
F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Bachelor’s Thesis

Leveraging Reward Regularization
in Imperfect Information Games

Tomáš Holeček

20.1. 2024
Supervisor: Ing. Ondřej Kubíček

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

507264 Osobní číslo:Tomáš Jméno:Holeček Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatika Studijní program:

Počítačové hry a grafika Specializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Využití metody regularizace odměn ve hrách s neúplnou informací

Název bakalářské práce anglicky:

Leveraging Reward Regularization in Imperfect Information Games

Pokyny pro vypracování:

Seznam doporučené literatury:
Shoham, Y. and Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge
University Press, 2008, ISBN 9780521899437.
J. Perolat, et. al., From poincar e recurrence to convergence in imperfect
information games: Finding equilibrium via regularization. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 8525–8535. PMLR, 18–24 Jul 2021.
J. Perolat, et. al., Mastering the game of stratego with
model-free multiagent reinforcement learning. Science, 378(6623):990–996,
2022.
S. Sokota, R. D’Orazio, C. K. Ling, D. J. Wu, J. Z. Kolter, and N. Brown.
Abstracting imperfect information away from two-player zero-sum games,
2023.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Ondřej Kubíček katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2024 Datum zadání bakalářské práce: 07.02.2024

Platnost zadání bakalářské práce: 21.09.2025

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Ondřej Kubíček

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to thank my supervisor
Ing. Ondřej Kubíček for guiding the
creation of this thesis. I would also like
to thank the authors of the OpenSpiel
game library for providing a framework
for my work. Computational resources
were provided by the e-INFRA CZ
project (ID:90254), supported by the
Ministry of Education, Youth and
Sports of the Czech Republic. Last but
not least I want to thank my family for
their support during my studies.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague date 24.05.2024

. .

v

Abstrakt / Abstract

Regularizace odměn se ukázala jako
užitečná technika pro algoritmy po-
silovaného učení určené k řešení her
s neúplnou informací. Jeden takový
algoritmus používající tuto techniku je
nedávno vyvinutý algoritmus Regula-
rizovaná Nashova Dynamika (RNaD),
který dosáhl výsledku na úrovní ex-
pertních hráčů ve hře Stratego. Studie
těchto technik se zatím ale zaměřovala
na dvouhráčové hry s nulovým součtem
a není zřejmé, jestli tyto techniky budou
užitečné i v širší skupině her jako jsou
vícehráčové hry či hry bez nulového
součtu. Proto je cílem práce najít obec-
něji použitelné rozšíření těchto technik a
použít ho k upravení již existujících al-
gorithmů pro použití v novém typu her.
Efektivnost těchto úprav je ukázána na
několika experimentech provedených na
hrách typu pronásledování-únik.

Klíčová slova: hry s neúplnou in-
formací; hry bez nulového součtu;
vícehráčové hry; posilované učení; hry
pronásledování-únik; regularizace od-
měn; Nashovo ekvilibrium; Regularizo-
vaná Nashova dynamika.

Překlad titulu: Využití metody regu-
larizace odměn ve hrách s neúplnou in-
formací

Reward regularization proved to be
a powerful technique in reinforcement
learning algorithms for solving im-
perfect information games. One such
algorithm using this technique is the
recently developed Regularized Nash
Dynamics (RNaD), which achieved
a human-expert level performance in
the game Stratego. However, research
about this technique has focused on
two-player zero-sum games, and it is
currently unknown if this technique
proves useful even in a broader class of
games like general-sum or multiplayer
games. Hence, this work aims to devise
a more generally applicable extension
of these techniques and modify the
developed algorithms into a new class of
games. The effectiveness of these modi-
fications is shown in several experiments
on pursuit-evasion games.

Keywords: imperfect information
games; general-sum games; multiplayer
games; reinforcement learning; pursuit-
evasion games; reward regularization;
Nash equilibrium; Regularized Nash
Dynamics.

vi

Contents /

1 Introduction 1
1.1 Outline 1

2 Theoretical background 2
2.1 Game definition 2
2.2 Algorithms 4

2.2.1 Performance metrics 6
2.2.2 Counterfactual regret

minimization 6
2.2.3 Follow the regularized

leader 7
2.2.4 Regularized Nash Dynamics . 8

3 Pursuit evasion games 10
3.1 Simulator rules 10
3.2 Observation structure 11

3.2.1 Perceiving position 12
3.2.2 Conversion to tensor 13
3.2.3 Observation tensor ex-

ample 14
3.2.4 Tensor sizes 14

4 RNaD changes 16
4.1 Default implementation in

an n-player case 16
4.2 Entropy regularization 16
4.3 Relation of players change . . . 17

4.3.1 Regularization with
the relation function 18

5 Experiments 19
5.1 Testing instances 19

5.1.1 Small boards 20
5.1.2 Medium-sized board 20
5.1.3 Board with many goals . . 20
5.1.4 Large board 21
5.1.5 Tensor sizes 21

5.2 Heuristic player 21
5.3 Experiments description 22
5.4 Entropy regularization ex-

periments 23
5.4.1 Perturbed RPS 23
5.4.2 Small board 24

5.5 Relation changes experiments . 25
5.5.1 Perturbed RPS 25
5.5.2 Small boards 26
5.5.3 Medium-sized board 29
5.5.4 Board with many

pursuit-evasion relations . . 31

5.5.5 Large board zero-sum . . . 32
5.5.6 Large board general-sum . 34

6 Conclusion 37

References 38

A Additional experimental results 41
A.1 Small boards 41
A.2 Medium-sized board 41
A.3 Large board zero-sum 42
A.4 Large board general-sum 42

vii

Tables / Figures

3.1 Observation visualization 14
3.2 Size of observation tensor

components . 15
5.1 Sizes of observation/informa-

tion state tensors in the used
instances . 21

5.2 Iterations per hour of RNaD . . 23

3.1 Observation structure 12
3.2 Information state structure 12
3.3 Observation visualization

board . 14
5.1 Small board . 20
5.2 Small board with three play-

ers . 20
5.3 Three player medium-sized

board. 20
5.4 Board with many goals 21
5.5 Large board with five players . . 21
5.6 Exploitability of entropy

RNaD in perturbed RPS 24
5.7 Expected return of entropy

RNaD in perturbed RPS. 24
5.8 Exploitability of entropy

RNaD in two-player small
board . 24

5.9 Expected return of entropy
RNaD in two-player small
board . 24

5.10 Comparison of exploitabil-
ities of the RNaDs in per-
turbed RPS. 26

5.11 Expected return of the
RNaDs in perturbed RPS 26

5.12 Exploitability of the RNaDs
in two-player small board 26

5.13 Expected return of the
RNaDs in two-player small
board . 26

5.14 NashConv of the RNaDs in
three-player small board. 27

5.15 Expected return of RNaDs in
three-player small board 27

5.16 Comparison of the RNaDs
against random opponents in
three-player small board 28

5.17 Comparison of the RNaDs
against heuristic opponents
in three-player small board 28

5.18 Comparison of the RNaDs
against CFR in three-player
small board . 29

viii

5.19 Comparison of self-play of
the RNaDs in medium-sized
three-player board. 29

5.20 Comparison of the RNaDs
against heuristic opponents
in medium-sized three-player
board . 31

5.21 Comparison of the RNaDs
against random opponents
in medium-sized three-player
board . 31

5.22 Comparison of self-play of
the RNaDs in board with
many pursuit-evasion rela-
tions. 32

5.23 Comparison of the RNaDs
against a random opponent
in board with many pursuit-
evasion relations 32

5.24 Comparison of the RNaDs
against a heuristic opponent
in board with many pursuit-
evasion relations 32

5.25 Comparison of self-play of
the RNaDs in large zero-sum
board . 33

5.26 Comparison of the RNaDs
against random opponents in
large zero-sum board 34

5.27 Comparison of the RNaDs
against heuristic opponents
in large zero-sum board 34

5.28 Comparison of self-play of all
RNaDs in large general-sum
board . 35

5.29 Comparison of the RNaDs
against random opponents in
large general-sum board 35

5.30 Comparison of the RNaDs
against heuristic opponents
in large general-sum board 36

ix

Chapter 1
Introduction

Regularization is a well-known technique in machine learning, which is used to alter the
learned probability distribution to prevent overfitting. In the context of reinforcement
learning in games, such a technique is used to prevent excessive exploitation, thus
making the learning more robust [1–2]. It has also been studied, that regularizing
reward yields beneficial results [3–4], which has been used as a basis for current state-
of-the-art algorithms for solving imperfect information games [5].

However, all the achieved results apply only to two-player zero-sum games. This
is a case of games, where the loss of one player must result in a gain for the other
player. Some examples of these games include rock-paper-scissors, chess, Go, or heads-
up Poker. Games, where this does not hold, are called general-sum. One example of
such a game is Blackjack because the dealer is not a player in the game, but rather a
chance element with a fixed strategy. Other examples are certain cooperative games,
such as Prisoners´s Dilemma. Thus, the achieved results need not apply to these types
of games, and neither they need to apply to multiplayer games.

The goal of this work is to devise an extension to the used regularization techniques,
that would be applicable to a broader class of games. The key idea of this work is that
by using domain-specific knowledge, the regularization can be changed to account for
various relations between players rather than just two purely adversarial.

In this work, the regularization techniques will be evaluated on pursuit-evasion games.
These games can represent a broad class of games, ranging from two-player zero-sum
games to multiplayer general-sum games. This allows a comparison of eventual changes
to algorithms with the unchanged version in both the instances where the current
algorithms should work well and those where their performance is not guaranteed.
Furthermore, this is a well-studied type of game in game theory, that is both popular
as a benchmark [6–7] and useful for representing real-world problems from various
fields such as security [8], autonomous aircraft control [9–10], orbital control [11–12] or
military [13]. However, as no simulator of such games was publicly available, it was
implemented in the public game theory library OpenSpiel [14] as a part of this work.

1.1 Outline
The second chapter explains the needed theoretical background for games as well as for
used algorithms and metrics used to measure their performance. In the third chapter,
certain details of the pursuit-evasion game simulator are presented. The fourth chapter
presents the changes made to Regularized Nash dynamics. Experimental results are
discussed in the fifth chapter. Finally, the sixth chapter presents the conclusion and
possible future improvements.

1

Chapter 2
Theoretical background

2.1 Game definition
Although there are multiple formal representations of a game, this work operates with
the FOSG formalism[15]. This formalism was chosen, because of a natural way to split
the player observations into public and private parts, which may be difficult to achieve
in other formalisms.
Definition 2.1. [15] A factored-observation stochastic game (FOSG, only referred to
as game from this point) is a tuple 𝐺 = ⟨𝒩, 𝒲, 𝑝, 𝑤𝑖𝑛𝑖𝑡, 𝒜, 𝑇 , 𝑅, 𝒪⟩ where:

𝒩 = {1,, 𝑁} for some 𝑁 ∈ ℕ is the player set.
𝒲 is the set of world states.
𝑤𝑖𝑛𝑖𝑡 is a designated initial state.
𝑝: 𝒲 → 2𝒩 is a player function determining which players act in the given state.
𝒜 = ∏𝑖∈𝒩 𝒜𝑖 is the space of joint actions of all players, where each 𝒜𝑖 is an arbitrary

set of actions of player 𝑖. 𝒜(𝑤): = ∏𝑖∈𝑝(𝑤) 𝒜𝑖(𝑤) is a set of all legal joint actions at
given state, where 𝒜𝑖(𝑤) ⊑ 𝒜𝑖 is a non-empty set of legal actions of player 𝑖 in state
𝑤. 𝒜𝑖(𝑤) = {𝑛𝑜𝑜𝑝} is a symbol for no action, that is used for all 𝑖 ∉ 𝑝(𝑤)

𝑇: 𝒲 × 𝒜 ↪ ∆𝒲 is the transition function determining probability distribution over
possible states to transition to after action is applied for each 𝑤 ∈ 𝒲 and 𝑎 ∈ 𝒜(𝑤).
This function may be defined even in some states where 𝑝(𝑤) = ∅. Such states are
called chance nodes and are used to represent an environment outside player control
affecting the game 1. A world state with 𝑝(𝑤) = ∅ and undefined 𝑇(𝑤, 𝑎) is called a
terminal state.

𝑅: 𝒲 × 𝒜 ↪ ℝ∣𝒩∣ is the joint reward function, so that 𝑅(𝑤, 𝑎) = ((𝑅𝑖(𝑤, 𝑎)𝑖∈𝒩))
where 𝑅𝑖(𝑤, 𝑎) is reward for player 𝑖 when all players perform joint action 𝑎 at state 𝑤.

𝒪: 𝒲 × 𝒜 × 𝒲 ↪ 𝕆 is the observation function, where 𝕆 is the set of all possible
observations. This is factored into private observations and public observations as
𝒪 = (𝒪priv(1), ..., 𝒪priv(𝑁), 𝒪pub). Moreover, 𝕆 = ∏𝑖∈𝒩 𝕆priv(𝑖)) × 𝕆pub, where 𝕆priv(𝑖))
are arbitrary sets of private observations of player 𝑖 and 𝕆pub are arbitrary sets of
public observations. 𝕆𝑖 = 𝕆priv(𝑖)) × 𝕆pub denotes a set of all possible observations of
player 𝑖. A function 𝒪(𝑤, 𝑎, 𝑤′) ∈ 𝕆 is assumed to be defined for every non-terminal
𝑤, 𝑎 ∈ 𝒜(𝑤), and 𝑤′ with non-zero probability in 𝑇(𝑤, 𝑎). This function returns an
element from the observation set described above if action 𝑎 was taken at state 𝑤 and
state 𝑤′ was reached. Here it is additionally assumed, that no received observations are
forgotten throughout the game (referred to as perfect recall games). An observation
received by player 𝑖 at timestep 𝑡 is denoted as 𝑜𝑡

𝑖 ∈ 𝕆𝑖.
The game then proceeds as follows: It starts in the initial state 𝑤𝑖𝑛𝑖𝑡. In each state

𝑤, each acting player 𝑖 ∈ 𝑝(𝑤) learns the legal actions 𝒜𝑖(𝑤) (either directly receives
this information from the environment, or deduces it on his own), and selects action

1 As none of the games discussed in this work use chance nodes, this is mentioned only for formal
completeness

2

. 2.1 Game definition

𝑎𝑖 ∈ 𝒜𝑖(𝑤). Once that is done for all acting players, the joint action 𝑎 = (𝑎𝑖)𝑖∈𝑝(𝑤) is
applied and new state 𝑤′ is drawn from the distribution 𝑇(𝑤, 𝑎). Then an observation
𝒪𝑖(𝑤, 𝑎, 𝑤′) = (𝒪priv(𝑖)(𝑤, 𝑎, 𝑤′), 𝒪pub(𝑤, 𝑎, 𝑤′)) ∈ 𝕆𝑖 is generated. This means, that
each player receives information that is private to them (such as the history of the
actions they took, the cards they are holding in Poker, observed positions around player
agents, etc.) alongside public information available to all players (such as cards on the
table in Poker, information about used tickets in Scotland-Yard, etc.). Finally, each
acting player also receives a reward2 𝑅𝑖(𝑤, 𝑎). Then new state 𝑤′ is marked as current
state 𝑤, and this entire process repeats, until a terminal state is reached, and the game
ends. The goal of each player is to maximize the sum of rewards 𝑅𝑖(𝑤, 𝑎) received
during the game. [15]
Definition 2.2. [16] A zero-sum game is a game where the following holds for each
state 𝑤 and action 𝑎: ∑𝑖∈𝒩 𝑅𝑖(𝑤, 𝑎) = 0.

In a two-player zero-sum case this means, that whenever a player receives some
reward, the other player must receive the same reward but multiplied by -1.
Definition 2.3. [15] A trajectory τ = 𝑤0𝑎0𝑤1𝑎1...𝑤𝑡−1𝑎𝑡−1𝑤𝑡 ∈ (𝒲𝒜)∗𝒲 where 𝑎𝑙 ∈
𝒜(𝑤𝑙) and 𝑤𝑙+1 ∼ 𝑇(𝑤𝑙, 𝑎𝑙) for each 𝑙 ∈ {0, ..., 𝑡 − 1} is a finite sequence of states and
actions that occurred during the game. A trajectory utility for player 𝑖 is defined as
𝑢𝑖(τ) = ∑𝑡−1

𝑙=0 𝑅𝑖(𝑤𝑙, 𝑎𝑙), which is a cumulative reward for player 𝑖 across trajectory τ.
Definition 2.4. [15] A history ℎ is such a trajectory, where 𝑤0 = 𝑤𝑖𝑛𝑖𝑡. 𝐻 is a set of
all histories. This means, that it starts in the initial state 𝑤𝑖𝑛𝑖𝑡. It is assumed that
𝒜(ℎ): = 𝒜(𝑤𝑡) where 𝑤𝑡 is the last state in the history. Additionally, 𝑍 denotes a set of
terminal histories 𝑧 where the last state of the trajectory is terminal. When ℎ ⊑ ℎ′ it
is said that ℎ′ extends history ℎ. The initial history, corresponding to the initial state
𝑤𝑖𝑛𝑖𝑡 is denoted as ℎ𝑖𝑛𝑖𝑡. Lastly, ∣ℎ∣ is the length of the history, which corresponds to
the number of joint actions played in the history.

However, because the player receives only observations, and not directly states and
actions of the environment, some histories may be indistinguishable by him. Two
histories are indistinguishable, if the player played action 𝑎𝑙

𝑖 and received observation
𝑜𝑙

𝑖 at each time step 𝑙 in these histories. Hence, it is possible to group histories, that
are indistinguishable for player 𝑖 into a single set.
Definition 2.5. [15] An information set (infoset) 𝑠𝑖 ∈ 𝑆𝑖 is some set of histories, where
all histories in the set are indistinguishable by player 𝑖. 𝑆𝑖 denotes set of all possible
infosets for player 𝑖. 𝑠𝑖(ℎ): 𝐻 ↪ 𝑆𝑖 is an infoset function.

If the game is viewed by an outside observer, that does not have access to any player’s
private observations, only the public part of observations can be used to distinguish
states. This introduces the notion of public states 𝑠0 ∈ 𝑆0, which group histories the
same way as regular infosets, but use only the public part of observations. So, it can
be viewed as a union of infosets, that share the same public information. Furthermore,
several infosets can belong to the same public state, but any infoset belongs to exactly
one public state because the information contained in the public part of the observation
is a subset of information of the whole observation. Similarly, each history is contained
in exactly one infoset for each player and by extension in exactly one public state.

𝑆𝑖(𝑠0) denotes all infosets of player 𝑖 belonging to the same public state and 𝒜𝑖(𝑠𝑖)
denotes actions available to player 𝑖 under infoset 𝑠𝑖, which must be the same as 𝒜𝑖(ℎ)
for any ℎ, where 𝑠𝑖 = 𝑠𝑖(ℎ). Otherwise, player 𝑖 could distinguish these histories based
on the different available actions.
2 In all of the games discussed in this work, the information about the received reward is assumed to be

implicitly available to the player.

3

2. Theoretical background .

2.2 Algorithms

Definition 2.6. [15] Policy3 of player 𝑖 is a mapping 𝜋𝑖: 𝑆𝑖 ↪ ∆𝒜𝑖 where 𝜋𝑖(𝑠𝑖, 𝑎𝑖)
denotes the probability that player 𝑖 plays action 𝑎𝑖 under infoset 𝑠𝑖,while following
policy 𝜋𝑖. Because of the infoset definition, this can also be used to define probability
based on history as 𝜋𝑖(ℎ, 𝑎𝑖): = 𝜋𝑖(𝑠𝑖(ℎ), 𝑎𝑖), where the policy corresponds to policy in
infoset 𝑠𝑖, that the history belongs to. 𝜋𝑖(ℎ) denotes the probability distribution over
actions 𝑎𝑖 ∈ 𝒜𝑖(ℎ) for player 𝑖. A strategy profile is defined as 𝜋 = (𝜋1, ...𝜋𝑁). So it is
a joint policy of all players. Moreover, 𝜋−𝑖 denotes a strategy profile without the policy
of player 𝑖.
Definition 2.7. [15] Reach probability of history ℎ under strategy profile 𝜋 is defined as
𝑃𝜋(ℎ) = ∏ℎ′𝑎𝑤⊑ℎ ∏𝑖∈𝒩 𝜋𝑖(ℎ

′ , 𝑎𝑖), where 𝑎𝑖 is player 𝑖 part of joint action 𝑎. This means
that it is the probability of reaching history ℎ, if all players follow strategy profile 𝜋. This
can be rewritten as 𝑃𝜋(ℎ) = 𝑃𝜋

𝑖 (ℎ) ⋅ 𝑃𝜋
−𝑖(ℎ) = ∏ℎ′𝑎𝑤⊑ℎ 𝜋𝑖(ℎ

′ , 𝑎𝑖) ⋅ ∏𝑗∈𝒩,𝑗≠𝑖 𝜋𝑗(ℎ
′ , 𝑎𝑗),

which signifies each player contribution to reaching that history, where −𝑖 are all players
except player 𝑖.
Definition 2.8. Expected utility[15] of player 𝑖 following strategy profile 𝜋 is defined
as 𝑢𝜋

𝑖 = ∑𝑧∈𝑍 𝑃𝜋(𝑧) ⋅ 𝑢𝑖(𝑧), where 𝑢𝑖(𝑧) = ∑∣𝑧∣−1
𝑙=0 𝑅𝑖(𝑤𝑙, 𝑎𝑙) is a trajectory utility of

terminal history 𝑧. So, it is a mean over the expected return of terminal histories,
that are generated when all players follow strategy profile 𝜋. A joint expected utility is
defined as 𝑢𝜋 = (𝑢𝜋

𝑖)𝑖∈𝒩.
Additionally, denoting 𝑎ℎ

𝑖 (τ) as the action played by 𝑖 at history ℎ in a given trajec-
tory τ allows defining a Q function as 𝑄𝜋

𝑖 (ℎ, 𝑎𝑖) = ∑𝑧∈𝑍,𝑎ℎ
𝑖 (𝑧)=𝑎𝑖,ℎ⊑𝑧 𝑃𝜋(𝑧) ⋅ 𝑢𝑖(𝑧). The

intuitive interpretation is that this is the expected utility of such terminal histories,
where player 𝑖 chooses action 𝑎𝑖 at the last state of ℎ, and then all players follow strat-
egy profile 𝜋 onwards. Similarly, we can define a Value function that does not assume
a specific action played at history ℎ as 𝑉𝜋

𝑖 (ℎ) = ∑𝑎𝑖∈𝒜(ℎ) 𝜋𝑖(ℎ, 𝑎𝑖) ⋅ 𝑄𝜋
𝑖 (ℎ, 𝑎𝑖).

Furthermore, the Q-function and value function can be used to compute the advan-
tage of playing action 𝑎𝑖 at history ℎ instead of following 𝜋𝑖(ℎ, 𝑎𝑖). This is called an
advantage function defined as 𝐴𝜋

𝑖 (ℎ, 𝑎𝑖) = 𝑄𝜋
𝑖 (ℎ, 𝑎𝑖) − 𝑉𝜋

𝑖 (ℎ).
Definition 2.9. [17] A Nash equilibrium 𝜋∗ is such a strategy profile, where for all
players 𝑖 and any policy 𝜋′

𝑖 the following holds: 𝑢𝜋′
𝑖𝜋∗

−𝑖
𝑖 − 𝑢𝜋∗

𝑖 ≤ 0.
This means, that if other players continue playing according to the Nash strategy

profile, no player is incentivized to change their policy.
Definition 2.10. [18] An 𝜖-Nash equilibrium is such a strategy profile 𝜋𝜖, where the
following holds 𝑢𝜋′

𝑖𝜋𝜖
−𝑖

𝑖 − 𝑢𝜋𝜖

𝑖 ≤ 𝜖 for some 𝜖 > 0.
This can be viewed as an approximation of Nash equilibrium, where each player can

improve their utility by 𝜖 at most by deviating.
Note, that when playing, a player needs to choose actions by sampling the probability

distribution. Thus, the actual policy played by player 𝑖 can be seen as a deterministic
(pure) policy, conditioned on the Nash equilibrium policy. So when playing each player
conditions their acting policy independently based on their Nash equilibrium policy.
This leads to the idea, that the concept of equilibrium may be generalized, by allowing
the players to condition their acting policies differently.

3 Policy in perfect information games is defined on states and not on infosets. However, this corresponds,
because perfect information games are a subset of imperfect information games, where for each player,
each history is in a different infoset.

4

. 2.2 Algorithms

The key idea is introducing some third-party influence with a known probability
distribution, which gives each player a private signal, that they can condition their
policy on (assumed to be the policy suggestion itself here). This influence will form an
equilibrium, if the players cannot improve their expected return by deviating from the
suggestion.
Example 2.1. A simple example of such influence could be illustrated in Prisoner´s
Dilemma. This is a game with two players, which simultaneously have to choose an
action. Both players have the option to cooperate with the other prisoner, or defect to
the authorities. If both prisoners cooperate, they get shorter jail time, but if only one
defects, he avoids prison at the expense of the other prisoner. This game only has a
single decision point, in which neither player has received any observations. Hence, in
the following notation states and observations will not be considered, because players
choose actions only in this single decision point. In a standard version of the game, the
rewards look as follows:

𝑅((cooperate, cooperate)) = (-1, -1)
𝑅((defect, cooperate)) = (0, -3)
𝑅((cooperate, defect)) = (-3, 0)
𝑅((defect, defect)) = (-2, -2)
In this game, a Nash equilibrium is that both players defect. This is caused by the

fact, that neither player can improve their expected utility by deviating from this strat-
egy. If a player were to deviate and choose to cooperate instead, his reward would be
-3, compared to the -2 when choosing to defect. In contrast, both players cooperat-
ing is not an equilibrium, because either player can improve their expected utility (0
compared to -1) by choosing to defect instead.

The players can agree that a coin flip will be performed, and, in the case of heads, they
will both cooperate, but, in the case of tails, they will both defect. Then the expected
utility for both players will be −1⋅ 1

2 −2⋅ 1
2 = −1.5. However, if a player chooses not to

follow the suggestion and defect instead, the expected utility will be 0⋅ 1
2 −2⋅ 1

2 = −1.
So this suggestion will not form an equilibrium, because either player can improve their
expected utility by deviating from it.

Formal definition of this concept uses the following components:
1. 𝑝, which is a probability distribution over all possible strategy profiles.
2. 𝜎 = (𝜎1, ..., 𝜎𝑁), where 𝜎𝑖 is a policy to policy map for player 𝑖. Specially, 𝜎∗

is such a map, where 𝜎∗
𝑖 (𝜋𝑖) = 𝜋𝑖 for any 𝜋𝑖 and all players 𝑖. This mapping can be

viewed as “accepting” the suggested strategy profile, whereas any other mapping may
be deviating.
Definition 2.11. [18] A Correlated equilibrium of an n-player game is such a probability
distribution 𝑝, where 𝜎∗(𝜋) forms a Nash equilibrium for any 𝜋 drawn from 𝑝. Similarly,
as in the case of Nash equilibrium, it is said to be 𝜖-correlated equilibrium if 𝜎∗(𝜋) forms
an 𝜖-Nash equilibrium for any 𝜋 drawn from 𝑝.

Note, that because the probability distribution 𝑝 is known, it can allow players to
not act independently of each other (hence the name correlated equilibrium). Fur-
thermore, it can be shown that Nash equilibrium is just a special case of correlated
equilibrium, where each player’s signals are probabilistically independent [18]. It can
also be shown, that in two-player zero-sum games correlated equilibrium corresponds
to Nash equilibrium [19].

5

2. Theoretical background .
2.2.1 Performance metrics

Definition 2.12. [20] A Best response 𝜋𝐵𝑅
𝑖 (𝜋−𝑖) = argmax𝜋𝑖

𝑢𝜋𝑖𝜋−𝑖 is a best response of
player 𝑖 against strategy profile 𝜋. So it is such a policy, that yields the best reward if
other players follow strategy profile 𝜋−𝑖

Definition 2.13. [20] A player 𝑖 incentive to deviate is defined as 𝛿𝑖(𝜋) = 𝑢𝜋𝐵𝑅
𝑖 (𝜋−𝑖)𝜋−𝑖

𝑖 −
𝑢𝜋

𝑖 .
Here, it can be noted that, recalling the Nash equilibrium definition, it is required

that no player has an incentive to change their policy and thus no incentive to deviate.
Thus 𝛿𝑖(𝜋∗) = 0 for each 𝑖 ∈ 𝒩, which means that in Nash equilibrium all players are
playing their best response to each other. This also means that incentives to deviate
can be used to measure the current distance from Nash equilibrium.
Definition 2.14. [20] NashConv of strategy profile 𝜋 is defined as NashConv(𝜋) =
∑𝑖∈𝒩 𝛿𝑖(𝜋).
Definition 2.15. [20] Exploitability of strategy profile 𝜋 in two-player zero-sum games
is defined as Exploitability(𝜋) = NashConv(𝜋) /2.

Both of these metrics are widely used to exactly measure the quality of a strategy
profile found by algorithms [4, 21–22].

2.2.2 Counterfactual regret minimization
Counterfactual regret minimization (CFR) is an algorithm for solving imperfect infor-
mation games. This algorithm is run in iterations, where a starting strategy profile is
first initialized (usually uniformly) and then it is updated at each iteration. In the end,
the mean of strategy profiles at all iterations is returned.

This algorithm works by computing the counterfactual value of an infoset, which is
a sum of expected utilities of histories falling under this infoset weighted by their reach
probability, if the given player is playing to reach them. Then counterfactual regret is
computed for each action at all infosets. This value can be seen as an indicator, of how
would the player’s expected utility change, if he played the given action at the infoset,
instead of following the current policy. If it is positive, the player utility would improve,
and it would get worse, if the value is negative.
Definition 2.16. [23] Counterfactual value for infoset 𝑠𝑖, player 𝑖, under strategy profile
𝜋 is defined as 𝑣𝜋

𝑖 (𝑠𝑖) =
∑ℎ∈𝑠𝑖

𝑃𝜋
−𝑖(ℎ)⋅𝑉𝜋

𝑖 (ℎ)
∑ℎ∈𝑠𝑖

𝑃𝜋
−𝑖(ℎ) .

Note that player 𝑖 contribution to the reach probability of infoset 𝑠𝑖 is not considered
here, so it is assumed that the player will play to reach that infoset. 𝑣𝜋

𝑖 (𝑠𝑖, 𝑎𝑖) is
computed the same way, but it is also additionally assumed that player 𝑖 plays action
𝑎𝑖 at 𝑠𝑖.
Definition 2.17. [23] Immediate counterfactual regret of infoset 𝑠𝑖, action 𝑎𝑖 at iteration
T, where 𝜋𝑇 is current strategy profile of the CFR algorithm at iteration 𝑇, is defined
as 𝑟𝑔𝑇

𝑖 (𝑠𝑖, 𝑎𝑖) = 𝑣𝜋𝑇

𝑖 (𝑠𝑖, 𝑎) − 𝑣𝜋𝑇

𝑖 (𝑠𝑖).
Definition 2.18. [23] A Cumulative counterfactual regret of player 𝑖, infoset 𝑠𝑖 and
action 𝑎𝑖 at iteration 𝑇 is defined as 𝑅𝐺𝑇

𝑖 (𝑠𝑖, 𝑎𝑖) = ∑𝑇
𝑡=1 𝑟𝑔𝑡

𝑖(𝑠𝑖, 𝑎𝑖). If the action is
not fixed, then the regret is computed as 𝑅𝐺𝑇

𝑖 (𝑠𝑖) = max𝑎𝑖∈𝒜𝑖(𝑠𝑖)𝑅𝐺𝑇
𝑖 (𝑠𝑖, 𝑎𝑖). Average

counterfactual regret is defined as 𝑅𝐺𝑇 −
𝑖 (𝑠𝑖) = 𝑅𝐺𝑇

𝑖 (𝑠𝑖) / 𝑇.
Definition 2.19. [23] An algorithm is said to have no regret if 𝑅𝐺𝑇 −

𝑖 (𝑠𝑖) → 0 as 𝑇 → ∞
holds for all players 𝑖 ∈ 𝒩 following strategy profile 𝜋 found by the algorithm and all
infosets 𝑠𝑖.

This condition means, that the regret at higher iterations eventually has to converge
to 0, otherwise the average regret would be greater than 0. Furthermore, it was proven

6

. 2.2 Algorithms

that if 𝑅𝐺𝑇 −
𝑖 → 𝜖 as 𝑇 → ∞, then the algorithm converges to some 𝜖-correlated

equilibrium for all players 𝑖 [24]. By extension, this means that no-regret algorithms
eventually converge to a correlated equilibrium. So, in two-player zero-sum games, they
converge to Nash equilibrium since it coincides with correlated equilibrium.

In CFR, any such no-regret algorithm may be used to update the player policies
at each infoset. One of the most common regret minimizers for this purpose is regret
matching[23], which is used in this work as well. This algorithm uses cumulative regrets
as weights, thus preferring actions with high cumulative regret. The process policy of
player 𝑖 at timestep 𝑇:

Step 1: Compute 𝑅𝐺𝑇 ,+
𝑖 (𝑠𝑖, 𝑎𝑖) = 𝑚𝑎𝑥(𝑅𝐺𝑇

𝑖 (𝑠𝑖, 𝑎𝑖), 0)
Step 2: update policy as

𝜋𝑇 +1
𝑖 (𝑠𝑖, 𝑎𝑖) =

⎧{
⎨{⎩

𝑅𝐺𝑇,+
𝑖 (𝑠𝑖,𝑎𝑖)

∑𝑎𝑖∈𝒜𝑖(𝑠𝑖) 𝑅𝐺𝑇,+
𝑖 (𝑠𝑖,𝑎𝑖)

when ∑𝑎𝑖∈𝒜(𝑠𝑖) 𝑅𝐺𝑇 ,+
𝑖 (𝑠𝑖, 𝑎𝑖) > 0,

1
∣𝒜𝑖(𝑠𝑖)∣ otherwise.

So actions have their probabilities assigned based on cumulative regret and, if all
cumulative regrets are smaller or equal to zero, uniform policy is used instead. In the
end, a mean of strategies at all timesteps is returned, which is no-regret [23].

In zero-sum two-player games, it is guaranteed that if the average counterfactual
regret of the CFR algorithm is 𝜖, then the resulting mean of strategy profiles forms a
2𝜖-Nash equilibrium [23]. This algorithm is run for 𝑇 iterations and, as it is no-regret,
convergence to Nash equilibrium is guaranteed as 𝑇 → ∞

This algorithm was adapted in many forms to solve games. However, for large games,
it is not suitable, because, in its base form, it needs to build the entire game tree and
keep the counterfactual regret information for all infosets. It is trained via self-play,
which means that during training the algorithm updates the whole strategy profile,
rather than just the policies of certain players.

2.2.3 Follow the regularized leader
Follow the regularized leader (FoReL)[25] is an algorithm that, similarly to CFR, is run
in iterations and the mean of strategies at all timesteps is no-regret. This algorithm
utilizes reward regularization.
Definition 2.20. [3] A regularizer 𝜙𝑖(𝜋𝑖), where 𝜋𝑖 ∈ ∆𝒜𝑖, is a function, that is assumed
to be: 1) continuous and strictly convex on ∆𝒜𝑖. 2) smooth on the relative interior of
every face ∆𝒜𝑖 (including ∆𝒜𝑖 itself). Common choices for regularizer function are ei-
ther L2 norm 𝜙𝑖(𝜋𝑖) = ∑𝑎𝑖

(∣ 𝜋𝑖(𝑎𝑖) ∣2), or cross entropy 𝜙𝑖(𝜋𝑖) = ∑𝑎𝑖
𝜋(𝑎𝑖) log(𝜋𝑖(𝑎𝑖)).

This regularizer function is used in the algorithm maximization objective. At each
iteration 𝑇 a value 𝑦𝑇

𝑖 (ℎ, 𝑎𝑖) = ∑𝑇
𝑡=1 𝑄𝜋𝑡

𝑖 (ℎ, 𝑎𝑖) is computed for each action 𝑎𝑖. These
values can be arranged into a single vector as 𝑦𝑡

𝑖(ℎ) = (𝑦𝑇
𝑖 (ℎ, 𝑎𝑖))𝑎𝑖∈𝒜𝑖(ℎ) The process of

policy update is defined as function:
updatepolicy(ℎ, 𝑡, 𝑖): 𝜋𝑡

𝑖(ℎ) = argmax𝜋′∈∆𝒜𝑖(ℎ)⟨𝜋
′ , 𝑦𝑡

𝑖(ℎ)⟩−𝜙𝑖(𝜋
′), where ⟨𝜋′ , 𝑦𝑡

𝑖(ℎ)⟩ is
a dot product between the two vectors

In other words, policy for player 𝑖 and history ℎ is set up to such a policy 𝜋′ ,
that maximizes probabilities of playing the “good” actions, while using the regularizer
function, to prevent too much exploitation and force to explore different actions. The
run of the FoReL algorithm requires three parameters: the number of iterations 𝑇, the
starting strategy profile 𝜋, and the function 𝑄, which returns the state-action value (this
is as an input here, because often it is an estimate rather than the exact Q function).
It proceeds as follows:

7

2. Theoretical background .
runFoReL(𝑇 , 𝜋, 𝑄):

ℎ = ℎ0

for 𝑡 = 1 to 𝑇 do:
while ℎ is not terminal, do:

Choose action 𝑎 according to current 𝜋, apply it to current history ℎ.
Receive reward 𝑅(ℎ, 𝑎), get history ℎ′ drawn from 𝑇(ℎ, 𝑎)
for each 𝑖 ∈ 𝒩 do:

compute 𝑦𝑇
𝑖 (ℎ, 𝑎)

𝜋𝑛𝑒𝑤
𝑖 (ℎ) = updatepolicy(ℎ, 𝑡, 𝑖)

ℎ = ℎ′

𝜋 = 𝜋𝑛𝑒𝑤

return 𝜋

Note that this is just the theoretical version of the algorithm. In practical implementa-
tion, certain modifications are usually used (such as bounded length histories instead
of terminal histories). Also certain components of the algorithm, such as computing
the Q-function exactly or finding the argmax𝜋′ are typically intractable.

2.2.4 Regularized Nash Dynamics

Regularized Nash Dynamics (RNaD) is an algorithm utilizing reward regularization,
which also runs in iterations. In the original work, it was proven, that in the case of
two-player zero-sum games, this leads to eventual convergence to Nash Equilibrium in
the last iterate [3]. This is unlike the previously mentioned algorithms and removes
the need to keep the average strategy profile over the iterations. Furthermore, this
algorithm was successfully applied to Stratego[5].

This algorithm uses FoReL for the dynamics step but uses a different method of
regularization. Instead of the regularizer function, it introduced the concept of policy-
dependent rewards based on KL divergence and regularization strategy profile. In more
detail, the reward is transformed in such a way, that the difference in the probability of
playing some action compared to the regularization strategy profile affects the reward
for this action.
Definition 2.21. [3] A KL-divergence between two policies 𝜋𝑖, 𝜋′

𝑖 in history ℎ while
playing action 𝑎𝑖 is defined as 𝐷𝐾𝐿(𝜋𝑖, 𝜋′

𝑖, ℎ, 𝑎𝑖) = log(𝜋𝑖(ℎ,𝑎𝑖)
𝜋′

𝑖(ℎ,𝑎𝑖)
).

Definition 2.22. [3] A policy dependent KL-divergence reward in two-player zero-
sum games is defined as 𝑅𝐾𝐿

𝑖 (ℎ, 𝑎, 𝜋, 𝜋𝑅) = 𝑅𝑖(ℎ, 𝑎) − 𝜂 ⋅ 𝐷𝐾𝐿(𝜋𝑖, 𝜋𝑅
𝑖 , ℎ, 𝑎𝑖) + 𝜂 ⋅

𝐷𝐾𝐿(𝜋−𝑖, 𝜋𝑅
−𝑖, ℎ, 𝑎−𝑖) for each player 𝑖, where 𝜋𝑅 is a regularization strategy profile,

𝑖 ∈ 𝑝(ℎ) is the currently acting player, and 𝜂 > 0 is a chosen constant representing the
regularization strength. 𝑅𝐾𝐿(ℎ, 𝑎, 𝜋, 𝜋𝑅) = (𝑅𝐾𝐿

𝑖 (ℎ, 𝑎, 𝜋, 𝜋𝑅))𝑖∈𝒩
So, in a case where only one player acts in each state, the KL divergence formula

of the currently acting player is subtracted from the reward and the formula for the
other player is added. This preserves the zero-sum formula. Additionally, this reward is
designed in such a way, that both players have their reward decreased, if the probability
of playing such an action was much higher compared to the regularization strategy
profile. This is done to prevent excessive exploitation and motivate to explore more,
just like the regularizer function in FoReL

The basic run of the RNaD algorithm then proceeds in the following steps:
1. Transform the game rewards to be policy-dependent rewards 𝑅𝐾𝐿(ℎ, 𝑎, 𝜋, 𝜋𝑅) as

described in 2.22.

8

. 2.2 Algorithms

2. FoReL dynamics are run on the transformed game, where the rewards represent
the regularizer function. This is done until convergence, or for 𝐾 steps.

3. The strategy profile found by the FoReL dynamics is set as the new regularization
strategy profile.

4. Repeat steps 1 to 3 for 𝑇 steps.
When 𝑇 → ∞ the regularization strategy profile will converge to the the Nash

equilibrium 𝜋∗ of the game[3].
runRNaD(𝑇 , 𝐾, 𝜋, 𝜂):

Initialize regularization strategy profile 𝜋𝑅 arbitrary (e.g. uniform)
for 𝑡 = 1 to 𝑇 do:

Transform the game rewards from 𝑅(ℎ, 𝑎) to 𝑅𝑅(ℎ, 𝑎, 𝜋, 𝜋𝑅)
Estimate or compute 𝑄
Set 𝜋 = runFoReL(𝐾, 𝜋, 𝑄)
𝜋𝑅 = 𝜋

return 𝜋𝑅

However, there remain two problems. Firstly, FoReL in base form requires solv-
ing argmax, which is typically difficult and often not possible. Thiscan be solved by
changing the FoReL updatepolicy function. The key idea is that, instead of computing
the argmax exactly, it is approximated using gradient ascent. First, a gradient used
to update the policy needs to be computed, where the value for each action is the
advantage function of this action weighted by the probability of playing that action:
∇𝜋𝑖(ℎ, 𝑎) = 𝜋𝑖(ℎ, 𝑎𝑖) ⋅ 𝐴𝜋

𝑖 (ℎ, 𝑎𝑖). The update function is defined as
updatepolicy(ℎ, 𝑡, 𝑖): 𝜋𝑛𝑒𝑤

𝑖 (ℎ) = (𝜋𝑖(ℎ, 𝑎𝑖) + ∇𝜋𝑖(ℎ, 𝑎𝑖))𝑎𝑖∈𝒜𝑖(ℎ).
This is an update commonly used in evolutionary game theory called replicator dy-

namics update.[26].
Another problem is the Q-function. Computing it exactly is intractable, but it can be

estimated by known methods from reinforcement learning, such as the V-trace estima-
tor[27]. This estimator estimates the value function for infoset by sampling trajectories
according to some sampling policy 𝜇 and then recursively computes the estimate from
the end of the trajectory to the beginning. This estimate is used to train a neural
network representing the value function and the Stratego authors show how to estimate
the regularized Q-function out of it [5]. The authors[5] modify this estimator for games,
where different players take turns.

The final problem is that generally, it is impossible to store both policy and the value
function in explicit tabular form. This has to be solved for scalability and the authors[5]
used the following solutions:

1. Both the policy and the value function are represented using a neural network.
Both of these networks take as an input an infoset and output policy/value for the
infoset.

2. The network estimating value function is trained with L2 norm loss, using the
value estimate generated by V-trace as ground truth.

3. The policy is trained using Neural Replicator Dynamics (NeuRD)[26] loss. This is
a case of the previously mentioned replicator dynamics update, modified to be suitable
for neural networks. This handles the actual dynamics of the environment (so is used
instead of the runFoReL function in the exact version of RNaD).

Just like CFR, this algorithm is trained via self-play.

9

Chapter 3
Pursuit evasion games

Pursuit-evasion games are multi-player games, where each player controls a mutually
exclusive subset of agents. These agents move in some environment, that is the same for
all the players and can be represented with a directed graph. Furthermore, there exists
at least one pair of agents, where one is pursuing the other. If agent 𝑖 is pursuing some
other agent 𝑗, it means that its goal is to end up in the same position 𝑗. Conversely, 𝑗
has a goal to prevent this situation and it is said that 𝑗 is evading 𝑖. In this work, only
pursuit-evasion games played on a n-dimensional grid are considered.

For formal convenience, certain concepts important for pursuit-evasion games are
denoted:

𝐶 is a set of all agents.
𝑏𝑤

𝑐 is a tuple denoting position of agent 𝑐 at state 𝑤. It is of a size equivalent to
the number of dimensions of the grid and is assumed to be ordered as (x coordinate, y
coordinate, z coordinate, ...).

𝐹(𝑖) is an agent function, that returns a set of all agents owned by player 𝑖.
Ω(𝑗) is a pursuit function returning a set of all agents agent 𝑗 is pursuing, and Ω−1(𝑗)

is an evasion function, returning a set of all agents agent 𝑗 is evading.

3.1 Simulator rules
Exact rules of possible games represented by the used simulator are as follows:

1. All agents move on a 2-dimensional finite grid of size H × W.
2. Agents can move in 4 directions- up, down, left, right, by one step on the grid,

as long as they stay within the boundaries of the grid. They are also allowed to pass
their turn, not moving from their position. However, agents can only perform one pass
action consecutively. This is done to prevent players from forcing a draw by not moving
at all.

3. Each player can control multiple agents, but can only act with one of them per
turn. This means that legal actions for a player in any given state are a union over the
legal actions of their agents.

4. To make the game finite, the maximum trajectory length is specified, after which
games are cut off with a draw.

5. Each agent will have some amount of tokens available, which is the same for all
agents. These can be used for the agent to boost their move, by moving not one tile,
but several tiles corresponding to the token value. Information, that some agent used
a token this turn, is available to all agents, but neither the agent’s position nor the
direction of the move is revealed.

6. Players take turns acting, with player 1 starting, so 𝑝(𝑤) = mod(∣τ∣, 𝑁)+1, where
τ is the current trajectory.

7. Transitions are deterministic, which means that 𝑇(𝑤, 𝑎) has 1 probability for some
𝑤′ and 0 everywhere else for any non-terminal 𝑤 and any 𝑎 ∈ 𝒜(𝑤).

10

. 3.2 Observation structure

8. The game ends, when any agent 𝑗 catches an agent out of Ω(𝑗), with a victory of
a player controlling that agent. Alternatively, the game ends with a draw, if the acting
player has no legal actions available, or the trajectory limit is reached.

9. If a game ends with a draw, all players receive a reward of 0.
The goal was to make the simulator as parameterizable as possible. So the parame-

terizable properties of the game are

. Board size: Two integers H, W, where H is the number of rows of the grid and W is
the number of columns.. Number of players: An integer 𝑁, which means that the game player set will be
𝒩 = 1, ..., 𝑁. Number of agents: A list of 𝑁 integers (𝐶1, ..., C𝑁) where 𝐶𝑖 is number of owned
agents of player 𝑖. It is assumed that these agents are ordered by indices and that
they are assigned to players in ascending order. For example, in a two-player case
where 𝐶1 = 3 and 𝐶2 = 3 it is assumed that player 1 owns agents 1, 2, 3 and player
2 owns agents 4, 5, 6.. Agent goals: Arbitrary amount of rules of type (𝑘, 𝑙, 𝑟𝑘, 𝑟𝑙), which are interpreted as
agent 𝑘 is pursuing agent 𝑙, where 𝑟𝑘 is the reward of 𝑘 for catching 𝑙 and 𝑟𝑙 is the
reward of 𝑙 for being caught by 𝑘. If the rewards are not specified, they are by default
assumed to be 𝑟𝑘 = 1, 𝑟𝑙 = −1.. Number of tokens: An integer, representing how many tokens each agent has avail-
able. 𝒯(𝑐) denotes the current amount of tokens agent 𝑐 has available.. Token boost amount: An integer ℳ defining, how much the tokens boost actions.
The standard action move is multiplied by this value.. Maximum trajectory length: One integer τ𝑚𝑎𝑥, which is the trajectory limit after
which the game is terminated.. Movement penalty: A float 𝛾 ≥ 0 that serves to penalize players for taking turns
and thus motivate them to end the game faster. This value is subtracted from the
reward of the player who acted on this turn. Note that if 𝛾 ≠ 0, the game is no
longer zero-sum, and is instead transformed into a general-sum game.

So a set of legal actions, that agents can take in the game, can be described as a set
of tuples, where each tuple represents movement caused by the action in the (𝑥, 𝑦) order
as: 𝒜𝑙𝑒𝑔𝑎𝑙 = {(0, 0), (1, 0), (−1, 0), (0, −1), (0, 1), (ℳ, 0), (−ℳ, 0), (0, −ℳ), (0, ℳ)}

3.2 Observation structure
Recalling the FOSG definition 2.1, each game has some observations, which are how
players perceive the environment. In pursuit-evasion games, it is assumed that all
players perceive the environment through their agents, who can see their immediate
surroundings in the directions where they can move. Furthermore, it is assumed that
players know the current location of their agents, and which player is acting. Specially,
in the case of this simulator, there is also the token info publicly available. So if any
agent 𝑗 uses a token, the info that agent 𝑗 used a token becomes a part of the public
part of the observation, but not which move the agent took and the current location of
the agent.

As defined before 2.5, infosets are also required. As a set of histories would be
impractical to store, infosets are instead simulated with information states that contain
all the information currently known to the player. This information can be used to
group histories into infosets. The information here corresponds to all actions taken

11

3. Pursuit evasion games .

Figure 3.1. Structure of player observation factored into private and public parts

Figure 3.2. Structure of the information state

and observations received by the player throughout the game. Figure 3.1 shows the
structure of the observation received decomposed into private and public parts and
Figure 3.2. shows the structure of the information state.

The size of the position and observation components depends on the amount of
agents owned by a player. However, it is expected that each player receives the same
amount of information. Furthermore, in this simulator agents do not need to own the
same amount of agents. For these reasons, it is necessary to introduce the concept of
invalid position and invalid observations, which will be used to pad the observations to
a fixed size. The value (-1, -1) is reserved for invalid position (-1 for both the x and y
coordinates), and the value (-2, -2, -2, -2) for invalid observation (-2 in place of each
observation performed by an agent).

Another important thing to note here is that the only part of the observation de-
pendent on the action taken is the information about token action. Hence, it is defined
even if no action was taken yet (in the initial state). This means that the information
state is defined even in the initial state, and it is equivalent to the observation there.

3.2.1 Perceiving position
As stated before, each agent perceives the content of neighboring surroundings in the
directions where he can move. In this simulator, this means the 4 neighboring tiles in
directions up, down, left, and right. The received information signifies the content of
the tile, and the possible values received are:. -1 if the tile is out of bounds position.

12

. 3.2 Observation structure

. 0 if the tile is unoccupied. index of agent 𝑐, if any agent 𝑐 is currently occupying the tile.. -2, which is reserved for invalid observation used for padding.

Because the agents perform 4 observations, the complete observation of an agent will
be a 4-tuple (so it can be seen why the invalid observation is (-2, -2, -2, -2)).

So denoting 𝑥(𝑏𝑤
𝑐) as the x coordinate of the position and 𝑦(𝑏𝑤

𝑐) as the y coordinate
the value of agent observation can be described as follows:

𝑜(𝑏𝑤
𝑐) = (𝑜𝑙(𝑥(𝑏𝑤

𝑐) + 1, 𝑦(𝑏𝑤
𝑐)), 𝑜𝑙(𝑥(𝑏𝑤

𝑐) − 1, 𝑦(𝑏𝑤
𝑐)), 𝑜𝑙(𝑥(𝑏𝑤

𝑐), 𝑦(𝑏𝑤
𝑐) − 1),

𝑜𝑙(𝑥(𝑏𝑤
𝑐), 𝑦(𝑏𝑤

𝑐) + 1)), where:

𝑜𝑙(𝑏𝑤) = {
−1 when 𝑥(𝑏𝑤

𝑐) < 0 ∨ 𝑥(𝑏𝑤
𝑐) ≥ H ∨ 𝑦(𝑏𝑤

𝑐) < 0 ∨ 𝑦(𝑏𝑤
𝑐) ≥ W,

𝑐 when 𝑏𝑤
𝑐 = 𝑏𝑤 for any 𝑐 ∈ 𝐶,

0 otherwise.
.

3.2.2 Conversion to tensor
So far only the information state and observations were discussed, however, as the
information state is intended to be used as neural network input, both of these need
to be converted to a tensor. So far all components of infoset were assumed to be
represented with integers. However, neural networks do not deal well with categorical
data, because they learn by assigning weights. For example, assume two actions, that
are encoded as 4 and 1. The first action could be viewed by the network as 4 times
better than the action encoded as 1 (because it is multiplied by the learned weight),
but this does not need to be the case. Hence, it is necessary to convert the observations
and information states to a structured representation.

The representation chosen for this purpose is one-hot encoding. In this representa-
tion, any value is encoded as a vector of size equal to the number of possible values for
this element, where 1 is at the position corresponding to the encoded value, and 0 is
everywhere else. For example, assuming there are four possible actions, action 1 would
be encoded as 01000, and action 4 as 00001.

However, there remains the problem of encoding negative values, which are often used
in the infoset to signify invalid/no value. This was solved by adding to the encoded
value such a number, that the lowest possible value of the element with this number
added is 0. For example, assume 5 possible actions, which are encoded in the range
{−1, ..., 4}. Then 1 is added to each stored value before encoding it, so the possible
action range becomes {0, ..., 5}, where one-hot encoding is well defined.

Furthermore, actions need to be encoded as well. Each action can be split into two
parts that need to be encoded. First, the actual move that was taken, has 9 possible
values. Second, the index of an agent performing the move, which has ∑𝑖∈𝒩 𝐶𝑖 possible
values. These parts are encoded separately from each other and then put together in a
manner distinguishing between the two to form the encoding of the action. Also, -1 is
reserved for invalid action, which is used to signify that the player did not act at that
timestep.

13

3. Pursuit evasion games .
3.2.3 Observation tensor example

Assume the following state of board:

Figure 3.3. Small instance, where observation tensor can be visualized

Additionally assume, that player 2 is currently acting, and that agent 1 did not use
a token last turn. In such a case, the observation tensor received by player 2 will look
like this (the actual tensor received is from top to down in the picture):

Component Tensor part Description
Receiving player Player receiving the tensor. Player 2 here.
Acting player Player acting in this turn. Player 2 here
Player agents´ positions Positions of agents owned by the player

in the row-column order. Player 2 owns
only agent 2, whose position is (1,0).

Player agents´ observations Observations of agent 2 in order:
tile up, tile down, tile left, tile right
Here (1,-1,-1,0) because agent 1
is on tile up, tile right is empty
and the other tiles are out of bounds.

Token info Index of an agent, that used a token last
turn. -1 here, because no token was used.

Table 3.1. Visualization of the observation tensor in a small board.

This is for a case where both players have the same amount of agents. Otherwise,
it would be padded with invalid data for players owning fewer agents, than is the
maximum amount of agents owned by a player.

3.2.4 Tensor sizes

Denoting 𝐶𝑚𝑎𝑥 = max𝑖∈𝒩(𝐶𝑖), which is the maximum amount of agents owned by
player, size of components of the observation tensor is:

14

. 3.2 Observation structure

name size(in elements)

Player receiving tensor 𝑁
Acting player 𝑁 + 1
Player agents positions (H + 1 + W + 1) ⋅ 𝐶𝑚𝑎𝑥

Player agents observations 4 ⋅ (∑𝑖∈𝒩 𝐶𝑖 + 3) ⋅ 𝐶𝑚𝑎𝑥

Agents, that used token this turn ∑𝑖∈𝒩 𝐶𝑖 + 1

Table 3.2. Size of individual components of observation tensor.

From the table 3.2 the size of a single observation can be seen as a sum of the sizes
of its components. This will be denoted as ∣𝑜𝑜ℎ∣.

Furthermore, recalling that the action components are encoded separately, the size
of an encoded action can be computed as:

∣𝑎𝑜ℎ∣= 9 + ∑𝑖∈𝒩 𝐶𝑖 + 1 = 10 + ∑𝑖∈𝒩 𝐶𝑖. Note that an additional + 1 is added to
the equation because an invalid action needs to be encoded as well.

Additionally, recalling the structure of information state 3.2, information state ten-
sor at timestep 𝑇, corresponding to the player information of histories contained in
𝑠𝑖(ℎ) of player 𝑖 and history ℎ ending in state 𝑤𝑇, can be formally described as:
((𝑜𝑖(𝑤𝑇)), (𝑎0

𝑖 , ..., 𝑎𝑇 −1
𝑖) , (𝑜𝑖(𝑤𝑖𝑛𝑖𝑡), ..., 𝑜𝑖(𝑤𝑇 −1)) if ∣ℎ∣> 0, else 𝑜𝑖(𝑤𝑖𝑛𝑖𝑡), where 𝑎𝑡

𝑖 is
the one-hot encoded action at timestep 𝑡.

Note that without the bounded trajectories condition the information state would
have a variable (potentially infinite) length. However, with this condition, the size of
the information state is fixed as ∣𝑜𝑜ℎ∣ + τ𝑚𝑎𝑥⋅ (∣𝑎𝑜ℎ∣ + ∣𝑜𝑜ℎ∣).

15

Chapter 4
RNaD changes

As mentioned before, RNaD is an algorithm that has so far been tested only in a
two-player zero-sum setting, and its theoretical guarantees were proven to apply there.
However, in this work, several changes to the algorithm were evaluated.

4.1 Default implementation in an n-player case
The KL divergence transformed reward used in RNaD is defined only for a two-
player zero-sum setting. Thus the first step in the experiments was extending the
KL-divergence regularization to apply to the multiplayer setting without changing
the underlying algorithm. This was done for reference to observe, how the slightly
changed algorithm performs in a multi-player setting, and then compare it with the
more altered versions.

In the definition 2.22 the regularization term of the acting player is subtracted and
the term of the other player is added. The used extension follows similar logic in a
multi-player setting, where the term of the acting player is subtracted and the terms of
all other players are added. Note that in a two-player case, this preserves the zero-sum
property (it is equivalent to the reward in the original definition), but in a multi-
player setting, this transforms the game from zero-sum into a general-sum game. So
for generalization of the reward into a multi-player setting a regularization constant for
player 𝑗 first needs to be defined as

𝜌𝑅
𝑗 (ℎ) = { −1 when 𝑗 ∈ 𝑝(ℎ)

1 otherwise

Then 𝑅𝐾𝐿(ℎ, 𝑎, 𝜋, 𝜋𝑅) = (𝑅𝑖(ℎ, 𝑎) + 𝜂 ⋅ ∑𝑗∈𝒩 𝜌𝑅
𝑗 (ℎ) ⋅ 𝐷𝐾𝐿(𝜋𝑗, 𝜋𝑟𝑒𝑔

𝑗 , ℎ, 𝑎𝑗))𝑖∈𝒩.

4.2 Entropy regularization
The first change tested was inspired by a paper concerning abstracting imperfect in-
formation away from two-player zero-sum games [4]. There, it was proven, that even
other kinds of regularization allow gradient descent algorithms to converge to a stable
point[4]. However, such a point will not be the equilibrium of the original game, but
instead some altered equilibrium. The most prominent regularization type they used
was entropy regularization, which is used even in a single-player setting to promote
exploration [28]. Furthermore, the authors have shown that the choice of the regular-
ization weight 𝜂 in entropy regularization affects the distance from the Nash equilibrium
of the original game. However, it was also shown, that for 𝜂 = 0 the algorithms will
not converge [4].
Definition 4.1. An Entropy [4] of a policy 𝜋𝑖 at history ℎ is defined as 𝐷𝐸𝑁𝑇(𝜋𝑖, ℎ) =
− ∑𝑎𝑖∈𝒜𝑖(ℎ) 𝜋𝑖(ℎ, 𝑎𝑖) ⋅ log 𝜋𝑖(ℎ, 𝑎𝑖)

16

. 4.3 Relation of players change

Definition 4.2. A Policy dependent entropy reward is defined as 𝑅𝐸𝑁𝑇(ℎ, 𝑎, 𝜋, 𝜂) =
(𝑅𝑖(ℎ, 𝑎)−𝜂 ⋅∑𝑗∈𝒩 𝜌𝑅

𝑗 (ℎ) ⋅𝐷𝐸𝑁𝑇(𝜋𝑗, ℎ))𝑖∈𝒩, where 𝜌𝑅(ℎ)𝑖
1 is a regularization constant

(as defined in 4.1).
However, the standard RNaD loop of swapping the regularization policies is not

applicable here. There is the fact, that 𝜂 affects the distance from the equilibrium,
bringing the equilibrium closer to the original one as it is decreasing [4]. This is used in
the altered algorithm, where 𝜂 is annealed with increasing iterations, thus decreasing
the distance from the Nash equilibrium. However, this may come at the cost of stability,
since 𝜂 = 0 leads to divergence.

The modified algorithm thus functions as follows: runRNaDEntropy(𝑇 , 𝐾, 𝜋, 𝜂):

Initialize 𝜂𝑐𝑢𝑟 = 𝜂
for 𝑡 = 1 to 𝑇 do:

Transform the game rewards from 𝑅(ℎ, 𝑎) to 𝑅𝐸𝑁𝑇(ℎ, 𝑎, 𝜋, 𝜂𝑐𝑢𝑟)
Estimate or compute 𝑄.
Set 𝜋 = runFoReL(𝐾, 𝜋, 𝑄)
𝜂𝑐𝑢𝑟 = 𝜂

log(𝑡+1)
return 𝜋

The logarithmical annealing was chosen, to prevent 𝜂 from quickly getting too close
to 0.

4.3 Relation of players change
The second tested extension did not change the algorithm loop, but instead changed
rewards passed to V-trace. In the modified V-trace described in 2.2.4, only the rewards
of player 𝑖 are considered in the estimate for 𝑖. This works in a two-player zero-sum
case, because 𝑅−𝑖(ℎ, 𝑎) = −𝑅𝑖(ℎ, 𝑎) holds for any ℎ, 𝑎. Hence, the rewards of the other
player implicitly affect the estimate, even when passing only the reward of player 𝑖 to
V-trace.

However, moving into an n-player general-sum setting, such an assumption does not
need to hold. For example, actions that result in rewards (1, -1) and (1, -20) are
considered equivalent for player 1. This could of course be the intended effect of the
reward function. However, intuitively the second action is better because player 1
receives the same reward, whereas player 2 is punished for this action more. The key
idea behind these changes was to test, what would happen, if the player was forced to
account for the rewards of other players as well. Specifically, the player would seek to
maximize his reward, while minimizing the reward of all players adversarial to him.

Because of these reasons, a concept of relation function was introduced.
Definition 4.3. A relation function of player 𝑖 against player 𝑗 is defined as:

𝜃𝑖(𝑗) = {
1 if 𝑖 = 𝑗
−1 when there exists a pursuit-evasion relation between agents of 𝑖 and 𝑗
0 otherwise

And the reward passed to V-trace as a reward for player 𝑖 is defined as 𝑅𝜃
𝑖 (ℎ, 𝑎) =

∑𝑗∈𝒩 𝑅𝑗(ℎ, 𝑎) ⋅ 𝜃𝑖(𝑗). This reward considers the rewards of other players in such a

1 The −𝜂 is here, because of − ∑ in the entropy formula. So a multiplication by -1 is necessary for the
desired behavior.

17

4. RNaD changes .
way, that the player wants to maximize the reward of the allied player (only self in this
version), minimize the reward of adversarial players, and ignore the reward of neutral
players.

This version of the relation function was created specifically for pursuit-evasion
games, but the implementation works with any relation function, as long as the en-
vironment provides it. If the relation function is not provided, all other players are
assumed to be adversarial.

It can also be noted that in the case of two-player zero-sum games, this reward is not
exactly equivalent to 𝑅𝑖(ℎ, 𝑎), but it is instead multiplied by two because 𝑅𝜃

𝑖 (ℎ, 𝑎) =
𝑅𝑖(ℎ, 𝑎) − 𝑅−𝑖(ℎ, 𝑎) = 2 ⋅ 𝑅𝑖(ℎ, 𝑎). However, if this value is divided by the number
of players of the game 𝑁, it is exactly equivalent in two-player zero-sum games to the
original reward. There have been tested both changes that divided the reward, and
those that did not.

4.3.1 Regularization with the relation function
Additional change tested was implementing this relation function into regularization,
in place of the standard regularization constant. However, using this function as is
would lead to reversing the desired behavior, because the regularization term would be
added to the acting player and subtracted from adversarial players (in the case of only
one player acting each turn). This would lead to the fact, that the players would be
more motivated to choose actions that have a higher probability than the regularization
policy. As such, to achieve the intended behavior of the algorithm, the output of this
function also needs to be multiplied by -1. The resulting reward of the regularized game
looks like this:

𝑅𝐾𝐿
𝜃 (ℎ, 𝑎, 𝜋, 𝜋𝑅) = (𝑅𝑖(ℎ, 𝑎) − 𝜂 ⋅ ∑𝑗∈𝒩 𝜃𝑖(𝑗)) ⋅ 𝐷𝐾𝐿(𝜋𝑗, 𝜋𝑅

𝑗 , ℎ, 𝑎𝑗))𝑖∈𝒩.
So this reward is similar to the one described in 4.1, however, the terms of players

neutral to the acting player are multiplied by 0 and have no impact on the reward. It
can be noted, that these two rewards are exactly equivalent if all players in the game
are adversarial.

Also, the fact that regularization terms of neutral players have no impact on the
regularization could potentially cause issues. This could be solved, by assigning 1 to
even neutral players instead of 0 in the original relation function. For this reason, a
regularization function alternative was devised as

𝛿𝑖(𝑗) = { −1 when there exists a pursuit-evasion relation between agents of 𝑖 and 𝑗
1 otherwise

.
And the reward is then defined as 𝑅𝐾𝐿

𝜃 (ℎ, 𝑎, 𝜋, 𝜋𝑅) = (𝑅𝑖(ℎ, 𝑎) − 𝜂 ⋅ ∑𝑗∈𝒩 𝛿𝑖(𝑗)) ⋅
𝐷𝐾𝐿(𝜋𝑗, 𝜋𝑅

𝑗 , ℎ, 𝑎𝑗))𝑖∈𝒩.

18

Chapter 5
Experiments

5.1 Testing instances

The smallest testing instance used was a perturbed variant of rock-paper-scissors, which
was presented in the paper discussing reward regularization [4].
Example 5.1. The perturbed rock-paper-scissors (RPS) is a game with two players
acting simultaneously and only a single world state. Each player has three actions
available, and that is rock, paper, or scissors. Because the game only has a single de-
cision point where players choose action, and players have no information available in
this decision point, the notion of states and infosets can be omitted in the following
description. The game follows the logic that paper beats rock, rock beats scissors and
scissors beat paper. Both players playing the same action results in a draw. Further-
more, in this perturbed variant, if either player plays a scissors action, the rewards for
both players is multiplied by two. So the reward function of the game is as follows:

𝑅(ℎ, 𝑎) = (0, 0), where ℎ is the only decision point in the game, for any joint action
𝑎, where both players choose the same action (so 𝑎𝑖 = 𝑎−𝑖). This is the case for actions
(rock, rock), (paper, paper), and (scissors, scissors).

𝑅(rock, scissors) = (2, -2) and 𝑅(scissors, rock) = (-2, 2).
𝑅(rock, paper) = (-1, 1) and 𝑅(paper, rock) = (1, -1).
𝑅(paper, scissors) = (-2, 2) and 𝑅(scissors, paper) = (2, -2).
The Nash Equilibrium of this RPS game for both players is playing scissors with

0.2 probability, and the other actions with 0.4 probability [4]. In the standard rock-
paper-scissors a uniform probability distribution over the actions would form a Nash
equilibrium. This perturbed variant was used, because algorithms often initialize the
starting strategy profile uniformly, which would lead to instantly “guessing” the Nash
equilibrium without any learning in the standard variant.

Additional testing instances were pursuit-evasion games generated from the simula-
tor. In total, we have created six pursuit-evasion instances1. This section contains the
motivation behind including each instance as well as images visualizing each instance,
where agents will be differentiated by color to signify, which player they belong to.
Additionally, arrows will signify pursuing relations and there will be rewards written
next to them (if no reward is written, the default (1,-1), where 1 is the reward for
the pursuing player and -1 is the reward for the evading player, is assumed). Certain
boards have been tested both in 2-player and multiplayer variants. Additionally, all the
multiplayer instances have the movement penalty 𝛾 set to 0.1, unless explicitly stated
otherwise. This was done to test performance on a general-sum setting, but one in-
stance that is a multiplayer zero-sum game was also included. The starting player on
all tested instances is player 1.

1 One instance was tested twice. First as a zero-sum and then as a general-sum game

19

5. Experiments .
5.1.1 Small boards

The first two instances were played on small boards. This allows comparison with
already established algorithms, such as CFR, and exact evaluation of algorithm perfor-
mance by computing NashConv (or exploitability). In these instances, agents have 2
tokens, and ℳ = 1. So token actions result in the same move as the usual action but
also announce that the token was used. τ𝑚𝑎𝑥 is set to 5.

Figure 5.1. Small board Figure 5.2. Three player version of the
small board

5.1.2 Medium-sized board
Another instance was chosen in such a way, that it would be small enough for fast
training and testing, but also too large to be solved by base form CFR or compute
NashConv. This was a three-player instance played on a 3x3 board. Each player owns
two tokens and ℳ = 2. τ𝑚𝑎𝑥 is set to 10.

Figure 5.3. Three player medium-sized board.

5.1.3 Board with many goals
The next included instance was used only in a two-player version. The main purpose
of this board was to include an instance of non-trivial size, which is heavily skewed in
favor of player 2 and has many pursuit-evasion relations. This instance is played on a
4x4 board, with each player owning 3 agents. Each agent has 3 tokens and ℳ = 2.
Each agent of player 1 is pursuing one agent of player 2, but never the one on the same
row, and evading all other agents of player 2. (The pursuing relations for player 2 are
omitted from the visualization to prevent illegibility.) τ𝑚𝑎𝑥 is set to 20.

20

. 5.2 Heuristic player

Figure 5.4. Board with many goals. Each agent of player 1 is also evading all agents of
player 2, that he is not pursuing. This is omitted from the image to prevent illegibility.

5.1.4 Large board
The last used instance was the largest instance included, where the algorithm perfor-
mance at scale was tested. This is a multiplayer instance with five players to evaluate
scalability with players. Additionally, this instance was tested both with and without
the movement penalty. The version without the movement penalty was included to
evaluate performance in a multiplayer zero-sum setting. This instance was played on a
6x6 board. Each agent owns 5 tokens and ℳ = 4. τ𝑚𝑎𝑥 is set to 30.

Figure 5.5. Large board with five players

5.1.5 Tensor sizes

Instance name observation tensor size information state tensor size

Perturbed RPS 1 1
Small board 34 529
Small board multiplayer 42 577
Medium-sized board 84 2214
Board with many goals 150 5730
Large board 63 5832

Table 5.1. Sizes of observation/information state tensors in the used instances

5.2 Heuristic player
Randomly playing opponents may not provide a strong baseline to test the algorithm’s
performance against. Because of this, a simple heuristic player was implemented, that
serves as a stronger baseline opponent than the random one.

21

5. Experiments .
This heuristic player is more likely to play actions, that bring his agents closer to

the agents they are pursuing and further from the agents they are evading. This player
stores the last-seen position of adversarial agents. Assume that the heuristic player is
playing as player 𝑖. Then each action is assigned a score, in such a way, as to minimize
the distance from agents in Ω(𝑖) and maximize the distance from agents in Ω−1(𝑖). In
the end, the softmax function is used to convert the vector of scores for each action to
a probability distribution.

Additionally, if an action would result in an agent from Ω(𝑖) being caught, it has
an assigned score of ∞, to ensure that it will be played. Analogically, this works with
agents from Ω−1(𝑖) and −∞ score to ensure not playing those actions 2.

So the player stores two types of information: 𝐵𝑔 = (𝐵𝑔
𝑐)𝑐∈𝐹(𝑖), where 𝐵𝑔

𝑐 is a set of
last seen positions of agents 𝑙 ∈ Ω(𝑐), and 𝐵𝑓 = (𝐵𝑓

𝑐)𝑐∈𝐹(𝑖), where 𝐵𝑓
𝑐 is a set of last

seen positions of agents 𝑘 ∈ Ω−1(𝑐).
For the following algorithm, the Manhattan distance between two agent positions

is defined as 𝑑𝑀(𝑏𝑤
𝑘 , 𝑏𝑤

𝑙) = ∣ 𝑥(𝑏𝑤
𝑘) − 𝑥(𝑏𝑤

𝑙) ∣ + ∣ 𝑦(𝑏𝑤
𝑘) − 𝑦(𝑏𝑤

𝑙) ∣, where 𝑥(𝑏𝑤
𝑘), 𝑦(𝑏𝑤

𝑘)
correspond to the x and y coordinates of position 𝑏𝑤

𝑘 respectively, and softmax function
on vector 𝑤 of length 𝑁 as softmax(𝑤) = (𝑒𝑤𝑡

∑𝑁
𝑢=1 𝑒𝑤𝑢

)𝑡=1,...,𝑁, where 𝑤𝑡 is the t-th
component of the vector 𝑤. The algorithm to get policy 𝜋𝑖(ℎ) at history ℎ proceeds as
follows:

Get set of legal actions 𝒜𝑖(ℎ) at current history ℎ
Initialize scores vector of length ∣𝒜𝑖∣ with zeros.
for each 𝑎𝑖 ∈ 𝒜𝑖(ℎ) do:

Advance to ℎ′ ending in state 𝑤′ by applying 𝑎𝑖

Receive observation tensor 𝑜𝑤′

𝑖

for each agent 𝑘 ∈ player agents observations of 𝑜𝑤′

𝑖 do:
if 𝑘 ∈ Ω(𝑐) for any 𝑐 ∈ 𝐹(𝑖):

update 𝐵𝑔
𝑐 with 𝑏𝑤′

𝑘
if 𝑘 ∈ Ω−1(𝑐) for any 𝑐 ∈ 𝐹(𝑖):

update 𝐵𝑓
𝑐 with 𝑏𝑤′

𝑘

if 𝑑𝑀(𝑏𝑤′

𝑐 , 𝑏) = 0 for any 𝑐 ∈ 𝐹(𝑖), 𝑏 ∈ 𝐵𝑔
𝑐

scores𝑎 = ∞
Move to the next action

else if 𝑑𝑀(𝑏𝑤′

𝑐 , 𝑏) = 0 for any 𝑐 ∈ 𝐹(𝑖), 𝑏 ∈ 𝐵𝑓
𝑐

scores𝑎 = −∞
Move to the next action

scores𝑎 = sum𝑐∈𝐹(𝑖)(sum𝑏∈𝐵𝑓
𝑐
𝑑𝑀(𝑏𝑤′

𝑐 , 𝑏) − sum𝑏∈𝐵𝑔
𝑐 𝑑𝑀(𝑏𝑤′

𝑐 , 𝑏))
return softmax(scores)

5.3 Experiments description
The OpenSpiel framework was used for all of the experiments, including the imple-
mentations of CFR and RNaD. The modifications to RNaD also used the OpenSpiel
implementation as a base.

2 ∞, −∞ are just here to signify that these actions will almost always/never be taken over other actions
with finite score. In the actual implementation, this does not work for the softmax calculation and has to
be handled differently.

22

. 5.4 Entropy regularization experiments

Both training and testing require sampling random numbers, to realize sampling
actions from a stochastic policy. In these experiments, one random number generator
seed (100) was used for testing and 3 seeds for training. In the presented plots, the
variance caused by the seeds will be represented by a confidence interval, or by plotting
the values for all seeds separately, depending on how high impact the seed variance
proved to have.

The algorithms were trained for 100000 iterations in all instances, where each iter-
ation corresponds to sampling a batch trajectory and then a single dynamics update.
The regularization strategy profile was swapped after each 250 iterations 10 times and
then after each 1000 iterations for the rest of the training.

Because of minimal changes to the algorithm and no changes to the most time-
intensive parts, the training times of changed versions were roughly the same as those
of the base version. Hence, in the following table iterations per hour are stated only
once. The training was performed on MetaCentrum hardware.

Board name Iterations per hour

Perturbed RPS 600000
Small board 100000
Small board multiplayer 100000
Medium-sized board 25000
Board with many goals 6250
Large board 4000

Table 5.2. Approximate iterations per hour of RNaD on tested boards

Some of the experiments evaluated the players trained by the neural network in a
play against different players. For those experiments, 10000 game runs were performed.

The original version of RNaD 2.2.4 and its extension into a multiplayer setting 4.1
will be denoted as RNaD KL in the following experiments.

5.4 Entropy regularization experiments
The first tested change was swapping the KL-divergence regularization for entropy
regularization, as described in 4.2. As in the case of the regularization policy, the
regularization term 𝜂 was annealed after every 250 iterations 10 times and then after
every 1000 iterations for the rest of the training. 𝜂 was annealed logarithmically as
𝜂𝑐𝑢𝑟 = 𝜂

log(𝑡+1) , where 𝑡 represents the number of annealing steps performed including
the current step.

5.4.1 Perturbed RPS
First experiments were performed on the perturbed RPS game described in 5.1. This
experiment served as a proof of concept of whether entropy regularization can work on
small problems.

23

5. Experiments .
The achieved results proved to be much worse than RNaD KL. During the first iter-

ations of the learning, one of the seeds had similar results to RNaD KL. However, after
the 100th iteration, both the exploitability and the expected return started to diverge.
A study of the found policies revealed, that the algorithm oscillated between two pat-
terns. Either there was one dominant action with the highest probability assigned (not
limited to one specific action), or the policy was rather close to a uniform policy. This
happened for both players.

Figure 5.6. The exploitabilities of KL
RNaD and entropy RNaD in the per-

turbed RPS game.

Figure 5.7. Expected return of player 1 of
KL RNaD and entropy RNaD in the per-
turbed RPS game. Because it is a zero-sum
game, the expected return for player 2 is

equal to this value multiplied by -1

We assume that this was caused due to the 𝜂 annealing being unstable, and causing
the algorithm divergence.

5.4.2 Small board
Additional tests were performed on the two-player version of the small pursuit-evasion
board 5.1.1. A very high oscillation in the higher iterations would result in the illegibility
of the plot, Hence, the variance is represented here by a confidence interval with 0 as
the lower bound.

Figure 5.8. The exploitabilities of KL
RNaD and entropy RNaD in two-player

small board
.

Figure 5.9. The expected return of KL
RNaD and entropy RNaD in the two-

player small board
.

The achieved results show that although both algorithms reached a similar expected
return, the exploitabilities varied greatly. In the later iterations, all seeds of the entropy
RNaD oscillated between 0 and 0.5 exploitability values. This would seem to confirm the

24

. 5.5 Relation changes experiments

hypothesis made based on the RPS results. Here the algorithm starts to be unstable
after roughly the 100th iteration and completely diverges after the 1000th iteration.
Based on these results, we concluded that the entropy version of RNaD is only stable up
to a certain threshold of 𝜂, where it starts to diverge. Moreover, this threshold is highly
dependent on the specific instance and would have to be found experimentally. Also,
because 𝜂 here has an impact on the distance from Nash equilibrium, the algorithm
can only achieve a certain distance from the equilibrium, dependent on the lowest
stable 𝜂, and diverges upon further annealing. For these reasons, we concluded that
entropy RNaD was not suitable for neural network training, and did not use it on larger
instances.

5.5 Relation changes experiments
More changes were tested based on the player relation changes proposed in 4.3. Three
main altered versions were tested.

The first version utilizes the proposed change to rewards 4.3, where the reward for
each player is altered so that the rewards of adversarial players are subtracted from
it as 𝑅𝜃

𝑖 (ℎ, 𝑎) = ∑𝑗∈𝒩 𝑅𝑗(ℎ, 𝑎) ⋅ 𝜃𝑖(𝑗), where 𝜃𝑖(𝑗) is the relation function, which is 1
for the player himself, -1 for adversarial players and 0 for neutral players. Otherwise,
this version is the same as the KL version. As noted in 4.3 in two-player zero-sum case
the used reward will be 𝑅𝜃

𝑖 (ℎ, 𝑎) = 2 ⋅ 𝑅𝑖(ℎ, 𝑎) for both players, so it is not exactly
equivalent. This version is called RNaD relation rewards or, more concisely, RNaD
rewards.

The second version also uses these relation rewards. Additionally, the relation func-
tion is used for regularization, where the regularization term of adversarial players is
subtracted, the term of the current player is added, and the terms of neutral players
are ignored. The reward is first transformed into 𝑅𝜃

𝑖 (ℎ, 𝑎) and then regularized, so
the regularized reward is computed as 𝑅𝐾𝐿

𝜃 (ℎ, 𝑎, 𝜋, 𝜋𝑅) = (𝑅𝜃
𝑖 (ℎ, 𝑎) − 𝜂 ⋅ ∑𝑗∈𝒩 𝜃𝑖(𝑗)) ⋅

𝐷𝐾𝐿(𝜋𝑗, 𝜋𝑅
𝑗 , ℎ, 𝑎𝑗))𝑖∈𝒩. This version is called RNaD multiplayer (RNaD mp).

Finally, the third and last tested version was designed to prevent two properties of
RNaD mp. Namely, the inequality to RNaD KL in a two-player zero-sum case and
some players’ regularization terms being ignored. The reward 𝑅𝜃

𝑖 (ℎ, 𝑎) is divided by
the number of players 𝑁, which results in equality to RNaD KL in two-player zero-sum
games. Additionally, the alternative relation function 𝛿 4.3, which is -1 for adversarial
players, and 1 for neutral players and the player himself, is used for regularization. So
the regularized reward is computed as 𝑅𝐾𝐿

𝛿 (ℎ, 𝑎, 𝜋, 𝜋𝑅) = (𝑅𝜃
𝑖 (ℎ,𝑎)

𝑁 −𝜂 ⋅ ∑𝑗∈𝒩 𝛿𝑖(𝑗)) ⋅
𝐷𝐾𝐿(𝜋𝑗, 𝜋𝑅

𝑗 , ℎ, 𝑎𝑗))𝑖∈𝒩. This version is called RNaD 𝛿.
When the algorithms were tested by playing against opponents, playing as each player

of the instance was tested. However, for increased readability, only plots when playing
as certain players are shown in this section. The rest of the plots, which were not
deemed to carry any additional information, can be found in the appendices.

5.5.1 Perturbed RPS

As in the case of entropy RNaD, the first tests were performed on the perturbed RPS
5.1. Because it is a two-player zero-sum instance, RNaD 𝛿 is equivalent to KL, so it
will not be shown on the plots (achieved results were identical). RNaD rewards had
only minimal performance changes compared to RNaD KL. RNaD mp performance was
much more unstable for the first 1000 iterations, where the found policies often had one

25

5. Experiments .

100 101 102 103 104 105

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pl

oi
ta

bi
lit

y

Figure 5.10. The exploitabilities of KL
RNaD, RNaD mp and RNaD rewards
in perturbed RPS. RNaD 𝛿 results were

equal to RNaD KL.
.

100 101 102 103 104 105

0.10

0.05

0.00

0.05

0.10

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pe

ct
ed

 re
tu

rn
 o

f p
la

ye
r 1

Figure 5.11. The expected return for
player 1 of RNaD KL, RNaD mp and
RNaD rewards in perturbed RPS. RNaD
𝛿 results were equal to RNaD KL. For
player 2, the expected return is equal to

this value multiplied by -1.
.

dominant action with a much higher probability than the other actions (usually paper
or scissors). However, after the 1000th iteration, the results stabilized and were highly
similar to those of RNaD KL.

5.5.2 Small boards
Additional testing was performed on the two-player small board instance of the pursuit-
evasion game. RNaD 𝛿 is presented in the plots as well because unlike RNaD KL it
did not have two exploitability spikes in one of the seeds each time. This was caused
by giving too high a probability to the pass action in a state, where it would result
in a defeat. However, this outlier happened only once for each of the two seeds and
immediately disappeared again, so we assume it was a learning error and its absence
in RNaD 𝛿 performance is caused by random factors rather than the algorithm itself.
Otherwise, the performance of the RNaD algorithms was very similar.

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD delta seed 42
RNaD delta seed 99
RNaD delta seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pl

oi
ta

bi
lit

y

Figure 5.12. The exploitabilities of all
tested RNaDs in the two-player small

pursuit-evasion game.
.

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD delta seed 42
RNaD delta seed 99
RNaD delta seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pe

ct
ed

 re
tu

rn
 o

f p
la

ye
r 1

Figure 5.13. The expected return for
player 1 of all tested RNaDs in the
two-player small pursuit-evasion game.

.

So, in the tested small instances of two-player zero-sum games, the changed algo-
rithms performed similarly or better than RNaD KL. Furthermore, all the algorithms
were converging towards an expected draw. With this proof of concept more successful
than the entropy changes proved to be, we have moved on to testing these changes in
a multiplayer setting.

26

. 5.5 Relation changes experiments

There is the three-player version of the small board, which is sufficiently small to
compute NashConv 5.1.1. Even in this case, all the algorithms yielded similar results,
with RNaD KL having a slightly higher variance between the seeds. Eventually, all the
algorithms converged to a low NashConv (around 0.1) and a draw.

100 101 102 103 104 105

0

2

4

6

8

10

12

14

16

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD delta seed 42
RNaD delta seed 99
RNaD delta seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Na
sh

 c
on

v

Figure 5.14. NashConv of the tested versions of RNaD in the three-player small instance
of pursuit-evasion game.

100 101 102 103 104 105

10

8

6

4

2

0

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD delta seed 42
RNaD delta seed 99
RNaD delta seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pe

ct
ed

 re
tu

rn
 o

f p
la

ye
r 1

.

100 101 102 103 104 105

0.22

0.21

0.20

0.19

0.18

0.17

0.16

0.15

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD delta seed 42
RNaD delta seed 99
RNaD delta seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pe

ct
ed

 re
tu

rn
 o

f p
la

ye
r 2

.

100 101 102 103 104 105

0.1

0.0

0.1

0.2

0.3

0.4

0.5

RNaD kl seed 42
RNaD kl seed 99
RNaD kl seed 616
RNaD mp seed 42
RNaD mp seed 99
RNaD mp seed 616
RNaD delta seed 42
RNaD delta seed 99
RNaD delta seed 616
RNaD rewards seed 42
RNaD rewards seed 99
RNaD rewards seed 616

RNaD iterations

Ex
pe

ct
ed

 re
tu

rn
 o

f p
la

ye
r 3

.
Figure 5.15. The expected returns of the tested RNaD versions in the three-player small
pursuit-evasion board. From left to right is the expected return for players 1,2, and 3

respectively.

So far, the algorithms have been successful in the small pursuit-evasion board. A
draw was expected in both boards because each player owns only 1 agent, and token
movement is only 1. This means, that any player will see the pursuing player in the
observation of the surrounding tiles. As a result, rationally playing players will always
avoid their pursuer. However, against randomly playing opponents a weakness of the
algorithm was perceived. Sometimes, when the algorithm would make a move unex-
pected by the algorithm (the found strategy profile has only a very small probability
of that move), the game would progress into a state, where the algorithm has a very
badly trained policy. In such a state, the algorithm would often take a move, that
prevents the player victory or even results in a defeat. This caused a higher variance
and lowered victory rate against random opponents. RNaD KL generally had a higher
variance, especially when playing as player 2 (this is apparent even from the self-play
results for player 2). All the altered RNaDs once again performed similarly, whereas
RNaD KL performed better as player 1, but worse as player 3.

27

5. Experiments .

100 101 102 103 104 105

10

8

6

4

2

0

2

4

Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105
0.50

0.55

0.60

0.65

0.70

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.16. The average utilities gained by the RNaDs against random opponents in the
three-player small board. On the left playing as player 1 and playing as player 3 on the

right.

So despite the vulnerability to random opponents, the algorithms learned to defeat
the random opponents in most cases. On the other hand, playing against heuristic
opponents proved to be more stable. These players play rationally, so the games mostly
end in a draw. The only exception was when RNaD was controlling player 3, where
occasional heuristic sampling mistakes as player 1 resulted in a defeat. As in the case
of random opponents, RNaD KL performed worse when playing as player 3.

100 101 102 103 104 105

16

14

12

10

8

6

4

2

0

Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.00

0.05

0.10

0.15

0.20

0.25

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.17. The average utilities gained by the RNaDs against heuristic opponents in the
three-player small board. On the left playing as player 1 and playing as player 3 on the

right.

To further test play against rational opponents, tests were performed against the CFR
algorithm 2.2.2, which was trained for 1000 iterations on this board. The NashConv
of CFR after the 1000 iterations was around 0.02, so it was about 5 times lower than
the NashConv of the RNaD algorithms, which converged to around 0.1. This is caused
by CFR performing updates for all infosets in the game, whereas RNaD updates are
performed based on the trajectories collected during sampling, which causes the CFR
results to be more precise. With increasing iterations of the RNaDs, the games ended
almost always in a draw. These results were expected from self-play and indicate that
all the RNaDs learned a strategy suitable against rational opponents.

28

. 5.5 Relation changes experiments

100 101 102 103 104 105

16

14

12

10

8

6

4

2

0
Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.0998

0.0996

0.0994

0.0992

0.0990
Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.18. The average utilities gained by the RNaDs against CFR in the three-player

small board. On the left playing as player 1 and playing as player 3 on the right.

In these small instances, the changed RNaD versions proved to be overall slightly
more stable and robust than RNaD KL.

5.5.3 Medium-sized board

Other tests were performed on the three-player version of the medium-sized board
5.1.2. There, NashConv could no longer be computed exactly due to the size, so only
the average utility experiments were performed. From self-play, we saw that this time
RNaD KL and the altered RNaDs converged to a different fixed point.

101 103 105

0

1
Playing as player 1

101 103 105
1.5

1.0

0.5

0.0

Playing as player 2

101 103 105
0.5

0.0

0.5

1.0

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

Figure 5.19. The average utilities achieved by the RNaDs in the medium-sized three-player
board during self-play.

So, in RNaD KL player 1 is the winner, whereas in the other RNaDs player 3 is.
In both cases, player 2 was defeated. From the found strategy profiles, we attempted
to intuitively determine, which fixed point results in a better play. In the following
example, RNaD 𝛿 strategy profile is used for the probabilities of the second strategy
profile, because it had less variance than RNaD mp and RNaD rewards.
Example 5.2. In the three-player medium pursuit-evasion board, player 1 is acting first.
We can see, that taking any action except token-right would result in being caught by
player 2 on the next turn. In the KL strategy profile, player 1 takes action token-right
with almost 1 probability (around 0.99). On player 2 turn, he can move two agents,
either agent A located at (2, 0), or agent B located at (2,2). The only way the game
could end now is if the player used the token-up action with Agent B, resulting in Agent

29

5. Experiments .
B being caught by player 1. This happens in the KL-strategy profile with a probability
over 0.99. So the game proceeded as follows.

In the case of RNaD 𝛿 strategy profile, player 1 also had nearly 1 probability of action
token-right. However, player 2 acting afterward instead had over 0.99 probability to
move agent B left. This action prevents Agent B from being caught by player 1 on his
next turn. Then player 3 again with over 0.99 probability moves left, to threaten Agent
A of player 2. Afterwards, player 1 acts again. Intuitively, the actions that threaten
agent B are either move left or token-down. The player did not learn the token action,
but move left had a probability of around 0.6, with most of the remaining 0.4 probability
being split almost evenly between the pass action and move down. Assume, that move
left was sampled. Now, player 2 is already in a state, where no matter the taken action,
he will be caught by either player 3 or 1. The most prominent actions in the policy
were pass or take action token-up with Agent A, both with around 0.4 probability.
Assume, that pass was sampled. Then, player 3 caught Agent A with action token-
down, which had almost 1 probability. So, omitting the state where player 2 passed,
the game proceeded as follows.

So at least from the intuitive point of view, the strategy profile found by the altered
RNaDs results in a more rational play than the RNaD KL found one. It is also apparent,
that RNaD KL will perform poorly against rational players when playing as player 2.

The vulnerability against random opponents was once again observed here. RNaD
𝛿 seems the least vulnerable to this, usually having the lowest variance of the tested
versions. RNaD KL once again achieved the best results when playing as player 1. We
assume this to be caused by the movement-penalty, which motivates RNaD KL towards
more aggressive behavior. However, the RNaDs with the relation-based reward are more
resistant to this, because a negative reward of adversarial players is added to the player
as a positive reward. This causes the player to be rewarded when adversarial players
get penalized for movement, making the negative movement penalty less relevant and
thus making the algorithm less motivated to end the game quickly.

Against heuristic opponents, the altered versions managed to learn relatively well,
achieving a good victory rate with defeats happening rarely. Usually, the games varied
between the trained player managing to win, or one of the heuristic opponents elimi-
nating the other before this could happen. Conversely, RNaD KL had a higher variance
between the results, being defeated more often. The better results against rational op-
ponents were especially apparent when playing as player 2, where the altered RNaDs
had a significantly better victory rate than against random opponents.

30

. 5.5 Relation changes experiments

100 101 102 103 104 105
2.0

1.5

1.0

0.5

0.0

0.5

1.0

Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105
3

2

1

0

1

2

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.20. Comparison of average utilities of the RNaDs in the medium-sized three-
player board against heuristic opponents. On the left is utility if playing as player 1, and

on the right if playing as player 2

100 101 102 103 104 105
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.21. Comparison of average utilities of the RNaDs in the medium-sized three-
player board against random opponents. On the left is utility if playing as player 1, and

on the right if playing as player 2

RNaD 𝛿 proved to be the most stable out of the changed RNaD versions here, while
also achieving better results than RNaD KL in most cases.

5.5.4 Board with many pursuit-evasion relations
Tests were also performed on the board with many pursuit-evasion relations 5.1.3 to test
performance in a larger two-player zero-sum instance. This instance is heavily skewed
in favor of player 2, so better results for player 2 than for player 1 were expected. In
this case, all the RNaDs performed very similarly, and self-play resulted in around a
60-70% victory rate for player 2. Furthermore, as player 2 they reached almost 100%
victory rate against both the heuristic and the random opponent. As player 1, the
victory rate was lower, but even against a heuristic opponent, it was around 20%.

31

5. Experiments .

101 103 105

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Playing as player 1

101 103 105

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Playing as player 2

RNaD iterations
M

ea
n

ut
ilit

y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

Figure 5.22. The average utilities achieved by the RNaDs in the board with many pursuit-
evasion relations during self-play.

100 101 102 103 104 105

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.6

0.7

0.8

0.9

1.0
Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.23. The average utilities gained by the RNaDs against a random opponent in the
board with many pursuit-evasion relations. Utilities for player 1 are on the left, and for

player 2 on the right.

100 101 102 103 104 105

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.24. The average utilities gained by the RNaDs against a random opponent in the
board with many pursuit-evasion relations. Utilities when playing as player 1 are on the

left, and when playing as player 2 on the right.

From these results, it seems that even in a larger two-player zero-sum setting all the
altered versions perform at least as well as RNaD KL.

5.5.5 Large board zero-sum

Tests of performance in a multiplayer zero-sum setting were also performed. These
were performed on a zero-sum version of the large board 5.1.4 without the movement
penalty.

32

. 5.5 Relation changes experiments

Removing the movement penalty causes the algorithms to no longer be motivated
towards ending the game quickly. Because of this, in the RNaD KL strategy profile
player 1 plays much more defensively, preferring smaller moves or passing turns. Con-
versely, players 2 and 3 are aggressive in chasing player 5. In self-play, it was observed,
that the altered RNaDs and RNaD KL once again had a slightly changed fixed point.
This is caused by players 1 and 4 playing slightly more aggressively than in RNaD KL,
sometimes resulting in being caught by player 5.

We believe, that this is an effect of the relation reward 𝑅𝜃
𝑖 (ℎ, 𝑎). In this board, player

5 is adversarial to players 1 and 4. This means, that these players receive a positive
reward even when player 5 is caught by players 2 or 3. As a result, the players are more
inclined to move, because there are more states that they consider positive for them.
However, this also results in either of these two players being caught by player 5 more
often. In RNaD 𝛿, the reward is also divided by the number of players, and so is instead
𝑅𝜃

𝑖 (ℎ,𝑎)
5 . Because of this smaller reward, it takes more iterations for the algorithm to

learn this behavior. So, the algorithm starts its learning process similarly to RNaD
KL, and around 20000-30000 iterations it transitions into the behavior of RNaD mp
and RNaD rewards. During this transition, there was a higher variance in the achieved
utilities for all players.

101 103 105

0.1
0.0
0.1

Playing as player 1

101 103 105
0.1

0.0

0.1
Playing as player 2

101 103 105

0.0

0.2

Playing as player 3

101 103 105

0.0

0.1
Playing as player 4

101 103 105

0.2

0.0

Playing as player 5

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

Figure 5.25. The average utilities of the RNaDs in the large zero-sum board during self-
play .

Despite these differences in self-play, against the heuristic and random opponents
the algorithms performed very similarly, usually reaching around 30-40% victory rate
against random opponents and 10-20% victory rate against heuristic opponents, de-
pending on which player they were playing as. The only noticeable differences were
seen in RNaD 𝛿 performance. It had a slightly slower learning process, requiring more
iterations to eventually reach the same results (presumably due to the reward discussed
before). Also, the increased variance around 20000-30000 iterations can be seen partic-
ularly when playing as player 5. Because most of the plots were very similar for all the
algorithms, only plots showing results as player 1 and player 5 are shown here, and the
rest will be in appendices.

33

5. Experiments .

100 101 102 103 104 105
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.0

0.1

0.2

0.3

0.4

Playing as player 5

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.26. The average utilities gained by the RNaDs against random opponents in the
large zero-sum board. On the left are utilities when playing as player 1, and on the right

when playing as player 5.

100 101 102 103 104 105

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25
Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Playing as player 5

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.27. The average utilities gained by the RNaDs against heuristic opponents in the
large zero-sum board. On the left are utilities when playing as player 1, and on the right

when playing as player 5.

In this instance, all of the algorithms achieved very similar results against the tested
opponents. Despite this, the altered behavior of the RNaDs using the relation-based
reward resulted in increased aggressiveness of players 1 and 4, which yielded worse
results for them in self-play and could lead to worse performance against rational players
more complex than the used heuristic player. So the behavior altered by the relation-
based reward may not always be desirable.

5.5.6 Large board general-sum
The final tests were performed on the multiplayer large board 5.1.4 with the movement
penalty, so it was a general-sum instance.

For the altered RNaD versions, the found strategy profiles did not change much
compared to the zero-sum version, so even the results of self-play were similar. The
games mostly ended in a draw, with players 4 or 1 sometimes being caught by player 5.
However, the RNaD KL strategy profile had major changes compared to the zero-sum
version. Most of the time, the players were significantly more aggressive and had nearly
1 probability of playing a specific action. Moreover, the player 5 policy was very badly
trained, often taking action that results in a defeat with almost 1 probability.

34

. 5.5 Relation changes experiments

101 103 105
1

0

1
Playing as player 1

101 103 105

1
0
1

Playing as player 2

101 103 105
1
0
1

Playing as player 3

101 103 105

0.4

0.2

0.0
Playing as player 4

101 103 105
2

1

0

Playing as player 5

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

Figure 5.28. The average utilities of the RNaDs during self-play in the large general-sum
instance.

This is very similar to the phenomenon, that happened in the medium-sized mul-
tiplayer board 5.5.3. So it seems, that RNaD KL generally does not work well for
general-sum games. This was further observed in average utilities achieved against
heuristic and random opponents. For the altered RNaD versions, the increase in gained
utilities with increasing iterations seems comparable to the results achieved in the zero-
sum version. On the other hand, RNaD KL achieved worse results, the training process
is much less stable and there is a higher variance between the seeds. This can be
illustrated when playing as player 1 and player 5, for comparison with the zero-sum
version.

100 101 102 103 104 105

0.4

0.3

0.2

0.1

0.0

Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105
0.5

0.4

0.3

0.2

0.1

0.0

Playing as player 5

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.29. The average utilities gained by the RNaDs against random opponents in the
large general-sum board. On the left are utilities when playing as player 1, and on the

right when playing as player 5.

35

5. Experiments .

100 101 102 103 104 105

1.0

0.8

0.6

0.4

0.2

0.0

Playing as player 1

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Playing as player 5

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure 5.30. The average utilities gained by the RNaDs against heuristic opponents in the
large general-sum board. On the left are utilities when playing as player 1, and on the

right when playing as player 5.

In contrast to the zero-sum version, the altered RNaDs had significantly better results
here than RNaD KL. In conclusion, while RNaD KL might be slightly more suitable for
multiplayer zero-sum instances, the altered RNaDs are significantly better for general-
sum settings.

36

Chapter 6
Conclusion

In this work, the performance of various modifications to the RNaD algorithm was
tested in the multi-player general-sum setting.

The effectiveness of using entropy regularization and regularization constant anneal-
ing in place of KL divergence and regularization policy swapping was assessed. However,
this change proved to be highly unstable for lower values of the regularization constant
and these values proved to be different for each tested instance. Moreover, because of
the lower limit of the last stable regularization constant, it proved impossible to get
arbitrarily close to the Nash Equilibrium. Because of this, this change was not deemed
suitable for further usage.

Other evaluated changes involved changes to reward and regularization, using
domain-specific knowledge of player relations. There were three tested versions of these
modifications as well as an extension of the original RNaD algorithm (RNaD KL)
into a multi-player setting. Even though RNaD KL seems to be most suitable for a
multi-player zero-sum setting, these modifications have shown significant improvements
in a multi-player general-sum setting. Although there were not any major differences
in the performance of these versions, we believe that RNaD 𝛿 is the most suitable for
future usage. This version uses the alternative relation function and divides the altered
rewards by the number of players. Because of this, all players´ regularization terms
have an impact on the regularization, and it is equivalent to RNaD KL in a two-player
zero-sum case.

However, all of the tested versions suffered from some of the same problems. The
most prominent one is being too fixated on rationally playing opponents. So, opponents
that play slightly irrationally may lead a player in a state, where he has not trained
enough. In this work, we have used an on-policy version of RNaD, so it did not train
in some parts of the game. Using RNaD as an off-policy algorithm may help alleviate
this issue.

Another problem is that of the algorithm stability. In certain scenarios, there was
a high variance between achieved values based on the random seed used to initialize
the neural network. Some instability was present in all of the algorithms, however, the
proposed RNaD 𝛿 generally did not suffer much from this problem.

Finally, in some cases, the relation changes could alter the algorithm behavior in po-
tentially undesirable ways, as was demonstrated in the multi-player zero-sum instance.
This is likely a limitation of the extensions, which indicates that they may not be
suitable for certain instances.

Because of the improvements compared to RNaD KL, we believe that utilizing player
relations to change the regularization method and alter given rewards has potential.
Further development of these methods should focus on improving the robustness to-
wards irrational play, as well as improving the algorithm stability. Another possible
improvement would be to alter these extensions so that they do not cause undesirable
behavior in multiplayer zero-sum instances.

37

References
[1] Esther Derman, and Shie Mannor. Distributional Robustness and Regularization

in Reinforcement Learning. 2020.
[2] Jesse Farebrother, Marlos C. Machado, and Michael Bowling. Generalization and

Regularization in DQN . 2020.
[3] Julien Perolat, Remi Munos, Jean-Baptiste Lespiau, Shayegan Omidshafiei, Mark

Rowland, Pedro Ortega, Neil Burch, Thomas Anthony, David Balduzzi, Bart De
Vylder, Georgios Piliouras, Marc Lanctot, and Karl Tuyls. From Poincaré Recur-
rence to Convergence in Imperfect Information Games: Finding Equilibrium via
Regularization. 2020.

[4] Samuel Sokota, Ryan D’Orazio, Chun Kai Ling, David J. Wu, J. Zico Kolter, and
Noam Brown. Abstracting Imperfect Information Away from Two-Player Zero-Sum
Games. 2023.

[5] Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub,
Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony,
Stephen McAleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys,
Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen,
Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot,
Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange,
Remi Munos, David Silver, Satinder Singh, Demis Hassabis, and Karl Tuyls. Mas-
tering the game of Stratego with model-free multiagent reinforcement learning.
Science. 2022, 378 (6623), 990-996. DOI 10.1126/science.add4679.

[6] Martin Schmid, Matej Moravčík, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin
Waugh, Nolan Bard, Finbarr Timbers, Marc Lanctot, G. Zacharias Holland, Elnaz
Davoodi, Alden Christianson, and Michael Bowling. Student of Games: A unified
learning algorithm for both perfect and imperfect information games. Science Ad-
vances. 2023, 9 (46). DOI 10.1126/sciadv.adg3256.

[7] Pim Nijssen, and Mark H. M. Winands. Monte Carlo Tree Search for the Hide-
and-Seek Game Scotland Yard. IEEE Transactions on Computational Intelligence
and AI in Games. 2012, 4 (4), 282-294. DOI 10.1109/TCIAIG.2012.2210424.

[8] Sourabh Bhattacharya, Tamer Başar, and Maurizio Falcone. Surveillance for Se-
curity as a Pursuit-Evasion Game. In: Radha Poovendran, and Walid Saad, eds.
Decision and Game Theory for Security. Cham: Springer International Publishing,
2014. 370–379. ISBN 978-3-319-12601-2.

[9] Alexander Alexopoulos, Benjamin Kirsch, and Essameddin Badreddin. Realization
of pursuit-evasion games with unmanned aerial vehicles. In: 2017 International
Conference on Unmanned Aircraft Systems (ICUAS). 2017. 797-805.

[10] J. Mikael Eklund, Jonathan Sprinkle, and S. Shankar Sastry. Switched and Sym-
metric Pursuit/Evasion Games Using Online Model Predictive Control With Ap-
plication to Autonomous Aircraft. IEEE Transactions on Control Systems Tech-
nology. 2012, 20 (3), 604-620. DOI 10.1109/TCST.2011.2136435.

38

http://dx.doi.org/10.1126/science.add4679
http://dx.doi.org/10.1126/sciadv.adg3256
http://dx.doi.org/10.1109/TCIAIG.2012.2210424
http://dx.doi.org/10.1109/TCST.2011.2136435

. .
[11] Erik P. Blasch, Khanh Pham, and Dan Shen. Orbital satellite pursuit-evasion

game-theoretical control. In: 2012 11th International Conference on Information
Science, Signal Processing and their Applications (ISSPA). 2012. 1007-1012.

[12] Liran Zhao, Yulin Zhang, and Zhaohui Dang. PRD-MADDPG: An
efficient learning-based algorithm for orbital pursuit-evasion game with
impulsive maneuvers. Advances in Space Research. 2023, 72 (2), 211-230.
DOI https://doi.org/10.1016/j.asr.2023.03.014.

[13] Naiming QI, Qilong SUN, and Jun ZHAO. Evasion and pursuit guidance law
against defended target. Chinese Journal of Aeronautics. 2017, 30 (6), 1958-1973.
DOI https://doi.org/10.1016/j.cja.2017.06.015.

[14] Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi,
Satyaki Upadhyay, Julien Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl
Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin Morrill, Paul Muller, Timo
Ewalds, Ryan Faulkner, János Kramár, Bart De Vylder, Brennan Saeta, James
Bradbury, David Ding, Sebastian Borgeaud, Matthew Lai, Julian Schrittwieser,
Thomas Anthony, Edward Hughes, Ivo Danihelka, and Jonah Ryan-Davis.
OpenSpiel: A Framework for Reinforcement Learning in Games. CoRR. 2019,
abs/1908.09453

[15] Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisý.
Rethinking Formal Models of Partially Observable Multiagent Decision Making.
2021.

[16] John Von Neumann, and Oskar Morgenstern. Theory of Games and economic
behavior . 2007.

[17] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences. 1950, 36 (1), 48-49. DOI 10.1073/pnas.36.1.48.

[18] Y. Shoham, and K. Leyton-Brown. Multiagent Systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press, 2009 .

[19] Revan MacQueen. A Proof that Coarse Correlated Equilibrium Implies Nash Equi-
librium in Two-Player Zero-Sum Games. 2023.

[20] Finbarr ”Timbers, Nolan Bard, Edward Lockhart, Marc Lanctot, Martin Schmid,
Neil Burch, Julian Schrittwieser, Thomas Hubert, and Michael” Bowling. ”Ap-
proximate exploitability: Learning a best response in large games”. 2020.

[21] Paul Muller, Shayegan Omidshafiei, Mark Rowland, Karl Tuyls, Julien Perolat,
Siqi Liu, Daniel Hennes, Luke Marris, Marc Lanctot, Edward Hughes, Zhe Wang,
Guy Lever, Nicolas Heess, Thore Graepel, and Remi Munos. A Generalized Train-
ing Approach for Multiagent Learning. 2020.

[22] Stephen McAleer, Gabriele Farina, Marc Lanctot, and Tuomas Sandholm. ES-
CHER: Eschewing Importance Sampling in Games by Computing a History Value
Function to Estimate Regret. 2022.

[23] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.
Regret Minimization in Games with Incomplete Information. In: J. Platt, D. Koller,
Y. Singer, and S. Roweis, eds. Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2007.
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638
c6fcd194a4b1e6992063e944-Paper.pdf.

39

http://dx.doi.org/https://doi.org/10.1016/j.asr.2023.03.014
http://dx.doi.org/https://doi.org/10.1016/j.cja.2017.06.015
http://dx.doi.org/10.1073/pnas.36.1.48
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

References .
[24] Sergiu Hart, and Andreu Mas-Colell. A Simple Adaptive Procedure

Leading to Correlated Equilibrium. Econometrica. 2000, 68 (5), 1127-1150.
DOI https://doi.org/10.1111/1468-0262.00153.

[25] Brendan McMahan. Follow-the-Regularized-Leader and Mirror Descent: Equiva-
lence Theorems and L1 Regularization. In: Geoffrey Gordon, David Dunson, and
Miroslav Dudík, eds. Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. Fort Lauderdale, FL, USA: PMLR, 2011.
525–533.
https://proceedings.mlr.press/v15/mcmahan11b.html.

[26] Daniel Hennes, Dustin Morrill, Shayegan Omidshafiei, Remi Munos, Julien Per-
olat, Marc Lanctot, Audrunas Gruslys, Jean-Baptiste Lespiau, Paavo Parmas,
Edgar Duenez-Guzman, and Karl Tuyls. Neural Replicator Dynamics. 2020.

[27] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg,
and Koray Kavukcuoglu. IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures. 2018.

[28] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-
regularized Markov decision processes. 2017.

40

http://dx.doi.org/https://doi.org/10.1111/1468-0262.00153
https://proceedings.mlr.press/v15/mcmahan11b.html

Appendix A
Additional experimental results

A.1 Small boards

100 101 102 103 104 105

0.16

0.14

0.12

0.10

0.08

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.35

0.30

0.25

0.20

0.15

0.10

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.5

0.4

0.3

0.2

0.1

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure A.1. The average utilities gained by the RNaDs when playing as player 2 in the
three-player small board. From left to right are the results against random opponents,

heuristic opponents, and CFR respectively.

A.2 Medium-sized board

100 101 102 103 104 105
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.5

0.0

0.5

1.0

1.5

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure A.2. The average utilities gained by the RNaDs when playing as player 3 in the
three-player medium-sized board. Results against random opponents are on the left and

results against heuristic opponents are on the right.

41

A Additional experimental results .

A.3 Large board zero-sum

100 101 102 103 104 105
0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105
0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105
0.05

0.10

0.15

0.20

0.25

0.30

0.35

Playing as player 4

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure A.3. The average utilities gained by the RNaDs against random opponents in the
large zero-sum board. From left to right are the results when playing as player 2, player

3, and player 4 respectively.

100 101 102 103 104 105

0.2

0.1

0.0

0.1

0.2

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Playing as player 4

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure A.4. The average utilities gained by the RNaDs against heuristic opponents in the
large zero-sum board. From left to right are the results when playing as player 2, player

3, and player 4 respectively.

A.4 Large board general-sum

100 101 102 103 104 105

0.5

0.4

0.3

0.2

0.1

0.0
Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.5

0.4

0.3

0.2

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

0.5

0.4

0.3

0.2

0.1

Playing as player 4

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure A.5. The average utilities gained by the RNaDs against random opponents in the
large general-sum board. From left to right are the results when playing as player 2, player

3, and player 4 respectively.

42

. A.4 Large board general-sum

100 101 102 103 104 105

1.5

1.0

0.5

0.0

0.5

1.0

Playing as player 2

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Playing as player 3

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.

100 101 102 103 104 105

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75
Playing as player 4

RNaD iterations

M
ea

n
ut

ilit
y

Rnad type kl
Rnad type mp
Rnad type delta
Rnad type rewards

.
Figure A.6. The average utilities gained by the RNaDs against heuristic opponents in the
large general-sum board. From left to right are the results when playing as player 2, player

3, and player 4 respectively.

43

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Outline

	Theoretical background
	Game definition
	Algorithms
	Performance metrics
	Counterfactual regret minimization
	Follow the regularized leader
	Regularized Nash Dynamics

	Pursuit evasion games
	Simulator rules
	Observation structure
	Perceiving position
	Conversion to tensor
	Observation tensor example
	Tensor sizes

	RNaD changes
	Default implementation in an n-player case
	Entropy regularization
	Relation of players change
	Regularization with the relation function

	Experiments
	Testing instances
	Small boards
	Medium-sized board
	Board with many goals
	Large board
	Tensor sizes

	Heuristic player
	Experiments description
	Entropy regularization experiments
	Perturbed RPS
	Small board

	Relation changes experiments
	Perturbed RPS
	Small boards
	Medium-sized board
	Board with many pursuit-evasion relations
	Large board zero-sum
	Large board general-sum

	Conclusion
	References
	Additional experimental results
	Small boards
	Medium-sized board
	Large board zero-sum
	Large board general-sum

