
F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Finite-horizon Approximation
of Partially Observable
Stochastic Games

Matěj Veselý

May 2024
Supervisor: doc. Mgr. Branislav Bošanský, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491989 Personal ID number: Veselý Matěj Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Finite-horizon Approximation of Partially Observable Stochastic Games

Bachelor’s thesis title in Czech:

Řešení částečně pozorovatelných stochastických her pomocí omezeného horizontu

Guidelines:

Partially observable stochastic games (POSGs) are a general class of games that allow model dynamic strategic interactions
without a strict limit on the length of the interaction. However, finding optimal strategies for POSGs is an undecidable
problem. One possible approach is to approximate POSGS as games with finite horizon and solve this bounded game
instead. The goal of the student is to:
(1) Implement 3 different games based on POSGs into the OpenSpiel framework.
(2) Evaluate the quality of strategies computed by different algorithms on horizon-bounded games compared to the quality
of strategies computed on POSGs. Focus on sampling-based or reinforcement learning based algorithms that do not need
to construct the whole game tree.
(3) Evaluate the impact of different value estimations of states beyond the horizon on the quality of strategies and
convergence of the algorithms.

Bibliography / sources:

[1] Mar Lanctot et al. "OpenSpiel: A framework for reinforcement learning in games." arXiv preprint arXiv:1908.09453
(2019).
[2] Shoham, Yoav, and Leyton-Brown, Kevin. "Multiagent systems." Cambridge Books (2009).
[3] Horák, K., Bošanský, B., & Pěchouček, M. (2017). Heuristic Search Value Iteration for One-Sided Partially Observable
Stochastic Games. In AAAI (pp. 558-564).

Name and workplace of bachelor’s thesis supervisor:

doc. Mgr. Branislav Bošanský, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 01.06.2023

Assignment valid until: 19.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Mgr. Branislav Bošanský, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I extend my heartfelt gratitude to my
supervisor, doc. Mgr. Branislav Bošan-
ský, Ph.D., for his invaluable guidance,
support, and mentorship throughout
the course of this work. I am grateful
for his unwavering patience, encourage-
ment, and dedication. His expertise and
willingness to assist me enabled me to
complete this work.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, May 24, 2024

. .

v

Abstrakt / Abstract

V této práci implementujeme tři
různé částečně pozorovatelné stochas-
tické hry s možnými nekonečnými hori-
zonty do frameworku OpenSpiel. Poté
získáme strategie v implementovaných
hrách, které mohou být nekonečné tím,
že je aproximujeme jako hry konečné.
Nakonec zhodnotíme kvalitu získa-
ných strategií a dopad různých odhadů
hodnot stavů za horizontem na jejich
kvalitu a dopad odhadů na konvergenci
použitých algoritmů. Implementované
hry jsou Pursuit Evasion, Search Game
a Patrolling Game. Všechny imple-
mentované hry představují možný bez-
pečnostně obraný scénář, kde se jeden
agent snaží zabránit jinému agentovi
ve vykonávání nějaké činnosti. V Pur-
suit Evasion se jeden hráč snaží chytit
druhého hráče v dané oblasti. V Search
Game se jeden hráč snaží zabránit
druhému hráči v pohybu přes zóny.
Ve hře Patrolling Game se snaží jeden
hráč bránit graf před útokem druhého
hráče. Pro odhadnutí nekonečné hry
pomocí konečné hry, omezíme délku
dané hry. Tím vzniknou nové koncové
stavy, které odpovídají stavům, kde je
dostažena maximální délka hry. Pokra-
čování nekonečné hry za horizontem
bude reprezentováno odměnami které
hráči obdrží v nově vzniklých terminál-
ních stavech. Tyto odměny odpovídají
odhadům hodnot stavů za horizontem.
K získání strategií budeme používat
algoritmy MCCFR a IS-MCTS.

Klíčová slova: teorie her, aproximace
hry s nekonečným horizontem, částečně
pozorovatelná hra s omezeným horizon-
tem, OpenSpiel

Překlad titulu: Řešení částečně pozo-
rovatelných stochastických her pomocí
omezeného horizontu

In this work, we will implement three
different partially observable stochastic
games with possibly infinite horizons
into the OpenSpiel framework; then, we
will compute strategies on the games
by approximating them as finite games.
Finally, we will evaluate the quality
of computed strategies and the impact
of different value estimations of states
beyond the horizon on the quality of
strategies and their impact on the con-
vergence of used algorithms. The games
are Pursuit Evasion, Search Game and
Patrolling Game. All of the games sim-
ulate a possible defence scenario where
one agent tries to prevent another agent
from performing some activity. In Pur-
suit Evasion, one player tries to catch
the other player in an area; in Search
Game, one player tries to prevent the
other player from moving through zones;
and in Patrolling Game, one player tries
to defend a graph from an attack of
the other player. To approximate an
infinite game as finite, we limit the
length of the game; this will introduce
new terminal states that correspond to
the states where the maximum length is
reached; the continuation of the infinite
game beyond the horizon will be repre-
sented as rewards in the new terminal
states. The rewards correspond to the
value estimations of states beyond the
horizon. To compute strategies, we will
use MCCFR and IS-MCTS algorithms.

Keywords: game theory, infinite-
horizon game approximation, finite-
horizon partially observable game,
OpenSpiel

vi

/ Contents

1 Introduction 1

2 General Game Theory 3
2.1 Types of games 3
2.2 Strategies 6

3 Used Algorithms 9
3.1 Linear Programming for

Normal-Form Games 9
3.2 Value Iteration 10
3.3 Best Response 10
3.4 Exploitability 10
3.5 IS-MCTS 11
3.6 MCCFR 11

4 Games 13
4.1 OpenSpiel 13
4.2 Pursuit Evasion 13
4.3 Search Game 15
4.4 Patrolling Game 16

5 Games Implementation 17
5.1 Pursuit Evasion Implemen-

tation 18
5.2 Search Game Implementation . 21
5.3 Patrolling Game Imple-

mentation 24
6 Experimental Evaluation 28

6.1 Approach Summary 30
6.2 Pursuit Evasion 31
6.3 Search Game 34
6.4 Patrolling Game 36

7 Conclusion 40

References 42

A Domain configurations for
experiments 45

B Code structure in OpenSpiel 48

vii

Tables / Figures

6.1 Pursuit Evasion game values
using MCCFR 32

6.2 MCCFR convergence on Pur-
suit Evasion games 32

6.3 Pursuit Evasion game values
using IS-MCTS 33

6.4 IS-MCTS convergence on
Pursuit Evasion games 34

6.5 Search Game game values
using MCCFR 35

6.6 MCCFR convergence on
Search Game games 35

6.7 Patrolling Game game values
using MCCFR 36

6.8 MCCFR convergence on Pa-
trolling Game games 37

6.9 Patrolling Game game values
using IS-MCTS 38

6.10 IS-MCTS convergence on Pa-
trolling Game games 39

A.1 Configuration of Pursuit
Evasion games used in
experiments. 45

A.2 Configuration of Search
Game games used in experi-
ments . 45

A.3 Configuration of Patrolling
Game games used in experi-
ments . 46

4.1 Pursuit Evasion example 13
4.2 Pursuit Evasion information

set example . 14
4.3 Search Game example 15
4.4 Patrolling Game example 16
5.1 Sequential game as simulta-

neous game . 17
5.2 Position indexes in Pursuit

Evasion . 18
5.3 Pursuit Evasion action map-

ping example 19
5.4 Pursuit Evasion rewards af-

ter reaching maximum length . 20
5.5 Rewards file for Pursuit Eva-

sion . 20
5.6 Pursuit Evasion rewards af-

ter reaching maximum length
with set rewards file 21

5.7 Position indexes in Search
Game . 22

5.8 Search Game rewards after
reaching maximum length 22

5.9 Rewards file for Search Game . 23
5.10 Search Game rewards after

reaching maximum length
with set rewards file 23

5.11 Search Game action mapping
example . 24

5.12 Patrolling Game rewards af-
ter reaching maximum length . 25

5.13 Rewards file for Patrolling
Game . 25

5.14 Patrolling Game rewards af-
ter reaching maximum length
with set rewards file 26

5.15 Graph configuration file for
Patrolling Game. 26

5.16 Default graph for Patrolling
Game . 27

5.17 Patrolling Game action map-
ping example 27

6.1 Bounded game tree 28
6.2 Approach summary 30
A.1 Search Game games’ initial

states used in experiments 46

viii

A.2 Patrolling Game graphs used
in experiments 47

B.3 Source code directory tree 48
B.4 Experiments data directory

tree. 49

ix

Chapter 1
Introduction

When they hear the term game, most people imagine something like Chess, Ludo, Mau-
Mau, Poker [8] or a video game. But in the eyes of Game Theory, a game can be so much
more. Game theory can represent a wide variety of real-life scenarios and interactions
between people [5], machines, animals or their interaction with different objects. For
example, a scenario where an antelope faces a decision to stay in a place with limited
food resources or to try to cross a dangerous river to reach more fertile lands can be
represented as a game. Something more useful that can be represented as a game is
how to distribute some limited resources to complete a task most efficiently [3] or how
a night guard should patrol a building complex to prevent robbers from breaking in [1].

Some games can be played infinitely, and the players might not have information
about some parts of the game; for example, the building complex can be patrolled by
a night guard forever. Additionally, the guard does not know when someone will try to
break in or if anyone will try to break in at all.

It is generally impossible to optimally solve an infinite game with imperfect informa-
tion. However, many problems that we might want to solve using Game Theory can
possibly require the game model to be infinite with imperfect information, so how can
we solve such a game?

One possibility is to approximate the infinite game as a finite game because there are
many algorithms for solving imperfect information finite games (for example, MCCFR
[11] or IS-MCTS [4]); this finite game can be called a bounded game, and the length
of the finite game is referred to as the horizon, meaning that everything in the finite
game is before the horizon and everything that was in the infinite game but is not in
the finite game is beyond the horizon.

The artificial horizon of the bound game requires assigning value estimations to
the states (equal to the rewards for players if the game reaches that state) that are
terminal in the bound game but were not terminal in the infinite game. Changing
these value estimations can model game behaviour beyond the horizon. For example, if
in some artificial terminal state of the bounded game, one player had a higher chance
of succeeding if the game continued infinitely, the reward for that player in that state
would be higher. Value estimation of the states can be evaluated heuristically, but
in this work, we will obtain these value estimations by using an algorithm for solving
perfect-information infinite games.

With large game domains and algorithms requiring large amounts of operations, it is
necessary to implement games in some programming language so the computations can
be done by a computer. To solve a game, we will need, besides the game’s implementa-
tion, some algorithms and possibly support code to process the results. Implementing
all of that is time-consuming, and there is a chance of errors in newly implemented
features. For this reason, it is wise to use code already implemented and tested by
someone else. This presents a problem with the compatibility of different parts of code
written by different people. Different frameworks exist to solve these problems and
make research in game theory more convenient.

1

1. Introduction .
One of the frameworks for research in Game Theory is OpenSpiel [12]. OpenSpiel pro-

vides a general interface for implementing new games and algorithms compatible with
each other, with plenty of games and algorithms already implemented and systemat-
ically tested. OpenSpiel also provides additional support functionalities, for example,
graphviz [6] for visualizing games. Additionally, the core of OpenSpiel is written in
C++, making it more time-efficient. This makes OpenSpiel a suitable choice for imple-
menting new game domains.

The goal of this work is to implement three partially observable, possibly infinite
games, Pursuit Evasion, Search Game, and Patrolling Game, into the OpenSpiel frame-
work. Then, compare strategies computed on the bounded games with strategies on
infinite games, and then evaluate the impact of different state value estimations beyond
the horizon on the quality of strategies and the convergence of the algorithms.

The structure of this work is following. Chapter 2 summarizes general game theory
related to this work. Chapter 3 briefly introduces algorithms used for the computation.
Chapter 4 describes the rules and mechanics of the implemented games. Chapter 5
presents details about the implementation of the games. Chapter 6 contains the game
solution concept and presents the results of the use of different algorithms and value
estimations of states beyond the horizon. Chapter 7 summarizes and concludes the
results of this work. Additionally, Appendix A expends configurations of the games
used in the experiments, and Appendix B displays the structure of the implemented
code in the OpenSpiel framework.

2

Chapter 2
General Game Theory

Game theory is part of the mathematics that studies the behaviour, relations and strate-
gies of agents in different environments. Game theory is a relatively young discipline
that emerged in the 20th century with significant contributions by John von Neumann.

In game theory, one of the fundamental terms is game. A game is an entity rep-
resenting some environment, some agents, relations between the agents and agents’
interactions with the environment.

Games can be as simple as a game of rock-paper-scissors or as complicated as an
entire stock market. Even the entire human society could be represented as a game.
The main source for this chapter is [21].

2.1 Types of games
Games can be divided into multiple groups based on many properties, such as the
number of players, distribution of rewards, length of a game, information available to
players, and more. One of the properties used in this work to group games is the order
in which agents or players take their actions, dividing games either as sequential or
simultaneous.

Definition 2.1. (Sequential game) A sequential game is a game where players take
turns to take an action.

In other words, in a sequential game, one player takes an action, and the current
state of the game is updated, then another player takes an action, and the state of
the game is updated again; this happens until the game ends. Players can take turns
fairly, meaning every player takes one action before any player takes a second action,
or they can take actions in any order regardless of the fairness of a game. Although
sequential games can cover a lot of situations, they are impractical for representing the
real world, where multiple things can happen at the same time. To represent these
cases, simultaneous games come into play.

Definition 2.2. (Simultaneous game) A simultaneous game is a game where all players
take an action at the same time.

In other words, in a simultaneous game, all players pick an action; after that, the
current game state updates correspondingly to all picked actions; this repeats until the
end of the game.

Games can also be differentiated based on their representation. One of the simpler
representations is a game in a normal form.

Definition 2.3. (Normal-form game) A normal-form game is a tuple 𝐺 = {𝑁, 𝐴, 𝑢}
where:

3

2. General Game Theory .
. 𝑁 is a finite set of 𝑛 players indexed by 𝑖;. 𝐴 = 𝐴1 × 𝐴2 × . . . × 𝐴𝑛 is a finite set of actions where 𝐴𝑖 is a set of actions available

to player i;. 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) where 𝑢𝑖 : 𝑂 ↦ ℝ is the payoff function for player 𝑢𝑖, where 𝑂
is a set of all possible outcomes of the game.

A game in a normal form can be rewritten into a matrix. The matrix has one
dimension for each player, and the number of elements in a dimension corresponds to
the number of actions of the player represented by that dimension. Each element of
the matrix contains values of all payoff functions 𝑢𝑖(𝑂), 𝑖 ∈ 𝑁 given the outcome 𝑂
when the players play actions that are represented by the element coordinates. This
representation is called a matrix-form game.

Normal-form representation is useful for representing simpler games, but it has one
significant drawback. Because a set of actions available to a player must be finite, it is
impossible to use the normal form to represent games with infinite horizons, e.g. games
that can be infinitely long. To grasp such games, another representation is needed.

Definition 2.4. (Perfect-information extensive-form game) A perfect-information
game in extensive form is a tuple 𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢} where:

. 𝑁 is a finite set of 𝑛 players indexed by 𝑖;. 𝐴 is a single finite set of actions;. 𝐻 is a possibly infinite set of nonterminal choice nodes;. 𝑍 is a possibly infinite set of terminal nodes where 𝐻 ∩ 𝑍 = ∅;. 𝜒 : 𝐻 ↦ 2𝐴 is the action function which maps a set of actions 𝑎 to each nonterminal
choice node ℎ ∈ 𝐻, where 𝑎 ⊆ 𝐴 and 𝑎 ≠ ∅;. 𝜌 : 𝐻 ↦ 𝑁 is the player function, which maps to each nonterminal choice node a
player that will choose an action there;. 𝜎 : 𝐻 × 𝐴 ↦ 𝐻 ∪ 𝑍 is the transition function, which maps a choice node and
an action to a new choice or terminal node if ℎ1, ℎ2 ∈ 𝐻 and 𝑎1, 𝑎2 ∈ 𝐴 and if
𝜎(ℎ1, 𝑎1) = 𝜎(ℎ2, 𝑎2) for all ℎ1, ℎ2, 𝑎1, 𝑎2, then 𝑎1 = 𝑎2 and ℎ1 = ℎ2;. 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛) where 𝑢𝑖: 𝑍 ↦ ℝ is a payoff function for player i in terminal
nodes 𝑍.

The extensive form is much more flexible for representing different types of games.
Additionally, the extensive form can be rewritten into a game tree. Leave nodes in the
tree correspond to terminal nodes 𝑍, and all other tree nodes correspond to nonterminal
nodes 𝐻. The root of the tree is a node where the game starts. Edges in the tree
correspond to actions, such as, from a nonterminal node ℎ ∈ 𝐻 leads one edge for each
action 𝑎 ∈ 𝜒(ℎ) to an edge ℎ′ = 𝜎(ℎ, 𝑎).

The definition of the extensive-form game above presumes that all players have per-
fect information about a game, e.g. every player knows everything there is to know
about the game. To expand the range of possibly representable games, imperfect in-
formation (e.g. some players may have limited information about a game) needs to be
introduced into the extensive-form representation.

Definition 2.5. (Imperfect-information extensive-form game) A imperfect-information
game in extensive form is a tuple 𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} where:

4

. 2.1 Types of games

. 𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢} is a perfect-information game in extensive form;. 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑛) where 𝐼𝑖 = (𝐼𝑖,1, 𝐼𝑖,2, . . . , 𝐼𝑖,𝑘𝑖
) is a set of equivalence classes

on {ℎ ∈ 𝐻: 𝜌(ℎ) = 𝑖} when any two nonterminal choice nodes ℎ1, ℎ2 ∈ 𝐻 are in
same equivalence class 𝐼𝑖,𝑗 so ℎ1, ℎ2 ∈ 𝐼𝑖,𝑗 then following equations must be true
𝜌(ℎ1) = 𝜌(ℎ2) and 𝜒(ℎ1) = 𝜒(ℎ2) additionally if game is of perfect recall (Definition
2.6.) histories for both choice nodes must be equal.

The imperfect-information extensive-form game introduces the idea of the informa-
tion sets or information states; both terms can be used interchangeably. An information
set is a set of nodes that are indistinguishable from a player’s point of view, so all those
nodes are the same for the player.

Information sets can change the game tree for the players. Each player has a unique
tree with information sets as tree nodes instead of nodes from ℎ.

The perfect-information game in extensive form can be considered a special case of
the imperfect-information game in extensive form, where all information sets contain
only one node.

The definition of an imperfect-information extensive from game from above can be
used for simultaneous games with slight modifications. The actions function 𝜒 returns
a set of sets of actions available to each player at a node, and the transition function
𝜎 takes as parameters a node and actions of all players. The player function 𝜌 is not
needed since every player takes an action at every node.

A partially observable stochastic game with an infinite horizon can be defined as an
imperfect information game in extensive form with an infinite number of states. Formal
definition follows.

Definition 2.6. (Partially observable stochastic game with infinite horizon) Partially
observable stochastic game with infinite horizon is an imperfect-information game in
the extensive form 𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} with 𝐻 and 𝑍 being infinite sets.

If the horizon of the partially observable stochastic game is finite, then the 𝐻 and 𝑍
are finite sets.

The special case of a partially observable stochastic game with two players is a one-
sided partially observable stochastic game; in such a game, one player has imperfect
information, and the other player has perfect information. The formal definition follows.

Definition 2.7. (One-sided partially observable stochastic game) One-sided partially
observable stochastic game is an imperfect-information game in the extensive form
𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} with |𝐼𝑖,𝑗| > 1 for one 𝐼𝑖,𝑗 ∈ 𝐼𝑖 and |𝐼𝑖,𝑘| ≥ 1 for every
other 𝐼𝑖,𝑘 ∈ 𝐼𝑖 where 𝐼𝑖 ∈ 𝐼 for the imperfect-information player 𝑖; and with |𝐼𝑝,𝑘| = 1
for every 𝐼𝑝,𝑘 ∈ 𝐼𝑝 where 𝐼𝑝 ∈ 𝐼 for the perfect-information player 𝑝.

In other words, in a one-sided partially observable stochastic game, the perfect-
information player has exactly one state in each of his information sets, while the
imperfect-information player can have multiple states in his information sets, but at
least one of his information sets must contain more than one state, otherwise the game
becomes the perfect-information game.

In a game, players cannot be certain of having information about their previous
actions. If the players have that information in a game, the game is of perfect recall.

5

2. General Game Theory .
Definition 2.8. (Perfect recall) Let there be an imperfect-information game 𝐺 =
{𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼}, any two nodes ℎ, ℎ′ ∈ 𝐻 ∧ ℎ, ℎ′ ∈ 𝐼𝑖,𝑗 where 𝐼𝑖,𝑗 ∈ 𝐼𝑖
where 𝐼𝑖 ∈ 𝐼 and any two paths 𝑃 and 𝑃 ′ from the root ℎ0 to ℎ, ℎ′ respectively,
𝑃 = ℎ0, 𝑎0, ℎ1, 𝑎1, ℎ2, . . . , ℎ𝑚, 𝑎𝑚, ℎ and 𝑃 ′ = ℎ0, 𝑎′

0, ℎ′

1, 𝑎′

1, ℎ′

2, . . . , ℎ′

𝑚′ , 𝑎′

𝑚′ , ℎ′ . Player
𝑖 has perfect recall in the game 𝐺 if for ℎ, ℎ′ and 𝑃 , 𝑃 ′ is the following true:

. 𝑚 = 𝑚′

. for all 0 ≤ 𝑘 ≤ 𝑚, if 𝜌(ℎ𝑘) = 𝑖 (ℎ𝑘 is decision node for player 𝑖) then ℎ𝑘, ℎ′

𝑘 ∈ 𝐼𝑖,𝑙. for all 0 ≤ 𝑘 ≤ 𝑚, if 𝜌(ℎ𝑘) = 𝑖 then 𝑎𝑘 = 𝑎′

𝑘

Imperfect-information game 𝐺 is of perfect recall if every player has a perfect recall in
it.

Games can also be grouped by special properties of their payoff functions. The most
interesting group is the group containing zero-sum games.

Definition 2.9. (Zero-sum game) A game 𝐺 is a zero-sum game if, in every state of the
game, rewards for all players sum to zero. Specially imperfect-information extensive-
form game 𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} is zero-sum if ∑𝑁

𝑖 𝑢𝑖(ℎ) = 0 for every terminal
node ℎ ∈ 𝑍.

The zero-sum property of a game is most powerful if the game has exactly two players.
In that case, the rewards of players are opposite values; for example, if the first player
receives the reward of −1, the second must receive the reward of +1. If the game is
two-player and zero-sum, it simplifies the computation of many algorithms in the game.

2.2 Strategies
With the basics of the game representations defined, the next step is to describe the
behaviour of agents or players in games. For clarification, player and agent have basi-
cally the same meaning of someone or something that picks actions in a game, so that
these terms can be used interchangeably.

Players pick their actions according to strategies. A strategy is a set of rules that
tells a player what action to pick at what point. There are possibly an infinite number
of strategies for a player in a game.

Some simple strategies are, for example, random strategies, where a player picks
randomly among available actions or pure strategies, where a player decides always to
play one specific action in case of a normal-form game. Pure strategies get a little more
complicated in the case of extensive-form games.

Definition 2.10. (Pure strategies in imperfect-information extensive-form game) Let
𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} be an imperfect-information extensive-form game. All
pure strategies for player 𝑖 in 𝐺 are Cartesian product Π𝐼𝑖,𝑗∈𝐼𝐼

𝜒(𝐼𝑖,𝑗).

The definition above implies that a pure strategy in an extensive-form game must
pick an action in every information state regardless of the state’s reachability. Pure
strategy in a perfect-information extensive-form game can use the same definition if we
consider the perfect-information extensive-form game as a special case of an imperfect-
information extensive-form game where every information state contains exactly one
real state.

6

. 2.2 Strategies

Being limited to pure strategies significantly reduces the ability of players to pick
actions. Therefore, there is a concept of picking actions based on some probability
distributions.

Definition 2.11. (Mixed strategy in a normal-form game) A set of mixed strategies for
player 𝑖 in a normal-form game 𝐺 = {𝑁, 𝐴, 𝑢} is 𝑆𝑖 = Π(𝐴𝑖) where Π(𝐴𝑖) is a set of all
probability distributions over 𝐴𝑖.

In other words, if a player uses a mixed strategy, he picks actions according to their
probability. For example, if a mixed strategy in a game tells a player to pick the action
𝑎1 with probability 𝑝(𝑎1) = 1/3 and the action 𝑎2 with probability 𝑝(𝑎2) = 2/3, then
every time the player should play an action he rolls a six-sided dice if he rolls 1 or 2 he
will play action 𝑎1. If he rolls a number greater than 2, he will play action 𝑎2.

In extensive-form games, mixed strategies randomize over all pure strategies of a
game instead of actions.

Definition 2.12. (Mixed strategies in imperfect-information extensive-form game)
Mixed strategies for player 𝑖 in an imperfect-information extensive-form game 𝐺 =
{𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} are Π(Π𝐼𝑖,𝑗∈𝐼𝐼

𝜒(𝐼𝑖,𝑗)) where Π(Π𝐼𝑖,𝑗∈𝐼𝐼
𝜒(𝐼𝑖,𝑗)) is a set of all

probability distributions over all pure strategies Π𝐼𝑖,𝑗∈𝐼𝐼
𝜒(𝐼𝑖,𝑗) of player 𝑖.

For extensive-form games, there is another type of strategy called behavioural strat-
egy that picks actions based on probability distributions in every single state of a game.

Definition 2.13. (Behavioural strategies) Behavioural strategies for player 𝑖 in an
imperfect-information extensive-form game 𝐺 = {𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢, 𝐼} is a Carte-
sian product Π𝐼𝑖,𝑗∈𝐼𝑖

(Π(𝜒(𝐼𝑖,𝑗))) where Π(𝜒(𝐼𝑖,𝑗)) is a set of all probability distributions
over all actions 𝜒(𝐼𝑖,𝑗).

The key difference between behavioural and mixed strategies is that for mixed strat-
egy, there is one probability distribution that picks pure strategy to play. For be-
havioural strategy, every node or information state has its own probability distribution
over its actions.

Generally, mixed strategies and behavioural strategies do not cover the same out-
comes in a game. But if the game is of perfect recall, mixed strategies and behavioural
strategies produce the same outcomes and can replace each other.

In an extensive-form game of perfect recall, a mixed strategy can be understood as
a probability distribution over terminal nodes. Each terminal node represents a path
from the root to that terminal node.

To convert behavioural strategy to mixed strategy, all we need to do is multiply all
the probabilities on the path from the root to the terminal node for every terminal
node. That gives us probabilities for reaching all terminal nodes that correspond to a
mixed strategy with the same outcomes as the original behavioural strategy.

To convert mixed strategy to behavioural strategy, we need to find probability dis-
tributions for every node so that if we multiply all probabilities along a path from the
root to a terminal node, we get the same probability as was given by the original mixed
strategy for every terminal node.

To describe the strategies of multiple players in a game, we use the term strategy
profile. A strategy profile is a set containing at max one strategy from every player in
a game. The formal definition of mixed strategy profile follows.

7

2. General Game Theory .
Definition 2.14. (Mixed strategy profile) A set of mixed strategy profiles in a game is
the Cartesian product of mixed strategies of all individual players 𝑆1 × 𝑆2 × . . . × 𝑆𝑛.

After defining strategies, it would be useful to be able to compare and rate the quality
of different strategies. One of the instruments for that is the best response.

Definition 2.15. (Best response) Best response of player 𝑖 to the given strategy profile
𝑠−𝑖 = {𝑠𝑘|𝑘 ≠ 𝑖 ∧ 𝑘 ≤ 𝑛} (strategies of all players other then 𝑖) is a mixed strategy
𝑠∗

𝑖 ∈ 𝑆𝑖 that satisfies 𝑢𝑖(𝑠∗
𝑖 , 𝑠−𝑖) ≥ 𝑢𝑖(𝑠𝑖, 𝑠−𝑖) for all 𝑠𝑖 ∈ 𝑆𝑖.

And last but not least, we may want to solve games. A solution for one player could
be to find the best response to other players’ strategies. However, the players usually
do not know the strategies of their opponents. Another question is what to consider as
a solution for a game considering all the players? For that, we need to introduce Nash
equilibrium.

Definition 2.16. (Nash equilibrium) A strategy profile 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑛) is a Nash
equilibrium if 𝑠𝑖 ∈ 𝑠 is best response to 𝑠−𝑖 for all players 𝑖 = (1, 2, . . . , 𝑛).

In other words, nash equilibrium is equality among players in the sense that no player
can improve his outcome by diverting from his strategy.

To solve a game usually means to find some Nash equilibrium in the game and its
corresponding strategies for all players and their payoffs.

8

Chapter 3
Used Algorithms

This chapter briefly introduces algorithms and methods used to obtain values and
strategies for players in games. The following algorithms and methods will be intro-
duced in the variants for two-player zero-sum games without chance nodes since this
work does not use any other types of games.

3.1 Linear Programming for Normal-Form Games

A game in normal form can be solved (e.g. found Nash equilibrium) by constructing a
linear program. For the normal-form game 𝐺 = {𝑁, 𝐴, 𝑢}, the value of the game and
mixed strategy for player 2 can be obtained by solving the following linear program.

𝑚𝑖𝑛 𝑈∗
1

𝑠.𝑡. ∑
𝑘∈𝐴2

𝑢1(𝑎𝑗
1, 𝑎𝑘

2) ⋅ 𝑠𝑘
2 ≤ 𝑈 ∗

1 ∀𝑗 ∈ 𝐴1

∑
𝑘∈𝐴2

𝑠𝑘
2 = 1

𝑠𝑘
2 ≥ 0 ∀𝑘 ∈ 𝐴2

Similarly, strategies for player 1 can be computed by solving the dual of the linear
program above. The dual follows.

𝑚𝑎𝑥 𝑈 ∗
1

𝑠.𝑡. ∑
𝑗∈𝐴1

𝑢1(𝑎𝑗
1, 𝑎𝑘

2) ⋅ 𝑠𝑗
1 ≥ 𝑈 ∗

1 ∀𝑘 ∈ 𝐴2

∑
𝑗∈𝐴1

𝑠𝑗
1 = 1

𝑠𝑗
1 ≥ 0 ∀𝑗 ∈ 𝐴1

After solving the equations, the value of the game for player 1 is equal to 𝑈∗
1 , and

because the game is zero-sum, the value for player 2 is equal to −𝑈 ∗
1 . A mixed strategy

for player 1 is in variables 𝑠𝑗
1 and for player 2 in variables 𝑠𝑘

2.
The value of the game for player 1, if player 2 picks actions randomly, can be

computed as 𝑈 ∗
1 = 𝑚𝑎𝑥𝑗∈𝐴1

∑𝑘∈𝐴2
𝑢1(𝑎𝑗

1, 𝑎𝑘
2)/|𝐴2| , where |𝐴2| is the total num-

ber of actions available to player 2. Similarly, if player 1 plays randomly 𝑈 ∗
1 =

𝑚𝑖𝑛𝑘∈𝐴2
∑𝑗∈𝐴1

𝑢1(𝑎𝑗
1, 𝑎𝑘

2)/|𝐴1|, where |𝐴1| is number of actions available to player 1.
It corresponds to solving the linear programs if 𝑠𝑘

2 = 1/|𝐴2| for ∀𝑘 ∈ 𝐴2 or 𝑠𝑗
1 = 1/|𝐴1|

for ∀𝑗 ∈ 𝐴1.
The main source for this section is [21].

9

3. Used Algorithms .

3.2 Value Iteration
Value iteration is used to compute the values of individual states in games with perfect
information. For the purposes of this work, the definition will be modified to work for
simultaneous games.

Value iteration repeatedly iterates over all states and, for every state, updates the
state’s expected value 𝑄∗

𝑘(𝑠) in the current iteration 𝑘 with the formula 𝑄∗
𝑘(𝑠) = 𝐿𝑃(𝑠).

Where 𝐿𝑃(𝑠) returns a reward for player 1 in the state 𝑠 if the state 𝑠 is a terminal
state; otherwise it constructs a game in the normal form 𝐺 = {{1, 2}, 𝐴 = 𝐴1 × 𝐴2, 𝑢}
with 𝐴1 and 𝐴2 containing all actions available to player 1 and player 2 in the game
state 𝑠 respectively. And with 𝑢(𝑎1, 𝑎2) = 𝑐⋅𝑄∗

𝑘−1(𝑠,), where 𝑎1 ∈ 𝐴1; 𝑎2 ∈ 𝐴2; 𝑄∗
𝑘−1(𝑠,)

is an expected value in previous iteration of a state 𝑠, that was reached by applying
actions 𝑎1 and 𝑎2 in the state 𝑠; 𝑐 is a constant called discount factor. After the normal-
form game 𝐺 is constructed, it is solved using linear programming and the value of the
game 𝑈 ∗

1 is returned. To compute values in case one player picks actions randomly, the
game 𝐺 will be solved with the appropriate variation of the linear program.

Value iteration ends when error 𝑒 is smaller than a predefined threshold after finishing
an interaction over all states. Error 𝑒 is computed as 𝑒 = 𝑚𝑎𝑥𝑠∈𝑆 |(𝑄∗

𝑘(𝑠) − 𝑄∗
𝑘−1(𝑠)|,

where 𝑆 is a set of all states of the game; (𝑄∗
𝑘(𝑠) is an expected value of a state 𝑠 in

current iteration; and 𝑄∗
𝑘−1(𝑠) is an expected value of a state 𝑠 in previous iteration.

3.3 Best Response
The value of the best response 𝜐0 can be obtained by solving the following linear
program.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜐0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜐𝓘1
(𝛼1) − ∑

𝐼′∈𝓘1(𝐸𝑥𝑡1(𝛼1))

𝜐𝐼′ ≥ ∑
𝛼2∈Γ2

𝑔1(𝛼1, 𝛼2)𝑟2(𝛼2) ∀𝛼1 ∈ Γ1

Where 𝜐0 is an expected value if the player 1 plays the best response from the root
information state, 𝛼1 and 𝛼2 are sequences of actions for player 1 and 2 respectively, Γ1
and Γ2 is a set of all action sequences for player 1 and 2 respectively, 𝜐𝓘1

(𝛼1) is a value
of the player’s 1 best response from an information set reach by action sequence 𝛼1,
𝓘1(𝐸𝑥𝑡1(𝛼1)) is a set of player’s 1 information sets reachable by playing one additional
action after the action sequence 𝛼1, 𝜐𝐼′ is a value of best response from information
set 𝐼 ′ , 𝑔1(𝛼1, 𝛼2) is a reward player 1 obtain if he plays action sequence 𝛼1 and if the
player 2 plays action sequence 𝛼2, and 𝑟2(𝛼2) is a probability of player 2 playing action
sequence 𝛼2. The main source for this section is [21].

3.4 Exploitability
Exploitability is used to measure the closeness of the strategy to the Nash equilibrium.
In our case, the closer the value of the Exploitability to the 0, the closer the strategy
to the Nash equilibrium. The exploitability is computed with the following formula.
𝑁𝑎𝑠ℎ𝐶𝑜𝑛𝑣(𝑠) = ∑𝑛

𝑖 𝑚𝑎𝑥𝑠,
𝑖∈∑𝑖

𝑢𝑖(𝑠
,
𝑖, 𝑠−𝑖) − 𝑢𝑖(𝑠𝑖), where 𝑚𝑎𝑥𝑠,

𝑖∈∑𝑖
𝑢𝑖(𝑠

,
𝑖, 𝑠−𝑖) is a value

of player 𝑖 playing his best response on strategies of other players, 𝑢𝑖(𝑠𝑖) is a value of
player’s 𝑖 strategy and 𝑛 in number of players. The definition is taken from [10].

10

. 3.5 IS-MCTS

3.5 IS-MCTS
Information set Monte Carlo tree search (IS-MCTS) is a variant of Monte Carlo tree
search (MCTS) that is modified to be able to handle imperfect information games. IS-
MCTS searches game trees of information states instead of normal states, as a classic
variant of MCTS does. The main source for this section is [4].

The algorithm is given the information set 𝐼 for which we want to obtain strategy;
the algorithm then iterates a fixed number of times (= maximum iteration) over the
information state 𝐼; every iteration expands the game tree that the algorithm builds.
The game tree is initialized with only the root node corresponding to the information
set 𝐼.

In each iteration, a random state 𝑠 that is included in the information set 𝐼 is
picked, and then four phases 𝑆𝐸𝐿𝐸𝐶𝑇 𝐼𝑂𝑁, 𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁, 𝑆𝐼𝑀𝑈𝐿𝐴𝑇 𝐼𝑂𝑁 and
𝐵𝐴𝐶𝐾𝑃𝑅𝑂𝑃𝐴𝐺𝐴𝑇 𝐼𝑂𝑁 are run in the exact order with state 𝑠 as a starting point.

In the 𝑆𝐸𝐿𝐸𝐶𝑇 𝐼𝑂𝑁 phase, a path from the state 𝑠 is traversed down the actual
game tree until the reached state 𝑠, is not terminal or an information set that contains
it is not part of the game tree that the algorithm builds. Actions during the traversal
are picked according to the formula:

𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝜒(𝑠,)𝑄∗(𝑠,, 𝑎) + 𝑐 ⋅ √𝑙𝑛(𝑣𝑠,)/𝑣𝑠,𝑎

Where 𝑄∗(𝑠,, 𝑎) is the average expected value of the information state reachable from
𝑠, using action 𝑎, 𝑐 is an exploration constant, 𝑣𝑠, is equal to the total number of times
information set containing state 𝑠, was visited during the run of the algorithm and 𝑣𝑠,𝑎
is equal to the total number of times the information set reachable from 𝑠, using the
action 𝑎 was visited.

The 𝐸𝑋𝑃𝐴𝑁𝑆𝐼𝑂𝑁 phase happens when during the 𝑆𝐸𝐿𝐸𝐶𝑇 𝐼𝑂𝑁 phase a state 𝑠,

is reached such that for any action 𝑎 ∈ 𝜒(𝑠,) the 𝑣𝑠,𝑎 = 0, in that case of all actions that
satisfy 𝑣𝑠,𝑎 = 0 one action 𝑎𝑤 is picked randomly. Then, an information set reachable
from 𝑠, using action 𝑎𝑤 is added to the game tree the algorithm builds with both the
total number of visits and the expected value initialized to 0.

The 𝑆𝐼𝑀𝑈𝐿𝐴𝑇 𝐼𝑂𝑁 phase runs a game simulation from the lastly expanded state
𝑠𝑒 that is reached from the state 𝑠, using action 𝑎𝑤. In the game simulation, all actions
are picked randomly until a terminal state is reached and reward 𝑟 is obtained from it.

The 𝐵𝐴𝐶𝐾𝑃𝑅𝑂𝑃𝐴𝐺𝐴𝑇 𝐼𝑂𝑁 phase starts when reward 𝑟 is obtained. During this
phase, for each visited information set from information set containing 𝑠 to information
set containing 𝑠𝑒, increment the total number of visits by one and update an information
state’s average expected value according to 𝑟. The average expected value is equal to
the sum of all rewards propagated back through the information set divided by the
total number of the information set visits.

After all iterations are done, the behavioural strategy for the initial information set
𝐼 is obtained by averaging the number of visits of information sets reachable from 𝐼. To
obtain a behavioural strategy for an entire game, the algorithm is run for every state
of the game.

3.6 MCCFR
In this work, we will use the Monte Carlo counterfactual regret minimization (MCCFR)
variant called external-sampling MCCFR; in the rest of the work, we will refer to this

11

3. Used Algorithms .
variant as MCCFR. MCCFR is an iterative algorithm that does not traverse the entire
game tree in each iteration. The main source for this section is [11].

The game tree is divided for each player into blocks. There is one block for each
pure strategy of the opposite player; each block contains all terminal histories 𝑧 ∈ 𝑍
(equal to terminal states in games with perfect recall) that are reachable if the opposite
player plays the corresponding pure strategy. In each iteration of the algorithm, a sub-
iteration is performed for each player. At the beginning of the sub-iteration, one block
𝑄 is picked. The probability of picking block 𝑄 is equal to Π𝐼∈𝐼−𝑖

𝜎−𝑖(𝜏(𝐼)|𝐼), where
𝐼−𝑖 are information sets of the opposite player, 𝜏(𝐼) is an action, picked in information
set 𝐼 according to the corresponding pure strategy, and 𝜎−𝑖(𝜏(𝐼)|𝐼) is a probability the
opposite player will pick action 𝜏(𝐼) in information set 𝐼 if he follows his behavioural
strategy (equal to the policy 𝜎−𝑖) for the current iteration.

In a sub-iteration, the algorithm traverses the game tree sampling actions for each
history ℎ (equal to non-terminal states in games with perfect recall) where 𝜌(ℎ) ≠ 𝑖 and
for such visited information set 𝐼 computes sampled counterfactual regrets according
to the following formula.

𝑟∗(𝐼, 𝑎) = (1 − 𝜎(𝑎|𝐼)) ∑
𝑧∈𝑄∩𝑍𝐼

𝑢𝑖(𝑧)𝜋𝜎
𝑖 (𝑧[𝐼]𝑎, 𝑧)

Where 𝜎(𝑎|𝐼) is a probability of playing action 𝑎 in an information set 𝐼 if all players
play accordingly to their behavioural strategies for the current iteration, 𝑍𝐼 is a set of
terminal histories reachable from histories included in 𝐼, 𝑢𝑖(𝑧) is a reward for player 𝑖
in terminal history 𝑧, 𝑧[𝐼]𝑎 is a prefix of the terminal history 𝑧 from root to information
set 𝐼 followed by action 𝑎, and 𝜋𝜎

𝑖 (𝑧[𝐼]𝑎, 𝑧) = 𝜋𝜎
𝑖 (𝑧)/𝜋𝜎

𝑖 (𝑧[𝐼]𝑎) if 𝑧[𝐼]𝑎 is a prefix of 𝑧 or
zero otherwise, with 𝜋𝜎

𝑖 (𝑧) being the probability of reaching 𝑧 if player 𝑖 plays according
to the policy 𝜎 nad 𝜋𝜎

𝑖 (𝑧[𝐼]𝑎) being the probability of reaching 𝑧[𝐼] and picking action
𝑎 if player i plays according to the policy 𝜎.

The sampled counterfactual regrets 𝑟∗(𝐼, 𝑎) are then added to the total regrates
for each pair (𝐼, 𝑎). The new policy (same as a behavioural strategy) 𝜎 for the next
iterations is computed by averaging the total regrets of action in each information set
formula follows.

𝜎𝑡+1
𝑖 (𝑎, 𝐼) = 𝑅(𝐼, 𝑎)/ ∑

𝑎′∈𝜒(𝐼)

𝑅(𝐼, 𝑎′)

Where 𝑅(𝐼, 𝑎) is a total regret for action 𝑎 in information set 𝐼 and 𝜒(𝐼) is a set of all
the available actions in 𝐼. After the algorithm ends, a final strategy is created in the
same way.

12

Chapter 4
Games

Games used for purposes of this work are Pursuit Evasion, Search Game and Patrolling
Game; the game definitions were taken from [9]. All listed games are two-player, simul-
taneous move, imperfect information, and zero-sum games of perfect recall with infinite
horizon. The bounded variants of these infinite games are implemented in OpenSpiel
[12].

4.1 OpenSpiel
OpenSpiel [12] is a framework developed under DeepMind. It is a collection of algo-
rithms and game environments for research in game theory, especially in reinforcement
learning. OpenSpiel supports a wide variety of features. There is support for single-
player and multi-player games, perfect and imperfect information games, zero-sum,
general-sum and cooperative games, and sequential and simultaneous games. The main
focus is on sequential games represented as extensive-form games, which is a preferred
form for implemented games, although games can be transformed into matrix-form
games. Simultaneous games are missing some features compared to sequential games,
mainly support for imperfect information. OpenSpiel core is implemented in C++,
including the games, but some games are implemented in Python as well. Most of the
algorithms are implemented in both C++ and Python. Parts implemented in C++ are
available in Python using pybind11. Games can be visualised using graphviz [6].

4.2 Pursuit Evasion
Pursuit Evasion is a two-player game played on a chess board-like grid. Where one
player controls a group of pursuers, and the other player controls an evader. The group
of pursuers consist of 𝑘 game pieces indexed from 0 to 𝑘 − 1. The evader game piece is
indexed with ’E’.

Figure 4.1. Pursuit Evasion example with width and height equal to 3 and with 2 pursuer
game pieces.

13

4. Games .
All game pieces can move 𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡 or possibly 𝑤𝑎𝑖𝑡. Waiting means

that a game piece will not change its position. The player controlling the pursuers
must control all pursuer game pieces with one action, so action for this player is a
cartesian product of all available moves of pursuer game pieces. For example, if there
are two pursuer game pieces, one with available actions 𝑢𝑝 and 𝑟𝑖𝑔ℎ𝑡 and the other
with actions 𝑑𝑜𝑤𝑛 and 𝑟𝑖𝑔ℎ𝑡 pursuer player will be able to choose from four actions:
(𝑢𝑝, 𝑑𝑜𝑤𝑛), (𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡), (𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑤𝑛), (𝑟𝑖𝑔ℎ𝑡, 𝑟𝑖𝑔ℎ𝑡) with the first action in the action
pair corresponding to game piece with index 0 and the second action corresponding to
game piece with index 1. Pursuer game pieces can not stand in the same position but
can switch positions with each other.

Figure 4.2. Pursuit Evasion information set example with width and height equal to 2 and
with 1 pursuer game pieces.

The pursuer player does not have information about the position of the evader game
piece. The pursuer player only knows the initial position of the evader game piece. The
evader player has perfect information about the game.

Game pieces always start at the same positions regardless of game configurations.
The evader game piece starts in the bottom left corner. The pursuer game pieces start
at the left side of the game grid, with a game piece with index 0 being in the top left
corner and all other pursuer game pieces below it in order corresponding to their index.
The starting position example can be seen in Figure 4.1.

The goal of the game is for the pursuer player to catch the evader game piece. The
evader game piece is caught if a pursuer game piece steps on the same field in the game
grid or if the evader game piece switches position with a pursuer game piece, this occurs
if the pieces stand directly next to each other and both play action contrary to each
other in the correct direction. The goal of the evader player is to avoid being caught
for as long as possible. The game is played until the evader game piece is caught.

Pursuit Evasion game has multiple changeable configurations. Width and height for
changing the size of the game grid, the number of pursuer game pieces in the grid, and
lastly, whether game pieces can 𝑤𝑎𝑖𝑡 instead of changing position. Configuration can
not be changed during a game.

14

. 4.3 Search Game

4.3 Search Game
Search Game is a two-player game. One player controls an attacker game piece, and the
other player controls a group of 𝑘 defender game pieces, each with an assigned index
from 0 to 𝑘 − 1. The game is played on a game field composed of zones stacked next
to each other in a row. A zone is a column of nodes where game pieces can stand. All
zones are of the same size except for two special zones, the first one (start node for the
attacker) and the last one (goal node for the attacker), which always contain only one
node.

The attacker game piece starts in the first special zone. Until the attacker game
piece stays in this zone, it can decide to move in any node in the following zone in the
row (which is the first normal zone) or 𝑤𝑎𝑖𝑡 and does not change its position. Once
the attacker game piece leaves the first special zone by entering the first normal zone,
it can move 𝑢𝑝 or 𝑑𝑜𝑤𝑛 in the current zone or move 𝑙𝑒𝑓𝑡 into the following zone. By
moving 𝑙𝑒𝑓𝑡, the attacker game piece will end up at the same height in the new zone as
it was in the zone before; for example, if the attacker game piece was in the top node
in the old zone, after moving 𝑙𝑒𝑓𝑡, it will be in the top node in the new zone. The only
exception is when the attacker game piece is in the last normal zone; then, by moving
𝑙𝑒𝑓𝑡 from any node, it enters the second special zone and the game ends.

Figure 4.3. Search Game example with 2 zones and height equal to 3 and with 3 defender
game pieces (Figure does not show an initial state).

When the attacker game piece enters any node in a normal zone, it leaves a clue in
that node. The clue stays in the node until the attacker game piece 𝑤𝑎𝑖𝑡s in that node
for at least one turn. The 𝑤𝑎𝑖𝑡 move removes the clue from the node until the attacker
game piece reenters the node again.

The defender game pieces start anywhere in the normal zones. They can only move
𝑢𝑝, 𝑑𝑜𝑤𝑛 or 𝑤𝑎𝑖𝑡 in the same node. This means that a defender game piece can not
leave the zone it started in. Two defender game pieces can not stand in the same node,
but they can switch places.

The goal of the attacker is to move the attacker game piece through all the zones, i.e.
reach the last special zone, without getting caught by a defender game piece. The goal
of the defender is to catch the attacker game piece. The defender catches the attacker
game piece if he moves one of the defender game pieces to the node where the attacker
game piece stands.

The defender does not have information about the position of the attacker game
piece, but if one of the defender game pieces moves to a node where the attacker game
piece left a clue, it discovers the clue, which gives the defender information that the

15

4. Games .
attacker game piece visited the node in the past. The attacker has perfect information
about the game.

The Search Game configuration is defined by the number of normal zones, the number
of nodes in a normal zone, the number of defender game pieces and their initial positions.

4.4 Patrolling Game
Patrolling Game is a two-player game. One player controls an attacker game piece, and
the other player controls a defender game piece. The game is played in a graph. The
graph is composed of nodes and edges. Node is a place where game pieces can stand.
Edge is a representation of the one-way path from one node to another. Each node has
a set of edges that start in it and go to other nodes.

The defender game piece starts in a node, and each turn can move from a node 𝐴
to the node 𝐵 if there is an edge starting in the node 𝐴 that goes to the node 𝐵.
Alternatively, the defender game piece can wait in its current node.

Figure 4.4. Patrolling Game example (Figure does not show an initial state).

The attacker game piece starts outside the game graph. The attacker game piece
can wait and not change its position or move to any node of its choosing as long as
it remains outside of the graph. Once the attacker game piece moves to a node, it
starts an attack on that node. When the attack starts, the attacker game piece can not
change its position, meaning it has to wait for the attack to finish. The attack finishes
after a set number of turns.

The goal of the defender is to catch an attacker game piece. The attacker game piece
is caught if the defender game piece moves to a node that is under unfinished attack.
This means the attacker game piece can not be caught if it has not started an attack
yet. The goal of the attacker is to successfully complete an attack on any node.

The defender does not have information about the position of the attacker game
piece, so the defender does not know whether an attack started and when the attack
starts, the defender does not know which node is targeted. The attacker has perfect
information about the game.

The Patrolling Game configuration is defined by the graph, the starting position of
the defender game piece and the length of an attack. For the game to be meaningful,
every node in the graph should be reachable from every node in the length of the
attack, and the attack should take fewer turns than it takes the defender game piece
to go through all nodes. The conditions listed before are not necessary, but the game
then becomes trivial.

16

Chapter 5
Games Implementation

In OpenSpiel, all game implementations are derived from the 𝐺𝑎𝑚𝑒 superclass for se-
quential games and from the 𝑆𝑖𝑚𝑀𝑜𝑣𝑒𝐺𝑎𝑚𝑒 superclass for simultaneous move games.
The superclasses provide generic interfaces for any specific game implementation.
Games are accessed only through the superclass interface. Therefore, there is not much
space for custom game methods that are visible outside the game implementation.
Furthermore, games cannot be initialized directly; game initialization is handled by
𝐿𝑜𝑎𝑑𝐺𝑎𝑚𝑒 methods. Alternatively, a game can be initialized via shared pointer
𝑠ℎ𝑎𝑟𝑒𝑑_𝑝𝑡𝑟⟨const Game⟩. All game states also derive from the 𝑆𝑡𝑎𝑡𝑒 superclass, which
provides a common interface for them, similar to the superclasses for games [12].

Actions in OpenSpiel are represented as integers ranging from zero to the number
of all actions available to all players. Every integer in that interval must represent an
action. For example, in a two-player game, if one player can play three different actions
and the second player can play two different actions, the actions will be represented by
integers from zero to four. So, every action must be consistently mapped to an integer.
Furthermore, every instance of the same game should have exactly the same mapping
between actual actions and their integer representations.

Due to OpenSpiel’s limited support for simultaneous games, Pursuit Evasion, Search
Game and Patrolling Game are implemented as sequential games. To satisfy the si-
multaneous nature of the games, a game state changes after both players have their
turn. This means that if the first player plays an action, the game state will remain
unchanged. After the second player plays an action, both actions are applied simulta-
neously, and the game state progresses (example tree is shown in Figure 5.1).

Figure 5.1. Example game tree of the sequential game representing the simultaneous game.

17

5. Games Implementation .

5.1 Pursuit Evasion Implementation

A Pursuit Evasion game is represented by parameters defined during the initialization
of the game. After the game is created, these parameters can not be changed; if any
parameter is not defined during the creation process, the default parameter value will
be used.

The parameters with values equal to integers are 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟𝑠,
𝑝𝑢𝑟𝑠𝑢𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 and 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 with default values: 3 for 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡,
2 for 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟𝑠, 100 for 𝑝𝑢𝑟𝑠𝑢𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 and with 1000 for 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡.
Then, there are parameters with boolean values 𝑎𝑔𝑒𝑛𝑡_𝑐𝑎𝑛_𝑤𝑎𝑖𝑡 and 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚
with default values 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒, respectively. The last parameter is called
𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒 and is represented by a string with an empty string as a default value.

The first two parameters, width and height, modify the width and the height of the
game board; in other words, width specifies how many columns will the game board
have, and height specifies how many rows the game board will have.

A game piece position in the game board is specified by an integer ranging from 0 to
𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 − 1. The position in the top right corner (0-th row and 0-th column) is
assigned to integer 0. By moving right, the integer increases by one; by moving down,
the integer increases by 𝑤𝑖𝑑𝑡ℎ. The position in the bottom right corner is indexed with
𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 − 1. By moving left, the integer decreases by 1; by moving up, the
integer decreases by 𝑤𝑖𝑑𝑡ℎ. The formula for calculating the position index in a board is
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑜𝑤 ∗ 𝑤𝑖𝑑𝑡ℎ + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑙𝑢𝑚𝑛, assuming rows and columns are indexed from
zero. An example of position indexes for default game configuration is shown in Figure
5.2.

Figure 5.2. Position indexes for the default configuration of the Pursuit Evasion game.

To set the number of pursuer game pieces, there is a parameter called 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟𝑠.
Pursuer game pieces are indexed from 0 to 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟𝑠 − 1 and are placed on
positions in a game board corresponding to the formula 𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥𝑖 = 𝑤𝑖𝑑𝑡ℎ ∗ 𝑖 where
𝑖 is an index of a pursuer game piece. An evader game piece always starts at position
𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥𝑒 = 𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 − 1.

By default, game pieces can move up, down, left, right and wait if there is no re-
striction by environment (side of the board, the desired position is already occupied).
By setting 𝑎𝑔𝑒𝑛𝑡_𝑐𝑎𝑛_𝑤𝑎𝑖𝑡 = 𝑓𝑎𝑙𝑠𝑒, the wait move is removed from the possible move
list, prohibiting waiting for the game pieces. All moves are represented as integers
[𝑢𝑝 = 0, 𝑑𝑜𝑤𝑛 = 1, 𝑙𝑒𝑓𝑡 = 2, 𝑟𝑖𝑔ℎ𝑡 = 3, 𝑤𝑎𝑖𝑡 = 4].

18

. 5.1 Pursuit Evasion Implementation

Actions for the players are generated from moves available for their game pieces.
Available actions for the evader player are [0, 1, 2, 3, 4] if waiting is permitted or [0, 1, 2, 3]
if waiting is prohibited; the action number directly corresponds to the move number
available to the evader game piece. Actions for the pursuer player are generated from
permutations of moves available for pursuer game pieces; for example, action [𝑢𝑝, 𝑑𝑜𝑤𝑛]
means that the 0-th pursuer game piece will move 𝑢𝑝 and the 1-st pursuer game piece
will move 𝑑𝑜𝑤𝑛.

Action numbers for pursuer start from 5 if waiting is permitted or 4 if waiting
is not permitted. An action number is then calculated with the following formula:
𝑎𝑐𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑚 + ∑𝑘

𝑗=0 𝑚𝑗 ∗ 𝑚𝑘−𝑗, where 𝑘 = 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟 − 1, 𝑚𝑗 is a move of
a j-th game piece and 𝑚 = 4 if waiting is prohibited or 𝑚 = 5 if waiting is allowed. For
example, in a game with two pursuers game pieces and waiting prohibited, the action
number for action [𝑙𝑒𝑓𝑡, 𝑑𝑜𝑤𝑛] will be 4 + ∑1

𝑗=0 𝑚𝑗 ∗ 41−𝑗 = 4 + (2 ∗ 41) + (1 ∗ 40) = 13.
Action mapping for default game configuration can be seen in Figure 5.3.

Figure 5.3. Mapping of action numbers for Pursuit Evasion game with waiting permitted.

The reward for catching the evader game piece can be set with 𝑝𝑢𝑟𝑠𝑢𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑
parameter. It is the reward that the pursuer player will get. The evader player will be
rewarded with −𝑝𝑢𝑟𝑠𝑢𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑.

The maximal length of a game must be known from the moment the game was
created. Parameter 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 sets the maximum number of actions players
can take before the game ends. Each player can take 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡/2 actions in
total. After 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 is reached, all states become terminal. In that case,
rewards in the states where the pursuer did not catch the evader game piece will be 0
for both players. Rewards in the states where the evader game piece was caught will
stay the same (example in Figure 5.4).

To modify rewards for players in all terminal states, including the ones where the
evader game piece was not caught, a parameter 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒 can be used. The pa-
rameter is a path to a file with specified rewards for states (example in Figure 5.6).
The file format is the following: The first line contains a state in short form, and the
next line contains the reward of the evader in that state. Then, on the third line, follow
the next state and the reward in that state. This continues for every state of the game.
Figure 5.5 shows an example of the file format.

The 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚 parameter switches the game state’s 𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔() method to print
state representation in a short form. The short form has the format of 𝑘 + 1 integers

19

5. Games Implementation .

Figure 5.4. Example Pursuit Evasion game tree with rewards set to 0 after the game
reaches maximum length.

Figure 5.5. Example of Pursuit Evasion rewards file format.

separated by white spaces, where the first 𝑘 integers correspond to positions of pursuer
game pieces according to their index, with 𝑘 being the number of pursuers. The last
integer in the short form is the position of an evader game piece. For example, the
short form ’0 3 5’ tells that there are pursuer game pieces on positions 0 and 3, and
there is an evader game piece on position 5. The short form is perfect information
representation without perfect recall.

Representation of Pursuit Evasion’s information state for pursuer contains informa-
tion about a current player, actions played, positions of pursuer game pieces and a
history of pursuer actions. Information state for evader contains the same properties
as for pursuer with the addition of evader game piece position and history of evader
actions.

20

. 5.2 Search Game Implementation

Figure 5.6. Example Pursuit Evasion game tree with rewards set by reward file after the
game reaches maximum length.

5.2 Search Game Implementation

An instance of a Search Game is represented by its parameters. The parameters must
be defined during the initialization of the game instance. If any parameters are not
defined, their default values will be used. Once the game is initialized, the parameters
cannot be changed.

The Parameters 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑤𝑖𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑙𝑜𝑠𝑠
and 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ are integers with default values 3 for 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡,
100 for 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑤𝑖𝑛, −100 for 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑙𝑜𝑠𝑠 and with 1000 for
𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ. The Parameters 𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟_𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒
are strings with default values ’0: 1_2: 1’ for 𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟_𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 and an empty
string for 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒. The last parameter, 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚, is a boolean with the
default value of 𝑓𝑎𝑙𝑠𝑒.

The parameters 𝑤𝑖𝑑𝑡ℎ and ℎ𝑒𝑖𝑔ℎ𝑡 modify the size of the game board. The 𝑤𝑖𝑑𝑡ℎ
sets the number of zones in a game, and the ℎ𝑒𝑖𝑔ℎ𝑡 sets the height of the zones. The
position in a game board is represented as a single integer. The integer is calculated
as ℎ𝑒𝑖𝑔ℎ𝑡𝑧𝑜𝑛𝑒 ∗ 𝑤𝑖𝑑𝑡ℎ + 𝑖𝑑𝑥𝑧𝑜𝑛𝑒, where ℎ𝑒𝑖𝑔ℎ𝑡𝑧𝑜𝑛𝑒 is a position in a zone with the top
position in the zone being 0, the second position from the top in the zone is 1 and so on,
the most bottom position in the zone is ℎ𝑒𝑖𝑔ℎ𝑡 − 1. The 𝑖𝑑𝑥𝑧𝑜𝑛𝑒 is an index of a zone;
the most left zone has index 0 the next zone to right has index 1 and so on, the most
right zone has index 𝑤𝑖𝑑𝑡ℎ − 1. This applies to the normal zones where defender game
pieces can operate. There are two special zones: the zone where the attacker starts
and the goal zone. The integer for the attacker start zone is always −1. The integer
for the goal zone is equal to 𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡. For example, in a game with 𝑤𝑖𝑑𝑡ℎ = 3
and ℎ𝑒𝑖𝑔ℎ𝑡 = 3, the integer of position in the bottom of the second zone (index 1) is
2 ∗ 3 + 1 = 7. An example of position indexes for default game configuration is shown
in Figure 5.7.

The parameter 𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟_𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 sets the initial positions of the de-
fender game pieces. It’s format is 𝑑𝑧𝑜𝑛𝑒𝑖𝑑𝑥

0 : 𝑑𝑧𝑜𝑛𝑒ℎ𝑒𝑖𝑔ℎ𝑡
0 _. . ._𝑑𝑧𝑜𝑛𝑒𝑖𝑑𝑥

𝑘−1 : 𝑑𝑧𝑜𝑛𝑒ℎ𝑒𝑖𝑔ℎ𝑡
𝑘−1 , where

𝑘 is a number of defender game pieces, 𝑑𝑧𝑜𝑛𝑒𝑖𝑑𝑥
𝑗 is an index of a zone where j-

th defender should start and 𝑑𝑧𝑜𝑛𝑒ℎ𝑒𝑖𝑔ℎ𝑡
𝑗 is a position in the zone. For example,

21

5. Games Implementation .

Figure 5.7. Position indexes for the default configuration of the Search Game game.

𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟_𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 =’0: 1_2: 0’ means that there will be two defenders. The
defender game piece with index 0 will start in the first zone (the most left zone, zones
are indexed from 0) in the second position from the top (also indexed from 0). The
defender game piece with an index of 1 will start in the top position of the third zone.

The parameter 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑤𝑖𝑛 is a reward an attacker will receive if the at-
tacker game piece reaches the goal zone, 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑙𝑜𝑠𝑠 is a reward the attacker
will receive if the defender catches the attacker game piece. The defender will receive
the opposite value of the attacker’s rewards.

The parameter 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ sets an upper limit at the number of actions that
can be played by players. Each player can take 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ/2 actions in total.
After this limit is reached, all game states become terminal regardless of the position
of the attacker game piece. In that case, players in all states where the attacker game
piece was not caught nor reached the goal zone will receive a reward equal to 0 (example
in Figure 5.8).

Figure 5.8. Example Search Game game tree with rewards set to 0 after the game reaches
maximum length.

A rewards file can be used to modify rewards in all terminal states, including the
ones that originated from reaching the maximum length of a game (example in Figure
5.10). The file is set via the 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒 parameter that contains the path to the file.
The format of the reward file is as follows: The first line is a game state in short form,
followed by the reward in that state. On the next line is another state with its reward
on the following line. This repeats for all states. Figure 5.9 shows an example of the
file format.

22

. 5.2 Search Game Implementation

Figure 5.9. Example of Search Game rewards file format.

Figure 5.10. Example Search Game game tree with rewards set by reward file after the
game reaches maximum length.

The parameter 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚 = 𝑡𝑟𝑢𝑒 switches game state method 𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔() to return
state representation in a short form. The short form is a sequence of integer white
spaces and semicolons. The short form starts with the position of the attacker game
piece followed by a semicolon, then follows the positions of all defender game pieces
in order corresponding to their index, then a semicolon followed by positions of placed
clues and then a semicolon followed by found clues. If no clue is placed or found, there
will be only semicolons without integers. For example, in a game with 𝑤𝑖𝑑𝑡ℎ = 3 and
ℎ𝑒𝑖𝑔ℎ𝑡 = 3 short form ’-1; 0 8;;’ the attacker game piece is in the start zone, and there
are two defender game pieces, one on the top of the first zone, the other on the bottom
of the second zone and no clues were placed nor found. If the short form was ’1; 0 8;
0; 1’, then the defender game pieces would be at the same positions, the attacker game
piece would be in the top position of the second zone, and there would be an unfound
clue on the position of the attacker game piece and a found clue at the position of the
0-th defender game piece. The short form is a perfect information view of a state.

Information state for the defender contains the information about the positions of the
defender game pieces, the history of the defender’s actions, the positions of found clues
and the number of actions taken. An information state for the attacker contains the
same information as for the defender; additionally, it contains information about the

23

5. Games Implementation .
attacker’s position, the attacker’s action history and information about the positions of
unfound clues.

Game piece moves are represented as integers [𝑤𝑎𝑖𝑡 = 0, 𝑢𝑝 = 1, 𝑑𝑜𝑤𝑛 = 2, 𝑟𝑖𝑔ℎ𝑡 = 3],
defender game pieces do not have access to the 𝑟𝑖𝑔ℎ𝑡 move. Actions for the attacker
are mapped into integers as follows: actions from 0 to 3 correspond to the moves of the
attacker game piece. Actions from 4 to ℎ𝑒𝑖𝑔ℎ𝑡 + 3 correspond to initial moves into the
first zone; action 4 will move the attacker game piece to the top position in the first
zone, action 5 will move it to the position under it and so on. Actions for defender are
mapped to integers from ℎ𝑒𝑖𝑔ℎ𝑡 + 4 to the total number of actions. The action number
is calculated from the permutation of all defender game pieces moves; the formula is
𝑎𝑐𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 = ℎ𝑒𝑖𝑔ℎ𝑡 + 4 + ∑𝑘

𝑗=0 𝑚𝑗 ∗ 3𝑘−𝑗, where 𝑘 is the number of defender game
pieces minus one (indexed from 0) and 𝑚𝑗 is move number of j-th defender game piece.
For example, in a game with ℎ𝑒𝑖𝑔ℎ𝑡 = 3 for action [𝑢𝑝, 𝑤𝑎𝑖𝑡, 𝑑𝑜𝑤𝑛] (three defender game
pieces), the action number would be 3+4+(1∗32)+(0∗31)+(2∗30) = 7+9+0+2 = 18.
Action mapping for default game configuration can be seen in Figure 5.11.

Figure 5.11. Mapping of action numbers for Search Game game with height three and with
two defenders.

5.3 Patrolling Game Implementation
An instance of a Patrolling Game is represented by its parameters. The parameters
define key properties of a game, so they must be defined during game initialization and
can not be changed after that. The default value will be used if any of the parameters
is not specified.

The integer parameters for the game are 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑,
𝑎𝑡𝑡𝑎𝑐𝑘_𝑙𝑒𝑛𝑔ℎ𝑡, the boolean parameters are 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚 and 𝑓𝑖𝑛𝑖𝑠ℎ_𝑎𝑡𝑡𝑎𝑐𝑘, and
the string parameters are 𝑔𝑟𝑎𝑝ℎ_𝑓𝑖𝑙𝑒 and 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒. The default value for
𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ is 1000, for 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 is 100, for 𝑎𝑡𝑡𝑎𝑐𝑘_𝑙𝑒𝑛𝑔ℎ𝑡 is 4,
for both 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚 and 𝑓𝑖𝑛𝑖𝑠ℎ_𝑎𝑡𝑡𝑎𝑐𝑘 is 𝑓𝑎𝑙𝑠𝑒 and for both 𝑔𝑟𝑎𝑝ℎ_𝑓𝑖𝑙𝑒 and
𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒 is an empty string.

The 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑 parameter sets the reward the attacker receives when he suc-
cessfully finishes an attack; in that case, the defender receives −𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑. If

24

. 5.3 Patrolling Game Implementation

the attack is finished unsuccessfully (the defender catches the attacker game piece), the
attacker will receive a reward equal to −𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑, and the defender will receive
𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑟𝑒𝑤𝑎𝑟𝑑.

The 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ parameter sets the maximum number of actions players can
take in total, meaning each player can take up to 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ/2 actions. After a
game reaches its maximum length, all states become terminal regardless of the attacker
game piece’s state; if that happens and the attack did not end, both players receive a
reward of 0; there is an exception: if parameter 𝑓𝑖𝑛𝑖𝑠ℎ_𝑎𝑡𝑡𝑎𝑐𝑘 = 𝑡𝑟𝑢𝑒 and the attacker
has already started an attack, the game will continue till the end of the attack (example
in Figure 5.12).

Figure 5.12. Example Patrolling Game game tree with rewards set to 0 after the game
reaches maximum length.

The parameter 𝑟𝑒𝑤𝑎𝑟𝑑𝑠_𝑓𝑖𝑙𝑒 can be used to change rewards in all terminal states,
including the ones that originated from reaching maximum game length (example in
Figure 5.14). The parameter specifies a path to the rewards file. In the file, the first
line contains the game state in short form, followed by the reward in that state. On the
third line, there is another state in a short form, followed by its rewards on the next
line; this repeats for all states. Figure 5.13 shows an example of the file format.

Figure 5.13. Example of Patrolling Game rewards file format.

The parameter 𝑠ℎ𝑜𝑟𝑡_𝑓𝑜𝑟𝑚 switches state method 𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔() to return state rep-
resentation in a short form. The short form format for a state is the following: ’𝑝𝑎 𝑝𝑑

25

5. Games Implementation .

Figure 5.14. Example Patrolling Game game tree with rewards set by reward file after the
game reaches maximum length.

𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑛𝑑’, where 𝑝𝑎 is the position of an attacker game piece, 𝑝𝑑 is the position of
a defender game piece and 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑛𝑑 is the number of the attacker turns to finish an
attack. The short form is the perfect information view of a state without perfect recall.

The parameter 𝑎𝑡𝑡𝑎𝑐𝑘_𝑙𝑒𝑛𝑔ℎ𝑡 sets how many turns it takes for an attacker to finish
an attack on a node. The attack’s remaining turns are decreased during the turn of
the attacker, so the attack lasts for 𝑎𝑡𝑡𝑎𝑐𝑘_𝑙𝑒𝑛𝑔ℎ𝑡 turns of the attacker, so it is not
influenced by the defender’s turns. For example, if 𝑎𝑡𝑡𝑎𝑐𝑘_𝑙𝑒𝑛𝑔ℎ𝑡 = 3, it will take
3 attacker turns to finish an attack; this means it will take 6 turns in a game (3 for
attacker and 3 for defender).

The parameter 𝑔𝑟𝑎𝑝ℎ_𝑓𝑖𝑙𝑒 specifies a path to the file containing the definition of a
graph to use for a game. The graph file is in the following format: the first line of the
file is the starting position of a defender game piece represented as an index of a node.
The second line is empty. The third line contains indexes of nodes reachable from the
node with index 0. The fourth line contains indexes of nodes reachable from the node
with index 1. Every node in the graph has a line specifying nodes that are reachable
from it; the index of a node is equal to the number of lines preceding its line minus two.
Example of graph file can be seen in Figure 5.15. The default graph will be used if the
𝑔𝑟𝑎𝑝ℎ_𝑓𝑖𝑙𝑒 parameter is not set (see Figure 5.16).

Figure 5.15. Graph file format for default graph in Patrolling Game.

The integer representation of actions is the following: the action 𝑊𝑎𝑖𝑡 is as-
signed 0 for both players. The attacker’s actions to start an attack are assigned

26

. 5.3 Patrolling Game Implementation

Figure 5.16. Default graph for Patrolling Game, where D is the position of the defender
game piece and the numbers are indexes of nodes.

integers from 1 to the number of nodes in a graph in order of the node index,
meaning action 𝑆𝑡𝑎𝑟𝑡_𝑎𝑡𝑡𝑎𝑐𝑘_𝑎𝑡_𝑛𝑜𝑑𝑒_0 will have assigned number 1, action
𝑆𝑡𝑎𝑟𝑡_𝑎𝑡𝑡𝑎𝑐𝑘_𝑎𝑡_𝑛𝑜𝑑𝑒_1 will have assigned number 2 and so on. The defender
player’s actions to move his game piece in a graph are assigned integers from 1 + 𝑡 to
1 + 𝑡 + 𝑒, where 𝑘 = 𝑎𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑛𝑜𝑑𝑒𝑠 and 𝑒 = 𝑎𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑒𝑑𝑔𝑒𝑠. Action
numbers are bound to the edges they represent and are assigned when the graph is
parsed from a graph file. The parsing of edges starts from the top left of the file so
that the action numbers are assigned according to the order of the edges in the file.
Action mapping for default game configuration can be seen in Figure 5.17.

Figure 5.17. Mapping of action numbers for Patrolling Game game with default graph.

Information state for a defender contains information about the defender game piece’s
position, history of the defender’s actions and number of turns from the beginning of
a game. The information state for the attacker contains the same information as for
the defender, with additional information such as the attacker’s position, the number
of turns the attacker waited for an attack, the turn the attacker started the attack and
the remaining time to finish the attack.

27

Chapter 6
Experimental Evaluation

It is impossible to directly evaluate strategies in imperfect-information extensive-form
games with an infinite horizon. However, such games can be approximately solved
using their finite horizon estimation. To estimate an infinite game as a finite game,
the infinite game must be bound to some maximum length. After the bounded game
reaches its end, players will receive rewards equal to the estimated reward they would
receive if the bounded game continued into infinity from a state in which the bounded
game ended.

Figure 6.1. Game tree of infinite game estimated as a bounded game. Since games are
zero-sum, rewards in the tree are represented as rewards for player 1.

28

. .
One way to obtain the estimation of the values the game would have if it were played

into infinity is by using value iteration; it can be done because value iteration ignores
perfect recall, which makes a number of states of the game (at least for games used
in this work) finite and thus makes game solvable. One disadvantage of using value
iteration is that it does not work for imperfect information games; on the other hand,
using the perfect information variant of the game negates the problem of losing the
perfect recall.

Solving the perfect information variant of the imperfect information game can be
used to obtain estimations, but the estimations will probably be inclined in favour of a
player who gained additional information. Let us refer to the estimations obtained this
way by the symbol 𝑉.

In this work, the problem above can be negated by using the fact that in the used
games, only one player has imperfect information, while the other has perfect informa-
tion. If the imperfect information player is forced to pick actions randomly, it does not
matter what information he gains. By solving a game where an imperfect information
player picks actions randomly, we obtain value estimations that are close to the values
of the infinite game where the imperfect information player plays randomly as well.

This approach, unfortunately, manifests the opposite problem, where the value esti-
mations are more inclined to favour the perfect information player. Let us refer to the
estimations obtained this way by the symbol 𝑅𝑁.

By solving the perfect-information variant of the infinite game with value iteration,
we have obtained the estimated values of states in such a game. Now, we substitute
those state value estimations into the terminal states of the corresponding imperfect-
information bounded game. The state value estimation will be substituted in the fol-
lowing way. When the imperfect-information bounded game ends in some information
state, the player 1 will receive a reward equal to the value estimation of a state that
corresponds to the state the bounded game is currently in, which are basically the same
states except their histories. For example, in Pursuit-Evasion, the states correspond to
each other if the positions of the defender game pieces and the positions of the evader
game pieces are the same for both states, the histories of action that lead to these
states are irrelevant. The player 2 will receive an opposite reward than player 1 since
the games are zero-sum.

After substituting estimated values into a bounded game’s terminal states, we com-
pute the strategy of the imperfect information player in the bounded game. By doing
so, we obtain a strategy of the imperfect information player for the first 𝑘 moves in
the infinite game that corresponds to the bounded game, where 𝑘 is the number of
actions the imperfect information player can play before the game reaches the depth
of the bound, for deeper states (states after the length bound) the player need another
strategy, in this work we will assume that the player will play randomly.

The strategy beyond the bound can be represented by substituting values into the
terminal states of the bounded game in the same way as before. To represent a strategy
where the imperfect-information player plays actions randomly after the bound, we
substitute the 𝑅𝑁 state value estimations into the terminal states.

Strategies computed for bounded games with different value estimations in terminal
states and their quality for the infinite game if the imperfect-information player played
randomly in the states beyond the bound can be compared by computing the best
response of the perfect-information player on the computed strategies in the bounded
games with 𝑅𝑁 value estimations in terminal states. This way, we can obtain the value
estimation of the infinite game where the imperfect-information player followed the

29

6. Experimental Evaluation .
computed strategy and then played randomly. The obtained values can be compared
to evaluate the quality of the strategies.

The diagram with all the steps from an infinite game to the value estimations of the
different strategies in the infinite game can be seen in Figure 6.2.

6.1 Approach Summary
In this work, for each domain (Pursuit Evasion, Search Game, Patrolling Game), four
bounded games will be used with the following estimations for states beyond bound:

. 0 - with this estimation, all states have a value equal to 0; this represents games
where all players draw when the bound is reached. 𝑉 - values of the states are computed using value iteration for perfect information
variation of a game; this represents games where players play with perfect information
beyond the bound. 𝐻 - values of the states are equal to values for 𝑉 multiplied by 1/2 except normal
terminal states, which have unchanged values; this does not represent any specific
scenario, but it is a middle ground between 0 and 𝑉. 𝑅𝑁 - values of the states are computed using value iteration for perfect information
variation of a game where imperfect information player picks actions randomly; this
represents games where players play randomly after the bound

Figure 6.2. Summary of approach in experiments.

Strategies of imperfect information players (the algorithms produce strategies for
both players, but the produced strategies of perfect information players are used only
for computing the exploitability [= closes to Nash equilibrium] of the strategies) on
bounded games will be computed using MCCFR and IS-MCTS. The convergence of
the algorithms will be evaluated by comparing the exploitability of the strategies in
their corresponding bounded game. For example, if there is a strategy computed by

30

. 6.2 Pursuit Evasion

MCCFR in the 𝑉 game variant, the exploitability of that strategy will be computed in
exactly the same 𝑉 game variant.

Even though both MCCFR and IS-MCTS algorithms are not required to explore
the entire game tree, their implementation in OpenSpiel creates the entire game tree
and loads it into memory to create a strategy in every possible information set. This
was the limiting factor for using bigger game configurations in this work’s experiments.
Implementing new variants of the algorithms is beyond the scope of this work.

The best responses of the perfect information player and value estimations of the
infinite games will be computed on bounded game 𝑅𝑁, meaning that the imperfect
information player will pick actions randomly beyond the length bound.

In all domains, the perfect information player is the first player, and the imperfect
information player is the second player.

6.2 Pursuit Evasion
Game configurations used for Pursuit Evasion experiments are shown in the format
𝑊𝑥1_𝐻𝑥2_𝑃𝑥3_𝐶𝑥4_𝐿𝑥5, where the capital letter represents a parameter, and 𝑥𝑖
represents a value of the parameter with 𝑖 ∈ {1, 2, 3, 4, 5}. With 𝑊 represents 𝑤𝑖𝑑𝑡ℎ,
𝐻 represents ℎ𝑒𝑖𝑔ℎ𝑡, 𝑃 represents 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟𝑠, 𝐶 represents 𝑎𝑔𝑒𝑛𝑡_𝑐𝑎𝑛_𝑤𝑎𝑖𝑡 with
values 0 = 𝑓𝑎𝑙𝑠𝑒 and 1 = 𝑡𝑟𝑢𝑒, and finally 𝐿 represents 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡 which is
the length of the bounded game. The rest of the parameters are set to default values.
More details regarding the configuration can be seen in Appendix A.

Value estimations of the states beyond the horizon were computed with value itera-
tions with discount factor 𝑐 = 0.9 for 𝑉 and 𝐻 in smaller cases of 𝑅 and with 𝑐 = 0.99
for larger cases of 𝑅 to move the values of the states further from 0 because the action
space is relatively large so defender picking actions randomly has a relatively low chance
of catching the evader game piece. The maximum error for the value iteration was set
to 𝑒 = 1.

Table 6.1 shows values for different Pursuit Evasion game configurations with strate-
gies computed using MCCFR. The values of the games are negative because the table
shows the values of the player 1, who is the evader and who receives a reward of −100
when his game piece is caught. This means that the pursuer (player 2) had a better
strategy and was able to catch a defender game piece more reliably in cases with lower
game values.

The first two lines in a table are special cases. The game 𝑊2_𝐻2_𝑃1_𝐶0_𝐿8
represents a case where the optimal strategy for both players is to pick actions randomly;
in that case, the evader game piece is caught with probability 𝑝 = 1 − (1/2)𝐿/2, where
𝐿 is a length of the game, this means that value of the game in the infinity should
convert to −100. The results show that all game variants came close to that number;
the small difference is a result of the value iteration terminating after the error is lower
than 1. The game 𝑊2_𝐻2_𝑃1_𝐶1_𝐿8 is a case where when the evader plays an
optimal strategy, he can never be caught. Thus, the value of the game with any length
is 0. Results show that all game variants reached the correct value.

The rest of the game configurations are more general cases that cannot be solved
trivially. As expected, the best results were obtained with the 𝑅𝑁 game variants
because the best response is computed on the same game variant, so the 𝑅𝑁 column
is more of a reference column to show the most optimal results. The worst-performing
game variants were 𝑉, which were outperformed even with 0 game variants. This result
was slightly unexpected, but a possible explanation is that the value estimations of

31

6. Experimental Evaluation .

Game configuration 0 H V RN

W2_H2_P1_C0_L8 -99.39 -99.30 -99.39 -99.39
W2_H2_P1_C1_L8 0 0 0 0
W3_H3_P2_C0_L6 -82.89 -83.47 -82.41 -84.67
W3_H3_P2_C0_L8 -86.90 -87.98 -84.22 -89.19
W3_H3_P2_C1_L6 -48.88 -49.85 -42.09 -54.12
W3_H3_P2_C1_L8 -65.51 -66.44 -61.30 -68.88
W3_H4_P2_C0_L8 -64.42 -65.92 -52.71 -67.36
W3_H4_P2_C0_L10 -77.32 -77.28 -71.38 -77.84
W3_H4_P2_C1_L8 -36.98 -39.76 -27.30 -42.57
W4_H3_P2_C0_L10 -77.70 -77.62 -71.24 -77.93
W4_H4_P2_C0_L10 -35.87 -35.67 -30.16 -40.27

Table 6.1. Pursuit Evasion game values for different value estimations of states beyond the
horizon, with strategies computed using MCCFR. (Table shows estimated values of the

first player = player with perfect information)

states in 𝑉 are significantly overvalued, so a strategy computed on such a game tends
to lean more towards such states. Because the best response is computed on the 𝑅𝑁
variant of the game, where the state estimations have lower values, the strategy will have
a lower expected value because it will lean towards the now low-value states instead
of the actual terminal states with high values meanwhile the 0 variants rely on the
terminal states. This idea can be reinforced by the results of the 𝐻 game variants,
which, in some cases, outperformed the 0 variants. This means that 𝐻 game variants
do not have their value estimations overvalued as 𝑉 variants do.

Game configuration 0 - iter | expl H - iter | expl V - iter | expl RN - iter | expl

W2_H2_P1_C0_L8 1 | 0.00 4001 | 0.84 1 | 0.01 1 | 0.60
W2_H2_P1_C1_L8 5001 | 0.89 5001 | 0.81 5001 | 0.98 5001 | 0.86
W3_H3_P2_C0_L6 10001 | 0.97 8001 | 0.99 2001 | 0.74 5001 | 0.94
W3_H3_P2_C0_L8 30000 | 1.34 15001 | 0.92 4001 | 0.89 13001 | 0.70
W3_H3_P2_C1_L6 30000 | 2.06 28001 | 0.82 4001 | 0.96 29001 | 0.84
W3_H3_P2_C1_L8 30000 | 2.41 30000 | 1.93 15001 | 0.90 30000 | 1.91
W3_H4_P2_C0_L8 30000 | 1.67 24001 | 0.98 7001 | 0.95 29001 | 0.97
W3_H4_P2_C0_L10 30000 | 2.76 30000 | 2.04 24001 | 0.99 30000 | 2.03
W3_H4_P2_C1_L8 30000 | 2.18 30000 | 1.54 21001 | 0.99 30000 | 2.73
W4_H3_P2_C0_L10 30000 | 2.06 30000 | 1.61 28001 | 0.93 30000 | 1.83
W4_H4_P2_C0_L10 30000 | 4.19 30000 | 4.01 30000 | 1.77 30000 | 3.87

Table 6.2. Convergence of MCCFR algorithm for different value estimations of states be-
yond the horizon for Pursuit Evasion games (iter = iterations, expl = exploitability in the
respective bounded games). The closer an exploitability is to zero, the closer a strategy is

to Nash equilibrium.

MCCFR for all game configurations was limited to 30000 iterations, or it would end
when it reached exploitability lower than 1. Exploitability was calculated after the
first iteration and then after each 1000 iterations. Table 6.2 shows convergence and
the number of run iterations to reach the convergence for every game configuration.
As can be seen in the table, 𝑉 game variants outperformed all other game variants by

32

. 6.2 Pursuit Evasion

reaching exploitability lower than 1 in all game configurations except the biggest one,
where it still managed to converge closest to exploitability 1 of all the other variants.
𝐻 and 𝑅𝑁 game variants performed more or less similarly. The worst performance
convergence occurred in 0 game variants, converging below 1 exploitability only in the
three smallest game configurations. A possible reason could be the fact that 0 game
variants have sparse non-zero values, making it harder for MCCFR to find the optimal
strategies. The opposite applies to the 𝑉 game variants.

IS-MCTS algorithm for experiments on Pursuit Evasion game configuration was lim-
ited to 10000 iterations in each information set, and with exploration constant 𝑐 = 100.
High exploration constant proved to enable the algorithm to convert closer to equi-
librium than lower values of exploration constant between 0 and 1. Despite testing
different values of exploration constant and limit of iterations, the algorithm converged
poorly to a Nash equilibrium in most cases. The strategies computed by IS-MCTS
leaned heavily toward the best possible action in each information state, even with a
high exploration constant, which was easily exploitable by the best response algorithm.
That led to MCCFR producing significantly better results.

Game configuration 0 H V RN

W2_H2_P1_C0_L8 -98.91 -98.41 -99.18 -99.29
W2_H2_P1_C1_L8 0 0 0 0
W3_H3_P2_C0_L6 -51.25 -54.68 -63.99 -57.33
W3_H3_P2_C0_L8 -60.44 -65.23 -68.48 -68.29
W3_H3_P2_C1_L6 -19.39 -24.09 -24.89 -23.42
W3_H3_P2_C1_L8 -25.34 -27.29 -27.33 -29.25
W3_H4_P2_C0_L8 -29.05 -32.82 -36.37 -33.12
W3_H4_P2_C0_L10 -28.92 -29.89 -37.15 -32.72
W3_H4_P2_C1_L8 -4.62 -6.16 -5.08 -5.60
W4_H3_P2_C0_L10 -27.02 -34.71 -41.57 -34.23

Table 6.3. Pursuit Evasion game values for different value estimations of states beyond the
horizon, with strategies computed using IS-MCTS. (Table shows estimated values of the

first player = player with perfect information)

Table 6.3 shows the values of the Pursuit Evasion games for all game configurations
and game variants with strategies computed with the IS-MCTS algorithm. The best
results had the 𝑉 game variants in most cases, but the success of the 𝑉 variant is possible
only because of the best convergence. As can be seen in Table 6.4, all of the strategies
for the 𝑉 game variants converged closest to the Nash equilibrium, making them more
robust against exploitation by the best response of the evader player.

The 0 game variants performed the worst of all game variants in both game values
and convergence. This shows that even with a poorly converging algorithm, providing
non-zero state value estimations beyond the horizon yields better-performing strategies.

The 𝐻 game variants and the 𝑅𝑁 game variants, in most cases, performed better than
the 0 variants and worse than 𝑉 variants, with 𝑅𝑁 game variants performing better in
values of most game settings than 𝐻 variants. 𝑅𝑁 variants also had better convergence
in smaller game settings than 𝐻 game variants, which had better convergence in bigger
game settings.

33

6. Experimental Evaluation .

Game configuration 0 H V RN

W2_H2_P1_C0_L8 5.32 6.80 0.59 0.14
W2_H2_P1_C1_L8 3.33 4.35 3.65 3.56
W3_H3_P2_C0_L6 76.56 47.01 14.08 36.86
W3_H3_P2_C0_L8 77.25 42.35 11.11 28.59
W3_H3_P2_C1_L6 66.43 42.21 16.83 56.86
W3_H3_P2_C1_L8 74.38 46.12 17.08 60.22
W3_H4_P2_C0_L8 64.75 38.39 16.18 46.25
W3_H4_P2_C0_L10 87.47 58.93 21.28 64.05
W3_H4_P2_C1_L8 72.62 47.64 20.78 69.05
W4_H3_P2_C0_L10 90.87 54.86 19.36 63.49

Table 6.4. Convergence of IS-MCTS algorithm for different value estimations of states be-
yond the horizon for Pursuit Evasion games. Values in the table are equal to exploitability
in the respective bounded games. The closer an exploitability is to zero, the closer a

strategy is to Nash equilibrium.

6.3 Search Game
Game configurations used for Search Game experiments are shown in the format
𝑊𝑥1_𝐻𝑥2_𝐿𝑥3_𝑑𝑝, where the capital letter represents a parameter, 𝑥𝑖 represents
a value of the parameter with 𝑖 ∈ {1, 2, 3}, and 𝑑𝑝 represents positions of defender
game pieces, it corresponds to the format of the parameter 𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟_𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
with omitted ’:’ (the default starting positions of defender game pieces can be seen
in Figure A.1). 𝑊 represents 𝑤𝑖𝑑𝑡ℎ, 𝐻 represents ℎ𝑒𝑖𝑔ℎ𝑡, and finally 𝐿 represents
𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡, which is the length of the bounded game. The rest of the param-
eters are set to default values except 𝑟𝑒𝑤𝑎𝑟𝑑_𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟_𝑙𝑜𝑠𝑠, which was set to 0 for all
game configurations. The reason for this modification is to motivate the attacker to
move into the zones instead of waiting in the start zone. More details regarding the
configuration can be seen in Appendix A.

Value estimations of the states beyond the horizon were computed with value iter-
ations with discount factor 𝑐 = 0.9 for all game variants. The maximum error for the
value iteration was set to 𝑒 = 1.

Table 6.5 shows values for different Search Game game configurations with strategies
computed using MCCFR. The values of the games are positive because the table shows
the values of the player 1, who is the attacker and who receives a reward of 100 when
his game piece reaches the goal zone. This means that the defender (player 2) had a
better strategy and was able to catch an attacker game piece more reliably in cases
with lower game values.

The first row of the table represents a special case where the attacker has a 50%
chance to win when both players play the optimal strategy; values for all game variants,
in this case, are close to the correct value, which is 50. For the other rows, the 𝑅𝑁
game variants produced the best results, which is expected since the best response is
computed on the same variant of the games, so the 𝑅𝑁 column can be viewed as a
reference of the most optimal value.

The 𝑉 game variants performed better than 0 and 𝐻 game variants because the value
estimations of the 𝑉 states beyond the horizon are closest to the 𝑅𝑁 state estimations
despite the 𝑉 and 𝑅𝑁 variants benefiting the opposite players. The 𝑉 state value
estimations contain non-zero values either in states where the defender can no longer

34

. 6.3 Search Game

stop the attacker from reaching the goal zone no matter what action he plays or in
states in which reaching the goal zone depends on random probability; the dependency
on random probability occurs only when the attacker entering the first zone, and the
value estimations of such states will be slightly lower or equal to the 𝑅𝑁 estimations
depending on the game configuration. The 𝑉 value estimations of the states where
the attacker cannot be stopped are equal to the value estimation in 𝑅𝑁 because if the
attacker cannot be caught, the actions of the defender are irrelevant. The defender will
try to avoid entering the information sets that have a high probability of being those
states and, as a result, will produce better strategies.

The 𝐻 game variants had the worst performance despite having non-zero value esti-
mation in the same states as 𝑉. The reason might be that the ratio between the values
of the states where the attacker won and the other non-zero states is very different from
the 𝑅𝑁 variants, which makes the strategies incorrectly prioritize which information
sets they should try to avoid.

Game configuration 0 H V RN

W1_H2_L6_00 50.44 50.46 50.13 50.56
W1_H3_L6_01_02 42.82 42.84 38.64 38.13
W2_H2_L6_00_10 22.49 20.25 20.25 20.59
W2_H3_L6_01_11 54.20 64.37 47.07 43.25
W2_H3_L8_01_11 54.47 59.94 47.87 43.31
W3_H3_L8_01_11_21 36.21 32.64 32.97 28.25
W3_H3_L8_01_20_22 36.63 40.01 40.17 29.48

Table 6.5. Search Game game values for different value estimations of states beyond the
horizon, with strategies computed using MCCFR. (Table shows estimated values of the

first player = player with perfect information)

The iteration limit for MCCFR was variable for different game configurations ranging
from 40000 to 100000; the algorithm was also stopped when exploitability reached a
value lower than 1. Exploitability was calculated after the first iteration and then after
each 1000 iterations. Table 6.6 shows convergence and the number of run iterations to
reach the convergence for every game configuration. The big impact on convergence
was the configuration of games. The game variant impacted the convergence as well,
with 0 and 𝐻 variants converging better than 𝑉 and 𝑅𝑁 variants.

Game configuration 0 - iter | expl H - iter | expl V - iter | expl RN - iter | expl

W1_H2_L6_00 7001 | 0.81 5001 | 0.70 13001 | 0.89 8001 | 0.86
W1_H3_L6_01_02 34001 | 0.95 35001 | 0.74 61001 | 0.99 34001 | 0.99
W2_H2_L6_00_10 1001 | 0.39 1001 | 0.32 1001 | 0.80 13001 | 0.96
W2_H3_L6_01_11 13001 | 0.95 10001 | 0.77 26001 | 0.97 15001 | 0.96
W2_H3_L8_01_11 84001 | 0.92 71001 | 0.99 89001 | 0.98 86001 | 0.99
W3_H3_L8_01_11_21 3001 | 0.90 5001 | 0.88 6001 | 0.94 100000 | 3.68
W3_H3_L8_01_20_22 2001 | 0.75 3001 | 0.88 4001 | 0.87 40000 | 2.50

Table 6.6. Convergence of MCCFR algorithm for different value estimations of states be-
yond the horizon for Search Game games (iter = iterations, expl = exploitability in the
respective bounded games). The closer an exploitability is to zero, the closer a strategy is

to Nash equilibrium.

35

6. Experimental Evaluation .
Computing strategies on the Search Game games using IS-MCTS was omitted be-

cause IS-MCTS implementation requires a way to resample states from the same infor-
mation set as a given state according to a probability distribution over actions. This
requirement is not trivial in Search Game because of the clue mechanic. When resam-
pling a new state, all placed and found clues would have to correspond to the state
from which resampling started and creating a heuristic for this functionality would not
be optimal for iterative algorithm such as IS-MCTS.

6.4 Patrolling Game
Game configurations used for Patrolling Game experiments are shown in the format
𝐺𝑥1_𝐴𝑥2_𝐿𝑥3, where the capital letter represents a parameter, and 𝑥𝑖 represents a
value of the parameter with 𝑖 ∈ {1, 2, 3}. 𝐺 represents the index of a used graph
(graphs can be seen in Figure A.2), 𝐴 represents 𝑎𝑡𝑡𝑎𝑐𝑘_𝑙𝑒𝑛𝑔ℎ𝑡, and finally 𝐿 repre-
sents 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔ℎ𝑡, which is the length of the bounded game. The rest of the
parameters are set to default values. More details regarding the configuration can be
seen in Appendix A.

The game implementation was also modified to give rewards equal to 0 for both
players if an attack fails. The reason for this modification is to motivate the attacker
to start an attack instead of waiting for a draw.

Value estimations of the states beyond the horizon were computed with value iter-
ations with discount factor 𝑐 = 0.9 for all game variants. The maximum error for the
value iteration was set to 𝑒 = 1.

Table 6.7 shows values for different Patrolling Game game configurations with strate-
gies computed using MCCFR. The values of the games are positive because the table
shows the values of the player 1, who is the attacker and who receives a reward of 100
when he successfully completes an attack. This means that the defender (player 2) had
a better strategy and was able to catch an attacker game piece more reliably in cases
with lower game values.

Game configuration 0 H V RN

G1_A2_L8 63.12 63.39 56.70 56.70
G1_A3_L10 85.26 72.30 54.09 42.51
G2_A2_L8 67.46 72.88 60.71 57.96
G2_A3_L10 72.67 73.57 63.46 44.23
G3_A2_L8 67.76 67.50 60.80 57.85
G3_A3_L10 77.53 71.07 60.47 44.28
G4_A3_L8 89.99 89.99 70.72 59.93
G4_A4_L10 88.74 70.66 68.88 47.10
G5_A3_L8 63.75 65.13 64.93 54.44
G5_A4_L10 67.51 63.02 62.79 44.72
G6_A4_L10 87.52 88.67 68.08 63.12
G6_A5_L12 80.44 72.00 68.11 54.42

Table 6.7. Patrolling Game game values for different value estimations of states beyond
the horizon, with strategies computed using MCCFR. (Table shows estimated values of

the first player = player with perfect information)

When strategies were computed using MCCFR, the defender was most successful in
𝑅𝑁 game variants, which was expected because the best response of the attacker is

36

. 6.4 Patrolling Game

computed on the same games. So, the 𝑅𝑁 column is more of a reference to the most
optimal values. The second-best results can be seen in 𝑉 game variants. In 𝑉, value
estimations of states are non-zero only in cases where the defender has no chance of
disrupting an attack; all other states have the value of 0 because if the defender has
information about the attacked node position, he will always get there if has enough
time. This means that the strategy of the defender in the 𝑉 game variants should try to
minimize the chance of reaching the information sets that contain states with non-zero
value estimations, or if it is impossible, the defender should try to reach the information
sets with the lowest probability of being the state with high-value estimation. Such
strategies performed well against the best response in 𝑅𝑁 variants of the games because
all non-zero state value estimations in 𝑉 are equal to the corresponding state value
estimations in 𝑅𝑁. Additionally, these states have the highest value because they
guarantee a successful attack, no matter the defender’s actions, so the rest of the non-
zero states in 𝑅𝑁 that are zero in 𝑉 would have a lower impact on the final strategy.

The 𝐻 game variants performed slightly better than the 0 variants. In the 0 variants,
only states where an attack finishes before the bound have a non-zero value, so the
defender’s strategies computed on such games will try to prevent these, completely
ignoring other states, which will have higher values in 𝑅𝑁 variants and thus will be
exploited by the best response of the attacker. The problem with 𝐻 variants is that
even though they consider the same states as 𝑉, the values in these states are lower,
so the final strategies will put a higher priority on preventing the states where the
attack ends before the bound, which will make them more vulnerable to exploitation
by the best response of the attacker. There are cases where 0 variants outperformed 𝐻
variants; the reasons might be that strategies in 0 variants got lucky and accidentally
prevented undesirable states or that the 𝐻 variants strategies ended up in between
trying to prevent the states where the attack succeeded and the states with high-value
estimations with ratio not corresponding to the 𝑅𝑁 variants or combination of both.

Game configuration 0 - iter | expl H - iter | expl V - iter | expl RN - iter | expl

G1_A2_L8 30001 | 0.93 26001 | 0.78 24001 | 0.98 29001 | 0.96
G1_A3_L10 22001 | 0.68 29001 | 0.88 70000 | 1.73 70000 | 1.62
G2_A2_L8 59001 | 0.99 36001 | 0.96 57001 | 0.98 53001 | 0.97
G2_A3_L10 25001 | 0.92 37001 | 0.71 70000 | 1.33 70000 | 1.74
G3_A2_L8 23001 | 0.99 29001 | 0.90 38001 | 0.92 42001 | 0.99
G3_A3_L10 23001 | 0.68 14001 | 0.95 50001 | 0.88 70000 | 1.39
G4_A3_L8 12001 | 0.71 8001 | 0.92 14001 | 0.60 43001 | 0.93
G4_A4_L10 8001 | 0.82 7001 | 0.48 13001 | 0.84 70000 | 1.29
G5_A3_L8 6001 | 0.68 9001 | 0.13 4001 | 0.79 9001 | 0.94
G5_A4_L10 1001 | 0.24 1001 | 0.23 1001 | 0.54 13001 | 0.98
G6_A4_L10 10001 | 0.47 18001 | 0.89 47001 | 0.94 25001 | 0.89
G6_A5_L12 10001 | 0.96 10001 | 0.95 11001 | 0.61 34001 | 0.97

Table 6.8. Convergence of MCCFR algorithm for different value estimations of states be-
yond the horizon for Patrolling Game games (iter = iterations, expl = exploitability in the
respective bounded games). The closer an exploitability is to zero, the closer a strategy is

to Nash equilibrium.

MCCFR for all game configurations was limited to 70000 iterations, or it would end
when it reached exploitability lower than 1. Exploitability was calculated after the

37

6. Experimental Evaluation .
first iteration and then after each 1000 iterations. Table 6.8 shows convergence and
the number of run iterations to reach the convergence for every game configuration.
As can be seen in the table, the convergence of the algorithm was very dependent on
the configuration of games, especially on the graphs. The algorithm, in the majority of
cases, converged faster on 0 and 𝐻 game variants compared to 𝑉 and 𝑅𝑁 game variants.

For computing strategies for Patrolling Game games with IS-MCTS, the IS-MCTS
was limited to a maximum of 10000 simulation per information state and the explo-
ration constant 𝑐 was set to 70 for every game configuration and variant. The higher
exploration constant was chosen because the IS-MCTS algorithm heavily prioritizes a
single best action in the produced strategies, and a higher exploration constant makes
the algorithm produce more balanced strategies. This helps the strategies to be closer
to the Nash equilibria in games where there is no one best optimal action in information
states. But even with a high exploration constant, the produced strategies leaned to-
wards the one best action and thus were exploited by the best response of the attacker
player. Making the strategies computed with MCCFR much more reliable.

Game configuration 0 H V RN

G1_A2_L8 82.51 72.32 62.78 78.27
G1_A3_L10 99.27 99.23 99.04 99.19
G2_A2_L8 79.14 69.06 71.55 71.63
G2_A3_L10 76.23 72.23 75.06 80.27
G3_A2_L8 74.29 79.53 78.09 79.10
G3_A3_L10 72.57 69.56 62.77 70.30
G4_A3_L8 90.16 89.26 89.02 88.90
G4_A4_L10 99.13 89.49 89.50 89.50
G5_A3_L8 99.83 66.94 65.48 69.24
G5_A4_L10 69.55 66.46 66.69 62.79
G6_A4_L10 99.81 99.84 99.99 99.98
G6_A5_L12 78.95 81.06 89.54 99.34

Table 6.9. Patrolling Game game values for different value estimations of states beyond
the horizon, with strategies computed using IS-MCTS. (Table shows estimated values of

the first player = player with perfect information)

Table 6.9 shows the values of the Patrolling Game games for all game configurations
and game variants with strategies computed with the IS-MCTS algorithm. The best
results had the game variants where IS-MCTS converged closest to the Nash equilibrium
because the produced strategies were harder to exploit by the best response of the
attacker. As can be seen in Table 6.10, almost no strategies converged close to equilibria
with an exception in the case of 𝐺5_𝐴4_𝐿10 game configuration for the 0, 𝐻 and 𝑉
game variant, where the exploitability was close to 1. The reason is that the optimal
strategy in the graph (see Figure A.2 graph 5) the game configuration uses is closer to
picking one best action, which is ideal for the use of IS-MCTS. The strategy for the
𝑅𝑁 game variant nor the strategies for the 𝐺5_𝐴3_𝐿8 configuration did not converge
because the optimal strategies are no longer close to picking one action.

Using the game variants with non-zero state value estimations beyond the horizon is
reasonable even with an algorithm that converges poorly to the Nash equilibria because
algorithms computed on such game had slightly better results than the 0 game variants,
as can be seen in Table 6.9.

38

. 6.4 Patrolling Game

Game configuration 0 H V RN

G1_A2_L8 35.41 27.58 29.14 31.89
G1_A3_L10 81.00 86.90 76.05 76.94
G2_A2_L8 32.54 21.04 27.31 25.40
G2_A3_L10 42.39 38.89 56.29 55.63
G3_A2_L8 26.38 32.85 34.14 31.66
G3_A3_L10 54.98 39.42 39.45 53.74
G4_A3_L8 41.35 25.95 44.41 41.62
G4_A4_L10 78.95 48.02 66.39 65.37
G5_A3_L8 50.65 8.82 17.99 23.34
G5_A4_L10 1.41 1.99 0.50 32.79
G6_A4_L10 52.54 53.18 52.68 53.42
G6_A5_L12 53.57 74.12 71.97 68.34

Table 6.10. Convergence of IS-MCTS algorithm for different value estimations of states be-
yond the horizon for Patrolling Game games. Values in the table are equal to exploitability
in the respective bounded games. The closer an exploitability is to zero, the closer a strat-

egy is to Nash equilibrium.

39

Chapter 7
Conclusion

A partially observable stochastic game model is a versatile tool that is useful for repre-
senting a wide variety of scenarios. We implemented three games based on a partially
observable stochastic game model into the OpenSpiel framework. The implemented
games are Pursuit Evasion, Search Game and Patrolling Game. During the usage of
the games’ implementations, all discovered errors were fixed; after that, all function-
alities behaved as expected, and no additional errors were discovered. In conclusion,
the games can be declared as functional. The games could potentially be better op-
timised performance-wise because the string representations of information states are
unnecessarily long; however, the current implementation prioritizes human readability.

Then, we created four bounded variants for each of the implemented games: 0, 𝑉, 𝐻,
and 𝑅𝑁. The 0 variant with state value estimations of states beyond the horizon equal
to zeros. The 𝑉 variant with state value estimations of states beyond the horizon equal
to the values of states in the infinite perfect information game. The 𝐻 variant with
values from 𝑉 divided by two. Lastly, the 𝑅𝑁 variant with state value estimations of
states beyond the horizon equal to the values of states in the infinite perfect information
game where the imperfect information player plays actions randomly.

We computed strategies for the imperfect information player on different configu-
rations of all bounded game variants using MCCFR and IS-MCTS algorithms. We
compared the quality of computed strategies by obtaining the value of the perfect in-
formation player playing the best response to the tested strategies in the 𝑅𝑁 variants
of the games. Finally, we discussed the convergence of the used algorithms.

In the case of strategies computed with MCCFR, the best-performing strategies
were the ones computed on 𝑅𝑁 game variants, which was expected since the best
response was computed on the same variants. For Search Game and Patrolling game,
the strategies computed on 𝑉 game variants outperformed the strategies computed on
𝐻 and 0 game variants. In Pursuit Evasion, the strategy computed on 𝐻 game variants
outperformed strategies computed on 𝑉 and 0 game variants. The reason strategies
computed on the 𝑉 variants did not perform that well was the 𝑉 variants’ overestimation
of values of states beyond the horizon.

In Pursuit Evasion, the strategies computed with the MCCFR algorithm clearly
converged to the Nash equilibrium the best on the 𝑉 game variant for all the game
configurations. In the case of Search Game and Patrolling Game, there was no clear
evidence of a variant converging better than the others, but in general, 0 and 𝐻 game
variants converge slightly better than the 𝑅𝑁 and 𝑉 variants.

The strategies computed by IS-MCTS algorithm generally converged poorly to the
Nash equilibria for all game configurations and variants because the strategies produced
by IS-MCTS lean heavily toward playing the one most optimal action, but the used
games required for optimal strategies to be more spread among the picked actions. This
led to the best response of the perfect information player exploiting such strategies, thus
making them perform significantly worse than strategies computed using MCCFR.

40

. .
A possible future extension of this work could be to compare the result of this work

with strategies and game values obtained by algorithms specialized in solving one-sided,
partially observable stochastic games, for example, algorithm [9]. Since these algorithms
are not part of OpenSpiel, there is a problem with the compatibility, meaning that these
algorithms would have to be implemented into OpenSpiel or some interlayer would have
to be introduced, which is beyond the scope of this work.

41

References

[1] Alpern, Steve, Alec Morton, and Katerina Papadaki. Patrolling Games. Op-
erations Research. 10, 2011, Vol. 59. Available from DOI 10.2307/41316027.

[2] Brown, Noam, and Tuomas Sandholm. Reduced Space and Faster Convergence
in Imperfect-Information Games via Regret-Based Pruning. 2016.

[3] Chang, Shu-Lin, Kun-Chang Lee, Ruey-Rong Huang, and Yu-Hsien Liao.
Resource-Allocation Mechanism: Game-Theory Analysis. Symmetry. 05, 2021,
Vol. 13, pp. 799. Available from DOI 10.3390/sym13050799.

[4] Cowling, Peter I., Edward J. Powley, and Daniel Whitehouse. Informa-
tion Set Monte Carlo Tree Search. IEEE Transactions on Computational Intel-
ligence and AI in Games. 2012, Vol. 4, No. 2, pp. 120-143. Available from DOI
10.1109/TCIAIG.2012.2200894.

[5] Dixit, Avinash, and Barry Nalebuff. The Art of Strategy: A Game Theorist’s
Guide to Success in Business and Life. 2010. Available from https://api.
semanticscholar.org/CorpusID:106854475.

[6] Ellson, John, Emden R. Gansner, and Eleftherios Koutsofios. Graphviz and
Dynagraph – Static and Dynamic Graph Drawing Tools. 2003. Available from
https://graphviz.org/documentation/EGKNW03.pdf.

[7] Farina, Gabriele, Christian Kroer, and Tuomas Sandholm. Stochastic Regret
Minimization in Extensive-Form Games. 2020.

[8] Ganzfried, Sam, and Max Chiswick. Most Important Fundamental Rule of
Poker Strategy. 2020.

[9] Horák, Karel, Branislav Bošanský, and Michal Pěchouček. Heuristic Search
Value Iteration for One-Sided Partially Observable Stochastic Games. Proceedings
of the AAAI Conference on Artificial Intelligence. Feb., 2017, Vol. 31, No. 1.
Available from DOI 10.1609/aaai.v31i1.10597. Available from https://ojs.aaai.
org/index.php/AAAI/article/view/10597.

[10] Lanctot, Marc, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou,
Karl Tuyls, Julien Perolat, David Silver, and Thore Graepel. A Unified
Game-Theoretic Approach to Multiagent Reinforcement Learning. 2017.

[11] Lanctot, Marc, Kevin Waugh, Martin Zinkevich, and Michael Bowling.
Monte Carlo Sampling for Regret Minimization in Extensive Games. In: Y. Ben-
gio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, eds. Ad-
vances in Neural Information Processing Systems. Curran Associates, Inc., 2009.
Available from https://proceedings.neurips.cc/paper_files/paper/2009/
file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf.

[12] Lanctot, Marc, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius
Zambaldi, Satyaki Upadhyay, Julien Perolat, Sriram Srinivasan, Finbarr
Timbers, Karl Tuyls, Shayegan Omidshafiei, Daniel Hennes, Dustin
Morrill, Paul Muller, Timo Ewalds, Ryan Faulkner, Janos Kramar,

42

http://dx.doi.org/10.2307/41316027
http://dx.doi.org/10.3390/sym13050799
http://dx.doi.org/10.1109/TCIAIG.2012.2200894
https://api.semanticscholar.org/CorpusID:106854475
https://api.semanticscholar.org/CorpusID:106854475
https://graphviz.org/documentation/EGKNW03.pdf
http://dx.doi.org/10.1609/aaai.v31i1.10597
https://ojs.aaai.org/index.php/AAAI/article/view/10597
https://ojs.aaai.org/index.php/AAAI/article/view/10597
https://proceedings.neurips.cc/paper_files/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf

. .
Bart De Vylder, Brennan Saeta, James Bradbury, David Ding, Sebastian
Borgeaud, Matthew Lai, Julian Schrittwieser, Thomas Anthony, Edward
Hughes, Ivo Danihelka, and Jonah Ryan-Davis. OpenSpiel: A Framework for
Reinforcement Learning in Games. CoRR. 2019, Vol. abs/1908.09453. Available
from http://arxiv.org/abs/1908.09453.

[13] Leslie, David, Steven Perkins, and Zibo Xu. Best-response Dynamics in
Zero-sum Stochastic Games. Journal of Economic Theory. 07, 2020, Vol. 189,
pp. 105095. Available from DOI 10.1016/j.jet.2020.105095.

[14] Lisý, Viliam, Vojtěch Kovařík, Marc Lanctot, and Branislav Bošanský. Con-
vergence of Monte Carlo Tree Search in Simultaneous Move Games. 2013.

[15] Nisan, Noam, Michael Schapira, Gregory Valiant, and Aviv Zohar. Best Re-
sponse Mechanisms. In: ICS-11: Proceedings of the Conference on Innovations in
Computer Science 2011. ICS-11: Proceedings of the Conference on Innovations
in Computer Science 2011 ed. Tsinghua University Press, 2011. Available from
https://www.microsoft.com/en-us/research/publication/best-response-
mechanisms/. Presented at INFORMS ’07.

[16] Osborne, Martin J.. An introduction to game theory. New York: Oxford Univer-
sity Press, c2004. ISBN 0195128958.

[17] Perolat, Julien, Bart De Vylder, Daniel Hennes, Eugene Tarassov,
Florian Strub, Vincent de Boer, Paul Muller, Jerome T. Connor, Neil
Burch, Thomas Anthony, Stephen McAleer, Romuald Elie, Sarah
H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina
Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen, Tom Eccles,
Mark Rowland, Marc Lanctot, Jean-Baptiste Lespiau, Bilal Piot,
Shayegan Omidshafiei, Edward Lockhart, Laurent Sifre, Nathalie
Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis
Hassabis, and Karl Tuyls. Mastering the game of Stratego with model-free
multiagent reinforcement learning. Science. American Association for the
Advancement of Science (AAAS), dec, 2022, Vol. 378, No. 6623, pp. 990–996.
ISSN 1095-9203. Available from DOI 10.1126/science.add4679. Available from
http://dx.doi.org/10.1126/science.add4679.

[18] Reeves, Daniel, and Michael P. Wellman. Computing Best-Response Strategies
in Infinite Games of Incomplete Information. 2012.

[19] Renault, Jérôme. A tutorial on Zero-sum Stochastic Games. 2019.
[20] Schmid, Martin, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf

Kadlec, and Michael Bowling. Variance Reduction in Monte Carlo
Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games
using Baselines. 2018.

[21] SHOHAM, Yoav, and Kevin LEYTON-BROWN. Multiagent systems: algorith-
mic, game-theoretic, and logical foundations. Cambridge: Cambridge University
Press, 2009. ISBN 978-0-521-89943-7.

[22] Wang, Zifan, Yi Shen, Michael M. Zavlanos, and Karl H. Johansson. Conver-
gence Analysis of the Best Response Algorithm for Time-Varying Games. 2023.

[23] Zhang, Li, Wei Wang, Shijian Li, and Gang Pan. Monte Carlo Neural Fictitious
Self-Play: Approach to Approximate Nash equilibrium of Imperfect-Information
Games. 2019.

43

http://arxiv.org/abs/1908.09453
http://dx.doi.org/10.1016/j.jet.2020.105095
https://www.microsoft.com/en-us/research/publication/best-response-mechanisms/
https://www.microsoft.com/en-us/research/publication/best-response-mechanisms/
http://dx.doi.org/10.1126/science.add4679
http://dx.doi.org/10.1126/science.add4679

References .
[24] Zinkevich, Martin, Michael Johanson, Michael Bowling, and Carmelo Pic-

cione. Regret Minimization in Games with Incomplete Information. In: J. Platt,
D. Koller, Y. Singer, and S. Roweis, eds. Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2007. Available from https://
proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd1
94a4b1e6992063e944-Paper.pdf.

44

https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

Appendix A
Domain configurations for experiments

This appendix expands on the game configuration abbreviation used in experiments.
List of abbreviations used in the Table A.1:

. n-p = 𝑛𝑢𝑚_𝑝𝑢𝑟𝑠𝑢𝑒𝑟𝑠. a-c-w = 𝑎𝑔𝑒𝑛𝑡_𝑐𝑎𝑛_𝑤𝑎𝑖𝑡. m-g-l = 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ

Game configuration width height n-p a-c-w m-g-l

W2_H2_P1_C0_L8 2 2 1 false 8
W2_H2_P1_C1_L8 2 2 1 true 8
W3_H3_P2_C0_L6 3 3 2 false 6
W3_H3_P2_C0_L8 3 3 2 false 8
W3_H3_P2_C1_L6 3 3 -2 true 6
W3_H3_P2_C1_L8 3 3 2 true 8
W3_H4_P2_C0_L8 3 4 2 false 8
W3_H4_P2_C0_L10 3 4 2 false 10
W3_H4_P2_C1_L8 3 4 2 true 8
W4_H3_P2_C0_L10 4 3 2 false 10
W4_H4_P2_C0_L10 4 4 2 false 10

Table A.1. Configuration of Pursuit Evasion games used in experiments.

List of abbreviations used in the Table A.2:

. m-g-l = 𝑚𝑎𝑥_𝑔𝑎𝑚𝑒_𝑙𝑒𝑛𝑔𝑡ℎ. d-i-p = 𝑑𝑒𝑓𝑒𝑛𝑑𝑒𝑟_𝑖𝑛𝑖𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Game configuration width height m-g-l d-i-p

W1_H2_L6_00 1 2 6 00
W1_H3_L6_01_02 1 3 6 01_02
W2_H2_L6_00_10 2 2 6 00_10
W2_H3_L6_01_11 2 3 6 01_11
W2_H3_L8_01_11 2 3 8 01_11
W3_H3_L8_01_11_21 3 3 8 01_11_21
W3_H3_L8_01_20_22 3 3 8 01_20_22

Table A.2. Configuration of Search Game games used in experiments.

45

A Domain configurations for experiments .

Figure A.1. Search Game games’ initial states used in experiments.

Game configuration graph attack-length max-game-length

G1_A2_L8 1 2 8
G1_A3_L10 1 3 10
G2_A2_L8 2 2 8
G2_A3_L10 2 3 10
G3_A2_L8 3 2 8
G3_A3_L10 3 3 10
G4_A3_L8 4 3 8
G4_A4_L10 4 4 10
G5_A3_L8 5 3 8
G5_A4_L10 5 4 10
G6_A4_L10 6 4 10
G6_A5_L12 6 5 12

Table A.3. Configuration of Patrolling Game games used in experiments.

46

. .

Figure A.2. List of Patrolling Game graphs used in experiments with assigned numbers
from 1 to 6.

47

Appendix B
Code structure in OpenSpiel

Figure B.3 shows the newly added files in the 𝑜𝑝𝑒𝑛_𝑠𝑝𝑖𝑒𝑙-𝑚𝑎𝑠𝑡𝑒𝑟 folder. The folder
𝑏𝑜𝑢𝑛𝑑_𝑔𝑎𝑚𝑒𝑠_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠_𝑑𝑎𝑡𝑎 was included in 𝑜𝑝𝑒𝑛_𝑠𝑝𝑖𝑒𝑙-𝑚𝑎𝑠𝑡𝑒𝑟 because it con-
tains code for generating the experimental data that is dependent on the OpenSpiel.
The folders 𝑝𝑎𝑡𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑔𝑎𝑚𝑒, 𝑝𝑢𝑟𝑠𝑢𝑖𝑡_𝑒𝑣𝑎𝑠𝑖𝑜𝑛, and 𝑠𝑒𝑎𝑟𝑐ℎ_𝑔𝑎𝑚𝑒 contain the imple-
mentations of the games. The file 𝑣𝑎𝑙𝑢𝑒_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑖𝑜𝑢𝑠_𝑎𝑠_𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙.𝑝𝑦
contains the variation of value iteration for simultaneous games that takes a sequential
game as input. A detailed structure of the 𝑏𝑜𝑢𝑛𝑑_𝑔𝑎𝑚𝑒𝑠_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠_𝑑𝑎𝑡𝑎 folder
can be seen in Figure B.4.

Figure B.3. Source code directory tree

The 𝑏𝑜𝑢𝑛𝑑_𝑔𝑎𝑚𝑒𝑠_𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠_𝑑𝑎𝑡𝑎 folder contains one subdirectory for
each game. Each subdirectory contains similar files and folders except for the

48

. .
𝑝𝑎𝑡𝑟𝑜𝑙𝑙𝑖𝑛𝑔_𝑔𝑎𝑚𝑒 folder, which has in 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 folder folder 𝑔𝑟𝑎𝑝ℎ𝑠, that contains
the definitions of used graphs. Folders 𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 contain text files with state value
estimations for different variants of games. Folders 𝑖𝑠𝑚𝑐𝑡𝑠_𝑜𝑢𝑡𝑝𝑢𝑡 contain text files
with results with IS-MCTS as a used algorithm; this folder does not exist for Search
Game. Folders 𝑚𝑐𝑐𝑓𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 contain text files with results using MCCFR as a
used algorithm. Files 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑖𝑛𝑝𝑢𝑡.𝑝𝑦 generate files with state value estimations in
𝑖𝑛𝑝𝑢𝑡_𝑑𝑎𝑡𝑎 folder. Files 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑖𝑠𝑚𝑐𝑡𝑠_𝑜𝑢𝑡𝑝𝑢𝑡.𝑝𝑦 and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑚𝑐𝑐𝑓𝑟_𝑜𝑢𝑡𝑝𝑢𝑡.𝑝𝑦
generates files with results in folders 𝑖𝑠𝑚𝑐𝑡𝑠_𝑜𝑢𝑡𝑝𝑢𝑡 and 𝑚𝑐𝑐𝑓𝑟_𝑜𝑢𝑡𝑝𝑢𝑡 using IS-MCTS
and MCCFR respectively.

Figure B.4. Experiments data directory tree

49

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	General Game Theory
	Types of games
	Strategies

	Used Algorithms
	Linear Programming for Normal-Form Games
	Value Iteration
	Best Response
	Exploitability
	IS-MCTS
	MCCFR

	Games
	OpenSpiel
	Pursuit Evasion
	Search Game
	Patrolling Game

	Games Implementation
	Pursuit Evasion Implementation
	Search Game Implementation
	Patrolling Game Implementation

	Experimental Evaluation
	Approach Summary
	Pursuit Evasion
	Search Game
	Patrolling Game

	Conclusion
	References
	Domain configurations for experiments
	Code structure in OpenSpiel

