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Abstract

This thesis investigates various methods
for detecting concept drift in data streams
and testing it on a cybersecurity dataset.
It describes the current understanding of
concept drift and discusses available liter-
ature for concept drift detection. The re-
search evaluates several strategies that ad-
dress concept drift detection. The experi-
mental evaluation utilizes a cybersecurity
dataset to compare how these strategies
can handle a real-world scenario. Lastly, I
propose an improvement to the capability
of MD3 and D3 methods by employing a
hybrid of these methodologies. The exper-
iments show that tracking and handling
concept drift in data streams improves
classifiers' performance for the price of
some overhead.
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processing, cybersecurity
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Abstrakt

Tato prace se zabyva rtuznymi metodami
detekce driftu konceptu v datovych to-
cich a testuje je na datasetu z oblasti ky-
bernetické bezpecénosti. Popisuje soucasné
chapéni driftu konceptu a diskutuje o do-
stupné literature pro detekci tohoto feno-
ménu. Vyzkum porovnava nékolik strate-
gii, které se zabyvaji detekci. Experimenty
vyuzivaji dataset z oblasti kybernetické
bezpecnosti a porovnava, jak si tyto stra-
tegie poradi s redlnym scénarem. Nako-
nec tato prace navrhuje vylepseni metod
MD3 a D3 vyuzitim hybridu téchto me-
todik. Experimenty ukazuji, ze sledovani
a TeSeni driftu konceptu v datovych to-
cich zlepsuje vykon klasifikatori za cenu
zvysené rezie.

Klicova slova: strojové uceni, datové
toky, drift konceptu, zpracovani dat v
realném case, kyberbezpecnost

Preklad nazvu: Porovnani metod pro
detekci koncept driftu v datovych tocich
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Chapter 1

Introduction

The digital revolution has brought a dark underbelly — an escalating wave of
cyber threats and attacks. Cybersecurity faces an ever-increasing challenge
to protect sensitive information and critical infrastructure as malicious actors
continually develop new tactics and sophisticated tools. Integrating machine
learning into cybersecurity practices is a promising frontier in this context.

In today's world, machine learning models are broadly applied in cyberse-
curity. They are crucial in providing innovative tools to detect, prevent or
respond to cyber-attacks. The data fed to these models often come in the form
of streams, and accommodating large volumes of data is impractical or even
impossible. Therefore, models are trained in advance to limit storage capacity
and memory load. However, the cybersecurity environment is nonstationary,
and parameters can change over time. This introduces concept drift, which
refers to changes in the conditional distributions given the input, while the
distribution of the input may stay unchanged [1]. The main focus of this
paper is to research modern solutions for concept drift and apply them in
classifying malware samples.






Chapter 2
Concept drift

In machine learning, the phenomenon of concept drift is known as the change
in the properties of the target variable, which the model is trying to pre-
dict [1]. As time evolves, so does the connection between input features and
target variables, necessitating model changes. These changes can be highly
problematic for machine learning systems structured on an assumption of the
stationary or fixed relationship between input features and target variables.

The problem of concept drift is genuine in an environment where underlying
data distribution is not static. Variations in environmental patterns, user
activities or any other factors can cause the change in data patterns, thereby
making trained models ineffective with time. It becomes essential to handle
concept drift to keep the efficiency and accuracy of machine learning models
in dynamic cases.

Handling and adapting to concept drift is crucial for maintaining the
performance of machine learning models as its occurrence degrades such
models' results. Techniques to handle concept drift include using online
learning algorithms that continuously update the model, employing ensemble
methods that combine several models' predictions, or monitoring the model's
performance over time to detect and react to changes. Firstly, we will discuss
the nature of concept drift and then techniques for detecting it.

In data stream classification, we aim to find a function to predict the value
of class labels for unseen data |1]. According to the Bayesian Decision Theory,
to make a classification decision, for instance X, the class y can be represented
as

p(y)p(X|y)
p(X)

where p(X) = Zzzlp(yi)p(X]yi) for all classes y = 1,...,c and c is the

p(y|X) = (2.1)

number of classes. In this scenario, the concept refers to the target class [3].
The drift refers to the change in the joint probability over time. Formally,
concept drift can be defined as

3X: pto (X7 y) # ptl (X, y) (22)

where the t;, and ¢; are two different time points, py, denotes the joint
probability of at time ¢, and respectively Dy, The concept drift may occur

3



2. Concept drift

due to changes in variables of the posterior distribution, the distribution of
one of the classes, or the class prior may change over time. We can distinguish
several types of concept drift [1} [2]:

Real concept drift the posterior probability varies over time for one or
more classes, and it can happen either with or without change in the
evidence p(X). This situation requires changes in the machine learning
model to maintain performance. The real concept drift is modelled in
the second graph of Figure |2.1.

Virtual concept drift the distribution of the input data changes without
affecting the posterior probability. The decision boundary does not
change, and it requires different handling techniques.

Original data Real concept drift Virtual drift
L I L L] ‘ ] 1
i 1 o ® o ° 1
° . | o .o ° ; ° o | .o ¢
oo : o 0'. . ° ¢ 'O : .'1‘ o,
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Figure 2.1: Types of drift: different colours represent classes |2]

Further in this paper, we will consider the real concept of drift as the
primary focus. This change in probabilities can manifest in different forms
over time [1]:

Sudden concept drift , also known as abrupt drift, occurs when there is a
sudden and immediate change in the data distribution. Trained models
need to adapt quickly to maintain performance

Incremental concept drift involves continuous and gradual changes in
the data distribution. The relationship between the target variable and
the input feature evolves slowly.

Gradual concept drift happens more abruptly. The change in the data
distribution is more noticeable and occurs faster than in incremental

drift.

Reoccurring concept drift refersto a situation when the data distribution
follows a pattern of periodic change. A predictive model might need to
remember these patterns to remain accurate.

An outlier is a one-off deviation or an anomaly in the data. No adapting is
needed in this case.



2.1. Adversarial drift
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data mean
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Figure 2.2: Data change over time

. 2.1 Adversarial drift

Changes in the probabilities can appear organically as the data streams evolve
and new classes emerge or disappear. However, in the context of machine
learning, particularly in cybersecurity, adverse drift refers to a scenario where
the characteristics or nature of malicious attacks (the adversarial input)
evolve or change over time [3]. This evolution often occurs in response to
the defences employed by cybersecurity systems [4]. Unlike natural concept
drift, which occurs due to evolving data over time, adversarial drift is the
result of intentional data manipulation. The manipulation is malicious and is
designed to evade or mislead classification models.

Most machine learning models assume that the statistical properties of
their input data, such as distribution, will remain constant over time, which is
inherent to them. However, adversarial drift challenges this assumption as the
nature of the attacks changes. Consequently, the data the model was trained
on no longer accurately represents the environment in which it operates. This
discrepancy can lead to a decrease in the model's effectiveness in detecting or
mitigating attacks.

The impact of adversarial drift on model performance is significant. As
malicious tactics evolve, the ability of the machine learning model to detect or
counter these attacks can diminish. This decrease in performance is due to the
model's training data needing to be updated and relevant in the face of new
types of threats. Cybersecurity systems and machine learning models must
undergo continuous adaptation to counter this. They need to be regularly
updated and retrained with the latest data that reflects the current nature of
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threats. This necessity leads to an ongoing cycle of adaptation, with defenders
constantly striving to keep up with the evolving tactics of attackers.

In Detecting Adversarial Advertisements in the Wild [5], the authors
focus on detecting low-quality or harmful adversarial advertisements in large
online advertising systems. It highlights the high costs associated with false
positives and negatives in this domain and describes a tiered detection strategy
combining automated and semi-automated methods. They outline the main
challenges in detecting adversarial advertisements:

B Data Skewness: The rarity of adversarial ads in the vast volume of
legitimate ads creates a skewed dataset, complicating the detection
process.

® Resource Allocation: Efficiently allocating expert human effort for semi-
automated detection strategies is a significant challenge.

® Independent Assessment: Independently assessing the detection system's
effectiveness is difficult due to the nature of adversarial attacks and the
need for constant updates.

B False Positives and Negatives: Balancing the high costs associated with
false positives (blocking legitimate ads) and false negatives (allowing
harmful ads) is a critical challenge.

The authors mainly focus on the effectiveness of a tiered detection strategy
in identifying adversarial advertisements. Their approach combines automated
and semi-automated methods, leveraging large-scale machine learning and
expert human judgment. They highlight the complexities and challenges in
this domain, particularly the balancing act between reducing false positives
and negatives and efficiently utilising resources. It underscores the necessity
of continuous adaptation and improvement in detection strategies to keep
pace with the evolving nature of adversarial attacks in online advertising,
further proving the necessity of not ignoring the adversarial drift.

B 22 Concept drift detection

As discussed previously, in settings where predictive models are utilised, these
models must be able to identify and adjust to changes in the data over time.
Failing to do so can lead to a decline in their predictive accuracy. As data
evolves, it may be necessary to either update the decision-making model
with new data or completely replace it to suit the altered circumstances. For
effective functioning, predictive models must [1]:

® Detect the concept drift and adapt accordingly.

m Differentiate between actual drifts and mere noise, ensuring adaptability
to real changes while maintaining resilience against noise.

6



2.2. Concept drift detection

® Operate within a timeframe shorter than the interval at which new
examples arrive and manage this without exceeding a predetermined
memory allocation for any storage needs.

B 2.2.1 Explicit concept drift detection

’ involves

Explicit concept drift detection, also called ”informed methods,’
using triggering mechanisms to detect drifts in the data. These methods are
particularly suited for situations where it is essential to identify anomalous
activities or behaviours that are out of control. Such scenarios are typically
approached as detection tasks, where the drift needs to be clearly signalled.

Informed methods are preferred in monitoring and control applications
where understanding the occurrence and timing of drifts is crucial. These
methods provide detailed information about the drifts, including their onset
and duration. This approach is highly relevant in machine learning, where
the explicit detection of drifts helps adapt models to changing data patterns
more efficiently [1].

Methods in this category are particularly relevant in scenarios for detecting
anomalies or out-of-control behaviours. The choice of the method usually
depends on the intent behind handling the concept drift. It should involve
these considerations:

® Monitoring the performance of the learner over time, mainly accuracy,
F-measure, precision or recall. Values such as positive rate, false positive
rate, true negative rate and false negative rate can also be incorporated
into this technique [6]. A significant decline in metrics can indicate
concept drift because the model becomes less effective as the underlying
data distribution changes.

® Observing data distribution and its changes can be the first step to indi-
cate concept drift. It involves monitoring changes in the data distribution
with statistical analysis of the features and their distribution.

After a drift is signalled, the model is usually retrained from scratch using
new data, but it can also be updated using a recent selection of data (data
window). Post-adaptation, it is crucial to continuously monitor the model's
performance to ensure that the adaptation was successful and to be on the
lookout for any future drifts.

Explicit detection includes the Drift Detection Method (DDM) and Early
Drfirt Detection Methodology (EDDM) [7]. They monitor the probability
of error at the time and its standard deviation. Window-based distribution
monitoring methodologies use a chunk-based or sliding window strategy over
recent samples to identify changes. Instead of comparing individual samples,
models calculate deviation by comparing the distribution of the current chunk
to a reference distribution obtained at the beginning of the data stream
from the training dataset. This allows for precise detection of the concept
drift. However, additional memory is required to store distributions over time.

7
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Adaptive Windowing (ADWIN) [8] is a notable detector introduced in 2007
that uses variable-length sliding windows.

B 2.2.2 Implicit drift detection methodologies

Contrary to explicit detection, implicit drift detection, also known as “blind
methods”, relies on adapting or retraining the learner (or model) at regular
intervals without explicit concept drift detection |1} |9]. The model in defined
timeframes adjusts to align with the current class distribution. The adjust-
ment is done regularly, without certainty whether the drift has occurred.
These methods are particularly effective in environments where labelling data
is impossible or expensive. However, the challenge for these methods is the
potential for false alarms, where the drift did not manifest as a clear change
in the data distribution.

Clustering-based methods are an approach for handling concept drift by
analysing unseen data distribution. They group similar data points together
and monitor how the clusters evolve. The online Novelty and Drift Detection
Algorithm (OLINDDA) [10] employs K-means clustering to adapt continu-
ously to emerging data distributions. By temporarily storing unknown data
samples, it can periodically assess them to determine if the model should
integrate them with the existing classes or if they should become a new one.
The Woo Ensemble and ECSMiner methods also use the concept of micro-
clusters, monitoring the density around new samples that fall outside existing
clusters. A significant increase in density around these samples indicates
a new concept, triggering model retraining and cluster readjustment. The
strong aspect of methods based on clustering is identifying new patterns in
the data streams and gradual drifts. However, they still might face some
challenges when the parameters (number of clusters or the distance metric)
are chosen suboptimally, or they may struggle in higher-dimension spaces.

Multivariate distribution monitoring methods focus on tracking the distri-
bution of individual features within unlabeled data. These methods typically
operate in chunks, storing condensed information about each training data
chunk, such as histograms of binned values. This stored information serves
as the reference distribution, enabling the detection of changes in the current
data chunk. The main idea behind these methods is to compare the data
distribution with the data from an earlier period. While they are robust, they
are susceptible to changes in any of the features, even though they might not
be relevant for detecting drifts. It is also important to train them on balanced
datasets because, within limited information about minority classes, their
feature change may be deemed insignificant due to their small proportion in
the original dataset.
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Bl 2.2.3 Examples of concept drift detection
Bl mD3

This approach, named MD3, is a domain-independent technique [11]. Classi-
fication techniques rely on the ability to generalise from the training dataset,
creating margins in prediction space where uncertainty exists. MD3 addresses
the challenge of detecting concept drift in unlabeled data, a common scenario
in real-world applications. Traditional drift detection methods rely heavily on
labelled data to compute performance metrics such as accuracy or F-measure
and monitor these over time. However, the dependency on labelled data could
be more practical in many situations due to the cost and time involved in
labelling.

In essence, the MD3 algorithm extends the notion of classifier uncertainty for
detecting concept drift, developing it as an incremental streaming algorithm
for drift detection from unlabeled data. Through comparison and empirical
evaluation, it formulates margin density for classifiers with explicit margins
and those without clear margins, such as decision trees. When a concept drift
is massive yet does not affect the classifier's margin, the MD3 algorithm may
face challenges in effectively detecting the drift. This scenario can occur in
certain situations, such as:

® Drift Occurring Away from the Margin: If the drift happens in
areas of the feature space far from the classifier's margin, MD3 might not
pick it up. This is because MD3 focuses on changes within the margin
or the classifier's region of uncertainty. If the concept drift does not
influence this region, the margin density remains unaffected, and MD3
may not trigger an alarm.

B Subtle Changes in Data Distribution: In cases where the concept
drift involves subtle changes in the underlying data distribution that
does not directly impact the decision boundary (and thus the margin),
MD3 may not detect the drift.

® Drift in Non-Margin-Related Features: If the drift occurs in aspects
of the data that are not critical for the classifier's decision-making process
(i.e., features not strongly associated with the margin), MD3 may miss
it. This type of drift might not change the margin density, as it does not
affect how the classifier generalises over the data.

This method utilises the concept of margin density in classifiers for detecting
drift in data streams. It monitors the margin, which is the of uncertainty in
the classification decision boundary. For classifiers without an explicit notion
of margin (such as decision trees and K-means), the model resorts to the
computation of Blindspot Density, which is the classifier's uncertainty region.
After computing the region, the model computes a reference density value
and uses it to evaluate incoming data.

9
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Unlabeled stream X Predicted labels Y
[Classiﬁcation Model‘]
—>»

argin Density calculation

Drift signaled?

Retrain model
using new samples

Collect samples for... p « = =+

Drift confirmed?

Figure 2.3: Basic MD3 flowchart

If the density of the margin deviates significantly from the expected margin
density, MD3 signals a potential concept drift. Further, N samples are
requested to be labelled by an external entity, Oracle, that provides true
labels for data at a given cost. Then, an accuracy test is performed, and if the
performance is degraded, a new model is trained using new labelled samples
and a new value for margin density is established. This allows MD3 to monitor
potential concept drift without labelled samples, as the detection process is
unsupervised. Labelling from external entities is only requested when the
drift is suspected, and the newly labelled data is also used in retraining.

B Predict-Detect

The Predict-Detect model is a framework that addresses the issue with
dynamic domains such as adversarial attacks [12]. It utilises a dual-component
structure consisting of a predictor and a detector, each playing a vital role in
maintaining the model's performance against possible attacks. According to
the authors, the key to mitigating attacks on models is to design problem-
specific solutions, but they also give a domain-independent solution. This
method has the same authors as the MD3 approach and can be used in
conjunction with the previous description of MD3.

The Predict-Detect design utilises two orthogonal classifiers, each trained

10



2.2. Concept drift detection

on separate subsets of the training features. The predict component is a
machine learning component with the primary task of classification applied to
the data stream. Its main goal is to maintain high performance on incoming
streaming data. The choice of the model and features depends on the specific
task and the characteristics of the data stream. The authors anticipate that
malicious actors will target this component after its deployment.

On the other hand, the detect component is responsible for identifying
the concept drift and does not engage in prediction tasks. It serves as a
watchdog for any anomalies occurring in the incoming data stream that may
suggest drift. The detect component identifies drift by analysing the data for
changes, often including shifts in the distributions of the features, emergence
of new patterns or disappearance of old ones. When a drift is detected, the
Detect component triggers a response in the system. It typically involves
notifying the system to adapt, which may include retraining or tuning the
Predictor. The second subset of features is used for the Detection component.
Consequently, it remains protected from external adversarial probes. This
model holds knowledge derived from the original training data, which remains
inaccessible to the adversary through probing.

While the Detect component identifies concept drift, the Predict component
must adapt to these changes. Upon receiving signals from the Detect compo-
nent about a drift, the Predict component can be retrained or fine-tuned to
align with the new data distribution. This retraining ensures that the predic-
tive accuracy is maintained even as the underlying data changes. The Predict
component works in tandem with the Detect component. While it focuses on
prediction, the Detect component monitors for drift. This dual-component
approach enhances the overall robustness of the system against adversarial
attacks or natural drifts in the data.

The division proposed by Sethi and Kantardzic is based on a feature-
ranking approach to ensure that each model is trained on essential and
disjoint features. If there is no knowledge of the importance of the features,
it is possible to partition them randomly. As the division of the features
is not transparent for the adversary, it continues to probe using the entire
feature set and depends on misrepresenting the significance of features for
classification.

The framework utilises the disagreement between the predictions of the two
models to indicate potential adversarial activity. An increase in disagreement
suggests a drift in the data, potentially due to adversarial manipulation. This
approach allows for the detection of adversarial drifts in an unsupervised
manner, reducing the reliance on labelled data.

In this context, the term Detection Region refers to a specific area in the
feature space where discrepancies between predictions of different models are
observed. The Detection Region is used to identify adversarial activities in
the Predict-Detect classifier framework. It is a zone where an increase in the
number of samples indicates potential adversarial attacks on the model. This
concept is crucial for the framework as it helps reliably detect concept drifts
caused by adversarial attacks in an unsupervised manner, thereby allowing

11
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Figure 2.4: MD3 SVM-based classifier (left) compared to a classifier defined as
the disagreement region (right).

for appropriate responses to maintain the effectiveness of the model. For each
of the components, during the training stage, the framework learns expected
disagreement and acceptable deviation along with the expected performance.
For each new incoming data sample, the disagreement in predictions between
the Predict and Detect models is computed. This is referred to as the
signal Dis. This disagreement value is aggregated over time to form the Pp,
metric. The aggregation is guided by a time-decaying incremental tracking
approach, which is influenced by the chunk size N. This means the framework
continually updates the disagreement rate as new data comes in, providing
a dynamic view of how the models' agreement levels change over time. If
the disagreement rate suddenly increases, it indicates concept drift. After
that, the attack is confirmed by collecting new samples and labelling them
for a new dataset, which is later used to retrain the model. The model can
generate a new split of features or keep the previous one.

Bl RBM-DD

The RBM-DD (Restricted Boltzmann Machine for Drift Detection) [13] is
a specialised application of the Restricted Boltzmann Machine (RBM) for
detecting concept drift in data streams. This approach involves using the
RBM's architecture and learning capabilities to identify changes in the data
distribution over time.

The authors consider adversarial drift as malicious due to the intentional
nature of such drifts. In the context of data streams and ML in cybersecurity,
adversarial drift refers to changes in data distribution deliberately inducted
by an attacker of an external entity, intending to compromise the performance
of the defender's learning system. Unlike the natural concept drift, which
often occurs primarily due to evolving data over time, adversarial drift is
the result of intentional manipulation. It also always involves sophisticated
strategies to mislead the classifier.

12



2.3. Datasets

A Restricted Boltzmann Machine (RBM) is an artificial neural network
used for unsupervised learning. It is a variant of the more general Boltz-
mann Machine, with a specific restriction on its architecture. It is a fully
trainable drift detector designed for autonomous adaptation to the stream
without external help, user-defined thresholds, or other statistical tests. The
authors argue that alternative approaches are highly sensitive to any data
perturbations and lack robustness against poisoning attacks. They focus on
measuring the difference between data distributions without analysing the
content of new instances. A significant challenge is differentiating between
valid (non-malicious) concept drifts and adversarial (malicious) concept drifts.
This is crucial for ensuring that learning algorithms adapt appropriately
without being misled by adversarial attacks. The main task of RBM-DD is
to solve these shortcomings:

An RBM consists of three layers of nodes: a visible layer and a hidden
layer.

® The visible layer corresponds to the input data.

® The hidden layer is used to capture features or patterns from the input
data.

® The class layer is used for class representation, typically implemented
with one-hot encoding.

The neurons in the same layer are not interconnected but are connected
to neurons in the adjacent layers. The training of this RBM involves a
mini-batch approach with a gradient descent method, and it is designed to
update its parameters based on the incoming data stream. This setup enables
the RBM to detect concept drifts robustly, distinguishing between normal
and adversarial changes in the data distribution.

The drift detection involves measuring the reconstruction error of the RBM,
which indicates how well the RBM can reconstruct the input data. Significant
changes in the reconstruction error are indicative of concept drift. The data
similarity is calculated by reconstructing the error measure. For stability, the
calculation is an average error over a recent min-batch of data. If the new
mini-batch differs significantly from the previous one, the RBM-DD detect
it by using the Granger causality test on trends. If the hypothesis that the
Granger causality relation exists between mini-batches is rejected, then the
model signals concept drift.

. 2.3 Datasets

Having a robust and representative dataset is crucial for effectively testing new
models for concept drift, as the quality and diversity of the data directly influ-
ence the model’s ability to learn and adapt to changing patterns over time. A
good dataset ensures comprehensive coverage of possible scenarios, including
edge cases, and mimics real-world dynamics where concept drift might occur.
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This allows for a thorough evaluation of the model's sensitivity and respon-
siveness to drift and can reveal its strengths and weaknesses in adapting to
shifts in the underlying data distribution. Without a well-constructed dataset
that encapsulates the complexity and variability of practical applications,
models might seem deceptively proficient in lab conditions but then falter in
the face of actual, evolving data streams, leading to poor performance and
reliability in real-world deployment. Essentially, a robust dataset for testing
concept drift is indispensable for validating and refining models to ensure
their resilience and longevity in dynamic environments.

B 2.3.1 Performance Metrics

The evaluation of data streams is one of the biggest challenges since traditional
approaches are unsuitable for data stream scenarios. There are several
requirements for such environments, it has to process an example at a time
and go through it only once, it is limited in memory capacity and time, and
it has to be able to predict at any time.

Authors of Classifer Concept Drift Detection and the Illusion of Progress [14]
formally set properties for evaluating drift detection methods.

Mean Time between False Alarms (MTFA) is a metric that measures
the average duration between incorrect warnings of drift in an environ-
ment where no such drift has occurred. The less frequent false alarms,
the higher the MTFA, which indicates a better-performing drift detector.

Mean Time to Detection (MTD) is another measure that determines
the response of a system to actual change. The lower MTD value is
better because the detector quickly detects genuine drifts.

Missed Detection Rate (MDR) calculates the likelihood of the detector
failing to signal an alarm when a drift has occurred.

For a fair assessment of change detection algorithms, the evaluation frame-
work must have access to verified instances of change within the dataset—this
is the ground truth. Therefore, we need to use synthetic datasets with es-
tablished ground truth, which is essential for this purpose. One approach
to evaluating the effectiveness of a detection method within a real-world
dataset is to employ a classification technique that incorporates concept drift
detection. By comparing the performance of the baseline classification model
without drift detection to that of the same model with drift detection enabled,
we can assess the impact and improvement brought about by the concept
drift detection mechanism. This comparison highlights the value added by
recognizing and adapting to concept drift in maintaining or enhancing model
accuracy in dynamic environments. In this situation, we can use a combina-
tion of standard metrics for measuring classifier's performance as explored in
BODMAS [15]. The article uses several metrics to measure the performance
of concept drift detection methods for malware classifiers. The metrics they
used are mentioned in Table 2.1
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Table 2.1: Performance metrics for classification [15]

Evaluation Parameter Major Purpose

1 False Positive Rate Keeping the FPR low is crucial for practical clas-
sifier applications, in this case, ensuring benign
files are not incorrectly flagged as malware.

2 F1 Score The F1 score is particularly useful for evaluating
the overall effectiveness of a classifier in the
presence of concept drift, as it considers both the
precision (the ratio of true positive predictions to
the total positive predictions) and the recall (the
ratio of true positive predictions to the actual
positives).

3 False Negative Rate This measure helps identify how well the clas-
sifier can detect new samples of known classes
and its ability to generalize to completely new
classes

Bl 2.3.2 Synthetic Dataset

MOA, which stands for Massive Online Analysis [16], is a significant open-
source software framework well-regarded in the data stream mining and
analysing community. It facilitates real-time and batch processing of data
streams. It is an essential tool for scenarios involving continuous data in-
flux, such as sensor networks, online transaction monitoring, or any domain
requiring on-the-fly analytics.

Central to MOA's capabilities is its suite of machine learning algorithms
encompassing classification, regression, clustering, outlier detection, concept
drift detection, and even recommender systems. This breadth of functionality
allows it to address various data stream challenges.

Designed with extensibility at its core, MOA allows for seamless integration
of new algorithms and experimentation, presenting a flexible environment for
users to expand their capabilities. Visualization tools in MOA contribute to a
deeper understanding of algorithm behaviours and data stream characteristics
over time. These tools are instrumental in both the development of new
algorithms and in the elucidation of streaming data properties for analysis.

Moreover, MOA includes tools for generating synthetic data streams, along
with concept drift, enabling researchers to simulate specific scenarios to test
and study the behaviour of streaming algorithms under controlled conditions.

MOA's widespread adoption in academia and industry is a testament to its
utility. It serves as a potent research tool and is commonly used in educational
settings to instruct students on the nuances of data stream mining and concept
drift. Given its implementation in Java, MOA benefits from cross-platform
compatibility, further extending its reach and applicability in the landscape of
big data analytics. MOA interface is easy to use and extend for researchers's
needs.
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B 2.3.3 Real-world Datasets with concept drift

Testing on real data is fundamental for developing reliable machine learning
models because it provides a window into the model's prospective performance
in the real world. Real datasets come with the inherent complexity and
unpredictability of the actual environment where the model will be deployed.
This complexity includes noise, outliers, non-linear patterns, and other real-
world anomalies that synthetic data may not accurately replicate.

Real data allows for the validation of a model's robustness and ability to
generalize. While synthetic data can be useful for initial proof of concept and
controlled experiments, it often lacks the variances associated with real-world
data. Models trained and tested on too-clean data may perform well in the
lab but can fail spectacularly in practice due to overfitting on overly simplistic
patterns.

Furthermore, real datasets often contain a degree of concept drift naturally.
Testing on such datasets enables the evaluation of a model's ability to adapt
to shifts and changes over time, which is a crucial property for applications
where the model must remain accurate as the world changes around it. For
example, conditions change constantly in financial markets or predictive
maintenance, and historical data may become less relevant, requiring models
that can adjust and learn from more recent data.

B Electricty dataset

The Electricity Market Dataset!| is a widely used real-world dataset for
evaluating concept drift detection methods. This dataset originates from
the Australian New South Wales Electricity Market. In this market, prices
and demand are influenced by both the market's demand-supply balance
and participant bidding activities. The dataset covers 2016 days between
2015 and 2020, comprising measurements related to electricity prices and
demand over time. It includes attributes like the date, time, demand, prices,
and whether the price increased or decreased. The dataset is particularly
valued for its natural concept drift characteristics. The electricity market
is subject to various forms of drift, including cyclical daily and seasonal
patterns, unexpected events like equipment failures or sudden demand spikes,
and longer-term changes in the market, such as introducing renewable energy
sources.

Il BODMAS

Our tests will utilise ’ZBODMAS: An Open Dataset for Learning-based Tem-
poral Analysis of PE Malware” [15]. It was created to address limitations in
existing Portable Executable (PE) malware datasets, as the authors deemed
the need for more recent and timestamped malware samples available for

https://www.kaggle.com/datasets/aramacus/electricity-demand-in-victori
a-australia
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the public. They aim to provide viable data for machine learning malware
analysis, especially in studying concept drift and malware family evolution.

The dataset contains 57,293 malware samples and 77,142 benign samples,
totalling 134,435. The samples were collected from August 2019 to September
2020. The dataset includes a wide variety of malware family information.
Each sample comprises its SHA-256 hash, the original PE (obtainable from the
authors directly), and the pre-extracted feature vector. The dataset provides
ground-truth labels, curated malware family information, and first-seen time
for a sample based on VirusTotal reports.

The authors conducted a preliminary analysis using the BODMAS dataset
to illustrate the impact of concept drift on binary and multi-class malware
classifiers. The study highlighted the challenges of previously unseen malware
families, which led to an increased rate of false negatives in binary classifiers
and issues in family classifiers in a real-world setting. In the next section, we
will replicate the authors' findings and implement new concept drift techniques
to mitigate the effects of concept drift.

Real data embodies the intricate and multifaceted nature of the environment
in which a model is intended to operate. Testing on real data not only ensures
that the model is practical and actionable but also instils confidence in its
users that it will perform reliably when confronted with the full spectrum of
challenges in real-world applications.

Number of Malware and Benign Files by Month (From August 2019)

8000 - type
I Benign
6000 | s Malware
k=
2 4000 -
Q
2000 +

Month-Year

Figure 2.5: Number of Malware and Bening Files in the BODMAS dataset

B 24 Dealing with concept drift in BODMAS dataset

B 2.4.1 Motivation

The current literature describes several approaches for addressing the concept
drift in a data stream. The primary goal is to find a viable solution to minimise
the impact of concept drift in a given dataset. For this purpose, I will use the
BODMAS malware dataset test as the input data stream, and the goal is to use
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as little additional computation and labelling as possible. Given the dataset's
characteristics and the baseline model's high performance (detailed in the
subsequent chapter), I will evaluate the effectiveness of different approaches
based on the F; score while maintaining a False Positive Rate (FPR) of 0.1%.

B 2.4.2 Baseline models

Due to the evolving nature of malware and benign software over time, we
can assume that the BODMAS dataset contains some concept drift. New
malware families and variants emerge, leading to changes in the underlying
data distribution. This evolution makes it necessary to constantly update
datasets to maintain the accuracy and relevance of machine learning models
used in malware analysis. Firstly, I recreated the findings from the original
BODMAS article.
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Figure 2.6: Training with the first month of BODMAS (until September 2019)
compared to training only on EMBER dataset (2018)

Figure |2.6| presents the results of my experiment where I trained two
models. The first model, the Ember-GBDT, is a Gradient Boosted Decision
Tree (GBDT) classifier. This baseline was developed using the EMBER
dataset?’, adhering to the hyperparameters specified in the original study.
For the purpose of testing, the BODMAS dataset was divided into twelve
monthly segments, against which the baseline model's performance was
assessed. Consistent with the original study's methodology, each classifier's
performance is evaluated based on the F) score, with a threshold set for the
false positive rate (FPR) at under 0.1%, to ensure the classifiers' practicality.
The results reveal that despite achieving a relatively high F) score, the
classifier's performance varies and shows signs of decline over the test period,
suggesting the occurrence of concept drift.

The observed decrease in my model's F} score when evaluated against
later months, in comparison to the original article, could stem from varying

2Available at https://github.com/elastic/ember
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monthly sample selection methods. The original study conducted multiple
tests using a range of seeds to acquire an average [} score, whereas my
evaluation was based on a single seed. This methodological difference led to a
maximal performance difference of 2.84% in August. Nonetheless, the pattern
of a performance dip in December and January, followed by a rebound in
April, remained consistent with the original findings.

The second model used the same parameters but was trained with the
data of the BODMAS dataset from September 2019. The performance of
the newly trained is apparent. Labelling a month and retraining the model
greatly improves the reliability of the classification, as new data provide
needed information about new distributions and trends in features. The
authors did not provide precise results for this model. My model performs
with an average F score at 99.1%.

B 2.4.3 The source of concept drift in BODMAS dataset

The source of concept drift in the BODMAS dataset arises primarily from the
dynamic, evolving nature of malware and benign software. As new malware
families and variants appear over time, they constantly introduce changes
to the underlying data distribution. This dynamic change means that the
models built on the dataset might become outdated as new data diverges
from the data distribution on which the models were originally trained. If
we know the underlying source of the drift, we can design better solutions to
mitigate it.

Based on the performance of the baseline GBDT model in Figure 2.6, there
are two notable declines in classifier accuracy, occurring around late December
and again in August. Analyzing these dips in performance would provide an
optimal strategy for identifying an effective concept drift detection method.
Once these periods of significant change are understood, we can determine
the most appropriate mitigation strategies. However, this does not guarantee
that the next distribution disturbance will behave the same. The dataset
distinguishes between benign and malware samples and supports that with
family attribution of the sample.

Figure 2.7|shows the number of samples for the dataset's top 3 most common
malware families. Throughout the dataset, the sfone group accumulates the
number with the largest number of samples in June 2020. Compared to
that wacatac malware family count is decreasing throughout the dataset. A
classifier that detects malware and benign samples does not have to predict
the malware family attribute accurately. However, this indicates that the
underlying distribution of the malware class in the dataset changes over time.
A method that detects concept drift has to be robust enough to distinguish
between a real concept drift that would occur in changes of malware and
benign samples and a virtual one that is prominent only in the malware class.

The other possible source for the concept drift might be new malware
families. Figure [2.8 shows the amount of previously unseen malware families
in a given month. The first three months were skipped as they were used as a
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Number of Samples for Top Three Malware Families Overall
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Figure 2.7: Number of samples for top three malware families in the BODMAS
dataset

baseline for the graph. Within the whole dataset, new families are appearing.
The arrival of previously unseen malware families can significantly increase
false negatives in binary malware classifiers and challenge the accuracy of
malware family classifiers in an open-world setting. This reflects the broader
concept drift issue where the testing set distribution shifts away from the
training set distribution, complicating the task of accurate classification over
time.

Number of Previously Unseen Malware Families Each Month

Number of New Families

Figure 2.8: Number new malware families in each month
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Bl 2.4.4 Incremental retraining

Incremental retraining is an easy strategy to implement for addressing concept
drift in dynamic data environments, ensuring predictive models remain accu-
rate as underlying data changes. This approach allows models to continuously
learn and adapt by incorporating new data into the training process in real
time. Incremental retraining adjusts the model's parameters or structure
as new information becomes available, enhancing its responsiveness to new
patterns and trends.

Incremental retraining can improve model robustness by effectively manag-
ing the stability, which helps maintain an optimal balance between adapting
to new data and retaining valuable old information. This capability is critical
for recognizing recurring patterns or cyclic changes, common in many real-
world applications. The method's flexibility allows for adjustments in the
frequency and intensity of updates, catering to the specific needs of various
applications, particularly those requiring real-time data processing.

In the context of the BODMAS dataset, authors apply incremental re-
training as a strategic response to concept drift in malware classification.
This approach periodically updates the classifier by incorporating a small
percentage (1%) of newly labelled data each month. The intention is to
ensure the classifier remains current and effective despite evolving malware
characteristics and distributions.

Incremental retraining offers several benefits in this scenario. First, it
allows the classifier to adapt to new threats progressively, reducing the risk of
becoming outdated. By integrating fresh data regularly, the model is better
equipped to handle newly emerging malware families and variants, which
might not have been present in the initial training set. This inclusion of
new data helps maintain the classifier's accuracy over time, demonstrating
a practical approach to mitigating the challenges posed by concept drift in
dynamic threat landscapes like malware detection.
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Figure 2.9: The baseline Ember-GBDT compared to the incremental retraining
approach

For this experiment, the code from the original paper was reused. This
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strategy is easy to implement as sampling and labelling the data is the only
overhead computation needed. The probability sampling strategy was used,
where samples are ranked based on the current classifier's probability [17]
output (the low probability ranks the sample higher) as it performed the
best on the dataset. As seen in Figure 2.9, the incremental retraining
strategy outperforms the baseline model trained on EMBER. There are clear
improvements every month in the performance. This approach can reduce the
integration difficulties with a real concept drift detection method and costs
only one monhtly model retraining. This approach seems a viable alternative
to a more specific detection and a domain-independent solution. In total 1027
new was needed in addition to the base model's dataset.

B 2.4.5 D3 with BODMAS dataset

The D3 (Discriminative Drift Detector) [18] method is an unsupervised
approach to detecting concept drift in data streams. D3 addresses this
challenge by employing a discriminative classifier to distinguish between old
and new data within a sliding window, thus continuously monitoring and
adapting to data distribution changes.

Specifically, D3 uses a sliding window technique to maintain a current
subset of the data, divided into two sections: one containing older data and
the other containing the most recent data. A discriminative classifier, such
as logistic regression, is trained to differentiate these two datasets based on
their features. The performance of this classifier is then evaluated using
metrics such as the Area Under the ROC Curve (AUC). If the AUC exceeds
a predefined threshold, the classifier can effectively distinguish between the
old and new data, signalling a significant shift in the data distribution and
identifying concept drift. This method allows for dynamic model adjustment
to new data trends, ensuring the model remains accurate and robust.

As the input, the algorithm takes three hyperparameters that influence
how a machine learning algorithm behaves, and they must be defined before
training models. These are hyperparameters in the D3 setup:

® Size of the sliding window w: This setting determines the total number of
samples in the sliding window. Larger windows may delay drift detection
but reduce noise sensitivity.

® Proportion of new data p: its purpose is to specify the fraction of the
window considered new data. The model can adapt quicker with higher
values but is potentially more volatile.

® Threshold for AUC 7: the cutoff value for the AUC to determine if drift
has occurred. Higher thresholds decrease false positives but may miss
subtle drifts.

In their study, the authors introduce the D3 method as a robust solution for
detecting concept drift in data streams, employing an unsupervised approach.
A key advantage of D3 is its adaptability, as the sliding window ensures
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the classifier is continuously updated with the most relevant data, allowing
the model to adapt dynamically to new patterns. This feature is crucial
in environments where data properties frequently evolve. Furthermore, the
unsupervised nature of D3, which does not rely on labelled data for detecting
drift, makes it particularly beneficial in scenarios where obtaining timely
labels is challenging, broadening its applicability. The authors also emphasize
the practicality and efficiency of D3 and its customizability through adjustable
AUC thresholds that allow users to balance the sensitivity and specificity of
the drift detection according to their specific needs. The study concludes
that D3 effectively and efficiently manages high-volume data streams, making
it a viable and flexible tool for dynamic and evolving data environments.

My next experiment (code available at B) focused on testing the viability
of the sliding window approach for detecting concept drift in the BODMAS
dataset. I tested tuning the D3 with multiple parameters of w = [100, 200,
500, 2500], p = [0.1, 0.2, 0.3, 0.5], and 7 = [0.8, 0.9, 0.99, 0.999]. The
Algorithm (1] is a simplified description of the implemented code. For the
discriminative classifier, I tested the linear regression and GBDT. During
retraining the model. I utilized the EMBER dataset as a foundation and
substituted 1% of newly observed data from BODMAS dataset.

Algorithm 1: D3: Discriminative Drift Detection
Input: Data stream D, window size w, new data proportion p, AUC
threshold 7
Output: Drift detection status
Function DiscriminativeDriftDetection(D, w, p,7):
Initialize sliding window W of size w
while new data available in D do
Add new data to W, maintaining size w
Split W into old data W4 and new data W,
Label W 4 as 0 and W, as 1
Train classifier C' on W to distinguish old from new data
Compute AUC of C on W
if AUC of C > 7 then
Signal drift detected
Retrain model

using p

end
Remove oldest data from W based on p

end
return Drift detection status

B D3 results

As mentioned previously, to maintain some memory for the D3 algorithm
and reduce its reactivity, the window size w is set to 2500. Values p = 0.1
and 7 = 0.9 were chosen for the other setting, as they performed the best on
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the BODMAS dataset. Although other combinations of values w = 500, p =
[0.1, 0.2] and 7= 0.999 showed acceptable results, they exhibited generally
lower performance than the original hyperparameters, prompting me to use
the initial configuration.
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Figure 2.10: D3 results, red lines represent detected drift

D3 encounters limitations under certain conditions. In my experiments, I
used the BODMAS dataset, which comprises samples and distributions from
real-world scenarios, but the dataset was structured to balance benign and
malicious samples evenly. This balance affects the sliding window's effective-
ness in the D3 method, and thus, it performed better in the experiments than
it would in a real-world situation. Specifically, if the stream lacks balance,
it could lead to situations where all samples in the window belong to the
same class. Consequently, new trends might develop within this set of new
samples that do not reflect genuine differences between classes, potentially
leading to incorrect drift detection. We can address this issue by adjusting
the hyperparameter w (sliding window size) to an even larger value. Also,
his method does not preserve long-term data, which may delay response to
recurring drifts. This solution is more suitable for less complex and extremely
fast environments, where a gradual or abrupt concept drift is more common.

B 2.4.6 MD3 with BODMAS dataset

The MD3 algorithm could be the practical and less demanding approach
(than constant retraining) to detecting concept drift in the BODMAS dataset.
I implemented the MD3 approach, and the code is available in Appendix |B.
In the next test, the dataset will be treated as a data stream and starting
from October 2019, each month will be separated into 10 chunks of equal
length and then sent to MD3 to evaluate for concept drift. As the GBDT
does not have an explicit margin, it is necessary to use the feature bagging
ensemble technique. The feature space is split between 15 GBDT classifiers,
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each containing 50% of the features. As part of the initialisation, a few
metrics need to be calculated:

® The trained model C| along with its corresponding reference accuracy
Accp,r and the standard deviation of accuracy o, ;. These metrics were
then computed based on this initial model configuration of the baseline
model trained on the EMBER dataset.

® The reference distribution M Dy, and its deviation o, (also calculated
from the baseline model).

The parameters that the user sets are as follows:

B Sensitivity O is used to fine-tune the algorithm. The suggested setting
is in the range of [0, 3].

® The forgetting factor A, it is set to usual A = (N — 1)/N where N is
chunk size.

The main classifier is still the same GBDT used in the BODMAS dataset.
The MD3 algorithm processes an unlabelled data stream, denoted as X, using
an initially trained model labelled C. It refers to a baseline known as the
Reference distribution (M Dy, ), accompanied by its standard deviation op,
the reference accuracy (Accgy), and the standard deviation of the accuracy
(04..). The algorithm operates under defined parameters: a sensitivity
threshold (denoted as ©) and a forgetting factor rate (\), which is calculated
as A = (N —1)/N where N is the chunk size, N,.;, (N by default). The
algorithm outputs a stream of predicted labels symbolized by Y.

B Margin density with GBDT

The crucial part of using the MD3 algorithm is setting its margin density
calculation. I stayed true to the BODMAS article and used its GBDT classifier
in the tests. As the GBDT classifier does not have an explicit margin so in
order to make it robust, a feature bagging ensemble technique was employed.
The original 2381-dimensional space was split into subsets of features, and a
classifier was trained on each. Tests were conducted on a split of 5, 7, 10, and
15 different subsets, where each contained 50% randomly selected features.
The margin detectors that used 5 to 10 split were not sensitive enough for
our use case. Using more than 15 different models is too impractical, as it
drastically increases training and retraining time, so I settled for 15 subsets.

To calculate the actual margin density, I used Algorithm |3| that evaluates
how often classifiers are unsure about their predictions. For each model, it
selects relevant features from the new data, makes predictions, and checks if
these lie within a defined range of uncertainty. It treats predictions within this
range as uncertain or in the margin. It then calculates what fraction of the
predictions are uncertain for each classifier and averages these fractions across
all classifiers to get an overall margin density. Additionally, it calculates the
standard deviation to measure how much the classifiers' uncertainties vary.
The function returns this average uncertainty and its variability.
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Algorithm 2: The MD3 algorithm

Input: Unlabeled stream X, Initially trained model C, Reference
distribution M Dg¢, 0per, ACCRefr T ace
Data: Sensitivity ©, Stream progression A = (N — 1)/N where N is
the chunk size, N, (/N by default)
Output: Predicted label stream Y
MDy = MDg
currently_drifting = False
LabeledSamples = ()
fort=1,2,3,... do
Compute current margin density M D,,,,.
Update MD, MD, = A« MD, ;+(1—\)«MD,,,
if MD, — MDp.;> © % op,, then
// Drift Suspected
currently drifting = True
LabeledSamples < Collect N,
end
f currently_drifting and |LabeledSamples| == N,
// Enough labelled samples to make a decision
if Accp,s— (Acc(LabeledSamples) > © * 0 4, then
// Drift Confirmed
Retrain C with LabeledSamples
Update Reference distribution (M Dge¢, Opers ACCRets T ace)
currently__drifting = False
end

labeled samples

rain

then

o

rain

end
end

Algorithm 3: Calculate Margin Density

Input: New samples X, .,
Output: Overall margin density across all classifiers, Standard
deviation of margin densities
Function CalculateMarginDensity (X
md__list < empty list
for each classifier clf in models do
probabilities < clf.predict(X

new )

new)

is_in_margin < (probabilities >
lower__bound) A (probabilities < upper__bound)
Append mean of is_in_ margin to md_ list
end
margin__density < mean of md_ list
std__deviation < standard deviation of md_list
return overall _margin__density, std__deviation
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B Core of the MD3 approach

The MD3 Algorithm 2| continuously monitors an unlabeled data stream to
detect concept drift, which occurs when the underlying data distribution
changes. As each new data chunk arrives, the algorithm updates the margin
density using an exponential smoothing technique, gradually incorporating
the latest data while retaining some memory of past observations.

When the algorithm detects that the updated margin density exceeds a
predefined sensitivity threshold, it raises an alert for potential drift. At this
point, it collects a predetermined number of labelled samples to confirm
whether the drift is real. Since I already had access to the labels, I utilized
the upcoming batch of data as the set that an Oracle would typically label. If
the model's performance on these newly labelled samples shows a substantial
deviation from the baseline accuracy, the drift is confirmed. Once confirmed,
the model undergoes retraining using these freshly labelled samples.

To effectively simulate a real data stream where labelling can be resource-
intensive, I employed a strategy where 90% of the data used for training was
from previously utilized datasets (the EMBER dataset and the already-used
labelled BODMAS data), and 10% was from fresh data that hadn't been used
in training before. This approach mimics the practical challenges and delays
of labelling new data in a dynamic environment.

B MD3 results

The most significant challenge involved setting the appropriate parameters
for the algorithm. Sensitivity © is recommended to be set between values of
0 and 3. In this case, any setting with a sensitivity value over 0.5 would not
detect a concept drift. Figure [2.11| shows how setting the sensitivity value to
0.1 and 0.25 affected the results. If the value were higher than 0.5, a concept
drift would not be detected at all; on the other hand, if the value was set
below 0.1 (e.g. 0.05 or 0.01), the drift was detected in every 2 to 3 chunks
and then confirmed. However, after retraining the main classifier, the margin
detector, the overall accuracy would not increase, and the F score stayed
around 99%.

Algorithm 3| outlines the general methodology for calculating the margin.
A sample was deemed to be within the uncertainty margin if the prediction
by the subset classifier fell within the range of [0.25, 0.75]. Adjusting the
margin size had little effect on the performance of the detection method. The
likely reason for this is that, unlike SVM, the GBDT classifier lacks a clear,
intuitive definition of margin. However, its faster learning capabilities offset
this, as GBDT requires fewer features for accurate predictions.

The results of the MD3 method are illustrated in Figure 2.11L This figure
includes the baseline model's accuracy, which does not account for concept
drift. Additionally, it shows the performance of two models under different
conditions: one with a sensitivity threshold (©) of 0.25 and another with
© of 0.1. The walidation curve indicates the model's accuracy evaluated
on data from the current month. The test curve represents how the model
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Figure 2.11: Results of the use of the MD3 algorithm on the BODMAS dataset

would behave when applied to data from the subsequent month, assuming
no modifications are made to the model. When the model operates with
a sensitivity setting of © = 0.25, it fails to identify any drift until early
February.

In contrast, when the sensitivity is adjusted to © = 0.1, the model is
able to detect the drift significantly earlier, in November. Following these
detections, neither model registers further drifts, and the F} score stabilizes
at 99%. This performance appears to be the upper limit for my GBDT model.
Exploring alternative methods or deeper trees might be necessary if the goal
is to achieve a higher F), score or to reduce the False Positive Rate (FPR).

The primary issue with this method can be seen during October and
November of 2019. Despite the original model being trained on data from a
year prior to the BODMAS dataset, it fails to detect any drift during these
months, resulting in lower classifier accuracy. One potential solution is to
lower the Sensitivity © further. However, this solution has a drawback—it
may lead the model to require more frequent retraining, so we have to consider
the cost efficiency of constant retraining without a substantial gain in accuracy.
A more straightforward solution might be to gather a sample from October
2019 and use this data to retrain our models. This approach would address
the accuracy decline in November and establish a new reference point for
subsequent data. The likely reason for the initial accuracy drop is that the
new data in the BODMAS dataset exhibit variations in features that the
models, which monitor changes in margin density, fail to recognize until the
variations become big enough to detect.

B 2.4.7 Improved approach for drift detection

The MD3 and D3 approach each have some weaknesses that can affect
their effectiveness in concept drift detection. MD3, while providing a stable
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approach to drift detection, struggles with drifts occurring away from the
classifier's margin. This method relies on changes within the classifier's region
of uncertainty, so drifts outside this area may go undetected. On the other
hand, D3 is highly sensitive and prone to detecting multiple drifts quickly,
even immediately after retraining. This can lead to unnecessary retraining if
the performance metrics are already satisfactory. D3's reliance on a sliding
window for drift detection does not preserve long-term data, potentially
delaying responses to recurring drifts.

To enhance the robustness of concept drift detection, I propose a hybrid
approach combining the strengths of both D3 and MD3 methodologies. In
this approach, D3 is a preliminary lower bound for detection, utilizing its
sensitivity to flag potential drifts. When D3 triggers a concept drift, MD3 is
employed to verify the drift. This two-tiered system ensures that a drift is
confirmed only if both methods concur, thereby initiating the retraining of
the models. This enhancement aims to improve the stability of the detection
process and make it possible to do more fine-tuning for the BODMAS dataset.

B Initial detection with D3

Due to its high sensitivity, the D3 (Discriminative Drift Detector) algorithm
is used as the initial detector. D3 continuously monitors the data stream
using a sliding window technique, comparing recent data with older data to
identify potential changes in data distribution. The size of the sliding window
and the proportion of new data are set to detect even subtle drifts. The
purpose of this layer is to detect new emerging tendencies in the stream. For
this case, the hyperparameters were set to w = 1000, p = 0.2 and 7 = 0.9.

B Verification with MD3

When D3 triggers an alert indicating a potential concept drift, the MD3
(Margin Density Drift Detection) algorithm is activated to verify the drift.
MD3 is configured with only five sub-classifiers to reduce computational
overhead, but its margin sensitivity is increased to ensure thorough validation.
Each sub-classifier operates on a different subset of features, enhancing the
detection accuracy by focusing on various aspects of the data. Sensitivity ©
is lowered to 0.2, and bounds for the region of uncertainty are set to 0.2 for
the lower bound and the upper bound to 0.8.

The most significant modification to the algorithm is the introduction of
adaptive reference accuracy. In both MD3 and my improved approach, the
final check involves evaluating the model's accuracy on the current data. In
the BODMAS dataset, the drift is actually improving the accuracy when a
classifier is trained on the EMBER dataset. That means that accuracy-based
detection won't detect drift until a base model's accuracy starts to drop. In
my improved approach, when drift is suspected by D3 and then by MD3, the
reference accuracy will be recalculated based on the latest data. This ensures
that reoccurring drifts will be detected and retraining will begin sooner.
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B Consensus for Retraining

For a concept drift to be confirmed, both D3 and MD3 must agree that a
drift has occurred. When D3 detects a drift, it signals a new trend in the
data, though this might only represent a virtual drift. To address this, MD3
is employed as a secondary check, utilizing older data to train models for drift
detection. While D3 ensures the presence of change in new data, MD3 will not
trigger retraining unless there is a confirmed change in the data distribution.
If both algorithms agree to detect a drift, the models are retrained using the
newly labelled data, ensuring they remain up-to-date and accurate.
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Figure 2.12: Improved detection method results, red lines represent detected
drifts

By leveraging the sensitivity of D3 for initial detection and the verifica-
tion strength of MD3, the improved method ensures that only confirmed
drifts trigger model retraining. This dual-check system minimizes the risk
of overfitting due to frequent retraining while maintaining high detection
accuracy. I achieved the results in Table [2.12] The average F} score stayed
at 98.1% and did not see many improvements compared to running detection
methods separately with optimal hyperparameters. However, drift detection
has become more reliable. The improved method detected drifts 4 and needed
28847 samples to achieve this. It correctly signalled a drift in June (where
the baseline Ember-GBDT's accuracy drops). This is beneficial if we strive
to detect all the drifts and not rely on the model's accuracy. Unfortunately,
the improved method does not detect a drift in October and November (a
drift is detected in late December, same as only running MD3), which again
affects the overall accuracy of the model in these months.
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B Running methods separately

I ran the MD3 and D3 methods separately with the same settings to test
that the proposed method benefits from combining them. Alone, the D3
approach would use 19521 samples and trigger 20 retraining with an average
F} score of 98%. MD3 used 48923 samples and triggered retraining 5 times,
with an average F score of 98.1%. The methods perform worse than shown
in Table |2.2 because the hyperparameters were set suboptimally when the
models were run separately. However, when combined, the methods yield
better performance.

B 2.4.8 Result analysis

Malware classification is a complicated problem that does not have a straight-
forward solution. Real-world datasets are messy and are a good benchmark
for testing new methods. Compared to other classification tasks, malware is
malicious in nature and tries to evade detection.

Table 2.2: Results of different approaches to concept drift

Method Average F1 Score  Drifts Detected Samples labelled
Baseline 0.946 0 0

New Data 0.991 0 22407
Incremental Retraining 0.985 12 1027

D3 0.982 11 10737
MD3 0.983 2 32742
Improved method 0.981 4 28847

Table 2.2 represent scores for approaches used in testing. To reiterate, the
table describes these methods:

B Baseline: This model was trained on the EMBER dataset; it does not
detect or retrain itself during classification.

® New Data: The model was trained on a combination of old data from
the EMBER dataset and new data from the BODMAS dataset, which
better represents distributions in the evaluation set. It does not detect
drifts.

® Incremental retraining: In this approach, the model was retrained
monthly with an extracted sample from the last month. It does not
detect drifts, so the number under Drifts Detected column represents the
number of retraining during the evaluation.

® D3: This uses the sliding window method and detects drifts based on
the separability of new and old data.

® MD3: an ensemble-based approach where the drift is detected by the
uncertainty of classifiers.
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# Improved method: combination of the D3 and MD3 approaches.

By examining the average F) score (with FPR maintained at 0.1% or
lower), it is evident that each method enhanced the classifier's accuracy,
demonstrating that any form of concept drift management yields better
results. The most effective approach involves using a completely new classifier
built with a substantial amount of recent data. This highlights the importance
of planning ahead to gather a current dataset for training classifiers. However,
a drift detection method is the next best alternative if creating such a dataset
is impossible.

Interestingly, incremental retraining emerges as a highly effective solution.
This method's strength lies in its independence from prior knowledge about
the data stream and its distribution. Even retraining with a small, 1% monthly
sample size yields diminishing returns. Incremental retraining is an excellent
initial strategy when creating a new classifier with a limited understanding
of the data stream. However, a significant challenge of incremental retraining
is ensuring that the sampled data comprehensively represents all data stream
features.

The other two methods, MD3 and D3, accurately identified a likely drift
in January 2020 (shown by Figure 2.11 and Figure [2.10) and triggered a
retraining process. However, these approaches fell short as they failed to
detect drift in October, negatively impacting the average F} score. Excluding
the first two months, the average F) score for MD3 is 99.1%, and for D3,
it is 99.0%. Another critical metric is the number of drifts detected. D3 is
significantly more sensitive, detecting multiple drifts in a month even right
after retraining. As the F) score exceeded 99%, this was not particularly
necessary, but it is important to note that if a lower FPR rate (e.g., 0.001%)
were desired, this frequent retraining might be deemed necessary. On the
other hand, MD3 presents a more stable approach to concept drift detection.
Despite achieving similar overall accuracy, MD3 only identified 2 drifts but
required the training of 15 additional classifiers on sub-spaces to function
effectively, which did not significantly reduce computational overhead.

Several key observations can be made when comparing the improved ap-
proach to MD3 and D3. The improved method, combining MD3 and D3,
achieves a stable F1 score of 98.1%. This performance metric indicates that
while the F1 score did not significantly improve compared to using MD3
and D3 separately, the reliability of drift detection increased. The improved
method required fewer samples than MD3 and fewer retraining than D3,
making it a balanced solution between reactive and stable approaches. How-
ever, more testing is required to determine if there is a real benefit to the
combination of D3 and MD3.
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Chapter 3

Discussion

When choosing an effective concept drift detection method, several factors
are essential, including desired accuracy, responsiveness to drift, resource
availability, and the depth of understanding of the data. A proactive approach
is encouraged to ensure optimal results.

For scenarios where resources are abundant and the latest data can be
accessed, constructing a new classifier using a comprehensive and recent
dataset is the most robust option. This method requires considerable planning
and resource allocation but leads to significant improvements in performance,
as reflected by higher Fj scores.

Incremental retraining represents a potent alternative, especially useful
when new datasets are limited or when there is a need for the classifier to
adapt swiftly to new trends without a full grasp of the data distribution.
While effective, ensuring that the sampled data adequately represents the
entire data stream is crucial.

D3 is highly sensitive among the detection algorithms, making it appropriate
for environments where capturing every potential drift is crucial. This method
may trigger multiple retrainings quickly, which is beneficial for maintaining
extremely low false positive rates. However, if the performance metrics are
already satisfactory, it might lead to unnecessary adjustments. Conversely,
MD3 offers a more stable approach with fewer detected drifts, requiring the
training of additional classifiers on sub-spaces, which could be computationally
demanding. Its stability is advantageous for applications where abrupt changes
in model behaviour due to frequent retraining are undesirable.

In conclusion, selecting a concept drift detection method should align with
the application's specific needs, balancing stability, accuracy, and responsive-
ness. A proactive approach in selecting and implementing these methods
can significantly enhance system performance by ensuring the model remains
effective over time despite the evolving nature of data streams.
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Chapter 4

Conclusion

In this thesis, I examined various methods to detect concept drift in data
streams, with a specialised test focusing on their cybersecurity application.
The exploration spans a spectrum of methodologies, from developing entirely
new classifiers based on fresh datasets to incrementally retraining existing
models and employing sophisticated drift detection algorithms like MD3 and
D3.

The central takeaway is the importance of proactive adaptation in maintain-
ing the effectiveness of machine learning models amidst dynamically changing
data streams. The research underscores that every approach—constructing
new classifiers or incrementally adapting existing ones—enhances classifier
accuracy. The findings indicate that the most successful strategies involve
substantial updates with new data or the vigilant application of drift detection
methods when updates are not feasible.

For the best results, it is important to consider a few points. Firstly,
regularly monitoring for concept drift is essential to maintain and improve
the accuracy of machine learning models. Without it, models may become
outdated and less effective as the underlying data evolves. Secondly, choosing
the most effective concept drift detection method requires a deep domain
understanding. Different domains may exhibit different drifts, and under-
standing these nuances helps select the appropriate detection strategy. Lastly,
employing a concept drift detection mechanism becomes necessary if con-
stant retraining is not desirable. This approach ensures that the model
adapts to changes only when necessary, reducing computational overhead and
maintaining stability.

My analysis suggests that incremental retraining is a viable initial strategy
despite its challenges in sample representation, especially when detailed histor-
ical data knowledge is limited. This method's flexibility in data independence
and its capacity for gradual adaptation aligns well with the needs of dynamic
environments where data properties can swiftly change.

Among the specialized techniques studied, the MD3 offers method stability
in detection. Conversely, D3 is highlighted for its high sensitivity, which is
beneficial in settings where capturing subtle drifts is crucial, though it may
lead to frequent unnecessary retraining. My approach lies between these two
and offers a more balanced approach to drift detection.
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4. Conclusion

In this thesis, my primary contribution to the field of concept drift detection
lies in developing and validating a hybrid detection approach that combines
the strengths of MD3 and D3 methodologies. The experimental results on
the BODMAS dataset demonstrate an improvement compared to the MD3
and D3. While the proposed hybrid detection approach shows promising
results, further tests are needed to evaluate its performance across datasets
and real-world scenarios. Additional experimentation will help define the
model parameters and ensure applicability in different applications.

Conclusively, this thesis advances my understanding of concept drift detec-
tion in cybersecurity applications and provides a solid framework for selecting
appropriate detection strategies based on specific needs and constraints. It
was challenging to research all the options and choose a method as the current
research lacks real-world testing on datasets that are less common in the
machine learning sphere. I gained a lot of experience working with machine
learning libraries for Python and developing my testing methods.

. 4.1 Future work

Two main paths exist for advancing this research. Firstly, the development of
a drift detection method designed specifically for the BODMAS dataset should
be considered. Existing methods, which rely on older data, failed to identify
drifts early, significantly affecting the classifier's performance. A tailored
approach could potentially yield better outcomes. However, the scarcity of
literature addressing concept drift in malware data streams underscores the
need for further research into the characteristics of malware and its evasion
techniques, which would facilitate the creation of improved detection methods.

Secondly, future research could explore integrating multiple concept drift
detection strategies, with or without including incremental retraining. Certain
data streams necessitate responsive solutions combined with classifiers that
maintain stable long-term memory to achieve optimal effectiveness. Such
investigations could lead to more robust and adaptive systems capable of
effectively managing the dynamic nature of data streams.
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Appendix B
Attachments

This chapter describes the attached files to the thesis.

Table B.1: List of Attached Files

Folder name | Description
thesis-code Source code used in the experiments.

B B1 Supplementary code

All code for used methods can be obtained from my GitHub pag&ﬂ To run
the code it is necessary to download the BODMAS datse and put it
under the multiple_data/bodmas__dataset.npz folder. Some of the experiments
require a trained classifier on the EMBER dataset as a baseline. It is possible
to run training on GPU, but I encountered a problem with the Light BGM
library, where the training crashes with insufficient VRAM. This can be
circumvented by using a fraction of the EMBER dataset. A more detailed
description of flags and settings can be found on the GitHub page.

B Training on new data

bodmas_main.py --training-set bodmas --diversity no --setting-name
bodmas_diversity_no --classifier gbdt --testing-time 2019-10,2020-
09 --retrain 1 --seed 0O --quiet O

Description: This code replicates the findings in Figure This code was
taken from the original BODMAS article.

B Incremental Retraining

concpet_drift_ember.py --setting-name ember_drift_random_improved
--classifier gbdt --month-interval 1 --testing-time 2019-10,2020-
09 --ember-ratio 1 --seed 1 --sample-ratio 0.01 --retrain 0 --quiet
0

1|ht1:ps ://github.com/barabashevd/thesis- codel
*Aviable at https://whyisyoung.github. io/BODMAS/l
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Description: This command runs the concept drift detection using the
Ember dataset with specified settings. This code was taken from the original
BODMAS article.

H D3

d3.py --w 2500 --rho 0.1 --tau 0.99

Description: This command runs the concept drift detection using the D3
approach (results of Figure [2.10)).

H MD3

concept_drift_md3.py --setting-name md3 --classifier gbdt --month-
interval 1 --testing-time 2019-10,2020-09 --ember-ratio 1.0 --seed
1 --retrain 1 --quiet O

Description: This command runs the MD3 concept drift detection method
with the BODMAS dataset. A baseline model trained on EMBER needs to
replicate Figure [2.11l

B Improved detection

concept_drift_improved.py --setting-name ember_drift_random_improved
-—-classifier gbdt -—month-interval 1 --testing-time 2019-10,2020-

09 --ember-ratio 1.0 --seed 1 --sample-ratio 0.01 --retrain 1 --quiet
0

Description: The command runs the improved drift detection based on
MD3 and D3. This will result in Figure [2.12.
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