
i

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Edge AI Integration for Anomaly Detection in Assembly
using Delta Robot

Bachelor thesis

Vojtěch Hanzĺık

Programme: Software Engineering and Technology
Branch of study: Internet of Things
Supervisor: Ing. Martin Macaš, Ph.D.

Prague, May 23, 2024

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

503243 Personal ID number: Hanzlík Vojtěch Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and Technology Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Edge AI Integration for Anomaly Detection in Assembly using Delta Robot

Bachelor’s thesis title in Czech:

Edge AI integrace detekce anomálií v procesu montáže pomocí delta robota

Guidelines:

1. Deploy the provided model for anomaly detection on an edge device in the Industry 4.0 Testbed, specifically the delta
robot performing assembly. The edge device may be a laptop or any other suitable device. Verify the functionality by
running an experimental trial on-site and evaluating performance indicators like detection performance, computational
efficiency, robustness, or impact on the robotic assembly process.
2. Implement data access from the delta robot in Python using the OPC UA protocol.
3. Explore the MLOps paradigm and analyze its applicability to anomaly detection in delta robots. Emphasize aspects
such as engineering, testing, validation, deployment, and monitoring of the machine learning model.
4. Investigate the concept of Industry 5.0 and devise a strategy to incorporate human or machine feedback into the anomaly
detection process for a deployed machine learning model.
5. Provide the machine learning algorithm as-a-service by leveraging the AI-on-demand platform available at
https://aiexp.ai4europe.eu/.

Bibliography / sources:

[1] Rožanec, J. M., Novalija, I., Zajec, P., Kenda, K., Tavakoli Ghinani, H., Suh, S., ... & Soldatos, J. (2023). Human-centric
artificial intelligence architecture for industry 5.0 applications. International Journal of Production Research, 61(20),
6847-6872.
[2] Lindner, F., & Reiner, G. (2023, May). Industry 5.0 and Operations Management—the Importance of Human Factors.
In NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium (pp. 1-4). IEEE.
[3] Ordieres-Meré, J., Gutierrez, M., & Villalba-Díez, J. (2023). Toward the industry 5.0 paradigm: Increasing value creation
through the robust integration of humans and machines. Computers in Industry, 150, 103947
[4] Loizaga, E., Eyam, A. T., Bastida, L., & Lastra, J. L. M. (2023). A Comprehensive study of human factors, sensory
principles and commercial solutions for future human-centered working operations in Industry 5.0. IEEE Access.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Macaš, Ph.D. Intelligent Systems for Industry and Smart Distribution Networks CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 19.02.2024

Assignment valid until: 15.02.2026

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Martin Macaš, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Declaration

I hereby declare I have written this bachelor thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, May 23, 2024

..
Vojtěch Hanzĺık

iv

Abstract

This thesis presents the development and deployment of an anomaly detection system for
a multi-axis delta robot located at the Testbed for Industry 4.0 at the Czech Institute
of Informatics, Robotics, and Cybernetics at the Czech Technical University in Prague.
By integrating machine learning algorithms, the project analyzes multidimensional time-
series data from torque and force sensors to find anomalies in the process of wheel assembly
for remote-controlled vehicles. The Open Platform Communications United Architecture
protocol (OPC UA) is used in the system architecture to transfer data from the delta
robot. Protocol Buffers are used for structured data serialization in the general-purpose
Remote Procedure Calls (gRPC) client-server architecture, which offers real-time data
processing and anomaly detection. The gRPC server integrates the anomaly detection
model for time series data analysis, which is packaged as a Python module for simple
distribution.

With the help of a web-based user interface created with Flask and WebSockets,
users can communicate with the system, see real-time results, and provide feedback.
A MongoDB database is used to store historical data and human labels for inaccurate
predictions, allowing continuous model development. Metrics like processing time and
latency were used to assess the system’s performance.

To ease the deployment and monitoring process, Machine Learning Operation Proce-
dures have been used. Dockerization ensures a consistent deployment across all platforms.
By showing time series data and anomaly detection results, integration with Grafana offers
a number of monitoring options.

Keywords: Industry 4.0, Machine learning deployment, Communication protocols, Real-
time systems

v

Acknowledgements

I would like to express my gratitude to my supervisor, Martin Macaš, for his guidance,
support, and encouragement throughout this project. His expertise and insights were
essential in shaping this thesis.

I would like to thank Aleš Trna for his patience and understanding during the testing
and data collection sessions. The support during those times when things didn’t go as
intended was very much appreciated.

I am also grateful to the testbed team for their technical support and for providing
the necessary working space for this project. The assistance and resources were crucial
for the successful execution of this project.

vi

List of Tables

3.1 Latency metrics for localhost and Local Area Network (LAN) setups 18
3.2 Processing time metrics for localhost and LAN setups 18

vii

List of Figures

2.1 Sensor readings from the assembly of four wheels 5
2.2 Client-Server Architecture Diagram . 6
2.3 Server Flow Chart . 8
2.4 ctuFaultDetector Package Structure . 9
2.5 Updated Architecture After Flask Integration 11
2.6 User Interface Design . 13
2.7 Final Architecture . 14

3.1 Latency Distribution for Feature and Deviation Classifier Models 18
3.2 System Latency Diagram With Variable Latencies 20
3.3 On-Boarding the Model Onto the Platform 24
3.4 Connecting the Two Uploaded Images In the Design Studio 24
3.5 Deploying the Solution On-line . 25
3.6 Deployed Model Logs . 25
3.7 All predictions within a time frame viewed in Grafana 26
3.8 Prediction that has been labeled as a false negative viewed in Grafana . . . 26

viii

List of Acronyms

gRPC general-purpose Remote Procedure Calls. x, 5–7, 9–12, 14, 15, 17, 20–24, 27

IoT Internet of Things. 14

LAN Local Area Network. vii, 18, 19

MLOps Machine Learning Operations. 1, 16, 20

MQTT Message Queuing Telemetry Transport. 14, 15

OPC UA Open Platform Communications United Architecture. x, 1, 3–5, 10, 12, 19,
27

PLC programmable logic controller. 4, 19

PyPI Python Package Index. 9, 10, 16, 27

RTT Round Trip Time. 17

UI User Interface. x, 2, 10–14, 25, 28

ix

Contents

Abstract v

Acknowledgements vi

List of Tables vii

List of Figures viii

List of Acronyms ix

1 Introduction 1

2 System Architecture and Implementation 3
2.1 Open Platform Communications United Architecture (OPC UA) Client

and Delta Robot Communication . 3
2.2 general-purpose Remote Procedure Calls (gRPC) Client-Server Architecture 5
2.3 Architecture for Real-time Anomaly Detection Web User Interface (UI) . . 10
2.4 Database Integration for Anomaly Detection Results Analysis 13

3 MLOps in Anomaly Detection for Delta Robots 16
3.1 Machine Learning Model Development . 16
3.2 Testing and Validation . 16

3.2.1 gRPC Client-Server Latency . 17
3.3 Deployment and Integration . 20

3.3.1 Dockerization of the gRPC Server 21
3.3.2 Deploying to AI-Builder . 23

3.4 Monitoring and Maintenance . 25

4 Conclusion 27
4.1 Accomplishments . 27
4.2 Future Work . 28

Bibliography 30

x

Chapter 1

Introduction

The project, which this thesis is based on, is part of a larger project conducted at the

Testbed for Industry 4.0 at the Czech Institute of Informatics, Robotics, and Cybernet-

ics at the Czech Technical University in Prague. This facility is equipped with various

advanced robotic systems, including a multi-axis delta robot with a conveyor system,

which is the core of this project. The robot is tasked with assembling small wheels for

remote-controlled vehicles. The assembly process is monitored using force and torque

sensors mounted on the robot. These sensors generate multidimensional time-series data,

which is analyzed in real-time using machine learning algorithms to identify any anomalies

within the wheel assembly process.

Incorporating Edge AI technology is a significant aspect of this project. Edge AI refers

to the deployment of artificial intelligence algorithms directly on devices located at the

edge of the network, instead of relying on cloud-based solutions. This approach enables

real-time data processing at the source of data generation.

The main goal of this project is to develop an anomaly detection system with a human

feedback, housing a machine learning model developed by Aleš Trna [1]. Deploy said

solution both on-site within the Industry 4.0 Testbed, conducting testing and verification

of the solution, and on the AI-on-demand platform1, making the model accessible by wider

audience. Another goal is to suggest Machine Learning Operations (MLOps) practises

and their applicability in the project´s use case. Several steps have been made to achieve

the desired outcomes. First task was to create a script using the OPC UA protocol to

enable real-time data access from the delta robot. The project continued by developing a

client-server based system and integrating such script into a client component within the

client-server architecture, where it serves as a source of data that are further streamed

to the server component, that houses the machine learning model providing anomaly

detection. The said model was made into a Python package, making it easily distributable

1AI-on-demand platforml

1

https://aiexp.ai4europe.eu/

CHAPTER 1. INTRODUCTION 2

and maintainable. To satisfy another desired goals of this thesis, a simple web-based UI

was developed and integrated into the client component, making human feedback possible.

For the same purpose a database component, based on MongoDB, was introduced into

the system along with setting up a visualization tool, Grafana.

Chapter 2

System Architecture and

Implementation

2.1 OPC UA Client and Delta Robot Communica-

tion

A key component of the communication architecture is the OPC UA client, which pro-

vides a standardized communication protocol for data exchange between machines [2]. A

data collection script from MATLAB to Python needed to be converted for the project.

Python’s wide libraries support and smooth integration with several AI and machine

learning frameworks served as the main motivation. The Python script provides a reli-

able and efficient data transmission process by communicating with the delta robot via

the OPC UA client.

Using the OPC UA protocol, the Python script connects to the delta robot. In order

to read sensor data, control data buffers for signal sampling, and trigger the robot, it

specifies the required nodes. The Python script establishes a secure connection between

the OPC UA client and the delta robot, which guarantees data integrity and reliability[3].

The following part will analyze the communication process, showing the steps taken by

the script to manage data collection, maintain data buffers, and read data from and send

to the delta robot.

The algorithm implemented in Python script creates a communication connection over

the OPC UA protocol with the delta robot to allow a real-time data collection throughout

an assembly process. A description of the algorithm’s operating steps may be found below:

1. Initialize OPC UA Client: Create an instance of the OPC UA client and con-

figure the server’s URL, session timeout, user credentials (username and password),

and then establish a connection to the server.

3

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 4

2. Retrieve OPC UA Nodes: Access specific nodes from the OPC UA server re-

lated to the delta robot’s operational parameters, including nodes for triggering data

collection, enabling the switch buffer, and identifying the number of traces. Infor-

mation about specific nodes was gathered from the programmable logic controller

(PLC)’s manual. 1

3. Preparation for Data Collection:

(a) Disable the switch buffer to prepare the system for a new data collection loop

(assembly of wheels).

(b) Configure signal usage and trace selector nodes for each trace.

4. Enable Data Collection: Activate the switch buffer to start the data collection

process.

5. Data Collection Loop: One loop consists of the assembly of typically four wheels.

(a) Wait for the ”readyForTrigger” signal, indicating that the system is prepared

for data recording.

(b) As soon as the trigger is received, begin recording and collect data in packets.

(c) For each packet:

• Check and wait for the handshake bit to be set, which indicates that either

of the edge interfaces (buffers, 0 or 1) is ready for data collection.

• Retrieve and store data samples from the selected interface. Each buffer

contains 500 samples.

• Reset the handshake bit once data collection for the current packet is

completed.

(d) Repeat the process for a predefined number of packets.

(e) Disable the switch buffer in order to finalize the data collection loop and pro-

ceed to next one.

6. Conclusion: Disconnect the OPC UA client and prepare the system for the next

data collection loop or for shutdown.

1PLC manual

https://cache.industry.siemens.com/dl/files/979/109783979/att_1090375/v1/109783979_LEdgeBuffer_DOC_V2_1_0_en.pdf

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 5

The outcome of one loop is the following time series. Six different force and torque

sensor readings and process identifiers. A non-zero identifier, coloured pink in the graph,

signals a point in time where a wheel is being assembled, which means that in one loop

there is much more unnecessary data than data relevant to the machine learning model.

Specifically 12000 data points, out of which only around 4000 (1000 per wheel) are desired.

Such fact will be important and mentioned later in the thesis 2.4. By reading first and

last timestamps of the buffers, its was calculated that a buffer of 500 data points takes

2000 milliseconds, meaning the OPC UA server is ready to transfer data every 2 seconds.

Figure 2.1: Sensor readings from the assembly of four wheels

2.2 gRPC Client-Server Architecture

The project’s architecture consists of a gRPC server responsible for handling data pro-

cessing and anomaly detection, and a gRPC client that communicates with the server to

send data collected from the delta robot via the OPC UA client. gRPC is an open-source

remote procedure call system initially developed by Google, which uses HTTP/2 for trans-

port, Protocol Buffers as the interface description language, and provides features such as

authentication, load balancing, and more [4]. The decision to utilize gRPC in this project

was motivated by several factors, supported by the findings in the paper ”A Review of

Application Layer Communication Protocols for the IoT Edge Cloud Continuum” [5]:

• Performance and Efficiency: The efficiency of gRPC, thanks to its use of

HTTP/2, enables a more efficient data transfer, which is crucial for the real-time

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 6

Figure 2.2: Client-Server Architecture Diagram

aspects of this project. This efficiency is particularly important when dealing with

the high-throughput data generated by the delta robot.

• Support for Bidirectional Streaming: gRPC’s native support for bidirectional

streaming allows for continuous communication between the client and server, as

seen in the diagram Figure 2.2, which enables real-time updates and responses.

This feature is crucial for the project’s use case, where the server needs to process

streaming data from the client, apply the housed machine learning model, and

simultaneously send feedback back to the client.

• Cross-Language Support: gRPC offers easy implementation across different pro-

gramming languages, improving the adaptability and integration potential of the

system, which might become useful later in the project´s future after it has been

handed over and maintained by the team at the Testbed for industry 4.0.

• Strongly Typed Interfaces: Using Protocol Buffers, mechanisms for serializing

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 7

structured data2, ensures predefined and strongly typed service interfaces, improv-

ing the communication protocol’s maintainability, which is essential for accurately

defining the inputs and outputs of the machine learning model. Protocol buffer for

this project is shown below. One service, providing the bidirectional stream, and

two types of messages are defined. The NumpyArray message is sent by the gRPC

client, whereas the other message AnomalyDetResponse is returned by the gRPC

server.

service AnomalyDetectionService {

rpc StreamData(stream NumpyArray) returns (stream

AnomalyDetResponse);

}

message AnomalyDetResponse {

int32 id = 1;

bool result = 2;

int32 series_len = 3;

int32 msg_id = 4;

}

message NumpyArray {

repeated double values = 1;

int32 rows = 2;

int32 cols = 3;

int32 msg_id = 4;

}

The gRPC client is designed to establish a connection with the gRPC server, transmit

the collected data via a bidirectional stream, and receive the processed results. As seen

in the defined NumpyArray message above, protocol buffers only support serialization

of simple one dimensional arrays. However, since a seven dimensional array needs to

be transferred, the client first flattens the array into a one dimensional one and sends

it together with the original numbers of rows and columns, so that the array can be

reconstructed after reaching its destination.

The gRPC server is implemented to provide several functionalities, including data

processing and anomaly detection, utilizing the housed machine learning model. It listens

for incoming stream requests from the gRPC client, processes the data, and sends back

results of the machine learning model inference. Since the messages might not always

2Protocol Buffers Documentation

https://protobuf.dev/

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 8

contain data relevant for the model (data with identifier equal to zero), which happens

very often within the project´s use case, it keeps track of its own buffer, implemented as

Python´s version of a hash table, a dictionary, where keys stand for the non-zero identifiers

and values for their corresponding time series together with a prediction result. Using

a dictionary instead of, for example, an array covers cases where one message contains

data points corresponding to more than one non-zero identifier. The server first checks

for any non-zero identifiers. If there are not any in the message and the buffer is empty,

the message is discarded, effectively filtering machine learning model-irrelevant data. If

the buffer is not empty and the current message contains identifiers equal to zero, that

means that the buffer´s identifiers, which are not contained in the current message, have

reached their end within the assembly process and can be cleared.

Figure 2.3: Server Flow Chart

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 9

Machine Learning Model Integration

The gRPC server houses a machine learning model developed by Aleš Trna [1], designed

to analyze time-series data collected from the assembly line in real-time. An important

advancement in the integration process is the transformation of the machine learning

model into a Python package. This packaging simplified its distribution done via Python

Package Index (PyPI), an official Python package repository[6]. The distribution process

involved the use of setuptools, a tool, that creates a so called egg [7] and wheel, both a

type of built distribution files, that can be then easily installed. The files are created

with the help of a setup.py file that contains metadata and dependencies required by the

model. Another tool twine 3 was then used to upload the package to PyPI.

The distribution of the machine learning model as an installable Python package

offers several advantages. Users can easily install the model using pip, which significantly

simplifies the deployment process and integration into various systems. Versioning is

made possible by distributing the model via PyPI, which guarantees that users can access

particular model versions and efficiently manage dependencies [8]. By utilizing PyPI, the

model is made accessible to a wide audience. The model’s packaging provides reusability

by allowing the model to be applied in a variety of settings without requiring direct access

to the initial development setup. The distribution of the machine learning model as a

Python package was achieved in several steps described below.

Figure 2.4: ctuFaultDetector Package Structure

1. Package Preparation: Following standard practices for Python packaging, the

machine learning model and its corresponding modules were placed inside a defined

directory structure 4. The setup.py should be created in the root folder of the repos-

itory together with the desired package. That way it can reach the ctuFaulDetector

3twine introduction
4setuptools guide

https://twine.readthedocs.io/en/stable/
https://setuptools.pypa.io/en/latest/userguide/package_discovery.html

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 10

folder, which is the root folder of the package, as shown in Figure 2.4, and is specified

in the setup.py file. Every folder that should be packaged must contain a init .py

file, that way setup.py knows it is a Python module which should be distributed to-

gether with the root folder. The Figure 2.4 shows several folders without the dot in

the folder icon, which means they do not contain a init .py file and are therefore

not modules and consequently will not be included in the distributed package.

2. Package Building: Using setuptools, the package was prepared for distribution.

The command python setup.py bdist wheel sdist was executed to generate distribu-

tion archives in the dist directory.

3. Package Uploading: The built distribution files were uploaded to PyPI using

twine with the command twine upload dist/*.

4. Package Installation: The Python package can now be easily installed using pip

install ctuFaultDetector.

2.3 Architecture for Real-time Anomaly Detection

Web UI

In order to satisfy one of the project‘s goals, the human-machine interaction within the

concept of Industry 5.0, a web-based UI was developed, enhancing user interaction and

providing real-time feedback on anomaly detection results. This UI is designed to display

predictions streamed from the gRPC server, which processes data collected from industrial

sensors. In order to make real-time interaction and display of anomaly detection results

possible, several architecture options were evaluated. The decision on the architecture

affects latency, which is critical for real-time operations. The Following is the thought

process behind the selection of the potential architectures and the reasons behind the

selected approach.

The first approach is to host the UI with the gRPC client. This approach integrates the

UI directly within the gRPC client that interfaces with the OPC UA, making it a mono-

lithic architecture [9]. Since the gRPC client is already connected to the gRPC server,

it can receive the processed results and directly update the UI without any additional

network hops. This setup also simplifies the overall system architecture by minimizing

the number of components involved, which eases implementation and debugging, but on

the other hand takes a toll on the scalability of the system.

Although hosting the UI on the same server that runs the ML model would provide

immediate access to processed data, it introduces potential drawbacks such as increased

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 11

server load and potentially higher network latency if the server is not in close proximity

to the client. The server would need to handle UI rendering and then send the entire

rendered UI to the client.

Making the UI into a separate component would also be an option. It would make

the system more scalable by separating tasks into several microservices [10], but it might

also make the anomaly detection results delivery longer, because it would have to travel

between more components, opening additional communication channels.

The architecture of hosting the UI together with the gRPC client was chosen because

of its lower latency and simple nature of the UI required by this project, also supported

by the findings in the paper [11]

Figure 2.5: Updated Architecture After Flask Integration

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 12

WebSockets for real-time communication and Flask for the web development were

used in the implementation. WebSockets provide real-time updates that can be viewed

directly in the browser without having to constantly poll the server, allowing the server

to push new data to the client’s browser [12]. By doing this, it is guaranteed that the UI

is updated quickly with the most recent anomaly detection results.

Flask is a lightweight web framework [13], that also supports a built-in development

WebSockets server, which makes the development process easy by making local testing

possible without having to install an additional server. Running a Flask based application

is as easy as running a simple Python script.

The Flask server handles HTTP requests and WebSocket events. The server renders

the HTML page to the client and establishes WebSocket connections for transmitting

real-time data. Using Flask-SocketIO, the server can emit and listen for events on the

WebSocket. This allows the server to receive commands from the UI [14] (e.g., start or stop

streaming) and push prediction results to the UI as they are processed by the gRPC server.

Web User Interface Design and Features

The UI includes basic HTML elements such as buttons for starting and stopping data

streaming and a designated area to display the prediction results along with buttons that

can be used to mark a prediction result as incorrect. JavaScript, along with Socket.IO,

is used to provide real-time communication between the client’s browser and the Flask

server. This setup enables dynamic updates without the need to refresh the web page.

The user can initiate the streaming of data by clicking the ”Start Streaming” button.

This sends a command to the Flask server via WebSockets, which instructs the gRPC

client to begin the data collection via the OPC UA client and open the stream to the

gRPC server. As predictions are generated by the gRPC server, they are sent to the

Flask server, which then pushes these results to the web UI. The user can stop the

streaming of data at any point by clicking the ”Stop Streaming” button, which sends

another command to the Flask server to stop the process. The prediction results are

displayed in the designated area in the UI, with each new prediction dynamically added

to the display without reloading the page. Users can mark incorrect predictions, which are

then further processed by the Flask server. Each prediction record consists of a prediction

boolean value, true signaling an anomaly and false a normal operating state, identifier

and a corresponding time series length, which the prediction was calculated on. In order

not to overload the memory with prediction results, they are kept in a circular queue,

whose capacity is currently set to 40, but can be adjusted to specific needs, so the oldest

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 13

Figure 2.6: User Interface Design

records are overwritten by the new ones. In the delta robot´s use case, generally three

predictions are made over the process of one wheel assembly, meaning over the period of

one data collection loop, 12 predictions would be displayed in the UI, which makes the

current queue capacity sufficient for several assembly loops.

2.4 Database Integration for Anomaly Detection Re-

sults Analysis

To once again support the human-machine interaction within the concept of Industry 5.0

goal, to store and manage the time series data along with prediction results and possible

human labels, a database was integrated into the system. The choice between InfluxDB5

and MongoDB6 was considered. They are both NoSQL databases, meaning they do not

store data within relational tables [15]. NoSQL databases can thus omit data joining

from multiple tables, which is an operation that becomes increasingly time expensive

with growing data7. NoSQL databases are for this reason more suitable for high volume

time series data, that this project utilizes. Even though InfluxDB may have faster query

and write times [16], such aspects are not as important for this project´s use cases. The

5InfluxDB
6MongoDB
7NoSQL Querying

https://www.influxdata.com/
https://www.mongodb.com/
https://www.mongodb.com/resources/basics/databases/nosql-explained/nosql-vs-sql

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 14

intentions behind integrating a database are to provide a way to store human feedback on

the predicted anomalies, be able to analyse the data and reuse them in other applications

such as training, testing and validating of other machine learning models. InfluxDB was

still used for a pilot implementation for its wide use within Internet of Things (IoT),

however it was quickly found that it does not support one crucial feature necessary for

the human feedback, which is updating existing records. Therefore the project migrated

to MongoDB due to its capability to update existing records, and also due to the fact

that MongoDB stores data within a JSON-like key-value format that is easy to use8.

Database Service and Message Queuing Telemetry Transport (MQTT) Inte-

gration

Figure 2.7: Final Architecture

A new service was created to handle communication with the MongoDB database.

This service is subscribed to an MQTT topic, where two types of messages are sent,

time series data with prediction results from the gRPC server, and incorrect prediction

messages with human labels from the Flask web UI. Due to the nature of the gRPC

server´s buffer 2.2, only time series relevant to the machine learning model is sent, while

8MongoDB Document Format

https://www.mongodb.com/docs/drivers/kotlin/coroutine/current/fundamentals/data-formats/document-data-format-bson/

CHAPTER 2. SYSTEM ARCHITECTURE AND IMPLEMENTATION 15

the other data, that do not correspond to any assembly process, is discarded. The ser-

vice processes these messages and writes new data to the database or updates existing

ones accordingly. MQTT is a publish/subscribe communication protocol, where both the

publisher and subscriber connect to a message broker that distributes the messages into

different topics [17]. The database service in this case becomes a subscriber to one topic,

receiving messages containing new data or updated versions of existing data. The service

then handles communication with the database. Both the gRPC client and gRPC server

become MQTT publishers. The server sends messages containing new records to be in-

serted in the database, whereas the client publishes messages containing human labels

with their corresponding assembly process identifiers. In order not to block the thread

running the main tasks on the gRPC server (processing the stream, managing its buffers,

running predictions) while publishing MQTT messages, a thread pool was used to assign

the publishing tasks to existing threads in the pool. Utilizing existing threads is less time

consuming than creating new threads for each task, as it eliminates thread creation and

destruction [18]. The addition of Grafana, as seen in the Figure 2.7, is discussed later in

the thesis 3.4.

Chapter 3

MLOps in Anomaly Detection for

Delta Robots

MLOps is a set of practices aimed at automating the development and operations of ma-

chine learning systems.1 Its goal is to speed up the process of continuous integration,

delivery, and deployment of machine learning models in a production environment. The

MLOps paradigm emphasizes the development of machine learning models, their deploy-

ment, monitoring, and maintenance in real-world settings [19].

3.1 Machine Learning Model Development

The base of any MLOps strategy is a machine learning model. In this project, several

anomaly detection models were developed by Aleš Trna to analyze time-series data from

industrial sensors and identify deviations from normal operating status. The method-

ologies of the models are explained in detail in Aleš Trna’s thesis. [1] The model’s de-

velopment involved packaging the machine learning model into a Python package and

distributing it via PyPI, we ensured that the model could be easily reused and integrated

into various systems. This approach provides simple version control and simplifies the

deployment process.

3.2 Testing and Validation

Testing and validation are important components of MLOps, they make sure that the

model performs reliably before it is deployed into the real world. The models were tested

using historical data from the delta robot’s operation. Various validation techniques,

including multiple types of cross-validation and performance metrics such as precision

1MLOps Introduction

16

https://aws.amazon.com/what-is/mlops/

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 17

and recall, were evaluated to assess the model’s effectiveness. Detailed analysis of val-

idation has been described by Aleš Trna in his thesis [1]. By integrating these testing

and validation steps into the development, we can ensure that the model functions as

intended.

3.2.1 gRPC Client-Server Latency

To evaluate the performance of the anomaly detection system, latency, also known as

Round Trip Time (RTT) [20], was used as a metric, it tells the time elapsed from sending

a data message from the gRPC client to receiving the prediction result from the server.

This includes request and response transmission time, and data processing time. To

measure latency, the following approach was used. Timestamps were recorded at the

gRPC client when a data message is sent and when the prediction result is received [21].

Inputs to the models consisted of 200, 300, 500 - 1000 data point long time series, that

are evenly distributed due to the nature of the delta robot´s buffers 2.1 and the nature of

the gRPC server´s buffer 2.2. The server’s processing time was logged to understand the

time taken for the anomaly detection model to analyze the data and generate a prediction.

Measurements took place while running the gRPC client and server on the same computer

and running the client and server separately on two computers in the same network,

while one being connected wirelessly, to see the impact of network communication on

latency. The wireless connection presents the worse case scenario for latency, since wireless

connection is generally slower that wired one. The analysis provides insights into where

optimizations could be made. For instance, if transmission times were significantly higher

in the networked setup, this might indicate a need for communication optimization or

lead to deployment on a single device. If the processing time was a significant portion of

the total latency, optimizing the anomaly detection model or server processing would be

beneficial. The measurements were taken for two different models, the deviation classifier

model and the feature classifier model[1]. Mean, standard deviation and median of the

latency and processing time were calculated using the Python´s Pandas 2 data analysis

library. The summaries and visualizations below present an analysis of the performance.

2Pandas

https://pandas.pydata.org/

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 18

Figure 3.1: Latency Distribution for Feature and Deviation Classifier Models

Metric Mean (ms) Std (ms) Median (ms)
Latency Deviation (localhost) 10.22 6.54 9.84
Latency Feature (localhost) 32.91 14.04 35.78
Latency Deviation (LAN) 62.21 58.97 40.38
Latency Feature (LAN) 88.32 51.56 78.75

Table 3.1: Latency metrics for localhost and LAN setups

Metric Mean (ms) Std (ms) Median (ms)
Processing Deviation (localhost) 1.37 0.61 1.49
Processing Feature (localhost) 24.83 14.25 28.68
Processing Deviation (LAN) 1.45 0.73 1.54
Processing Feature (LAN) 25.48 17.23 28.62

Table 3.2: Processing time metrics for localhost and LAN setups

The average latency for the deviation model running on localhost is significantly lower

(10.22 ms) compared to when it is running on the LAN (62.21 ms). This shows that

the network transmission time increases the overall latency. Similarly, the feature model

shows an increase in latency from localhost (32.91 ms) to LAN (88.32 ms). This suggests

that the feature model, which is more complex, experiences even greater latency when

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 19

network transmission is involved. The standard deviation for latency is higher in the LAN

setup for both models, showing more variability and less predictability in networked setup

compared to localhost.

The processing time for the deviation model is low on both localhost (1.37 ms) and

LAN (1.45 ms). This consistency suggests that the processing in the deviation model

is minimal. The feature model, however, shows a much higher processing time on both

localhost (24.83 ms) and LAN (25.48 ms). This shows that the complexity of the feature

model is much higher than the deviation model´s. The standard deviation in processing

time for the feature model is higher, indicating more variability in the time taken to

process different data messages. This variability could be due to the complexity of the

model and the nature of the input data. For both latency and processing times, the

median values are close to the mean values, which shows that the data is symmetrically

distributed without significant outliers. By reading first and last timestamps of the PLC´s

buffers, it was calculated that one buffer takes 2000 ms to fill up. Based on findings in the

OPC UA performance evaluation paper [22], data transfer times between the OPC UA

server and client should be more than sufficient for the real-time requirement and should

not affect this analysis too much. Even if considering the worst-case scenarios of the LAN

setup shown in the Figure 3.1 for the feature classifier, the entire solution´s latency is

still capable of real-time usage, as illustrated in the Figure 3.2

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 20

Figure 3.2: System Latency Diagram With Variable Latencies

3.3 Deployment and Integration

Deployment and integration are crucial stages in the MLOps life cycle. In this project, the

model was deployed within a gRPC server, which provides data processing and anomaly

detection in real-time. The server was designed to handle streamed data from the delta

robot, apply the anomaly detection model, and send feedback to the gRPC client and the

web-based user interface. This integration was achieved by utilizing Flask for the web

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 21

server and WebSockets for real-time communication, enabling dynamic updates and user

feedback. The entire architecture can be seen in the Figure 2.7.

The gRPC server has been containerized using Docker to ensure its scalability and

ease of deployment. This approach enables the system to be deployed in different envi-

ronments without compatibility problems, including the Ai-Builder3, which is one of the

objectives of this thesis. The use of Docker makes it possible to maintain the consistency

of dependencies and configurations, which reduces the risk of errors in deployment [23].

3.3.1 Dockerization of the gRPC Server

An isolated environment consistent in all stages of development, testing, and production

is provided by the Docker container. In order to simplify the process of getting the server

running, Docker containers can be deployed on any system that has Docker installed [24].

In order to make it easier to scale up or down as needed, multiple instances of the server

can be run as separate containers, which may be useful in the case of deployment of the

model to other robots in the Testbed for Industry 4.0.

Dockerization was achieved by creating a Dockerfile, which provides a blueprint for

Docker to build an image of the gRPC server. The Dockerfile specifies how the environ-

ment is set up, which dependencies are installed, and what commands are run when the

container starts. Below is an overview of the Dockerfile used for the gRPC server:

FROM python :3.11

WORKDIR /app

COPY ./ requirements.txt /app

RUN pip install --upgrade -r requirements.txt

COPY . /app

EXPOSE 8061

CMD ["python", "./ server_main.py"]

Listing 3.1: Dockerfile for Python Application

1. Base Image: The Dockerfile specifies a base image of Python, which makes the

server operate within a consistent Python environment.

2. Working Directory: It sets a working directory inside the container for organizing

application files and dependencies.

3Ai-Builder

https://www.ai4europe.eu/ai-builder

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 22

3. Dependencies Installation: The Dockerfile copies the requirements.txt file into

the container and runs pip install to install the necessary Python packages, including

our packaged machine learning model.

4. Application Files: The server source code files are copied into the container’s

working directory.

5. Exposing Ports: The Dockerfile specifies which ports the server listens on, making

the gRPC server accessible outside the Docker container.

6. Startup Command: Finally, it defines the command to run the gRPC server

when the container starts, making the server available immediately upon running

the Docker image.

Building the Docker Image

Using the following steps, a Docker image of the gRPC server was created.:

1. Navigate to the directory containing the Dockerfile.

2. Execute the command:

docker build -t ctu-fault-detector .

This command builds a Docker image named ctu-fault-detector based on the in-

structions specified in the Dockerfile. The period ”.” signifies that the Dockerfile is

located in the current directory.

Uploading the Docker Image

The next step was to upload it to the Docker container registry, such as the Docker Hub,

for easy distribution after successfully creating the Docker image. The process includes:

1. Log in to the Docker Hub from the command line using:

docker login

2. Tag the Docker image with a Docker Hub username:

docker tag ctu-fault-detector username/ctu-fault-detector

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 23

3. Push the Docker image to Docker Hub:

docker push username/ctu-fault-detector

This will make the gRPC server image publicly available, allowing anyone to download

and run a server without having to go through building.

Pulling and Running the Docker Image

To pull and run the Docker image on any operating system, Docker needs to be installed.

For users to run the gRPC server on their systems, they need to pull the Docker image from

Docker Hub (or any other Docker container registry where the image has been uploaded)

and run it. The following commands are used to pull the image of this project´s gRPC:

1. Pull the Docker image:

docker pull vojtavoj/ctu-fault-detector

2. Run the Docker container:

docker run -d -p 8061:8061 vojtavoj/ctu-fault-detector

This command starts the gRPC server container in detached mode, meaning it does

not block the current terminal as it runs the server in the background, mapping port

8061 of the container to port 8061 on the host. This setup allows the gRPC server to

be accessible at the specified port of the hosting device. Other useful commands can be

found in the official Docker cheat sheet 4.

3.3.2 Deploying to AI-Builder

The AI4EU Experiments platform is an online tool for creating and sharing artificial

intelligence projects. It’s made for researchers, developers, and businesses to collaborate

on AI solutions. The platform offers resources and tools for creating machine learning

solutions and sharing their projects. A key feature is the design studio, which offers an

easy, visual way to create workflows.5. A simpler demo version of our solution has been

4Docker Cheat sheet
5The Design Studio

https://docs.docker.com/get-started/docker_cheatsheet.pdf
https://aiexp.ai4europe.eu/index.html#/home

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 24

uploaded to the platform. For a model to be able to be uploaded it has to be implemented

within a gRPC server contained in a Docker image and expose port 8061. Together with

the Docker image, a Protocol Buffer, used by the gRPC server, is uploaded. For the demo

purposes, another gRPC server containing some of our data, using the same Protocol

Buffer interface, was created. Its task is to feed data to the machine learning model 6.

Figure 3.3: On-Boarding the Model Onto the Platform

Figure 3.4: Connecting the Two Uploaded Images In the Design Studio

6AI-Builder Deployment Specifications

https://gitlab.eclipse.org/eclipse/graphene/tutorials/-/tree/main/Container_Specification?ref_type=heads

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 25

Figure 3.5: Deploying the Solution On-line

Figure 3.6: Deployed Model Logs

3.4 Monitoring and Maintenance

Continuous monitoring is important to keep the model functioning. Grafana 7 has been

integrated into the anomaly detection system in this project, allowing it to monitor and

display its results. By directly connecting to the database, Grafana offers a platform

for viewing time series data together with prediction results. The integration of Grafana

supports the human machine interaction aspect of Industry 5.0. Its usage for monitoring

works very well with the feedback provided by users via the web-based UI, where users

can label incorrect prediction results and provide ground truth. This feedback mechanism

is important for refining the model over time and for developing other models, as the data

together with its predictions can be reused and further analyzed.

7Grafana

https://grafana.com/

CHAPTER 3. MLOPS IN ANOMALY DETECTION FOR DELTA ROBOTS 26

Figure 3.7: All predictions within a time frame viewed in Grafana

Figure 3.8: Prediction that has been labeled as a false negative viewed in Grafana

Chapter 4

Conclusion

This project made use of edge AI technology within an Industry 4.0 setting, specifi-

cally for real-time anomaly detection in a multi-axis delta robot assembling wheels for

remote-controlled vehicles. By exploring the system architecture, communication proto-

cols, machine learning model integration, and deployment strategies, several important

accomplishments were achieved.

4.1 Accomplishments

Several important goals were accomplished in this thesis. First, a data collection script was

successfully converted from MATLAB to Python using the OPC UA protocol. This change

enabled real-time data exchange between the delta robot and the anomaly detection

system, ensuring efficient data transmission. Second, a client-server architecture using

gRPC for data processing and anomaly detection was developed. This setup allowed data

streaming for real-time updates and support for multiple programming languages, which

is important for its possible future reusability within the Testbed for industry 4.0.

The machine learning model was also transformed into a Python package and dis-

tributed via PyPI, making deployment and version control simpler. This ensured that

the model could be easily integrated into different environments. Additionally, a web-

based user interface was created using Flask and WebSockets. This interface allows users

to see anomaly detection results in real-time and provide immediate feedback.

MongoDB was integrated to store and manage time series data and prediction results,

which helps improve the anomaly detection model over time by storing historical data

about the model´s runtime in a real setting. Docker was used to containerize the gRPC

server, ensuring consistent deployment across different environments. Finally, Grafana

was integrated for monitoring and visualization of anomaly detection results, which helps

track model performance and also supports ongoing improvement.

27

CHAPTER 4. CONCLUSION 28

An additional accomplishment was deploying a demo version of the anomaly detection

solution on the AI-on-demand platform, showcasing the platform´s capabilities. This also

makes the machine learning model accessible publicly.

4.2 Future Work

Several improvements could be worked on in the future. Improving the UI to include more

advanced feedback features, implementing automated testing and deployment pipelines

or increase the monitoring capabilities with more detailed analytics are all upgrades that

the project would benefit from.

Future work could also focus on extending the solution to other robotic systems within

the Industry 4.0 Testbed, making it applicable for different input formats, or even mak-

ing it reusable in other applications in completely different industries and projects. Its

presence within the AI-Builder platform will be improved as well.

Bibliography

[1] A. Trna, “Anomaly detection in robotic assembly process using force and torque
sensors”, B. Sc. thesis, Czech technical university in Prague, 2024.

[2] J. T. Da Silva, A. L. Dias, and I. N. Da Silva, “A survey on opc ua protocol:
Overview, challenges and opportunities”, in 2023 15th IEEE International Confer-
ence on Industry Applications (INDUSCON), 2023, pp. 1523–1530. doi: 10.1109/
INDUSCON58041.2023.10375053.

[3] N. Mühlbauer, E. Kirdan, M.-O. Pahl, and G. Carle, “Open-source opc ua security
and scalability”, in 2020 25th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), vol. 1, 2020, pp. 262–269. doi: 10.1109/
ETFA46521.2020.9212091.

[4] K. Indrasiri and D. Kuruppu, gRPC: up and running: building cloud native appli-
cations with Go and Java for Docker and Kubernetes. O’Reilly Media, 2020.

[5] J. Kampars, D. Tropins, and R. Matisons, “A review of application layer communica-
tion protocols for the iot edge cloud continuum”, in 2021 62nd International Scien-
tific Conference on Information Technology and Management Science of Riga Tech-
nical University (ITMS), 2021, pp. 1–6. doi: 10.1109/ITMS52826.2021.9615332.

[6] E. Bommarito and M. Bommarito, “An empirical analysis of the python package
index (pypi)”, arXiv preprint arXiv:1907.11073, 2019.

[7] R. L’Esteve, “Python wheels”, in The Azure Data Lakehouse Toolkit: Building and
Scaling Data Lakehouses on Azure with Delta Lake, Apache Spark, Databricks,
Synapse Analytics, and Snowflake. Berkeley, CA: Apress, 2022, pp. 417–436, isbn:
978-1-4842-8233-5. doi: 10.1007/978-1-4842-8233-5_18. [Online]. Available:
https://doi.org/10.1007/978-1-4842-8233-5_18.

[8] I. Rahman, N. Zahan, S. Magill, W. Enck, and L. Williams, “Characterizing depen-
dency update practice of npm, pypi and cargo packages”, arXiv preprint arXiv:2403.17382,
2024.

[9] M. Richards, Software architecture patterns. O’Reilly Media and Incorporated 1005
Gravenstein Highway North, Sebastopol, CA . . ., 2015, vol. 4.

[10] G. Blinowski, A. Ojdowska, and A. Przyby lek, “Monolithic vs. microservice architec-
ture: A performance and scalability evaluation”, IEEE Access, vol. 10, pp. 20 357–
20 374, 2022. doi: 10.1109/ACCESS.2022.3152803.

[11] M. Ivanco, “Attractive effects for video processing”, in Proceedings of Excel@FIT
2018, 2018. [Online]. Available: https://excel.fit.vutbr.cz/submissions/
2018/014/14.pdf.

29

https://doi.org/10.1109/INDUSCON58041.2023.10375053
https://doi.org/10.1109/INDUSCON58041.2023.10375053
https://doi.org/10.1109/ETFA46521.2020.9212091
https://doi.org/10.1109/ETFA46521.2020.9212091
https://doi.org/10.1109/ITMS52826.2021.9615332
https://doi.org/10.1007/978-1-4842-8233-5_18
https://doi.org/10.1007/978-1-4842-8233-5_18
https://doi.org/10.1109/ACCESS.2022.3152803
https://excel.fit.vutbr.cz/submissions/2018/014/14.pdf
https://excel.fit.vutbr.cz/submissions/2018/014/14.pdf

BIBLIOGRAPHY 30

[12] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-time data
with websocket”, IEEE Internet Computing, vol. 16, no. 4, pp. 45–53, 2012. doi:
10.1109/MIC.2012.64.

[13] M. Copperwaite and C. Leifer, Learning flask framework. Packt Publishing Ltd,
2015.

[14] R. Rai, Socket. IO real-time web application development. Packt Publishing, 2013.

[15] J. Han, H. E, G. Le, and J. Du, “Survey on nosql database”, in 2011 6th Inter-
national Conference on Pervasive Computing and Applications, 2011, pp. 363–366.
doi: 10.1109/ICPCA.2011.6106531.

[16] S. N. Z. Naqvi, S. Yfantidou, and E. Zimányi, “Time series databases and influxdb”,
Studienarbeit, Université Libre de Bruxelles, vol. 12, pp. 1–44, 2017.

[17] D. B. Ansari, A.-U. Rehman, and R. Ali, “Internet of things (iot) protocols: A brief
exploration of mqtt and coap”, International Journal of Computer Applications,
vol. 179, no. 27, pp. 9–14, 2018.

[18] M. D. Syer, B. Adams, and A. E. Hassan, “Identifying performance deviations in
thread pools”, in 2011 27th IEEE International Conference on Software Mainte-
nance (ICSM), IEEE, 2011, pp. 83–92.

[19] S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who needs mlops:
What data scientists seek to accomplish and how can mlops help?”, in 2021 IEEE/ACM
1st Workshop on AI Engineering - Software Engineering for AI (WAIN), 2021,
pp. 109–112. doi: 10.1109/WAIN52551.2021.00024.

[20] N. Cardwell, S. Savage, and T. Anderson, “Modeling tcp latency”, in Proceedings
IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth An-
nual Joint Conference of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), vol. 3, 2000, 1742–1751 vol.3. doi: 10.1109/INFCOM.2000.832574.

[21] H. Kraft and R. Johansson, “Evaluating rpc for cloud-native 5g mobile network
applications”, 2020.

[22] S. Cavalieri and G. Cutuli, “Performance evaluation of opc ua”, in 2010 IEEE 15th
Conference on Emerging Technologies Factory Automation (ETFA 2010), 2010,
pp. 1–8. doi: 10.1109/ETFA.2010.5641184.

[23] M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating docker for
lightweight virtualization of distributed and time-sensitive applications in industrial
automation”, IEEE Transactions on Industrial Informatics, vol. 17, no. 5, pp. 3566–
3576, 2021. doi: 10.1109/TII.2020.3022843.

[24] J. Nickoloff and S. Kuenzli, Docker in action. Simon and Schuster, 2019.

https://doi.org/10.1109/MIC.2012.64
https://doi.org/10.1109/ICPCA.2011.6106531
https://doi.org/10.1109/WAIN52551.2021.00024
https://doi.org/10.1109/INFCOM.2000.832574
https://doi.org/10.1109/ETFA.2010.5641184
https://doi.org/10.1109/TII.2020.3022843

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	System Architecture and Implementation
	OPC UA Client and Delta Robot Communication
	gRPC Client-Server Architecture
	Architecture for Real-time Anomaly Detection Web UI
	Database Integration for Anomaly Detection Results Analysis

	MLOps in Anomaly Detection for Delta Robots
	Machine Learning Model Development
	Testing and Validation
	gRPC Client-Server Latency

	Deployment and Integration
	Dockerization of the gRPC Server
	Deploying to AI-Builder

	Monitoring and Maintenance

	Conclusion
	Accomplishments
	Future Work

	Bibliography

