ |

AutomationWizard.jar

H2 Server

H2 Database IDBC

Figure 3.2: Prototype deployment diagram.

As mentioned earlier, the core and plugins communicate via REST API
and webhooks, with each plugin having a base Uniform Resource Locator
(URL) address. Let’s review the existing endpoints and webhooks used in the
interaction between the core and plugins. All paths will be specified relative
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to the base URL address.
Let’s consider the endpoints and webhooks that a plugin must implement
to interact with the core:

Path: /, Method: POST

Returns information about the plugin, its actions, and triggers. This
endpoint is used when the plugin registration webhook is triggered.
Path: /, Method: GET

Returns Hypertext Markup Language (HTML) for embedding on the
plugin page. This endpoint is required to display the plugin’s user
interface in an iframe and is necessary to allow plugins to store additional
information for each user, such as global plugin configuration, whether
it’s tokens, keys, or other data.

Path: /, Method: DELETE

This endpoint is used when the plugin deletion webhook is triggered.

Path: /install, Method POST

This endpoint is used when the plugin installation webhook is triggered
by a user. It informs the plugin about its installation by a specific user.
Path: /uninstall, Method: POST

This endpoint is used when the plugin uninstallation webhook is triggered
by a user. It informs the plugin about its uninstallation by a specific
user.

Path: /triggers/{trigger-name}, Method: POST

This endpoint is used by the core to subscribe to the triggering of a
specific plugin event.

Path: /triggers/{trigger-name}, Method: DELETE

This endpoint is used by the core to unsubscribe from the triggering of a
specific plugin event.

Path: /actions/{action-name}, Method: POST

This endpoint is used by the core to send a request to execute a specific
plugin action.

Now let’s look at the endpoints and webhooks provided by the core for
handling webhooks triggered by plugins and users:

Path: /api/v1/webhooks/tasks/{executionTaskId},
Method: POST

This endpoint is used by the core to receive a response about task
execution from the plugin.
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® Path: /api/v1l/webhooks/triggers/{scenariold}, Method: POST

This endpoint is used by the core to handle an event that occurred on
the plugin side for processing and triggering a scenario.

® Path: /api/vl/webhooks/{webhookId}, Method: POST

This endpoint is used by the core to trigger a scenario based on a user
event. It can be used in third-party services or applications.

The endpoints listed above essentially represent interfaces and contracts
necessary for interaction between the core and plugins. Plugins must im-
plement these interfaces and contracts for proper interaction with the core.
In turn, the core should handle requests from plugins and users, as well
as notify plugins of events occurring in the system. We will discuss their
implementation in more detail in the |Section 3.5,

For a better understanding, Figure 3.3 depicts the sequence diagram in
the context of triggering a scenario by a plugin and executing a scenario
consisting of two tasks from two different plugins, where the asynchronous
communication between the core and plugins is also visible.
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Figure 3.3: Abstract scenario execution sequence diagram.
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. 3.5 Implementation

As mentioned in the [Section 3.3, the Spring Boot framework was used
to implement this prototype. The main Create, Read, Update, and Delete
(CRUD) operations were implemented using the capabilities of this framework
and are not particularly interesting within the scope of this work. In this
section, we will take a closer look at contracts mentioned in the design section,
examine how microkernel architecture components were implemented within
this framework, and highlight the most interesting aspects of the prototype
implementation.

Bl 3.5.1 Registry

The Registry component mentioned earlier in |Section 2.3.4)is implemented
using Spring Boot Data JPA, allowing us to abstract away from the database
logic and work with data at the object level, easily saving and retrieving it. The
Plugin entity is mapped to the database table, and the PluginRepository
interface is used to interact with the database. The PluginService class is
used to implement business logic for working with plugins, such as registration,
deletion, installation, and retrieval. The PluginController class is used to
handle requests from users.

Il 3.5.2 Contracts

Communication between the core and plugins is facilitated through REST
API, as mentioned earlier in the [Section 3.4, Next, we will delve deeper
into the contracts that both plugins and the core must implement to interact
with each other.

Let’s delve into the contracts regarding the plugin endpoints:

® Path: /, Method: POST

For successful registration, the plugin must return a JSON object in the
response body with information about the plugin itself, its actions, and
triggers. Example in Listing 3.1}

Listing 3.1: Response body with information about the plugin.

{

"name": "Plugin name",

"description": "Plugin description",

"actions": [

{

"name": "actionl",
"label": "Action 1",
"description": "Action 1 description',

"consumes": {
"$schema": "http://json-schema...",
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"title": "Message",

"type": "object",

"properties": {
"message": {

"type": "string"

}

3,

"required": [
"message"

]

1},

"produces": {}

1,
"triggers": [
{

"name": "triggerl",
"label": "Trigger 1",
"description": "Trigger 1 descriptiomn",
"consumes": {},
"produces": {}

Actions and triggers must also contain information about the expected
input and output data. For this, a contract described in JSON Schema
is used. This is necessary for validating data in the context of creating
scenarios from triggers and actions, which allows informing the user in
advance that data transformation is required. Since standardizing the
payload format for all actions and triggers would heavily limit plugin
capabilities, in our prototype, we use Nashorn to allow users to transform
and filter data using JavaScript, as well as influence the execution process
itself.

Path: /, Method: GET

The plugin’s user interface should be implemented on the plugin side,
following a similar approach used by Shopify. When accessing this
endpoint, the system core passes the user ID in the request header
X-User-1Id.

Path: /, Method: DELETE

When a plugin is deleted, the system core sends a request to this endpoint.
The plugin should remove all user-specific data and configurations. Upon
successful execution, the plugin should return a response with status 204
No Content.
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® Path: /install, Method POST

The user ID is passed in the request header X-User-Id. This can be
used by the plugin to store user-specific information if necessary.

® Path: /uninstall, Method: POST

The user ID is passed in the request header X-User-Id. This can be
used by the plugin to remove user-specific information if necessary.

® Path: /triggers/{trigger-name}, Method: POST

The request body expects a JSON object defined in the trigger’s JSON
Schema in the consumes field, and the request headers X-User-Id and X-
Scenario-Id pass the user ID and scenario ID respectively. In this case,
the plugin only registers the trigger, and the trigger itself is triggered
asynchronously.

® Path: /triggers/{trigger-name}, Method: DELETE

The request headers X-User-Id and X-Scenario-Id pass the user ID
and scenario ID respectively. Upon successful execution, the plugin
should return a response with status code 204 No Content.

® Path: /actions/{action-name}, Method: POST

The request body expects a JSON object defined in the action’s JSON
Schema in the consumes field, and the request headers X-User-Id and X-
Task-Execution-Id pass the user ID and task execution ID respectively.
In this case, only a request for action execution is sent, and the execution
itself occurs asynchronously.

Now, let’s consider the contracts regarding the core endpoints:

® Path: /api/vl/webhooks/tasks/{executionTaskId},
Method: POST

The request body should contain a JSON object with the task execution
status, an error message in case of FAILED status, and the task execution
result in case of SUCCESS status. An example of such an object is
presented in Listing 3.2, The request parameters include the task
execution identifier.

Listing 3.2: Task execution response body.

{
"state": "SUCCESS",
llmessagell : nn ,
"result": {}

}

® Path: /api/vl/webhooks/triggers/{scenariold}, Method: POST

The request body contains a JSON object with event data. The request
parameters include the scenario identifier.
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® Path: /api/v1l/webhooks/{webhookId}, Method: POST

The request body contains a JSON object with event data. The request
parameters include the webhook identifier.

Il 3.5.3 Extension Points

Extension points are implemented using webhooks, as mentioned in [Section
3.5.2. The core provides webhooks to trigger scenarios by plugin triggers
or user events using a custom webhook, as well as to handle responses from
plugins regarding action execution. Plugins provide webhooks to trigger
actions when a specific task from the scenario is executed. Thus, plugins
can influence the behavior of the core and other plugins within the context
of a scenario. Additionally, the core provides the ability to insert custom
JavaScript code into the scenario for data filtering, transformation, and
controlling the scenario execution process, as mentioned in |Section 3.4l
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I 3.5.4 Scenarios

The class responsible for triggering the scenario, handling plugin responses,
and initiating subsequent tasks in the scenario is ScenarioExecutionService,
presented in [Listing 3.3. Let’s examine the most interesting aspects of its
implementation.

Listing 3.3: ScenarioExecutionService implementation.
©S1f4j
@Service
ORequiredArgsConstructor
public class ScenarioExecutionService {
Q@Async
@Transactional

public void runScenario(UUID scenariold, JsonNode
payload) {

}

Q@Async

Q@Transactional

public void taskHandler (UUID taskExecutionId,
PluginTaskExecutionRequest request) {

}

private Mono<Void> executeTask(TaskExecution
taskExecution, ScenarioExecution scenarioExecution,
JsonNode payload){

}

private Consumer<? super Throwable>
taskErrorHandler (UUID taskExecutionId, UUID
scenarioExecutionId) {

Listing 3.4| presents the implementation of the runScenario method,
which triggers the scenario. This method is annotated with @Async, allowing
it to be executed asynchronously without blocking the main execution thread.
Additionally, a ScenarioExecution entity and TaskExecution entities are
created for each task in the scenario. This approach ensures independence
from the initial scenario configuration if it changes during scenario execution.
Next, the first task of the scenario is executed using the executeTask method.
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Listing 3.4: ScenarioExecutionService runScenario method implementation.
O@Async
@Transactional
public void runScenario(UUID scenariold, JsonNode payload) {

// Create scenario execution

final ScenarioExecution scenarioExecution =

ScenarioExecution.builder ()
.scenario(scenario)

.environment (JsonNodeFactory.instance.objectNode () )
.state(ScenarioExecutionState.STARTED)
.build Q) ;

// Create task executions
var executionTasks = tasks.stream() .map(task ->
TaskExecution.builder ()
.state(TaskExecutionState .PENDING)
.actionUri(task.getAction().getPlugin().getUrl()
+ "/actions/" + task.getAction() .getName())
.scenarioExecution(scenarioExecution)
.preprocessor (task.getPreprocessor())
.build()) .toList ) ;

scenarioExecution.setTasks (executionTasks) ;
scenarioExecutionRepository.save(scenarioExecution) ;

// Execute first task
executeTask(executionTasks.get (0), scenarioExecution,
payload)

.publishOn(Schedulers.boundedElastic())

.doOnError (taskErrorHandler (executionTasks.get (0) .getId(),
scenarioExecution.getId()))
.subscribe () ;

Listing 3.5| provides the implementation of the executeTask method. In
this method, the environment for the custom JavaScript is set, the custom
script is executed in the sandbox, and the execution result is obtained for
further processing. Then, an asynchronous request is sent to the plugin for
action execution using the WebClient.
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Listing 3.5: ScenarioExecutionService executeTask method implementation.

private Mono<Void> executeTask(TaskExecution taskExecution,
ScenarioExecution scenarioExecution, JsonNode payload) {

var stringBuilder = new StringBuilder();
stringBuilder.append("var env = JSON.parse(env);");
var script = new String(Base64.getDecoder() .decode(
taskExecution.getPreprocessor()));
stringBuilder.append (script);
stringBuilder.append("env = JSON.stringify(env);");
script = stringBuilder.toString() ;
boolean process = true;

// Setup context

SandboxScriptContext sandboxScriptContext =
sandbox.createScriptContext () ;
ScriptContext context =
sandboxScriptContext.getContext () ;

var environment = (ObjectNode)
scenarioExecution.getEnvironment () ;
environment.set ("payload", payload);
environment.set ("process",
JsonNodeFactory.instance.booleanNode (process)) ;

context.setAttribute("env", environment.toString(),
ScriptContext.ENGINE_SCOPE) ;

// Execute script
try {
sandbox.eval (script, sandboxScriptContext) ;
var updatedEnvironment = new
ObjectMapper () .readTree ((String)
context.getAttribute("env"));

return webClientBuilder.build() .post()
.uri(taskExecution.getActionUri())
.contentType (MediaType . APPLICATION_JSON)
.header ("X-User-ID", scenarioExecution.getScenario()
.getOwner () .getId() .toString())
.header ("X-Task-Execution-ID",
taskExecution.getId () .toString())
.bodyValue (payload)
.retrieve()
.bodyToMono (Void.class);
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Listing 3.6/ presents the implementation of the taskHandler method,
which handles the response from the plugin regarding action execution. In
case of successful action execution, it checks if there is a next task to execute.
If there is, the executeTask method is called for its execution. In case of
an error, the task status is set to FAILED, and the scenario execution is
terminated with a FAILED status. The method is also annotated with @Async
for asynchronous execution to prevent blocking the main execution thread.
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Listing 3.6: ScenarioExecutionService taskHandler method implementation.
O@Async
@Transactional
public void taskHandler (UUID taskExecutionId,
PluginTaskExecutionRequest request) {

// Find current task index
var currentTaskIndex =
executionTasks.index0f (executionTask) ;

if (currentTaskIndex == -1) {

throw new NotFoundException("Task execution not
found") ;
b

if (request.getState() ==
PluginTaskExecutionRequest.PluginTaskExecutionState.FAILED)
{

executionTask.setState(TaskExecutionState.FAILED) ;

scenarioExecution.setState(ScenarioExecutionState.FAILED) ;
scenarioExecution.setEndTime (LocalDateTime.now());
scenarioExecutionRepository.save(scenarioExecution) ;
return;

}

// Check if task is last and complete scenario execution
if (currentTaskIndex == executionTasks.size() - 1) {
scenarioExecution.setState (
ScenarioExecutionState.COMPLETED) ;
scenarioExecution.setEndTime (LocalDateTime.now());
scenarioExecutionRepository.save(scenarioExecution) ;
return;

// Execute next task

executeTask(executionTasks.get (currentTaskIndex + 1),

scenarioExecution, request.getResult())
.publishOn(Schedulers.boundedElastic())

.doOnError (taskErrorHandler (executionTask.getId(),

scenarioExecution.getId()))
.subscribe() ;

In the next section, we will discuss the testing and evaluation of the
prototype.
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. 3.6 Testing and Evaluation

To test our prototype, we need to define user scenarios, plugins used, their
involvement within specific user scenarios, and testing scenarios. Let’s take a
closer look at two usage scenarios:

® Scenario 1

Upon the creation of a new task in a Jira project, it triggers the as-
signment of an assignee to the task and sends notifications to both the
assignee and the project manager via Slack.

® Scenario 2

Regularly, on a timer basis, it checks the price of a product in an online
store. If the price drops below a certain threshold, it sends a notification
to the user via Short Message Service (SMS).

Based on the described scenarios, the following plugins have been identified:

B Jira

This plugin is a Jira integration providing capabilities to work with
projects and tasks. It includes two actions: “Get Project Participants”
and “Assign Task”, as well as one trigger “New Task” Actions allow
retrieving a list of project participants and assigning a task to a specific
user, while the trigger activates upon the creation of a new task in the
project.

m Slack

This plugin serves as a Slack integration primarily designed to send private
messages. It features a single action called “Send Private Message”,
allowing the transmission of messages to specific users on Slack. There
are no triggers included in this plugin.

= HTML

This plugin allows fetching HTML content from a specified URL. Its
single action, “Get HTML”, takes a URL as input and returns the
corresponding HTML content. There are no triggers included in this
plugin.

= SMS

This plugin enables the sending of SMS messages. Its sole action, “Send
SMS?”, accepts the phone number of the recipient and the message content
as input. There are no triggers included in this plugin.

It’s also worth mentioning that the plugins, their actions, and triggers

mentioned above are just examples; in a real application, actions, triggers,
and their parameters may vary. In our example, authorization is also omitted

51 May 22, 2024



3. Prototype

for simplicity, but in a real-world application, if necessary, the plugin could
prompt the user for access tokens to third-party services, either in the context
of payload data or through plugin interface settings.

In [Table 3.1| and |Table 3.2 definitions of integration tests for user
scenarios 1 and 2 are provided, respectively, as previously outlined. They
include the test identifier, test description, preconditions, input data, expected
result, and postconditions.

Table 3.1: Definition of integration test Scenario 1.

ID Scenario 1

Description Integration test of core and plugins in the context of
scenario execution triggered by a plugin.

Precondition In the system, there exists a user. Jira and Slack plugins
are registered, and the user has installed these plugins.
A scenario with tasks is created and activated.

Input A new task appears in the Jira project, triggering the
plugin’s trigger.

Expected Outcome A notification about the new task in the Jira project
successfully arrives in Slack to the assigned user for
processing, as well as to the project manager.

Postcondition ScenarioExecution has the status COMPLETED.
TaskExecution of the executed scenario also has the
status COMPLETED.

Table 3.2: Definition of integration test Scenario 2.

ID Scenario 2

Description Integration test of core and plugins in the context of
scenario execution triggered by a schedule.

Precondition In the system, there exists a user. HTML and SMS
plugins are registered, and the user has installed these
plugins. A scenario with tasks is created and activated.

Input The scheduler has been triggered.

Expected Outcome SMS notification was successfully sent to the user when
the condition is met.

Postcondition ScenarioExecution has the status COMPLETED.

TaskExecution of the executed scenario also has the
status COMPLETED.

The testing scenarios listed above represent the “happy path”, aiming
to verify that the system operates correctly under normal conditions. For
our prototype and its goals, this level of testing suffices to demonstrate the
system’s functionality and potential. However, in the context of a production
application, this would certainly be inadequate.

During the prototype development and testing process, certain testing
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scenarios were conducted manually using Postman'| and Mockoon?. However,
for a prototype without a user interface, manual testing of such an application
is quite laborious and not very convenient. Hence, automated integration
tests were written.

To implement automated integration tests, the Spring Boot Starter Test
and WireMock®| packages were used for mocking plugins and testing inter-
actions with them, including contract testing. It’s worth noting that since
communication between the core and plugins occurs asynchronously during
the execution of a user scenario, testing such systems is a non-trivial task.

For a better understanding of the testing process of the previously described
user scenarios, sequence diagrams illustrating the interaction between the
core and plugins during scenario execution are provided in [Figure 3.4| and
Figure 3.5|respectively. These diagrams also indicate the payload and the
applied user JavaScript code.

Postman - a tool for testing APIs.
2Mockoon - a tool for mocking APIs.
WireMock - a library for mocking APIs.
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Before processing the result of the executed plugin action, custom JavaScript
code is executed in the sandbox for data transformation or filtering. Let’s
delve deeper into the custom JavaScript used in scenario 1.

Listing 3.7| presents the custom JavaScript code for scenario 1, which
is executed before performing the “Get Project Participants” action of the
Jira plugin. To retrieve project participants, the action requires passing the
project identifier obtained when the “New Task” trigger is triggered, which we
set in the environment in the payload, where we also store the task identifier
for use in subsequent tasks.

Listing 3.7: User’s JavaScript for the Scenario 1, scenariol-preprocessorl.js

env.projectld = env.payload.projectld;
env.taskId = env.payload.taskId;
env.payload = {

"projectId": env.projectld
X

Listing 3.8 provides the custom JavaScript code for scenario 1, which is
executed before performing the “Assign Task” action of the Jira plugin. In
this code, we select a random project participant from the response of the “Get
Project Participants” action, save their Slack identifier in the environment,
and pass the project, task, and user identifiers in the payload.

Listing 3.8: User’s JavaScript for the Scenario 1, scenariol-preprocessor2.js
if (env.payload.participants.length !== 0) {
var randomIndex = Math.floor (Math.random() *
env.payload.participants.length) ;
var randomParticipant =
env.payload.participants[randomIndex] ;

env.slackld = randomParticipant.slackId;
env.payload = {

projectld: env.projectld,

taskId: env.taskId,

userId: randomParticipant.userId
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Listing 3.9| depicts the custom JavaScript code for scenario 1, executed
before performing the “Send Private Message” action of the Slack plugin.
This code constructs a message to be sent to the project participant assigned

the task.

Listing 3.9: User’s JavaScript for the Scenario 1, scenariol-preprocessor3.js

env.payload = {
"userId": env.slackId,
"message": "You have been assigned a new task " +

env.taskId + " in Jira project " + env.projectIld

Listing 3.10)| presents the custom JavaScript code for scenario 1, executed
before performing the “Send Private Message” action of the Slack plugin.
In this code, a message is crafted to inform the project manager about the
creation of a new task and its assignment to a project participant.

Listing 3.10: User’s JavaScript for the Scenario 1, scenariol-preprocessor4.js

env.payload = {
"userId": "9efbclbf-0145-4f19-aa04-2d1337cb59da",
"message": "A new task " + env.taskId + " was created in
the project " + env.projectld + " and assigned to a user

" + env.slackId
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3.6. Testing and Evaluation

Let’s take a closer look at the execution of the second scenario.

sd Scenario 2 Execution -
Quartz Core HTMLPlugin SMSPlugin

T T T T
I l I l
: runleb() : : :

\Tf runScenariof) : payload :
1 | state:*® <string> 1
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| pay! . ==---o_l|______petWebpage() I resuft:* { |
| url:* <string= e - ) |
| =<7 okf) html: { |
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|| preprocessar i AU i
| -
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I ok() |
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1 1
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Figure 3.5: Scenario 2 execution sequence diagram.

Listing 3.11| presents the custom JavaScript code for scenario 2, executed
before performing the “Get HTML” action of the HTML plugin. This code
constructs the payload for requesting HTML content from the specified URL.

Listing 3.11: User’s JavaScript for the Scenario 2, scenariol-preprocessorl.js
env.payload = {
"url": "https://test.com"
}

Listing 3.12| provides the custom JavaScript code for scenario 2, executed
before performing the “Send SMS” action of the SMS plugin. In this code,

the price of the product is checked, and if it is less than 30, a message is
crafted to send to the user; otherwise, the scenario execution is canceled.
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Listing 3.12: User’s JavaScript for the Scenario 2, scenariol-preprocessor2.js

if (env.payload.html.body < 30) {
env.payload = {
phoneNumber: '1234567890',
message: 'Price is low, buy now!'
};
} else {
env.process = false;

These scenarios were successfully implemented and tested, allowing us to
conclude on the prototype’s functionality and its alignment with the set goals.
Although the plugins in our example were relatively simple, our system does
not limit their complexity and capabilities. Asynchronous communication
enables plugins to execute tasks that require prolonged execution time, while
custom JavaScript code allows users to influence the scenario execution
process, filter, and transform data. Additionally, it’s worth noting that in a
real application, it’s possible to implement non-linear scenario execution and
support other types of transmitted data, such as binary data.

Authentication for plugins was not implemented in the prototype, which is
essential in a production environment. Basic error handling was implemented
in the prototype, but in a production, there would likely be a much larger
number of edge cases to handle.
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Chapter 4

Conclusion

Throughout this thesis, a comparison between the microkernel architecture
and other types of architectures was conducted, successful use cases of this
architecture in real-world applications were analyzed, and a detailed exam-
ination of its components and principles was performed. Subsequently, a
prototype of a system using the microkernel architecture was implemented.
The prototype was thoroughly tested and evaluated, leading to conclusions
about its functionality and alignment with the set goals.

From all of this, it can be inferred that the microkernel architecture
represents a promising approach to building scalable and flexible systems,
enabling the development of applications that can be easily extended with
new functionality without altering the original codebase. However, like any
architecture, it involves trade-offs and priorities. Implementing a system
based on the microkernel architecture requires careful attention to detail and
meticulous planning, as incorrect system design can lead to issues that are
difficult to rectify in production. This applies especially to the implementation
of the core itself, where it is crucial to determine which functionality should
be part of the core and which should be delegated to plugins. In the context
of our prototype, the complexity is further compounded by the fact that all
plugins are remote, which complicates testing and requires more focus on
security and handling various edge cases.

It is hoped that this work will contribute to the popularization of the
microkernel architecture, and we anticipate seeing more projects adopting
this approach in the future.

The source code of the prototype core is available in the GitHub repository
at the following link: https://github.com/mikicit/automate-wizard-core|
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Appendix B

Acronyms

AT Artificial Intelligence. 31
API Application Programming Interface. 17, 33, 36-38, 42, 53

CMS Content Management System. 20
CRUD Create, Read, Update, and Delete. 42

DLL Dynamic-link library. 29
DSL Domain-Specific Language. 36
DTO Data Transfer Object. 33

HTML Hypertext Markup Language. 39, 51, 52, 57
HTTP Hypertext Transfer Protocol. 37

IDE Integrated Development Environment. 17, 31

JAR Java archive. 29
JSON JavaScript Object Notation. 33, 35, 36, 42-45
JWT JSON Web Token. 37

RCP Rich Client Platform. 17
REST Representational State Transfer. 30, 36-38, 42

SEO Search Engine Optimization. 20
SMS Short Message Service. 51, 52
SOA Service-Oriented Architecture. 12, 13, 16

URL Uniform Resource Locator. 38, 39, 51, 57

XML Extensible Markup Language. 33
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