
Bachelor Project

Czech
Technical
University
in Prague

Faculty of Electical Engineering
Department of Control Engineering

Open Hardware Motion Controller for Model-Based
Rapid Prototyping with NuttX RTOS

Štěpán Pressl

Supervisor: Ing. Pavel Píša, Ph.D.
Field of study: Cybernetics and Robotics
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507291 Personal ID number: Pressl Štěpán Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Open Hardware Motion Controller for Model-Based Rapid Prototyping with NuttX RTOS

Bachelor’s thesis title in Czech:

Otevřená jednotka pro řízení motorů využitelná pro modelový návrh pod systémem NuttX

Guidelines:

Many motion controllers exist, but this project targets the design of open and reasonably priced solutions suitable for
high-level model-based control designs even with open tools like pysimCoder. Such a target requires double precision
floating point support, and POSIX-based RTOS (i.e., NuttX) is also a significant simplification for porting.
1) Familiarize with referenced projects and prepare a short overview of available options
2) Design hardware platform - expected is the use of ARM Cortex-M7 based micro-controller
3) Adapt NuttX BSP for the developed platform
4) Prepare demonstration with pysimCoder or PXMC PMSM motor control
5) Document results and prepare requests to submit changes to upstream projects

Bibliography / sources:

[1] Patterson, D. A., and J. L.: Computer Organization and Design RISC-V Edition, The Hardware Software Interface 2nd
ed. Morgan Kaufman, 2021, ISBN: 9780128203316
[2] NuttX, GitHub https://github.com/apache/nuttx
[3] NuttX, Documentation https://nuttx.apache.org/docs/latest/
[4] Lenc, M., Píša, P., Bucher, R.: pysimCoder – Open-Source Rapid Control
Prototyping for GNU/Linux and NuttX, In Process Control 2023, Slovakia
[5] SAM E70/S70/V70/V71 - 32-bit Arm Cortex-M7 MCUs with FPU, Audio and Graphics Interfaces, High-Speed USB,
Ethernet, and Advanced Analog, Micochip, 2023, available online

Name and workplace of bachelor’s thesis supervisor:

Ing. Pavel Píša, Ph.D. Department of Control Engineering FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 05.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Pavel Píša, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I deeply thank my family for their sup-
port during my studies. Regarding the
bachelor thesis, I would like to thank Ing.
Pavel Píša, PhD. for introducing me to
new topics in the motor and control theory
and deepening the knowledge in embed-
ded programming. I would also like to
thank Ing. Petr Porazil for the help dur-
ing the PCB design, like the components
selection, Bc. Michal Lenc for the coop-
eration and advice regarding NuttX and
Ing. Květoslav Belda, PhD. who paved
the way for the creation of this controller
alongside the supervisor.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

In Nýrsko and Prague, May 2024.

..

v

Abstract
There are many motion controllers on the
market, some of them open like ODrive or
VESC controllers. However, their primary
task is to only control a motor. Many con-
trollers lack the feature of running model-
based control applications, created, for ex-
ample, by the known MATLAB/Simulink
suite.

This thesis proposes a general prototyp-
ing platform, useful in research or early
stages of development, on which high-level
model-based applications could be run.
As a tool for model-based prototyping,
the open-source pysimCoder suite is used,
alongside NuttX RTOS.

We want this platform to be extensi-
ble and modular, meaning making this
open source and hardware is the best
choice. The controller features a pow-
erful Microchip’s ATSAMV71Q21B mi-
crocontroller with rich connectivity and a
powerful power stage board for motors.

Keywords: ATSAMV71Q21B,
pysimCoder, NuttX RTOS, open
hardware and software, KiCad, Ethernet
AD converter, pulse width modulation,
permanent magnet synchronous motor

Supervisor: Ing. Pavel Píša, Ph.D.

Abstrakt
Na trhu je mnoho řídicích jednotek pro
motory, přičemž některé z nich jsou ote-
vřené, jako ODrive či kontroléry z pro-
jektu VESC. Sice jejich primární účel je
řídit motory, ale tyto platformy nejsou sta-
věny pro modelový návrh pomocí aplikací
vytvořené např. nástrojem MATLAB/Si-
mulink.

Tato bakalářská práce příchází s řídicí
jednotkou vhodnou pro výzkum či prvotní
fáze vývoje, schopna spouštět aplikace vy-
tvořené pomocí modelového návrhu. Ná-
stroj pro tvorbu těchto aplikací je ote-
vřený balíček pysimCoder běžící nad sys-
témem reálného času NuttX.

Tento kontrolér by měl být otevřený
jak z hlediska hardwaru, tak softwaru,
protože je to nejlepší z hlediska udržo-
vatelnosti a modulárnosti. Tento kont-
rolér obsahuje výkonný mikrokontrolér
ATSAMV71Q21B od firmy Microchip
s mnoha komunikačními perifériemi a vý-
konnovou deskou pro řízení motorů.

Klíčová slova: ATSAMV71Q21B,
pysimCoder, systém reálného času
NuttX, otevřený hardware a software,
KiCad, Ethernet, AD převodník, pulzně
šířková modulace, PMS motor

Překlad názvu: Otevřená jednotka pro
řízení motorů využitelná pro modelový
návrh pod systémem NuttX

vi

Contents
1 Introduction 1
2 Realtime NuttX OS 3
2.1 Introduction 3
2.2 Source Code Structure 4

2.2.1 arch . 4
2.2.2 boards . 4
2.2.3 drivers 4
2.2.4 Other Directories 4

2.3 Configuration and Compilation . . 4
3 Control Theory and Related
Software 7
3.1 Basic Description of Systems 7
3.2 Controllers . 8

3.2.1 PID Controller 8
3.3 Model-based Design Approach . . . 9

3.3.1 MATLAB/Simulink 10
3.3.2 pysimCoder 10

4 Motors and Actuators 17
4.1 DC Brushed Motor 17
4.2 BLDC and PMS Motor 17

4.2.1 Construction of a Motor 18
4.2.2 Three Phase DC Motor Model 18
4.2.3 Control Methods 21

4.3 Other Types of Actuators 23
4.3.1 Stepper Motors 23
4.3.2 Piezoactuators 24

4.4 Position estimation 24
4.4.1 Optical encoder 24
4.4.2 Hall Sensors 25

5 Introduction to Used Hardware
and Interfaces 27
5.1 PCB Design 27

5.1.1 PCB Copper Layers 27
5.1.2 Track and Via Ampacity 28
5.1.3 Electronic Design Automation

Software . 28
5.2 Communication Interfaces 28

5.2.1 Serial Communication 29
5.2.2 Ethernet 29

5.3 Motion Controller Analysis 31
5.3.1 The Used Microcontroller . . . 32
5.3.2 The Used Power Switch 33

6 Hardware Implementation 35
6.1 MCU Board 35

6.1.1 Interconnecting with
Expanbility 35

6.1.2 Microcontroller’s Pinout 35
6.1.3 Power Components 36
6.1.4 CAN . 37
6.1.5 RS232/RS485 37
6.1.6 Ethernet 38
6.1.7 USB . 38
6.1.8 I2C . 39
6.1.9 SPI . 40
6.1.10 Feedback from the Motors . 40
6.1.11 Analog Signal Routing and

Grounding . 41
6.1.12 Interconnection Pinout 41
6.1.13 PCB Realisation 42

6.2 Power Stage Board 42
6.2.1 Power Components 43
6.2.2 Current Sensing and Fault

Generation 44
6.2.3 Used Analog Components . . . 45
6.2.4 PCB realisation 45

6.3 Design flaws and Needed Fixes . 46
7 NuttX Adaptation 49
7.1 NuttX Bringup 49

7.1.1 Custom BSP 50
7.2 Project Configuration 51

7.2.1 Ethernet and IP Configuration 52
7.2.2 PWM and ADC Configuration 53
7.2.3 Initialization and Registration

of Peripherals 54
7.2.4 Tickless Mode 54

7.3 Flashing . 55
7.4 Contributions to Mainline 55

7.4.1 Quadrature Decoder Driver . 56
7.4.2 PWM Driver Changes 57

8 Applications 59
8.1 PMSM Control with pysimCoder 59

8.1.1 Electrical Angle Calibration . 60
8.1.2 Open Loop Current

Measurement 61
8.1.3 Simple Feedback Control 61
8.1.4 Current Control 62

8.2 Piezoelectric Actuator Control
with pysimCoder 63

vii

9 Conclusion and Summary 71
Bibliography 73

viii

Figures
2.1 NuttX build configuration using

make . 5

3.1 The simplest block diagram of
feedback controlled system H(s) . . . 8

3.2 The GUI of pysimCoder - block
menu and the block editor. 11

3.3 The RCPblk’s constructor 12
3.4 The definition of python_block

datatype . 13
3.5 Integrator C implementation in

pysimCoder. 14
3.6 The build configuration of the

target binary 15

4.1 H-bridge and a DC motor 18
4.2 The driving of a BLDC or a PMS

motor ([31], Figure 1.2) 18
4.3 Schematic view of PMS machines

with (a) surface-mounted poles and
(b) interior poles ([31], Figure 2.1) 19

4.4 Actual and assumed patterns of air
gap flux density distribution
produced by a pair of PM poles ([31],
Figure 2.2) . 20

4.5 A schematic of vector control based
speed controller ([31], Figure 3.6) . 23

4.6 Example of a rotary encoder from
Omron taken from [17] 25

5.1 KiCad’s PCB editor 28
5.2 Example usage of two LTC1484

transceivers (taken from [2]) 30
5.3 Connecting KSZ8081 PHY using

RMII to a MAC device (e.g. a MCU)
(taken from [12]) 31

5.4 Block diagram of IFX007 internal
structure [8], 2.1 33

5.5 IS output current [8], Figure 13 . 34
5.6 HS and LS current sensing

alongside with fault generation . . . 34

6.1 The TPS562207 buck regulator . 37
6.2 RS232 and RS485 communication

interface . 38
6.3 Connection of Ethernet

components . 39

6.4 USB power components. 39
6.5 Routed optical encoder with HEDL

series pinout 40
6.6 Open drain/collector output: the

output is either 3.3 V or GND due to
the pull up to 3.3 V. Push-pull: the
voltage limitation is done by shorting
the output to 3.3 V through diodes.
The shorting current is limited by
series resistors. 41

6.7 Analog signals in an empty space
of power plane. 41

6.8 The interconnection pinout
between the MCU and the power
stage board. 42

6.9 The depiction of the MCU board
and its peripherals 43

6.10 The 24 V to 5 V regulator circuit
on the power board 43

6.11 The inner layers of the power
board (taken from KiCad) 46

6.12 The power board showcase. . . . 47
6.13 The MCU and power stage boards

forming the motion controller. 48

7.1 Ethernet related GPIOs and GPIO
PHY’s IRQ . 50

7.2 The start menu of configuration 51
7.3 Setting a GPNVM1 bit using

STLink and OpenOCD. 55
7.4 Flashing using STLink and

OpenOCD. 56
7.5 Timer/Counter quadrature decoder

logic (Figure 49-17 in [14]) 57

8.1 The testing setup with SaMoCon
and a PMS motor on the right. A
DC motor on the left is supposed to
be used as a brake which was not
used. DC motor’s IRC was used
because of a compatible connector. 60

8.2 The electrical angle estimation
with Halls and an IRC. The graph
shows a well tuned φEst. 61

8.3 PysimCoder diagram for open loop
PMSM control. 62

ix

8.4 Open loop motor control. Left:
ω = 20 rad, Right: ω = 5 rad. The
output of the inverse transformations
(a) is shown for a reference. 63

8.10 The optical setup with a
piezoactuator from PI, GmbH. . . . 63

8.11 Piezoactuator tilt control [19]. . 64
8.12 The used filter to control the

piezoactuator. 64
8.13 The piezoactuator voltage control

pysimCoder diagram. 65
8.5 The diagram for a simple PMSM

control with a PID controller,
alongside with a rise limit and a user
choosable reference (ramp or step) 66

8.6 A periodic step reference between 0
and 4000 IRC pulses (corresponding
to 2 mechanical turns) back and
forth. The PID action is also shown
(multiplied by 1000). 67

8.7 The motor following a ramp with a
speed of 15000 IRC pulses/s. The
PID action is also shown (multiplied
by 1000). 67

8.8 The current waveforms. iq

reference is set to zero, id varies
between 0.5 and 1.5 A on the left and
1 and 4 A on the right. 68

8.9 The dq current control diagram in
pysimCoder. 68

8.14 Measuring the reflected angle. . 69

Tables
5.1 Table of peripherals and

corresponding use cases 32

6.1 Routed peripherals 36

8.1 The measured values for the
repeatability experiment with
piezoactuator. 65

x

Chapter 1
Introduction

This bachelor thesis proposes a modern motion controller capable of driving various kinds
of actuators, mostly commutated DC, BLDC (brushless DC), PMS (permanent magnet
synchronous), stepper motors and other types of actuators. There are many available motion
controllers on the market, both open and closed hardware. Also, a lot of configurable integrated
circuits designed for precise motor control are available.

However, we intend to come up with a general embedded prototyping platform, capable
of running model-based control applications, useful in research and early stages of development.
This implies we need to use a microcontroller with a lot of communication interfaces at our
disposal (like Ethernet, UART, SPI, I2C, CAN) and peripherals useful for motion control,
like PWM and ADC. The general model-based design however comes with some overhead,
thus a powerful core must be used too. The hardware analysis is done in chapter 5 and
the implementation is described in chapter 6. The final product is meant to be open hardware
and open source for the purpose of better maintainability.

In case of a platform upgrade (or the worst scenario, an another chip shortage), we intend
not to write bare-metal applications, as this would make the switch between platforms harder.
The solution is to use the POSIX-compatible NuttX RTOS with unified hardware abstraction
across a wide range of different platforms. The introduction to NuttX’s main features is
mentioned in Chapter 2 and the adaptation to our platform is mentioned in Chapter 7.

In the field of model-based design, MATLAB/Simulink is the first suite that comes to
mind. In this thesis, we plan to use the pysimCoder suite instead, an open tool capable
of generating target-compatible generated C-code. PysimCoder is introduced in Chapter 3
and its applications are described in Chapter 8. The important aspect of pysimCoder is it
supports code generation using the API of NuttX.

This thesis builds upon the Open Rapid Control Prototyping and Real-Time Systems
bachelor’s thesis by Michal Lenc [9], also supervised by Pavel Píša, PhD. Michal Lenc has
done a lot of work in the field of open rapid control prototyping. Namely, the first contribution
was the implementation of low-end peripheral drivers of the used microcontroller in this thesis.
He also added a feature to make the pysimCoder’s internal parameters configurable using the
Silicon Heaven protocol created by Elektroline, a.s. (a Czech company specializing in tram
transportation). The project-related repositories can be found here [6].

To make pysimCoder as convenient as Simulink to use, a lot of work will have to be still
done. During the work on this controller, project teamwork as part of B3MPVTY1 (Práce
v týmu) subject on master’s Cybernetics and Robotics program was running to enhance
the capabilities of pysimCoder.

1

1. Introduction ..
Unfortunately, during the testing of pysimCoder generated code on NuttX, the RTOS

showed serious problems with sampling capabilities above 1 kHz, even with the tickless mode
(described in 7.2.4) activated. Despite this issue, an example of simple PMS motor control is
shown, alongside with current control in the dq axes (d and q denote the direct and quadrature
axes in the rotor’s reference frame). Also, the measurement of a piezoactuator’s deformation
angle is presented, as the applied voltage is tuned with the help of pysimCoder and Silicon
Heaven. Several commits have been accepted by the NuttX mainline to support features used
in our applications.

The purchase of components and PCBs was funded by the PiKRON company and the In-
stitute of Theory of Information and Automation of the Czech Academy of Sciences (ÚTIA,
AV ČR). The feature of fast prototyping may prove useful when experimenting with different
actuators even from the field of experimental mechatronics.

2

Chapter 2
Realtime NuttX OS

This chapter presents the main characteristics of the NuttX real-time operating system, the
supported platforms, and the process of building.

Using higher levels of software abstraction usually comes with a cost in terms of performance
overhead. However, in terms of maintenance and portability, RTOS is a good choice, especially
for our controller which targets to be extensible and adaptive. NuttX also provides a unified
API, can work with filesystems, and features a full IP stack on which network applications
can be built.

2.1 Introduction

NuttX is a real-time operating system (RTOS) with an emphasis on standards compliance
and small footprint. Scalable from 8-bit to 64-bit microcontroller environments, the primary
governing standards in NuttX are POSIX and ANSI standards [27]. NuttX is an open-source
project written in C and released under the Apache 2.0 license first introduced by Gregory
Nutt in 2007. Currently, the project is maintained at GitHub 1.

As previously mentioned, NuttX obeys the POSIX standard which means all the interac-
tion with the microcontroller’s peripherals is done by accessing the peripheral’s registered
/dev files (for example, an AD converter may be registered as /dev/adc0, the CAN peripheral
as /dev/can0, etc. . .). The files are accessed using system calls like open, close, read
or write. As many peripherals do not share many similarities between each other, ioctl
(the ioctl() system call manipulates the underlying device parameters of special files) is
commonly used to interface the peripheral, which can sometimes lead to harder maintainability.
In our case, these system calls do not behave the same way the system calls behave on personal
computers (our microcontroller does not switch between the privileged and the user mode).
However, this makes NuttX POSIX compatible.

NuttX offers a full standard C library, including sockets for network programming over
UDP/IP or TCP/IP. It is also possible to work with filesystems and register hardware
memories (like EEPROMs, SPI Flash memories, etc. . .) as filesystems which can be mounted
into the filesystem later on.

1https://github.com/apache/nuttx

3

https://github.com/apache/nuttx

2. Realtime NuttX OS
2.2 Source Code Structure

The project’s structure is similar to the Linux kernel’s one. This section mentions a few
directories used in the NuttX project.

2.2.1 arch

This directory contains all architecture-dependant drivers which in the context of NuttX
driver implementation is called the lower half part of the driver. It also contains low-end
functions needed for context saving, stack manipulation, processor initialization, and so on.

The supported platforms span from 8bit AVR microcontrollers, to Mips, RISC-V used
in ESP32 microcontrollers from Espressif, to last but not least ARM. For the context of this
thesis, the ARM architecture is the most important because of the used microcontroller.

There are many supported ARM platforms in NuttX, like STMicroelectronic STM32 series,
NXP lpc or imx series or Microchip SAM series. Taking a look at arch/arm/src/stm33h7
for example, nearly all peripherals have a driver implemented. This proves NuttX’s good
platform support.

2.2.2 boards

This directory is architecture dependant too, but it provides BSP (board support package)
directories for all kinds of architectures and all sorts of evaluation kits and modules. It contains
functions from which the NuttX shell is started, booting procedures for each microcontroller,
initialization of peripherals and its registration as /dev files. Each BSP contains various
defconfig files needed for NuttX build configuration.

2.2.3 drivers

In this directory the so-called upper-half implementation of drivers can be found. NuttX
supports a lot of peripheral drivers, like PWM, AD converter I2C, SPI, serial line or USB.
MTD (memory technology device) drivers are also present, allowing the registration of block
devices based on EEPROMs, SPI flash memories and so on.

2.2.4 Other Directories

Amongst other directories, include and net is worth mentioning. The include directory
contains all header files related to drivers, standard library, etc. The net directory contains
the implementations of network stacks.

2.3 Configuration and Compilation

The main principle of NuttX is the right to build the project on any platform (Windows,
Linux, BSD, MacOS) and on any architecture that has the right build tools. NuttX project
features a lot of custom scripts and makefiles for the project building. NuttX can also be
built using CMake.

4

................................. 2.3. Configuration and Compilation

The figure 2.1 shows the commands needed for the project configuration. The options for
board:config can be obtained by running ./tools/configure.h -L and they correspond
to what has been mentioned previously as BSP defconfigs. NuttX can also be compiled with
various examples and helper apps, which are located in the nuttx-apps GitHub repository.

$ git clone https://github.com/apache/nuttx.git nuttx
$ git clone https://github.com/apache/nuttx-apps.git apps
$ cd nuttx
$./tools/configure.sh board:config

Figure 2.1: NuttX build configuration using make

Afterwards, the command
$ make menuconfig

can be run to turn on or turn off various features by selecting CONFIG_* options. Running
make compiles and links into .elf and raw binary executables. The make export command
creates an archive which contains all the compiled parts of NuttX with exported header files.
This may be useful when linking with other projects, like pysimCoder generated code.

5

6

Chapter 3
Control Theory and Related Software

Control theory is important for studying the behaviour of various physical, electrical, eco-
nomical and biological systems. The first step of describing these systems is to develop
a mathematical description, called the model, of the process to be controlled [7]. With the
help of the model we are able to design controllers capable of driving these systems to desired
states. This chapter describes simple theory behind control and introduces reader to software
associated with control and regulation.

3.1 Basic Description of Systems

The term model, as it used and understood by control engineers, means a set of differential
equations that describe the dynamic behaviour of the process. There are three domains within
which to study dynamic response: the Laplace transform (s-plane), the frequency response,
and the state space (analysis using the state-variable description) [7].

With the help of Laplace transform, the differential equations in the time domain can
be transformed into a complex function in the s-plane. Let’s denote U(s) as the input and
Y (s) as the output functions in the complex Laplace domain. Then an impulse response
(or transfer function) is defined as

H(s) = Y (s)
U(s) . (3.1)

H(s) is a complex function used to determine the behaviour or stability of a given system.
Generally, when working with the system described by the system of nonlinear equations,

the first step involves linearizing the differential equations and obtaining system of linear
differential equations. This system then describes a linear time-invariant (LTI) system whose
system of linear differential equations can be compactly written in the form

ẋ = Ax + Bu, (3.2)
y = Cx + Du, (3.3)

where x is the vector of state variables, u is the input vector and y is the vector of system’s
output. When given matrices A, B, C and D, the impulse response is calculated as follows:

H(s) = C(sI −A)−1B + D = C · adj(sI −A) ·B
det(sI −A) + D, (3.4)

where I is an eye matrix of the same dimensions as A, adj denotes the adjugate matrix and
det denotes the determinant.

7

3. Control Theory and Related Software
3.2 Controllers

Given impulse response H(s), system’s behaviour can be modified by a controller. Controller
is a system designed to maintain system’s output fixed regardless of outer disturbances. The
system is controlled by the difference between the given reference U(s) and the output Y (s)
(feedback), also called the error E(s). If we denote the controller’s step response G(s), then
the impulse response of the simplest feedback controlled system can be calculated as follows:

Y (s)
U(s) = G(s)H(s)

1 + G(s)H(s) . (3.5)

The controlled system schematic is shown in the figure 3.1.

G(s) H(s)

−

U(s) Y (s)

Figure 3.1: The simplest block diagram of feedback controlled system H(s)

3.2.1 PID Controller

Many types of controllers exist, however let’s mention the simplest controller that is being
frequently used in control applications. PID controller is a controller comprising of three
parts: P being the proportional part, I being the integral part and D being the derivative
part. The overall transfer function in the Laplace form of this controller can be written as

H(s) = kP + kI

s
+ kDs. (3.6)

Let’s discuss each term’s behaviour and impact on the control of the system. Let’s denote
e(t) as the input signal of the regulator and u(t) as the output of the regulator in the time
domain.

Proportional Control

This result of the proportional feedback is

u(t) = kP e(t), (3.7)

where kP is the proportional constant (gain). It is the the simplest controller, however with
most systems this controller is not capable of achieving zero steady-state error. The error can
be minimalised by setting higher kP which can however result in big overshoots or instability.

8

................................. 3.3. Model-based Design Approach

Integral Control

Integral control can be expressed in the form

u(t) = kI

∫ t

t0
e(τ) dτ, (3.8)

where kI is called the integral gain. The goal of integral control is to minimize the steady-state
tracking error and the steady-state output to disturbances. It can be seen the output control
signal at each time is a summation of all past values of the input signal. Setting kI too big
can lead to instability of the whole system.

When implementing integral control, care must be taken when working with systems whose
output can be saturated. It can happen the integral control will continue growing (windup)
and then signal overshooting or poor transient response can happen. The solution to this
problem is implementing anti-windup integral control which turns off the integral controller
when saturation is reached.

It must noted that in discrete controllers the integral control is not used, but rather
the summated control is used.

Derivative Control

The derivative part of the PID controller can be expressed in the form

u(t) = kD
de(t)

dt
, (3.9)

where kD is the derivate gain. This action is used to improve closed-loop stability and speeding
up the system’s response. Derivative control is almost never used by itself, it is mostly used
in conjuction with P or PI controller. The derivative controller gives sharp response to quick
responses, hence it can amplify parasitic noise signals, worsening the overall control.

3.3 Model-based Design Approach

Software related to control engineering offers tools to model and simulate complex systems.
Modeling and simulation help with testing, especially during early phases of development
where hardware setup is unavailable. Early identification of the errors reduces the project
time and cost and drastically improves software quality [18] (Section II: Simulink, chapter 5).
With the help of these tools, engineers can devise control algorithms or design controllers
capable of controlling complex dynamic systems.

Most model-based software for control engineering is based on blocks with different behaviour.
Connection of these blocks creates a model and running a simulation means simulating a signal
propagating through these blocks. The solver of this software can then calculate dynamic
system’s states at consecutive time steps during a specified period [18] (Section II: Simulink,
chapter 8).

Due to the block design with signal flows, the whole block model can be regenerated into
a C, C++ or any HDL (hardware description language) code for specific hardware which
realises the designed control algorithms. This makes the shift from the computer aided design
of a controller to a specific hardware much easier.

9

3. Control Theory and Related Software
3.3.1 MATLAB/Simulink

One of the most known tools for computer systems modelling and simulation is the Simulink
graphical environment based on MATLAB scripting language. It also allows automatic
generation of C code if hardware dependant peripheral drivers are implemented.

The Simulink suite offers many modelling blocks for various branches of engineering, such as
robotics or power electronics. The Simulink’s solver, which can be either fixed-step or variable-
step implements various numerical methods which calculate the system’s next states using
differential equation or numerical integration methods. The examples of solvers are ([18]
Section II: Simulink, chapter 8):. Fixed-step solvers:. ode1 (Euler method),. ode2 (Heun method),. ode4 (Runge-Kutta),. ode8 (Dormand-Prince RK8)..Variable-step solvers:. ode45 (Dormand-Prince) - Runge-Kutta (4,5),. ode23 (Bogacki-Shampine).

The description of these solvers is beyond the scope of this thesis and are only mentioned for
clarity.

However, Simulink is expensive and closed. For the purposes of open rapid prototyping, we
will be using the pysimCoder open suite capable of generating C compatible code.

3.3.2 pysimCoder

This section introduces a suite of Python scripts and GUI for Simulink like model-based
design. This piece of software is the suite we will be using throughout this thesis as an
alternative to Simulink.

Introduction

PysimCoder is an open-source suite created by Professor Roberto Bucher from University
of Applied Sciences and Arts of Southern Switzerland (SUPSI). The main task of this piece
of software is to transform the drawn block diagram into a generated C-code. The GUI for
the block editor is written in Python using the PyQT graphical library. The GitHub repository
of this tool can be found at [4].

The pysimCoder GUI is shown on figure 3.2. The GUI is divided into two windows, the
one being the library of all available blocks and the second window being the block editor
where the control application can be drawn.

10

................................. 3.3. Model-based Design Approach

Figure 3.2: The GUI of pysimCoder - block menu and the block editor.

Code Generation

Each block is described by a JSON .xblk file, defining the overall behaviour of the block
- the number of inputs, the number of outputs, the number of internal parameters, the
library the block belongs to, etc. The .xblk files are located (relative to repository’s root)
in resources/blocks/blocks/lib, where lib is linear, input, output, etc. The directory
resources/blocks/rcpBlk/lib contains the wrapping Python code which returns a new
object for each block. Each returned block is an object of RCPblk class.

The RCPblk is a general wrapping class for each block and is located here 1. The code snippet
in 3.3 shows the constructor of this object, showing all parameters needed for the description
of the block behaviour.

We can see the *args variable contains all the values needed for the general block, namely. fcn: the C function name it should look for,. pin: the array of input signals,. pout: the array of output signals,. realPar: block’s internal parameters of the double type,. intPar: block’s internal parameters of the int type.

The Python scripts then iterate over all the blocks in the block diagram, drawn in GUI,
and determine the data passing between the blocks. After this step, the C code must be
generated and substitutions for C functions must be made.

The base struct for the C block functionality in pysimCoder is determined by the python_block
datatype. The struct’s definition is given by code shown in 3.4 and can be found here 2.

1toolbox/supsisim/supsisim/RCPblk.py
2CodeGen/Common/include/pyblock.h

11

3. Control Theory and Related Software
class RCPblk:
def __init__(self, *args):

if len(args) == 8:
(fcn,pin,pout,nx,uy,realPar,intPar,str) = args

elif len(args) == 7:
(fcn,pin,pout,nx,uy,realPar,intPar) = args
str=’’

else:
raise ValueError("Needs 6 or 7 arguments;\

received %i." % len(args))

self.name = None
self.fcn = fcn
self.pin = array(pin)
self.pout = array(pout)
self.dimPin = ones(self.pin.shape)
self.dimPout = ones(self.pout.shape)
self.nx = array(nx)
self.uy = array(uy)
self.realPar = array(realPar)
self.realParNames = []
self.intPar = array(intPar)
self.intParNames = []
self.str = str
self.sysPath = ’’
self.no_fcn_call = False

Figure 3.3: The RCPblk’s constructor

We can observe the inputs and outputs variables (u and y) are of the general void**
datatype. This means the block takes nin inputs, each input being an array which can,
in general, be used as a method for passing serialized data. Namely, pysimCoder uses
the double datatype for the outputs, inputs and non-integer internal parameters, which
may become ineffective on architectures with no double-precision float support. However,
the generated code is in the end more general and high precision calculations are guaranteed.

From the control theory perspective, each system’s behaviour in discrete time can be
described by the set of two equations:

xk+1 = f(xk, uk, k), (3.10)
yk = g(xk, uk, k), (3.11)

where k is the current time, xk represents the vector of the system’s current state and
uk is the input vector. The pysimCoder block method must essentially perform these two
calculations. It is better to compute 3.11 first and 3.10 afterwards because the function would
have to save xk first in order to compute yk in the opposite way.

Each block must have a method which performs the computation described by the equations
3.11, 3.10. In the figure 3.5 an example of the integrator’s implementation is presented.

12

................................. 3.3. Model-based Design Approach

typedef struct {
int nin; /* Number of inputs */
int nout; /* Number of outputs */
int * dimIn; /* Port signal dimension */
int * dimOut; /* Port signal dimension */
int *nx; /* Cont. and Discr states */
void **u; /* inputs */
void **y; /* outputs */
double *realPar; /* Real parameters */
int realParNum; /* Number of real parameters */
int *intPar; /* Int parameters */
int intParNum; /* Number of int parameters */
char * str; /* String */
void * ptrPar; /* Generic pointer */
char **realParNames; /* Names of real parameters */
char **intParNames; /* Names of integer parameter */

} python_block;

Figure 3.4: The definition of python_block datatype

We can observe an int Flag parameter is also passed which determines the block’s method
functionality. The flag can be either. CG_INIT: initialize the block’s internal states,. CG_STUPD: perform the state update,. CG_OUT: compute the output of the block,. CG_END: perform the terminating tasks.

Using with NuttX

To interact with the outer world, pysimCoder must implement blocks which interact various
sensors, peripherals, etc. In motor control applications, AD converter, encoder counter
and PWM peripherals are important.

PysimCoder supports platform dependant I/O and communication blocks for various
platforms, such as STM32H7 series, SAMD21 series or Arduino. However, implementing
a peripheral driver for each platform can become time consuming. Hence, pysimCoder can
generate portable C code for NuttX RTOS which should make the switch between different
platforms smoother, supposing the required /dev devices are registered on each platform.

The control application is then realized by periodic execution of blocks’ output and update
functions (3.11, 3.10). However, the system must be sampled at equidistant intervals peri-
odically. This can be done by using POSIX time handling functions, like clock_nanosleep
in a high priority task.

The configuration of the target binary can be done by clicking the icon shown in figure
3.6. A configuration window then pops up, allowing us to choose the default Makefile for

13

3. Control Theory and Related Software
void integral(int Flag, python_block *block)
{

double * realPar = block->realPar;
double *y;

double h = realPar[0];
double *U = block->u[0];

switch(Flag){
case CG_OUT:

y = (double *) block->y[0];
y[0] = realPar[1];
break;

case CG_STUPD:
/* Runga Kutta */
realPar[1] = realPar[1] + U[0]*h;
break;

case CG_INIT:
case CG_END:

break;
default:

break;
}

}

Figure 3.5: Integrator C implementation in pysimCoder.

our target platform (in our case, nuttx.tmf is used). Also the time for periodic sampling
must be configured in the Sampling Time field.

Remote Introspection of the Model’s State

Thanks to Michal Lenc, the pysimCoder suite supports the introspection of blocks during
runtime using the Silicon Heaven protocol developed by Elektroline, a Czech company. Silicon
Heaven’s features and its integration into pysimCoder are discussed in Michal Lenc’s bachelor’s
thesis [9].

Runtime monitoring of model’s parameters makes the usage of pysimCoder much more
convenient and allows the user to experiment with constants (for example a PID controller’s
ones) during runtime.

The infrastructure requires running a broker as a server. User applications as pysimCoder
control application or GUI designed to interact with the broker are then registered to the broker
as clients. Each client can have different rights and settings based on a broker’s configuration
[9].

14

................................. 3.3. Model-based Design Approach

Figure 3.6: The build configuration of the target binary

15

16

Chapter 4
Motors and Actuators

This chapter introduces actuators which can be controlled by the proposed controller. AC mo-
tors will not be discussed as the controller was not designed to control these types of actuators.

4.1 DC Brushed Motor

The DC brushed motor is the simplest motor to control. The motor consists of a stator,
rotor and a commutator. The stator is either a magnet or an electromagnet, responsible
for magnetic field. The rotor is a series of wound coils in grooves, the ends of the coils are
connected to the commutator pads.

The commutator is used to control which coils are conneted to the power source. This
way, an alternating magnetic field can be created, perpendicular to the field of the stator and
thus causing the rotor to rotate. Even though the magnetic field changes, the current flowing
to the rotor has a DC character.

The current to the commutator flows through brushes, which tend to wear out. When the
brushes wear our, sparking can happen, resulting in unwanted electromagnetic interference.
The brushes contribute to friction, lowering the motor’s efficiency and reliability.

Despite the cons, it is by far the easiest motor to control, requiring only a voltage source
to rotate. To control the direction of rotation and the speed itself, H-bridge can be used,
shown in figure 4.1. If the transistors A and D are switched, current flows in one direction, if
transistors B and C are switched, current flows in the opposite direction. Switching the high
transistors with a PWM signal controls the motor’s speed, as the PWM duty corresponds
to the average current in the coils. The H-bridge can also be made out of two half-bridge
switches.

4.2 BLDC and PMS Motor

BLDC stands for brushless direct current and PMSM stands for permanent magnet syn-
chronous motor. This section presents similarities and differences between these two machines,
the mathematical description of the machine reference frames and the control methods. Con-
struction wise, these motors do not differ too much, but they differ in the way of how these
machines are controlled.

17

4. Motors and Actuators

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. 8.0.1

Rev:Size: A4
Id: 1/1

Title:

File:
Sheet: /

GND

+
1

-
2

D

G

S

VDD

D

G

S

D

G

S
D

G

S

D

BA

C

Figure 4.1: H-bridge and a DC motor

4.2.1 Construction of a Motor

The stators of both machines are made out of coils, providing a magnetic field, and the
rotor contains permanent magnets. There are four types of permanent magnet materials,
i.e., neodymium iron boron (NdFeB), SmCo, ferrite, and alnico. NdFeB magnets were
discovered in 1983 and have linear demagnetization characteristics with very high remanence
and coercivity. As a result, the energy product of the material is highest among all hard
magnetic materials. ([31], 1.3.2). NdFeB permanent magnets are the most used ones.
The commutation of the current flowing through the stator coils is done by the inverter. Also,
both types of motor contain three phases used for the commutation. Compared to brushed
DC motors, higher efficiency and reliability is achieved with the absence of the commutator.

Circuit wise, three half-bridge switches are used for the current commutation, connecting
the winding either to VCC or GND. The circuit with a BLDC or a PMS motor and halfbridge
switches is shown in figure 4.2. The way the half-bridge switches are switched for each motor
type will be discussed later.4 Introduction

g1 g3

a b c

T3T1
g5T5

g6
T6

g2
T2

g4
T4

VDC

Figure 1.2 Schematic view of a
three-phase two-level voltage source
inverter.

two-level VSI as the most commonly used inverter in motor drives.
The inverter switching states are shown in Table 1.1.

Table 1.1 Inverter switching states.

Sa = 1 T1 ON T4 OFF
Sa = 0 T1 OFF T4 ON
Sb = 1 T3 ON T6 OFF
Sb = 0 T3 OFF T6 ON
Sc = 1 T5 ON T2 OFF
Sc = 0 T5 OFF T2 ON

A VSI consists of DC voltage terminals and three legs with two
power electronic switches installed on each leg. Freewheeling diodes
are connected across the switches to facilitate the turn-off function of
the switches. The switches are turned on and off with high frequency
by driving circuits. The driving circuits receive the input signals from
the control system and provide isolated gating outputs toward the
switch gates.

As mentioned previously, a rectifier mainly provides the DC link
voltage. The voltage is smoothed by a rather large voltage-smoothing
capacitor, which is installed in parallel to the DC link. During the re-
generating, the mean link current, IDC, is reversed and charges the
capacitor. This may cause an over-voltage DC link and harm the in-
verter switches. To prevent the over-voltage of the DC link, either a
pulse width modulation (PWM) power-dissipating circuit is turned
on by a switching transistor or the generated energy is fed back to the
main supply. In the latter case, a power electronic converter with the
capability of bidirectional power transfer substitutes for the rectifier.

Power electronic switches are mainly insulated-gate bipolar tran-
sistors (IGBTs). Power metal-oxide semiconductor field effect tran-
sistors (power MOSFETs) and MOS-controlled thyristors (MCTs)
are also used.

A CSI, with a high impedance series inductor replacing the DC-
link capacitor, may also be used, especially for driving high power
PMS motors. However, the VSI is far more popular in practice due
to physical and performance merits.

Any VSI inverter works in a switching mode in which the inverter
switches can have two operating states: either ON, i.e., conducting
state, or OFF, i.e., non-conducting state. The on and off states of
the switches connect the output terminals of the inverter to VDC, 0,
–VDC. The two switches of a leg must have opposite states in order to

.
Figure 4.2: The driving of a BLDC or a PMS motor ([31], Figure 1.2)

4.2.2 Three Phase DC Motor Model

In this section, we refer to the modelled machine simply as PMS because of the cited sections
from [31]. The differences between a BLDC and PMS motor are presented too. Before we start

18

.................................... 4.2. BLDC and PMS Motor

the description of these machines, we need to distinguish between a mechanical and an electrical
angle. In general, the motor can have multiple windings, which we denote by P ∈ N as
pole pairs. A mechanical angle relates to the physical rotation angle of a rotor. In contrast,
an electrical angle relates to the position of stator’s magnetic field within one pole pair. That
means a driver must rotate the magnetic field P times to turn around the rotor once.

Motor’s Reference Frames

A schematic view of two popular PMS machines with four surface-mounted and interior
permanent magnet poles is depicted in 4.3(a) and (b), respectively, to show the machine
stator, rotor, and air gap. The stator windings of PMS machines are distributed sinusoidally
in the stator slots around the periphery of the stator core with 120◦ displacements, producing
a smooth rotating magnetic field in steady-state operation. Winding axes are, therefore,
shown in the physical model as three stationary axes fixed to the winding centers and are 120◦

apart as noted by a, b, and c in 4.3. Also, the axis of a permanent magnetic pole, as the direct
axis denoted by d, is shown in the figure for surface-mounted PM and interior PM machines.
This axis is placed on the point of maximum flux density of the pole through its length, which
is at the center of the pole. A quadrature axis, which is 90◦ (electrical) apart from the d-axis
and denoted by q is also shown in the figure (note: the figure assumes two pole pairs so
the d-q axes are 45◦ degrees apart from the mechanical perspective). The axes are fixed to
the rotor body and rotate with the rotor. The two sets of a-b-c and d-q axes are referred to
as phase variable RF and rotor RF, respectively ([31], 2.2.1 Machine schematic view).

Physical model of PMS machines 39

characteristics and specifications in designing a control system for the
machine. However, this is neither necessary for achieving desirable
performances nor practical in realizing such a system. The reason is
obvious—one should not overdo the control system design. In fact, es-
sential characteristics and specifications of the system should be taken
into account, while others may be overlooked. Therefore, wise simpli-
fication of the machine structure and performance must be assumed
to keep the fundamental behavior of the machine accurate, and leave
unimportant aspects out of the modeling. By doing this, a physical
model as a schematic description of the machine is obtained. This is
closely related to the actual machine to meet the accuracy of the mod-
eling on one hand, while it is related to the mathematical model to
keep it manageable and solvable, on the other.

2.2.1 Machine schematic view

A schematic view of two popular PMS machines with four surface-
mounted and interior permanent magnet poles is depicted in
Figs. 2.1(a) and (b), respectively, to show the machine stator, rotor,
and air gap. The stator windings of PMS machines are distributed si-
nusoidally in the stator slots around the periphery of the stator core
with 120◦ displacements, producing a smooth rotating magnetic field
in steady-state operation. Winding axes are, therefore, shown in the

b

q

120°

θm

d

a

c

(a)

120°

b

q

d

θm

a

c

(b)

Figure 2.1 Schematic view of PMS machines with (a) surface-mounted poles and (b) interior poles.Figure 4.3: Schematic view of PMS machines with (a) surface-mounted poles and (b) interior
poles ([31], Figure 2.1)

PMSM and BLDC Motor Differences

During modelling of a PMSM, several assumptions must be made:.The stator windings of PMS machines are distributed sinusoidally in the stator slots
around the stator core’s periphery to produce a smooth rotating magnetic field in steady-

19

4. Motors and Actuators
state operation. However, stator slot harmonics distort the magnetic flux produced
by the machine windings. ([31], 2.2.2 Modeling assumptions, point 1.)..A sinusoidal flux density distribution around the periphery of the machine air gap pro-
duced by permanent magnet poles mounted on the rotor surface or buried inside the rotor
core is assumed in the physical model despite an almost trapezoidal pattern of flux
distribution in most actual machines ([31], 2.2.2 Modeling assumptions, point 3). Shown
in figure 4.4. Physical model of PMS machines 41

Assumed

N
S

S
N

Actual

d q

B(θ)

θ Figure 2.2 Actual and assumed
patterns of air gap flux density
distribution produced by a pair of
PM poles.

(Hendershot and Miller 2010). The sinusoidal flux density dis-
tribution may in fact be the fundamental frequency component
of the actual distribution. Figure 2.2 shows the two flux dens-
ity distributions for a pair of poles. The d- and q-axes are also
shown in the figure.

4. Iron losses occur in a PMS machine due to hysteresis and eddy
currents phenomena. Both factors depend on the magnitude
of magnetic flux in the iron and the supply frequency. There-
fore, in high speed and high flux machines the losses behave
against the essential high efficiency of the machines provided
by the lack of slip loss and rotor winding loss with respect to
induction machines and wound rotor synchronous machines.
Conventional control methods of PMS machines ignore the
iron losses to focus on the basic control issues. Therefore, the
physical model primarily ignores the iron losses. However, loss
minimization control of PMS motor drive is needed for high
efficiency drives. This type of control needs machine models
with iron losses. Such a model is thus presented separately in
this chapter.

5. A PMS machine that is optimally designed is subject to mag-
netic saturation in some part of machine stator and rotor iron
cores in particular operating conditions. The extent and oc-
casions of saturation depend on many factors, including the
rotor configuration, type of permanent magnet material used
for the rotor poles, etc. The chance of saturation is high in
PMS machines with high energy product permanent magnets.
Saturation may have undesirable consequences in dynamic
performance of PMS machines under a conventional type of

Figure 4.4: Actual and assumed patterns of air gap flux density distribution produced by a pair
of PM poles ([31], Figure 2.2)

If a motor does not have sinusoidally distributed windings or the flux density of the magnets
is not sinusoidal, then the motor’s movement is not smooth when driven by sinusoidal voltage.
This is what differentiates BLDC machines from the PMS ones.

Two-axis Reference Frame

To simplify the work with the stator’s reference frame, the transformation from the three-phase
abc frame to the orthogonal αβ frame is called the Clarke transformation. It essentially
projects abc quantities into an αβ frame with a being in the same direction as α. We can
express this by a matrix multiplication of a general vector f :fα

fβ

f0

 = 2
3

1 −1
2 −1

2
0

√
3

2 −
√

3
2

1
2

1
2

1
2


fa

fb

fc

 . (4.1)

In the PMSM models, it is assumed that

fa + fb + fc = 0, (4.2)

as is the case for the variables of a star-connected three-phase winding with no neutral
connection or a delta-connected three-phase winding ([31], Stationary two-axis model).

20

.................................... 4.2. BLDC and PMS Motor

From that f0 = 0 (hence the 0 index) and

fα = fa, (4.3)

fβ = fa√
3

+ 2fb√
3

. (4.4)

The f0 quantity is mentioned too because this way the matrix is invertible. The Inverse
Clarke Transformation can be expressed asfa

fb

fc

 =

 1 0 1
−1

2

√
3

2 1
−1

2 −
√

3
2 1


fα

fβ

f0

 . (4.5)

Again, if we suppose f0 = 0, then

fa = fα, (4.6)

fb = −fα

2 +
√

3fβ

2 , (4.7)

fc = −fα

2 −
√

3fβ

2 . (4.8)

Rotation of a Two-axis Frame

A vector represented by the αβ two-axis system coordinates can be represented in the orthog-
onal dq system, whose base vectors are rotated by an angle φ against αβ. This transformation
is called the Park Transformation and can be expressed using matrix multiplication:[

fd

fq

]
=

[
cos φ sin φ
− sin φ cos φ

] [
fα

fβ

]
. (4.9)

The Inverse Park Transformation can be expressed as[
fα

fβ

]
=

[
cos φ − sin φ
sin φ cos φ

] [
fd

fq

]
. (4.10)

Equations 4.3 - 4.4, 4.6 - 4.8, 4.9 and 4.10 are important because they are implemented in
the pysimCoder source code 1, 2.

4.2.3 Control Methods

This section summarizes the BLDC and PMSM control methods. The commutation of
the stator’s magnetic field for these machines must be done by an external driver. This section
discusses various commutation methods using the half-bridge trio, as shown in figure 4.2.

1CodeGen/Common/common_dev/clarke_trans.c
2CodeGen/Common/common_dev/park_trans.c

21

4. Motors and Actuators
Trapezoidal Switching

In a motor employing a trapezoidal control scheme, the MOSFET bridge switching must
occur in a precisely defined sequence for the BLDC motor to operate efficiently. The switching
sequence is determined by the relative positions of the rotor’s magnet pairs and the stator’s
windings. A three-phase BLDC motor requires a six step commutation sequence to complete
one electrical cycle [5].

To determine the right switch step, we need to estimate the rotor’s position. Two technologies
offer a solution for positional feedback. The first and most common uses three Hall-effect
sensors embedded in the stator and arranged at equal intervals, typically 60◦ or 120◦ (described
in 4.4.2). A second, sensorless control technology comes into its own for BLDC motors that
require minimal electrical connections [5].

During each step of the commutation, one winding is driven high, one is driven low and
the other is left unconnected. If we know the position of the rotor, we know what windings
to drive. This is usually described by a diagram or a switching table.

Being this the easiest type of motor control, torque ripple is present, causing an uneven
movement of the rotor. Instead of driving the windings with a PWM modulated direct current,
a SPWM (sinusoidal pulse width modulation) or field oriented control can be used.

Vector Control

In electrical machines, a torque is developed due to the interaction of two magnetic fields.
In a mathematical sense, the torque is proportional to the outer product of the two magnetic
flux linkage vectors. In separately excited DC machines, the two magnetic fields are provided
by two separate flux sources, i.e., stator or field winding and rotor or armature winding.
Furthermore, in these machines a commutation system always locates the two magnetic fields
spatially perpendicular to each other, providing the best space position of the two fields for
the purpose of torque production ([31], 1.5.1 Vector Control).

The main goal of a vector control (VC) method is to make the two magnetic fields
independent and perpendicular as much as possible. VC is a means by which the stator
phase currents of AC machines are transformed into a current vector of two perpendicular
components, analogous to the field current and the armature current of a separately excited
DC motor, to control the torque and flux independently. The function of the commutation
system in DC machines is carried out by the current transformation in vector-controlled AC
machines to keep the current components in normal position with each other. Information
on rotor position or flux linkage vector position is needed for the transformation ([31], 1.5.1
Vector Control).

As was mentioned in 4.2.2, the stator’s reference frame can be described by the a-b-c axes and
the rotor’s reference frame is described by d-q axes. The vector control is based on measuring
the ia, ib and ic currents from the three windings. By applying the Clarke transformation,
these currents are projected into an orthogonal αβ reference frame. When the angle of the
rotor is estimated, by applying Park transformation we get id and iq.

The vector control consists of two controllers, one being an inner pair of id and iq current
controllers and the outer one setting the d and q current references, which we denote by id∗
and iq∗. The inner controllers are responsible for keeping the currents in the d and q axes.
By applying the Inverse Park and Inverse Clarke transformations we get the va∗, vb∗ and
vc∗ actions that we apply to the inverter.

22

................................... 4.3. Other Types of ActuatorsVC in rotor reference frame with d–q current controllers 95

θr

Speed
controller

Speed
detection

id
*

iq
*

ωm

ωm
*

va
*

vq
*

vd
*

vb
*

vc
*

Decoupling
current

controllers
PWM

IPM
motor

Encoder

d-q

a-b-c

d–q

a–b–c

Inverter

DC
power
supply

VDC

ia

ib

id

iq

Position
detection

+

–

Figure 3.6 Vector control of PMS motors in rotor reference frame with d–q current controllers.

reference frame transformation receives actual phase currents, ia, ib,
and ic, from current sensors, and transforms them into iq and id to be
used as feedbacks in current loops. Here, the same rotor position sig-
nal is used in the transformation. Once the phase voltage commands
are provided by the first reference frame transformation, the rest of
system is the same as that in the system with phase current controllers.

The system is not faced with the problem of limited bandwidth as
the current controllers act on the q- and d-axis currents, which are DC
signals under steady-state conditions. The system, in fact, carries out
algebraic calculation of reference frame transformations on alternat-
ing feedback signals, while performing the essentially delayed signal
processing by current controllers on non-alternating signals. Thus,
the bandwidth problem as appears in the VC system with phase cur-
rent controllers is not seen in this system. This is regarded as a major
advantage of the system with respect to the previous one. As a re-
sult, the d–q current control is much more popular than phase current
control in VC systems.

3.4.2 Decoupling current controllers

The goal of VC is to separate torque control from flux control in AC
machines like in DCmachines, as mentioned in Section 3.1. This may
be achieved by controlling torque via iq and controlling flux by id if the

Figure 4.5: A schematic of vector control based speed controller ([31], Figure 3.6)

The outer controller sets id∗ and iq∗ references, according to the mathematical model
of the whole controlled system, for example a speed or position controller. The schematic of the
vector control is depicted in figure 4.5. Several strategies for id∗ and iq∗ can be deployed,
but the simplest one is to control only iq∗, while id∗ = 0. This way, the current controller
is trying to keep the stator current only in the rotor’s q axis, perpendicular to the d axis,
producing the highest torque.

4.3 Other Types of Actuators

While the motion controller currently only works with the DC and BLDC/PMS motors, other
actuators are briefly explained as well, because of the modulatity of our controller.

4.3.1 Stepper Motors

As all with electric motors, stepper motors have a stationary part (the stator) and a moving
part (the rotor). On the stator, there are teeth on which coils are wired, while the rotor is
either a permanent magnet or a variable reluctance iron core.

The stator is the part of the motor responsible for creating the magnetic field with which
the rotor is going to align. The number of phases is the number of independent coils, while the
number of pole pairs indicates how main pairs of teeth are occupied by each phase. Two-phase
stepper motors are the most commonly used.

There are two types of stepper motors: unipolar and bipolar. In unipolar motors, each
coil has a central tap, connected to the power supply. Each end of the coil is switched to
the ground. In bipolar stepper motors, each coil has only two leads available, and to control
the direction it is necessary to use an H-bridge [16].

There are many types of stepper driving techniques. The advantage of a stepper motor is

23

4. Motors and Actuators
the fact that it is operated as a synchronous machine by performing steps. Thus open-loop
control can be used for precise positioning if the required torque is not too high.

4.3.2 Piezoactuators

The piezoelectric ceramic material used in the piezoelectric actuator generates electrical energy
when it is subjected to mechanical energy (piezoelectric effect) and generates mechanical
energy when it is subjected to electrical energy (inverse piezoelectric effect). The piezoelectric
actuator is a device that makes use of the inverse piezoelectric effect [32].

At operating frequencies well below the resonant frequency, a piezo actuator behaves like
a capacitor. The actuator displacement is proportional to the stored electrical charge, as
a first order estimate. The capacitance of the actuator depends on the area and thickness
of the ceramic as well as the material properties. In the case of actuators that are constructed
of several ceramic layers electrically connected in parallel, the capacitance also depends on the
number of layers [20].

The piezoactuators need to be driven by a linear amplifier. However, we can put a lowpass
filter after the inverter, turning the PWM signal into a DC signal which depends on the duty.

4.4 Position estimation

4.4.1 Optical encoder

Encoders can be either linear or rotational, having encoder strip or disk, respectfully. This
device operates on the principle of converting mechanical displacement into an electrical
signal through the modulation of light. The key components of an optical encoder include
the encoder disk or strip, a light source (typically an LED), and photodetectors. The encoder
disk or strip is patterned with transparent gaps.

In operation, the light source illuminates the encoder disk or strip, and as it moves,
the alternating gaps modulate the light reaching the photodetectors. The photodetectors
then convert this modulated light into an electrical pulses which can be counted by a counter
on FPGA or MCU. Position can be then calculated from the number of counts and the density
of gaps per milimeter or degree.

An absolute optical encoder provides a unique digital code for each position on its mea-
surement range, enabling it to instantly determine the exact position of a moving object
without requiring a reference point. In contrast, a relative optical encoder measures changes
in position relative to a starting point.

Incremental Rotary Encoder (IRC)

In this sensor, there are two signals shifted by quarter of a period. From the phase shift
of these two signals, the orientation of movement can be deducted (left × right movement,
clockwise × counterclockwise rotation). The disadvantage of relative measurement can be
solved by adding an index (or Z) signal which generates signal at a precisely defined location.
In rotary optical encoders, it is usually once per revolution.

The figure 4.6 shows an industrial optical encoder from Omron. The simplest rotary encoder
has 5 wires in total: VCC, GND, 2 phase shifted signals for counting and an index. However,

24

...................................... 4.4. Position estimation

more expensive encoders feature differential signalling to reduce the effect of electromagnetic
interference. Such controller must then have differential line receiver.

Many microntrollers have a built-in quadrature encoder logic cooperating with a timer
peripheral where a counter is incremented or decremented depending on the two incoming
signals. From the value saved in counter, the positon of the motor can be calculated.

Figure 4.6: Example of a rotary encoder from Omron taken from [17]

4.4.2 Hall Sensors

Hall sensor is a sensor working on the principle of Hall effect. Hall sensor produces voltage
proportional to the perpendicular magnetic field. This sensoring method is used as a position
feedback method to measure the postiion of shaft made out of permanent magnet. The outputs
of Hall sensors are of logical value and are typically open drain, so microcontroller GPIO pins
are used to read the values.

Three Hall sensors are mostly used in BLDC and PMS motors to roughly estimate the ab-
solute position of the shaft. The allowed boolean sequence of codewords is 001, 101, 100, 110,
010, 011, corresponding to readings from H3H2H1, codewords 000 and 111 are not allowed.
Totally, this gives 6 combinations mapping to 2π radians of the electrical angle which means
each reading estimates one third of π radians.

These sensors are not intented to be used as precise estimation of shaft’s angle, but may
used as the initial estimation before an index mark of optical encoder is hit. In applications
where precise position is not a concern, they can be used standalone.

25

26

Chapter 5
Introduction to Used Hardware and Interfaces

This chapter introduces the tools, electronic parts used in our controller. Also, the analysis
of the problem is described in this chapter, alongside with the proposal of the controller’s
main features.

5.1 PCB Design

This section mentions several factors which need to be taken in account when designing
custom PCBs for this controller.

5.1.1 PCB Copper Layers

Advantages of More Layers

Using more layers where traces can be routed simplifies the PCB design. It is convenient to use
inner layers as a ground plane and a power plane, allowing us to get power and grounding for
electrical parts on outer layers with the help of vias, while not routing grounds and power on
outer layers.

By providing an uniform conductive surface, the power and the ground plane also help
in reducing the electromagnetic interference, because these planes act as shields and form
a nonnegligable decoupling capacitor. Due to the high area of copper, these planes also help
in heat dissipation of the whole PCB.

More layers can be helpful if there is limited space for traces. If the circuit contains a
lot of signal traces, more layers can be used, however it makes the fabrication of PCB more
expensive. A handful of signal traces can be routed in power or ground planes but one must be
careful not to divide the power or ground plane into smaller parts with these traces, because
it breaks the uniformity of these layers.

Copper Thickness

Thicker copper can take more current and helps in heat dissipation. However, wider tracks
must be used on layers with thicker copper because of underetching. The upper part of the
trace is exposed to etching substance for a longer time than the lower part, which means
more of the upper part is etched away. It is important to obey manufacturer’s minimum track
width for given copper thickness.

27

5. Introduction to Used Hardware and Interfaces............................
5.1.2 Track and Via Ampacity

When designing high current PCBs, the track widths must be taken in account. Ampacity of
the trace can be estimated by the formula

I = K(∆T)0.44(WH)0.725, (5.1)

where I is the estimated current, W is the thickness of the trace, H is the thickness of the
copper layer, K is either 0.024 for inner layers or 0.048 for external layers and ∆T is the
temperature rise of the track. This is an empiric formula devised by the IPC organization in
their IPC 2221 document.

There was no need to design tracks of precise width, but it helped me to estimate widths
of high current tracks with small temperature rise.

Ampacity of the vias must be considered too, when routing current through different layers
is desired.

5.1.3 Electronic Design Automation Software

Such software helps user draw schematics and design custom PCBs. Since our controller is
open hardware, using tool like KiCad is the best choice since it is an open source software
and is fairly known among electrical engineers. The figure 5.1 shows the KiCad’s PCB editor.
There are many tools available, like Altium Designer, Cadence’s OrCad, Autodesk’s Eagle or
the open source gEDA suite.

Figure 5.1: KiCad’s PCB editor

5.2 Communication Interfaces

In this section, a few communication interfaces are presented because of their needed hardware
adaptation in our circuit. All the communication interfaces like SPI, I2C and USB won’t be
discussed and the familiarization with these interfaces is left to the reader.

28

................................... 5.2. Communication Interfaces

5.2.1 Serial Communication

The simplest protocol for serial communication is UART (Universal Asynchronnous Receiver
and Transmitter). UART uses RX for data reception and TX for data transmission. The speed
of the communication is given by the baud rate. This thesis supposes the UART communication
is known to the reader, so only the physical layer of serial communication will be discussed.

The standard UART is compatible with TTL (5 V) or LVTTL (3.3 V) logic. However,
UART voltage levels are not suitable for long transmission lines and UART itself is only point
to point.

RS232

This standard defines the used voltage levels, as well as other signals like RTS (ready to send)
or CTS (clear to send), suitable for control flow.

The standard also defines the pinout on a typical DE-8 connector. The typical logical high
level is -3 to -15 V and the logical low level is 3 to 15 V. MAX232 is a very known IC used for
converting standard levels to RS232 levels. By using external capacitors, RS2321compatible
voltage levels are produced while the IC powering voltage and UART voltage levels are 3.3 or 5
V.

RS422

RS-422 is a unidirectional, multidrop network, allowing for the use of a single driver with
an output signal that can be dropped at multiple (up to 10) receiver nodes [23]. The physical
medium is usually a twisted pair cable with differential signalling. Because data traffic
is unidirectional, only one termination resistor is required to eliminate signal reflections
on the bus. Its value should match the characteristic cable impedance, typically in the range
of 100 Ω to 130 Ω ([23], Figure 1). If point-to-point full duplex communication is desired,
two RS422 interfaces are used.

RS485

RS-485 is a bidirectional multipoint interface, which allows for multiple drivers to be connected
to the same bus. To avoid bus contention, bus access is controlled with driver enable pins.
Only one driver can access the bus at a time ([23], Figure 4). The transceiver example is
shown in figure 5.2. The data can be received on RO (RX) and transmitted on DI (TX) pin,
data reception is activated by the RE pin and transmission of data is activated by the DE
pin when the bus is idle.

5.2.2 Ethernet

Introduction

Ethernet is a family of network technologies first standartized as IEEE 802.3. From
the ISO/OSI layer model, Ethernet is responsible for the physical and link layer. Nowadays,
Ethernet supports a lot of physical mediums, like the optical fibre or the most widely used
UTP (unshielded twisted pair) or STP (shielded twisted pair) with the characteristic impedance

29

5. Introduction to Used Hardware and Interfaces............................

Figure 5.2: Example usage of two LTC1484 transceivers (taken from [2])

around 100 Ω. Even though Ethernet was mainly used as a network technology on personal
computers, it has become favourite in the industrial fields, like automotive.

For the purpose of this thesis, the 10/100 Base-T/TX standards will be discussed, as these
are the only standards supported by our microcontroller. Having Ethernet on our controller
is benefitial, because it is the most popular technology that allows us to access our controller
remotely from the network.

The standard defines two interconnected interfaces, the first one being MAC (Media Access
Control) and the second one being PHY (Physical Layer). MAC is responsible for the link
layer, while PHY is responsible for the physical layer. Microncontrollers often include a MAC
peripheral interfaced from software while an external PHY chip must be connected.

Access Control

Originally, Ethernet was designed as a protocol to run over a shared medium. Simultaneous
transmission from multiple nodes would result in garbled data on the medium, and subsequent
loss of data. From this simple example, we can derive some basic requirements for a network
protocol:.multiple nodes must be able to transmit on a shared medium,. each node must be able to detect when another node is transmitting,. a transmitting node must be able to determine when simultaneous transmission occurs in

the case where multiple nodes see the medium as idle and start transmitting at the same
time,.when a collision is detected, each node must have a method to determine when to re-
transmit without each node continually trying to retransmit at the same time.

These requirements are met in Ethernet using a scheme known as Carrier Sense Multiple
Access with Collision Detect (CSMA/CD) [10] and the algorithm used to determine the
retransmision is called the exponential backoff algorithm. This method plays a role in half-
duplex shared medium operation. In full-duplex operation collisions cannot happen.

30

................................... 5.3. Motion Controller Analysis

PHY

Before the frame is transmitted, it needs to be encoded to be effectively transmitted over
a long transmission line. In the 10 Mb/s Ethernet, Manchester encoding is used. Because
Unshielded Twisted Pair (UTP) wires are low-pass in nature, the same encoding scheme that
was used for 10Base-T will not work when we increase the speed by 10x ([10], 100 Mb/s
STREAM CONTENTS). For the 100 Mb/s operation MLT-3 and 4B/5B encodings are used.

The PHY is responsible for the encoding/decoding and the transmission line driving.
Firstly, a PHY receives a frame from the MAC which must be encoded before it is transmitted
onto the physical medium. The MAC communicates with the PHY using MII (Media
Independent Interface) or RMII (Reduced MII). PHY is also responsible for the auto negotiation
(a mechanism used by Ethernet to negotiate common parameters, like the duplex mode,
speed, . . .) and it also includes R/W registers accessed by the MDIO (Management Data
Input/Output), from which the PHY can be configured (e.g. configure the maximum negotiated
bitrate) or the auto negotiation state with an another device (like a switch) can be read.

The way MAC is connected to PHY is shown on figure 5.3. As the PHY must drive
the physical medium, these components can be power hungry.

Figure 5.3: Connecting KSZ8081 PHY using RMII to a MAC device (e.g. a MCU) (taken from
[12])

5.3 Motion Controller Analysis

Most of the communication interfaces mentioned in the previous section should be present
on our controller. The following table 5.1 describes all the peripherals our controller should
contain and should serve as the baseline for our design. We also require that our motion
controller should be capable of driving at least 2 stepper motors. Since a stepper motor
requires 4 half bridge switches, we need total of 8 half-bridge switches. A BLDC/PMS motor
requires 3 halfbridge switches to be controlled and a DC brushed motor requires 2 half-bridge

31

5. Introduction to Used Hardware and Interfaces............................
Peripheral Use Cases
TTL UART Simple console user interface
RS232, RS422 or RS485 Communication with other devices, sensor data acquistion
(Q)SPI Ext. SPI memory (e.g. W25), sensor data acquisiton
I2C Ext. I2C memory (e.g. 24xxxx), sensor data acquistion
Counter Position measurement from encoders
JTAG or SWD Program flashing and debugging
CAN Communication with other devices
Ethernet Data logging, remote access, pysimCoder parameter tuning
SD slot Data logging
PWMs Control of power switches
ADCs Current measurement for motor FOC (field oriented control)
GPIOs Reading from Hall sensors, general stuff

Table 5.1: Table of peripherals and corresponding use cases

switches (forming a H-bridge). Choosing 8 half-bridge switches is enough for controlling 2
BLDC/PMS motors and 4 DC brushed motors.

With that, we need at least 8 PWM outputs for power switches (or 16 if each gate driver
requires complementary signals), at least 8 ADC channels for current measurement, two
counter peripherals for encoder pulse counting and in the best case all the communication
interfaces mentioned above.

The last design rule is to divide the motion controller into a Control MCU board and a
Power stage board as two PCBs. The complete motion controller then comprises of these two
PCBs connected together. The MCU board should contain the microcontroller and all the
connectors for communication interfaces. The power board should contain the half-bridge
switches and measurement circuits, like operational amplifiers. The MCU board is a more
complex board, so this board should be kept the same, while new revisions of a power board
should adapt to the MCU board. Overall, the design is inspired by the PiKRON’s Lx-RoCoN
motion controller [21]. We also require all used components must be rated as industry parts,
so the controller can be used in harsher environments (at least -40 to 85◦C).

5.3.1 The Used Microcontroller

The chosen microcontroller is ATSAMV71Q21B from Microchip. The reason for choosing
such microcontroller is because of supervisor’s and Michal Lenc’s good experience with this
microncontroller.

The intention is to route as many SAMV71’s peripherals as possible because of high
modularity and extensibility. The biggest LQFP144 package was chosen. However, Microchip
also manufactures this microcontroller in smaller LQFP100, LQFP64 and BGA packages
so in case of smaller designs, a whole new motion controller can be designed while keeping
software the same.

This microcontroller features an ARM Cortex M7 core running at 300 MHz, it has 2 MB of
flash memory and 384 kB of SRAM. This microcontroller features a lot of needed peripherals,
ranging from Ethernet, to two PWM peripherals each featuring 4 channels with complementary
outputs with configurable deadzones, two AFEC (Analog Front End Controller) peripherals

32

................................... 5.3. Motion Controller Analysis

each having up to 11 AD channels at disposal and four TC (Timer/Counter) peripherals
with encoder counter logic. It also features 2x CAN, a HSMCI peripheral for SD interfacing
and also many UARTs, SPIs, TWIHSs (Microchip’s I2C) and so on. Another advantage is
vast driver support in NuttX RTOS and also support for double precision float instructions,
suitable for pysimCoder general generated code with the double data type.

5.3.2 The Used Power Switch

IFX007T is a half-bridge switch developed by Infineon Technologies. It is an all-in-one switch
featuring two N power switching MOSFETs and its gate drivers, It also features a built-in
high and low side current limitations alongside with overtemperature protection. This makes
the switch very easy to use, as it only requires one PWM driving signal (IN) and an inhibit
(INH) input controlled by a GPIO. The figure 5.4 shows the internal structure of the IFX007
chip. We can see the switch also features an IS output whose current is proportional to

Data Sheet 4 Rev. 1.0
 2018-09-11

High Current PN Half Bridge with Integrated Driver
IFX007T

Block diagram

2 Block diagram
The IFX007T is part of the Industrial & Multi Purpose NovalithIC™ family containing three separate chips in one
package: One p-channel high-side MOSFET and one n-channel low-side MOSFET together with a driver IC,
forming an integrated high current half-bridge. All three chips are mounted on one common lead frame, using
the chip-on chip and chip-by-chip technology. The power switches utilize vertical MOS technologies to ensure
optimum on state resistance. Due to the p-channel high-side switch the need for a charge pump is eliminated
thus minimizing EMI. Interfacing to a microcontroller is made easy by the integrated driver IC which features
logic level inputs, diagnosis with current sense, slew rate adjustment, dead time generation and protection
against overtemperature, undervoltage, overcurrent and short circuit. The IFX007T can be combined with
other IFX007Ts to form a H-bridge or a3-phase drive configuration.

2.1 Block diagram

Figure 1 Block diagram

2.2 Terms
Following figure shows the terms used in this data sheet.

Figure 2 Terms

IS

SR

INH

IN

GND

OUT

VS

Gate Driver
HS

Slewrate
Adjustment

Digital Logic

Undervolt.
detection

Overtemp.
detection

Current
Limitation

LS

Current
Limitation

HS

Current
Sense

Gate Driver
LS

LS off HS off

IIN

V IN

OUT

IINH

VINH

VSR

ISR

VIS

IIS

VS

IOUT , I L

VOUT

VDS(HS)

GND

IGND, ID(LS)

 IVS , -ID(HS)

IN

INH

SR

IS

VS

VDS(LS)

Figure 5.4: Block diagram of IFX007 internal structure [8], 2.1

the current flowing through the high side transistor to the load. The high side current can
be then measured by measuring the voltage drop across the connected resistor. The IS pin
also serves the purpose of a fault indication in case of overcurrent or high temperature. The
characteristics of IS output current is shown in the figure 5.5.

Current Measurement

A decision was made to include additional low side transistor measurement using a shunt
connected to ground. This way, a high-side and low-side currents can be measured. However,
we use the IS high-side value as an indicator of average current by connecting a parallel
capacitor and the indicator of a fault. As the figure 5.5 suggests, the fault output current is
bigger than expected current during normal operation. This way, a fault voltage drop can be
compared with a reference on a comparator. One fault output per motor can be generated by
chaining 4 open drain/collector comparators.

33

5. Introduction to Used Hardware and Interfaces............................

Data Sheet 17 Rev. 1.0
 2018-09-11

High Current PN Half Bridge with Integrated Driver
IFX007T

Block description and characteristics

Figure 12 Sense current and fault current

Figure 13 Sense current vs. load current

VS

RIS

IIS~ ILoad

ESD-ZD

VIS

Sense
output
logic

IS

IIS(lim)

IIS(offset)

Normal operation:
current sense mode

VS

RIS

IIS~ ILoad

ESD-ZD

VIS

Sense
output
logic

IS

IIS(lim)

IIS(offset)

Fault condition:
error flag mode

IL [A]

IIS(lim)

IIS
[mA]

ICLx

Error Flag Mode

lower dk ILIS
 value

higher dk ILIS
 value

Current Sense Mode
(High Side)

IIS(offset)

Figure 5.5: IS output current [8], Figure 13

The low-side shunt is used for more precise measurement of the motor winding current. The
current measurement and fault generation scheme is depicted on figure 5.6. If the voltage drop
on the Ris resistor is bigger than Vref , the comparator output goes low. Since the operational
amplifiers must be connected to the analog ground, the measurement of the shunt Rs is done
using a differential amplifier because Rs is connected to the power ground. Since the current
passing through the transistors can be negative, a bias voltage is applied to the differential
amplifier, shifting the output voltage of the amplifier. Fast voltage spikes on the RIS resistor
can be filtered by connecting a parallel CIS capacitor.

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. 8.0.1

Rev:Size: A4
Id: 1/1

Title:

File:
Sheet: /

1

-
2

+
3

Comparator

GNDA

R3

R3
+

5

-
6

7

R4

R4

VCC

R2

Cis

GND

1

-
2

+
3

R1

GND

Ris

Rs

LS to MCU

BIAS

Fault

IFX007 GND

IFX007 IS

HS to MCU

REF

1

-
2

+
3

R1

Cis

VCC

R4

R4

+
5

-
6

7

Ris

Figure 5.6: HS and LS current sensing alongside with fault generation

34

Chapter 6
Hardware Implementation

This chapter describes the hardware implementation details of the MCU control and the
power stage board, together forming an interconnected stack. Since the MCU control board
contains a lot of connectors, it is placed above the power board. The hardware is available
publicly online under the OHL-CERN-W v2 license on the OTREES GitLab 1. Since the used
microcontroller is from the Microchip’s SAM family, the motion controller model name was
chosen to be SaMoCon as an abbreviation of ATSAMV71Q21B Motion Controller. The design
is inspired by the PiKRON Lx-RoCon motion controller [21].

6.1 MCU Board

6.1.1 Interconnecting with Expanbility

An interconnection pinout between the boards needed to be defined. We need 16 inputs from
the operational amplifiers for current measuring. We also need 8 PWM signals and 8 GPIOs
for IFX007 control.

The connection of two boards is placed on the back of the PCBs. For the purposes of
expansibility, it is good to have extra GPIOs, SPI or I2C routed. There is an another connector
on top of the MCU board with the same mirrored pinout as the lower interconnection which
can be used for expanding boards placed above the MCU board. The upper MCU connector
can be used as an oscilloscope probing place too. In upcoming sections, the peripherals
routed to the separate peripheral connectors on the MCU board will be reffered to as main
peripherals whereas the peripherals routed to the interconnection/expanding connector will
be reffered to as the extra peripherals.

6.1.2 Microcontroller’s Pinout

Before any routing took place, we needed to determine the SAMV7’s pinout. Because of the
microcontroller’s alternative pin functions, there were a lot of combinations of how routing
could be done. However, due to high count of desired peripherals, conflicts started to happen
- two peripheral outputs or inputs were on the same pin. For example, we weren’t able to
include a QSPI memory because of these problems. To see the SAMV71’s pinout, see [14],
section 6.1.

1https://gitlab.fel.cvut.cz/otrees/motion/samocon

35

https://gitlab.fel.cvut.cz/otrees/motion/samocon

6. Hardware Implementation
See table 6.1 for routed peripherals and the corresponding SAMV71’s peripheral. The

detailed description of pin assingments can be found in the spreadsheet here 2.

SaMoCon Peripheral SAMV7 peripheral
2x CAN MCAN0, MCAN1
SPI main & extra SPI0, SPI1
TTL Console UART3
RS232/RS485 USART2
Ethernet GMAC in RMII mode
USB-C HSUSB
2× IRC TC0, TC2 (Timer/Counter)
SD Card HSMCI
H PWM outputs for Motor A PWM0 CH0, CH1, CH2, CH3
L PWM outputs for Motor A PWM0 CH0, CH1, CH2, CH3
H PWM outputs for Motor B PWM1 CH0, CH1, CH3
L PWM outputs for Motor B PWM1 CH0, CH1, CH2, CH3
8 ADC channels for Motor A AFEC0
8 ADC channels for Motor B AFEC1
3 extra ADC channels AFEC1
2x 3 Hall inputs GPIOs on the same PIO
I2C main & extra TWIHS0, TWIHS1

Table 6.1: Routed peripherals

As previously mentioned in 5.3.2, each switch must be controlled by one PWM H signal and
one GPIO pin. Even though we need 8 PWM H outputs, we also route all remaining PWM L
outputs, because some gate drivers require complementary signals. In case of IFX007T, the L
output can be configured as a simple output pin.

Unfortunately, the only one H output of PWM1 CH2 could not be routed due to collisions
with the HSMCI peripheral. A decision was made to route the L channel output as the H
channel, because, as it turned out, the PWM polarity can be configured in software. This
leaves us with total of 7 complementary and 1 non-complementary outputs.

6.1.3 Power Components

All the components on this PCB are powered from the 5 or 3.3 V rail. The MCU board is
designed to be powered from the power board through the interconnection. The 5 V rail can
also be supplied from the USB-C connector.

To get 3.3 V from 5V, the TPS562207 buck regulator from Texas Instruments [24] has been
used. The datasheet recommended circuit has been used and the implementation is shown in
the figure 6.1.

Two CAN and RS232/RS485 peripherals are galvanically isolated, meaning small isolated
switching power supplies are needed. For that purpose, small black 5V to 5V power supplies
capable of outputting 1 W have been chosen.

2https://gitlab.fel.cvut.cz/otrees/motion/samocon/-/blob/main/hw/pinouts.ods

36

https://gitlab.fel.cvut.cz/otrees/motion/samocon/-/blob/main/hw/pinouts.ods

... 6.1. MCU Board

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-17
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 4/6

Title: SaMoCon MCU Controller - Power, References

File: power.kicad_sch
Sheet: /POWER/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

+3.3V

GNDD

C35
100n

GNDD

GNDD

R50
3.3k

GNDAGNDD

OUT
1

G
N

D
2

~{FLG}
3

EN
4

IN
5

U16AP2171W

C39
100n

1 2

JP3
JP open

GNDD

C41
10u

GNDD

R52
10k

R51
31k

+5V
D2

PMEG3010ER,115

GNDD GNDD

H5
MountingHole

GNDD

+5V

-Vin
1

+Vin
2

-Vout
3

+Vout
4

U17
TEA1-0505

H4
MountingHole

H1
MountingHole

H2
MountingHole

-Vin
1

+Vin
2

-Vout
3

+Vout
4

U18
TEA1-0505

VBUS

H3
MountingHoleGNDD

GNDD

GND2

C45
100n

VCOM

C44
100n

+5V

C34
47u

+3.3V

GND1

VIN
1

SW
2

GND
3

BST
4

EN
5

FB
6

U15
TPS562207

GNDD

R49

10k

GNDD

C31
22u

C43
22u

+3.3V

V
in

1

Vout
2

V
ss

3

U14
MCP1525-TT

C37
100n

+5V

GNDD

C33
100n

C38
100n

C32
100n

C36
1u

GNDA

GNDA

GNDA GNDA

C40
100n

GNDD

C42
22u

L2
3.3u

USB_VBUS

ADC_REF

USB_ENUSB_OVERCURR

Recommended values TPS562200:
R1 31k
R2 10k
L 3.3u
Cout = 22u + 22u

Serial Line

Diode for host and device operation simultaneously

CAN

No need to turn off

Connection of GNDD and GNDA is realised on this PCB

Overcurrent active low (open drain)

U14
MCP1525-TT

V
in

1

Vout
2

V
ss

3

+3.3V

R50
3.3k

GNDD

C35
100n

GNDD

C34
47u

U16AP2171W

OUT
1

G
N

D
2

~{FLG}
3

EN
4

IN
5

C39
100n

GNDD GNDD

C41
10u

C37
100n

U15
TPS562207

VIN
1

SW
2

GND
3

BST
4

EN
5

FB
6

C38
100n

C36
1u

GNDAGNDA

Figure 6.1: The TPS562207 buck regulator

We also need a stable voltage reference for analog measurements. The MCP1525-TT [11]
reference from Microchip has been used. The advantage over the widely used TL431 is no
cathode resistor is needed.

6.1.4 CAN

The Microchip’s MCP2562FD [15] IC was used as a CAN physical layer transceiver. CAN
was meant to be galvanically isolated, so optical ADuM1201 isolators from Analog Devices
have been chosen. A 120 Ω resistor has been added parallel to each output together with a
jumper if termination of the transmission line is required.

6.1.5 RS232/RS485

This peripheral is galvanically isolated too, using ADuM1201 as optical isolators. RTS and
CTS pins needed to be connected too, needing two bidirectional optical isolators in total.
To convert UART TTL levels to corresponding voltage levels, MAX232 and ST485CDR
transceivers are used.

RS232 and RS485 are two distinct interfaces with different voltage levels and different flow
control. However the solution on our board allows to have these interfaces on the PCB while
using only one. The circuit of this whole serial communication interface is shown in the figure
6.2.

Both interfaces can be used without any changes to the circuit, except the jumper which
disables/enables data reception from RS485. To prove our point, we will discuss the circuit
when using RS232 only and RS485 only.

Using RS232 only. If something on RTS or TX is sent, it propagates to MAX232 IC. If
data CTS or RX must be received, it can be seen that these signals are switched by AND
gates. However, if RS485 differential line is not connected, then RO pin of the RS485 if high,
leaving the CTS and RX signals on the ADuM1201 isolator being dependant only on signals
from MAX232.

Using RS485 only. In order to send data, RTS pin must be set high to activate the
transceiver. Since nothing is received from MAX232, the outputs of this IC are high, making
the CTS and RX signals on the ADuM1201 isolator being dependant only on signals from

37

6. Hardware Implementation1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-17
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 7/7

Title:

File: untitled.kicad_sch
Sheet: /Untitled Sheet/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

2

G
N

D
3

4V
C

C
5

U11
74HC1G04GW,125

GND1

+3.3V

GND1

VCOM

1 2

JP2

RO
1

~{RE}
2

DE
3

DI
4

G
N

D
5

A
6

B
7V

C
C

8

U12
ST485CDR

GND1
GND1

1

2

G
N

D
3

4 V
C

C
5

U10
74HC1G08,125

VCOM

R47
47k

GND1

VCOM

R44

47k

GND1
R48
47k

VCOM
C27 1u

GND1

1
2

J5
NS25-W2P

GND1

GND1

C291u

LOGIC RS232

C1+
1

T2IN
10

T1IN
11

R1OUT
12

R1IN
13

T1OUT
14

G
N

D
15

V
C

C
16

VS+
2

C1-
3

C2+
4

C2-
5

VS-
6

T2OUT
7

R2IN
8

R2OUT
9

U13
MAX232CSE

C301u

C28
1u

1
2
3
4
5

J8

NS25-W5P

VCOM

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

U6
ADuM1201AR

VCOM

VCOM

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

U7
ADuM1201AR

VCOM

R45
47k

C26
1u

1

2

G
N

D
3

4 V
C

C
5

U8
74HC1G08,125

GNDD

USART_CTS

USART_TX

USART_RX

USART_RTS

485+
485-

RS485

RS232
U6

ADuM1201AR

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

VCOM+3.3V

R44

47k

GND1
GND1

U10
74HC1G08,125

1

2

G
N

D
3

4 V
C

C
5

VCOM

GND1

VCOM
U11

74HC1G04GW,125

2

G
N

D
3

4V
C

C
5

C27 1u

GND1

C291u

U13
MAX232CSE

C1+
1

T2IN
10

T1IN
11

R1OUT
12

R1IN
13

T1OUT
14

G
N

D
15

V
C

C
16

VS+
2

C1-
3

C2+
4

C2-
5

VS-
6

T2OUT
7

R2IN
8

R2OUT
9

C301u

C28
1u

R48
47k

GND1

U12
ST485CDR

RO
1

~{RE}
2

DE
3

DI
4

G
N

D
5

A
6

B
7V

C
C

8

JP2

1 2

GND1

GND1

C26
1u

VCOM

VCOM
U8
74HC1G08,125

1

2

G
N

D
3

4 V
C

C
5

Figure 6.2: RS232 and RS485 communication interface

the RS485 transceiver. CTS used for signalling data activity is connected to RO pin as the
RX pin. If TX data is to be sent, it gets immediatetly propagated to DI pin.

6.1.6 Ethernet

A so called PHY (Physical Layer) component must be connected to the MCU’s MAC (Media
Access Controller). For that, the Microchip KSZ8081 IC was used [12], working in the RMII
mode. For galvanic isolation, the magnetics (de facto a transformer) needs to be connected
between the PHY and the RJ45 connector. HX1188NL magnetics, supported by the PHY,
was used. The routing of Ethernet components is shown in figure 6.3.

KSZ8081 PHY

The design is based on the recommendations given by the datasheet [12]. That includes the
powering part (ferrites, capacitors) and all the pull up and pull down resistors connected
to open drain outputs and a 25 MHz crystal. Some resistors also define the PHY’s address,
which was chosen to by PHYAD[4:0] = 0 (bits 4:3 are always zero). The PHY also includes
an Ethernet activity pin intended for the RJ45 activity LED. A 560 Ω current limiting resistor
needed to be added.

6.1.7 USB

The USB-C’s CC1 and CC2 pins are connected to the TUSB321 IC from Texas Instruments
which negotiates host or device operation, given voltage levels at certain pins. The board was
designed in such way that it could function alone from either the connected power board or
the power from USB. The data pins are connected to the HSMCI SAMV7 peripheral.

38

... 6.1. MCU Board
1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-17
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 7/7

Title:

File: untitled.kicad_sch
Sheet: /Untitled Sheet/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

C51
100n

+3.3V

D3
1N4148WS

R78 10k

C55
100n

R95 1k

R81 4k7

GNDD

+3.3V

RX

TX
1

10

11

14

15

16

2

3

6

7

89

T1
HX1188NL

GNDD

R56
75R

1

10

11
12

2
3
4
5
6
7
89

S
H

J11
RJHSE-5384

GNDD

+3.3V

C53
100n C54

2.2u

R59
75R

GNDD

GNDD

C58
22p

1

2

3

4

Y2
3225-25M-SR

GNDD

+3.3V
L4

470R @ 100 MHz

GNDD

C63
10u

C56
2.2u

GNDDR79 1k

VBUS

GNDD

C46
1n (2kV)

R58
75R

R57
75R

C59
22p

GNDD

R86 1k

R69
22R

R80 1k

R54
560R

R53

4k7

C52
100n

R71
22R

R72
22R

C61
2.2u

GNDD

R73
22R

GNDD

GNDD

R70
22R

R62
6k49

R77 1k
GNDD

R55
560R

C60
100n

R67
22R

GNDD

+3.3V

GNDD

V
D

D
_1

.2
1

MDIO
10

MDC
11

RXD1
12

RXD0
13

V
D

D
IO

14

CRS_DV/PHYAD[1:0]
15

REF_CLK
16

RXER
17

INTRP
18

TXEN
19

V
D

D
A

_3
.3

2

TXD0
20

TXD1
21

G
N

D
22

LED0/ANEN_SPEED
23

~{RST}
24

RXM
3

RXP
4

TXM
5

TXP
6

XO
7

XI
8

REXT
9

U23
KSZ8081RNA

C62
10u

R68
22R

ETH_TX1

ETH_EN
ETH_TX0

ETH_RX0

ETH_INT

ETH_MDC

ETH_LED

ETH_PHYAD

ETH_RX1
ETH_RXER

ETH_CLK
ETH_MDIO

E_TX+

PHY_RX+

E_TX-

PHY_TX+

E_RX+

PHY_TX-

E_RX- PHY_RX-

R54
560R

R53

4k7

R59
75R

+3.3V

J11
RJHSE-5384

1

10

11
12

2
3
4
5
6
7
89

S
H

R56
75R

T1
HX1188NL

1

10

11

14

15

16

2

3

6

7

89

C46
1n (2kV)

GNDD

+3.3V
L4

470R @ 100 MHz

GNDD

GNDD

U23
KSZ8081RNA

V
D

D
_1

.2
1

MDIO
10

MDC
11

RXD1
12

RXD0
13

V
D

D
IO

14

CRS_DV/PHYAD[1:0]
15

REF_CLK
16

RXER
17

INTRP
18

TXEN
19

V
D

D
A

_3
.3

2

TXD0
20

TXD1
21

G
N

D
22

LED0/ANEN_SPEED
23

~{RST}
24

RXM
3

RXP
4

TXM
5

TXP
6

XO
7

XI
8

REXT
9

C52
100n

R62
6k49

R67
22R

R68
22R

R69
22R

R70
22R

D3
1N4148WS

C59
22p

GNDD

C58
22p

Y2
3225-25M-SR

1

2

3

4

GNDD
R81 4k7

+3.3V

GNDD

+3.3V

R73
22R

R71
22R

R72
22R

Figure 6.3: Connection of Ethernet components

An USB power switch AP2171W has been chosen. If the controller acts as a host, the
EN pin is set high, enabling the power switch. If overcurrent is detected, an open collector
FLG output is used to indicate error. If we want to power the board using an external USB
supply, the current passes through the PMEG3010ER Schottky diode with a low voltage drop
and bypasses the USB power switch. Some decoupling capacitors are connected for voltage
filtering. The schematics of such solution is in figure 6.4.

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-17
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 4/6

Title: SaMoCon MCU Controller - Power, References

File: power.kicad_sch
Sheet: /POWER/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

R50
3.3k

H1
MountingHole

H4
MountingHole

+5V

GNDD

-Vin
1

+Vin
2

-Vout
3

+Vout
4

U17
TEA1-0505

-Vin
1

+Vin
2

-Vout
3

+Vout
4

U18
TEA1-0505

VBUS

GND2

VCOM

C44
100n

GNDD

H2
MountingHole

+3.3V

C35
100n

GNDDGNDD

GNDAGNDD

C34
47u

+3.3V

R51
31k

GNDD

C38
100n

D2
PMEG3010ER,115

+5V

1 2

JP3
JP open

C41
10u

C39
100n

GNDDGNDDOUT
1

G
N

D
2

~{FLG}
3

EN
4

IN
5

U16AP2171W

R49

10k

VIN
1

SW
2

GND
3

BST
4

EN
5

FB
6

U15
TPS562208

C45
100n

C31
22u

C33
100n

GNDDGNDD
GNDD

GND1

+5V

GNDD

H5
MountingHole

H3
MountingHole

GNDA

C43
22u

+3.3V

GNDD

C40
100n

GNDD

GNDA

R52
10k

GNDA

C36
1u

C42
22u

C37
100n

C32
100n V

in
1

Vout
2

V
ss

3

U14
MCP1525-TT

L2
3.3u

GNDA

+5V

GNDD

USB_OVERCURR

ADC_REF

USB_EN

USB_VBUS

Serial Line

CAN

Overcurrent active low (open drain)

Connection of GNDD and GNDA is realised on this PCB

Diode for host and device operation simultaneously

Recommended values TPS562200:
R1 31k
R2 10k
L 3.3u
Cout = 22u + 22u No need to turn off

C37
100n

U14
MCP1525-TT

V
in

1

Vout
2

V
ss

3

+3.3V

C36
1u

GNDAGNDA

C34
47u

GNDD GNDD

C35
100n

R50
3.3k

C38
100n

U15
TPS562208

VIN
1

SW
2

GND
3

BST
4

EN
5

FB
6

U16AP2171W

OUT
1

G
N

D
2

~{FLG}
3

EN
4

IN
5

GNDD GNDD

C39
100n

C41
10u

Figure 6.4: USB power components.

6.1.8 I2C

When the requirements were set, one I2C was needed. During routing, pins for a second I2C
has been found which has been connected to the external connector. This way I2C can be
routed to a sensor mounted on the lower board, for example a temperature sensor. The main
peripheral has a Microchip 24AA64 EEPROM connected whose address is defined by bridged
solder pads. The main I2C is routed on a 4 pin connector, alongside with 3.3 V and GND.

39

6. Hardware Implementation
1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-17
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 3/6

Title: SaMoCon MCU Controller - Connectivity 1

File: connectors.kicad_sch
Sheet: /CONNECTORS1/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

GNDD

1
2
3
4
5
6
7
8

J6
NS25-W8P

+5V

1 2
3 4

J7
JP 2 rows

+3.3V

GNDD

GNDD

R43
3.3k

R
25

3.
3k

C25
100n

+3.3V

2

G
N

D
3

4V
C

C
5

U11
74HC1G04GW,125

R36

10k

+3.3V

R37
NC

R38
NC

GNDD
+3.3V

1

10

2
34
56
78
9

J4
DS1013-10SSIB1-B-0

GNDD

R12
2.2k

GNDD

1
2
3
4

J2

NS25-W4P

+3.3V

R11
2.2k

1B
1

3A
10

3Y
11

~{G}
12

4Y
13

4A
14

4B
15

V
D

D
16

1A
2

1Y
3

G
4

2Y
5

2A
6

2B
7

G
N

D
8

3B
9

U4
AM26LV32xD

+3.3V C24
100n

GNDD

1

10

2
34
56
78
9

J3
DS1013-10SSIB1-B-0

GNDD
+5V

GNDD

R34

10k

GNDD

GNDD

C22
100n

R393.3k
R403.3k
R413.3k

R42
NC

1B
1

3A
10

3Y
11

~{G}
12

4Y
13

4A
14

4B
15

V
D

D
16

1A
2

1Y
3

G
4

2Y
5

2A
6

2B
7

G
N

D
8

3B
9

U5
AM26LV32xD

GNDD

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

U6
ADuM1201AR

+3.3V

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

U7
ADuM1201AR

GNDD

1
2
3
4

J5
NS25-W4P

+3.3V

GND1

GND1

1
2
3
4
5

J10

NS25-W5P

LOGIC RS232

C1+
1

T2IN
10

T1IN
11

R1OUT
12

R1IN
13

T1OUT
14

G
N

D
15

V
C

C
16

VS+
2

C1-
3

C2+
4

C2-
5

VS-
6

T2OUT
7

R2IN
8

R2OUT
9

U13
MAX232CSE

VCOM
C27 1u

C301u

C291u

C28
1u

GND1

VCOM

VCOM

GND1

GNDD

CC1
1

G
N

D
10

DIR
11

V
D

D
12

CC2
2

CURRENT_MODE
3

PORT
4

VBUS_DET
5

~{VCONN_FAULT}
6

OUT1
7

OUT2
8

ID
9

U9
TUSB321

1 2

JP2

R46

820k

47k

R48
47k

GND1

RO
1

~{RE}
2

DE
3

DI
4

G
N

D
5

A
6

B
7V

C
C

8

GNDD

G
N

D
1

I/O1
2

I/O2
3

V
C

C
4

D1
PRTR5V0U2X

1
2

JP1

Ju
m

pe
r

2
op

en

1

2

G
N

D
3

4 V
C

C
5

U8
74HC1G08,125

A0
1

A1
2

A2
3

G
N

D
4

SDA
5

SCL
6

WP
7

V
C

C
8

U3
24AA64

R30

10k

R24

10k

R18

10k

1

2

G
N

D
3

4 V
C

C
5

U10
74HC1G08,125

VCOM

VCOM

GND1

VCOM

GNDD

R45
47k

VCOM

VCOM

GNDD GNDD

G
N

D
A

1

VBUS
A4

CC1
A5

D+
A6

D-
A7

SBU1
A8

CC2
B5

D+
B6

D-
B7

SBU2
B8

S
H

IE
LD

S
1

J9
USBC Connector

FB1
BLM21PG331SN1D

R47
47k

1
2

J8
NS25-W2P

C26
1u

GND1

R22

10k

R16

10k

GNDD

+5V

R
19

3.
3k

R
13

3.
3k

GNDD

R
15

10
k

R
21

10
k

+5V

R28

10k

R
33

10
k

R
31

3.
3k

R
27

10
k

USART_TX

I2C_SDA
I2C_SCL

SPI_MOSI

USART_RX

SPI_CS1

SPI_CLK
SPI_CS0

SPI_MISO

USB_VBUS

SPI_CS2

USB_D-

USB_D+

USART_RTS

IRCA_ID

IRCA_A

IRCA_MARK

UART_TX

UART_RX

IRCA_B

USB_ID

IRCB_A USART_CTS

IRCB_B

IRCB_MARK

IRCB_ID

485+
485-

I2C

RS232

in case of some failures force usb for device operation

SPI

RS485

UART (TTL Console)

IRC A

PORT on Z: DRP (dual port mode)
ID open drain

R28

10k

R16

10k

R22

10k

GNDD

GNDDU4
AM26LV32xD

1B
1

3A
10

3Y
11

~{G}
12

4Y
13

4A
14

4B
15

V
D

D
16

1A
2

1Y
3

G
4

2Y
5

2A
6

2B
7

G
N

D
8

3B
9

GNDD

J3
DS1013-10SSIB1-B-0

1

10

2
34
56
78
9

GNDD
+5V

R34

10k

GNDD

GNDD

U5
AM26LV32xD

1B
1

3A
10

3Y
11

~{G}
12

4Y
13

4A
14

4B
15

V
D

D
16

1A
2

1Y
3

G
4

2Y
5

2A
6

2B
7

G
N

D
8

3B
9

U6
ADuM1201AR

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

+3.3V

J6
NS25-W8P

1
2
3
4
5
6
7
8

J7
JP 2 rows

1 2
3 4

+3.3V

GNDD

C25
100n

+3.3V

U11
74HC1G04GW,125

2

G
N

D
3

4V
C

C
5

R36

10k

GNDD

GNDD

J4
DS1013-10SSIB1-B-0

1

10

2
34
56
78
9

GNDD

R30

10k

R24

10k

R18

10k

U10
74HC1G08,125

1

2

G
N

D
3

4 V
C

C
5

VCOM

VCOM

GND1

VCOM
U8
74HC1G08,125

1

2

G
N

D
3

4 V
C

C
5

GNDD

J9
USBC Connector

G
N

D
A

1

VBUS
A4

CC1
A5

D+
A6

D-
A7

SBU1
A8

CC2
B5

D+
B6

D-
B7

SBU2
B8

S
H

IE
LD

S
1

FB1
BLM21PG331SN1D

C26
1u

GND1

GND1

U13
MAX232CSE

C1+
1

T2IN
10

T1IN
11

R1OUT
12

R1IN
13

T1OUT
14

G
N

D
15

V
C

C
16

VS+
2

C1-
3

C2+
4

C2-
5

VS-
6

T2OUT
7

R2IN
8

R2OUT
9

C27 1u

C301u

C291u

C28
1u

GND1

VCOM

VCOM

+3.3V

U9
TUSB321

CC1
1

G
N

D
10

DIR
11

V
D

D
12

CC2
2

CURRENT_MODE
3

PORT
4

VBUS_DET
5

~{VCONN_FAULT}
6

OUT1
7

OUT2
8

ID
9

JP2

1 2

R48
47k

GND1

GNDD D1
PRTR5V0U2X

G
N

D
1

I/O1
2

I/O2
3

V
C

C
4

JP1

Ju
m

pe
r

2
op

en

1
2

Figure 6.5: Routed optical encoder with HEDL series pinout

6.1.9 SPI

A main SPI is connected to a standard Molex 8 pin connector, alongside with 3 GPIO chip
selects, 3.3 or 5 V and GND. Another SPI is routed onto the external connector, but some
signals are in conflict with 3 extra ADC channels. The user must choose between one of these
peripherals.

The main SPI incorporates a Winbond’s W25Q32JV 32 Mbit NOR flash with a separate
chip select, useful for data offloading. NOR flash memory typically exhibits higher reliability
than NAND flash due to its simpler structure and lower susceptibility to errors, while NAND
flash offers higher storage capacity. Since very high capacity is not needed NOR flash has
been selected for the other better properties.

6.1.10 Feedback from the Motors

The board has 2 connectors for incremental encoders and 2 Hall input trios at disposal.
The optical encoder connection is compatible with the HEDL encoder series, the connector
being an IDC (insulation-piercing contact) 2 × 5 socket. HEDL series connector incorporates
differential two optical phases, a differential zero cross index, grounding and 5 V power input
too. These differential signals are decoded by the AM26LV32 receiver from Texas Instruments
[25]. So called mark is used too, acting as an another user-defined helpful synchronizing signal.
The schematic of the decoder circuit is shown in figure 6.5.

Since the voltage level for the inverted signals in the disconnected state is defined by voltage
dividers, then an encoder with single ended outputs can be connected to the positive inputs.
All the inputs have a pull up in case of open drain/collector outputs. The decoded signals
from the receiver are connected to the SAMV7’s TC0 and TC2 (Timer/Counter) peripheral.

Each Hall trio was connected to the same PIO (Pararell Input/Output Controller), to make
readings faster in case of bare metal applications, because only one register reading is needed.

40

... 6.1. MCU Board

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-17
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 5/6

Title: SaMoCon MCU Controller - Connectivity 2

File: connectors2.kicad_sch
Sheet: /CONNECTORS2/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

U19
ADuM1201AR

R72
22R

R65
22k

GNDD
C59
22p

L3

1uH

R66
22k

R74
22k

C58
22p

GNDD

R73
22R

+3.3V

GNDD

GND2

+3.3V

GND2

TXD
1

V
S

S
2

V
D

D
3

RXD
4

Vio
5

CANL
6

CANH
7

STBY
8

U22
MCP2562-E-SN

GND2

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

U20
ADuM1201AR

VBUS

C62
10u

GNDD

GNDD

C57
22u

+3.3V

C55
100n

L4
470R @ 100 MHz

GNDD

R64
22k

R67
22R

C48
100n

GNDD

GNDD

C60
100n

C61
2.2u

+3.3V

R68
22R

R71
22R

R70
22R

R69
22R

R62
6k49

R55
560R

GNDD

R58
75R

R59
75R

C52
100n

TXD
1

V
S

S
2

V
D

D
3

RXD
4

Vio
5

CANL
6

CANH
7

STBY
8

U21
MCP2562-E-SN

R60
120R

GND2

C51
100n

GNDD

GNDD

1
2
3

J13
Conn_01x03

1
2

JP5
JMP 2 Open

1
2
3

J12
Conn_01x03

1
2

JP4
JMP 2 Open

GND2

C50
100n

GND2

VBUS

1

10

11
12

2
3
4
5
6
7
89

S
H

J11
RJHSE-5384

GND2

GNDD

RX

TX
1

10

11

14

15

16

2

3

6

7

89

T1
HX1188NL

GND2
R61

120R

+3.3V

GNDD

R56
75R

R57
75R

GNDD
C47

100n

VBUS

GNDD

R54
560R

R53

4k7

C46
1n (2kV)

C49
100n

VBUS

C63
10u

C54
2.2u

R86 1k

R95 1k

R89
1k

R91
1k

D5
D

D7
D

R
88

4k
7

R
85

4k
7

R92
1k

1-DAT2
1

2-CD/DAT3
2

3-CMD
3

4-VDD
4

5-CLK
5

6-VSS
6

7-DAT0
7

8-DAT1
8

SW-A
CD

SW-B/GND
G

K1
112J-TDAR-R01

R93
1k

R94
1k

1
2
3
4
5

J14
NS25-W5P

+3.3V

+3.3V
R90

1k
GNDD

D9

3x RB751V-40_R1_00001

R
84

4k
7

+3.3V

R63
22k

R
87

4k
7

R
82

4k
7

D6
D

D4
D

D8

3x RB751V-40_R1_00001

C53
100n

GNDD

GNDD

+3.3V

+5V

+3.3V

+3.3V

R80 1k

R75
22k

R76
22k

1
2
3
4
5

J15
NS25-W5P

+5V

+3.3V

R77 1k

D3
1N4148WS

R79 1k GNDDGNDD
GNDD

1

2

3

4

Y2
3225-25M-SR

V
D

D
_1

.2
1

MDIO
10

MDC
11

RXD1
12

RXD0
13

V
D

D
IO

14

CRS_DV/PHYAD[1:0]
15

REF_CLK
16

RXER
17

INTRP
18

TXEN
19

V
D

D
A

_3
.3

2

TXD0
20

TXD1
21

G
N

D
22

LED0/ANEN_SPEED
23

~{RST}
24

RXM
3

RXP
4

TXM
5

TXP
6

XO
7

XI
8

REXT
9

U23
KSZ8081RNA

GNDD

R78 10k

R
83

4k
7

C56
2.2u

R81 4k7

HALLA_2

HALLB_2

SD_CLK

HALLA_1
HALLA_0

ETH_LED

SD_DA2

SD_CMD
SD_DA3

SD_DET

CAN1_RX

SD_DA1
SD_DA0

HALLB_0

ETH_MDC

ETH_INT

ETH_EN

ETH_RXER

ETH_MDIO
ETH_CLK

ETH_RX0

ETH_TX1

ETH_RX1

ETH_TX0

ETH_PHYAD

CAN0_RX

CAN0_TX

CAN1_TX

HALLB_1

E_RX+

E_TX-

E_TX+

PHY_RX+

E_RX-

PHY_TX-

PHY_RX-

PHY_TX+

diode for fast shutdown

CAN B
120 R terminator

2.1V forward voltage (at 2 mA)

PHY INT and MDIO require external 1k

HALL B

CAN A

datasheet PHY: pinstate==low => led==high

SD Card slot

120 R terminator

HALL A

Ethernet

K1
112J-TDAR-R01

1-DAT2
1

2-CD/DAT3
2

3-CMD
3

4-VDD
4

5-CLK
5

6-VSS
6

7-DAT0
7

8-DAT1
8

SW-A
CD

SW-B/GND
G

R63
22k

GNDD

U23
KSZ8081RNA

V
D

D
_1

.2
1

MDIO
10

MDC
11

RXD1
12

RXD0
13

V
D

D
IO

14

CRS_DV/PHYAD[1:0]
15

REF_CLK
16

RXER
17

INTRP
18

TXEN
19

V
D

D
A

_3
.3

2

TXD0
20

TXD1
21

G
N

D
22

LED0/ANEN_SPEED
23

~{RST}
24

RXM
3

RXP
4

TXM
5

TXP
6

XO
7

XI
8

REXT
9

Y2
3225-25M-SR

1

2

3

4 +3.3V

GNDD

GNDD

R65
22k

L3

1uH

GND2

U22
MCP2562-E-SN

TXD
1

V
S

S
2

V
D

D
3

RXD
4

Vio
5

CANL
6

CANH
7

STBY
8

GND2
R61

120R

+3.3V

R56
75R

J11
RJHSE-5384

1

10

11
12

2
3
4
5
6
7
89

S
HR54

560R
R53

4k7

U21
MCP2562-E-SN

TXD
1

V
S

S
2

V
D

D
3

RXD
4

Vio
5

CANL
6

CANH
7

STBY
8

R60
120R

GND2

C50
100n

GND2

VBUS

J12
Conn_01x03

1
2
3

R62
6k49

C52
100n

R59
75R

VBUS
C49
100n

C46
1n (2kV)

GNDD

VBUS

T1
HX1188NL

1

10

11

14

15

16

2

3

6

7

89

GNDD

VBUS

U20
ADuM1201AR

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

+3.3V

GNDD

+3.3V U19
ADuM1201AR

VDD1
1

VOA
2

VIB
3

GND1
4

GND2
5

VOB
6

VIA
7

VDD2
8

GNDD

C58
22p

C59
22p

GNDD

R72
22R

R73
22R

R69
22R

R70
22R

R71
22R

R68
22R

+3.3V

R67
22R

L4
470R @ 100 MHz

+3.3V

+3.3VD3
1N4148WS

GNDD
R81 4k7

+3.3V

D7
D

R
88

4k
7

R
85

4k
7

R92
1k

R93
1k

R94
1k

R
84

4k
7

R
87

4k
7

R
82

4k
7

D8

3x RB751V-40_R1_00001

D6
D

+3.3V

D9

3x RB751V-40_R1_00001

R90
1k

R91
1k

R89
1k

+3.3V

R
83

4k
7

Figure 6.6: Open drain/collector output: the output is either 3.3 V or GND due to the pull up to
3.3 V. Push-pull: the voltage limitation is done by shorting the output to 3.3 V through diodes.
The shorting current is limited by series resistors.

A standard 5 pin Molex connector (5 V power, GND and 3 Hall outputs) is used. In general,
the outputs can be either push-pull or open/drain. A 5 V push-pull output could however
potentially destroy the MCU, meaning the sensor’s output voltage must be limited. The way
Hall inputs are routed is shown in figure 6.6.

6.1.11 Analog Signal Routing and Grounding

Analog signals with sensing information need to be routed with special care. It is generally
recommended to route analog signals far away from any fast digital signals. The figure 6.7
shows how some inputs to the AD converter are realised in the KiCad PCB editor. Due to a

Figure 6.7: Analog signals in an empty space of power plane.

lot of space in the power plane a piece of the plane was decided to be cut away and instead be
used to accomodate space for analog signals. There wasn’t any space on the top or bottom
plane due to the 2 × 32 header connectors.

The analog related electrical components must be connected to a stable analog grounding
potential (an analog ground). Since all the measurement is done at the MCU board, it makes
sense to realise the connection of the analog and digital ground next to the microcontroller
on the MCU board.

6.1.12 Interconnection Pinout

The interconnection between the two boards is realised by a standard 2 × 32 header pin
connector with a 2.54 mm pitch. The MCU board contains the pin connector heading down

41

6. Hardware Implementation
towards the power board and a socket heading up. The pinouts of these connectors are the
same, mirrored only, and are of SMD type, allowing us to route tracks in the inner layers.

Mentioned in 6.1.3, some pins must provide the 5 V source and the power digital ground to
power the MCU board. In general the power board may contain 3.3 V powered circuits, so
we need to route 3.3 V too, as well the 2.5 V reference. The lower board may also contain
analog circuitry so we route the analog ground too.

All 15 PWM outputs must be routed alongside with 16 ADC channels for Motor A and
Motor B. An extra I2C, GPIOs and SPI or 3 extra ADC channels are routed too. The figure
6.8 shows the pinout of the interconnection. The analog signals are surrounded by a "ground
shield" just for case.

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:
20

24
-0

1-
17

K
iC

ad
E

.D
.A

.
8.

0.
1

R
ev

:
v1

.0
.0

S
iz

e:
A

4
Id

:
6/

6

T
it

le
:

S
aM

o
C

o
n

M
C

U
C

o
n

tr
o

lle
r

-
In

te
rc

o
n

n
ec

ti
o

n

F
ile

:
in

te
rc

on
ne

ct
.k

ic
ad

_s
ch

S
he

et
:

/IN
T

E
R

C
O

N
N

E
C

T
/

20
24

þ
ÿ�

©
þ

ÿ�
`�t

���
p

�á
�nP

re
ss

l
-

b
ac

h
el

o
r

th
es

is
at

F
E

E
C

T
U

in
P

ra
g

u
e

S
up

po
rt

ed
an

d
fu

nd
ed

by
:

þÿ
�Ú

�T
�I�

A
A

V
þÿ

���
R

�,P
iK

R
O

N
s.

r.
o.

T
hi

s
w

or
k

is
lic

en
se

d
un

de
r

C
E

R
N

-O
H

L-
W

.

1

10
11

12
13

14
15

16
17

18
19

2 20
21

22
23

24
25

26
27

28
293

30
31

32
33

34
35

36
37

38
39

4 40
41

42
43

44
45

46
47

48
495

50
51

52
53

54
55

56
57

58
59

6 60
61

62
63

64

7
8

9

J1
6

P
in

H
ea

de
r

2x
32

G
N

D
D

G
N

D
A

G
N

D
A

G
N

D
A

G
N

D
D

+
3.

3V

+
5V

+
5V

G
N

D
A

1

10
11

12
13

14
15

16
17

18
19

2 20
21

22
23

24
25

26
27

28
293

30
31

32
33

34
35

36
37

38
39

4 40
41

42
43

44
45

46
47

48
495

50
51

52
53

54
55

56
57

58
59

6 60
61

62
63

64

7
8

9

G
N

D
A

G
N

D
D

G
N

D
A

G
N

D
D

G
N

D
A

G
N

D
D

G
N

D
D

G
N

D
A

+
3.

3V

A
D

C
_R

E
F

E
X

T
0

P
W

M
B

_F

P
W

M
B

_H
2

A
D

C
A

_5

P
W

M
A

_H
3

A
D

C
A

_3

E
X

T
11

E
X

T
7

P
W

M
A

_H
2

E
X

T
2

A
D

C
B

_6

E
X

T
4

A
D

C
A

_7

A
D

C
B

_7
A

D
C

_O
U

T
2

E
X

T
9

E
X

T
7

E
X

T
9

E
X

T
0

A
D

C
A

_1

E
X

T
11

A
D

C
_O

U
T

2

A
D

C
B

_3

E
X

T
2

P
W

M
B

_L
2

P
W

M
B

_L
3

E
X

T
5

E
X

T
1

A
D

C
B

_3
A

D
C

B
_5

A
D

C
B

_1

P
W

M
A

_H
1

A
D

C
A

_5
A

D
C

A
_7

E
X

T
3

A
D

C
B

_1

A
D

C
_O

U
T

0

E
X

T
4

P
W

M
B

_H
3

P
W

M
A

_H
0

P
W

M
B

_H
2

P
W

M
B

_H
0

P
W

M
B

_F

P
W

M
B

_H
1

A
D

C
A

_1
A

D
C

A
_3

P
W

M
A

_F
P

W
M

B
_H

3

A
D

C
B

_2

E
X

T
8

E
X

T
10

E
X

T
6

E
X

T
10

P
W

M
A

_L
3

P
W

M
B

_L
1

P
W

M
A

_L
2

P
W

M
B

_L
0

P
W

M
A

_L
1

A
D

C
B

_6

A
D

C
B

_0

A
D

C
B

_4

P
W

M
A

_L
1

A
D

C
A

_2

A
D

C
B

_2
A

D
C

B
_0

A
D

C
_O

U
T

0

A
D

C
B

_4

A
D

C
A

_0

P
W

M
A

_F
P

W
M

B
_L

3

A
D

C
_O

U
T

1
A

D
C

_O
U

T
1

A
D

C
A

_4
A

D
C

A
_6

A
D

C
B

_5

P
W

M
B

_H
1

P
W

M
A

_H
3

A
D

C
A

_0

E
X

T
5

A
D

C
A

_4
A

D
C

A
_6

E
X

T
3

E
X

T
1

P
W

M
A

_H
1

P
W

M
B

_H
0

P
W

M
A

_H
0

P
W

M
A

_H
2

A
D

C
B

_7

A
D

C
A

_2

E
X

T
8

P
W

M
A

_L
0

P
W

M
A

_L
3

P
W

M
B

_L
1

P
W

M
B

_L
0

A
D

C
_R

E
F

P
W

M
B

_L
2

P
W

M
A

_L
2

E
X

T
6

P
W

M
A

_L
0

T
he

se
2

A
D

C
s

ca
n

be
al

te
rn

at
iv

el
ly

us
ed

as
S

P
I

(h
en

ce
th

e
su

rr
ou

nd
in

g
gr

ou
nd

s)
If

S
P

I
m

od
e

is
se

le
ct

ed
,

th
en

th
es

e
pi

ns
ac

t
as

M
IS

O
an

d
M

O
S

I
fo

r
ou

te
r

S
P

I,
ot

he
rw

is
e

tw
o

ch
an

ne
ls

of
A

D
co

nv
er

te
r

ar
e

ac
tiv

at
ed

.

D
O

W
N

U
P

+
5V

G
N

D
A

+
3.

3V

G
N

D
D

G
N

D
A

J1
6

P
in

H
ea

de
r

2x
32

1

10
11

12
13

14
15

16
17

18
19

2 20
21

22
23

24
25

26
27

28
293

30
31

32
33

34
35

36
37

38
39

4 40
41

42
43

44
45

46
47

48
495

50
51

52
53

54
55

56
57

58
59

6 60
61

62
63

64

7
8

9

Figure 6.8: The interconnection pinout between the MCU and the power stage board.

6.1.13 PCB Realisation

Most of the traces are used for digital signals, so there is no explicit need for power consider-
ations. The PCB was designed with 4 layers in mind, the outer layers are used for signals
and the inner layers being used as a ground and power plane. The copper’s thickness is not
crucial in terms of power, but rather in terms of impedance matching of several differential
signals like Ethernet and USB.

The positions of connected peripherals were chosen in such a way that it was as close as
possible to the microcontroller’s pins. Mounting M3 holes were put into each corner to secure
a lower power board to this board. The board’s shape is a rectangle with dimensions of
110 × 70 mm.

6.2 Power Stage Board

This section mentions the hardware implementation details of the first power board for the
SaMoCon controller featuring IFX007 half bridge switches. In general, the power board
should be interchangable, but should always contain a 5 V step down to power the higher

42

...................................... 6.2. Power Stage Board

Ethernet
100 / 10
Mbit

I2C +
3.3 V

USB-C
Host,
Device

UART +
3.3 V

SD Card

2x Hall
trios in

SWD
debug

2x encoder
inputs

SPI + 3 CS
3.3 or 5V

RS232
RS485

 2x
CAN FD

Winbond
SPI flash

External GPIOS, PWMs, ADCs, down and up mirror

5V to 3.3V
 buck

24xxxx EEPROM

KSZ8081
Ethernet
PHY

2x CAN FD
drivers Microchip

ATSAMV71Q21B
ARM Cortex M7
@ 300 MHz
2 MB flash
384 kB SRAM

5V power
2.5 V reference

Figure 6.9: The depiction of the MCU board and its peripherals

control board. The voltage rail and the voltage rail for the control board are both 24 V. The
continuous current should be 10 A at minimum, and peak 20 A should be possible too.

The board must perform the current measurement and amplification. These analog signals
are then processed by the MCU board placed above.

6.2.1 Power Components

The power board features a 3 pin power connector, one pin being the common ground pin,
the other ones are the positive voltage rails, one for the MCU board and the other for the
motors. Each positive rail has an overvoltage protection diode and the rated voltage for both
rails is 24 V.

The used buck regulator IC is AOZ1284 [1], again used in accordance with datasheet
recommendations, shown in figure 6.10. We suppose the total power consumption of the power
board should be around 0.5 A, the MCU board’s USB power switch handles 1 A continous at
max ([1] Recommended Operating Conditions) and we suppose the expanding board consumes
another 1 A. The IC provides up to 4 A which is enough for our requirements.

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2024-01-16
KiCad E.D.A. 8.0.1

Rev: v1.0.0Size: A4
Id: 2/4

Title: SaMoCon Power Board - Powers for ICs, Buck

File: conn_pwr_input.kicad_sch
Sheet: /CONNECTORS + POWER INPUT/
2024 þÿ�©þÿ�`�t���p�á�nPressl - bachelor thesis at FEE CTU in Prague

Supported and funded by: þÿ�Ú�T�I�AAV þÿ���R�,PiKRON s.r.o.
This work is licensed under CERN-OHL-W.

C16
100n

V
-

4
V

+
8

U9C
MCP602

C18
100n

+3.3V+3.3V

V
-

4
V

+
8

U6C
MCP602

TP6 TestPoint

GNDD

C13
220u

GNDDGNDD

C15
220u

C21
100n

+5VP

L2
L

+5V

C9
10u

GNDD GNDA

TP5
TestPoint

TP4
TestPoint

GNDD

TP1
TestPoint

GNDA

C23
100n

V
-

4
V

+
8

U11C
LM2903

GNDA
GNDA

V
-

4
V

+
8

U1C
MCP602

C26
100n

+3.3V

GNDA

+5V

V
-

4
V

+
8

U3C
LM2903

R1
6.2k

C14
100n

GNDA

V
-

4
V

+
8

U5C
LM2903

GNDA

V
-

4
V

+
8

U8C
LM2903

C20
100n

+5V

C17
100n

+5V

+3.3V

R8
56k

GNDA

C2
100n

C5

100u

GNDD
D5

SMCJ30A

GNDD

GNDD

D1

SMBJ26A

C4

100u

1
2
3

J1 XY2500V-D(5.08)-3PIN

GNDA

GNDD

GNDD

C8

100n (24V+)

D3

Green LED

C10
100n

GNDD

TP3
TestPoint

R9
100k

LX
1

BST
2

GND
3

FSW
4

COMP
5

FB
6

SS
7

EN
8

VIN
9

U2
AOZ1284PI

C11
10n

GNDD

GNDA GNDA

C1
100n

1

-
2

+
3

U1A
MCP602

R5
1.5k

+5VP+3.3V

C3
10u

+3.3VP
L1
L

C27
100n

R2
2.2k

D2
B360B-13-F

R7

22k

C6

100u

C7

100u

R3
2.2k

TP2
TestPoint

R4
2.2k

R6 1k

+
5

-
6

7

U1B
MCP602

GNDA GNDA

GNDA

+3.3V

L3
22u

C28
100n

GNDA

V
-

4
V

+
8

U4C
MCP602

V
-

4
V

+
8

U10C
MCP602

C12 100n

C24
100n

V
-

4
V

+
8

U7C
MCP602

+3.3V

V
-

4
V

+
8

U13C
MCP602

C22
100n

GNDD
+3.3V

R11

10k

V
-

4
V

+
8

U12C
MCP602

GNDA

GNDD

GNDA

C25
100n

R10
56k

GNDA

GNDD

V
-

4
V

+
8

U14C
MCP602

+3.3V

+5V

D4

B360B-13-F

+3.3V

C19
100n

LSS_V_BIAS

ADC_REF

ADC_REF

V24_PWR

COMP_REF

1.25V bias

Trigger at 0.65V
Vref = 2.5V
2.2 / 8.4 * 2.5 = 0.654762 V

R10
56kGNDD

D4

B360B-13-F

L3
22u

GNDD

C13
220u

GNDDGNDD

C15
220u

C16
100n

L2
L

+5VP+3.3VP
L1
L

C6

100u

C7

100u

C5

100u

D5

SMCJ30A

GNDD

D1

SMBJ26A

C4

100u

J1 XY2500V-D(5.08)-3PIN

1
2
3

GNDD

GNDD

C8

100n (24V+)

D3

Green LED

C10
100n

TP3
TestPoint U2

AOZ1284PI

LX
1

BST
2

GND
3

FSW
4

COMP
5

FB
6

SS
7

EN
8

VIN
9

Figure 6.10: The 24 V to 5 V regulator circuit on the power board

43

6. Hardware Implementation
The IFX007 switches and the buck regulator share the digital ground, while the integrated

circuits used for analog sensing require a stable analog ground. The analog ground potential
is provided by the upper MCU board (see 6.8) where it is also connected with the digital
ground. All the analog circuitry powered from 5 V or 3.3 V (provided by the MCU board) is
first filtered with a LC filter. The power rail for the IFX007 switches contains decoupling
electrolytic capacitors.

6.2.2 Current Sensing and Fault Generation

Already mentioned in the section 5.3.2, we add a shunt resistor to ground from which the
motor’s winding current should be measured. The IFX007 IS output will be used for the
measurement of average current. We must compute the values shown in the figure 5.6.

Shunt L Current

The reason we use a differential amplifier is due to different ground potentials, because the IS
is connected to the analog ground, while the shunt is connected to the digital power ground.
We set VBias in the middle of analog reference voltage, which is 1.25 V. This voltage is obtained
by choosing 1:1 voltage divider with a buffer to lower the output impedance of the divider.

Rs was chosen to be 10 mΩ, because higher resistance values would lead to big power losses.
The power loss of this at 10 A is

P = I2R = 1 W, (6.1)

a 2512 3 W resistor has been chosen. If I = 10 A, then VRS = 0.1 V. To use the whole
ADC bandwidth, we amplify the voltage by at least 10 ×. The output voltage formula for
differential amplifier shown in figure 5.6 is (supposing there are only two values R3 and R4)

VOut = R4
R3

VRS + VBias. (6.2)

We select R3 = 1 kΩ and R4 = 10 kΩ.

IS Current

Reffering to the figure 5.5, we need to set a threshold value indicating a fault. This threshold
value should be equal to the point where I = 20 A. Anything above this threshold is classified
as a fault. First, we need to set the RIS value. Referring to Table 11 in [8], the maximum
analog sense current in fault condition is IIS(lim) = 6.1 mA. We need to make sure the voltage
drop on RIS won’t be higher than 3.3 V to not damage the operational amplifier, powered
from the 3.3 V rail. We choose a RIS = 510 Ω resistor from the E24 series. The maximum
voltage drop across this resistor is

VIS(lim) = 3.111 V < 3.3 V. (6.3)

The differential current sense ratio in static on-condition is on average (Table 11 [8])

dIL
dIS

= 19500. (6.4)

44

...................................... 6.2. Power Stage Board

From that we compute the threshold value for the comparator at I = 20 A:

Vth = 20
19500 · 510 V = 0.52 V. (6.5)

Looking back in the datasheet, the differential ratio varies quite significantly and it also has
quite a big current offset. This means we set Vth a bit higher, for example at Vth = 0.655 V,
provided by a voltage divider made out of 2.2 kΩ and 6.2 kΩ resistors. This compare value is
again amplified by a buffer to lower the output impedance.

We need to set R1 and R2 resistors for the high side amplification too. Since all quantities
in this current sensing method are quite uncertain, we choose R1 = 4.7 kΩ and R2 = 1 kΩ,
yielding a gain of 5.7 for a noninverting amplifier.

The last value that needs to be set is the value of CIS. Initally, this value was supposed to
be in the range of hundreds of pF, so only the high frequency noise would be filtered but with
fast rising times, so current could be measured even during small PWM duty. Unfortunately,
during testing I’ve spotted a high fault rate on the comparator’s output due to fast voltage
spikes on RIS, which were not caused by high current but always after switching off the PWM
signal. The reasons of this problem are unknown to me and will require further investigation.
Currently CIS = 22 nF, giving

1
τIS

= 1
RISCIS

.= 89 kHz. (6.6)

All these values mentioned in this section are supposed to be the first guess of such values.
A place for capacitors in the operational amplifiers’ feedbacks has been made on the PCB, so
it can be tested whether these capacitors have a good impact on the noise.

6.2.3 Used Analog Components

The used operational amplifiers are MCP6022 from Microchip, a low offset and rail-to-rail
operational amplifier [13]. The used comparator is LM2903 from Texas Instruments [26],
a dual differential comparator with open-drain outputs. That means all comparators from
4 half bridges can be chained together. If at least one switch faults, the line goes low.

6.2.4 PCB realisation

The main design rule is to have the back side of the PCB flat with no components, because
we want to route the outputs of IFX007s for the motor phases on this side of the board. The
IFX007 output with an exposed solder pad is connected to a high area copper, on which a
heatsink can be placed to cool down the switches. The output of IFX007 is routed on the
back side with the help of high diameter vias.

The left part of the PCB is left for the buck regulator. The lower part is occupied by the
connectors and power switches and the upper part features the operational amplifiers and
comparators. Holes are needed for standoffs to hold the upper MCU board. The PCB is of a
rectangular shape, the dimensions being 115 × 88 mm. Since the lower board contains the
power connectors, one side must be a bit longer so the MCU board does not cover them.

The board is made out of 4 layers like the MCU board, but the current to the switches is
routed on the upper side and the power plane. The ground is not routed on any outer layer,
as it is only in the inner ground layer. The current sensing traces are routed in the inner

45

6. Hardware Implementation

Power GND 24 VAnalog GND Filtered 3.3 V 5 V

Ground Plane Power Plane

Figure 6.11: The inner layers of the power board (taken from KiCad)

layers, as it is not possible to route them on the outer layers. A cutout of copper is made
near the current sensing traces to minimalize interference.

The upper part ground is disconnected from the power ground, as the analog ground
connection to the whole ground is provided by the upper MCU board. The inner ground layer
in the upper part is entirely the analog ground. Since the upper layer is mostly occupied by
amplifiers and traces, the inner layers are mostly ground or filtered 3.3 or 5 V, some tracks
need to be routed on the back side of the PCB. The figure 6.11 shows the filled copper areas
of inner layers.

6.3 Design flaws and Needed Fixes

During the PCB design I made several mistakes which needed a quick fix during the electronics
bringup. Here is the list of the most severe flaws which need to be fixed in the second design
iteration:. I had to draw the footprints of some KiCad footprints myself because of their absence in

the KiCad library. However, I made the hole diameters of some parts small, so I needed
to file the pins to reduce their diameters.. I made a mistake when routing the KSZ8081 PHY. I routed the CRSDV pin to the
SAMV7’s GCRS pin because of the name similarity. However, I was supposed to route
this pin to the GRXDV pin, when working in the RMII mode. The fix was to cut the
PCB traces and reroute using a thin wire..The galvanically isolated communication interfaces on our board require a small switching
power supply. For unknown reasons, I made a mistake when placing these supplies as

46

................................. 6.3. Design flaws and Needed Fixes

they have a mirrored pinout on the PCB. When soldering, I had to rotate them by 180
degrees.. I did not galvanically isolate the Ethernet by connecting the ground before the magnetics
to the common ground. This may have a bad impact on analog measurements..The left motor (Motor A) switches are driven by PWM1 and the currents are measured
by the AFEC0 peripheral and vice versa for the right motor (Motor B) - PWM0 and
AFEC1. We need the ADC measurements to be triggered by the PWM. However, it
turned out the AFEC0 is synchronized only by PWM0 (analogous to AFEC1). The
simplest fix was to reroute the traces on the power board using a thin wire, as rerouting
the MCU board would be hard, because of MCU’s close proximity to the connector.

4 phases A 4 phases B

5 V power out,
PWM inputs,
output of opamps

GND, VPWR, VCTRL

2
4

V

t
o

5
V

b
u
c
k

Pair of 4
Infineon IFX007s

Half bridges with
integrated HS and
LS drivers

Opamps for current
measurement of HS
and LS switches.
Comparators used
for fault signal
generation. 2x

MCP6022
MCP6022LM2903 LM2903

MCP6022 MCP6022

Figure 6.12: The power board showcase.

47

6. Hardware Implementation

Figure 6.13: The MCU and power stage boards forming the motion controller.

48

Chapter 7
NuttX Adaptation

In this chapter, the configuration of the NuttX setup is described. During the tuning of
pysimCoder applications, some features in the NuttX SAMV7 drivers were implemented to
make everything work properly. The contributions to NuttX project hosted on GitHub are
also documented here. The overall NuttX configuration can be viewed on my GitHub NuttX
fork 1 on the samocon-branch branch.

7.1 NuttX Bringup

The first step was to configure NuttX to make the most needed peripherals work. Namely, for
basic functionality and pysimCoder experiments, these peripherals needed to be configured:.TTL console on UART3 peripheral for console interfacing,. Ethernet on GMAC peripheral for UDP/IP and TCP/IP stacks,. PWM0 and PWM1 peripherals for motor control,.AD converters on AFEC0 and AFEC1 peripheral for current measurement,.TC0 and TC2 peripherals (Timer/Counter) quadrature decoders for position feedback,. Parallel Input/Output controller for pinmuxes and GPIOs (Hall inputs, interrupt requests,

IFX007 INH enable outputs).

I managed to configure the peripherals listed below which aren’t crucial for our experiments
but are important in terms of connectivity for the future usage:. I2C with communicating with the 24xxxx EEPROM memory,.MCAN0 and MCAN1 peripherals,. USART2 peripheral connected to RS232 and RS485 converters.

Unfortunately, in the time of writing this thesis, I had not managed to configure the USBHS
peripheral for the USB communication. Also I didn’t have time to make the HSMCI peripheral
and the SPI peripheral to work.

1https://github.com/zdebanos/nuttx

49

https://github.com/zdebanos/nuttx

7. NuttX Adaptation..
7.1.1 Custom BSP

To build NuttX, a custom BSP (board support package) was needed. NuttX has the support to
have the BSP related sources in a different directory, but I created a new samocon directory
in the boards/arm/samv7 directory.

The samv71-xult BSP for the SAMV71 Xplained Ultra Evaluation Kit was used as the
baseline, located in the boards/arm/samv7/samv71-xult directory. However, the Microchip’s
evaluation board contains many components which are not present on my board. Also,
the pinouts of some peripherals are different. The first step was to edit the two files
containing defines, including the pinouts. From now on, I will refer to files relative to the
boards/arm/samv7/samocon directory if not specified otherwise.

Firstly, I renamed the src/samv71-xult.h to src/samocon.h to fit into my BSP and I
also renamed the #include statements in all src files depending on this header file. This file
contains all pin defines that are needed only by the board specific logic, for example Ethernet
related GPIOs, shown on figure 7.1.

#define GPIO_EMAC0_INT (GPIO_INPUT | GPIO_CFG_PULLUP | GPIO_CFG_DEGLITCH |\
GPIO_INT_FALLING | GPIO_PORT_PIOC | GPIO_PIN25)

#define IRQ_EMAC0_INT SAM_IRQ_PC25
#define GPIO_EMAC0_LINK_LED (GPIO_OUTPUT | GPIO_PORT_PIOB | GPIO_PIN13)

Figure 7.1: Ethernet related GPIOs and GPIO PHY’s IRQ

The figure 7.1 also shows how the SAMV7’s pin behaviour is configured with the help of
bit masking. The defines of the GPIO flags can be found in this NuttX header file 2. If
a pin is not desired to be configured as a GPIO but rather as the input or an output of a
different peripheral, GPIO_{ALTERNATE, PERIPHA, PERIPHB, PERIPHC, PERIPHD} must be
used. Often the peripheral outputs needn’t to be defined since the defines are already in
this header file 3. The KSZ8081 PHY has an interrupt pin indicating activity which is also
configured in this file. These Ethernet related defines are used by the src/sam_ethernet.c
functions, taken from the samv71-xult BSP.

The second file which needed to be edited is the include/board.h header. Files in the
include directory are used by the files in the arch dependant drivers for SAMV7. Here the
GPIO_UART3_TXD symbol was defined to GPIO_UART3_TXD_2 to make the basic TTL console
working. Other than that, MCAN1 peripheral pins are defined here and also all the used
GPIOs pins for IRC marks and Hall sensor input GPIOs. I chose to define these GPIOs pin
here because in the future the include/board.h file can be imported to a custom application.
Last but not least, pins driving the IFX007 halfbridge switches are also configured. While
the H pins are configured as pins used by the PWM peripherals (except for PWM1 CH2, as
mentioned earlier in 6.1.2), the L pins are configured as GPIOs by default to drive the INH
pin if CONFIG_SAMV7_PWMx_CHy_COMP is not selected.

2arch/arm/src/samv7/sam_gpio.h
3arch/arm/src/samv7/hardware/samv71_pinmap.h

50

..................................... 7.2. Project Configuration

7.2 Project Configuration

All the BSP directories include a configs directory, as well the samv71-xult BSP from
which I started using most basic configs/nsh/defconfig config copied to my samocon BSP.
I could have started with a more complex configuration but I have decided not to do so,
because from configuring step by step I was able to catch all misconfigurations.

The project is configured by the command mentioned in 2.3. In the time of writing this
thesis, a configs/test is the currently used development configuration. After configuring,
running make menuconfig loads the TUI shown on figure 7.2.

Figure 7.2: The start menu of configuration

TTL console was the first peripheral that needed to be configured. To set up the UART3
peripheral and the upperhalf console driver following options must be selected:

CONFIG_SAMV7_UART3=y,
CONFIG_SERIAL=y,
CONFIG_STANDARD_SERIAL=y,
CONFIG_UART3_SERIAL_CONSOLE=y.

By default, the ATSAMV71Q21B microcontroller boots from bootloader located in the
internal ROM, however we want NuttX to boot from flash memory. To do so, a General-
purpose Non volatile Memory Bit 1 must be set to 1 ([14], table 11-4). The process of setting
this bit is described in 7.3. NuttX memory ranges must be configured too:

CONFIG_BOOT_RUNFROMFLASH=y,
CONFIG_RAM_START=0x20400000,
CONFIG_RAM_SIZE=393216.

This controller features a lot of peripherals and only Ethernet, PWM and ADCs will be
discussed, since these are the most crucial peripherals for our experiments.

51

7. NuttX Adaptation..
7.2.1 Ethernet and IP Configuration

The NuttX EMAC drivers must be configured to communicate with the KSZ8081 PHY. It
may be useful to enable the phytool application. This tool can be used to get the PHY’s
register readings from the MDIO interface Also it can be used to check if the PHY is alive:

CONFIG_SYSTEM_MDIO=y.

To configure EMAC lowerhalf driver, select these options:

CONFIG_SAMV7_EMAC=y, CONFIG_SAMV7_EMAC0=y,
CONFIG_SAMV7_EMAC0_PHYADDR=0,
CONFIG_SAMV7_EMAC0_RMII=y,
CONFIG_SAMV7_EMAC0_AUTONEG=y,
CONFIG_SAMV7_EMAC0_PHYSR=30,
CONFIG_SAMV7_EMAC0_PHYSR_ALTCONFIG=y,
CONFIG_SAMV7_EMAC0_PHYSR_ALTMODE=0x0007,
CONFIG_SAMV7_EMAC0_PHYSR_10HD=0x01,
CONFIG_SAMV7_EMAC0_PHYSR_100HD=0x02,
CONFIG_SAMV7_EMAC0_PHYSR_10FD=0x05,
CONFIG_SAMV7_EMAC0_PHYSR_100FD=0x06.

The PHY address is determined by PHYAD[2:0] pins ([12], figure 2-1 and table 2-1). In
our case the resistor values are set that PHYAD[2:0] = 000. Referring to the table 4-2 in the
datasheet [12], the autonegotiation status register address is 0x1E = 3010 (PHY Control 1).
Since the mode indication is in the last three bits, the PHY Mode Mask is set to 0x7. The
half and full duplex values are the values in the Operation Mode Indication field.

As the PHY has the interrupt pin connected to ATSAMV7’s PC25 pin (defined in 7.1), the
interrupts on GPIOC pins must be enabled:

CONFIG_SAMV7_GPIO_IRQ=y,
CONFIG_SAMV7_GPIOC_IRQ=y.

The Ethernet is configured, higher layers of the IP stack can be configured:

CONFIG_NET=y, CONFIG_NETDB_DNSCLIENT=y, CONFIG_NETDEV_PHY_IOCTL=y,
CONFIG_NETDEV_STATISTICS=y, CONFIG_NETINIT_DHCPC=y, CONFIG_NETINIT_DNS=y,
CONFIG_NETUTILS_DHCPC_HOST_NAME="samocon-nuttx", CONFIG_NETUTILS_DISCOVER=y,
CONFIG_NETUTILS_TELNETC=y, CONFIG_NETUTILS_TELNETD=y,
CONFIG_NET_ALLOC_DEVIF_CALLBACKS=1, CONFIG_NET_ARP_SEND=y,
CONFIG_NET_BROADCAST=y, CONFIG_NET_ETH_PKTSIZE=1518, CONFIG_NET_ICMP=y,
CONFIG_NET_ICMP_ALLOC_CONNS=3, CONFIG_NET_ICMP_NPOLLWAITERS=2,
CONFIG_NET_ICMP_SOCKET=y, CONFIG_NET_IPFRAG=y, CONFIG_NET_LOCAL=y,
CONFIG_NET_LOCAL_SCM=y, CONFIG_NET_ROUTE=y, CONFIG_NET_STATISTICS=y,
CONFIG_NET_TCP=y, CONFIG_NET_TCPBACKLOG=y,CONFIG_NET_TCPPROTO_OPTIONS=y,
CONFIG_NET_TCP_NPOLLWAITERS=3, CONFIG_NET_TCP_WRITE_BUFFERS=y,
CONFIG_NET_UDP=y, CONFIG_SYSTEM_PING=y.

These options turn on the DNS client, the DHCP client and UDP/IP and TCP/IP stacks.
Also, the ping command is turned on, along with telnet. In that case, TTL console is not
needed.

52

..................................... 7.2. Project Configuration

7.2.2 PWM and ADC Configuration

The PWM peripheral has undergone changes (described in 7.4) so this config works only
with the newest mainline NuttX. For our controller, we need to enable all the H channels
except for the CH2 where the only H channel pin is not available, as pointed out in 6.1.2.
The only way to make this channel to work is to enable the L pin only and configure it later
in the application to behave as an inverted L output. All channels must be configured as
synchronous, i.e. all the channels share the same timebase and start at the same time.

The AFEC0 and AFEC1 peripherals must be configured too. In case of motor control, we
want the AD converters to be triggered by the PWM signal. When measuring the current
passing through the high side transistor, the measurement must be triggered in the beginning
of the period. In case of the low side transistor, we want the measurement as late as possible
before new PWM period start. AFEC0 is triggered by PWM0 and AFEC1 is triggered by
PWM1.

Let’s mention the configuration options for PWM1. We enable the PWM1 first, enable
all the used 4 channels, make every channel synchronous (the CH0 provides timebase for
every other channel) and enable only the L output for CH2. Turn on the EVENT0 output for
AFEC1 trigger and set the TRIG0 to 92 %.

CONFIG_SAMV7_PWM1=y
CONFIG_SAMV7_PWM1_SYNC=y
CONFIG_SAMV7_PWM1_CH0=y
CONFIG_SAMV7_PWM1_CH1=y
CONFIG_SAMV7_PWM1_CH1_SYNC=y
CONFIG_SAMV7_PWM1_CH2=y
CONFIG_SAMV7_PWM1_CH2_LONLY=y
CONFIG_SAMV7_PWM1_CH2_SYNC=y
CONFIG_SAMV7_PWM1_CH3=y
CONFIG_SAMV7_PWM1_CH3_SYNC=y
CONFIG_SAMV7_PWM1_EVENT0=y
CONFIG_SAMV7_PWM1_SYNC=y
CONFIG_SAMV7_PWM1_TRIG0=92

The TRIG0 depends on the speed of the AD converter conversion. Reffering to section
in 51.6.1 in [14], the conversion is given by three time values which depend on the clocking
period tAFE: the startup time (tstart), the conversion time (tconv), which is always 23tAFE, the
tracking time (ttrack) and the transport time (ttrans). In the AFEC_MR description (51.7.2)
the ttrans is selected by the TRANSFER[1:0] bits and by default ttrans is equal to 9tAFE. Also
the tracking time is always 15tAFE (specified by TRACKTIM[3:0]). Since ttrack < tconv, we
can refer to Figure 51-3 to calculate the time needed to convert N channels:

ttotal = tstart + N(tconv + ttrans). (7.1)

Looking in the source code of NuttX AFEC drivers 4, the STARTUP[3:0] field in AFEC_MR
is set that tstart = 64tAFE and the prescaler (PRESCAL[7:0]) is set to 2. A simple rearranging

4static void afec_reset(struct adc_dev_s *dev) in arch/arm/srv/samv7/sam_afec.c

53

7. NuttX Adaptation..
gives (fperiph = 150 MHz):

fAFE = fperiph
PRESCAL + 1 = 50 MHz. (7.2)

Assume measuring N = 4 L channels. We can now compute the total time of conversion:

ttotal = 64tAFE + 4 · 31tAFE = 188tAFE = 3.76 µs. (7.3)

This means the conversion must be launched at least by ttotal plus a little margin before the
start of another PWM period (tPWM = 1/20 kHz):

TRIG0 = tPWM − ttotal
tPWM

.= 0.92 (7.4)

Even though we have 11 channels at disposal in total, we currently focus on measuring
only the 4 L channels since we do not care about the measurements on the other channels.
Measuring as late as possible allows us to use as much duty cycle bandwith as possible.

Following options must be turned on to configure AFEC1, the options are analogous to
AFEC0. We must enable the trigger from the PWM1 peripheral and the DMA transmission
of completed conversions too:

CONFIG_SAMV7_AFEC=y
CONFIG_SAMV7_AFEC_PWMTRIG=y
CONFIG_SAMV7_AFEC_DMA=y
CONFIG_SAMV7_AFEC_DMASAMPLES=2
CONFIG_SAMV7_AFEC1=y
CONFIG_SAMV7_AFEC1_RES=0
CONFIG_SAMV7_AFEC1_PWMTRIG=y
CONFIG_SAMV7_AFEC1_PWMEVENT=0.

The number of DMA samples could be bigger, but for the purpose of not breaking things up,
I kept this value for now.

7.2.3 Initialization and Registration of Peripherals

The peripherals are interfaced using system calls on file descriptors. The BSP logic must
first register the peripherals as /dev files. This is, most of the time, done using initialization
functions that come from the lowerhalf part of the driver. The lowerhalf driver usually returns
a pointer to an upperhalf related driver struct containing a pointer to a private lowerhalf
structure of the related driver. The returned upperhalf pointer is then passed to a registration
function, creating the desired file.

Examples of file registrations are in the samocon BSP directory. Most of the logic is taken
from the samv71-xult.

7.2.4 Tickless Mode

By default, a NuttX configuration uses a periodic timer interrupt that drives all system
timing. The timer is provided by architecture-specific code that calls into NuttX at a rate

54

... 7.3. Flashing

controlled by CONFIG_USEC_PER_TICK. The default value of CONFIG_USEC_PER_TICK is 10000
microseconds which corresponds to a timer interrupt rate of 100 Hz ([28], Tickless OS).

While this is reliable way to clock the scheduler, the problem is the time resolution. This way,
the smallest timeslice NuttX can measure is CONFIG_USEC_PER_TICK. While this configuration
option may be lowered, it may lead to overhead if high frequency is selected, because each
time the scheduler must be polled if anything needs to be done.

The better way is to configure the system in a tickless mode, where two timers are used.
The first timer is a oneshot interval timer. It becomes event driven instead of polled: The
default system timer is a polled design. On each interrupt, the NuttX logic checks if it needs
to do anything and, if so, it does it. Using an interval timer, one can anticipate when the
next interesting OS event will occur program the interval time and wait for it to fire. When
the interval time fires, then the scheduled activity is performed ([28], Tickless OS).

The second timer is a freerunning timer where each counter increment corresponds to the
smallest measurable timeslice. If the timeslice is small, high precision delays can be made,
useful especially in fast periodic sampling. It is possible to combine the freerunning and
oneshot timer into one timer by selecting CONFIG_SCHED_TICKLESS_ALARM.

7.3 Flashing

To flash the microcontroller, the OpenOCD application is used to flash and debug the processor.
When flashing a new ATSAMV72Q21B chip, the GPNVM1 bit must be set to 1, so the
microcontroller can boot from the flash memory instead of ROM, as shown in the figure 7.3.

openocd -f interface/stlink.cfg -f target/atsamv.cfg \
-c ’set CHIPNAME atsamv71q21’ \
-c init -c targets \
-c ’reset halt’ \
-c ’atsamv gpnvm set 1’ \
-c ’reset run’ -c shutdown

Figure 7.3: Setting a GPNVM1 bit using STLink and OpenOCD.

Afterwards, the flashing of the microcontroller can be done by usin an ARM compatible
SWD tool, like STLink. Command in figure 7.4 shows how to run OpenOCD with STLink to
flash the microcontroller on the SaMoCon board.

7.4 Contributions to Mainline

Several things needed to be implemented in the quadrature decoder lowerhalf driver of the
Timer/Counter peripheral in 5, introducing a better way to handle index counting and range
extension to 32bit of the 16bit internal counter.

Also, changes needed to be made to the PWM lowerhalf driver in 6, the biggest change
being the feature of synchronized channels.

5arch/arm/src/samv7/sam_qencoder.c
6arch/arm/src/samv7/sam_pwm.c

55

7. NuttX Adaptation..
samocon-flash.sh file:
| #!/bin/sh
| if [$# -ne 1]; then
| echo "Usage: samocon-flash.sh [bin name]"
| exit 1
| fi
|
| prog_name=$1
| openocd -f interface/stlink.cfg -f target/atsamv.cfg \
| -c "set CHIPNAME atsamv71q21; reset_config none separate;
| program $prog_name 0x400000; reset; exit"

$ samocon-flash.sh nuttx.bin

Figure 7.4: Flashing using STLink and OpenOCD.

7.4.1 Quadrature Decoder Driver

The internal counter of the Timer/Counter peripheral is decremented or incremented according
to the incoming A and B encoder signals. The reading from the internal counter returns the
number of optical signals. The block scheme of quadrature decoder logic is shown in the
figure 7.5.

However, the default Timer/Counter channels are only 16bit. The first task is to extend
the value read from 16bit to an internal 32bit software variable because the 16bit range is not
enough for fast rotating motors. Another problem arises from the datasheet recommended
quadrature decoder settings which causes the CH0 to be cleared by an incoming index signal,
while incrementing CH1 by one. An interrupt can be triggered when the index pulse comes.

During the motor’s homing procedure, we need to precisely catch the index signal. The
best solution would be to perform the counting of optical signals and capture the channel’s
counter when the index pulse comes. However, the default settings make the implementation
of this method not straightforward and getting this into NuttX would require some hacks. It
makes sense to configure the TC peripheral such that the counter’s value is captured when an
index pulse comes.

Fortunately, the TC peripheral can be set to capture the value on a incoming index
signal. The counter is zeroed due to the ABETRG bit and the ETRGEDG bits, which are
recommended by the datasheet, in the TC_CMR register ([14], 49.7.2). This way, if an
edge appears on the TC’s input, the counter is zeroed. Our way is to not set the previously
mentioned bits but use the capture into the TC_RA and TC_RB registers when an edge
appears. Two capture registers must be used due to their exclusive access. The loading can
be configured by setting the LDRA and LDRB bits in the TC_CMR register. The loading of
the TC_RA or TC_RB register is indicated by the LDRAS and LDRBS bits respectively in
the TC_SRx register.

Since the capture is done on hardware, the polling of TC_SRx is sufficient. If a capture
flag is set, the reading of TC_RA or TC_RB is made, containing the counter’s value when
the index signal was caught. With each read, the counter value is read and an extension to
32bits is made.

56

................................... 7.4. Contributions to Mainline
 SAM E70/S70/V70/V71

Timer Counter (TC)

 Complete Data Sheet
© 2023 Microchip Technology Inc. and its subsidiaries

DS60001527H - 1498

Figure 49-17. Predefined Connection of the Quadrature Decoder with Timer Counters

Timer Counter
Channel 0

1

XC0

TIOA

TIOB

Timer Counter
Channel 1

1

XC0

TIOB

QDEN

Timer Counter
Channel 2

1

TIOB0
XC0

1
1

SPEEDEN

1

XC0

Quadrature
Decoder

(Filter + Edge
Detect + QD)

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

TIOB1

TIOA0

Index

Speed/Position

Rotation

Speed Time Base

Reset pulse

Direction

PHEdges QDEN

49.6.16.2 Input Preprocessing
Input preprocessing consists of capabilities to take into account rotary sensor factors such as
polarities and phase definition followed by configurable digital filtering.

Each input can be negated and swapping PHA, PHB is also configurable.

TC_BMR. MAXFILT is used to configure a minimum duration for which the pulse is stated as valid.
When the filter is active, pulses with a duration lower than (MAXFILT +1) × tperipheral clock are not
passed to downstream logic.

The value of (MAXFILT +1) × tperipheral clock must not be greater than 10% of the minimum pulse on
PHA, PHB or index when the rotary encoder speed is at its maximum. This speed depends on the
application.

Figure 7.5: Timer/Counter quadrature decoder logic (Figure 49-17 in [14])

During the development of PiKRON motor controller based on the Teensy-4.1 board [22],
a QEIOC_GETINDEX ioctl call has been introduced alongside with a qe_index_s struct to
perform this index capturing task. The SAMV7’s driver now supports this call, serving as a
getter for the actual position, the last index value alongside of the number of caught indexes.

7.4.2 PWM Driver Changes

PWM Polarity

During the testing of pysimCoder applications, I’ve spotted an unwanted logical high default
value when the PWM output was off. The reason was the SAMV7’s DPOLI (disabled
channel’s polarity) bit in the PWM_CMRx register. With that, a decision was made to
include uint8_t dcpol attribute in the pwm_chan_s and pwm_info_s structs (located in 7).
This attribute defines the default state of the PWM channel when it is off. With that, the
DPOLI bit setting was implemented into the lowerhalf SAMV7 PWM driver.

Only L Output

This commit allows the activation of only the channel’s L output. The selection is done in
Kconfig and the selection then configures the SAMV7’s pinmux such that the L output is

7include/nuttx/timers/pwm.h

57

7. NuttX Adaptation..
turned on, while the H output is not.

Channel Synchronization

All the channels share the same timebase from the channel 0. This change allows the user
to configure all the channels synchronized with the CH0 in Kconfig. The driver needed to
be updated because the synchronized channels require additional register handling. If the
xth bit in PWM_SCM register is defined ([14], 50.7.9), the channel x is synchronized with
channel’s 0 timebase. This activation is done in the pwm_setup function 8.

When new duty of a synchronous channel is desired, the UPDULOCK bit in the PWM_SCUC
([14], 50.7.11) register must be set. The update of the duty is applied after the new channel
0 PWM period. The driver implements the recommended Method 1 defined in the section
50.6.2.9 [14].

List of All PWM Driver Commits.Adding the dcpol attribute 9,.Adjust SAMV7’s PWM driver to the dcpol attribute 10,. Enable only L outputs 11,. Synchronous channels 12.

8located in arch/arm/src/samv7/sam_pwm.c
9https://github.com/apache/nuttx/commit/21de46a4d12087fda42e982dd9745fe926376b31

10https://github.com/apache/nuttx/commit/bf3a5bb4cbbd760112216ca87f79a0577cd29262
11https://github.com/apache/nuttx/commit/88fa598ea2fb965b35168bff409cce78b950ad69
12https://github.com/apache/nuttx/commit/297b3b0209b1f6cc0f35ec0f95380d4747b18292

58

https://github.com/apache/nuttx/commit/21de46a4d12087fda42e982dd9745fe926376b31
https://github.com/apache/nuttx/commit/bf3a5bb4cbbd760112216ca87f79a0577cd29262
https://github.com/apache/nuttx/commit/88fa598ea2fb965b35168bff409cce78b950ad69
https://github.com/apache/nuttx/commit/297b3b0209b1f6cc0f35ec0f95380d4747b18292

Chapter 8
Applications

In this chapter applications using pysimCoder and the Silicon Heaven infrastructure for
the parameter tuning are presented. Examples of PMSM control are presented, as well
as the open loop control of a piezoactuator bending element. All the provided schematics
should be compatible with the mainline pysimCoder. However, the current motion controller
is only capable of achieving sampling rates below 1 kHz, probably due to the NuttX scheduler’s
limitations, making it unusable for the control of fast-moving systems or the field oriented
control.

The concept of this controller is not to implement state of the art control methods (like
predictive control) but rather an extensible prototyping platform. However, even for such
applications, the sampling rate should be much higher.

Probably, a high priority thread running the control loop might be blocked by a long lasting
interrupt or some kinds of synchronization locks during communication. Unfortunately, there
was no time to find out the causes in NuttX responsible for the sampling issues. Luckily,
there are a few ways to possibly overcome these issues in the future:. Using ITM (Instrumented Trace Macrocell) as part of the ARM Cortex-M core. This

allows us to sample the program counter, read it from STLink and then associate
the program counter with compiled program’s debug symbols. From that, a histogram
of function durations can be drawn (an online guide can be found here [3]).. Using NuttX internal profiling tools [30]. Events are collected in the NuttX kernel into
a trace buffer which is then sent to a PC. Eclipse Trace Compass tool is then used
to analyze the events.. Placing the control loop in a high priority periodic interrupt, triggered by a timer
for example. However, this method requires overriding NuttX interrupt handling [29].

8.1 PMSM Control with pysimCoder

Several schematics are presented in this section, demonstrating simple PMSM control with
pysimCoder, as well as pysimCoder’s great logging capabilities, despite the poor sampling
rate. All the data presented in this section was logged to my computer by using UDP/IP.
These examples have already been tried out by Michal Lenc in his thesis [9] but were recreated
to show off the functionality of SaMoCon. All these schematics can be found here 1. The

1https://gitlab.fel.cvut.cz/otrees/motion/samocon/-/tree/main/control

59

https://gitlab.fel.cvut.cz/otrees/motion/samocon/-/tree/main/control

8. Applications ..
tested motor with the SaMoCon controller is shown in figure 8.1. The tested motor was not
connected to any load and all shown examples are only for demonstrative purposes, as shown
in figure 8.1.

Figure 8.1: The testing setup with SaMoCon and a PMS motor on the right. A DC motor on the
left is supposed to be used as a brake which was not used. DC motor’s IRC was used because
of a compatible connector.

Before any current measurements took place, I needed to find out the mapping from
of an ADC word to current I = I(ADC). For that, I measured multiple values and then
I used linear regression using my Python script. The measurement is done on the L shunts.
Also the NuttX/Encoder block must be set to have 3 outputs. This way, a QEIOC_GETINDEX
ioctl is performed, returning qe_index_s struct fields, as was discussed in 7.4.1.

Also, due to a high Switch ON delay time of IFX007, we weren’t capable of operating below
a certain threshold, effectively being limited by switches’ deadzones. Due to this, we decided
to operate near the "50% duty" point, eliminating the deadzones. However, this causes higher
power consumption and also accounts for higher EMI.

8.1.1 Electrical Angle Calibration

To control PMSM effectively, we must estimate the electrical angle from the motor’s encoder.
Suppose C is the number of pulse counts, CI is the counter value when the last index was hit
and CTurn is the number of pulses per one electical turn. The angle can be then estimated
by this formula:

φEst = C − CI
CTurn

· 2π + φOffset. (8.1)

Since we do not know φOffset (the angle between the start of the electrical angle and the index),
the following method is used to heuristically determine the offset:..1. Set d > 0 and q ← 0, φOffset ← Randval ∈ [0, 2π]. That way the PMSM steadily follows

the generated magnetic field. Generate φRef = ωt (set ω to be small, for example ω =
1 rad). Generate a, b, c actions using the inverse Park and inverse Clarke transformations.

60

................................ 8.1. PMSM Control with pysimCoder..2. Visualize φEst and φRef ...3. Adjust φOffset such that φEst and φRef overlap as best as they can. Save the value φOffset
for later experiments.

The equation 8.1 is used by the Math/PMSM Align block, created by Michal Lenc (showcased
in [9], 7.3.2). The C source file of the block can be found here 2. The figure 8.2 shows
the UDP/IP output sent to my computer.

If no index pulse still has not been hit yet, the estimation is done using Hall sensors using
the Math/PMSM Align block. For that, a Math/Hall To 6 Sectors block is used. Again,
the Hall angle estimation must be done too, as there may be an offset between the start of the
electrical angle and the first sector. This offset is again set in the Math/PMSM Align block.

0.0 0.5 1.0 1.5
t[s]

0

1

2

3

4

5

ϕ
[r
ad

]

ϕEst

ϕHall

ϕRef

Figure 8.2: The electrical angle estimation with Halls and an IRC. The graph shows a well tuned
φEst.

8.1.2 Open Loop Current Measurement

In this example we set d > 0, q ← 0 and ω ← {5, 20} rad. We then measure the currents by
using the Nuttx/ADC block. The measurement is done on the L shunts. The pysimCoder
diagram is shown in figure 8.3 and it demonstrates the trapezoidal shape of the winding
current during open loop control, shown in figure 8.4 for different angular velocities. This
diagram helped me prove I configured the SAMV7’s AFEC peripherals correctly.

8.1.3 Simple Feedback Control

This example presents a simple control diagram with a PID controller. The controller’s
input is the difference between the target IRC count and the current IRC count. This is not
an example of vector control, however electrical angle estimation is used to compute the a,

2CodeGen/Common/common_dev/pmsm_align.c

61

8. Applications ..

c	adjust

b	adjust

a	adjust

UDP	Tx

Timer

L3	Offset

L1	Offset

L0	Offset
L3	to	I3

L1	to	I1

L0	to	I0

L3	Zero

L1	Zero

Four	PI

Pulse	Generator
PWM

Integral
Inverse	ClarkeInverse	Park

INH3

INH1

INH0

Enable	PWM

q
d

Angular	Velocity

Shift	Up

L0	Zero

ADC

Figure 8.3: PysimCoder diagram for open loop PMSM control.

b and c actions from the inverse Park and inverse Clarke transformations. The controller’s
action output drives the q axis for the biggest torque while d = 0.

For showcase purposes, a reference rise limit has been added. Also, with the help of Silicon
Heaven, a user can configure whether the motor should follow a ramp reference or a step by
setting a constant in the Pulse Or Int Control, triggering certain switches in the diagram.
The pysimCoder diagram is shown in figure 8.5, alongside with the motor’s ramp and pulse
responses, as shown in 8.6 and 8.7. I have configured the PID controller to provide the steepest
responses, the constants being

kP = 8 · 10−4, kI = 2 · 10−5, kD = 2 · 10−4.

8.1.4 Current Control

This example shows simple d and q axes PI controllers. The initial goal was to make whole
vector control work, alongside position or speed control. I have tried tuning the PI controller
multiple times but I was not able to tune it to have fast responses, as it led to instability due
to the poor sampling rate.

The example, whose diagram is shown in the figure 8.9, shows a diagram for the dq current
control with an open loop rotation control, with d being varied between two values and q set
to zero. The angular velocity needed to be set small. Figures 8.8 show the id and iq current
control, the reference being steps. Some ADC noise can be seen, mostly in the left figure.
Despite the problems, we can see pysimCoder and SaMoCon hardware is ready to quickly
design control FOC applications and this diagram may be helpful to tune the PI current
controllers in the future.

62

.......................... 8.2. Piezoelectric Actuator Control with pysimCoder

0.0 0.2 0.4 0.6
t[s]

−6

−4

−2

0

2

4

6

P
W
M

D
u
ty
,I
[A
]

a

ia
ib
ic

0.0 0.5 1.0 1.5 2.0
t[s]

−6

−4

−2

0

2

4

6

P
W
M

D
u
ty
,I
[A
]

a

ia
ib
ic

Figure 8.4: Open loop motor control. Left: ω = 20 rad, Right: ω = 5 rad. The output of the
inverse transformations (a) is shown for a reference.

8.2 Piezoelectric Actuator Control with pysimCoder

The purpose of this experiment was to prove the controller is capable of controlling a piezo-
electric actuator, whose datasheet can be found here [19] (P-871.140 is used). Even though
this actuator features a full Wheatstone bridge made out of 4 tensometers to measure the
bending angle, the experiment was initially planned for an actuator without tensometers.
Unfortunately, due to lack of attention, I broke the fragile actuator, so this actuator was used
as a quick replacement.

The tip of the piezoactuator is equipped with a mirror. The tip is illuminated by a laser
beam at an angle. The beam is then reflected by a mirror and the beam can be viewed on for
example a wall. If the actuator is bent, the incidence angle changes, and the position of the
beam on the wall moves. The piezoactuator is mounted on a 3D-printed holder, as shown in
8.10.

Figure 8.10: The optical setup with a piezoactuator from PI, GmbH.

Due to conditions in our lab, this experiment should serve as a proof of concept, since
precise angle measurement would require a precisely mounted holder, precisely measured

63

8. Applications ..
incidence angle between the laser and the mirror and precisely measured distance between
the wall and the mirror.

The way this actuator is controlled is shown in figure 8.11. Even though the rated voltage
across 3-1 is up to VMax = 60 V, we can still suppose the position should change even
when powered by 24 V, as that is the rated voltage of our power stage board. The input
2 is controlled by a voltage in the range of [0, VMax], where VMax/2 corresponds to no tilt.
To create DC voltage out of a PWM signal, a low pass filter is put between the power board
output and the input 2.

Figure 8.11: Piezoactuator tilt control [19].

As mentioned in 4.3.2, the element behaves as a capacitor. An inductor can be connected
before the piezoactuator’s input. Since we operate the PWM frequency at 20 kHz, we set
the cutoff frequency around

fC = 5 kHz. (8.2)

Since the capacitance of P-871.140 is C = 2 · 4 µF [19], we calculate the estimate value of L
from this formula:

L = 1
4π2f2

CC
= 126 µH. (8.3)

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date:
KiCad E.D.A. 8.0.1

Rev:Size: A4
Id: 1/1

Title:

File:
Sheet: /

100u

VCC

4u

4u

100u

GND

6.6u

GND

PWM Input
Piezoactuator
Capacitances

Figure 8.12: The used filter to control the piezoactuator.

We can connect another LC filter before the inductor to create a 4th-degree low pass filter
with higher attenuations. The used inductors have inductances of 100 µH. The used filter is
shown in figure 8.12.

64

.......................... 8.2. Piezoelectric Actuator Control with pysimCoder

Our experiment tried to prove the repeatability of the movement which means the same
bending angle can be expected when the same voltage is applied after consecutive tries. Before
the measurement took place, I turned on the laser beam and marked the point with a pencil
on the wall, serving as a reference base point, when the actuator was in its base position with
no voltage applied. A voltmeter was connected to the filter’s output to monitor its output
DC voltage. The experiment setup is shown in figure 8.14.

Afterwards, I turned on the voltage and applied approximately 6, 12, 18, and 24 V to the
piezoactuator’s input and marked the beam’s position referenced to the reference point.
Anything on the left to the reference point has a positive value. This was tried out three times,
and the values are shown in table 8.1. The values ∆l1, ∆l2, and ∆l3 denote the measured
offsets referenced to the reference point during the first, second, and third try, respectively.

Voltage ∆l1 [mm] ∆l2 [mm] ∆l3 [mm]
0 V -22 -22 -22
6.10 V -13 -12 -13
12.07 V -3 -2 -3
18.03 V 9 9 9
23.82 V 21 21 21

Table 8.1: The measured values for the repeatability experiment with piezoactuator.

The voltage was controlled by a pysimCoder diagram shown in figure 8.13 while the applied
voltage was tuned remotely using the Silicon Heaven protocol. The Duty value can be set
anywhere between [−1, 1] where −1 means 0 V is applied and 1 means 24 V is applied to the
piezoactuator input. A low-pass filter has been added before the PWM block input to not
stress actuator with fast voltage spikes. The transfer function of the low-pass filter is

G(s) = 5
s + 5 . (8.4)

LTI

VCC

EnINH
PWM

INH1

INH0
Duty Saturation

Figure 8.13: The piezoactuator voltage control pysimCoder diagram.

To prove the movement repeatability, more values should be measured in a better envi-
ronment. However, the purpose of this experiment is to show that even with such a simple
diagram shown in 8.13, the researcher is ready to control the piezoactuator bending angle.

65

8. Applications ..

R
is
e
	S
u
b
	0

P
W
M

I
n
v
e
r
s
e
	C
la
r
k
e

H
a
ll	t
o
	6
	S
e
c
t
o
r
s

N
U
L
L

D
is
c
r
e
t
e
	P
I
D

H
A
L
L
_
A

H
A
L
L
_
B

H
A
L
L
_
C

I
n
v
e
r
s
e
	P
a
r
k

P
W
M
_
B
_
E
N

P
W
M
_
C
_
E
N

P
W
M
_
A
_
E
N

E
n
a
b
le
	P
W
M

D
	Z
e
r
o

F
e
e
d
b
a
c
k
	S
u
b

E
le
c
t
r
ic
a
l	A
n
g
le
	E
s
t
im
a
t
io
n

E
n
c
o
d
e
r

A
lig
n
	r
e
s
e
t

C
o
n
t
r
o
l	M

o
d
e
	S
w
it
c
h

P
u
ls
e
	G
e
n
e
r
a
t
o
r

I
n
t
	S
w
it
c
h

I
n
t
	S
u
m

I
n
t
e
g
r
a
l

P
u
ls
e
	o
r
	I
n
t
	C
o
n
t
r
o
l

M
a
x
	R
is
e

R
is
e
	S
u
b
	1

D
e
la
y

R
a
m
p
	S
lo
p
e

Z
e
r
o

T
im
e
r

G
a
in

U
D
P
	T
x

R
ise

L
im

it
R

a
m

p
O

r
S
tep

R
eferen

ce

Figure
8.5:

T
he

diagram
for

a
sim

ple
P

M
SM

control
w

ith
a

P
ID

controller,
alongside

w
ith

a
rise

lim
it

and
a

user
choosable

reference
(ram

p
or

step)

66

.......................... 8.2. Piezoelectric Actuator Control with pysimCoder

0.00 0.25 0.50 0.75 1.00 1.25 1.50
t[s]

−1000

0

1000

2000

3000

4000

IR
C
,
IR

C
,
D
u
ty

Cur.Pos

Ref

1000A

Figure 8.6: A periodic step reference between 0 and 4000 IRC pulses (corresponding to 2 mechanical
turns) back and forth. The PID action is also shown (multiplied by 1000).

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
t[s]

0

250

500

750

1000

1250

1500

1750

2000

2250

IR
C
,
IR

C

Cur.Pos

Ref

1000A

Figure 8.7: The motor following a ramp with a speed of 15000 IRC pulses/s. The PID action is
also shown (multiplied by 1000).

67

8. Applications ..

0 1 2 3 4
t[s]

0.0

0.5

1.0

1.5

I
[A
]

id

iq

id−ref

0 1 2 3 4
t[s]

0

1

2

3

4

I
[A
]

id

iq

id−ref

Figure 8.8: The current waveforms. iq reference is set to zero, id varies between 0.5 and 1.5 A on
the left and 1 and 4 A on the right.

Timer

Q	Ref

PWM3PWM1PWM0

ADC

SubQ

SubD

PIDQ

PIDD

L3	to	I3

L1	to	I1

L0	to	I0

L3	off

L1	off

Forward	Park
Forward	Clarke

PWMInverse	Park Inverse	Clarke

Sub	L0

Sub	L1

Sub	L2

L0	off

Enable	PWM

Angular	Velocity Integral

PulseGenerator

UDP	Tx

Figure 8.9: The dq current control diagram in pysimCoder.

68

.......................... 8.2. Piezoelectric Actuator Control with pysimCoder

Figure 8.14: Measuring the reflected angle.

69

70

Chapter 9
Conclusion and Summary

The goal of this thesis was to design hardware for a platform used for rapid control prototyping.
While it is possible to adapt the MCU board to a different power stage board and run bare
metal applications on it to even control big induction motors, the main task was to create a
generic platform which could be used for various control experiments. With that, the
pysimCoder suite alongside the Silicon Heaven protocol was tested with a BLDC motor
controlled in the PMSM way and proved useful in the optical experiment with a piezoactuator
in cooperation with ÚTIA, AV ČR.

Despite some hardware flaws, I was able to bring up the two PCB boards. The MCU
now runs NuttX with all the needed peripherals for motion control registered, alongside
with configured network over the Ethernet and the power stage capable of providing enough
power while measuring the winding currents. During the adaptation, I contributed to NuttX’s
lowend drivers to adapt the peripherals for our tasks.

Unfortunately, we have come across with serious NuttX issues. While the pysimCoder
code adds some overhead, our microcontroller with the double precision float support should
handle this problem with no hassle. Since there is no easy answer to these sampling issues,
the only solution is to consult the NuttX developers and profile/debug NuttX itself to find out
the source of problems. Placing the control loop in a high-priority interrupt may be possible
but it can even turn out these sampling issues are unsolvable in NuttX so the configuration
will have to be done on other RTOSs, like Zephyr or RTEMS while adapting pysimCoder to
the API of these operating systems.

The hardware is currently available under the CERN-OWL-W v2 license on the FEL ČVUT
GitLab 1, my NuttX fork can be found here 2 (the development is done in the samocon-branch
branch). This project remains open and free to use as we believe this is the best way to keep
the project fresh and updated. If we solve the issues with NuttX, a custom SaMoCon API
should be created to allow for a nonoverhead motion control using protocols like TCP/IP and
UDP/IP.

1https://gitlab.fel.cvut.cz/otrees/motion/work-and-ideas/-/wikis/SaMoCon
2https://github.com/zdebanos/nuttx

71

https://gitlab.fel.cvut.cz/otrees/motion/work-and-ideas/-/wikis/SaMoCon
https://github.com/zdebanos/nuttx

72

Bibliography

[1] Alpha Omega Semiconductor: AOZ1284 EZBuck 4A Simple Buck Regulator.
https://www.aosmd.com/res/datasheets/AOZ1284PI.pdf, 2019. – Online, Accessed
on May 15th, 2024

[2] Analog Devices, Inc.: Low Power RS485 Transceiver with Receiver Fail-Safe. https:
//www.analog.com/media/en/technical-documentation/data-sheets/1484f.pdf, .
– Online, Accessed on January 25th, 2024

[3] Baldassari, François: Profiling Firmware on Cortex-M. https://interrupt.
memfault.com/blog/profiling-firmware-on-cortex-m, 2020. – Online, Accessed
on May 16th, 2024

[4] Bucher, Roberto: The GitHub repository of pysimCoder. https://github.com/
robertobucher/pysimCoder, 2024. – Online, Accessed on April 17th, 2024

[5] Digikey North America: How to Power and Control
Brushless DC Motors. https://www.digikey.com/en/articles/
how-to-power-and-control-brushless-dc-motors, 2016. – Online, Accessed
on May 18th, 2024

[6] Elektroline, a.s.: The GitHub repositories of Silicon Heaven project. https://
github.com/silicon-heaven, 2024. – Online, Accessed on May 23rd, 2024

[7] Franklin, Gene F. ; Powell, J. D. ; Emami-Naeini, Abbas: Feedback Control of
Dynamic Systems, 8th edition. 2020. – ISBN 1–292–27452–2

[8] Infineon Technologies: High Current PN Half Bridge with Integrated
Driver. https://www.infineon.com/dgdl/Infineon-IFX007T-DS-v01_00-EN.pdf?
fileId=5546d46265f064ff0166433484070b75, 2018. – Online, Accessed on May 12th,
2024

[9] Lenc, Michal: Open Rapid Control Prototyping and Real-Time Systems. https:
//dspace.cvut.cz/handle/10467/100938, 2022. – Online, Accesssed on January 28th,
2024

[10] Microchip Technology Inc.: Ethernet Theory of Operation. https://ww1.
microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/
ApplicationNotes/01120a.pdf, 2008. – Online, Accessed on May 12th, 2024

73

https://www.aosmd.com/res/datasheets/AOZ1284PI.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1484f.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/1484f.pdf
https://interrupt.memfault.com/blog/profiling-firmware-on-cortex-m
https://interrupt.memfault.com/blog/profiling-firmware-on-cortex-m
https://github.com/robertobucher/pysimCoder
https://github.com/robertobucher/pysimCoder
https://www.digikey.com/en/articles/how-to-power-and-control-brushless-dc-motors
https://www.digikey.com/en/articles/how-to-power-and-control-brushless-dc-motors
https://github.com/silicon-heaven
https://github.com/silicon-heaven
https://www.infineon.com/dgdl/Infineon-IFX007T-DS-v01_00-EN.pdf?fileId=5546d46265f064ff0166433484070b75
https://www.infineon.com/dgdl/Infineon-IFX007T-DS-v01_00-EN.pdf?fileId=5546d46265f064ff0166433484070b75
https://dspace.cvut.cz/handle/10467/100938
https://dspace.cvut.cz/handle/10467/100938
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/ApplicationNotes/01120a.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/ApplicationNotes/01120a.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ApplicationNotes/ApplicationNotes/01120a.pdf

9. Conclusion and Summary
[11] Microchip Technology Inc.: MCP1525, 2.5 Voltage Reference. https://www.

microchip.com/en-us/product/mcp1525, 2012. – Online, Accessed on May 15th, 2024

[12] Microchip Technology Inc.: 10BASE-T/100BASE-TX PHY
with RMII Support. https://ww1.microchip.com/downloads/
aemDocuments/documents/UNG/ProductDocuments/DataSheets/
KSZ8081RNA-RND-10BASE-T-100-BASE-TX-PHY-with-RMII-Support-DS00002199F.
pdf, 2019. – Online, Accessed on January 21st, 2024

[13] Microchip Technology Inc.: MCP6021/1R/2/3/4, Rail-to-Rail Input/Output, 10
MHz Op Amps. https://ww1.microchip.com/downloads/aemDocuments/documents/
MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf, 2023. –
Online, Accessed on May 15th, 2024

[14] Microchip Technology Inc.: SAM E70/S70/V70/V71
Family Data Sheet. https://ww1.microchip.com/downloads/
aemDocuments/documents/MCU32/ProductDocuments/DataSheets/
SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf, 2023. – Online,
Accessed on January 21st, 2024

[15] Microchip Technology Ltd.: High-speed CAN FD Transceiver with Standby Mode
and VIO Pin. https://www.microchip.com/en-us/product/mcp2562fd, 2014. – On-
line, Accessed on May 15th, 2024

[16] Monolithic Power Systems: Stepper Motors Basics: Types, Uses, and Working Prin-
ciples. https://www.monolithicpower.com/stepper-motors-basics-types-uses,
2024. – Online, Accessed on May 20th, 2024

[17] Omron: Miniature size rotary encoder. https://industrial.omron.eu/en/products/
e6a2-c, . – Online, Accessed on January 21st, 2024

[18] Patankar, Priyanka ; Kulkarni, Swapnil: MATLAB and Simulink In-Depth. BPB
Online, 2022. – ISBN 978–93–55511–997

[19] Physik Instrumente GmbH: P-871 PICMA® Piezo Bender Actua-
tors. https://www.pi-usa.us/fileadmin/user_upload/pi_us/files/product_
datasheets/P871_Piezo_Bimorph_Bender.pdf, 2008. – Online, Accessed on May 23rd,
2024

[20] Physik Instrumente GmbH: Electrical Operation of Piezo Actuators. https://www.
piceramic.com/en/expertise/piezo-technology/properties-piezo-actuators/
electrical-operation, 2024. – Online, Accessed on May 20th, 2024

[21] PiKRON s.r.o.: LX_RoCoN, Motion And Robotic Controller. https://pikron.com/
pages/products/motion_control/lx_rocon.html, . – Online, Accessed on May 16th,
2024

[22] PiKRON s.r.o.: imxRT Teensy-4.1 Base Board by PiKRON. https://gitlab.com/
pikron/projects/imxrt-devel/-/wikis/teensy_bb, 2021. – Online, Accessed on May
11th, 2024

74

https://www.microchip.com/en-us/product/mcp1525
https://www.microchip.com/en-us/product/mcp1525
https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/DataSheets/KSZ8081RNA-RND-10BASE-T-100-BASE-TX-PHY-with-RMII-Support-DS00002199F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/DataSheets/KSZ8081RNA-RND-10BASE-T-100-BASE-TX-PHY-with-RMII-Support-DS00002199F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/DataSheets/KSZ8081RNA-RND-10BASE-T-100-BASE-TX-PHY-with-RMII-Support-DS00002199F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/UNG/ProductDocuments/DataSheets/KSZ8081RNA-RND-10BASE-T-100-BASE-TX-PHY-with-RMII-Support-DS00002199F.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MSLD/ProductDocuments/DataSheets/MCP6021-Data-Sheet-DS20001685.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf
https://www.microchip.com/en-us/product/mcp2562fd
https://www.monolithicpower.com/stepper-motors-basics-types-uses
https://industrial.omron.eu/en/products/e6a2-c
https://industrial.omron.eu/en/products/e6a2-c
https://www.pi-usa.us/fileadmin/user_upload/pi_us/files/product_datasheets/P871_Piezo_Bimorph_Bender.pdf
https://www.pi-usa.us/fileadmin/user_upload/pi_us/files/product_datasheets/P871_Piezo_Bimorph_Bender.pdf
https://www.piceramic.com/en/expertise/piezo-technology/properties-piezo-actuators/electrical-operation
https://www.piceramic.com/en/expertise/piezo-technology/properties-piezo-actuators/electrical-operation
https://www.piceramic.com/en/expertise/piezo-technology/properties-piezo-actuators/electrical-operation
https://pikron.com/pages/products/motion_control/lx_rocon.html
https://pikron.com/pages/products/motion_control/lx_rocon.html
https://gitlab.com/pikron/projects/imxrt-devel/-/wikis/teensy_bb
https://gitlab.com/pikron/projects/imxrt-devel/-/wikis/teensy_bb

.................................... 9. Conclusion and Summary

[23] Renesas: Application Note: RS-422 vs RS-485 Similarities and
Key Differences. https://www.renesas.com/us/en/document/apn/
an1989-rs-422-vs-rs-485-similarities-and-key-differences, 2017. – On-
line, Accessed on May 12th, 2024

[24] Texas Instruments Incorporated: TPS562207 4.3-V to 17-V Input, 2-A
Synchronous Buck Converter in SOT563. https://www.ti.com/lit/ds/symlink/
tps562207.pdf, 2021. – Online, Accessed on May 15th, 2024

[25] Texas Instruments Incorporated: AM26LV32 Low-Voltage, High-Speed Quadruple
Differential Line Receiver. https://www.ti.com/lit/ds/symlink/am26lv32.pdf, 2023.
– Online, Accessed on May 15th, 2024

[26] Texas Instruments Incorporated: LM393B, LM2903B, LM193, LM293, LM393
and LM2903 Dual Comparators. https://www.ti.com/lit/ds/symlink/lm2903.pdf,
2023. – Online, Accessed on May 15th, 2024

[27] The Apache Software Foundation: NuttX Documentation. https://nuttx.apache.
org/docs/latest/, . – Online, Accessed on May 2nd, 2024

[28] The Apache Software Foundation: NuttX Documentation - System Time and
Clock. https://nuttx.apache.org/docs/latest/reference/os/time_clock.html, .
– Online, Accessed on May 11th, 2024

[29] The Apache Software Foundation: NuttX High Performance, Zero Latency Inter-
rupts. https://nuttx.apache.org/docs/latest/guides/zerolatencyinterrupts.
html, 2023. – Online, Accessed on May 16th, 2024

[30] The Apache Software Foundation: NuttX Task Trace. https://nuttx.apache.
org/docs/latest/guides/tasktrace.html, 2023. – Online, Accessed on May 16th,
2024

[31] Vaez-Zadech, Sadegh: Control of Permanent Magnet Synchronous Motors. Oxford
University Press, 2018. – ISBN 978–0–19–874296–8

[32] Yoichi, Mamiya: Applications of Piezoelectric Actuator. https://www.nec.com/en/
global/techrep/journal/g06/n05/pdf/t060519.pdf, 2006. – Online, Accessed on
May 20th, 2024

75

https://www.renesas.com/us/en/document/apn/an1989-rs-422-vs-rs-485-similarities-and-key-differences
https://www.renesas.com/us/en/document/apn/an1989-rs-422-vs-rs-485-similarities-and-key-differences
https://www.ti.com/lit/ds/symlink/tps562207.pdf
https://www.ti.com/lit/ds/symlink/tps562207.pdf
https://www.ti.com/lit/ds/symlink/am26lv32.pdf
https://www.ti.com/lit/ds/symlink/lm2903.pdf
https://nuttx.apache.org/docs/latest/
https://nuttx.apache.org/docs/latest/
https://nuttx.apache.org/docs/latest/reference/os/time_clock.html
https://nuttx.apache.org/docs/latest/guides/zerolatencyinterrupts.html
https://nuttx.apache.org/docs/latest/guides/zerolatencyinterrupts.html
https://nuttx.apache.org/docs/latest/guides/tasktrace.html
https://nuttx.apache.org/docs/latest/guides/tasktrace.html
https://www.nec.com/en/global/techrep/journal/g06/n05/pdf/t060519.pdf
https://www.nec.com/en/global/techrep/journal/g06/n05/pdf/t060519.pdf

	Introduction
	Realtime NuttX OS
	Introduction
	Source Code Structure
	arch
	boards
	drivers
	Other Directories

	Configuration and Compilation

	Control Theory and Related Software
	Basic Description of Systems
	Controllers
	PID Controller

	Model-based Design Approach
	MATLAB/Simulink
	pysimCoder

	Motors and Actuators
	DC Brushed Motor
	BLDC and PMS Motor
	Construction of a Motor
	Three Phase DC Motor Model
	Control Methods

	Other Types of Actuators
	Stepper Motors
	Piezoactuators

	Position estimation
	Optical encoder
	Hall Sensors

	Introduction to Used Hardware and Interfaces
	PCB Design
	PCB Copper Layers
	Track and Via Ampacity
	Electronic Design Automation Software

	Communication Interfaces
	Serial Communication
	Ethernet

	Motion Controller Analysis
	The Used Microcontroller
	The Used Power Switch

	Hardware Implementation
	MCU Board
	Interconnecting with Expanbility
	Microcontroller's Pinout
	Power Components
	CAN
	RS232/RS485
	Ethernet
	USB
	I2C
	SPI
	Feedback from the Motors
	Analog Signal Routing and Grounding
	Interconnection Pinout
	PCB Realisation

	Power Stage Board
	Power Components
	Current Sensing and Fault Generation
	Used Analog Components
	PCB realisation

	Design flaws and Needed Fixes

	NuttX Adaptation
	NuttX Bringup
	Custom BSP

	Project Configuration
	Ethernet and IP Configuration
	PWM and ADC Configuration
	Initialization and Registration of Peripherals
	Tickless Mode

	Flashing
	Contributions to Mainline
	Quadrature Decoder Driver
	PWM Driver Changes

	Applications
	PMSM Control with pysimCoder
	Electrical Angle Calibration
	Open Loop Current Measurement
	Simple Feedback Control
	Current Control

	Piezoelectric Actuator Control with pysimCoder

	Conclusion and Summary
	Bibliography

