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Abstract
This thesis explores the use of random
embeddings in evolutionary optimization
algorithms to address high-dimensional
black-box optimization problems. By
embedding high-dimensional spaces into
lower-dimensional subspaces, we aim to
enhance the efficiency and effectiveness
of optimization algorithms. Our experi-
ments demonstrate the potential of ran-
dom embeddings to improve the perfor-
mance of Evolutionary Algorithms.

Keywords: optimization, evolutionary
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dimensionality reduction, covariance
matrix adaptation evolution strategy
(CMA-ES), machine learning,
hyperparameter optimization
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Abstrakt
Tato práce zkoumá použití náhodných
vnoření v evolučních optimalizačních algo-
ritmech k řešení problémů vysokodimenzi-
onálních optimalizací typu černé skříňky.
Za pomocí vnoření vysokodimenzionál-
ních prostorů do prostorů s nižší dimenzí
chceme zlepšit výkonnost a efektivitu op-
timalizačních algoritmů. Naše obsáhlé ex-
perimenty demonstrují dosud neprozkou-
maný potenciál zlepšení výkonnosti evo-
luční strategie CMA-ES v kombinaci s me-
todou náhodného vnoření pro specifické
případy.

Klíčová slova: optimalizace, evoluční
algoritmy, náhodné lineární podprostory,
vnoření, redukce dimenzionality, evoluční
strategie s adaptací kovarianční matice
(CMA-ES), strojové učení, optimalizace
hyperparametrů

Překlad názvu: Evoluční optimalizace v
náhodných lineárních podprostorech
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Chapter 1

Introduction

In the era of big data and complex modeling, high-dimensional data has
become increasingly present across various domains, including construction
engineering chemistry and most notably machine learning in recent years.
High-dimensional datasets, characterized by a large number of features,
pose significant challenges for optimization algorithms. Particularly black-
box optimization, also known as derivative-free optimization, refers to the
optimization of objective functions that are not in the form of closed-form
expression. Such functions are treated as “black boxes” where the internal
workings are unknown, and only input-output evaluations via querying are
available. Those functions have a potentially very high dimensionality and
complex structures, making them challenging to optimize.

The scalability of optimization algorithms has thus become an increasingly
important research topic. These challenges, often referred to as the “curse
of dimensionality,“ include increased computational complexity, difficulty
in exploring the solution space, and the risk of overfitting. This issue is
particularly pronounced in recent advancements such as large language models
(LLMs), which require the optimization of numerous hyperparameters across
large feature spaces (Liu et al. (2024)). Consequently, there is a growing need
for effective techniques to address these challenges.

There are several classical approaches to reducing the dimensionality of data
using linear dimensionality reduction techniques. One of the classical methods
is Principal Component Analysis (PCA), which performs a linear mapping
from a higher-dimensional space to a lower-dimensional space by identifying
the principal components that maximize the variance in the data. Another
approach is Random Projection, a stochastic method where dimensionality
reduction is achieved using a random matrix. Both PCA and Random
Projection are used when dealing with large datasets, as they can simplify
the data while preserving features. One such use is face recognition (Hou
et al. (2023)).
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.......................................... 1. Introduction

However, dimensionality reduction is used differently in the context of
Evolutionary Algorithms (EAs). The data samples are generated and updated
while the EA is running (Hou et al. (2023)). The main approaches how to scale
optimization in conjunction with EAs can be categorized into the following
groups:..1. Problem decomposition..2. Problem reduction

Both approaches involve the utilization of optimization algorithms within
a lower-dimensional subspace. The problem decomposition makes use of the
inner structure of the problem, this is not always feasible as the detection of
the structure can be computationally expensive and the objective function
may not always be decomposed into low-dimension subproblems. The second
approach does not rely on gaining knowledge about the problem structure
but it relies on the fact that in some cases it was shown that the objective
function has low effective dimensionality (in some literature referred to as
intrinsic dimension). In this thesis, the aim is to explore how to exploit this
property via random embedding.(Omidvar, X. Li, and Yao (2022a), Omidvar,
X. Li, and Yao (2022b), Sanyang and Kabán (2016), Z. Wang et al. (2016),
James Bergstra and Yoshua Bengio (n.d.)).

Dimensionality reduction is crucial in addressing the challenges posed by
high-dimensional black-box optimization. This study aims to investigate the
use of random embedding in conjunction with EAs to exploit the underlying
low effect dimensionality of the problem. By embedding the high-dimensional
space onto a lower-dimensional subspace, dimensionality reduction can signif-
icantly enhance the efficiency and effectiveness of optimization algorithms.

3



Chapter 2

Literature review

This work was originally motivated by Sanyang and Kabán (2016), proposing
an extension to the Estimation of Distribution Algorithm (EDA) with Random
Embedding (REM). EDA is a stochastic optimization method belonging to
the class of evolutionary algorithms, which performs well in low-dimensional
problems but its performance deteriorates rapidly as the dimensionality
increases. Kaban, Bootkrajang, and Durrant (2013) devised a divide-and-
conquer approach to mitigate the curse of dimensionality by applying a
Random Matrix Theory making use of a series of Random projections. If
the dimension is high the random projection algorithm preserves the local
separation of the data which is guaranteed by the Johnson-Lindenstrauss
lemma (J. Wang 2012). This low local distortion property ensures that the
projection approximately preserves the relationship between variables making
it possible for EDA to be used on the problem that was initially impossible
to solve with EDA.

Unlike the divide-and-conquer approach in Kaban, Bootkrajang, and Dur-
rant (2013), which does not make any assumption about the structure of
the problem, the approach suggested by Sanyang and Kabán (2016) assumes
low effective dimensionality of the given function. This assumption is based
on the observation that for certain problems, only a subset of dimensions
significantly affects the objective function, while others remain relatively
constant.

One of the suggested approaches (Z. Wang et al. 2016), which was also used
in Sanyang and Kabán (2016), is to deal with the curse of dimensionality by
applying the dimensionality reduction technique before deploying the chosen
optimization algorithm. One such possible technique is random embedding,
where ‘embedding’ refers to a structure-preserving mapping and ‘random’
indicates that the mapping is conducted using a random matrix.

The authors in Z. Wang et al. (2016) note that many researchers noticed
that for a particular subset of problems, only some of the dimensions affect

4



........................................ 2. Literature review

the objective function. This means that search space can be split into two
subspaces, one being effective with respect to the objective function and the
other being constant in this regard. To exploit this feature REMBO (Random
EMbedding Bayesian Optimization) is proposed as a novel algorithm where
the original search space can be embedded into a low-dimensional subspace
using Gaussian random embedding. For this method is not necessary to
identify the effective subspace, unlike other methods that put effort into
learning the effective subspace. So instead of optimizing f : RD → R we
can optimize reduced problem g(y) = f(Ay) where A ∈ RD×d is a random
embedding matrix with entries iid N(0, 1) and y ∈ Rd.

The authors note that obtaining values for the black-box function outside
of certain constraints is often impractical for many real-world problems.
Consequently, while REMBO is designed to solve global optimization problems,
the optimization is constrained to a compact set. In some cases, the function
being optimized may project outside of the specified box bounds. To address
this issue, a convex projection is applied to the projected y values, ensuring
they are mapped to the closest point within the box bounds based on the L2
norm. This approach effectively maintains feasibility within the optimization
space while accommodating the constraints imposed by the problem

The original REMBO has several shortcomings, which led to attempts
to overcome them. In the case of y being projected outside of the box
bound it is projected to the closest point in the box bound, which causes a
nonlinear mapping and a subsequent nonlinear distortion. To mitigate this,
hash-enhanced Subspace Bayesian optimization (HeSBO) was introduced
by Nayebi, Munteanu, and Poloczek (2019). It addresses the problem with
distortion by modifying the projection to use a hashing matrix to ensure that
the points from RD fall into [−1, 1]D.

While the technique proposed in Z. Wang et al. (2016) is called random
embedding Bayesian optimization (REMBO), the authors suggested that
the principle behind REMBO can be applied to any arbitrary optimization
procedure. The idea of generalizing random embedding technique for the
use with arbitrary solvers was presented in Cartis and Otemissov (2022)
where the authors investigated and further analyzed the properties of random
embedding extending the original REMBO algorithm to Random Embeddings
for Global Optimization framework (REGO).

For solvers DIRECT, KNITRO and Baron Cartis and Otemissov (2022)
demonstrated that solving reduced problems in lower dimensions is effective,
and generally outperforming solvers that did not apply embedding before
optimizations. The original dimension is not essential to the success of
optimization, but it is sensitive to setting the embedding dimension d and
the parameter δ : [−δ, δ]d.

The main difference between REMBO and REGO lies in the constraints.
In the REGO the objective function is not subject to any constraints so the
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................................ 2.1. Motivation and aim of the thesis

projection of the points falling outside of the box bounds is not necessary
effectively eliminating the issues with distortions. This however comes at the
cost of being unable to solve problems with constraints.

The authors suggest that possible future research using the results of
REGO could be done in estimating of effective dimension and the embedding
dimension. Another direction of research could go into investigating different
techniques and how to generate the random embedding matrix.

2.1 Motivation and aim of the thesis

Our research focus is on enhancing the performance of the covariance ma-
trix adaptation evolution strategy (CMA-ES), similar to the experiments
of Sanyang and Kabán (2016) where they extend EDA by adding random
embedding. CMA-ES already has properties that are sought after in search
algorithms – the property of invariance to various linear transformations such
as translation, reflection, rotation, or scaling invariance and invariance to
scaling of variables (Hansen (2016)). Additionally, it is also empirically very
successful in applications involving black-box optimization.

However, this method suffers from the curse of dimensionality as it con-
structs and updates its covariance matrix of parameters to learn pair-wise
dependencies between parameters leading to the complexity of at least O(n2).
Then sampling from the multivariate distribution, which has a complexity of
n3, but as it is not performed for every generation, the complexity is again
O(n2)(Ros and Hansen (2008)).

There were several attempts to overcome this issue of dimensionality in
CMA-ES by modifying it internally to improve its performance in large-scale
optimization problems (Ros and Hansen (2008); Jin, Yang, and Zhang (2020)
or Tong, Yuan, and B. Li (2019)). Their ideas are examined below.

One technique called sep-CMA-ES, suggested by Ros and Hansen (2008)
revolves around reducing the degrees of freedom in the covariance matrix
by adding two simple modifications. The first is constraining the covariance
matrix C to be diagonal, and the second is increasing the learning rate. Due
to those changes, the time complexity of steps in CMA-ES becomes linear as
degrees of freedom in the covariance matrix are reduced to n.

A different attempt to reduce the degrees of freedom of the covariance
matrix was proposed by Tong, Yuan, and B. Li (2019), the so-called CCG-
MMC-CMAES.There the trade-off between having more degrees of freedom is
pointed out. While it allows for more effective correlation modeling between
variables, having fewer degrees of freedom has the advantage of a lower
time and space complexity. To control for this dilemma, a combination
of two techniques is proposed to extend CMA-ES. Firstly, the correlation-
based grouping (CCG) strategy is used to divide variables into two groups –

6



................................ 2.1. Motivation and aim of the thesis

correlated and not correlated. Then the search is performed with CMA-ES
under the model complexity control, which reduces the degrees of freedom.

Another approach to reducing the time complexity of CMA-ES is to replace
the covariance matrix entirely. Besides the issues with time complexity, one
other shortcoming the authors (Jin, Yang, and Zhang (2020)) mention is that
the feature aimed at improving convergence of CMA-ES is also its major
drawback. As CMA-ES assesses only some of the best individuals in the
population, some if not most, information is lost. On the other hand, the
proposed improvement, gradient information ES –GI-ES, to the CMA-ES here
involves keeping complete information about each generation. The evolution
strategy is then guided by gradient information obtained with the stochastic
gradient descent algorithm.

Currently, there is no existing research on extending CMA-ES with random
embedding, which will be the focus of this thesis. The closest research was
done by authors of Sanyang and Kabán (2016) or in their other work where
they used multiple random projections for EDA (Kaban, Bootkrajang, and
Durrant 2013).

This thesis explores the use of random embeddings in evolutionary op-
timization algorithms to address high-dimensional black-box optimization
problems. By embedding high-dimensional spaces into lower-dimensional
subspaces, we aim to enhance the efficiency and effectiveness of optimization
algorithms. Our extensive experiments demonstrate the so far unexplored
potential of random embeddings to improve the performance of CMA-ES
evolutionary algorithms in specific scenarios

7
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Methods and implementation
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Chapter 3

Random Embedding

In this chapter, we describe the theoretical framework of random embed-
ding and its properties. The aim is to integrate random embedding with
Evolutionary Algorithms (EAs), specifically the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), to enhance optimization efficiency in
high-dimensional spaces.

3.1 Theoretical framework

First, we introduce the concept of effective dimensionality which is essential for
the random embedding technique. The effective dimensionality of a function
is defined as the dimension of the subspace where the function value remains
constant. This property can be exploited to reduce the complexity of the
optimization problem by solving it in a lower-dimensional subspace.

Definition 1. A function f: RD → R has an effective dimensionality de < D
if there exists a subspace S ⊂ RD with dimension de such that for all x ∈ RD,
there exists x′ ∈ S such that f(x) = f(x′).

corollary 2. Definition 1 implies that besides the effective subspace S there is
its orthogonal complement - a constant subspace S′ with dimension D − de.
In other words all x ∈ RD can be decomposed so that x = x′ + x′′ and
f(x) = f(x′ + x′′) = f(x′) where x′ ∈ Rde and x′′ ∈ RD−de .

This property suggests that it suffices to only find the optimizer in the effec-
tive subspace S as the function value does not change along the coordinates
from S′, effectively reducing the problem complexity.Cartis and Otemissov
(2022) also impose restrictions on possible solutions, the optimizer must be
non-trivial. This will be important in designing our experiments.

Corollary 1 can be exploited to reduce the complexity of the given problem
by solving it in some d-dimensional subspace where de ≤ d ≤ D. See appendix

9



..................................... 3.1. Theoretical framework

in Z. Wang et al. (2016) for the proof of the following theorem.

Theorem 3. Let a function f: RD → R have an effective dimensionality
de < D and random matrix AD×d with i.i.d entries N (0, 1) where d ≥ de.
Then, with probability 1, for any x ∈ RD, there exists y ∈ Rd such that
f(x) = f(Ay).

Theorem 3 gives us the theoretical guarantee that if there is optimizer x∗,
with probability 1, there exists y∗ ∈ Rd such that f(Ay) = f(x∗). It can
be found by optimizing g(y) = f(Ay) =. It is worth noting, as highlighted
in Sanyang and Kabán (2016), that the proof was given for the case where
the dimension d in theorem3 is equal to the effective dimensionality de,
but Sanyang and Kabán (2016) shown that case d > de also holds for a search
box that is bounded by δ satisfying certain conditions derived in their work.
Cartis and Otemissov (2022) extended it even further allowing any arbitrary
d > de.

While the existence of effective subspace is crucial for the random embedding
there are also some guarantees regarding the role of ambient dimension D.
The Theorem 4 in Z. Wang et al. (2016) states that the random embedding
is invariant to the addition of unimportant dimensions, that is along the
axis in the constant space. This invariance means adding dimensions that
do not change the function’s value and subsequently, it does not affect the
performance of the optimization. The theorem is followed by a proof. However,
Cartis and Otemissov (2022) also demonstrated the invariance numerically
in experiments testing the quality of bounds for the success of solving the
reduced problem.

The experiments revealed that ambient dimension D is not as important
as the difference between the dimensions de and d. Specifically the difference
between them, as the difference d− de increases, the success also goes up. So
when choosing the dimension d it is a good idea to choose d≫ de.

Furthermore, the size of the search box is another crucial factor for the
success of optimizing the reduced problem. When appropriately chosen,
it ensures that the reduced search space contains the global minimizers
with high probability, thus significantly improving the likelihood of finding
the optimal solution. However, if it is chosen too large, it decreases the
efficiency of optimization algorithms due to increased complexity. In the
constrained optimization scenario, where methods like REMBO or REMEDA
are used, there is added complexity of choosing the constraints carefully
as solutions might lie outside of the original search space. This requires
additional transformations such as convex projection (as discussed in Z. Wang
et al. (2016)), hash-encoding in Nayebi, Munteanu, and Poloczek (2019) or
orthogonal projection in Hou et al. (2023). While the literature provides
theoretical guidance, on how to set the search box in low dimension d.

10



...................................... 3.2. Proposed Approach

Practically, this theoretical guidance is not useful due to the of lack knowl-
edge about the effective dimensionality de. It is suggested by Z. Wang et al.
(2016) and by Sanyang and Kabán (2016) to set the box constraint [−δ, δ]d to
[−
√

d,
√

d]d. Since the focus of this thesis is on unconstrained optimization, it
is the only consideration we need to make regarding the search space. There
is no need to choose a method for projecting solutions that fall outside of the
box bounds of the original search space. This however will limit the scope of
application of the proposed method to a subset of optimization problems.

3.2 Proposed Approach

In this section, we describe the implementation of random embeddings within
the framework of evolutionary algorithms, specifically focusing on the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES). The goal is to
leverage random embeddings to reduce the dimensionality of high-dimensional
optimization problems, thereby improving the efficiency and effectiveness of
the optimization process. Now consider a black-box problem that is given by
an objective function f : RD → R that is to be minimized:

min
x∈RD

f(x) (3.1)

Theorem 3 in conjunction with Corollary 2 guarantees that if f : RD → R
has effective dimensionality de < D, a random matrix A ∈ RD×d where
de ≤ d such that with probability 1, for any x ∈ RD, there exists y ∈ Rd such
that f(x) = f(Ay). This also holds for optimizer f∗ = f(x∗) = f(Ay∗).

min
y∈Rd

g(y) = f(Ay)

subject to y ∈ [−δ, δ]d ⊆ Rd
(3.2)

Let f : RD → R be the objective function in a high-dimension D and ran-
dom projection matrix A ∈ RD×d where di < d < D, di being the dimension
of the effective subspace. Then using the random embedding technique, we
optimize g(y) = f(Ay), y ∈ Rd with CMA-ES, which has reduced complexity
compared to optimizing f . The Pseudocode is shown below.

This algorithm and the CMA-ES-PCA (see 2) used for comparison purposes
were implemented using the Python package cmaes Nomura and Shibata
(2024). This package provides a simple implementation of the CMA-ES
algorithm and tts API provides the ask-tell interface, which facilitates the
implementation of random embedding for CMA-ES and its PCA counterpart.

The CMA-ES-PCA algorithm was chosen for its ability to efficiently handle
high-dimensional optimization problems by reducing the dimensionality of

11



...................................... 3.2. Proposed Approach

Algorithm 1 CMA-ES with Random Embedding
Require: D: Original high-dimensional space dimension
Require: d: Reduced lower-dimensional space dimension
Require: f : Objective function in RD

Ensure: Optimized solution in RD

1: Initialize:
2: A← Generate random matrix A ∈ RD×d with entries i.i.d. N(0, 1)
3: δ ← size of search box
4: B ← set search domain to [−δ, δ]d
5: µ← initial mean vector in Rd

6: σ ← initial standard deviation of covariance matrix
7: sigma← initial standard deviation of covariance matrix
8: Define reduced objective function:
9: g(y) = f(Ay) for y ∈ Rd

10: Optimization loop:
11: for t = 1 to populationSize do
12: /* Evaluate individuals from population */
13: Ask for an individual
14: Evaluate the individual
15: end for
16: Map the best solution back to RD:
17: x∗ ← Ay∗ where y∗ is the best solution in Rd

18: return optimized solution x∗ in RD

the search space through Principal Component Analysis (PCA). Its determin-
istic nature makes it a suitable candidate for comparison with the random
embedding technique.

12
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Chapter 4

Experimental setup

Replication of numerical experiment

We begin our experimental setup by partially replicating the numerical ex-
periment conducted by Cartis and Otemissov (2022). The primary objective
of this replication is to evaluate and confirm the impact of ambient dimen-
sionality D on the performance of the random embedding approach when
combined with the CMA-ES.

In this experiment, we fix the difference between the true intrinsic di-
mensionality d and the effective dimensionality de to values from the set
{0, 5, 10, 20}. While holding d − de fixed, we vary the ambient dimension
D across the set {100, 150, 200, 250}. This allows us to systematically in-
vestigate how changes in ambient dimensionality influence the optimization
performance of the random embedding technique.

It is important to note that two important aspects of using the random
embedding technique were discussed in the section on theoretical framework
but were not to test directly: the selection of the dimension for random
embedding and the choice of the box constraint. Both of these parameters were
taken from other works. In the case of box constraints [−δ, δ]d is likely that
it is not the smallest possible chosen constraint, meaning some computation
time is wasted unnecessarily due to larger search space. Regarding the case
of selecting dimension d we used the knowledge directly from the setup to
observe its behavior with respect to de be made iteratively Sanyang and
Kabán (2016), spending part of the evaluation budget starting with very low
d and increasing it when the convergence stops, or some prior knowledge in
case of many real-world problems or techniques to learn the effect space can
be used Cartis and Otemissov (2022).

And lastly, in this experimental setup, the selection of the population size
was omitted. While this simplification allowed us to focus on the primary
objective of comparing the performance of CMA-ES in multiple scenarios of

14



....................................... 4. Experimental setup

changing embedding dimension, it is important to acknowledge that popula-
tion size can significantly affect the optimization process. If chosen too large
the evaluation budget might be wasted. Future experiments could consider
systematically varying the population size to fully understand its impact on
the optimization performance and to identify the optimal settings for each
algorithm. In our case, we let CMA-ES choose the size, it is initialized this
way popsize = 4 + ⌊3⌋ · log(d), where d is the dimension given to CMA-ES,
in which the optimization is performed.

Performance Evaluation Against Pure CMA-ES

Following the initial replication experiment, we conduct a comparative eval-
uation to assess the performance of the random embedding approach with
CMA-ES against the baseline performance of pure CMA-ES. The goal here is
to determine the effectiveness and potential benefits of incorporating random
embeddings into the CMA-ES framework. By contrasting the performance
metrics of the two approaches we see potential to improve the optimization
process.

Carry over to other EAs

In this experimental setup, we aim to investigate if random embedding as
a dimensionality-reducing technique can be used with other Evolutionary
Algorithms besides CMA-ES. The chosen algorithm is Differential Evolution
(DE).

Restarting CMA-ES

Restarting by generating a new random matrix A the starting parameters
might be viable way to improve the performance of the proposed combination
Random Embedding + CMA-ES even further, first we try to restart at fixed
intervals, then in the second scenario the restart occurs when the convergence
stops (as indicated by the optimizer itself).

Comparison with CMA-ES-PCA

In the final stage of our experimental setup, we extend our analysis by
comparing the random embedding approach with a deterministic alterna-
tive, specifically the PCA-based dimensionality reduction method, integrated
into CMA-ES (CMA-ES-PCA) as shown in Mei and H. Wang (2021). This
comparison aims to highlight the differences between stochastic and deter-
ministic dimensionality reduction techniques. By evaluating their respective
performances, we seek to understand how the inherent randomness in the em-
bedding affects the optimization process compared to a more structured and
deterministic approach provided by PCA. The pseudocode for this technique
that is going to be used for testing purposes is shown in Algorithm 2.
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Algorithm 2 CMA-ES with PCA
Require: Learning rates:αµ, ασ, αcp, αc1, αcλ

Require: Generation Count: t = 0
Require: Attenuation Factor: dσ

Require: Evolutionary Paths p
(0)
σ = 0, p

(0)
c = 0

Require: Default Covariance Matrix: C(0) = I
Ensure: µ(t), σ(t), C(t)

1: while not stopping criteria do
2: if iteration t is a multiple of 20 then
3: Calculate PCA matrix P using the last generation’s population
4: end if
5: Transform C(t) to C

(t)
ΛΘ using PCA matrix P

6: Sample x
(t+1)
i = µ(t) + σ(t)y

(t+1)
i where yi ∼ N(0, C

(t)
Θ )

7: Re-map x
(t+1)
i = P T x

(t+1)
i

8: Evaluate fitness of each candidate x
(t+1)
i , i = 1, . . . , λ

9: Select top λ samples based on fitness
10: Update µ, σ, C using standard CMA-ES updates
11: t← t + 1
12: end while
13: return µ(t), σ(t), C(t)

4.1 Evaluation Methodology

For evaluation purposes, the tested objective function f which has effective
dimension de is, as proposed in Cartis and Otemissov (2022) and Z. Wang
et al. (2016), first lifted to an arbitrarily high dimension D by adding D− de

dimensions with zero weights, so we obtain new function g̃ 4.1. Then to
obtain a function with a non-trivial constant subspace, the function has to
be rotated by applying an orthogonal matrix RD×D to x. The final function
is then as shown in 4.2. Since the random embedding is invariant to the
ordering of parameters (Letham et al. (2020)) the test functions are defined
in such a way that they have the first de parameters as relevant and disregard
the remaining D − de parameters as they do not affect function evaluation.

g̃(x) = f(x1, x2, · · · , xde) + 0 · xde+1 + 0 · xde+2 + · · ·+ 0 · xD (4.1)

g(x) = g̃(Rx) (4.2)

In our experiments, the evaluation budget is crucial due to the high cost
of black-box function evaluations. To ensure reliable results, we perform
ten repeated runs for each experiment, reducing the impact of randomness.
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Performance is measured using the fitness gap, which indicates the difference
between the best solution and the known global optimum. A smaller fitness
gap signifies better optimization performance. We track the number of func-
tion evaluations and the fitness gap to evaluate and compare the convergence
of different algorithms under the given evaluation budget.

4.2 Test functions

The functions are taken from (Surjanovic and Bingham (2023)). Functions 4.3
and 4.2 were used with the modification to increase the dimensionality of
the function as described in Oh, Gavves, and Welling (2019), functions 4.7
and 4.6 did not need such a change as they can scale themselves. Additionally,
increased dimensionality, some functions were also modified so they don’t
have a trivial solution.

Repeated Branin function.

f(x1, x2) =
(

x2 −
5.1
4π2 x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10 (4.3)

frep(x) = ⌊D2 ⌋
⌊D/2⌋∑

i=1
f(x2i−1, x2i) (4.4)

Repeated Hartmann6 function.

f(x) = −
4∑

i=1
αi exp

− 6∑
j=1

Aij(xj − Pij)2

 , (4.5)

where,

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 ,

P = 10−4 ×


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 ,

and
α =

(
1.0 1.2 3.0 3.2

)
.

Sphere function.

f(x) =
D∑

i=1
(xi − 1)2 (4.6)
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Rosenbrock function.

f(x) =
D−1∑
i=1

[100(xi+1 − x2
i )2 + (xi − 1)2] (4.7)

4.3 Results

4.3.1 Invariance to the ambient dimensionality

We replicated the numerical experiments conducted by fixing the d − de

and testing the performance of the random embedding in various ambient
dimensions D, functions used in the experiment were Replicated Branin 4.3
and 4.6. Experiments showed that the optimization performance of the
random embedding approach is indeed invariant to the increase in ambient
dimensionality, as long as d ≤ de. Our experiments successfully replicated
the findings in the literature, confirming the invariance of change in constant
subspace and setting the d to a value slightly above the effective dimensionality
is better. This ensures that the optimization process remains efficient and
effective, regardless of the dimensionality of the original problem space. This
also serves as a basic validation that the implementation of the random
embedding technique is at least partially correct. Results for Sphere function
are shown in Figure 4.1.

18



................................. 4.4. Comparison with pure CMA-ES

Figure 4.1: Experiment with Sphere function4.6 with fixed d = de + c, c =
{0, 5, 10} and with ambient dimension D ∈ {100, 150, 200, 250, 500, 1000}.

4.4 Comparison with pure CMA-ES

The results of our experiments indicate that the random embedding CMA-ES
significantly outperformed the pure CMA-ES across all tested functions. This
performance boost is attributed to the reduced complexity and improved
search efficiency in the lower-dimensional subspace. The embedding to d = 100
serves as a sanity check, to make sure that it behaves similarly to the pure
CMA-ES. Instead of a random matrix AD· d, identity matrix ID· D was used
to “reduce” the dimensionality of the problem to d = 100, so nothing should
change. The results are shown in Figure 4.2.
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4.4.1 Sphere function

The first tested function was Sphere. The results show that the random
embedding works well in reducing the dimensionality of the problem space,
leading to a improvement in the optimization process. The results 4.2 are
mostly as expected, with the d = 30 converging to the optimum the fastest,
it is as was already shown in Cartis and Otemissov (2022), showing that
higher d than the effective dimensionality de improves the performance, but
there is drop and adding more dimensions starts to degrade the performance.
Conversely, if the dimension d is too small it does not converge at all. It is
however unexpected that the d = 20 after 5000 function evaluations start to
converge faster.

Figure 4.2: SphereMOD function with D = 100 and effective dimension de = 20,
CMA-ES enhanced by random embedding with d ∈ {10, 20, 30, 40, 70, 100} using
pure CMA-ES.

4.4.2 Repeated Branin function

The situation here is almost identical to the Sphere function, the results we
obtained are within our expectation.

Figure 4.3: Branin function with D = 100 and di = 20 using pure CMA-ES.
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4.4.3 Rosenbrock function

The most noticeable difference in this testing case is how lower the dimension
d is, faster it starts to converge, but then it stops very early on. After about
4000 evaluations it starts to behave as observed in previous cases.

Figure 4.4: Rosenbrock function with D = 100 and effective dimension de = 20
using pure CMA-ES.

4.4.4 Repeated Hartmann6 function

The early results indicated similar behavior to Rosenbrock function, so we
rerun the experiment with a higher evaluation budget 50000. The results
(see 4.5) is interesting as it shows that the setting d = de = 20 works best.
Otherwise for d > de the performance is as in previous cases.

Figure 4.5: Hartmann6 function with D = 100 and effective dimension de = 20,
CMA-ES enhanced by random embedding with d ∈ {10, 20, 30, 40, 70, 100} using
pure CMA-ES.

4.5 Random Embedding with other EA

The results of the experiments with Differential Evolution indicate that
the random embedding is also effective when used with other evolutionary
algorithms. The tests were again conducted on the same functions as in the
previous experiment. The fitness gap is generally larger than in the case
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of CMA-ES but the ranking of how each embedding dimension affects the
performance is generally the same showing the possibility of using random
embedding as a versatile way to improve the performance of optimization
algorithms. Existing EA can be easily modified to accommodate using the
random embedding technique.

Figure 4.6: Experiment with Differential Evolution with Sphere, Rosenbrock,
BraninRep and Hartmann6Rep functions.

4.6 Restarting CMA-ES

4.6.1 Fixed interval restart

Restarting the embedding matrix at fixed intervals (measured in function
evaluations) does not improve the convergence in the case of Sphere and
Repeated Branin function. On the other hand, in the case of the Rosenbrock
function the situation is different, convergence starts slow but improves over
time and doesn’t stop as early as in the case of the normal version of random
embedding. In the case of repeated Hartmann situation is similar as it
converges faster. It it interesting to see that setting the dimension here to
d = 100 is not same as the no embedding version of CMA-ES. So while there
is no dimensional reduction, the restarts apparently help with finding the
optimum.
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Figure 4.7: Fixed-interval restart experiment for all functions from the test set.
Embedding dimensions tested are kept same for comparison purpoes

4.6.2 Convergence-based restart

The situation here is almost identical as in the fixed interval restart, the
observation about the convergence of Hartmann6 is greatly improved for
restarted CMA-ES.
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Figure 4.8: Convergence-based restart experiment for all functions from the test
set. Embedding dimensions tested are kept same for comparison purpoes

4.7 Comparision with CMA-ES-PCA

As part of the experimental setup, an attempt was made to compare the per-
formance of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
enhanced with Principal Component Analysis (PCA) against our optimization
technique. The objective was to evaluate the performance of incorporating
PCA into CMA-ES to reduce the dimensionality of the optimization problem,
thereby potentially improving performance in high-dimensional spaces.

Ensuring that the solutions sampled in the reduced-dimensional space could
be accurately transformed back to the original space for evaluation by the
objective function proved to be complex. The transformation between the
original high-dimensional space and the reduced-dimensional space introduced
inconsistencies in the solution vectors. This experiment was thus not carried
out and subsequently, no result was obtained, to confirm the effectiveness of
using PCA against the Random Embedding.
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Chapter 5

Conclusion

The experimental results for combining CMA-ES with random embedding
are promising when applied to synthetic benchmark functions. These ini-
tial findings suggest that random embedding can significantly enhance the
performance of optimization algorithms, particularly in high-dimensional
settings.

We first numerically demonstrated the invariance to ambient dimensionality.
Then we showed that the random embedding technique can effectively reduce
the search to help an Evolutionary Algorithm converge faster, be it the in-
depth studied CMA-ES or other EA such as DE. Restarting CMA-ES was
also tested, but the results are inconclusive. It might be suited for some types
of functions but that would require further investigation. These are the main
contributions of our work that have not been experimented upon in earlier
research. The shown optimization experiments have the potential to impact
many machine learning topics where hyperparameter optimization is costly
for big data applications.

To gain further insights and validate these results more comprehensively, it
is robust to adapt and test the proposed methods within the COCO framework
using the BBOB test suite for large-scale optimization. This can be done
in future research. The BBOB test suite offers a standardized and rigorous
evaluation environment, allowing for a detailed comparison of optimization
algorithms across a wide range of challenging problem instances.

However, executing such extensive evaluations using the BBOB test suite
in the COCO framework would require substantial computational resources.
Running these tests would span multiple days on a high-performance comput-
ing (HPC) system. In my case, due to constraints including, but not limited
to, the prohibitive cost of using HPC resources, such extensive testing was
not feasible. Another way to approach testing would be to use real-world
test cases such as hyperparameters optimization as shown in Letham et al.
(2020).
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Chapter 6

Attachments

With this thesis, we provide the source code of the implementation of the
random embedding with CMA-ES. The code is written in Python and uses
the cmaes package for the CMA-ES implementation. The code is available
on GitHub and were developed by Nomura and Shibata (2024).
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