
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Mobile platform for charitable assistance to
seniors using AI

Margarita Lupenko

Supervisor: Ing. Kyrylo Bulat
Field of study: Software engineering and technologies
Subfield: Enterprise systems
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507353 Personal ID number: Lupenko Margarita Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Mobile platform for charitable assistance to seniors using artificial intelligence

Bachelor’s thesis title in Czech:

Mobilní platforma pro charitativní pomoc seniorům s využitím umělé inteligence

Guidelines:

The bachelor thesis aims to develop and implement a mobile platform for providing charitable assistance to the elderly
using artificial intelligence.
The application will allow users to create requests for assistance, store information about volunteers who have previously
handled their requests, and ask for theoretical help through a chat interface with artificial intelligence.
The work will involve the following tasks:
- Analyzing and comparing existing mobile applications designed to help elderly individuals.
- Defining use cases for the application.
- Designing the application's architecture and user interface.
- Analyzing existing artificial intelligence technologies.
- Choosing suitable technologies for implementation.
- Developing the mobile application.
- Conducting usability testing and testing of individual application modules.

Bibliography / sources:

Phillip A. Laplante, Mohamad Kassab: “Requirements Engineering for Software and Systems” [7 June 2022]
Benjamin Bähr: “Prototyping of User Interfaces for Mobile Applications” [2017]
Karthikeyan NG, Arun Padmanabhan, Matt R. Cole: "Mobile Artificial Intelligence Projects" [2019]

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Kyrylo Bulat System Testing IntelLigent Lab FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 15.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Kyrylo Bulat
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
From the bottom of my heart, I would
like to thank my supervisor Ing. Kyrylo
Bulat for his valuable advice, help, and
great mentoring. He was always willing
to answer all my questions and point me
in the right direction.

I would also like to express my deep
gratitude to my family for their endless
support throughout my studies.

Declaration
Prohlašuji, že jsem předloženou práci
vypracovala samostatně, a že jsem uvedla
veškerou použitou literaturu.

V Praze, 24. května 2024

I declare that this work is all my own
work and I have cited all sources I have
used in the bibliography.

In Prague, 24. May, 2024

v

Abstract
This bachelor’s thesis focuses on analyz-
ing, designing, and implementing a mo-
bile platform for charitable assistance to
seniors using artificial intelligence. The
main goal is to integrate artificial intelli-
gence technology into the application to
enhance the user experience for seniors.
An essential part of my thesis will be de-
veloping a mobile application with an in-
tuitive interface for seniors.

Keywords: charitable assistance,
seniors, social support, AI, React Native,
mobile application

Supervisor: Ing. Kyrylo Bulat

Abstrakt
Tato bakalářská práce se zaměřuje na ana-
lýzu, návrh a implementaci mobilní plat-
formy pro charitativní pomoc seniorům s
využitím umělé inteligence. Hlavním cílem
je integrovat technologii umělé inteligence
do aplikace pro zlepšení uživatelského zá-
žitku seniorů. Podstatnou součástí mé ba-
kalářské práce bude vývoj mobilní apli-
kace s intuitivním rozhraním pro seniory.

Klíčová slova: charitativní pomoc,
senioři, sociální podpora, AI, React
Native, mobilní aplikace

Překlad názvu: Mobilní platforma pro
charitativní pomoc seniorům s využitím
AI

vi

Contents
1 Introduction 1

1.1 Application description 1

1.2 Description of the target user
group . 2

1.3 Bachelor thesis objectives 2

2 Analysis of existing solutions 3

2.1 Medisafe . 3

2.2 Carely . 4

2.3 Life360 . 5

2.4 eCare21 . 6

2.5 Senior safety app 6

3 Analysis 11

3.1 Requirements analysis 11

3.1.1 Functional requirements 11

3.1.2 Non-functional requirements . 14

3.2 Use cases . 15

3.2.1 Actors . 16

3.2.2 Use cases 17

4 Design 29

4.1 Class diagram 29

4.2 Sequence diagram. 31

4.3 Analysis of available AI APIs . . 36

4.3.1 Dialogflow Google AI 36

4.3.2 Wit.ai by Facebook 36

4.3.3 Rasa . 37

4.3.4 OpenAI API 38

4.3.5 LaMDA by Google AI 38

4.3.6 Bard API 39

4.4 Selected technologies 41

4.4.1 Presentation layer 42

4.4.2 Application layer 42

4.4.3 Data layer 43

4.5 User interface design 44

5 Implementation 47

5.1 Diagram component 47

5.2 Application architecture 49

5.3 Presentation tier 50

5.3.1 Code structure 50

5.3.2 Routing 50

5.3.3 Redux Toolkit 51

5.3.4 Communication with
application tier 52

5.4 Application tier 52

5.4.1 Code structure 53

5.4.2 Routes 53

5.4.3 Controller layer 54

5.4.4 Service layer 55

5.4.5 Model layer 55

5.4.6 Connection to database 57

5.5 Data tier . 57

5.6 Tools used 58

5.7 OpenAI API integration 59

5.7.1 Implementation 59

6 Testing 63

6.1 Unit testing 63

vii

6.1.1 Tools used 63

6.1.2 Testing controllers 64

6.1.3 Testing services 64

6.2 Usability testing 65

6.2.1 Testing goals 66

6.2.2 Testing scenarios 66

6.2.3 Feedback from testers 67

6.2.4 Test results 67

7 Conclusion 69

7.1 Future development plans 69

A Bibliography 71

B Acronyms 75

C Use cases - extra 77

D Final GUI 81

E Run application 85

Back-end installation and launch . . . 85

Front-end installation and launch . . 85

Listings
5.1 Routing in “My Support” 51

5.2 navigation.navigate . . 51

5.3 route.params 51

5.4 authSlice 51

5.5 configureStore 52

5.6 Axios example 52

5.7 taskRoutes – create task . 53

5.8 TaskController - createTask 54

5.9 TaskService – create . . . 55

5.10 Task – model 55

5.11 Connection to database . 57

5.12 ChatService – generateCha-
tResponse 59

5.13 ChatController - postChat 60

5.14 ChatBotScreen - onSend . 61

6.1 UserControllerTest - register 64

6.2 UserServiceTest - login . . 65

viii

Figures
3.1 Actors. 16

3.2 Use case - Diagram. 20

3.3 Use case - Diagram. 27

4.1 Class diagram. 30

4.2 Sequence diagram "Create a new
task". 33

4.3 Sequence diagram "Ask a question
to AI chat". 35

4.4 Deployment model. 41

4.5 MERN stack. 44

4.6 Color palette. 45

5.1 Diagram component. 48

5.2 Object mapping between Node and
MongoDB is handled by Mongoose. 58

D.1 User interface of the register page
and login. 81

D.2 User interface of the home page
and chat AI. 82

D.3 User interface of the task and
creation of the task. 83

D.4 User interface of contacts and
account. 84

Tables
2.1 Overview of applications 8

4.1 AI API comparison 40

ix

Chapter 1

Introduction

Older people have difficulty adapting to new technologies and realities in a
rapidly changing world. They often encounter difficulties that seem simple at
first sight, such as writing a message or taking a photo. In addition, many
pensioners also need social support.

In the Czech Republic, approximately 2.35 million pensioners receive an
old-age pension. Of these, about 30,000 receive less than 8,000 CZK, while
the average pension is 20,216 CZK. [1] However, inflation in the Czech
Republic reached 15.1% in 2022, the highest rate in the last 20 years. [2]
This inflationary pressure has significantly affected the country’s economy
and the living conditions of its inhabitants.

According to official figures, there are approximately 414,000 people with
disabilities in the Czech Republic, two-thirds of whom are pensioners. [3]

Given these statistics and social experience, it is obvious that many people
need social assistance. That is why my app is needed, to help those who need
it.

1.1 Application description

The mobile application “My Support” will be designed to provide charitable
assistance to seniors in various aspects of life using Artificial Intelligence (AI).

AI will be used in the chat to simplify the interaction of seniors with the
application.

“My Support” will be designed for two roles: seniors and volunteers. The
application for seniors will have a simplified interface and a set of features
adapted to the needs of seniors, such as large buttons and fonts, and a chat
with AI that will answer theoretical questions. The version for volunteers

1

1. Introduction
will have features such as monitoring tasks from seniors on a map, the ability
to connect with a senior by phone, and many other features.

1.2 Description of the target user group

The primary target group is volunteers and seniors.

Volunteers are people who assist seniors. They can be members of charities
or ordinary people who are interested in helping. Their ages start at 18 and
up.

Seniors are people aged 60 years and older who need help in different areas
of life.

The application has the potential to reach many people as many seniors
need social support. The project helps to address this problem by providing
seniors with easy access to help and volunteers the opportunity to get involved.

1.3 Bachelor thesis objectives

The project aims to design and implement a mobile platform for charitable
assistance to seniors using AI.

The thesis will include the following points:

. analysis and comparison of existing charity platforms for the elderly;. definition of application usage scenarios;. design of the application architecture and its user interface;. testing of the application.

The application modules will allow users to create, edit, or delete a task
and ask a theoretical question in a chat with AI. The outcome of the project
will be a starting point for the final implementation and testing, in addition
to the implementation of the basic modules of the solution.

2

Chapter 2

Analysis of existing solutions

This chapter will analyze existing mobile applications aimed at assisting older
people. The focus will be on their functionality, usability, and reliability. The
key advantages of each application will be discussed and their disadvantages
will be identified.

2.1 Medisafe

Medisafe is a reminder app that helps people take their medication on time
and as directed by their doctor. The app is available for iOS and Android
devices.

Medisafe can manage medication use and send reminders. Just enter
prescriptions and times of use, and Medisafe will create a visual schedule
with pictures of each tablet and a list of potentially harmful interactions.
Then, throughout the day, it will remind the user when it’s time to take the
medication, inform them when a prescription is about to expire, and even
warn a friend or family member about a missed dose. [4]

Advantages of the application:

. helps to take medication on time and as directed by the doctor;. allows you to monitor the use of medication;. provides information about medicines;. can be adapted to the individual needs of the user.

Disadvantages of the application:

3

2. Analysis of existing solutions
. it can be challenging for some seniors to use due to the complexity of

the interface;. there’s no integration with other healthcare services.

2.2 Carely

Carely is a caregiving app designed to improve communication and coordina-
tion between family members and professional caregivers. [5]

It aims to provide a centralized platform for caregiving activities and
information sharing. In addition, it allows family members and caregivers to
form a caregiving team, facilitating effective communication, task assignment,
and coordination of caregiving responsibilities. This includes features such
as:

. shared calendar: this allows family members and caregivers to schedule
appointments, keep track of progress, and maintain order;. task list: this allows family members and caregivers to assign and track
tasks so that everyone is on the same page;. diary: this allows family members and caregivers to document important
information such as changes in the care recipient’s condition or medication
adjustments.

Advantages of the application:

. centralized care management platform: Carely provides a central platform
that facilitates planning, monitoring, and coordination;. improved communication and collaboration: Carely makes it easier for
family members and caregivers to communicate and collaborate, which
can help to prevent misunderstandings and ensure that everyone is
informed of the latest developments;. support for professional caregivers: Carely also provides support to
professional carers, which can help them provide better quality care.

Disadvantages of the application:

. the app doesn’t offer detailed activity reports or summaries, making
monitoring more challenging.;. limited features in the free version.

4

....................................... 2.3. Life360

2.3 Life360

Life360 is a mobile app that can help seniors stay safe and in touch with their
loved ones.[6] The app offers several features that are specifically designed
for seniors, including:

. real-time location tracking: this feature allows family and friends to track
the senior’s location in real-time. This can help ensure the senior’s safety,
especially if they live alone or are traveling in an unfamiliar environment;. safety alerts: the app offers a variety of safety alerts that can help seniors
in an emergency. These alerts include crash detection, SOS alerts, and
geofence alerts;. communication tools: the app makes it easy for seniors to communicate
with their loved ones through messages, group chats, and location-sharing
notifications. This can help stay in touch with family and friends and
coordinate activities.

Advantages of the application:

. providing a sense of security: the app offers the possibility to provide
seniors with a sense of security, knowing that their location can be tracked
and loved ones will be warned in case of an emergency. This feature
is especially useful for seniors living alone or moving in an unfamiliar
environment;.maintaining connections: the app helps seniors maintain connections with
their loved ones, which is key to maintaining their social and emotional
well-being. In this way, it allows seniors to feel less lonely and isolated;. preventing injuries: the crash detection feature can help seniors in an
emergency and prevent serious injuries or even death. This feature is
especially useful for seniors who may have difficulty walking or moving.

Disadvantages of the application:

. certain features, like driving monitoring and emergency alerts, require
paid subscriptions;. constant background operation can significantly drain the battery;. privacy can be an issue because of the location tracking feature.

5

2. Analysis of existing solutions
2.4 eCare21

The eCare21 app monitors the health of seniors 24/7 in real-time. Through
the app and a wearable fitness tracker like Fitbit or Apple Watch, it collects,
compares, and analyzes seniors’ heart rate, physical activity, weight, calorie
intake, medication adherence, and glucose levels. This helps caregivers and
healthcare providers proactively create and improve care plans for seniors. [7]

Advantages of the application:

. 24/7 real-time health monitoring: the eCare21 app constantly moni-
tors health, allowing for timely notification of any changes in physical
condition;. data collection and analysis: the app collects and analyzes a wide range
of health data, including heart rate, physical activity, weight, calorie
intake, medication adherence, and blood glucose levels;. proactive care planning: data collected by the eCare21 app can be used
to proactively create and improve care plans for seniors;. ease of use: the eCare21 app is easy to use and can be customized to
the user’s needs.

Disadvantages of the application:

. expensive paid subscription;. the interface is not intuitive and is difficult to navigate for elderly users.

2.5 Senior safety app

The Senior Safety app provides real-time location tracking, geo-location alerts,
and emergency assistance. It also provides peace of mind to seniors and their
caregivers and is available on both iOS and Android platforms. In addition,
it enables fall detection technology that detects falls and automatically sends
alerts to designated contacts or emergency services. [8]

Advantages of the application:

. increases safety and well-being: the app provides a variety of features that
can significantly increase the safety and well-being of seniors, especially
those who live alone or have limited mobility;

6

...................................2.5. Senior safety app

. peace of mind for seniors and caregivers: the app provides peace of mind
for seniors and their caregivers by providing real-time information and
ensuring immediate assistance in the event of an emergency;. user-friendly interface: the app’s interface is designed with the needs of
seniors in mind, so it is easy to use and navigate.

Disadvantages of the application:

. limited features in the free version;. lacks customizable options for individual needs.

7

2.Analysis
ofexisting

solutions..............................

Name Focus Area Usability User rating Price Android iOS
1 Medisafe Medicine For older users, navigating the

app might be challenging due
to an abundance of features and
small text on buttons. However,
there’s a short guide at the begin-
ning of app usage that helps users
orient themselves quickly within
the app.

4.7 Free/Medisafe
Premium
$4.99/month
or $39.99/year

Yes Yes

2 Carely Coordination, health
tracking, and docu-
mentation

For older users, navigating the
app might be challenging due
to an abundance of features and
small text on buttons.

3.4 Free/Carely Pro
$14.99/month or
$149.99/year

Yes No

3 Life360 Safety and communi-
cation

For seniors with poor eyesight, us-
ing the app might be difficult due
to an excessive number of features
and small text; some features may
be unnecessary for older users.

4.8 Free/Life360 Pro
$4.99/month or
$49.99/year

Yes Yes

4 eCare21 Healthcare The app has comprehensive fea-
tures, and it may take a while for
users to learn how to use it.

4.5 Free/Premium
plan:
$7.95/month

Yes Yes

6 Senior
safety app

Safety and comfort Designed with seniors’ needs in
mind. The app interface is simple
and easily understandable, even
for seniors with no experience us-
ing phones. The app also offers
a range of customization options
that allow seniors to adjust the
app to suit their individual needs.

4.5 Free/$4.50/month
or $45.00/year

Yes No

Table 2.1: Overview of applications

8

...................................2.5. Senior safety app

Analysis of existing solutions shows that there is currently no app that
provides help for seniors in all areas of life using AI. The idea is to introduce
an AI chat that will be ready to answer seniors’ questions on any topic at
any time, and also to create a platform where seniors can create tasks and
volunteers can fulfill them.

My mobile platform will not only ensure the solution of everyday problems
for seniors, but it will also provide volunteers with the opportunity to actively
help those in need.

9

10

Chapter 3

Analysis

This chapter will present the functional and non-functional requirements for
the mobile application, along with the key use cases. The use cases will be
described in detail to clearly illustrate how users interact with the application.

3.1 Requirements analysis

Requirements analysis is an important phase in software development that
helps define the features and behavior of the system. Product requirements
represent specific characteristics that are necessary to satisfy user and business
needs. There are two basic types of system requirements: functional and
non-functional. [9]

Functional requirements describe the services the system should provide
and how the system will react to its inputs.

Non-functional requirements, on the other hand, focus on qualitative
attributes like security, reliability, performance, usability, and testability.
In the software marketplace where functionally similar software products
compete for attention, these non-functional aspects often play a crucial role
in differentiating between competing options.

Analysis will enable the creation of a use case diagram, the development of
a prototype application, and the determination of its structure. [10]

3.1.1 Functional requirements

Functional requirements will be divided into three groups depending on the
user’s role: specific for volunteers, specific for seniors, and common for all
registered users. Additionally, each functionality is categorized by priority:

11

3. Analysis
. Red color - high priority;.Orange color - medium priority;. Teal color - low priority.

Registered user

All users, regardless of their role, will have the following functions:

. FR1 Registration
All users will be able to create a new account in the application.

. FR2 Login
Users will be able to log in to their account.

. FR3 Changing personal information
Each user will be able to edit their personal information in their account
settings, including address, and email.

. FR4 Deleting account
Users will be able to permanently delete their accounts from the applica-
tion.

. FR5 Logout
Each user will be able to safely log out of the application.

Volunteer

. FR6 Monitoring tasks from seniors on a map
Volunteers will be able to view available tasks from seniors on the map.

. FR7 Filter search tasks
Volunteers will be able to use filters in the search tool to find tasks that
are relevant to them, including filters for date range, status of task, and
category of help.

12

.................................3.1. Requirements analysis

. FR8 Recording task
Volunteers will be able to record a task from a senior for themselves, to
assist.

FR9 Rating seniors
Volunteers will be able to rate seniors and their satisfaction with the
provided assistance after completing the task.

. FR10 Withdrawal of task
Volunteers will have the option to withdraw the task if they can no longer
participate or provide the requested help.

. FR11 Notifications of new tasks
Volunteers will be able to receive notifications of new tasks.

Senior

“My Support” will have a simpler interface for the elderly so they don’t
have trouble using it because of visual noise. When registering, seniors must
provide personal information including phone number, first name, last name,
and date of birth. Seniors will be able to:

. FR12 Creating task
Seniors will be able to create tasks.

. FR13 Deleting own task
Seniors will be able to delete a task if it is no longer current or if they
decide that they do not need the given help.

. FR14 Editing task
Seniors will be able to edit their task if it has not yet been accepted by
any volunteer, so they can specify their needs.

. FR15 Rating volunteers
Seniors will be able to rate the volunteers and their satisfaction with the
help provided once the task is complete.

13

3. Analysis
. FR16 Contact list of volunteers

Seniors will have the opportunity to add volunteers to their contact list
so they can contact them for future tasks.

. FR17 Ask a question in chat with AI
Seniors will have the opportunity to ask a question to AI through the
chat interface of the application.

3.1.2 Non-functional requirements

.NFR1 Multiplatform
The application must be developed with full compatibility with various
operating systems, including iOS and Android. This will ensure that it
effectively serves a diverse audience of users using different devices and
platforms.

.NFR2 Intuitive interface
The design of the application must be intuitive and easy to understand for
the user. Users should be able to easily navigate and use the application
without the need for lengthy training, which will increase user satisfaction.

.NFR3 Adaptive design
The application must be optimized for use on mobile devices and different
screen sizes. Adaptive design will ensure the app runs smoothly and
efficiently on different devices, which is important for users who use the
app on different devices.

.NFR4 Profile protection
The application must include reliable measures to protect user personal
data. This includes proper authentication of user permissions to their
data and protection against unauthorized access to this data.

.NFR5 Scalability
The development of an application must take into account the possibility
of future expansion with new features. The application should be designed
with scalability in mind, meaning the ability to easily add new features
and functionality without major intervention in existing code.

14

...................................... 3.2. Use cases

.NFR6 Testability

To ensure the stability of the application and to facilitate bug manage-
ment, it must be designed for easy testability. This will allow systematic
testing and the rapid detection and elimination of potential problems.

.NFR7 Rapid response

The application should respond quickly to user actions, including page
load speed and processing of user requests. Page load times should not
exceed 2 seconds, while processing user requests, such as form submissions
or data retrieval, should complete within 500 milliseconds. Fast response
is a key element of a positive user experience.

.NFR8 Efficient use of resources

The application should make efficient use of device resources such as
processor, memory, and battery to achieve optimal performance and
extend device life.

.NFR9 Up-to-date documentation

Up-to-date documentation and user guides should be available to facilitate
the use and integration of the application.

.NFR10 Availability and accessibility

The application should be designed to improve accessibility for users
with different types of limitations and needs.

3.2 Use cases

The use case is a methodology used in system analysis to identify, clarify,
and organize system requirements. Use cases contain detailed information
about the system, the system’s users, relationships between the system and
the users, and the required behavior of the system. This method creates a
document describing all the steps that a user will take to complete a certain
activity.

Use cases describe the functional requirements of the system from the
perspective of the end user and create a sequence of events focused on
achieving goals that are easy to follow for both users and developers. [11]

15

3. Analysis
3.2.1 Actors

Actors in application use cases include:

. Unauthorized user

This actor has not yet entered the app, so most of the features are not
available for it.

.Authorized user

This category is defined for two actors who have successfully logged into
the application:

. Senior
This actor is a user who uses the application to request help or
services from other users.

.Volunteer
This actor is a user who offers their volunteer help or services to
other users who request help.

. System

The system is the “My Support” mobile app itself.

Figure 3.1: Actors.

16

...................................... 3.2. Use cases

3.2.2 Use cases

.UC1 – Register. Description:

- New users want to create an account and register in the mobile
app.. Pre-conditions:

- The user has launched the “My Support” application.. Scenario:..1. The user clicks the “Get started” button on the start screen...2. The system redirects the user to the registration screen...3. The user fills in the required information, such as name, last
name, email address, password, contact number, and role (vol-
unteer or senior)...4. After entering the initial data, the user clicks the “Next” button...5. The system redirects the user to a role-specific page to provide
additional information:. Volunteer: they will need to provide information about

their working hours.. Senior: they will need to provide their date of birth and
address...6. Once the additional information is filled out, the user clicks the

“Register” button...7. The system verifies the entered data and creates a new account
for the user, registering them as either a volunteer or a senior...8. After successful registration, the user is redirected to the login
screen..Actors:

- Unauthorized user
- System.UC2 – Log in. Description:

- Users want to log into the “My Support” mobile application with
their existing accounts.. Pre-conditions:

- The user has launched the “My Support” application.
- The user has registered with the system.

17

3. Analysis
. Scenario:..1. On the start screen, click the “Already have an account? Sign

in” button...2. The system redirects the user to the login screen...3. The user enters their email address and the password they used
to register...4. He presses the “Login” button...5. The system verifies the entered login details and redirects the
user to the main application screen..Actors:

- Authorized user
- System.UC3 – Log out. Description:

- Users want to securely log out of their accounts on the mobile app.

. Pre-conditions:

- The user has launched the “My Support” application.
- The user has logged into the system.. Scenario:..1. The user clicks the “Account” button, where the account options

are located...2. The system will display user information and various options...3. Among the options, the user will select the “Log out” option
and click the button...4. The system will ask the user to confirm the logout to prevent
accidental logout...5. The user confirms this choice by clicking on the “Yes” button...6. The system confirms the logout action and terminates the
current user session...7. The user will be redirected to the login screen where they will
need to enter their login details to log back in..Actors:

- Authorized user
- System.UC4 – View your personal information

18

...................................... 3.2. Use cases

. Description:

- Users want to view their data stored in the “My Support” mobile
application.. Pre-conditions:

- The user has launched the “My Support” application.
- The user has logged into the system.. Scenario:..1. The user clicks the “Account” button, where the account options

are located...2. The system displays the user’s personal information, including
first name, last name, date of birth, email address, address, and
contact number...3. The user can view their data and verify that it is correct..Actors:

- Authorized user
- System.UC5 – Change your personal details. Description:

- Users want to update their personal information in the “My
Support” mobile app in case of changes or updates.. Pre-conditions:

- The user has launched the “My Support” application.
- The user has logged into the system.. Scenario:..1. The user clicks the “Account” button, where the account options

are located...2. The system will display user information and various options...3. Among the options, the user will select the “Change data”
option and click the button...4. The system redirects the user to a screen where they can edit
their details...5. The user makes the necessary changes to their personal infor-
mation...6. When the editing is finished, the user presses the “Save” button...7. The system verifies the entered data and updates the account
information.

19

3. Analysis ...8. The user receives confirmation of the successful update of their
personal information..Actors:

- Authorized user
- System

Figure 3.2: Use case - Diagram.

20

...................................... 3.2. Use cases

.UC6 – Create a task. Description:

- Seniors want to create a new task in the mobile application “My
Support”.. Pre-conditions:

- The senior has launched the “My Support” app.
- The senior has logged into the system.. Scenario:..1. Senior will go to the “Create task” page...2. The system displays a form for creating a task, which the senior

must fill in:
- The title of the task.
- Description of the task.
- Specify the address where help is needed.
- Select a task category from the list...3. The senior fills in the required information...4. The senior click on the “Create” button...5. The system accepts the created task and includes it in the
system. The task will be available to volunteers who offer help..Actors:

- Senior
- System.UC7 – Delete a task. Description:

- Seniors want to delete their task for help if they no longer need it.

. Pre-conditions:

- The senior has launched the “My Support” app.
- The senior has logged into the system.. Scenario:..1. The senior navigates to the “Home” page...2. The system will display the main page to the senior with a list

“My tasks”...3. The senior from the list of statuses selects tasks with the status
“Created”.

21

3. Analysis ...4. The system displays a page with a list of created help tasks...5. The senior finds the task they want to delete and clicks on it...6. The system displays the details of this task, including its title
and description...7. On this page, the senior finds the option “Delete task” and
clicks on it...8. The system asks the senior to confirm the deletion of the task
to prevent unintended removal...9. The senior confirms their choice to delete the task....10. The system deletes the task from the system displays a confir-
mation of successful deletion, and also notifies the volunteer,
who might have taken on this task, that their help is no longer
needed..Actors:

- Senior
- System.UC8 – Edit a task. Description:

- Seniors want to modify their existing task for assistance if they
need to update information.. Pre-conditions:

- The senior has launched the “My Support” app.
- The senior has logged into the system.. Scenario:..1. The senior navigates to the "Home" page...2. The system will display the main page to the senior with a list

“My tasks”...3. The senior from the list of statuses selects tasks with the status
“Created”...4. The system displays a page with a list of created help tasks...5. The senior finds the specific task they want to edit and clicks
on it...6. The system displays the details of that task, including the title,
description, and other information...7. On this page, the senior finds the “Edit task” option and clicks
on it...8. The system will redirect seniors to a page with a form to edit
the task, where they can edit the title, description, category
and address.

22

...................................... 3.2. Use cases..9. After making the desired edits, the senior clicks on the “Save”
button....10. The system verifies the information entered and updates the
task for assistance, then displays a confirmation that the task
was successfully updated..Actors:

- Senior
- System.UC9 – View a task. Description:

- Users want to view the details of a specific help task in the “My
Support” mobile app.. Pre-conditions:

- The user has launched the “My Support” app.
- The user has logged into the system.. Scenario:..1. The user navigates to the "Home" page...2. The user finds the specific task they want to view and clicks

on it...3. The system displays the details of that task, including the title,
description, date, category...4. The user can view all available information about the task and
find out more details about how they can help..Actors:

- Authorized user
- System.UC10 – Record a task. Description:

- Volunteers want to take on a specific task for help on the “My
Support” mobile app.. Pre-conditions:

- The volunteer has launched the “My Support” app.
- The volunteer has logged into the system.

23

3. Analysis
. Scenario:..1. The volunteer goes to the “Home” page...2. The system will display a page with a list of all available help

tasks...3. The volunteer finds the specific task they want to accept and
clicks on it...4. The system displays the details of this task, including the title,
description, date and category...5. The volunteer clicks on the “Accept task” button...6. After accepting the task, the system returns to the main screen
and sends a notification to the seniors that their task has been
accepted (UC19)..Actors:

- Volunteer
- System

.UC11 – Unsubscribe a task

. Description:

- Volunteers want to withdraw an accepted task for help in the
mobile application “My Support” if they can no longer or do not
wish to fulfill the given task.. Pre-conditions:

- The volunteer has launched the “My Support” app.
- The volunteer has logged into the system.
- The volunteer has accepted a task for help that he wants to remove.. Scenario:..1. The volunteer goes to the “My tasks” page...2. The system displays a page showing the tasks that the volunteer

has accepted...3. The volunteer finds the specific task they want to remove and
clicks on it...4. The system displays the details of this accepted task, including
the title and description...5. The volunteer clicks on the “Leave task” button...6. When a task is leaved, the system is updated and the task is
removed from the list of accepted tasks.

24

...................................... 3.2. Use cases

.Actors:

- Volunteer
- System.UC12 – View history of fulfilled tasks. Description:

- Volunteers want to view the history of tasks for help they have
already fulfilled in the “My Support” mobile app.. Pre-conditions:

- The volunteer has launched the “My Support” app.
- The volunteer has logged into the system.. Scenario:..1. The volunteer is taken to the “My tasks” page, which shows

the tasks that the volunteer has already completed...2. The system will display a page where the volunteer can select
the "Completed" or "In processing" tab...3. The volunteer will click on "Completed"...4. The system will display a list of tasks for assistance that the
volunteer has completed in the past..Actors:

- Volunteer
- System.UC13 – Ask a question to the AI chat. Description:

- Seniors want to ask questions or seek advice from the smart chat
in the “My Support” mobile app.. Pre-conditions:

- The senior has launched the “My Support” app.
- The senior has logged into the system.. Scenario:..1. The senior goes to the “Chat bot” page where the smart chat

system is available...2. The system will display a chat window where the seniors can
start typing their questions or requesting advice.

25

3. Analysis ...3. The senior writes their question or request and sends it to the
chat...4. The system processes the question or request and starts pro-
viding an answer or advice to the senior...5. The senior can continue the conversation with the AI chat if
they need more information or have further questions..Actors:

- Senior
- System

26

...................................... 3.2. Use cases

Figure 3.3: Use case - Diagram.

27

28

Chapter 4

Design

This chapter will cover class and sequence diagrams, applications, and the
rationale for their use in implementation. It will also comparatively analyze
existing AI APIs, assessing their key features, advantages, and disadvantages.

4.1 Class diagram

Class diagrams, a core component of Unified Modeling Language (UML),
graphically represent class relationships and code dependencies in a system.
They aid system design by clarifying problem domain requirements and
identifying components. In object-oriented development, early class diagrams
often reflect actual classes and objects in the code, serving as a blueprint for
development. [12][13]

29

4. Design..

Figure 4.1: Class diagram.

30

.................................. 4.2. Sequence diagram

The class diagram I created reflects the structure of a system designed to
manage interactions between volunteers and older people, their tasks, ratings,
and comments. The main entities represented in the diagram are:

. User: this is the primary class that contains information about all users.
Fields include email, password, first and last names, and telephone
numbers..Volunteer: this subclass inherits from the User class and is specialized
for volunteers. It’s connected to the “Working hours” class to indicate
when a volunteer is available to provide services. The separation of
“Working hours” into its own entity allows for a flexible representation of
a volunteer’s availability, as one volunteer might be available at multiple
non-continuous times throughout the week.. Senior: another subclass of “User”, designed for elderly people. It has an
additional field for the date of birth and a connection to the “Address”
class, indicating the location of the elderly person..Task: a class that represents tasks that seniors can make. It holds the
name of the task, the date it was created, the count of volunteers needed,
a description, and a rating field containing information on who gave
ratings to whom and the values (from 1 to 5)..Address: a class that contains address details such as street, house, city,
postal code, and state.. Comment: this class is designated for remarks left by users about tasks.
It includes the comment text, the author of the comment, and the date
it was posted..Working hours: a class associated with the “Volunteer” class, which
shows the days of the week and time intervals when the volunteer is
available..Task category: this enumeration defines categories of tasks, making it
easier to filter and manage them..Task status: an enumeration that describes the possible statuses of a
task with values like created, accepted, in processing, completed, and
canceled. Enums are used here to standardize the statuses across the
system and to simplify the process of status management.

4.2 Sequence diagram

A sequence diagram, a type of interaction diagram, presents objects as
lifelines extending vertically on the page. The interactions between these

31

4. Design..
objects over time are depicted as arrows representing messages, flowing from
the originating lifeline to the destination lifeline. These diagrams excel in
illustrating the communication between different objects and the specific
messages that initiate these interactions. [19]

The provided sequence diagram (see Figure 4.2) details the process of
initiating a new task by elderly users. This diagram shows the interaction
between the user, system controllers, and databases during the creation of a
task. The procedure involves the following steps:..1. The user selects the option to create a new task on the task addition

screen...2. The system, through the task controller, verifies the accuracy of the data
entered by the user...3. If errors are detected in the data:..a. The system displays validation error messages...b. The user has the opportunity to correct the entered data...4. If there is an authorization error:..a. The system displays an authorization error...5. Upon successful validation:..a. The system transfers the data to the task service, which creates a

new task and stores it in the task collection...b. The user receives information about the successful creation of the
task.

32

.................................. 4.2. Sequence diagram

Figure 4.2: Sequence diagram "Create a new task".

33

4. Design..
The sequence diagram presented (see Figure 4.3) illustrates the process

of an interactive dialogue between a user and an AI system through a chat
interface. The interaction procedure is described by the following steps:..1. The user inputs and sends their message through the chat interface...2. The entered message is passed to the message processing module where

it undergoes initial analysis...3. The message is then forwarded to the chatbot Application Programming
Interface (API), developed using GPT technology (OpenAI API), to
extract relevant information and generate a response...4. If an error occurs during the API call:..a. the system receives information about the error...b. The message handler receives and processes the error, determining

its type...c. If the error is related to access issues, the system displays an error
message...5. If no error occurs:..a. The response generated by the ChatGPT API is sent back to the
message handler...b. The message handler forwards the response to the Response Gen-
erator module, where it is formatted for further delivery to the
user...6. The formatted response is sent back to the message handler...7. The message handling module sends the final response back to the chat

interface...8. The chat interface displays the response or error message on the user’s
screen.

34

..................................
4.2.Sequence

diagramFigure 4.3: Sequence diagram "Ask a question to AI chat".

35

4. Design..
4.3 Analysis of available AI APIs

AI API

AI is increasingly becoming a tool for solving problems in various fields. AI
libraries are often used in application development to provide the necessary
set of functions and options to efficiently realize specific tasks.

This chapter aims to explore and compare different AI libraries in depth.
The main objective will be to identify the key characteristics and to distinguish
the advantages and disadvantages of each of them. Such a review will serve
as a basis for an informed choice when developing applications.

4.3.1 Dialogflow Google AI

Dialogflow is a tool developed by Google to create chatbots and Natural Lan-
guage Processing (NLP) applications. It is designed to facilitate interaction
with users through conversations and understanding input text. [14]

API’s advantages:

. Easy to use: Dialogflow is relatively easy to learn how to use. It offers
an intuitive interface and extensive documentation;. Extensive documentation and active developer community: there is com-
prehensive documentation that facilitates development and a developer
community that provides support and shares experiences;. Supports many languages: Dialogflow supports over 100 languages,
making it easier for developers to create chatbots and applications for a
global audience.

API’s disadvantages:

. Cost: rates increase rapidly with high query volume, making it expensive
for large projects;. Limited flexibility: the concept of intents simplifies development but is
limited in complex scenarios.

4.3.2 Wit.ai by Facebook

Wit.ai is an open platform for developing NLP applications by Facebook. It’s
a cloud service that uses AI to understand and generate human language.
[15]

36

..............................4.3. Analysis of available AI APIs

API’s advantages:

. Easy to use: Wit.ai is relatively easy to learn how to use. It offers an
intuitive interface and extensive documentation;. Integration: Wit.ai can be easily integrated with other platforms and
services;. Learning from large datasets: Wit.ai learns from large datasets, which
allows it to provide more accurate results.

API’s disadvantages:

. Privacy: as part of Facebook, raises data privacy concerns for some users;. Limited analytics: does not offer as rich analytics and monitoring tools
as other APIs;. Flexibility: suitable for basic scenarios, but complex cases may require
extra effort;. Dependence on Facebook’s infrastructure: integration with Facebook’s
infrastructure can be seen as a disadvantage, especially for those who
prefer independent platforms.

4.3.3 Rasa

Rasa is an open-source framework for creating chatbots and NLP systems. It
is a flexible and powerful platform that allows developers to create custom
chatbots and applications. [16]

API’s advantages:

. Complete flexibility and customization: Rasa provides developers with
full control and flexibility over the creation of chatbots and NLP systems;.Works both in the cloud and locally: Rasa can be operated either in the
cloud or locally, offering flexibility to developers;. Large and active developer community: Rasa has a large and active
developer community, and provides support and resources.

API’s disadvantages:

. Complexity: requires technical expertise in machine learning and devel-
opment;

37

4. Design..
. Resources: requires large computational resources to deploy and train

models;. Support: the free version is under-supported at the enterprise level.

4.3.4 OpenAI API

The OpenAI API provides access to powerful language models such as GPT.
These models can be used for generating text, translating languages, writing
various kinds of creative content, and other tasks. [17]

API’s advantages:

. Strong language models with high-quality text generation: the OpenAI
API employs advanced language models capable of generating natural
text;. High quality of text generation: the OpenAI API offers high-quality text
generation that can be used for various purposes.

API’s disadvantages:

. Cost: usage costs are significant when processing large volumes of re-
quests;. Data security: restrictions on processing sensitive data due to sending
to a third-party server;. Does not contain inbuilt functions for creating chatbots: unlike special-
ized tools such as Dialogflow, the OpenAI API does not contain inbuilt
functions for creating chatbots.

4.3.5 LaMDA by Google AI

LaMDA is a language model from Google, designed for more natural and
free-flowing communication. It is a generative model capable of generating
text, translating languages, writing various types of creative content, and
answering questions in an informative manner. [18]

API’s advantages:

. Focusing on a variety of conversations: LaMDA can host conversations
on a variety of topics, including open-ended, challenging, or unusual
ones;

38

..............................4.3. Analysis of available AI APIs

. High quality of generated text: LaMDA is capable of generating text
that is grammatically correct, coherent, and engaging;. Customizability: LaMDA can be customized to meet the specific needs
of an application.

API’s disadvantages:

. Security issues: LaMDA may inadvertently generate sensitive information
or unsafe content if such material is present in the training data;. Contextual limitations: sometimes the model does not preserve long
context in a conversation, resulting in incoherent or repetitive responses
in long conversations;. High difficulty in training: LaMDA is a generative model, meaning it
can generate new text even if it has never seen it before. This makes
LaMDA more complex to train than other models that are limited to
the dataset on which they were trained.

4.3.6 Bard API

Bard API is an API for creating conversational interfaces from Google AI.
It provides access to a powerful language model capable of processing and
generating text, translating languages, writing various types of creative
content, and answering your questions in an informative manner.

API’s advantages:

. High accuracy and performance of the language model: Bard API is
based on the LaMDA language model, which is one of the most powerful
language models in the world. LaMDA is capable of generating text that
is grammatically correct, coherent, and informative;. Supports many languages: Bard API supports more than 100 languages,
enabling developers to create conversational interfaces for a global audi-
ence;. Simple API for use: Bard API provides a simple and intuitive API that
is easy to use for developers of all levels of experience;. Scalable architecture: Bard API is based on a flexible architecture that
allows developers to expand and customize their conversational interfaces.

API’s disadvantages:

39

4. Design..
. Limited access: in the early stages, the service may not be available to

all users, limiting the practical applicability and testing of the model in
different areas;. Integration: does not support integration with systems outside the Google
ecosystem;. New product: as a relatively new tool, it is not as robust compared to
more mature competitor products.

Criterion Dialogflow Wit.ai Rasa OpenAI API LaMDA Bard API
Ease of use Easy Easy Demanding Very Demanding Easy Easy
Flexibility Low Low High High Medium High

Customization Limited Limited High Limited Limited High
Price Free Free Free Paid Free Paid

Integration Extensive Limited Medium Limited Extensive Limited
Accuracy High High High Low High High

Performance High High High Low High High
Developer community Large Large Large Small Large Small
Availability in czech Yes Yes Yes Yes Yes Yes

Table 4.1: AI API comparison

Based on analyzing all the AI APIs, I decided to choose OpenAI API
because it does not require additional model training and provides students
with a free rate, which is perfect for my project.

40

................................. 4.4. Selected technologies

4.4 Selected technologies

In this section, we will take a detailed look at the structure of the application
and familiarise ourselves with the technologies used at each level of that
structure.

The model describes the use of technologies at each level and their interac-
tion within the system’s architecture.

Figure 4.4: Deployment model.

41

4. Design..
4.4.1 Presentation layer

React Native

React Native is a JavaScript framework for writing real mobile apps with
native rendering for iOS and Android. It is based on React, Facebook’s
JavaScript library for creating user interfaces, but is mobile platform-centric
instead of browser-centric. Using JavaScript interfaces to the platform’s APIs,
React Native apps can directly access features such as camera and geolocation.
It maintains high performance by separating threads from the main UI and
allows simultaneous development of cross-platform applications using shared
code. [26]

React Navigation

React Navigation is a popular navigation library for React Native that
provides tools for implementing different types of navigation structures in
mobile applications.

Redux

Redux is a state management library for JavaScript applications, commonly
used with React. It centralizes the application’s global state in a single store,
allowing consistent and predictable data flow throughout the app.

Axios

Axios are used to make HyperText Transfer Protocol (HTTP) requests to the
server side of the application. It simplifies asynchronous communication with
APIs by providing features like automatic JSON conversion, request/response
interceptors, and error handling.

4.4.2 Application layer

Node.js

Node.js is a server-side platform, designed to efficiently handle client requests
and manage data processing. In addition to managing client-server commu-
nication, Node.js can interact seamlessly with databases, perform business
logic, and handle asynchronous tasks.

42

................................. 4.4. Selected technologies

JSON Web Tokens

JSON Web Tokens are a compact, self-contained way to transmit information
between client and server securely. They are often used for user authentication
and authorization, ensuring secure data exchange between the client and
server.

OpenAI

Integration of artificial intelligence APIs to enhance the application’s func-
tionality, used for working with an AI-based chatbot.

4.4.3 Data layer

MongoDB

MongoDB is a non-relational database that stores structured data in a flexible
format called Binary JSON. Unlike traditional relational databases, MongoDB
does not use tables or apply a strict schema, allowing you to store different
types of documents in a single collection.

Mongoose

Mongoose is an object modeling tool for MongoDB and Node.js. Its peculiarity
is that programmers do not need to create a schema directly in the database,
link it to Object Relational Mapping (ORM), or bind it to project objects
and classes. It is enough to define the data structure in JSON format in the
project code. [27]

Communications

.The presentation layer interacts with the business logic through an
HTTP/REpresentational State Transfer (REST) API, using tools such
as Axios to send requests..The business logic processes requests, authenticates users with JSON
Web Token (JWT) and interacts with the data layer through the TCP/IP
protocol..The data layer provides and stores information necessary for the applica-
tion’s operation, ensuring CRUD operations (create, read, update, delete
data).

43

4. Design..
Each of these components plays a specific role in the application’s architec-

ture, ensuring its efficiency, scalability, and security.

MERN stack

Figure 4.5: MERN stack.

As a result, it was decided that the most efficient development solution
would be to use a variation of the MERN stack. In the classic version,
this stack includes MongoDB, Express.js, React.js and Node.js. The main
difference in our variation is that the user interface will be built on React
Native, focused on creating mobile applications.

A significant advantage of the MERN stack is the use of a single program-
ming language, JavaScript, for both client-side and server-side development.
This consistency simplifies the coding process.

The choice of the MERN stack variation in this project provides flexibility,
scalability, and unification of the technology stack. This allows for efficient
and fast development while maintaining a high-quality application. [28]

4.5 User interface design

In the context of mobile app development, prototyping is the creation of an
initial version of an app to demonstrate an idea, evaluate design decisions,
and understand potential problems and solutions. The prototyping process is
flexible as it does not follow strict rules. The prototype does not have to be
perfect, its main function is to facilitate testing of the idea and reduce risks
in further development. [20]

Before implementing the application, you need to decide how it will look
and for this purpose, you will need to create a prototype of the application.
To create a prototype I used such a tool as Figma [21], as it is intuitive and

44

................................. 4.5. User interface design

suitable even for those without previous experience in prototyping websites
or applications.

When designing this app, the main priority was to ensure that it was easy
to use for pensioners and that the interface elements were clear and visible. I
chose the “Poppins” font for its good readability and soft, rounded letterforms
that provide a comfortable perception of the text. The main rule of thumb
when choosing a font for people with low vision is to avoid serif fonts and use
large font sizes.

The color palette of the app was chosen to reflect the color trends of 2023
and to provide a calming and contrasting visual experience. Shades of blue
are considered the most calming in the colour palette and they were key in
my selection.

In addition, special attention was paid to the layout of buttons and forms
on the page to maximize the ease of interaction between pensioners and the
app.

Figure 4.6: Color palette.

45

46

Chapter 5

Implementation

This section focuses on the implementation of the application. The first part
presents a model illustrating the architecture of the application. The second
part discusses the project structure, and its implementation and describes
the technologies used to create the application “MySupport”.

5.1 Diagram component

47

5.Im
plem

entation....................................

Figure 5.1: Diagram component.

48

................................ 5.2. Application architecture

The image shows a diagram of the mobile platform architecture. It consists
of three main parts:

. Client-side: includes login, registration, task creation, task overview,
account management, AI-based chat interface, and contact list. This is
what users interact with directly.. Business logic: consists of controllers that accept HTTP requests from
the client side and delegate them to the appropriate services. These
services perform the basic processing logic.. Routes: define the HTTP endpoints for various functions and

correspond to controllers. They facilitate routing requests from the
client side to controllers.. Controllers: includes UserController, TaskController, ChatCon-
troller, AddressController, and CommentController. They are the
entry points for processing requests related to their functions.. Services: UserService, TaskService, ChatService, AddressService,
and CommentService handle more complex logic and interact with
external APIs and models..Models: are used to interact with the database, and store and
retrieve data from collections.. External API: used to integrate with external services such as the
OpenAI API, which can enrich the platform with advanced AI
capabilities..Database: contains collections such as UserCollection, TaskCollection,

AddressCollection, SeniorCollection, VolunteerCollection, and Comment-
Collection where the data used in the application is stored.

This structure reflects a three-tier architecture and illustrates a clear
separation of client-side, business logic, and database, thus providing easy
scalability and support for the mobile platform.

5.2 Application architecture

My project will use a three-tier architecture, a client-server model with
distinct layers for user interface, business logic, and data storage. Each
layer is maintained independently on different platforms. [22] It includes the
following tiers:

. Presentation tier: manages the user interface and user interactions..Application tier: handles business logic and data processing.

49

5. Implementation....................................
. Data tier: responsible for data storage and ensuring data integrity and

security.

The benefits of this architecture include scalability, increased reliability,
enhanced security, and improved performance, allowing each tier to be scaled
and updated independently. [23]

5.3 Presentation tier

This section describes the key components of the presentation tier of the
application, as well as the overall code structure.

5.3.1 Code structure

In the project, the frontend/MySupport folder includes the following sub-
folders and key files:

. assets/ — contains static resources such as images, fonts, and other
media files used in the project.. components/ — includes reusable interface components, such as modal
windows, app footer, task, and other UI elements.. reducers/ — contains reducer functions for managing the application
state through Redux.. screens/ — includes components, each corresponding to an individual
screen of the mobile application.. styles/ — contains style files that define the appearance of the screens
in the project.. App.js — the main JavaScript file that initializes key resources.. AppRoutes.js — defines the routing of the application.

5.3.2 Routing

React-navigation library is used for in-app navigation, allowing to creation
of navigation stacks. Each screen is associated with a unique route and
component:

50

................................... 5.3. Presentation tier

1 const Stack = createNativeStackNavigator ();
2

3 const AppRoutes = () => (
4 <Stack. Navigator initialRouteName =" StartScreen ">
5 <Stack. Screen name=" StartScreen " component ={ StartScreen } />
6 <Stack. Screen name=" RegisterScreen " component ={

RegisterScreen } />
7 {/* Other screens */}
8 </Stack.Navigator >
9);

Listing 5.1: Routing in “My Support”

StartScreen is set as the initial screen, ensuring it loads at application
startup. Using the navigation.navigate method, transitions are managed
and parameters are passed:

1 navigation . navigate (’UserInfoScreen ’, { userId : 123 });

Listing 5.2: navigation.navigate

On the target screen, parameters are retrieved as follows:

1 const { userId } = route. params ;

Listing 5.3: route.params

The use of React navigation ensures smooth and efficient screen transitions.

5.3.3 Redux Toolkit

In the project, state management is handled using Redux with the Redux
Toolkit. The management of the user authentication state illustrates how
Redux works. The authSlice contains the user Identifier (ID) and access
token, along with reducers to update these values:

1 const authSlice = createSlice ({
2 name: "auth",
3 initialState : { id: 0, token: null },
4 reducers : {
5 saveUser (state , action) { state.id = action . payload .id;

state.token = action . payload .token; },
6 logoutUser (state) { state.id = 0; state.token = null; },
7 },
8 });

Listing 5.4: authSlice

51

5. Implementation....................................
Components modify the state using the dispatch function, for example,

dispatch(logoutUser()). The authSlice is integrated into the main store
through configureStore, ensuring centralized management and access to
data:

1 import authReducer from "./ authSlice ";
2

3 export default configureStore ({
4 reducer : { user: authReducer },
5 });

Listing 5.5: configureStore

5.3.4 Communication with application tier

Communication between client-side and business logic is done through HTTP
requests using the axios library.

Example of using axios :

1 const loginUser = async (email , password) => {
2 try {
3 const response = await axios.post("http ://172.20.10.9:4444/

api/auth/login", { email , password });
4 dispatch (saveUser ({ id: response .data._id , token: response .

data.token }));
5 } catch (error) {
6 setErrorMessage (error. response .data.error);
7 setModalVisible (true);
8 }
9 };

Listing 5.6: Axios example

In this example, we send a POST request to the /auth/login endpoint,
passing the user data. If the response is successful, we save the user data to
the Redux repository. If errors occur in the process, they are handled and
displayed to the user.

5.4 Application tier

This section will look at how the application tier is organized. It includes the
code structure and describes the interaction between the main components:
routes, controllers, services, and models.

52

................................... 5.4. Application tier

5.4.1 Code structure

In the project, the backend/ folder includes the following subfolders and key
files:

. config/ — contains configuration settings and environment variables
for the application, including database connection settings.. controllers/ — responsible for handling incoming requests and sending
responses to the client.. middleware/ — middleware functions for processing requests before
reaching the controllers.. models/ — MongoDB database schemas that define the structure of the
data.. routes/ — defines routes to handle requests from the client.. services/ — provides logic to interact with the database and perform
data operations, servicing the controllers.. test/ — includes tests for various application components.. utils/ — utility functions and helpers that are used across the applica-
tion.. validations/ — contains middleware for validating data sent to the
server.. index.js — the main entry point of the application which sets up and
starts the server.

5.4.2 Routes

In the application, routing on the back-end side is managed using Express
Router, which is used to define various routes that handle HTTP requests.

An example of using Express Router can be seen in the route for creating
a new task. Here’s how it’s implemented:

1 import express from " express ";
2 import { taskCreateValidation } from "../ validations /

taskCreateValidation .js";
3 import { TaskController } from "../ controllers /index.js";
4 import { validate } from "../ middleware / validationMiddleware .js"

;
5 import authMiddleware from "../ middleware / authMiddleware .js";
6

53

5. Implementation....................................
7 const router = express . Router ();
8

9 router .post(
10 "/tasks",
11 authMiddleware ,
12 validate (taskCreateValidation),
13 TaskController . createTask
14);

Listing 5.7: taskRoutes – create task

. authMiddleware is used to ensure that the user is authenticated before
allowing operations related to creating a task.. validate(taskCreateValidation) is applied to check the correctness
of the data submitted by the user. This helps to prevent errors and
enhances the reliability of data processing.. TaskController.createTask is a function of the controller that handles
incoming requests and sends responses to the client.

5.4.3 Controller layer

After defining routes in Express Router, the next key component of the
application architecture is the controllers. Controllers serve as a link between
routing and business logic, implemented at the service level. They handle
incoming HTTP requests, call the appropriate services to perform business
operations, and send responses to the client.

An example of a controller operation in Express is illustrated by the
createTask function:

1 import taskService from "../ services / TaskService .js";
2

3 export const createTask = async (req , res , next) => {
4 try {
5 const userId = req. userId ; // Extracting the user ID from

the request
6 const taskData = req.body; // Receiving the task data from

the request body
7 const task = await taskService . create (taskData , userId); //

Calling the service to create a task
8

9 res. status (201).json(task); // Sending a response with the
created task and status 201

10 } catch (err) {
11 next(err); // Passing the error to the error handler
12 }
13 };

Listing 5.8: TaskController - createTask

54

................................... 5.4. Application tier

5.4.4 Service layer

After controllers, the next key component of the application architecture is
the service layer. Services are responsible for executing business logic and
interacting with data models. This abstraction helps to separate HTTP
request processing in controllers from operations directly related to business
logic and the database.

An example of how the service layer is implemented can be illustrated with
the create function from the task service:

1 import Task from "../ models /Task.js";
2 import User from "../ models /User.js";
3

4 async create (taskData , userId) {
5 const user = await User. findById (userId);
6 if (! user || user.role !== " SENIOR ") {
7 throw new Error("Only SENIOR users are allowed to create

tasks");
8 }
9

10 const doc = new Task ({
11 ... taskData ,
12 senior : userId ,
13 });
14 return await doc.save ();
15 }

Listing 5.9: TaskService – create

In the example provided, the create function from the task service demon-
strates how services can be effectively used to encapsulate the business logic
of the application. This is particularly important for maintaining order and
cleanliness of the code, as well as ensuring its scalability and ease of testing.

5.4.5 Model layer

Models in Mongoose serve as the schema definition and the interface to the
underlying database for creating, querying, updating, and deleting records.

Here is an example of how models are structured, using Task as an example:

1 import mongoose from " mongoose ";
2 import { TaskCategory } from "./ TaskCategory .js";
3 const Schema = mongoose . Schema ;
4

5 const TaskSchema = new Schema (
6 {
7 title: { type: String , required : true }, // Task title , a

required field

55

5. Implementation....................................
8 countOfVolunteer : { type: Number , default : 1 }, // Number of

volunteers
9 description : { type: String , required : true }, // Task

description , a required field
10 status : {
11 type: String ,
12 enum: [" CREATED ", "IN PROCESSING ", " COMPLETED ", " CANCELED "

], // Enumeration of possible task statuses
13 default : " CREATED ", // Default status when a task is

created
14 },
15 comments : [{ type: Schema .Types.ObjectId , ref: " Comment " }],

// References to comments on the task
16 ratings : [
17 {
18 ratedBy : { type: mongoose . Schema .Types.ObjectId , ref: "

User" }, // User who provided the rating
19 ratedUser : { type: mongoose . Schema .Types.ObjectId , ref:

"User" }, // User who is rated
20 rating : Number , // The rating value
21 createdAt : Date , // Date when the rating was created
22 },
23],
24 senior : {
25 type: mongoose . Schema .Types.ObjectId ,
26 ref: "User",
27 required : true , // The user responsible for the task , a

required field
28 },
29 volunteers : [
30 {
31 type: mongoose . Schema .Types.ObjectId ,
32 ref: " Volunteer ", // References to volunteers

participating in the task
33 },
34],
35 category : {
36 type: String ,
37 enum: Object . values (TaskCategory), // Task category from a

predefined list
38 },
39 address : { type: mongoose . Schema .Types.ObjectId , ref: "

Address " }, // Address associated with the task
40 },
41 {
42 timestamps : true , // Automatically adds createdAt and

updatedAt fields to the record
43 }
44);
45

46 // Exporting the model for use in other parts of the application
47 export default mongoose .model("Task", TaskSchema);

Listing 5.10: Task – model

56

...................................... 5.5. Data tier

5.4.6 Connection to database

The code snippet below demonstrates how to set up a connection to MongoDB
using Mongoose:

1 import mongoose from " mongoose ";
2

3 const connectDatabase = async () => {
4 mongoose
5 . connect (
6 " mongodb +srv ://{ username }:{ password } @cluster0 . dmp2pra .

mongodb .net/ mySupport ? retryWrites =true&w= majority & appName =
Cluster0 "

7)
8 .then (() => console .log(" MongoDB connected successfully "))
9 . catch ((error) =>

10 console .error(" MongoDB connection failed :", error. message)
11);
12 };
13 export { connectDatabase };

Listing 5.11: Connection to database

5.5 Data tier

The MongoDB database was used in the development of the application.

MongoDB is a Not only SQL (NoSQL) database of the “document-oriented”
type, which does not require a fixed data schema. It allows storing documents
in JSON format with a flexible structure that can be changed without the
hard constraints typical of Structured Query Language (SQL) databases.
This approach speeds up application development and makes it easier to scale
and maintain. [29]

Mongoose is used to facilitate communication between the application tier
and the database. It is an Object Data Modeling (ODM) library designed for
use with MongoDB and Node.js. It handles data relationships, offers schema
validation, and makes it easy to convert objects in code to their representation
in MongoDB. [29]

57

5. Implementation....................................

Figure 5.2: Object mapping between Node and MongoDB is handled by Mon-
goose.

List of database collections:

. addresses - contains address data for seniors, including street, house
number, city, and postal code.. comments - stores user comments on tasks, including the author, text,
and date of creation.. seniors - information about elderly users, including their address and
date of birth.. tasks - a list of tasks assigned to volunteers, with descriptions, status
of completion, and task category.. users - general data about system users, including login, password, role
in the system, and contact details.. volunteers - data about volunteers, including their working hours.. workinghours - records of volunteers’ working hours, detailing start and
end times.

5.6 Tools used

While developing the server-side of the application, a range of tools and
libraries were utilized to ensure high performance, security, and ease of data
management:

.Mongoose: this is an ODM library for MongoDB and Node.js. Mon-
goose allows for managing data and interacting with MongoDB through
convenient models.

58

................................ 5.7. OpenAI API integration

. DotENV: a tool for handling environment variables stored in .env files.
It allows for the secure management of sensitive data.. Express-validator: a library for string validation that is used to check
the correctness of input data.. bCrypt: a module for hashing passwords.. JWT: a technology for the secure exchange of information between a
client and a server. JWTs are used for authentication and authorization
in applications, where tokens contain all necessary data to verify a user,
avoiding repeated database queries.. Cross-Origin Resource Sharing (CORS): a mechanism that allows or
restricts requested resources on a web page depending on the domain or
port from which the request was made.. Nodemon: a tool that automatically restarts the server whenever project
files are changed.

5.7 OpenAI API integration

ChatGPT, developed by OpenAI, is an advanced language model that has
significantly popularized NLP by making it more accessible. Previously,
engaging with NLP required extensive datasets and specialized expertise.
Now, ChatGPT enables even beginners to generate human-like text from
simple prompts, thus bridging the gap between advanced technology and the
general public. [30]

5.7.1 Implementation

Chat service

The generateChatResponse method in the ChatService class makes requests
to the OpenAI API to generate text responses using the Axios library. This
method is key for processing requests from the client application and interact-
ing with artificial intelligence. The main steps of the method are described
below.

1 async generateChatResponse (text) {
2 // Sending a POST request to the OpenAI API using the "gpt

-3.5 - turbo" model to generate responses
3 const response = await axios.post("https :// api. openai .com/v1

/chat/ completions ", {
4 model: "gpt -3.5 - turbo",

59

5. Implementation....................................
5 messages : [{ role: "user", content : text }], // Sending

user ’s text
6 }, {
7 headers : {
8 Authorization : ‘Bearer ${ process .env. OPENAI _API_KEY}‘,

// Authentication using the token from environment variables
9 "Content -Type": " application /json", // Data format -

JSON
10 },
11 });
12

13 // Response analysis : check for the necessary data in the
response

14 if (response .data && response .data. choices && response .data.
choices [0]. message) {

15 return response .data. choices [0]. message . content .trim ();
// Return the message text , trimmed of spaces

16 } else {
17 throw new Error(" Invalid or unexpected response structure "

); // Error if the response structure is incorrect
18 }
19 }

Listing 5.12: ChatService – generateChatResponse

Chat controller

An instance of ChatService is exported and used in the API controller. This
controller handles POST requests from the client, where the request body
contains the user’s message text:

1 export const postChat = async (req , res , next) => {
2 try {
3 const message = await chatService . generateChatResponse (

req.body.text);
4 res.send ({ message });
5 } catch (err) {
6 next(err);
7 }
8 };

Listing 5.13: ChatController - postChat

Here, the generateChatResponse method is called, passing in the text
from the request. The server’s response is then sent back to the client,
allowing the mobile application to receive responses from OpenAI.

60

................................ 5.7. OpenAI API integration

Integration into a React Native mobile application

On the client side, the ChatBotScreen component plays a key role in facilitat-
ing interactive communication between the user and AI through chat. This
component implements the onSend function, which is responsible for sending
user text messages to the server and handling responses from the bot. The
onSend function works as follows:

. Sending messages
The onSend function initiates a POST request to the server API at
http://localhost/api/chat, including the user’s message text in the
request body:

1 axios.post("http ://172.20.10.9:4444/ api/chat", { text })
2 .then ((response) => {
3 // Handling successful server response
4 const botResponse = response .data. message ;
5 setMessages ((previousMessages) =>
6 GiftedChat . append (previousMessages , [{
7 _id: Math.round(Math. random () * 1000000) ,
8 text: botResponse ,
9 createdAt : new Date (),

10 user: {
11 _id: 2,
12 name: " ChatBot ",
13 avatar : "https :// freelogopng .com/ images /all_img

/1681038242 chatgpt -logo -png.png",
14 },
15 }])
16);
17 })
18 . catch ((error) => {
19 // Logging errors when accessing the server
20 console .error("Error when accessing the server :", error)

;
21 });

Listing 5.14: ChatBotScreen - onSend

. Handling responses
After successfully receiving a response from the server, the response text
is integrated into the chat interface. This is accomplished using the
setMessages method, which adds new messages to the existing ones in
the chat.. Exception handling
In case of errors during the request transmission or response reception
from the server, the function actively logs these errors.

61

62

Chapter 6

Testing

Software testing is essential for identifying and addressing bugs in software
development, aiming not only to find defects but also to evaluate the software’s
quality against specified goals. Due to software complexity, achieving complete
testing is challenging, but it remains a crucial indicator of quality, including
aspects like correctness and reliability. [24]

In this chapter, we will look at usability testing and unit testing.

6.1 Unit testing

A unit test is a segment of code that checks the precision of a specific, isolated
section of application code, usually a function or method. It is crafted to
ensure that this code segment functions as anticipated, in line with the
developer’s intended logic. The unit test interacts with the code segment
solely through inputs and evaluates the outcomes as either true or false. [31]

As part of the bachelor’s thesis, unit tests were conducted for controllers
and services. In this section, we will examine the tools used during testing
and demonstrate the implementation of tests.

6.1.1 Tools used

. Mocha: a framework for organizing and executing unit tests. It is iden-
tified by the keywords describe and it, which structure the tests and
define test cases, respectively.. Chai: a library for formulating assertions that check the correctness of
code implementation.. Sinon: a tool for creating stubs and mocks, allowing for the testing of
modules without external dependencies.

63

6. Testing
. supertest: simulates HTTP requests to the server for testing controllers.

6.1.2 Testing controllers

Controllers are tested for the correct handling of HTTP requests and gener-
ating responses, using supertest to simulate requests and check responses,
ensuring the API functions correctly in isolation.

1 describe (" register ", () => {
2 it(" should register a new user successfully ", async () => {
3 // Create a mock user object and a mock token to

simulate database response
4 const mockUser = { _id: "user1", email: " test@example .

com", name: "Test User" };
5 const mockToken = " jwtToken ";
6

7 // Stub the registerUser method of UserService to
resolve with the mock data

8 sinon.stub(UserService , " registerUser "). resolves ({ user:
mockUser , token: mockToken });

9

10 // Define the request body to simulate the incoming
request data

11 const requestBody = { email: " test@example .com",
password : " password ", name: "Test User" };

12

13 // Send a POST request to the register endpoint with the
request body

14 const response = await request (app).post("/ register ").
send(requestBody);

15

16 // Check if the response status code is 201 (created)
17 expect (response . status).to.equal (201);
18 // Verify that the response body matches expected data

structure and content
19 expect (response .body).to.deep.equal ({
20 data: mockUser ,
21 token: mockToken ,
22 message : "User successfully registered ",
23 });
24 });
25 });

Listing 6.1: UserControllerTest - register

6.1.3 Testing services

Services are tested for their ability to perform user data operations, including
CRUD - operations and authentication. Stubs are used to simulate interactions

64

................................... 6.2. Usability testing

with the database and authentication processes, allowing for precise testing
of business logic.

1 describe ("Login user test", () => {
2 let bcryptCompareStub , jwtSignStub ;
3

4 beforeEach (() => {
5 sinon. restore ();
6 bcryptCompareStub = sinon.stub(bcrypt , " compare ").

resolves (true);
7 jwtSignStub = sinon.stub(jwt , "sign"). returns ("fake_jwt_

token");
8 });
9

10 it(" should authenticate the user and return token", async ()
=> {

11 const email = " V@example .com";
12 const password = "12345";
13 const result = await UserService . loginUser (email ,

password);
14

15 expect (result).to.have. property ("token");
16 expect (result .token).to.equal("fake_jwt_token");
17 expect (bcryptCompareStub . calledOnceWith (password , sinon.

match. string)).to.be.true;
18 });
19 });

Listing 6.2: UserServiceTest - login

6.2 Usability testing

Usability testing in software testing is a type of testing that is performed from
the end user’s perspective to determine the ease of use of a system. Usability
testing is generally the practice of testing how easy a design is for a group of
representative users. [25]

Usability testing was conducted with a group of three elderly people. This
demographic segment was chosen because the application is primarily focused
on helping the elderly. The main objective was to evaluate the intuitiveness
and accessibility of the interface for users who may not be very familiar with
modern technology.

Each test participant was given scenarios covering key functions of the
app. In addition to completing the assigned tasks, participants were given
the freedom to use the application to gain a deeper understanding of the user
experience.

65

6. Testing
6.2.1 Testing goals

The main purpose of testing was to identify aspects of the application that
may cause difficulties for the average user. An important objective was
to make the prototype more intuitive and user-friendly. Special attention
was paid to the usability of the interface, readability of text, and ease of
interaction with the application.

6.2.2 Testing scenarios

Scenario 1..1. Sign up...2. Login...3. Create a task:..a. Enter a task title...b. Enter a description of the task...c. Select the category corresponding to the description...d. Set an address of the task...e. Find and click on the “Create” button...4. On the home page, review your tasks.

Scenario 2..1. Login...2. Ask AI chat a question:..a. Enter your question in the text box...b. Send your question.

Scenario 3..1. Login...2. Modify account information:..a. Modify any account information settings...b. Save the changes.

66

................................... 6.2. Usability testing..3. Check on the account page to make sure the data is displayed correctly...4. Delete the account by clicking on the “Delete account” button:..a. In the pop-up window, confirm your wish to delete the account.

6.2.3 Feedback from testers

Tester 1

“I found the registration process quite complicated due to the numerous steps.
It would be more convenient if the number of mandatory items to fill out was
reduced. I liked the ability to ask AI chat questions in the app - it will make
my life much easier and save me from having to ask my son for help.”

Tester 2

“The color palette of the app was a pleasant surprise - my eyes didn’t get
tired looking at the screen. The large buttons make the app easy to use,
unlike other apps where I find it difficult to even hit a button. However, the
sign-up form proved to be complicated for me. It would have been better
to split it into several steps, and at the end provide a confirmation of the
information entered, so I could make sure the app recognized it correctly and
that I had spelled everything correctly.”

Tester 3

“I was very pleased that the app warns of possible erroneous actions when
changing account details or deleting an account. This helps to avoid unwanted
actions. I did not encounter any problems during testing: everything was
clear and well visible.”

6.2.4 Test results

Usability testing of the app with older adults provided valuable feedback and
unique insights into the functionality and design of the product. Based on
feedback from testers, a few key takeaways can be drawn.

. Simplifying the registration process: many participants struggled with
the long and complicated registration form. Reducing the number of
required fields and breaking the process into several steps with clear
instructions can greatly improve the user experience.

67

6. Testing
. Confirmation of user actions: alerts for important actions, such as

changing account details or deleting an account, were highly appreciated
by users. This emphasizes the need to integrate additional warning and
confirmation messages to prevent erroneous actions.. Interface optimization: positive feedback on the color palette and large
buttons highlights the importance of creating a visually comfortable and
intuitive interface. At the same time, attention should be paid to a
clearer presentation of key controls.

68

Chapter 7

Conclusion

The aim of this bachelor’s thesis was to analyze, develop, and implement the
mobile application “MySupport”, which allows elderly people to send requests
for assistance and volunteers to provide the necessary support. The project
involved a thorough analysis of competitors, identifying their strengths and
weaknesses, which formed the basis for defining the key requirements for
the application. Special attention was given to comparing existing APIs
for integrating AI into the mobile application. During this analysis, a user
interface prototype was also developed, specifically tailored to the needs
of senior users. Thanks to an in-depth analysis, the optimal technological
solution for implementation was selected. In the process, a lot of literature
and other data sources were studied, contributing to the creation of an
efficiently working application. After the implementation of the application,
unit testing and usability testing were conducted with the elderly. These
tests helped identify and correct minor flaws and identify areas for future
product improvement.

In my opinion, the goals of the bachelor’s work were successfully achieved:
all planned functionalities were implemented, and the application is ready for
use.

7.1 Future development plans

As part of the app improvement plan, the following areas for further develop-
ment have been identified:

. adding functionality to attach photos to tasks.. Creating a chat to facilitate communication between volunteers and
seniors.. Simplifying the registration process for seniors.

69

7. Conclusion......................................
. Introducing new user roles: administrator and moderator.. Implementing a feature to save chat conversations with the chatbot for

seniors.

70

Appendix A

Bibliography

[1] Č. j.: MPSV-2023/45298 Žádost o poskytnutí informace dle zákona č.
106/1999 Sb., o svobodném přístupu k informacím – statistické info - dů-
chodci [online] [22 February 2023] Available from: https://www.mpsv.cz/
documents/20142/4837218/ÄŊ.j.+MPSV+2023-45298+StatistickÃľ+
info+dÅŕchodci.pdf/7c135e5a-b71a-9697-8887-c13226d33358

[2] Č. j.: Český statistický úřad Průměrná roční míra in-
flace v ČR v roce 2022 byla 15,1% [online] [11 Decem-
ber 2023] Available from: https://www.czso.cz/csu/xe/
prumerna-rocni-mira-inflace-v-cr-v-roce-2022-byla-151-

[3] Jan Cieslar Výdaje na invalidní důchody loni přesáhly 50 mil-
iard korun [online] Available from: https://www.czso.cz/csu/czso/
vydaje-na-invalidni-duchody-loni-presahly-50-miliard-korun

[4] Mediasafe [online] Available from: https://www.medisafe.com

[5] Carely [online] Available from: https://www.care.ly

[6] Life360 [online] Available from: https://www.life360.com/intl/

[7] eCare21 [online] Available from: AppStore Google Play

[8] Senior safety app [online] Available from: https://www.
seniorsafetyapp.com

[9] Rahul Awati What is requirements analysis (requirements en-
gineering)? [online] [June 2023] https://www.techtarget.com/
searchsoftwarequality/definition/requirements-analysis

[10] By Phillip A. Laplante, Mohamad Kassab: Requirements Engineering
for Software and Systems [online] [7 June 2022]Available from: https:
//www.taylorfrancis.com/books/mono/10.1201/9781003129509/
requirements-engineering-software-systems-phillip-laplante-mohamad-kassab

71

https://www.mpsv.cz/documents/20142/4837218/č.j.+MPSV+2023-45298+Statistické+info+důchodci.pdf/7c135e5a-b71a-9697-8887-c13226d33358
https://www.mpsv.cz/documents/20142/4837218/č.j.+MPSV+2023-45298+Statistické+info+důchodci.pdf/7c135e5a-b71a-9697-8887-c13226d33358
https://www.mpsv.cz/documents/20142/4837218/č.j.+MPSV+2023-45298+Statistické+info+důchodci.pdf/7c135e5a-b71a-9697-8887-c13226d33358
https://www.czso.cz/csu/xe/prumerna-rocni-mira-inflace-v-cr-v-roce-2022-byla-151-
https://www.czso.cz/csu/xe/prumerna-rocni-mira-inflace-v-cr-v-roce-2022-byla-151-
https://www.czso.cz/csu/czso/vydaje-na-invalidni-duchody-loni-presahly-50-miliard-korun
https://www.czso.cz/csu/czso/vydaje-na-invalidni-duchody-loni-presahly-50-miliard-korun
https://www.medisafe.com
https://www.care.ly
https://www.life360.com/intl/
https://apps.apple.com/us/app/ecare21/id1002022384
https://play.google.com/store/apps/details?id=com.ecare21.client&pli=1
https://www.seniorsafetyapp.com
https://www.seniorsafetyapp.com
https://www.techtarget.com/searchsoftwarequality/definition/requirements-analysis
https://www.techtarget.com/searchsoftwarequality/definition/requirements-analysis
https://www.taylorfrancis.com/books/mono/10.1201/9781003129509/requirements-engineering-software-systems-phillip-laplante-mohamad-kassab
https://www.taylorfrancis.com/books/mono/10.1201/9781003129509/requirements-engineering-software-systems-phillip-laplante-mohamad-kassab
https://www.taylorfrancis.com/books/mono/10.1201/9781003129509/requirements-engineering-software-systems-phillip-laplante-mohamad-kassab

A. Bibliography.....................................
[11] IBM Use cases [online] [5 March 2021] Available from: https://www.

ibm.com/docs/en/rsar/9.5?topic=diagrams-use-cases

[12] IBM: Class diagrams [online] [5 March 2021]Available
from: https://www.ibm.com/docs/en/rsm/7.5.0?topic=
structure-class-diagrams

[13] TechTarget Contributor: Class diagram definition [online]
[May 2019] Available from: https://www.techtarget.com/
searchapparchitecture/definition/class-diagram

[14] Dialogflow Google AI [online] Available from: https://cloud.google.
com/dialogflow?hl=ru

[15] Wit.ai by Facebook [online] Available from: https://wit.ai

[16] RASA [online] Available from: https://rasa.com/docs/

[17] OpenAI API [online] Available from: https://openai.com/blog/
openai-api

[18] LaMDA by Google AI [online] Available from: https://blog.google/
technology/ai/lamda/

[19] SPARX SYSTEMS Enterprise Architect UML 2 Tutorial - Sequence Di-
agram [online] Available from: https://sparxsystems.com/resources/
tutorials/uml2/sequence-diagram.html

[20] Benjamin Bähr Prototyping of User Interfaces for Mobile Applications
[online] [2017] Available from: https://link.springer.com/content/
pdf/10.1007/978-3-319-53210-3.pdf

[21] Figma [online] Available from: https://www.figma.com/community

[22] Margaret Rouse Three-Tier Architecture [online] [26 June 2023]
Available from: https://www.techopedia.com/definition/24649/
three-tier-architecture

[23] IBM What is three-tier architecture? [online] Available from: https:
//www.figma.com/community

[24] Jiantao Pan Software Testing [online] [Spring 1999] Available
from: http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/
cis20.2/papers/software-testing.pdf

[25] Usability Testing [online] [15 Dec, 2023] Available from: https://www.
geeksforgeeks.org/usability-testing/

72

https://www.ibm.com/docs/en/rsar/9.5?topic=diagrams-use-cases
https://www.ibm.com/docs/en/rsar/9.5?topic=diagrams-use-cases
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams
https://www.techtarget.com/searchapparchitecture/definition/class-diagram
https://www.techtarget.com/searchapparchitecture/definition/class-diagram
https://cloud.google.com/dialogflow?hl=ru
https://cloud.google.com/dialogflow?hl=ru
https://wit.ai
https://rasa.com/docs/
https://openai.com/blog/openai-api
https://openai.com/blog/openai-api
https://blog.google/technology/ai/lamda/
https://blog.google/technology/ai/lamda/
https://sparxsystems.com/resources/tutorials/uml2/sequence-diagram.html
https://sparxsystems.com/resources/tutorials/uml2/sequence-diagram.html
https://link.springer.com/content/pdf/10.1007/978-3-319-53210-3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-53210-3.pdf
https://www.figma.com/community
https://www.techopedia.com/definition/24649/three-tier-architecture
https://www.techopedia.com/definition/24649/three-tier-architecture
https://www.figma.com/community
https://www.figma.com/community
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/software-testing.pdf
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/software-testing.pdf
https://www.geeksforgeeks.org/usability-testing/
https://www.geeksforgeeks.org/usability-testing/

..................................... A. Bibliography

[26] Bonnie Eisenman Learning React Native: building native mobile apps with
JavaScript [online] [2015] Available from: https://books.google.cz/
books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+
React+Native:+building+native+mobile+apps+with+JavaScript&
ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=
y#v=onepage&q=Learning%20React%20Native%3A%20building%
20native%20mobile%20apps%20with%20JavaScript&f=false

[27] Simon Holmes Mongoose for Application Development [online]
[2013] Available from: https://www.google.cz/books/edition/
Mongoose_for_Application_Development/DxTFXO771tIC?hl=ru&
gbpv=1&dq=Mongoose+for+Application+Development&pg=PT19&
printsec=frontcover

[28] Chris Blakely MERN Stack Roadmap – How to Learn
MERN and Become a Full-Stack Developer [online] [4 Jan,
2024] Available from: https://www.freecodecamp.org/news/
mern-stack-roadmap-what-you-need-to-know-to-build-full-stack-apps/
#what-is-the-mern-stack

[29] Nick Karnik Introduction to Mongoose for MongoDB [online] [11
February 2018] Available from: https://www.freecodecamp.org/news/
introduction-to-mongoose-for-mongodb-d2a7aa593c57/

[30] Henry Habib OpenAI API Cookbook [online] [March 2024] Avail-
able from: https://www.google.cz/books/edition/OpenAI_API_
Cookbook/pKP6EAAAQBAJ?hl=ru&gbpv=1&dq=OpenAI+API+Cookbook:
+Build+intelligent+applications+including+chatbots,+virtual+
assistants,+and+content+generators&printsec=frontcover

[31] What is Unit Testing? [online] Available from: https://aws.amazon.
com/what-is/unit-testing/?nc1=h_ls

73

https://books.google.cz/books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+React+Native:+building+native+mobile+apps+with+JavaScript&ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=y#v=onepage&q=Learning%20React%20Native%3A%20building%20native%20mobile%20apps%20with%20JavaScript&f=false
https://books.google.cz/books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+React+Native:+building+native+mobile+apps+with+JavaScript&ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=y#v=onepage&q=Learning%20React%20Native%3A%20building%20native%20mobile%20apps%20with%20JavaScript&f=false
https://books.google.cz/books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+React+Native:+building+native+mobile+apps+with+JavaScript&ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=y#v=onepage&q=Learning%20React%20Native%3A%20building%20native%20mobile%20apps%20with%20JavaScript&f=false
https://books.google.cz/books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+React+Native:+building+native+mobile+apps+with+JavaScript&ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=y#v=onepage&q=Learning%20React%20Native%3A%20building%20native%20mobile%20apps%20with%20JavaScript&f=false
https://books.google.cz/books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+React+Native:+building+native+mobile+apps+with+JavaScript&ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=y#v=onepage&q=Learning%20React%20Native%3A%20building%20native%20mobile%20apps%20with%20JavaScript&f=false
https://books.google.cz/books?hl=ru&lr=&id=274fCwAAQBAJ&oi=fnd&pg=PR2&dq=Learning+React+Native:+building+native+mobile+apps+with+JavaScript&ots=tHpnbBj4o3&sig=9K7EUzJmMZG0HYwksFbdRO9K7fs&redir_esc=y#v=onepage&q=Learning%20React%20Native%3A%20building%20native%20mobile%20apps%20with%20JavaScript&f=false
https://www.google.cz/books/edition/Mongoose_for_Application_Development/DxTFXO771tIC?hl=ru&gbpv=1&dq=Mongoose+for+Application+Development&pg=PT19&printsec=frontcover
https://www.google.cz/books/edition/Mongoose_for_Application_Development/DxTFXO771tIC?hl=ru&gbpv=1&dq=Mongoose+for+Application+Development&pg=PT19&printsec=frontcover
https://www.google.cz/books/edition/Mongoose_for_Application_Development/DxTFXO771tIC?hl=ru&gbpv=1&dq=Mongoose+for+Application+Development&pg=PT19&printsec=frontcover
https://www.google.cz/books/edition/Mongoose_for_Application_Development/DxTFXO771tIC?hl=ru&gbpv=1&dq=Mongoose+for+Application+Development&pg=PT19&printsec=frontcover
https://www.freecodecamp.org/news/mern-stack-roadmap-what-you-need-to-know-to-build-full-stack-apps/#what-is-the-mern-stack
https://www.freecodecamp.org/news/mern-stack-roadmap-what-you-need-to-know-to-build-full-stack-apps/#what-is-the-mern-stack
https://www.freecodecamp.org/news/mern-stack-roadmap-what-you-need-to-know-to-build-full-stack-apps/#what-is-the-mern-stack
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57/
https://www.freecodecamp.org/news/introduction-to-mongoose-for-mongodb-d2a7aa593c57/
https://www.google.cz/books/edition/OpenAI_API_Cookbook/pKP6EAAAQBAJ?hl=ru&gbpv=1&dq=OpenAI+API+Cookbook:+Build+intelligent+applications+including+chatbots,+virtual+assistants,+and+content+generators&printsec=frontcover
https://www.google.cz/books/edition/OpenAI_API_Cookbook/pKP6EAAAQBAJ?hl=ru&gbpv=1&dq=OpenAI+API+Cookbook:+Build+intelligent+applications+including+chatbots,+virtual+assistants,+and+content+generators&printsec=frontcover
https://www.google.cz/books/edition/OpenAI_API_Cookbook/pKP6EAAAQBAJ?hl=ru&gbpv=1&dq=OpenAI+API+Cookbook:+Build+intelligent+applications+including+chatbots,+virtual+assistants,+and+content+generators&printsec=frontcover
https://www.google.cz/books/edition/OpenAI_API_Cookbook/pKP6EAAAQBAJ?hl=ru&gbpv=1&dq=OpenAI+API+Cookbook:+Build+intelligent+applications+including+chatbots,+virtual+assistants,+and+content+generators&printsec=frontcover
https://aws.amazon.com/what-is/unit-testing/?nc1=h_ls
https://aws.amazon.com/what-is/unit-testing/?nc1=h_ls

74

Appendix B

Acronyms

AI Artificial Intelligence. 1, 2, 9, 14, 26, 29, 34, 36, 40, 49, 61, 66, 67, 69

API Application Programming Interface. 34, 39, 43, 60, 61, 64, 69

CORS Cross-Origin Resource Sharing. 59

HTTP HyperText Transfer Protocol. 42, 43, 49, 52–55, 64

ID Identifier. 51

JWT JSON Web Token. 43, 59

NLP Natural Language Processing. 36, 37, 59

NoSQL Not only SQL. 57

ODM Object Data Modeling. 57, 58

ORM Object Relational Mapping. 43

REST REpresentational State Transfer. 43

SQL Structured Query Language. 57

UML Unified Modeling Language. 29

75

76

Appendix C

Use cases - extra

.UC1 – Rate another user. Description:

- Users want to rate other users in the “My Support” mobile app
based on their experience of giving or receiving help.. Pre-conditions:

- The user has launched the “My Support” application.
- The user has logged into the system.. Scenario:..1. The user filters tasks by selecting the "Completed" status on

the main page...2. The system displays all tasks that have been marked as com-
pleted, showing information about who requested help and who
provided it...3. The user selects a specific completed task from the list...4. The system displays a page with detailed information about
the selected task...5. At the bottom of the task details, a list of all users involved in
the task appears with their ratings...6. The user can select a rating from 1 to 5 stars for each individual
without needing to confirm their rating...7. The system saves the rating and updates the user’s average
rating, which becomes visible in their profile to other users..Actors:

- Authorized user
- System

77

C. Use cases - extra
.UC2 – View contact list of volunteers. Description:

- Seniors want to view a list of volunteers who have assisted seniors
in past tasks.. Pre-conditions:

- The senior has launched the “My Support” app.
- The senior has logged into the system.. Scenario:..1. Senior will go to the “Contacts” page...2. The system will display a list of volunteers who have already

assisted seniors in past tasks...3. The seniors can view information about each volunteer, includ-
ing their name, lastname and contact number...4. The seniors can click on a specific volunteer to make a phone
call..Actors:

- Senior
- System.UC3 – Filter tasks. Description:

- Volunteers want to filter tasks for help according to their skills or
abilities.. Pre-conditions:

- The volunteer has launched the “My Support” app.
- The volunteer has logged into the system.. Scenario:..1. The volunteer goes to the “Home” page...2. The system will display a page showing all available tasks for

help...3. The volunteer clicks on the “Filter” button...4. The system displays the filter options that the volunteer can
use to search for tasks for help. Filter options can include date,
category, and status...5. The volunteer selects specific filters based on their preferences,
such as choosing “Health care” for qualifications and “Created”
for status.

78

................................... C. Use cases - extra..6. The system will display a list of tasks for help that match the
selected filters...7. The volunteer can view and select the task that suits him/her
best and accept it..Actors:

- Volunteer
- System.UC4 – Browse tasks on the map. Description:

- Volunteers want to view tasks for help on a map in the “My
Support” mobile app so they can easily see where help is needed.. Pre-conditions:

- The volunteer has launched the “My Support” app.
- The volunteer has logged into the system.. Scenario:..1. The volunteer goes to the “Home” page...2. The system displays a map with icons representing the different

tasks for help in different locations...3. The volunteer can scroll on the map and zoom in on the task
icons to get more information...4. The volunteer taps on a specific task icon on the map...5. The system displays the details of that task, including the title,
description, date, and category..Actors:

- Volunteer
- System.UC5 – Notify that the task has been accepted by a volunteer. Description:

- The system should notify the seniors that their task has been
accepted by volunteers.. Pre-conditions:

- The system has the senior’s consent to receive notifications.. Scenario:

79

C. Use cases - extra1. A volunteer records a new task...2. After successfully recording the task, the system notifies the
senior that a volunteer has accepted their task for help. The
notification will include a message about the task, including its
title, description, and other details..Actors:

- Volunteer
- System.UC6 – Notify about new tasks. Description:

- The system should notify volunteers about new tasks for help from
seniors.. Pre-conditions:

- The system has consent from the volunteer to receive notifications.. Scenario:..1. The system regularly monitors and tracks new help tasks that
have been created by seniors in the mobile application...2. If a new task appears that has not yet been accepted by vol-
unteers, the system generates a notification and sends it to
all registered volunteers who are interested in helping seniors.
The notification will contain information about the new task,
including its title, description, and date..Actors:

- Senior
- System

80

Appendix D

Final GUI

(a) : Register page. (b) : Login page.

Figure D.1: User interface of the register page and login.

81

D. Final GUI

(a) : Home page for seniors. (b) : AI chat page.

Figure D.2: User interface of the home page and chat AI.

82

.......................................D. Final GUI

(a) : Add task page. (b) : Task page

Figure D.3: User interface of the task and creation of the task.

83

D. Final GUI

(a) : Contacts page. (b) : Account page.

Figure D.4: User interface of contacts and account.

84

Appendix E

Run application

To correctly install and launch the back-end and front-end parts of the project,
the following steps must be taken:

Back-end installation and launch

.The back-end directory can be accessed with the command: cd backend/.. Dependencies are installed using the command: npm install..The development server can be started with the command: npm run
start:dev.

Front-end installation and launch

.The Expo app should be installed on the mobile device..Access to the front-end directory is gained by using the command: cd
frontend/MySupport.. Dependencies are installed with the command: npm install..The front-end is initiated with the command: npm start.

Upon execution of the last command, a QR code will be displayed in the
terminal. The QR code should be scanned with the camera of the mobile
device, and the option to open the application in Expo should be selected.

85

	Introduction
	Application description
	Description of the target user group
	Bachelor thesis objectives

	Analysis of existing solutions
	Medisafe
	Carely
	Life360
	eCare21
	Senior safety app

	Analysis
	Requirements analysis
	Functional requirements
	Non-functional requirements

	Use cases
	Actors
	Use cases

	Design
	Class diagram
	Sequence diagram
	Analysis of available AI APIs
	Dialogflow Google AI
	Wit.ai by Facebook
	Rasa
	OpenAI API
	LaMDA by Google AI
	Bard API

	Selected technologies
	Presentation layer
	Application layer
	Data layer

	User interface design

	Implementation
	Diagram component
	Application architecture
	Presentation tier
	Code structure
	Routing
	Redux Toolkit
	Communication with application tier

	Application tier
	Code structure
	Routes
	Controller layer
	Service layer
	Model layer
	Connection to database

	Data tier
	Tools used
	OpenAI API integration
	Implementation

	Testing
	Unit testing
	Tools used
	Testing controllers
	Testing services

	Usability testing
	Testing goals
	Testing scenarios
	Feedback from testers
	Test results

	Conclusion
	Future development plans

	Bibliography
	Acronyms
	Use cases - extra
	Final GUI
	Run application
	Back-end installation and launch
	Front-end installation and launch

