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Abstract

This thesis presents an enhancement of
Sophia the Robot, a humanoid platform
renowned for its human-like expressions
and interactions. The project focuses
on developing an advanced human-robot
interaction system aimed at enhancing
multi-party awareness, with a particular
emphasis on adding the ability to detect
being photographed and to respond in a
natural manner.

Essential to this initiative is a compre-
hensive software overhaul, supported by
emerging machine learning technologies,
such as zero-shot detection and multi-
modal large language models, and a novel
gaze control behavior module that mim-
ics human-like dynamic interactions. The
implementation utilizes the Robot Oper-
ating System (ROS), enhancing adapt-
ability for use in other robotic systems.
Concurrently, proposed hardware modi-
fications support the enhanced sensory
requirements.

The system was tested and evaluated
in real-world scenarios, with user evalua-
tions designed to compare the responses
to typical human reactions. This research
advances humanoid robotics by demon-
strating a customizable framework for im-
proving robotic responsiveness in human-
centric applications.

Keywords: Human-robot interaction,
Humanoid robot, Computer vision, Scene
analysis, Attention and gaze control
system, Multimodal interaction, Robot
Operating System (ROS)

Abstrakt

Tato práce se věnuje rozšíření možností
Sophie, humanoidního robota známého
realistickým expresivním obličejem a in-
terakcemi. Projekt se zaměřuje na vývoj
pokročilého systému vnímání a pozornosti,
který má za cíl zlepšit skupinovou inter-
akci, přičemž klade důraz na schopnost
detekovat situaci kdy je robot fotografo-
ván a reagovat přirozeným způsobem.

Zásadní součástí projektu je komplexní
přepracování softwaru, aplikace moder-
ních technologií strojového učení, jako
jsou modely pro zero-shot detekci a mul-
timodální velké jazykové modely, spolu s
nově navrženým modulem pro řízení po-
zornosti, který imituje dynamickou hu-
manoidní interakci. Implementace vyu-
žívá Robot Operating System (ROS), což
umožňuje adaptaci systému pro jiné robo-
tické platformy. Současně jsou navrženy
úpravy hardwaru, které podporují rozší-
řené senzorické požadavky.

Systém byl testován a hodnocen na re-
álných situacích, kde hodnocení uživatelů
sloužilo k porovnání reakcí robota s ty-
pickými lidskými reakcemi. Tato práce
přináší pokrok v oblasti humanoidní robo-
tiky tím, že demonstruje flexibilní systém
pro zlepšení reaktivity robotů v aplikacích
zaměřených na interakci s člověkem.

Klíčová slova: Interakce člověka s
robotem, Humanoidní robot, Strojové
vidění, Analýza scény, Systém řízení
pozornosti a pohledu, Multimodální
interakce, Robot Operating System
(ROS)
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Chapter 1

Introduction

1.1 Background

1.1.1 Sophia the Robot

Sophia the Robot, developed by Hanson Robotics Limited, is recognized for her state-of-
the-art human-like expressive face 1.1 and for being one of the first robots of her kind to
achieve celebrity status. Unveiled in 2016 [5], Sophia has become an icon in the realm
of social robotics, distinguished by her ability to mimic human emotions and engage in
meaningful dialogues. Her sophisticated appearance and advanced AI integration make
her a key figure in exploring the intersection of technology and social interaction [6].

Notable historical milestones for Sophia include being granted citizenship by Saudi
Arabia [7], speaking at the United Nations [8], and appearing on popular television shows
which have significantly raised public interest in robotics and AI [9]. These events have
not only showcased her capabilities but have also sparked discussions on the future of
robots in society [10].
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.......................................... 1.1. Background

Figure 1.1: Sophia displaying a range of emotions. From left to right: happy, angry, surprised,
winking. (Source: Author and Hanson Robotics Limited)

1.1.2 Humanoid Robots in Society

Sophia is part of a growing family of humanoid robots that are increasingly integrated into
society [11]. These robots are designed to interact with humans in various settings, such as
healthcare [12], education [13], entertainment [14], and customer service [15]. Mukherjee,
Baral, et al., systematically reviewed humanoid robots in healthcare, highlighting their
growing acceptance and diverse applications, which informs the potential pathways for
Sophia’s integration in similar environments [12]. Kirstein, Risager, et al., implemented
social robots in educational institutions, demonstrating increased engagement and learning
outcomes, which are critical considerations for Sophia’s development [13].

Social robots are distinct from traditional industrial robots in that they are intended
to engage with people in a human-like manner, often through verbal and non-verbal
communication [16]. In addition to task-performing capabilities, social robots must
be able to display socially acceptable behavior. This includes recognizing social cues,
understanding context, and responding appropriately to human actions. These abilities
are essential for establishing trust and rapport with users, which are crucial for successful
human-robot interactions [17].

1.1.3 Challenges in Social Robotics

One of the key challenges in social robotics is the ability of robots to understand and
respond to social cues - nonverbal signals that people use in communicating their intentions
and attention. These cues include facial expressions, body language, and gaze direction.

2



......................................1.2. Motivation and Goals

For example, maintaining eye contact with someone indicates attentiveness and interest
in the conversation. Social robots thus require a mechanism that is able to control
attention, gaze, and behavior on the basis of social cues. This mechanism, known as the
gaze control system (GCS), is responsible for determining where the robot should look
and how it should respond to social cues [18]. The GCS is a critical component of social
robots, as it enables them to engage in natural and socially appropriate interactions with
humans [19].

Zaraki, Mazzei, et al., designed and evaluated a human-specific GCS, which partially
aligns with the enhancements of Sophia’s GCS [20], as well as a similar work by Aliasghari,
Taheri, et al. [21]

1.2 Motivation and Goals

1.2.1 Enhancing Sophia’s Autonomy

Sophia’s public interactions are highlighted by her capabilities in maintaining eye contact,
recognizing faces, and engaging in human-like conversations, making her a sought-after
participant at high-profile events worldwide [22] and a popular figure in the media [23].
Despite these advanced features, her interactions are not fully autonomous. Some of
her behavior during public appearances is controlled by human operators who direct her
focus — whether towards a camera, an audience member, or other points of interest. We
can see an example of this in Figure 1.2 where we see multiple people interacting with
Sophia at the same time and taking pictures and videos of her.

Sophia’s interactivity is limited by her current software, especially by her GCS, which
is primarily configured to track human faces with no other stimuli being considered.
Effective in controlled environments, this system does not adequately handle the dynamic
and unpredictable nature of unstructured social settings. For instance, at public events,
Sophia is often confronted with numerous simultaneous stimuli, such as reporters, cameras,
and excited attendees, which her existing system cannot prioritize in a natural human-like
manner.

The initiative to advance Sophia’s autonomy aims to transform her to a more inde-
pendent entity, and to move away from reliance on operators. This transformation is

3



......................................1.2. Motivation and Goals

Figure 1.2: People interacting with Sophia and taking pictures and videos of her. (Source:
Hanson Robotics Limited)

essential for improving the authenticity of her interactions and enabling her to manage
complex, multi-party environments on her own.

1.2.2 Improving Interaction Capabilities through Photogenic Behavior

The choice to enhance Sophia’s autonomy and interaction capabilities specifically through
improvements in her ability to detect and react to photograph-taking scenarios serves as
both a focal point for this research and a stepping stone for broader enhancements. The
choice of this feature, aptly named (Photogenic Behavior), is motivated by its visibility
and frequent occurrence at public events, making it a tangible and relatable improvement.
However, the underlying enhancements to her system architecture are designed with a
wider vision.

Sophia is a multipurpose platform, thus the new system needs to be flexible, scalable,
and transparent, allowing for the integration of additional features and behaviors in the
future. The goal was to create a system that is not only capable of detecting and reacting

4



........................................ 1.3. Thesis Structure

to photograph-taking scenarios but also able to adapt to a wide range of social situations,
making Sophia more versatile and engaging.

This work also contributes to previous research, enabling previously only theoretical or
virtually tested systems to be implemented and evaluated in real-world scenarios, such as
[24], in which Shen, Mo, Krisciunas, Hanson, and Shi investigated intention estimation
via gaze for robot guidance in hierarchical tasks, in virtual environment.

1.3 Thesis Structure

This thesis is organized into four main chapters that delineate the development process,
the architecture enhancements, and the comprehensive testing of the modifications applied
to Sophia the Robot, culminating in a discussion of the implications and future directions
of this research.

. System Architecture, Development, and Implementation
This chapter is the core of the thesis, detailing the systematic enhancements made
to Sophia’s architecture. It is divided into several sections, each focusing on different
layers of the new system:.Hardware Layer : Discusses the existing hardware components and the inte-

gration of new hardware designed to expand Sophia’s sensory capabilities and
interaction potential..Perception Layer : Introduces new detection models and algorithms that enable
Sophia to perceive and understand her environment..Attention Layer : Details the attention management system that directs Sophia’s
focus dynamically based on her interaction context..Reasoning Layer : Explores Sophia’s AI agents and their role in providing
context-aware information to the GCS..Behavior Layer : Describes the mechanisms through which Sophia’s behavior is
regulated and adapted based on the perceived stimuli and the desired interaction
outcomes. Covers the user-facing mechanisms through which Sophia responds,
providing a natural interaction experience.. Experiments, Evaluation, and Discussion

This chapter presents the methodology and results of the experiments conducted to
test the newly implemented systems in real-world scenarios. It includes:

5



........................................ 1.3. Thesis Structure

.Experimental Setup: Describes the conditions and parameters of the tests
conducted..Questionnaire and Feedback: Summarizes the feedback received from users and
operators during testing and evaluation..Results and Discussion: Analyzes the results of the experiments and evaluates
the effectiveness of the enhancements made to Sophia’s system..Comparisons: Compares the performance of the new system with the original
one and discusses the improvements observed. Additionally, it compares this
system with other similar systems in the field of social robotics..Challenges and Limitations: Acknowledges the obstacles encountered during
the project and the constraints of the current system. Touches on the possible
future enhancements that could address these challenges..Conclusion and Future Work

The final chapter synthesizes the contributions of the thesis and discusses the broader
impacts of the research. It summarizes the key points of the study and outlines
potential future research directions that could further enhance Sophia’s capabilities
or apply the findings to other robotic systems.. Summary of Contributions: Concisely recaps the enhancements made to Sophia

and their significance within the field of social robotics..Future Research Directions: Proposes avenues for continued development based
on the results and experiences gained during this project.

6



Chapter 2

System Architecture, Development, and
Implementation

As concluded in the previous chapter, the best way to implement Photogenic Behavior is
a major overhaul of the current human-robot interaction (HRI) system, with focus on
the gaze control system (GCS) and the behavior system.

The project has been split the into five main interconnected layers: hardware, perception,
attention, reasoning, and behavior. Modeling human behavior, this system serves to
collect visual and auditory information, process them, modify the robot’s behavior based
on the perceived inputs and inner reasoning, and react appropriately, both verbally and
physically.

For the specific purpose of Photogenic Behavior, the GCS cannot simply track the
nearest and/or the centremost picture-taking device or person, it needs to understand
the difference between distinct scenarios (such as selfie, regular picture taking, candid
shot, or video recording), adjust the behavior state accordingly, which in turn tunes the
attention model. The attention layer then decides which detected object or person to
track based on a complex set of features extracted by the perception layer and returns a
single point to gaze at, and customized gaze parameters.

This chapter describes these layers, the logic and research behind their design, and
their implementation in practice.

7



........................................ 2.1. Hardware Layer

2.1 Hardware Layer

2.1.1 Starting State

.Mechanical Components
The mechanical components of Sophia include her face, neck, upper torso, and
arms (Figure 2.1). These components are responsible for her expressive capabilities,
allowing her to mimic human facial expressions and gestures.

Figure 2.1: Sophia’s body components in a basic configuration. (Source: Author, with
permission from Hanson Robotics Limited)

Sophia’s head is the most expressive part of her body, featuring a realistic human-like
face with 32 facial actuators that enable her to produce a wide range of expressions.
Her skin is made of a patented elastomer-based material called Frubber, which is
designed to mimic human skin in terms of texture and appearance [25]. The facial
servos in effect simulate the muscles of a human face, allowing Sophia to smile, frown,
raise her eyebrows, and move her jaw, lips, tongue, and eyes. The head sits on a
neck mechanism with 3 degrees of freedom (DoF).

8



........................................ 2.1. Hardware Layer

Sophia’s arms, while not covered by Frubber, are designed to be human-like in
proportions and movement, with 28 DoF [26].
For locomotion, Sophia can be equipped with different kind of mobile bases, most
commonly a remotely controlled wheeled base or a self guided wheeled base.
All of Sophia’s mechanical components are controlled by a series of motors and
actuators, which are connected to a central control unit that coordinates their
movements, using a combination of pre-defined animations.
For speech reproduction, Sophia has a standard stereophonic speaker system.. Sensors
Sophia’s main camera is an Intel RealSense Depth Camera D435i [27] which provides
depth information in addition to color video stream. This camera is used for face
detection and depth perception, which are the main components in calculating
Sophia’s gaze direction when maintaining eye contact. It is located in her upper
chest area (Figure 2.2), horizontally fixed, with vertical tilt controlled by a single
actuator.
It has an FOV of 69°, which can be limiting in crowded or multi-party scenarios.
At the same time, her neck shouldn’t be moved past this angle, as it might look
unnatural and could lead to skin tearing.

Figure 2.2: Intel RealSense D435i, Sophia’s main camera for face detection and depth
perception mounted on her chest. (Source: Author and Hanson Robotics Limited)

Sophia also has a camera in each of her eyes (Figure 2.3), which can currently be
used for eye contact correction via visual servoing.
Sophia uses a simple microphone array, which is used for voice recognition and speech
synthesis. In the current state, it is not capable of sound source localization. For
processing speech, Sophia uses a number of state-of-the-art models and algorithms,

9



........................................ 2.1. Hardware Layer

Figure 2.3: A close-up of Sophia’s eye cameras, used for eye contact correction. (Source:
Author and Hanson Robotics Limited)

such as speech separation algorithms, speech recognition, voice activity detection
(VAD), and natural language processing.
When required, she can use any number of external microphones, such as lapel or
handheld, to achieve clearer audio input and more reliably separate speech from
different sources..Processing Units
Sophia’s logic unit consists of a series of interconnected computers, which are respon-
sible for processing sensory inputs, running AI agents, and controlling mechanical
components.
The main computer is an Intel NUC [28], which runs the HRSDK software suite and
the ROS middleware on Ubuntu. It is connected to a series of microcontrollers that
control the motors and actuators of Sophia’s mechanical components.
AI agents and visual processing models are run on an Nvidia Jetson Orin module
[29].
Sophia is also equipped with a generic wireless router which negotiates the commu-
nication between the main computer and the Jetson module, as well as any external
devices that need to wirelessly connect to Sophia’s network.. Frontend
Technically not a hardware component, but suitable to present in this chapter:
Sophia’s frontend, the HRSDK WebUI, is a custom-built web interface that allows
operators to control her behavior, monitor her sensors, and interact with her in real
time. The frontend is built using HTML, CSS, and JavaScript, and communicates
with the backend via RESTful API.
Depicted in Figure 2.4, the center of the interface is a live video feed from Sophia’s
main camera, which is used to monitor her visual perception and adjust her gaze as
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Figure 2.4: HRSDK WebUI, Sophia’s frontend interface for operators to control her behavior
and monitor her sensors. (Source: Hanson Robotics Limited)

needed.
Underneath, the interface provides an overview and control of the chat agent network,
enabling operators to monitor and adjust the conversation flow in real time.
Sophia’s behavior can also be controlled by preprogrammed performance scripts,
which are stored in the backend and can be triggered by the operator via the left
panel of HRSDK WebUI. These scripts are used to trigger specific interactions, such
as giving lectures, performing scripted conversations, or even a dance routine.
The right panel can be used for manually triggering a wide range of specific physical
actions, such as waving, nodding, or any kind of facial expression. These actions
are performed automatically by Sophia’s behavior system, but can also be triggered
manually for enhanced effect.
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2.1.2 Objectives

I conducted a user poll to gather feedback on the current system and to identify areas
for improvement. The results of the poll were used to guide the development of the
new system and to prioritize the enhancements that would have the greatest impact on
Sophia’s interactions.

For implementing Photogenic Behavior and improving situational awareness in general,
the following points of improvement have been identified:..1. Speaker Recognition and Sound Source Localization

The current microphone array is not capable of sound source localization or separation.
In a picture-taking scenario, Sophia should be able to localize a person trying to get
her attention by picture-taking related commands, such as "Sophia, look here!" or
"Sophia, smile!".
At the same time, this would improve her ability to lead multi-party interactions, as
she would be able to focus on the person speaking and separate their speech more
reliably than with any standalone speech separation algorithms...2. Increasing Head Mobility
In social interactions, humans often look at stimuli in their peripheral vision. As
stated earlier, Sophia’s neck alone should not move past a certain degree. To increase
the horizontal range in a natural way, torso movements are usually employed alongside
neck movements...3. Wider Field of View
The current camera’s FOV is good enough for frontal interaction, and for most
regular picture taking scenarios. However, testing has shown that users often take
selfies from a steep angle or from the side, which is not covered by the current
camera.
Sophia’s eye cameras are not readily suitable for this purpose, as their constant
rapid movement and narrow FOV would make the video feed unusable for confident
detection and tracking without significant hardware and software modifications.

2.1.3 Implementation

The following hardware modifications have been proposed:
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........................................ 2.1. Hardware Layer..1. Directional Microphone Array
To improve sound source localization and separation, a directional microphone array
will be added to Sophia’s head. This array will consist of multiple microphones
arranged in a circular pattern, allowing Sophia to detect and localize sound sources
on a polar coordinate plane. This will enable her to estimate the direction of a sound
source and focus her attention on the person speaking.
The selected model is the iFlytek Far-Field Microphone Array Module [1], as seen
in Figure 2.5. This module features 6 microphones arranged in a circular pattern,
providing 360° coverage and horizontal sound source localization through time
difference of arrival with 1° resolution and 10-meter pick-up range. The module is
capable of beamforming, noise reduction, and echo cancellation, making it suitable
for use in noisy environments.

Figure 2.5: iFlytek Far-Field Microphone Array Module, a suitable directional microphone
array for Sophia’s sound source localization system. (Source: Hiwonder) [1]..2. Torso Yaw and Movable Waist

To increase the horizontal range in a natural way, a yaw-capable mechanism will
be added to Sophia’s waist area. This mechanism, based on the Stewart platform,
will allow her to rotate her torso independently on her neck, providing additional
mobility and flexibility in her interactions. The movable waist mechanism will be
controlled by a series of motors and actuators, which will be connected to the central
control unit and integrated with the existing software architecture. A prototype of
the mechanism is currently under development and can be seen in Figure 2.6. This
mechanism will have 6 DoF, allowing Sophia to rotate her torso in all directions,
and even translate in all directions by a small amount.
This is a significant hardware modification that is currently being tested. In the
meantime, the mobile base can provide a full body yaw movement, which can be
used to simulate torso yaw...3. 160° Fisheye Camera
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Figure 2.6: Sophia’s 6 DoF movable torso prototype. (Source: Hanson Robotics Limited)

To expand Sophia’s field of view (FOV) and provide her with peripheral vision, a
wide-angle fisheye camera will be added in the space below her main camera. This
camera will have an FOV of 160°, allowing Sophia to see objects and people outside
her direct line of sight. Since this camera cannot facilitate depth perception, it will
be used primarily for detecting stimuli, not for directing gaze.
The proposed mechanism of action is to use the fisheye camera to detect and track
objects and people in Sophia’s peripheral vision, and when a potential stimulus is
detected, the torso yaw mechanism will turn the main camera’s FOV towards it.
The main camera will then be used to verify the stimulus, estimate its distance, and
direct Sophia’s gaze towards it, as depicted in Figure 2.7. The torso yaw mechanism
could also be used to scan for visual stimuli when an auditory stimulus is detected
by the directional microphone array outside of the FOV as depicted in Figure 2.8.
An example of a suitable camera is the E-con Systems See3CAM-CU81 [2], as seen
in Figure 2.9. This camera features a 160° horizontal FOV, which is significantly
wider than Sophia’s current camera. Its 4K resolution and high dynamic range make
it suitable for use in a variety of lighting conditions.
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Figure 2.7: Illustration of the proposed peripheral vision system with a fisheye camera and
torso yaw mechanism. (Source: Author)

Figure 2.8: Illustration of the proposed peripheral hearing system employing a directional
microphone array and torso yaw mechanism. (Source: Author)

Figure 2.9: See3CAM-CU81, an example of a suitable fisheye camera for Sophia’s peripheral
vision system. (Source: E-con Systems) [2]
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2.2 Perception Layer

This layer is responsible for perceiving and understanding the environment, including
detecting objects, people, and sounds, and extracting relevant features for the GCS and
behavior system. The perception layer consists of several components, including object
detection models, sound source localization algorithms, and feature extraction modules.

2.2.1 Starting State

The original perception layer of Sophia’s HRI system can be divided into two main
components: visual perception and auditory perception.

.Visual Perception
Sophia’s visual perception currently relies on her Intel RealSense, which provides
color and depth information stream. This input is being processed on the Nvidia
Jetson module, which runs a basic pre-trained pose estimation model Pose-ResNet18-
Body capable of detecting up to 18 keypoints of human bodies (as described by Lin,
Maire, et al. in [4]) in real-time. It uses a simple tracker based on Kalman filter [30]
to maintain the detected person’s identity and position.
The current HRI system only uses this information to maintain eye contact and to
detect and track faces. Tracking the rest of the body is beneficial for keeping track
of the person’s position in case their face momentarily disappears from the camera’s
FOV..Auditory Perception
Both custom and pre-trained models are used for speech recognition, VAD, and
natural language processing. The current system is capable of recognizing speech
and responding to voice commands, but it lacks the ability to localize and reliably
identify sound sources. This is a significant limitation in multi-party interactions,
as Sophia cannot match the speech to the person speaking or direct her attention
based on auditory cues.
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2.2.2 Objectives..1. Improving People Detection
The current pose estimation model has proven to be unreliable in crowded or multi-
party scenarios where multiple people are present in Sophia’s FOV. To improve people
detection, a more advanced pose estimation model will be implemented. Performance
is a key factor, as there will be multiple other models running simultaneously on the
Jetson module...2. Action Recognition from Pose
Another reason for a more advanced pose estimation model is the ability to recognize
actions from the detected pose keypoints. This is greatly beneficial for HRI, as it
adds another layer of context to the interaction. In a picture-taking scenario, Sophia
should be able to recognize when a person is taking a photo based on the recognized
action, and a gesture like waving or pointing should attract her attention...3. Object Detection
To actually detect picture-taking devices and be able to track and gaze at them, a
real-time object detection model will be implemented. A key consideration besides
performance is the ability to track a wide variety of objects. The goal is to create a
flexible HRI system that can be easily adapted for different scenarios, so training a
highly specialized model is not feasible...4. Sound Source Localization
Although sound source localization is not essential for Photogenic Behavior, it
remains significant. This feature cannot be reliably implemented without a directional
microphone array, and the perception layer should be prepared for its integration.

2.2.3 Implementation

The changes to the perception layer have been written as a series of ROS nodes, which are
responsible for processing the sensory inputs, detecting and tracking objects and people,
and extracting relevant features for the GCS, the behavior system, and the HRSDK
WebUI.

The implementation of the perception layer is the ROS package r2_perception
included in Appendix B. Most of the following improvements are located in r2_percep-
tion/src/r2_perception/detection_jetson.py.
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........................................ 2.2. Perception Layer..1. Improving People Detection..a. Implementing a Modern Pose Estimation Model
Pose estimation is a task that involves detecting the location of a specific set of
keypoints on a person’s body, such as the head, eyes, torso, limbs, and their
joints. The output of a pose estimation model is a set of keypoints alongside
their respective detection confidences.
There is a considerable number of pre-trained real-time pose estimation models
available [31]. The choice of model is based on the trade-off between performance
and complexity. The model should be able to detect multiple people in real-time,
while also providing accurate pose keypoints to be used in action recognition.
Ultimately, the Ultralytics YOLO (You Only Look Once) [32] framework and
suite of models has been chosen for the following reasons:.Community Support:

The Ultralytics YOLO framework has a large and active community, which
provides ongoing support and updates for the models. There are many
examples, tutorials, and resources available online, making it easy to get
started with the framework..Flexibility:
A wide range of pre-trained models of varying complexities are available,
which can be easily adapted and fine-tuned for specific scenarios. The
framework offers models for both pose and object detection, thus simplifying
integration. The models are always evolving and staying up-to-date with
the latest research and advancements in object detection..Performance:
YOLO is well-known for its speed and efficiency. It can process images in
real-time at a significant number of frames per second, making it suitable
for our application.

The specific model chosen for pose estimation is YOLOv8-Pose, which can
detect up to 17 keypoints on a person’s body, illustrated in Figure 2.10. The
model is trained on the COCO-Pose dataset [4] which contains over 200 000
images of people in various poses and actions [33].
Another advantage of YOLOv8-Pose is the rich set of output features. Bounding
boxes are returned even for people who’s keypoints are not detected, which can
be used to track people even when they are mostly occluded or partially out of
the camera’s FOV. In addition to bounding boxes, the model can also output a
mask for each detected person, which can be used to further improve accuracy
at the cost of speed, if needed...b. Tracking Multiple People
Tracking is a crucial component of the perception layer, as it allows Sophia
to keep track of each individual detection over time. The tracking algorithm
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Figure 2.10: Visualization of keypoints estimated by the YOLOv8-Pose model. (Source: [3])

should be able to maintain the identity of each person, even when they are
partially occluded or the detection skips a number of frames.
Two popular modern trackers have been implemented: BoT-SORT [34] and
ByteTrack [35]. Both are adapted for robust multi-object tracking and are
capable of tracking multiple people in real-time, but each of them has certain
advantages:.ByteTrack has been chosen as the primary tracker for the perception layer,

due to its higher accuracy and better reidentification capabilities but the
performance may be slower than BoT-SORT in a very crowded scenario
[36].
Reidentification is a crucial feature for maintaining the identity of each
detection over time in case the track has been temporarily lost. Prioritizing
it helps Sophia to maintain eye contact and focus on the correct person
and not randomly switch between them..BoT-SORT excels at performance in highly crowded scenarios. It has
been left in as a secondary tracker that can be used in case ByteTrack is
struggling to keep up with the number of detections...c. Extracting Pose Features

The perception layer will extract a number of features from the detected pose
keypoints:.Point-of-Interest (PoI) Location:

PoI indicates the location on each person that’s most likely to be the
center of attention. The 3D location of the PoI is calculated using the
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depth information from the Intel RealSense camera, aligned to the robot’s
coordinate system (ROS frame).
A decision logic (function get_pose_top_poi) is employed to determine
the PoI of each person, cascading from the most to least reliable keypoints:
eyes, head, torso, hands, and bounding box center.
(i) Eyes are visible:

The person’s eyes are used as the default PoI. This is the most common
scenario, as people tend to look into each other’s eyes when interacting.

(ii) Head is visible:
In case the eyes are not detected, the head keypoint is used as the PoI.

(iii) Head location can be estimated:
There is a common occurrence when a person is standing too close to
Sophia, and since the camera is located in her chest area, the person’s
head is outside the FOV. In this case, the head location is estimated
based on the detected torso keypoints.
The function estimate_head_from_shoulders serves to estimate the
head location if both shoulder keypoints are detected. The head is
assumed to be located at the midpoint between the shoulders, extended
vertically by a fixed distance (set to 25 cm, can be changed using a
function parameter extend).
Thanks to this function, Sophia can still attempt maintain eye contact
with a person even if their head is not detected, estimating the head
location and using her eye cameras to correct the gaze.

(iv) Hands are visible:
In human interactions, hand gestures and held items are an important
PoI. A good example of this is when a person is taking a selfie, Sophia
can only see their arm and the picture-taking device.
In this case, Sophia will be focusing on the device but as explained in
the next section, the GCS will be able to match the device with the
person based on proximity of their respective PoIs. This can be used
in combination with the directional microphone array to detect that a
speaking person is also the one taking the photo.

(v) Neither of the above:
If neither of the preceding keypoints is detected, a point near the top
of the bounding box is used as the PoI. Using the center is undesirable
because the robot would be looking too low in most cases. In most
scenarios, this PoI will be ranked very low by the GCS (as described in
the attention layer) and ignored unless there are no other detections
present..Gaze Angle:

An important social cue in human interactions is facing the person you
are talking to. A function to calculate the approximate gaze angle of each
detected person has been implemented as gaze_angle(self, left_eye,
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right_eye, nose).
The calculation is based on the relative position of the left eye, right eye,
and nose keypoints. The main logic behind this that in 2D image when
both eyes are visible, the nose point is deviated off center from the midpoint
of the eyes by the yaw angle of the face. Knowing this deviation, we can
estimate the approximate yaw of the face (relative to the robot’s coordinate
system) converted to degrees for human readability.
Given points for the left eye Pleft_eye = (xle, yle), the right eye Pright_eye =
(xre, yre), and the nose Pnose = (xn, yn), the following calculations are
performed:
(i) Calculate the tilt angle θface of the face:

θface = atan2(yre − yle, xre − xle)

This is done to normalize the coordinate system by rotating the eyes
to the horizontal axis.

(ii) Calculate the midpoint Pmid of the eyes:

Pmid =
(

xle + xre
2 ,

yle + yre
2

)
(iii) Rotate the nose point Pnose around the eye midpoint using the rotation

matrix to normalize:[
xnose_norm
ynose_norm

]
=

[
cos(−θface) − sin(−θface)
sin(−θface) cos(−θface)

] [
xn − xmid
yn − ymid

]
+

[
xmid
ymid

]

(iv) Calculate the gaze angle θgaze (the angle between the nose point and
the line connecting the eyes) using the normalized coordinates:

θgaze = atan2(ynose_norm − ymid, xnose_norm − xmid)

Convert θgaze to degrees and adjust by adding 90 degrees to shift the
range:

θgaze_degrees = degrees(θgaze) + 90

Normalize the gaze angle to ensure it is within the range [0, 360):

θgaze_degrees = (θgaze_degrees + 360).mod(360)

If the gaze angle exceeds 180 degrees, adjust to the range [-180, 180]:

θgaze_degrees = θgaze_degrees − 360 if θgaze_degrees > 180

This has proven to be an efficient method of calculating the approximate
horizontal gaze angle (head yaw) of each detected person.
If both eyes are not detected, the function implements a fallback mechanism
to estimate the gaze angle based on the remaining head keypoints:
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. If only a single eye and a single ear are detected, a 90° angle is assumed,
as the person is most likely facing sideways from Sophia. This doesn’t
trigger when a person is covering half of their face, as the pose estimation
model infers the position of the second eye based on the visible one in
most cases.. If only a single ear is detected, a 135° angle is assumed, as the person
is most likely facing mostly away from Sophia.. If both ears are detected, a 180° angle is assumed, as the person is
most likely facing completely away from Sophia.

Models for gaze angle estimation are available [37] [38] but they are not
used in this case. Testing proved that the pose keypoints are sufficient for
this task, and the additional models would only add unnecessary complexity
and computational load. Since Sophia often needs to process a very large
number of detections in real-time, such as when facing a crowd of people,
efficiency is more important than accuracy. Furthermore, the gaze angle is
only used to determine who is looking in Sophia’s direction, not to track
the exact vector of their gaze...2. Action Recognition from Pose

Action recognition is a task that involves detecting and classifying human actions.
The types of action recognition tasks can be sorted by detection window length [39]:. Single-shot action recognition: The model predicts the action label based on a

single frame..Video-based action recognition: The model predicts the action label based on a
sequence of frames.

Another way to categorize action recognition tasks is by the type of input:. Image-based action recognition: The input is a single image or a sequence of
images. This type of action recognition is suitable for recognizing a single
general action taking place in the full scene, since the models do not separate
actors in the scene.. Skeleton-based action recognition: The input is a set of keypoints, usually
representing the human body pose. This type of action recognition is suitable
for recognizing actions performed by each detected actor in the scene separately,
since the models are trained on pose keypoints and do not require the full scene,
although full scene action recognition is also possible.

Since our application aims to recognize actions performed by each detected person
separately and a pose estimation model is already running each frame, the skeleton-
based action recognition is the most suitable.
The action recognition model will be implemented as a part of the r2_perception
ROS package. I have chosen the MMAction2 framework [40] for this task, as
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it provides a wide range of pre-trained models and datasets, as well as tools for
convenient implementation of all types of action recognition tasks. The framework
is built on top of PyTorch [41].
The specific model chosen for action recognition is STGCN++ from the PYSKL
project [42]. The model is trained on the NTU RGB+D dataset [43] and is capable
of recognizing 60 action classes, including ’taking a photo’. It returns a top-1 class
label and a confidence score of a recognized action for each detected person...3. Object Detection
Object detection, is a task that involves detecting and classifying objects in an
image. The output of an object detection model is a set of bounding boxes around
the detected objects, along with their corresponding class labels and detection
confidences.
For the same reasons as with pose estimation, the Ultralytics YOLO framework and
suite of models has been chosen for object detection. Performance/accuracy ratio is
still the key factor, and the framework also offers some conveniences like being able
to specify the classes to detect to speed up inference even further. This is different
from some other object detection frameworks, where the model always detects all
classes it has been trained on, even if only a few are needed [32]. Furthermore, the
models are formatted for PyTorch [41], which is a popular deep learning library and
will be used for multiple other models running on the Jetson module.
Training a custom object detection model has been tested but haven’t surpassed the
performance of the pre-trained models in a meaningful way. Even though with a
sufficiently good dataset a custom model could be trained to detect picture-taking
devices with higher accuracy, this would limit the flexibility of the proposed system.
Two of the latest YOLO models have been picked to be used interchangeably based
on the scenario:..a. YOLOv9 :

Specifically YOLOv9c, at the time of writing, the latest pre-trained model
in the YOLO framework. It is capable of detecting a wide range of objects
in real-time, with high accuracy and low latency. It consistently outperforms
other object detection models of similar size in terms of speed and accuracy,
making it suitable for our application.
The model has been trained on the COCO dataset [4], which contains 80 classes
of objects, including people, animals, vehicles, and household items, as depicted
in Figure 2.11. This makes it suitable for a variety of scenarios, including
picture-taking, where we can look for the ’cell phone’ class...b. YOLOv8-World:
Specifically YOLOv8m-worldv2, is a new cutting-edge model in the world of
object detection. It is an open-vocabulary zero-shot model, capable of detecting
objects that are not present in the training dataset. This is achieved by using
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Figure 2.11: A depiction of all 80 classes in the COCO dataset. (Source: [4])

a large language model to generate class embeddings, which are then used to
match the detected objects with the closest class in the training dataset.
The difference from other zero-shot object detection models is its inference
speed. Unlike its predecessors, YOLOv8-World is capable of processing images
in real-time, making it suitable for our application.
Its speed and accuracy aren’t as high as YOLOv9c, but the ability to detect
any object is a significant advantage. For example, we can now specify a class
’cell phone screen’ that distinguishes a phone in a selfie scenario from a
phone in a regular picture-taking scenario (where the screen is facing away from
Sophia). Other classes that were successfully tested were ’camera’, ’video
camera’, and ’selfie stick’. The significance of detecting these separate
classes is explained in the attention layer section...4. Sound Source Localization

The sound source localization system runs on the Nvidia Jetson module, which
is connected to the microphone array via USB. With our choice of hardware, the
iFlytek Far-Field Microphone Array Module [1], the functionality of sound source
localization comes built-in as a ROS package [44]. We can run the provided ROS
node and call its services to get the angle of the detected sound source in relation to
the microphone which is being translated to Sophia’s coordinate system.

Finally, the visual output of the perception layer is displayed in the HRSDK WebUI,
which provides a real-time view of the detected objects and people, their positions, and
their actions. The image in WebUI is compressed and the refresh rate is reduced to
lighten the network load. An example of the output of the perception layer is shown in
Figure 2.12. A blue bounding box indicates a detection that Sophia is currently focusing
her attention on. The process of selecting the detection to focus on is described in the
following section.
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Figure 2.12: Example output of the Perception Layer in the HRSDK WebUI. (Source: Author
with permission from Hanson Robotics Limited)

2.3 Attention Layer

The attention layer’s primary function is to direct Sophia’s attention by selecting where
to direct her gaze. This involves determining which stimuli in the environment are most
relevant and guiding Sophia’s visual focus accordingly.

2.3.1 Starting State

In the initial state, Sophia’s attention system is limited to automatically gazing at human
faces, as discussed in the perception layer section. At this stage, the attention layer has
three modes:..1. Turned Off : Sophia has no gaze autonomy, and her gaze direction can only be

scripted or controlled by an operator using the HRSDK WebUI...2. Manual Tracking: Sophia has limited autonomy in this mode. She does not track
anything independently, but if an operator selects a tracked face, she will attempt
to maintain her gaze on it.
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........................................ 2.3. Attention Layer..3. Autonomous Gaze: Sophia randomly looks around until she finds a face, which
she then tracks. If multiple faces are present, she randomly selects one and uses a
habituation function to switch to another face after some time. Habituation imitates
human behavior by preventing a robot from continuously looking at a single face, as
described in [20]. Essentially, Sophia gets ’bored’ of the face she is tracking after a
preset duration.

Due to these limitations, Sophia’s gaze usually requires operator control. The gaze
motion system, however, is already satisfactory at this starting state:

.When a new tracking target is specified, Sophia initiates a gaze shift where her eyes
move first, followed by her head a few milliseconds later. The speed and latencies
are variable, controlled by PID regulators, and constantly updated based on the
distance to the new gaze point. This mimics human behavior by replicating the
biological mechanisms of the human body, as discussed in a neurological study [45]
by Goldring, Dorris, et al..While tracking a target, Sophia can simulate subtle human-like movements such
as blinking, eye saccades (short rapid eye shifts away from the target), and head
movements.

2.3.2 Objectives

The attention layer is critical for integrating various enhancements to create a sophisticated
GCS. To enable Sophia to emulate Photogenic Behavior and direct her attention towards
picture-taking devices (PTDs), this layer requires a significant overhaul. The attention
layer will utilize stimuli detected by the perception layer and modify its configuration
based on the behavior layer to adapt the attention system to different scenarios such as
Photogenic Behavior, regular conversations, or giving lectures among others.

The attention system must also be prepared for future upgrades. As mentioned in the
introduction, the implementation of Photogenic Behavior is a demonstration of the new
system’s capabilities and serves as an example for future enhancements. The ultimate
goal is to create an attention system that mimics human-like behavior. Studies such
as [46] by Buschman and Miller describe two primary methods of attention focusing:
top-down signals driven by task demands and bottom-up signals from salient stimuli.
The new behavior layer addresses top-down reasoning, while the attention layer focuses
on bottom-up attention features.
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A sophisticated ranking system will be developed to gather and extract features from
all detected visual and vocal stimuli. The human attention system and the topic of
attention-eliciting stimuli have been extensively studied in psychology and neuroscience.
The following features will be considered when ranking stimuli for attention:..1. Class

The class of a detected stimulus is usually the primary factor in determining its
relevance. For example, in a picture-taking scenario, a phone or camera is generally
more relevant than a person’s face...2. Proxemics
Physical distance of stimuli dramatically influences human attention levels. For ref-
erence, Rothkegel, Trukenbrod, et al. [47] verified that people focus more frequently
on closer targets. Thus, distance is a significant nonverbal cue in the GCS...3. Position in Field of View
Humans are more attracted to stimuli features in their effective field of view (eFOV).
Studies [47] show a tendency to look at the center of an image. In the GCS, the
angle between Sophia’s position and the eFOV center is used as a nonverbal cue for
attention relevance...4. Habituation Effect (or Attention Span)
Habituation involves a decrease in response to a repeated stimulus [48]. Although
this mechanism was already present in a limited capacity, there is another feature
of habituation we must consider - when the stimulus isn’t in focus, its habituation
effect starts to decrease after some time. This is important for the GCS to know
when to switch attention to a new stimulus and when to return to a previous one...5. Gaze Angle
People communicate their intent and interest by various nonverbal cues. One of the
most important ones is turning the head and eyes towards the object of interest -
their gaze angle. This feature is used to judge who is paying attention to Sophia
and to make Sophia more likely to look at them...6. Action Recognition
Another important signifier of attention is the action a person is performing. Sophia
should be able to contextually focus her attention based on the actions that are
currently interesting to her. For example, in the case of Photogenic Behavior, the
action of taking a photo is a strong cue for Sophia to focus on the person performing
the action. Other actions like waving or raising hand can be used to attract Sophia’s
attention in most scenarios.
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One of, if not the most important, attention cues in human interactions is the
direction of relevant speech. This is especially important in multi-party interactions,
where Sophia needs to match the speech to the person speaking. Even if people
are not talking directly to Sophia, the natural way to focus attention in multiparty
interaction is to look at the person speaking. In Photogenic Behavior, this feature
can be used to increase the attention rank of a speaking person taking a photo over
non-speaking photo-takers...8. Phrase Detection
The content of the speech can also be used as a cue for attention, especially in
combination with sound source localization. In the case of Photogenic Behavior, the
phrase "Let’s take a selfie" or "Can I take a picture?" can be used to increase the
attention rank of the person speaking that phrase. The recognition of the phrase
alone will be a large contributor to triggering the Photogenic Behavior state in the
behavior layer, but it can also be used to adjust the attention rank of the detected
person...9. Attention Inheritance
A new concept introduced in this system is the people-object attention inheritance
mechanism. The purpose of this feature is to be able to raise the attention rank of
an object based on the attention rank of the person holding it, or even other people
in the object’s proximity. This can be used in scenarios where the goal is to track
an object but take people and their actions into account. This is especially useful in
the case of Photogenic Behavior, where Sophia needs to focus her attention on the
person taking a photo, but look at the phone or camera they are holding.
Attention can be also inherited the other way - from objects to people. This can
be used to gaze at people holding objects of interest. For example, if a person is
holding a microphone, this might indicate they are a reported, commentator, or a
speaker, and Sophia should focus her attention on them.

2.3.3 Implementation

The attention layer is implemented as a ROS node attention in the r2_behavior
package. The implementation discusses the architecture of the ranking system, the
features extracted from the perception layer, and the logic used to determine the priority
of each detected stimulus.
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Attention Ranking System

The attention ranking system is a crucial part of the GCS, responsible for evaluating the
relevance of each detected stimulus based on the features described in detail in the next
section. It is implemented in the script attention.py. The ranking system is designed
to be modular and extensible, allowing for easy integration of new features and stimuli.

. Input
The system is based on a set of rules that assign a score to each detected stimulus
based on the features extracted from the perception layer. The stimuli arrive as
ROS messages, either Object or Person, an example of which can be seen in the
code below 2.1:

1 std_msgs / Header header # ROS message header
2 Tracking ID
3 geometry_msgs /Point location # Point in 3D space
4 sensor_msgs / RegionOfInterest bounding_box # 2D bounding box
5 string class_label # name of the detected class
6 float32 confidence # confidence of detection
7 hr_msgs /Face2 face # facial features (gaze angle , landmarks ,

facial recognition , bbox)
8 hr_msgs /Body2 body # pose features (keypoints , bbox)
9 hr_msgs / Action action # actions from keypoints and their

confidences

Code 2.1: People2 ROS Message.

The system then sums these scores to determine the priority of how Sophia should
direct her attention..Managing Detections
Each stimulus detected by the perception layer is stored as a class Detection with
the following attributes:. ID:

A unique identifier for the Detection, assigned by a tracker in the perception
layer.. actions:
List of past recognized actions and their confidences, limited by a customizable
time window.. first_seen and last_seen:
Timestamp of the first time and last time the Detection was seen. Used for
habituation and for removing old Detections.
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. active, start_active, and last_active:
These indicate if the Detection is currently actively being tracked, when it
started being tracked, and when it was last tracked. Used for tracking and
habituation.. fov_angle:
The angle between the Detection’s location and the center of Sophia’s effective
field of view.. distance:
The distance between the Detection and Sophia.. is_speaking:
A confidence value matching the Detection to the current sound source local-
ization result.. connections:
A list of other Detections that are connected to this one. Used for attention
inheritance..ROS Message:
Other attributes are directly taken from the Detection’s ROS message received
from the perception layer..Rank Values:
The rest of the attributes are the current rank values for each ranking feature
of the Detection. These are updated by the ranking system and used to sort
the Detections..Ranking Function

The output is a list of stimuli sorted by their attention rank, with the highest-
ranked stimulus at the top. If the top-ranking Detection is different from the
currently focused one and their rank difference crosses a preset switch_threshold,
then the GCS switches Sophia’s gaze to a new target. The system either operates
autonomously, or based on the operator’s input, Sophia can be directed to focus on
a specific stimulus for a configurable duration..Ranking Values
Due to the wide range of customizable features, the ranking values are highly
adjustable - there is no hardcoded maximum or minimum value for each feature.
The values are not normalized, as the ranking system is designed to be human
readable and easily adjustable. The only rule that is hardcoded tied to the rank
value is that negatively ranked Detections are ignored. This can be used to filter out
Detections that are not relevant to the current scenario or are specifically marked as
unimportant. In case Sophia is not tracking any Detections, she will randomly look
around until a positively ranked Detection is found.
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Configuration of the Ranking System

To control the attention ranking system’s behavior, each of these features can be adjusted
through a configuration page in the HRSDK WebUI, can be seen in Figure 2.18. This
page acts as a template for the script to build a configuration dictionary for each specific
class of Detections.

As discussed in the behavior layer, these settings can be adjusted independently for
each behavior state, allowing Sophia to adapt her attention system to different scenarios.
The features can be divided into three categories:..1. Class-specific

These settings are specific to the class of the Detection. For example, in the case of
Photogenic Behavior, the class ’cell phone’ can be given a higher default rank
than the class ’person’.
First, the operator can specify all classes to be tracked in the classes list, as a
string using regular expressions (RegEx). Then, for each class, the operator can
specify the following settings:. default_rank:

Assigns a default rank depending on the Detection’s class.. attention_min:
Minimum time to keep the Detection in focus. Can be used to prevent rapid
switching between Detections.. distance_penalty:
A penalty for the distance between Sophia and the Detection.
Penalty starts increasing after a set start distance threshold [m] and keeps
increasing by rate per meter until it reaches its max value. An example of
such calculation is shown in the Figure 2.13, where the penalty is calculated
quadratically starting at distance of 3 meters with the max rank set to 0.8.. fov_angle_penalty:
A penalty for the horizontal angle of the Detection from the center of Sophia’s
eFOV.
Like distance penalty, it starts increasing after a set start angle threshold
[°] and keeps increasing by rate per degree until it reaches its max value.
Illustrated in Figure 2.14.. attention_span_penalty:
A penalty for the time the Detection has been in focus.
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Figure 2.13: Example of a quadratic distance penalty calculation. (Source: Author)

Figure 2.14: Illustration of eFOV angle. (Source: Author)

Fluctuates over time. Starts increasing by rate per second after a set start
time a Detection is in focus until it reaches max value.
When an object with some applied attention_span_penalty is not in focus for
recovery time, the penalty starts recovering by the same rate until it reaches
0.
This process and handoff between two Detections can be seen in the Figure
2.15. In this exaggerated simulated example, two people entered Sophia’s vision
at the same time with a different distance_penalty and remained stationary.
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Person1 achieved higher initial rank and started off as the point of interest, but
after some time, the penalty for focusing on them increased, and after crossing
the switch_threshold the system switched to Person2. When both people
reach max penalty the system will stabilize and keep switching while favouring
the person with the higher initial rank.

Figure 2.15: Example of attention span fluctuations over time and the resulting attention
switching. (Source: Author)

Each of the penalties can use one of two different calculation types - ’linear’ or
’quadratic’.
Class specific settings are configured as lists that generate a dictionary entry for
each Detection class. This could be represented as a table, but the thought behind
using lists is that the operator does not have to specify properties for each class
individually in the WebUI and it is easier and faster to manipulate the entries:. If any of these list are shorter than the list of classes, the last value is repeated

for the rest of the classes.. If any of these lists are longer than the list of classes, the extra values are
ignored.. If any of these lists are empty, the default value is used.

An example of the resulting dictionary entry is shown in the code below 2.2:
1 " example_class ": {
2 " default_rank ": 0.1,
3 " attention_min ": 5.0,
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4 " attention_span_penalty ": {
5 "start": 2.5,
6 "rate": 0.03 ,
7 "max": 0.2,
8 "type": " linear "},
9 " distance_penalty ": {

10 "start": 0.25 ,
11 "rate": 0.066 ,
12 "max": 0.5,
13 "type": " quadratic "},
14 " fov_angle_penalty ": {
15 "start": 5,
16 "rate": 0.0033 ,
17 "max": 0.15 ,
18 "type": " linear "},
19 },
20

Code 2.2: Example of a Class Attention Configuration Dictionary Entry...2. Person-related
These settings are only applicable to the ’person’ class since they are based on the
features extracted from the pose estimation model.. gaze_angle_penalty:

Penalty calculated based on the gaze angle of a person towards Sophia. Similar
to the class-specific penalties, the operator can specify the start, rate, and
max penalty values.. actions:
Calculates a rank bonus based on the actions performed by the person in a spec-
ified time window actions_timeout. Actions and their detection confidences
are stored in a buffer for each detected person and being removed based on the
timeout window. All confidences for a certain action in the timeout window
get added together and multiplied by their respective confidence_multiplier.
The resulting confidence gets cut off by the respective max_rank, and finally,
the largest calculated rank is returned as the action bonus rank.
This category is handled similar to the class-specific settings. A dictionary entry
is generated for each tracked action. The operator can specify the following
settings for each action:. confidence_multiplier:

Each action is detected with a certain confidence value, which can be used
to multiply the rank bonus. This can be used to adjust the importance of
each action.. max_rank:
The maximum rank bonus that can be achieved by this action. This can
be used to prevent a single action from dominating the rank.
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. keywords:
Like actions, keywords determine which phrases (defined by RegEx) raise the
voice_direction_bonus for a specified timeout window. Due to the different
nature of perceiving speech, there are some key differences:
Each distinct keyword has a flat rank bonus that can be increased by repeating
that phrase until the respective max_rank is reached. The max_rank for each
phrase can be set to a different value. In practice, this can have be used in the
following cases:.We want to add a small rank for any recognized speech. We set the

max_rank for any word to a low value. This gets saturated quickly.. Sophia needs to react to her name, repetition in a short time frame should
also increase the attention. We can set max_rank high and the rank for
the word ’Sophia’ for example 1/4 of the max_rank.. Sophia needs to react to a specific sentence or word combination. We can
either set a separate rank for each word, or write a RegEx of the specific
sentence or phrase.. voice_direction_bonus:

The overall rank added for keywords is passed into the voice_direction
calculation, which then adjusts the keywords rank based on their direction of
arrival by multiplication. Voice direction angle is compared with the person’s
fov_angle and max_rank is reached when the the difference is 0°. The rank
decreases by a dropoff of a chosen type per degree. The final calculated rank
for speech is as follows:

R = max
k∈K

(min(nk · rk, max_rankk)) · dropoff(θ).where dropoff(θ) is defined as:. Linear: dropoff(θ) = max(0, 1 − rate · θ). Quadratic: dropoff(θ) = max(0, 1 − rate · θ2).where nk is the number of repetitions of keyword k,.max_rankk is the maximum rank for keyword k,. θ is the angle between detected sound direction and a detected person,.K is the set of all keywords,. and k is a keyword in the set K.
An illustration of audio dropoff can be seen in the Figure 2.16. It shows that
both people can get a rank bonus for detected speech but the person who’s
angle deviates from the direction of voice arrival will get a significantly lower
bonus.

Each of the penalties can be linear or quadratic and the operator can specify the
start, rate, and maximum penalty values.
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Figure 2.16: Illustration of the audio dropoff angle. (Source: Author)..3. Object-related. inherit_attention:
Each object can inherit attention from the closest person/people. The purpose
is to be able to direct attention based on people’s presence and actions when
focusing on non-people objects.
This method calculates the total inherited rank for an object from proximate
people based on a specified number of closest neighbors, distance threshold
max_dist (radius around the object), and a max_rank per person. It doesn’t
take a person’s attention_span_penalty into account.
It multiplies the person’s attention by a multiplier value. This assures that
even if the rank for people is generally kept very low, other objects can still
significantly benefit from people’s presence.
An example of this is shown in Figure 2.17. The people near the camera can
inherit a bonus rank for being its neighbors and vice-versa. The camera can
also inherit any bonuses and penalties that affect the people near it, except the
attention_span_penalty.
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Figure 2.17: Illustration of the attention inheritance mechanism. (Source: Author)

2.4 Reasoning Layer

2.4.1 Starting State

Sophia’s reasoning capabilities are managed by a sophisticated network of AI agents,
running both locally and in the cloud. The primary components of this layer include
speech recognition, an agent supervisor, and a multi-agent system (MAS) [49] that
integrates various types of chat agents and large language models (LLMs). The offline
agents and some parts of the reasoning layer run on the Nvidia Jetson module, leveraging
its computational power to manage real-time processing and complex AI tasks efficiently.

.Offline Speech Recognition
Sophia employs offline speech recognition to understand spoken word in multiple
languages. This system processes audio inputs locally on her hardware, ensuring
rapid and reliable transcription of speech without reliance on external servers. For
any unsupported languages, the system falls back to online services like Google
Cloud Speech-to-Text..Multi-Agent System (MAS)
Sophia’s MAS is a dynamic and flexible system that integrates various AI agents
to handle different aspects of interaction. This includes proprietary in-house AI
models and locally running instances of Meta’s Llama 3 [50], to remotely accessed
agents like OpenAI’s GPT-4 [51]. Locally running models handle more routine
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Figure 2.18: Screenshot of the attention layer configuration page in the HRSDK WebUI.
This configuration is used for the posing behavior state. (Source: Author with permission
from Hanson Robotics Limited)

interactions, while online services are used for more complex queries that require
extensive processing power..Agent Supervisor
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The agent supervisor is a component that delegates processing tasks to the appropri-
ate AI agents within the MAS. This ensures efficient use of resources and optimizes
response times based on the complexity and nature of the query..Visual Processing Queries
For visual processing, the MAS can query online services to interpret visual data,
such as when a user asks Sophia to describe what she can see. However, this process
can be slow, often breaking the flow of conversation due to the latency involved in
querying and processing visual data through online services like OpenAI’s multimodal
LLM GPT-4o.

2.4.2 Objectives

The primary objective for enhancing Sophia’s reasoning layer is to improve her Photogenic
Behavior by ensuring the MAS can understand the context of conversations, particularly
those involving taking pictures. The enhanced reasoning layer should:..1. Implement a locally running multimodal LLM to speed up visual processing queries.

This will enable the MAS to query visual input more frequently and efficiently.
This can be used to detect picture-taking and other scenarios through visual scene
analysis...2. Enable the MAS to discern when the conversation is about taking a picture of or
with Sophia...3. Communicate this context to the behavior layer, allowing it to decide whether to
trigger the appropriate Photogenic Behavior (either selfie or regular).

2.4.3 Implementation

To achieve these objectives, several enhancements have been made to the reasoning layer,
focusing on the MAS’s agent supervisor and its interaction with the behavior layer...1. Adding Offline Multimodal LLMs
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A locally running multimodal LLM has been implemented. The chosen model is
LLaVA (Large Language-and-Vision Assistant), specifically LLaVA-NeXT-7B [52],
created by Liu, Li, et al. [53] [54], implemented through the Ollama infrastructure
[55]. This model can provide relatively low latency description of the scene and the
objects and people in it thanks to its architecture composed of a vision encoder and
an LLM for general-purpose visual and language understanding. The input is a
combination of a frame from the current camera feed and a text prompt from the
MAS. The output is a text description of the scene, which can be used to determine
the context of the conversation.
Other multimodal LLMs have been proposed. The most promising one is the recently
released Google PaliGemma, a lightweight open vision-language model [56]. Designed
to be efficient and fast and aimed at edge devices, PaliGemma is a good candidate
for future enhancements to the reasoning layer...2. Adding Queries to the MAS’s Agent Supervisor
The agent supervisor has been updated to include specific queries that determine
the context of the conversation related to picture-taking. These queries include:. "Probability the user is asking to take a picture". "Probability the user is asking to take a selfie?"

These questions are periodically evaluated by the supervisor, ensuring continuous
monitoring of the conversation for relevant cues...3. Communicating with the Behavior Layer
When the supervisor identifies a relevant context (i.e., when one of the queries
returns a positive result), it publishes the result in a related ROS message. This
ROS message acts as a communication bridge between the reasoning layer and the
behavior layer.
A new decision algorithm has been implemented in the behavior layer, which is
described in detail in the next section. It subscribes to the ROS messages and
adjusts the trigger probability for the Photogenic Behavior based on the context and
once a trigger probability reaches a predefined threshold, it initiates the appropriate
Photogenic Behavior, provided there is no other behavior with a higher priority at
that moment.
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2.5 Behavior Layer

2.5.1 Starting State

The behavior layer in Sophia’s architecture is managed by a ROS node named states
in the r2_behavior package, which is included in Appendix B of this thesis. This node
operates on the Intel NUC and utilizes a hierarchical state machine (HSM) framework to
manage the robot’s behavior. A hierarchical state machine is a finite state machine that
allows for nested states. Its structure after the enhancements is shown in Figure 2.19.

The main purpose of this node is to switch between different behavior states. Each
behavior state influences Sophia’s autonomous physical reactions that are not directly
tied to the conversation. These reactions include facial expressions, arm gestures, and
most importantly the attention system configuration.

Just like the attention system, the animations can be customized through the HRSDK
WebUI for each separate behavior state, as seen in Figure 2.22. The state can then
access the predefined set of animations, which are randomly selected and played based on
user-defined probabilities. This setup allows Sophia to exhibit varied and lifelike behavior
without becoming repetitive. The primary behavior states are:

. Idle
In this state, Sophia’s autonomous behavior is paused. She only reacts to commands
from the operator..Presenting
In this state, autonomy is limited. This mode is used during scripted scenarios where
full autonomy is not desirable but the robot still needs to appear ’alive’. Sophia
autonomously animates her body in a lifelike manner:.Head: Makes subtle facial expressions but does not automatically track people

without the operator’s command..Arms: Makes subtle movements when idle and subtle gestures when speaking,
imitating human behavior [57].. Interacting
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This is the default mode for unscripted interaction. In this state, Sophia au-
tonomously tracks people, engages in conversation, makes facial expressions based on
the context, and uses her arms for contextual gestures. Any part of this autonomy
can still be overridden by the operator using the HRSDK WebUI.

2.5.2 Objectives

The primary objectives for enhancing the behavior layer to support Photogenic Behavior
are:..1. Introduce new behavior states specifically for picture-taking scenarios: selfie and

posing...2. Develop conditions and methods to trigger these states based on context and
interactions...3. Integrate appropriate emotional and gestural responses for these states and tune the
attention system accordingly.

2.5.3 Implementation..1. New States Added
Two new states, interacting_selfie and interacting_posing, were added as
sub-states under the interacting state. These states are accessible from any of the
interacting sub-states such as interested, listening, speaking, and thinking.
The updated hierarchical state machine (HSM) for the behavior layer is illustrated
in Figure 2.19...2. State Transition Mechanism
Transitions to these new states can occur in two ways:.Manual Trigger via WebUI

Operators can manually switch to either interacting_selfie or interact-
ing_posing through the HRSDK WebUI. The system will choose the appro-
priate state based on predefined conditions.
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HSMidle

interacting

speaking

scripted

listening

thinking

interested

posing

selfie

presenting

performing

waiting

Figure 2.19: State hierarchy of the HSM for Sophia’s behavior layer. Added states have been
higlighted. (Source: Author)

.Automatic Trigger Based on Conditions
A function named picture_taking_logic was added to the states.py script.
This function monitors several conditions to determine if a state transition
should occur:.Overheard Speech Matching: Monitors for specific keywords or phrases

indicating a desire to take a picture or selfie. This includes regex support
and allows for ranking phrases by importance..Triggers from the Multi-Agent System: Monitors ROS messages from the
MAS indicating a picture-taking intent..Presence of Picture-Taking Devices (PTDs): Detects PTDs in the environ-
ment. While this alone won’t trigger a state, it contributes to the overall
rank..Proximity of PTDs: Evaluates the distance of the closest PTD, contributing
to the decision of entering the selfie state if the device is very close..Type of PTDs: When using YOLO-World for object detection, we are able
to specify the type of PTDs in detail and use it to determine the appropri-
ate state. For example, a ’cell phone screen’ class can contribute to
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triggering the selfie state whereas a ’video camera’ class can prioritize
the posing state.
These conditions can be fully customized through the HRSDK WebUI,
allowing operators to adjust the system to their specific needs, as seen in
Figure 2.20. Each condition has a weight that contributes to the overall
rank, which is used to determine the final state when reaching (state_-
threshold >= 1). Each condition event raises the probability of entering
the selfie or posing state for a given time. The default state is posing
and if a sufficient number of conditions are met, the state switches to
selfie. The state will stay triggered for a predefined time before returning
to the default (interacting) state. A debug output showing an example
of the state transition logic is shown in Figure 2.21. There we can see
two consecutive trigger checks, the first one only detecting the object
condition and not meeting the threshold. The second check has detected a
selfie-related keyword, triggering the selfie state...3. Emotional and Gestural Responses

Appropriate emotional and gestural responses and attention system were defined for
the new states, as seen in Figure 2.22:. Emotions

Both selfie and posing states prominently feature smiling. Sophia will exhibit
a wide range of smiles, from subtle to broad. Some smiles will be accompanied
by a slight head tilt in selfie mode to appear more engaging, with a rare
probability of an eye wink. Some of these expressions are shown in Figure 1.1..Gestures. Selfie State: Features minimal arm movements to avoid accidental contact

with people standing close..Posing State: Includes a variety of arm gestures (waving, giving thumbs-up,
giving the ’V’ sign) to simulate posing for a picture. An example of Sophia
posing is shown in Figure 2.23..Attention Settings

Both states require slightly different attention settings. In the selfie state,
the attention system is configured to prioritize PTDs held by people in close
proximity, while being less affected by their FOV angle. In the posing state,
the these priorities are almost reversed, with the attention system focusing
on PTDs more centered in Sophia’s eFOV and less on the distance between
Sophia and the PTDs. The posing state also assigns a significant rank bonus
to features inherited from the closest people to the PTD. The attention settings
for the posing state are shown in Figure 2.18, and the detailed explanation and
reasoning behind the calibration process can be found in the following chapter.
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Figure 2.20: Screenshot of the HRSDK WebUI showing the configuration of the picture-taking
state triggers. (Source: Author with permission from Hanson Robotics Limited)
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Figure 2.21: Terminal output showing the state transition logic in action. The combination
of a detected picture-taking device and an appropriate keyword triggers the selfie state.
(Source: Author)
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Figure 2.22: Screenshot of the HRSDK WebUI showing behavior state customization options.
The appropriate animations for posing for a photo have been chosen. (Source: Author with
permission from Hanson Robotics Limited)
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Figure 2.23: Sophia posing for a picture, waving.(Source: Author and Hanson Robotics
Limited)
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Chapter 3

Experiments, Evaluation, and Discussion

3.1 Experimental Setup

The evaluation of Sophia’s enhanced Photogenic Behavior and the Attention System was
conducted through a series of iterative experiments. The primary aim was to calibrate
the attention ranking configurations and validate the effectiveness of the Photogenic
Behavior in real-world scenarios. The participants were 15 employees of Hanson Robotics,
including Dr. David Hanson, who provided continuous feedback throughout the process.

Calibrating the attention ranking features required an iterative approach, where each
feature was individually tuned and then tested in conjunction with others to ensure they
worked harmoniously. The key features and the logic behind the calibration process are
described below:

.Class of Detected Objects
Initial tests focused on assigning appropriate default ranks to various objects, such
as picture-taking devices (PTDs) and people. For Photogenic Behavior, PTDs were
given higher default ranks than people..Proxemics
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Adjustments were made to account for the distance between Sophia and detected
objects or people, as closer objects typically warranted higher attention ranks. In
the case of Photogenic Behavior, there are two different scenarios:. selfie - distance plays a crucial role, with PTDs held by people in close

proximity being highly prioritized.. posing - distance is less important than some other features since we have
to account for scenarios when Sophia is posing for a picture with a group of
people..Position in the Field of View

Again, this setting varies based on the type of Photogenic Behavior:. selfie - when taking a selfie, people rarely center the PTD in the eFOV, so
the rank penalty for FOV angle was configured to be negligible, mostly being
used to choose between multiple PTDs at close distances.. posing - in this case, the FOV angle penalty was more significant, as the PTD
is usually centered in the eFOV when taking a picture of Sophia from a distance.
In human picture-taking scenarios, pictures taken from an angle are usually
meant to be a candid shot, so the FOV angle penalty was given a higher weight
than the distance penalty..Habituation Effect

In picture-taking scenarios that involve multiple picture takers, the habituation
effect was adjusted to prevent Sophia from focusing on the same person or object
for an extended period..This was particularly important in the posing state, where Sophia had to

distribute her attention evenly among all participants.. Conversely, in the selfie state, the habituation effect was subdued, since it
has been observed that people tend to wait for others to finish taking a selfie
before taking their turn. This lets selfie takers successfully finish their photo
session while other people are still taking pictures of Sophia..Gaze Angle

The gaze direction of detected people was taken into account in Photogenic Behavior,
as a contributor to rank inheritance.. posing - the gaze angle penalty was set to be more significant, as people usually

look in the direction of their picture-taking focus.. selfie - since Sophia usually cannot see the person she’s taking a selfie with,
the gaze angle penalty is neglected.
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An example of an experiment involving gaze angle is shown in Figure 3.1, where two
people were asked to stand in front of Sophia at similar distance and FOV angle,
but only one of them was looking at her. The person looking at Sophia was given a
higher rank than the other person. This experiment shows that the attention system
is tuned so that when Person 1 is turned away, Sophia prioritizes Person 2 who is
facing towards her even though their face is outside the FOV.

Figure 3.1: Testing the gaze_angle_penalty mechanism. From left to right: Person 1 and
Person 2. (Source: Author and Hanson Robotics Limited)

.Action Recognition
Specific actions like taking a photo or waving were given higher ranks in the posing
state. Waving has been set to have a higher max_rank and confidence_multiplier
than taking a photo as it is a direct signifier of attention seeking, while taking a
photo is a more passive action.. Sound Source Localization

51



................................... 3.2. Questionnaire and Feedback

This feature was mainly used in the posing state, where Sophia could accurately
match the sound source to a visible person. This was not used in the selfie state,
as the sound source is usually very close, not visible to Sophia, and at a dramatically
different angle than the PTD..Phrase Detection
Key phrases related to taking photos were identified and used to trigger Photogenic
Behavior..Attention Inheritance
The influence of nearby people on the attention rank of PTDs was again considered
mainly in the posing state. The inherit_attention feature was set to have a
high multiplier value as a significant portion of the attention is inherited from the
person holding the PTD.
An example of an experiment involving attention inheritance is shown in Figure
3.2, where two people were both holding a phone and taking pictures of Sophia,
while performing certain actions, moving around, and talking. The participants were
observing if Sophia’s attention system reacted appropriately to their actions while
focusing on their phones.

Figure 2.18 shows the attention system settings for the posing state as an example.

3.2 Questionnaire and Feedback

The evaluation included a questionnaire focused on various aspects of Photogenic Behavior.
Participants provided feedback on Sophia’s ability to recognize picture-taking intentions,
track PTDs, and appropriately enter or avoid Photogenic Behavior. Each question was
rated on a scale from 1 to 5, with 1 being the lowest (total disagreement) and 5 being
the highest score (total agreement).

The participants were asked to act out various scenarios of picture-taking, including
taking selfies with Sophia and taking pictures of her, both in groups from 1 to 5 people
and individually. After going through at least 5 different scenarios, the participants
were asked to fill out the questionnaire, divided into three main sections with specific
subquestions:

52



................................... 3.2. Questionnaire and Feedback

Figure 3.2: Testing the attention_inheritance mechanism. From left to right: Person 1
and Person 2. (Source: Author and Hanson Robotics Limited)

.Recognition of Picture-Taking Intention
These questions focused on Sophia’s ability to enter an appropriate Photogenic
Behavior state.. Recognized intention based on conversation cues. (e.g., context of a conversa-

tion, or a direct command like "Let’s take a picture."). Recognized intention based on nonverbal cues. (e.g., holding a PTD, and
waving at Sophia).Verbally indicated awareness of being photographed when appropriate. (e.g.,
saying "Cheese" or "Let’s take a picture" when a PTD is detected). Smiled and/or posed appropriately for a picture..Tracking Picture-Taking Devices
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.Gazed at a PTD..Accurately tracked a moving PTD.. Looked at the most appropriate PTD when multiple were present.. Switched to another PTD appropriately, after giving attention to the first PTD
for a reasonable time..Recognition of Inappropriate Situations for Photogenic Behavior. Didn’t look at a PTD held by a person when engaged in a conversation with
another person..Didn’t look at a PTD during a scripted performance/scenario that didn’t
involve Photogenic Behavior.

Table 3.1 summarizes the results of the questionnaire. The feedback was generally
positive, indicating successful calibration and implementation of the Photogenic Behavior.

Question Mean SD Max Min POS
[%]

NEG
[%]

Recognized intention (conversation cues) 4.27 0.68 5 3 87 0
Recognized intention (nonverbal cues) 3.40 0.71 4 2 53 13
Responded verbally 3.67 1.40 5 1 73 27
Smiled/posed appropriately 4.33 0.60 5 3 93 0
Gazed at a PTD 4.47 0.62 5 3 93 0
Accurately tracked a moving PTD 4.00 0.63 5 3 80 0
Looked at the most appropriate PTD 4.07 0.93 5 2 73 7
Switched to another PTD 3.53 1.26 5 1 67 20
Didn’t look at PTD (engaged in conversation) 3.53 0.81 5 2 60 13
Didn’t look at PTD (scripted performance) 4.33 0.70 5 3 87 0
Average 3.96 0.83 4.9 2.3 77 8

Table 3.1: Results of the questionnaire evaluating Sophia’s Photogenic Behavior.

3.3 Results and Discussion

The iterative calibration of Sophia’s attention system proved effective, resulting in an
lifelike ability to recognize and respond to picture-taking scenarios. Each feature’s
importance varied across different scenarios, highlighting the need for a flexible and
context-aware approach. The feedback from participants was overwhelmingly positive,
indicating that the enhancements successfully achieved the desired objectives.
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An crucial part of judging the quality of Photogenic Behavior are the resulting pictures
taken by the participants. The participants were asked to take pictures of and with
Sophia in various scenarios. The results were generally positive, with Sophia looking
into the camera in most pictures, smiling appropriately, and occasionally posing for the
camera when appropriate. An example of a picture taken by a participant is shown in
Figure 3.3a. Sophia’s point of view during the picture taking, as seen in the HRSDK
WebUI, is shown in Figure 3.3b.

(a) : Dr. David Hanson taking a selfie with Sophia. (Source:
Provided by David Hanson, Ph.D.)

(b) : Sophia’s point of view during the selfie shoot. (Source: Author and Hanson
Robotics Limited)

Figure 3.3: Sophia’s creator, Dr. David Hanson, testing the new Photogenic Behavior module.

The largest standard deviation and percentage of negative responses was observed in
the Responded verbally question, which was expected due to the optional nature of this
aspect of Photogenic Behavior. The second largest standard deviation and percentage of
negative responses was in the Switched to another PTD question, which was due to the
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complexity of the scenario and the subjectivity of the participants’ expectations. The
participants’ feedback was generally positive, with a mean score of 3.96 out of 5, indicating
a high level of satisfaction with the current configuration of Sophia’s Photogenic Behavior.
This score can be further improved by refining the system based on larger dataset and
more diverse scenarios. A proposal for future work is to conduct a similar evaluation
with a larger group of participants, in a public setting where this behavior would be more
commonly used.

Another approach would be to reconstruct picture-taking scenarios in a controlled
environment first for Sophia, then for human participants in her place, and compare the
resulting pictures taken. This would provide a more direct comparison of Photogenic
Behavior between Sophia and humans, and it is more readily achievable, yet to achieve
the same level of objectivity it would be extremely time-consuming since it would require
a large number scenario recreations.

3.4 Comparisons

Compared with Sophia’s initial state, the enhancements made in this work are prominent.
For illustration: the main changes in the codebase were made to the GitHub repositories
listed below. Over 5000 lines of code in total were modified in these repositories, with
the majority of the changes being in the r2_behavior repository.

. r2_perception - this repository is the perception ROS package of Sophia [58].. r2_behavior - this repository is a ROS package with the behavior and attention
ROS nodes of Sophia [59].. hr_msgs - this repository contains the ROS messages utilized by Hanson Robotics
products [60].. hrsdk_configs - this repository contains various configuration files used by the
system [61].

The general changes made to the system can be summarized as follows, while the
broader contributions are discussed in the next chapter:
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.Upgraded Perception Abilities: Initially, Sophia could only perceive humans. The
addition of state-of-the-art real-time detection models and new multimodal LLMs
has significantly improved Sophia’s ability to recognize and respond to picture-taking
scenarios. The additions of abilities to detect and track any kind of object and
recognize peoples’ actions have made Sophia more context-aware and capable of
responding appropriately in a wider range of scenarios..Novel Attention System: Previously, Sophia could only choose a person to gaze
at randomly. The new attention system has been designed to be context-aware,
adaptive, tunable, and capable of handling a wide range of scenarios and object
classes in a human-like way..Added Photogenic Behavior : The new Photogenic Behavior states, selfie and
posing, have been implemented to demonstrate the capabilities of the new attention
system. The system has been calibrated and evaluated through a questionnaire
and feedback from participants, demonstrating its effectiveness in recognizing and
responding to picture-taking scenarios.. Suggested Hardware Enhancements: The proposed hardware enhancements, including
a wider FOV camera array and a more advanced microphone array, will further
improve Sophia’s perception capabilities and enable her to respond more naturally
in a wider range of scenarios. The new system has been designed and tested to be
compatible with these enhancements, ensuring a seamless transition.

Comparing this work to a GCS and its evaluation done by Aliasghari, Taheri, et al.
[21] where they also focused on human-robot interaction (HRI) using a humanoid robot,
similar iterative processes were employed to refine robot behaviors based on user feedback
and a questionnaire was used to evaluate the system. That study, as well as another
one by Zaraki, Mazzei, et al. [20] conducted on another Hanson Robotics robot ’FACE’,
used human test subjects and measured their gaze behavior using head-tracking and
eye-tracking technology, while playing back a recording from the robot’s point of view.
The results were then compared to the robot’s gaze behavior to evaluate the system’s
performance. This would be an interesting avenue for future testing on Sophia, as it
would provide a more objective measure of the system’s performance, however it would
require additional hardware and setup to track the participants’ gaze.

However, the contributions of my work improve upon these studies by focusing on
a more complex and context-aware system that can handle a wider range of scenarios
and interactions. The integration of advanced zero-shot real-time detection models,
multimodal LLMs, and an easily adjustable GCS enables Sophia to respond more naturally
and appropriately to picture-taking scenarios, and lays foundation for a universal GCS
adaptable to a wide range of scenarios and robots.
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3.5 Challenges and Limitations

While the calibration and evaluation process demonstrated the robustness of the new
system, several challenges and limitations were encountered:

.Computational Load
The real-time processing of multiple models and sensors occasionally led to delays,
suggesting a need for further optimization or more powerful hardware.
This can be addressed on the software side by optimizing the code, opting for smaller
models, or using optimization techniques like model quantization or platform specific
optimization frameworks like the Nvidia TensorRT [62].
On the hardware side, this could be addressed by upgrading the processing unit to a
more powerful one or offloading some of the processing to a separate unit. Adding
more processing units to the system, might noticeably impact Sophia’s battery life,
so a balance between performance and power consumption would have to be struck..Perception Limitations
Changes in lighting and background noise affected the performance of visual and
auditory detection models respectively, indicating a need for further hardware
improvements. Another current limitation is the narrow FOV of Sophia’s main
camera, which has been partially addressed in this work by proposing a temporary
enhancement to Sophia’s camera array until a better solution can be implemented.
This can be improved by using more advanced sensors, with higher dynamic range
and noise reduction capabilities. The main limitation here is the cost of such sensors,
as well as the limited real estate on Sophia’s body which is usually covered by clothes
and only leaves a small area for sensors.
For increasing FOV in a more streamlined way, a custom stereoscopic camera setup
could be designed. A similar setup was used in the StereoPi project [63], which
achieved reasonably accurate depth perception and a wide FOV using a pair of
fisheye cameras..User Variability
Different participants had varying expectations and interpretations of Sophia’s
behaviors, which sometimes led to inconsistent feedback. This highlights the need
for a more diverse and larger sample size in future evaluations.
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Chapter 4

Conclusion and Future Work

4.1 Contributions

. Integration with Current Hanson Robotics Platform
The enhancements have been integrated with Sophia’s existing software and hardware
architecture, ensuring compatibility with the current Hanson Robotics platform and
their SDK software (HRSDK). This integration ensures a seamless transition to the
new system and enables the enhancements to be deployed on any existing Sophia
platform without significant modifications.
The whole system is built on top of the Robot Operating System (ROS), which
allows for easy integration with other robotic platforms and provides a standardized
environment for developing and testing the system.
Over 5000 lines of code in total were added or modified in various Hanson Robotics
GitHub repositories [58, 59, 60, 61]. Archived snapshots of these repositories can be
found in Appendix B..Modularity and Scalability
The new system is designed to be modular and scalable, allowing for the addition
of new features and behaviors in the future, and potential adaptation to other
humanoid robots.
Likewise, it is designed to work on Sophia’s current hardware, even though hardware
modifications are proposed to support the enhanced sensory requirements. This also
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ensures that the cost of implementing and testing the new system is minimized, as
it can be deployed on existing hardware with minimal changes.. Enhanced Perception Capabilities
Implementing advanced real-time detection models (YOLOv8-Pose, YOLOv9) [33]
[64], allows Sophia to recognize and track not only people but also other objects in
her environment, including but not limited to cameras, video cameras, cellphones,
and other notable items. These can be either from the standard COCO dataset
labels [4], custom-trained for specific events, or even state-of-the-art models for
real-time zero-shot detection [65] specifically YOLO-World created by Cheng, Song,
et al. [66], enabling Sophia to detect any object classes not present in the training
dataset.
Sophia is now able to recognize human actions [42] such as taking a photo, waving,
or pointing, based on the 60 actions specified in the NTU RGB+D dataset [67].
This enables her to respond appropriately to these actions, focusing her attention
appropriately.
With the addition of a directional microphone array [1], Sophia is now able to
localize and separate sound sources, which can be used to match speech to the
person speaking, or to detect and respond to specific sounds, such as applause or
laughter.
Sophia’s field of view (FOV) will be expanded from the current 69° to 160° [68]
through the addition of a wide-angle fisheye camera [2] in tandem with her current
Intel RealSense RGB-D camera [27], serving as Sophia’s peripheral vision. This
significantly enhances her situational awareness and enables her to detect and respond
to visual stimuli outside her direct line of sight..Autonomous Gaze Control System
A highly customizable GCS has been developed and tuned, enabling Sophia to
autonomously control her gaze and attention based on the perceived stimuli. The
GCS is integrated with Sophia’s behavior system, which has also been enhanced,
and which regulates the GCS by modifying its configuration based on the current
context and the desired behavior.
The GCS extracts a number of features of each perceived stimulus, ranks them based
on the current context and generates a gaze plan that specifies where Sophia should
look and how she should behave.
At the same time, the GCS is designed to be transparent and interpretable, allow-
ing operators and developers to understand and modify its behavior easily. This
transparency is essential for ensuring that Sophia’s interactions are predictable,
controllable, and adaptable to new scenarios.. Integration with Sophia’s AI agents
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Sophia uses a state-of-the-art multi-agent system (MAS) for her conversation and
reasoning capabilities, utilizing latest large language models (LLMs), retrieval-
augmented generation (RAG), and advanced prompting techniques, controlled by an
agent supervisor. This network has been integrated with the new system, enabling it
to provide context-aware information to the GCS and behavior system. This helps
Sophia to make more informed decisions about her gaze and attention, based on the
current conversation and the context of the interaction.
Proposed additions to the AI agent network include a locally running multimodal
LLM, such as LLaVA created by Liu, Li, et al. [53] [54], which can provide low
latency descriptions of the scene and the objects and people in it..Real-world Evaluation and User Feedback
A user poll was conducted to gather feedback on the current system and to identify
areas for improvement. The results of the poll were used to guide the development
of the new system and to prioritize the enhancements that would have the greatest
impact on Sophia’s interactions.
The new system has been tested and evaluated on real-world scenarios. User feedback
was collected and analyzed to assess the effectiveness of the new system and to
identify areas for improvement. The feedback was used to refine the system and to
make it more responsive and engaging in social settings, namely in picture-taking
scenarios.

4.2 Future Development

A significant portion of the future work for has already been outlined and discussed
throughout this thesis. The following are key areas of focus and anticipated developments:

.Hardware Enhancements. Several hardware improvements have been proposed and are currently in the
prototype stage, like the directional microphone array, fisheye camera, and
movable waist mechanism..The near-term goal is to complete testing and make these enhancements
production-ready, ensuring they integrate seamlessly with Sophia’s existing
systems.. Software Improvements
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.Optimization and Refinement. Performance Optimization: While the code has been designed to be robust
and stable, there is always room for speed optimization. Improving the
efficiency of the code will be a priority to ensure smooth and responsive
interactions, especially in real-time scenarios.. Configuration Tuning: Continuous tuning and refinement of the configu-
ration files will be necessary to adapt to new use cases and environments.
This iterative process will help in maintaining the system’s flexibility and
responsiveness. Testing and Feedback: To ensure quality of the system,
extensive testing with a larger pool of participants will be crucial. Sophia’s
frequent appearances at public events will provide ample opportunities for
real-world testing and feedback collection..New Modes and Machine Learning.Utilizing the Modular GCS : The GCS has been designed to be modular
and adaptable. Exploring new ways to utilize this system, such as enabling
the MAS to decide which specific object or person to track based on
conversation cues, will be a key area of development.. Machine Learning Integration: Implementing a machine learning model
to tune the attention system using supervised learning techniques could
provide significant improvements. By training the system on a large dataset
of human interactions, it could learn to prioritize attention cues more
effectively and adapt to new scenarios with minimal manual configuration..Practical Applications.Human-Robot Interaction (HRI) Applications. Entertainment and Customer Service: The Sophia platform can be deployed
in environments such as entertainment venues, retail stores, and customer
service centers. Her ability to engage with customers, provide information,
and entertain makes her a valuable asset in these settings.. Healthcare and Elderly Care: In healthcare settings, particularly in elderly
care, Sophia can provide social interaction, remind patients of their medica-
tion schedules, and assist in monitoring their well-being, supporting human
staff who are often stretched thin.

The enhancements made in this thesis, along with the proposed future developments,
not only contribute to the improvement of Sophia but also to the broader field of social
robotics, playing part in the integration of robots into human society.
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Appendix B

Code Archive

This appendix contains the source code for the software extension developed
in this thesis. The code comes appended in a single ZIP file with three
folders representing the respective GitHub repositories: r2_perception,
r2_behavior, and hr_msgs. Each folder contains the complete ROS package
with the source code and launch files. The code is provided under a license
agreement between Czech Technical University in Prague and Hanson Robotics
Limited.
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