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Abstrakt

Kvantové technologie jsou již několik desetilet́ı středem zájmu výzkumu a vykazuj́ı slibný
pokrok oproti klasickým technologíım. Koncept kvantové nadřazenosti zd̊urazňuje kval-
itativńı výpočetńı výhodu kvantových poč́ıtač̊u oproti klasickým. Tato zař́ızeńı mohou
řešit problémy, které jsou pro klasické poč́ıtače prakticky neřešitelné v rozumném časovém
horizontu.

Navzdory očekáváńım spojeným s vývojem plně funkčńıch kvantových poč́ıtač̊u se značným
počtem qubit̊u pod koherentńı kontrolou je tento milńık vzdálen ještě několik let. Prokázáńı
kvantové nadřazenosti však nutně nevyžaduje univerzálńı kvantový poč́ıtač.

Tato práce se zaměřuje konkrétně na problém bosonového vzorkováńı a je strukturována
do tř́ı hlavńıch oblast́ı zkoumáńı. Zaprvé se zabývá kvantovou optikou, aby źıskala teor-
etické nástroje nezbytné pro pochopeńı bosonového vzorkováńı. Za druhé, zkoumá vývoj
protokol̊u Boson Sampling, aby posoudila jejich výkonnost. Nakonec představuje výsledky
výzkumu bosonového vzorkováńı s negaussovskými stavy.

Keywords:
Vzorkováńı Boson̊u, Kvantová Optika, Kvantová Nadřazenost.
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Abstract

Quantum technologies have been a focal point of research for decades, showing promising
advancements over classical counterparts. The concept of Quantum Supremacy under-
scores the qualitative computational advantage quantum computers hold over classical
ones. These devices can address problems that are practically infeasible for classical com-
puters to solve within reasonable time frames.

Despite the anticipation surrounding the development of fully functional quantum com-
puters with a significant number of qubits under coherent control, this milestone is still a
few years away. However, demonstrating quantum supremacy doesn’t necessarily require
a universal quantum computer.

This thesis centers specifically on the Boson Sampling problem and is structured around
three primary areas of investigation. Firstly, it delves into Quantum Optics to acquire
the theoretical tools essential for comprehending Boson Sampling. Secondly, it scrutinizes
the evolution of Boson Sampling protocols to assess their performance. Lastly, it presents
research outcomes on Boson Sampling with Non-Gaussian states.

Keywords:
Boson Sampling, Quantum Optics, Quantum Supremacy.
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express my gratitude to Dr. Václav Potoček for generously sharing crucial insights into
Quantum Optics beyond regular class hours, proving to be immensely beneficial for my
project. Last but not least, my deepest appreciation goes to my family members for their
boundless patience and unwavering care.

vii



Help from AI

In pursuit of refining the language and ensuring grammatical correctness in this diploma
thesis, I have availed myself of AI services such as ChatGPT, in compliance with the
regulations stipulated by the institute regarding the use of AI assistance. The services
utilized in the present work are as follows:

1. Help in fixing Grammatical and spelling mistakes.

2. Rephrasing of sentences for better readability.

However, it’s important to note that the content of this thesis is original, and any borrowed
parts are meticulously cited in accordance with the rules and guidelines.

viii



Contents

1 Introduction to Quantum Optics 1
1.1 The Photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Quantum Theory of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Quantization of Electromagnetic Field . . . . . . . . . . . . . . . . . . . . 2
1.5 States in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Pure States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Mixed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Single Mode States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.1 Fock States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.2 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.3 Squeezed States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.4 Thermal States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Photon Interference at a Beam Splitter . . . . . . . . . . . . . . . . . . . . 14

2 Boson Sampling 17
2.1 Boson Sampling - The Model . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Experimental Factors - AABS . . . . . . . . . . . . . . . . . . . . . 20
2.2 Scattershot Boson Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Experimental Factors - SBS . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Gaussian Boson Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Experimental Factors - GBS . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Non Gaussian Boson Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Experimental Factors - NGBS . . . . . . . . . . . . . . . . . . . . . 31

3 Our Methodology 32
3.1 Non Gaussian States of Light . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Simulating Boson Sampling on a Classical Computer . . . . . . . . . . . . 32

3.2.1 Two Mode Interference . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



Contents

3.2.2 Three Mode Interference . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Four Mode Interference . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Two Mode Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Three Mode Calculation . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Four Mode Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Observation of Photon Bunching 42
4.0.1 Two Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.0.2 Three Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.0.3 Four Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.0.4 Five Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.0.5 Six Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.0.6 Diminishing Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.0.7 Correlation Analysis using Random Interferometers . . . . . . . . . 48

5 Conclusions 50

6 Future Direction of Work 51

Bibliography 52

x



Chapter 1

Introduction to Quantum Optics

1.1 The Photon

We refer to the photon as a quanta of the electromagnetic field or describe a light beam
as consisting of flowing particles called photons. In the context of Quantum Optics, as
outlined in[1], a photon is conveniently expressed for an electromagnetic field confined
within a perfectly reflecting cavity. By considering the boundary conditions at the cavity
walls, the field excitations are composed of an infinite discrete set of spatial modes. In
the quantum description, the evolution of each mode is governed by the equations of the
quantum harmonic oscillator. A quantum harmonic oscillator exhibits a discrete energy
value spectrum, with eigenvalues being integral multiples of nℏω, where n is the eigenvalue
of the number operator. In this framework, a spatial mode associated with a harmonic
oscillator in the nth excited state contains n photons with a uniform spatial distribution
within the cavity. This perspective provides a more accurate and nuanced understanding
within the context of Quantum Optics.

1.2 History

In the early 20th century, the quantum theory of light began to take form as Max Planck
postulated quantized energy levels for a harmonic oscillator. This formulation allowed
him to account for the spectral distribution of electromagnetic energy emitted by thermal
sources[2][3]. Subsequently, in 1905, Albert Einstein[4] explained the photoelectric effect by
considering the particle nature of light—the quanta of electromagnetic fields, later termed
photons by Lewis in 1926. Einstein further laid the foundations of light-matter interaction
in 1917 through his model of absorption and emission of electromagnetic radiation by an
atom[5].

A semiclassical theory is one in which the participating electromagnetic fields are con-
sidered classical, while atoms are described using quantum theory. To establish a complete
quantum theory, the electromagnetic field itself needed to be quantized, a step formalized
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1.3. Quantum Theory of Light

by Dirac in[6]. However, not all phenomena necessitated quantum theory for accurate
predictions. Classical theories sufficed for interpreting properties observed in interference
experiments like Young’s Double Slit and the Hanbury Brown and Twiss Interferometer.

The full quantum theory of light emerged after the invention of the laser by Maiman in
1960[7]. The high coherence of the laser’s emitted beam enabled experiments that could
only be interpreted by the complete quantum theory of light. The field of Quantum
Optics essentially took shape with the development of quantum theories describing optical
coherence and field states by Glauber in 1963[8]. Quantum Optics provides a robust
framework for describing optical phenomena such as spontaneous emission, single-photon
interference, Bose-Einstein statistics, etc.

In the following sections, we will briefly explore the process of quantizing an electromagnetic
field from Maxwell’s equations using appropriate gauge transformations. The information
presented in this and upcoming sections draws inspiration from ’The Quantum Theory of
Light’ by Loudon[1].

1.3 Quantum Theory of Light

As explained in earlier sections, a semiclassical theory involves solving a problem using
classical E⃗ and B⃗ fields, while the atoms are described using quantum mechanics. This
approach has proven highly successful in elucidating a vast array of optical experiments.
However, despite its extensive historical application in optics, semiclassical theory encoun-
ters limitations when attempting to explain certain phenomena, thereby restricting its
utility and reliability.

Our perspective aligns with the belief that quantum mechanics offers the most accurate
predictions for measured quantities. In cases where semiclassical theory diverges from the
results predicted by quantum mechanics for the same problem, we consider the semiclassical
approach less reliable.

A complete quantum theory provides a more coherent framework that treats the entire
system of fields and atoms in quantum mechanical terms. This necessitates the definition
of operators for the physical observables associated with the E⃗ and B⃗ fields.

E⃗ → Ê , B⃗ → B̂ (1.1)

Note that Ê and B̂ are no longer just algebraic variables, they are operators which do not
necessarily commute with each other as we will find out in the upcoming sections.

1.4 Quantization of Electromagnetic Field

The E⃗ and B⃗ fields are governed by Maxwell’s equations, forming the basis for both clas-
sical and quantum theories. The pivotal step in transitioning from classical to quantum
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1.4. Quantization of Electromagnetic Field

theory involves adopting the framework of a classical harmonic oscillator and transforming
it into its quantum mechanical counterpart. Therefore, the current set of Maxwell’s equa-
tions needs to be reformulated to exhibit harmonic oscillator behavior, and the subsequent
transformation follows the prescribed conversion. To recap, the microscopic version of
Maxwell’s equations is stated as follows:

∇⃗ · E⃗ =
ρ

ϵ0
Gauss’s Law (1.2)

∇⃗ · B⃗ = 0 (1.3)

∇⃗ × E⃗ = −∂B⃗
∂t

Faraday’s Law of Induction (1.4)

∇⃗ × B⃗ = µ0

(
ϵ0
∂E⃗

∂t
+ J⃗

)
Ampere’s Circuital Law (1.5)

Here, ρ and J⃗ denote the charge and current densities, respectively. To streamline the
quantization process, we represent Maxwell’s equations in terms of scalar and vector po-
tentials, denoted as ϕ and A⃗. Once the scalar and vector potentials are known, they can be
utilized to determine the electric and magnetic fields as per the equations provided below:

B⃗ = ∇⃗ × A⃗ (1.6)

E⃗ = −∇⃗ϕ− ∂A⃗

∂t
(1.7)

A noteworthy property of these potentials is that they can undergo transformations through
a set of gauge transformations while leaving the electric and magnetic fields invariant under
these transformations.

A⃗ = A⃗′ − ∇⃗χ (1.8)

ϕ = ϕ
′
+
∂χ

∂t
(1.9)

Here, χ is an arbitrary function χ (r⃗, t) of position and time, also referred to as the gauge
function. The fundamental concept behind this transformation is to choose a gauge, or a
specific χ, that simplifies the solutions to the complex equations derived from substituting
A⃗ and χ into Maxwell’s equations. A specific gauge choice that renders the divergence of
A⃗ zero is known as the Coulomb gauge. Adopting the Coulomb gauge simplifies the field
equations, which now take the form:

−∇2A⃗+
1

c2
∂∇⃗ϕ
∂t

+
1

c2
∂2A⃗

∂t2
= 0 (1.10)

−∇2ϕ =
ρ

ϵ0
(1.11)
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1.4. Quantization of Electromagnetic Field

The equation related to the scalar potential is essentially the Poisson’s equation, and its
solution is already known. However, the equation expressed in terms of the vector potential
remains intricate and requires some effort to achieve the desired form. According to the
Helmholtz theorem, any vector field can be expressed in terms of its solenoidal (transverse)
and irrotational (longitudinal) components.

A⃗ = A⃗T + A⃗L (1.12)

∇⃗ · A⃗T = 0 (1.13)

∇⃗ × A⃗L = 0 (1.14)

Utilizing the aforementioned definitions in conjunction with the Coulomb gauge condition,
we can bifurcate the Maxwell’s equations and field equations into two distinct sets.

−∇⃗2A⃗+
1

c2
∂2A⃗

∂t2
= µ0J⃗T (1.15)

1

c2
∂∇⃗ϕ
∂t

= µ0J⃗L (1.16)

Maxwell’s Equations in Transverse form:

∇⃗ × E⃗T = −∂B⃗T

∂t
(1.17)

∇⃗ · E⃗T = 0 (1.18)

∇⃗ × B⃗T = µ0ϵ0
∂E⃗T

∂t
+ µ0J⃗T (1.19)

∇⃗ · B⃗T = 0 (1.20)

Maxwell’s Equations in Longitudinal form:

∇⃗ · E⃗L =
ρ

ϵ0
(1.21)

We now focus on the solution for free fields, implying that the field exists in a region of
space where J⃗T = 0. Consequently, the field equation (1.15) undergoes transformation to:

−∇⃗2A⃗+
1

c2
∂2A⃗

∂t2
= 0 (1.22)

We assume standing wave solutions with periodic boundary conditions inside a region of
space known as the quantization cavity. Utilizing these assumptions, we can express the
vector potential as a sum of contributions from the modes of the cavity. Each mode is
uniquely labeled by its wave propagation vector k and the polarization λ.

∑
k

∑
λ=1,2

e⃗kλAkλ (r, t) (1.23)

Where e⃗kλ represents the two orthogonal polarizations of each mode, and Akλ (r, t) can
be further decomposed into the product of time-independent modal coefficients and plane
waves, as follows:
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1.4. Quantization of Electromagnetic Field

Akλ (r, t) = Akλ (t) e
ιk·r + A∗

kλ (t) e
−ιk·r (1.24)

e⃗kλ · e⃗kλ′ = δλ,λ′ (1.25)

The modal coefficients defined above are independent of each other, and each one indi-
vidually satisfies the field equation (1.22).

k2Akλ (t) +
1

c2
∂2Akλ (t)

∂t2
= 0 (1.26)

If we substitute ωk = ck and rewrite the equation, we immediately recognize it as that of
a harmonic oscillator, with ωk being the angular frequency of the oscillator. Finally, we
arrive at a point from which we can delve into the quantum theory by calculating field
energy and introducing field operators.

∂2Akλ (t)

∂t2
+ ω2

kAkλ (t) = 0 (1.27)

The solution to the above equation can be taken in the form Akλ (t) = Akλe
−ιωkt, and thus,

the modal coefficients finally take the following form.

Akλ (r, t) = Akλexp (−ιωkt+ ιk · r) + A∗
kλ (t) exp (ιωkt− ιk · r) (1.28)

We compute the electric and magnetic fields from the vector potentials using the transverse
form of equations (1.6) and (1.7).

E⃗ (r, t) =
∑
k

∑
λ=1,2

e⃗kλEkλ (r, t) (1.29)

where

Ekλ (r, t) = ιωk

[
Akλe

−ιωkt+ιk·r + A∗
kλ (t) e

ιωkt−ιk·r] (1.30)

Similarly for the magnetic field,

B⃗ (r, t) =
∑
k

∑
λ=1,2

k × e⃗kλ
|k|

Bkλ (r, t) (1.31)

where

Bkλ (r, t) = ιk
[
Akλe

−ιωkt+ιk·r + A∗
kλ (t) e

ιωkt−ιk·r] (1.32)
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1.4. Quantization of Electromagnetic Field

To determine the energy of an electromagnetic field, we substitute the above definitions of
electric and magnetic fields into the energy density and integrate over the space within the
cavity.

E = 1/2

∫
cavity

[
ϵ0E⃗ (r, t) · E⃗ (r, t) +

B⃗ (r, t) · B⃗ (r, t)

µ0

]
dV (1.33)

After some algebraic manipulations, we arrive at a form for the energy that consists of the
sum of time-independent contributions from individual modes.

E =
∑
k

∑
λ=1,2

Ekλ (1.34)

with

Ekλ = ϵ0V ω
2
k (AkλA

∗
kλ + A∗

kλAkλ) (1.35)

We will now review some key aspects of a one-dimensional Quantum Harmonic Oscil-
lator defined on phase space operators (q̂, p̂).

Ĥ =
p̂2

2m
+
mω2q̂2

2
(1.36)

It is convenient to express the generalized position and its conjugate momentum operator
in terms of dimensionless creation and destruction operators.

â =
1√

2mℏω
(mωq̂ + ιp̂) , â† =

1√
2mℏω

(mωq̂− ιp̂) (1.37)

[q̂, p̂] = ιℏ ,
[
â, â†

]
= 1 (1.38)

The creation and annihilation operators are non-hermitian and do not represent any phys-
ical observable. However, the product N̂ † = â†â represents the number operator and shares
a common eigenbasis |n⟩ with the Hamiltonian. The creation and annihilation operators
are also termed as ladder operators as they raise and lower the energy eigenvalue of an
energy eigenstate by a quantum of energy ℏω respectively. The eigenvalue equation is:

Ĥ |n⟩ = ℏω
(
â†â+ 1/2

)
= En |n⟩ (1.39)

â |n⟩ =
√
n |n− 1⟩ , â† |n⟩ =

√
n+ 1 |n+ 1⟩ (1.40)

Ĥ |n⟩ = 1

2
ℏω
(
ââ† + â†â

)
(1.41)

The Hamiltonian written in this form is similar to the one in (1.35), providing a key link

from which we can transition from the classical field vector to the field operator A⃗→ Â by
defining it using the creation and annihilation operators. A quantum harmonic oscillator
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1.4. Quantization of Electromagnetic Field

is associated with each mode kλ of the radiation field in the quantization cavity. Thus,
we add an extra label kλ to the creation and annihilation operators, and now they are
responsible for creating or destroying one photon of energy ℏωk respectively in each mode.

The state of a mode is spanned by an orthonormal eigenbasis |nkλ⟩, also called the Fock
basis. The number operator N̂ = â†kλâkλ acting upon a Fock state gives an eigenvalue nkλ

equal to the number of photons in the corresponding cavity mode.

n̂kλ |nkλ⟩ = â†kλâkλ |nkλ⟩ = nkλ |nkλ⟩ (1.42)

âkλ |nkλ⟩ =
√
nkλ |nkλ − 1⟩ , â†kλ |nkλ⟩ =

√
nkλ + 1 |nkλ + 1⟩ (1.43)

The modes of the electromagnetic field are independent, and as a result, the operators
labeled by different kλ commute with each other, giving rise to a generalized commutator
relation: [

âkλ, â
†
k′λ′

]
= δk,k′δλλ′ (1.44)

The state of an electromagnetic field is the tensor product of states of the individual modes,
which could be infinite and the Hamiltonian of such a field is the sum of Hamiltonian of
all contributing modes.

Ĥ =
∑
k

∑
λ=1,2

Ĥkλ where Ĥkλ =
1

2
ℏωk

(
âkλâ

†
kλ + â†kλâkλ

)
(1.45)

A simple comparison with equation (1.35) yields an expression for converting the classical
vector potential amplitudes into their corresponding operator.

Akλ →
√

ℏ
2ϵ0V ωk

âkλ and A∗
kλ →

√
ℏ

2ϵ0V ωk

â†kλ (1.46)

We obtain the operator corresponding to the vector field A⃗ by substituting the above values
into equation (1.28).

Â (r, t) =
∑
k

∑
λ=1,2

√
ℏ

2ϵ0V ωk

e⃗kλ

[
âkλe

−ιωkt+ιk·r + â†kλe
ιωkt−ιk·r

]
(1.47)

Similarly, we can determine the operators corresponding to the electric and magnetic fields
by substituting the above definition of Â into the transverse forms of equations (1.6) and
(1.7). In the calculations, a phase factor χk (r, t) = ωkt − k · r − π/2 is introduced to
simplify the expression.

Ê (r, t) =
∑
k

∑
λ=1,2

√
ℏωk

2ϵ0V
e⃗kλ

[
âkλe

−ιχk(r,t) + â†kλe
ιχk(r,t)

]
(1.48)

7



1.5. States in Quantum Mechanics

B̂ (r, t) =
∑
k

∑
λ=1,2

√
ℏ

2ϵ0V ωk

k × e⃗kλ

[
âkλe

−ιχk(r,t) + â†kλe
ιχk(r,t)

]
(1.49)

The above electric and magnetic field operators are Hermitian, representing physical ob-
servables as required by the postulates of Quantum Mechanics. In the above discussion,
we focused on Number or Fock states of light. However, there are various other classes of
standard states, such as coherent states, squeezed states, thermal states, and some exotic
states like cat states, that have extensive applications in quantum optics experiments. In
the upcoming section, we will delve into some of these states, shedding light on them,
which will greatly enhance our understanding of Boson Sampling.

1.5 States in Quantum Mechanics

According to the first postulate of Quantum Mechanics as described in [9], any isolated
physical system is associated with a Hilbert space, also known as the state space of the
system and we can completely describe this system by a state vector which resides in
this Hilbert space. Alternatively, We can also use the concept of a density matrix or a
density operator, which is mathematically equivalent to the state vector approach, in the
formulation of Quantum Mechanics.

In the realm of Quantum Computing, we frequently encounter states existing within a
two-dimensional state-space, which is defined by an orthonormal basis

{
|0⟩ , |1⟩

}
.

|ψ⟩ = a |0⟩+ b |1⟩ (1.50)

In order for the state to be normalizable, the complex numbers a and b must satisfy the
condition |a|2 + |b|2 = 1.

1.5.1 Pure States

A state of a quantum system, denoted by |ψ⟩, that is known exactly is referred to as a
pure state. The density matrix of such states are simply given by:

ρ = |ψ⟩ ⟨ψ| (1.51)

and it satisfies the following property:

tr
(
ρ2
)
= 1 (1.52)

1.5.2 Mixed States

On the other hand, A mixed state is said to be a mixture of different pure states in the
ensemble of ρ. The density matrix of such states are described as below:

8



1.6. Single Mode States

ρ =
∑
i

pi |ψi⟩ ⟨ψi| (1.53)

We refer to
{
pi, |ψi⟩

}
as an ensemble of pure states, where pi are the respective probabilities

of being in one of the states
{
|ψi⟩

}
and the density matrix of any mixed state satisfies the

following property:
tr
(
ρ2
)
< 1 (1.54)

The concept of mixture comes into play when we introduce noise into our quantum system,
leading to an introduction of ignorance into our knowledge of the quantum state.

1.6 Single Mode States

In the context of Quantum Optics, we will now shift our focus to single-mode excitations of
the electromagnetic field. The reliability of a classical theory is determined by its agreement
with its quantum counterpart in predicting phenomena. There is a crucial classification of
excitations of the electromagnetic field based on this fundamental difference.

A classical state of light, such as coherent or chaotic light, when used in experiments,
yields the same predictions as that of classical theory. On the contrary, there is a class of
states termed as non-classical states of light that deviate from the predictions of classical
theories. The coherence properties and fluctuations of a non-classical light beam cannot
be explained using classical terms. It is also stated that when a state of light diverges from
classicality, it exhibits quantumness.

Various parameters, such as Mandel’s parameter and squeezing parameter, help measure
and classify the quantum nature of fluctuations in a light beam. We will now delve into
understanding the most important states of single-mode light in Quantum Optics.

1.6.1 Fock States

Fock states, or Number states, are the eigenstates of the number operator N = â†â,
which commute with the Hamiltonian, and hence, they are also referred to as the energy
eigenstates.

Ĥ |n⟩ = ℏω
(
â†â+ 1/2

)
= En |n⟩ (1.55)

The uncertainty of photon number associated with the number states (∆n)2 = 0, indicating
that a Fock state of light is expected to have exactly n number of photon excitations. In
terms of quadrature operators, the eigenvalue equation can be reformulated as follows:(

X̂2 + Ŷ 2
)
|n⟩ =

(
n+

1

2

)
|n⟩ (1.56)
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1.6. Single Mode States

The expectation values and uncertainties associated with quadratures in a number state
can be expressed as follows:

⟨n| X̂ |n⟩ = ⟨n| Ŷ |n⟩ = 0 (1.57)

(∆X)2 = (∆Y )2 =
1

2

(
n+

1

2

)
(1.58)

Hence, we can observe that the quadratures X and Y in number states have identical prop-
erties to the vacuum state |0⟩, being the state with minimum uncertainty in quadratures.

1.6.2 Coherent States

Coherent states are the most commonly used states of light in optics experiments. The
properties of coherent states resemble those of a classical electromagnetic wave. In fact, a
single-mode laser generates such a state of light when operated well above the threshold. A
coherent state of light is denoted as |α⟩ with α ∈ C. It might be tempting to believe that a
coherent state is just a number state with a different parameter, which is very misleading.
The construction of coherent states is fundamentally different, and their key property is
that they are the eigenstates of the annihilation operator of the mode. Furthermore, a
coherent state can be expressed as a linear superposition of number states.

â |α⟩ = α |α⟩ (1.59)

|α⟩ = e−
|α|2
2

∑
n

αn

√
n!

|n⟩ (1.60)

There is a very elegant mathematical tool called the displacement operator that aids in
generating coherent states from vacuum states. Displacement operators possess interesting
properties that will be highly useful in the theory of Boson Sampling. Let’s outline some
of those properties for better understanding.

|α⟩ = D̂ (α) |0⟩ (1.61)

with the unitary displacement operator being defined as

D̂ (α) = exp
(
αâ† − α∗̂a

)
(1.62)

It is named a displacement operator for several reasons, one of them being that by operating
it on the annihilation operator, it displaces it by an amount of α.

D̂† (α) âD̂ (α) = â+ α (1.63)

and

D̂† (α) â†D̂ (α) = â† + α∗ (1.64)

10



1.6. Single Mode States

The photon number expectation value and its associated uncertainty in a coherent state
can be calculated quite easily using the properties of creation and annihilation operators,
and are presented as follows:

⟨n̂⟩ = ⟨α| â†â |α⟩ = |α|2 (1.65)

and the variance in photon number is given by

(∆n̂)2 = |α|2 (1.66)

Similarly, the quadrature expectation values can be calculated as follows:〈
X̂
〉
=

1

2
⟨α| â† + â |α⟩ = 1

2
(α + α∗) = |α| cos θ (1.67)

〈
Ŷ
〉
=

1

2
⟨α| â− â† |α⟩ = 1

2
(α− α∗) = |α| sin θ (1.68)

After performing the calculations, we can observe that the quadrature variances are:(
∆X̂

)2
=
(
∆Ŷ

)2
=

1

4
(1.69)

Hence, it is evident that a coherent state is a minimum quadrature uncertainty state,
irrespective of its average photon number.

1.6.3 Squeezed States

The introduction of squeezing aims to reduce the uncertainties of fields along certain phase
angles, albeit at the expense of increasing uncertainties along perpendicular angles. Such
field excitations are termed quadrature squeezed states. Squeezed states constitute a highly
significant class, showcasing non-classical characteristics and finding extensive applications
in interferometric experiments where precision is critical, as exemplified in the detection
of gravitational waves in LIGO.

1.6.3.1 Squeezed Vaccum States

Similar to the construction of a coherent state by displacing the vacuum state with a
unitary displacement operator, squeezed vacuum states are prepared by applying a unitary
squeezing operator to the vacuum state.

|ζ⟩ = Ŝ (ζ) |0⟩ , ζ ∈ C (1.70)

where the squeezing operator is defined as

Ŝ (ζ) = exp

(
ζ∗ (â)2

2
−
ζ
(
â†
)2

2

)
(1.71)
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1.6. Single Mode States

Due to the quadratic expression of creation and annihilation operators, it can be deduced
that the squeezed vacuum states are a linear superposition of even-number states. After a
bit of calculation, we can express their exact form as follows:

|ζ⟩ =
√
sech r

∑
n

√
(2n)!

n!

(
− exp (ιϕ) tanh r

2

)n

|2n⟩ (1.72)

The photon number expectation value in a squeezed vaccum state is given by:

⟨n̂⟩ = ⟨ζ| â†â |ζ⟩ = sinh2 r (1.73)

and the variance of photon number is given by:

(∆n̂)2 = 2 sinh4 r + 2 sinh2 r (1.74)

Similarly, for quadratures, we can calculate the expectation value and variance. Utilizing
the fact that squeezed vacuum states are linear superposition of even-numbered states, the
expectation value of ladder operators or any linear combination of them is going to be zero.〈

X̂
〉
=

1

2
⟨ζ| â+ â+ |ζ⟩ = 0 (1.75)

〈
Ŷ
〉
=

1

2
⟨ζ| â− â+ |ζ⟩ = 0 (1.76)

and (
∆X̂

)2
=

1

4
[e2r sin2

(
ϕ

2

)
+ e−2r cos2

(
ϕ

2

)
] (1.77)

(
∆Ŷ

)2
=

1

4
[e2r cos2

(
ϕ

2

)
+ e−2r sin2

(
ϕ

2

)
] (1.78)

It can be observed that the variances of quadratures depend on the phase angle. When
plotting a curve against X and Y quadratures, we obtain an ellipse centered at the origin,
inclined at an angle ϕ/2 with the axes. These curves vividly demonstrate the concept of
squeezing one quadrature at the cost of expanding the one perpendicular to it.

1.6.3.2 Displaced Squeezed States

The primary motivation for introducing squeezed coherent states is to address the limita-
tion of squeezed vacuum states in serving as carriers of information in systems that employ
homodyne detection. We obtain a squeezed coherent state by initially applying the squeez-
ing operator followed by the displacement operator. An equivalent representation, where
the order of operators is reversed, is also possible, but we will not delve into the details of
that topic.

|α, ζ⟩ = D̂ (α) Ŝ (ζ) |0⟩ (1.79)
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1.6. Single Mode States

Expanding squeezed coherent states involves a somewhat intricate calculation but can be
accomplished using the existing properties of the mode operators used so far. To estimate
the expectation values and variance of photon number and quadratures, it is essential to
outline some important properties of the unitary transform of the creation and annihilation
operators.

Ŝ† (ζ) D̂† (α) âD̂ (α) Ŝ (ζ) = â cosh r − â†eιϕ sinh r + α (1.80)

Ŝ† (ζ) D̂† (α) â†D̂ (α) Ŝ (ζ) = â† cosh r − âe−ιϕ sinh r + α∗ (1.81)

The above definitions of transforms assist in simplifying the expressions for the mean and
variance of photon number and quadratures. Upon performing the calculations, we arrive
at the following results:

⟨n̂⟩ = |α|2 + sinh2 r (1.82)

and variance in photon number

(∆n̂)2 = |α|2
{
e2r sin2

(
θ − ϕ

2

)
+ e−2r cos2

(
θ − ϕ

2

)}
+ 2 sinh2 r

(
sinh2 r + 1

)
(1.83)

Similarly, for quadratures, it is straightforward to deduce from the previous results:〈
X̂
〉
=

1

2
⟨α, ζ| â+ â† |α, ζ⟩ = |α| cos θ (1.84)

〈
Ŷ
〉
=

1

2
⟨α, ζ| â− â† |α, ζ⟩ = |α| sin θ (1.85)

and (
∆X̂

)2
=

1

4
[e2r sin2

(
ϕ

2

)
+ e−2r cos2

(
ϕ

2

)
] (1.86)

(
∆Ŷ

)2
=

1

4
[e2r cos2

(
ϕ

2

)
+ e−2r sin2

(
ϕ

2

)
] (1.87)

We can observe that the profile of the squeezing is merely displaced by an amount α.
Graphically, it can be visualized as the same curve obtained in the squeezed vacuum state,
but now it is displaced to the center α. This is also reflected in the above results, as the
variances of quadratures remain unaffected, but their means are now pointing at the point
α.
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1.6.4 Thermal States

A thermal state describes the state of thermal equilibrium of a single mode with a thermal
bath. In fact, thermal states aptly describe the radiation of many other chaotic sources of
light. An important point to note is that all the previously studied states were pure states,
whereas thermal states are mixed states. For such states, we describe the state of light in
terms of a density matrix.

ρth =
∑
n

P (n) |n⟩ ⟨n| (1.88)

Where P(n) is the probability distribution and its form as given below is derived from a
geometrical distribution. Here n̄ is another term used for the mean photon number in the
state.

P (n) =
n̄n

(1 + n̄)1+n (1.89)

Chaotic light states exhibit resemblance with number states in terms of quadrature prop-
erties. The corresponding expectation value and variance of quadratures are given below:〈

X̂
〉
=
∑
n

P (n) ⟨n| X̂ |n⟩ = 0 (1.90)

〈
Ŷ
〉
=
∑
n

P (n) ⟨n| Ŷ |n⟩ = 0 (1.91)

and (
∆X̂

)2
=

1

2

(
⟨n̂⟩+ 1

2

)
(1.92)

(
∆Ŷ

)2
=

1

2

(
⟨n̂⟩+ 1

2

)
(1.93)

We can notice that the quadrature calculations are actually similar to the ones we did in
number states, just with n being replaced by the average photon number < n̂ >.

1.7 Photon Interference at a Beam Splitter

Now that we have studied all the important single-mode states of an electromagnetic field,
we will shift our focus to studying the interference between these states at a beam splitter.
A beam splitter plays a crucial role in all interferometric experiments, and the simplest
model of a beam splitter could be a half-silvered mirror or a partially reflecting interface
between two glass prisms.
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1.7. Photon Interference at a Beam Splitter

Figure 1.1: Beam Splitter, Source: https://www.cantorsparadise.com/quantum-beam-
splitters-the-hong-ou-mandel-effect-a59eda66de04

This is a basic illustration illustrating the operational principles of a beam splitter within
a quantum framework. The system involves two input modes, labeled as a1 and a2, which
undergo transformation to yield two output modes, labeled as a3 and a4. A beam split-
ter facilitates a linear relationship between the input and output modes, and no optical
mode either begins or ends at a beam splitter. The connection between the input and
output modes is determined by the physical configuration of the beam splitter, specific-
ally the transmittance and reflectance of the interface. Mathematically, this relationship
can be expressed in terms of matrix components that encapsulate information about the
transformation.

[
â4
â3

]
=

[
t1 r2
r1 t2

] [
â1
â2

]
(1.94)

The 2 x 2 matrix presented describes the configuration of a lossless unbalanced beam
splitter. However, the elements of the matrix cannot be arbitrary; there are constraints
imposed on them by the principle of conservation of energy. This principle dictates that
the matrix must be unitary.

|t1|2 + |r2|2 = 1 , |t2|2 + |r1|2 = 1 (1.95)

t∗2r2 + r∗1t1 = 0 , t∗1r1 + r∗2t2 = 0 (1.96)

We can simplify the expression further by assuming a symmetry between the transmission
and reflection coefficients concerning the exchange between a1 and a2. This simplification
results in |t1| = |t2| = t and |r1| = |r2| = r. Another implication of energy conservation
is that if the input modes are orthonormal, then the corresponding output modes are also
orthonormal.

If
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1.7. Photon Interference at a Beam Splitter

[
â1, â2

†] = [â2, â1†] = 0 ,
[
â1, â1

†] = [â2, â2†] = 1 (1.97)

From the relations (1.90) and (1.91), assuming symmetry between t and r, we can deduce
the following equations:

â4 = tâ1 + râ2 , â4
† = t∗â1

† + r∗â2
† (1.98)

â3 = tâ2 + râ1 , â3
† = t∗â2

† + r∗â1
† (1.99)

|t|2 + |r|2 = 1 , rt∗ + tr∗ = 0 (1.100)

which allows us to write:[
â3, â4

†] = [â4, â3†] = 0 ,
[
â3, â3

†] = [â4, â4†] = 1 (1.101)

With these relations, we can construct observables on output modes.

n̂a4 = â4
†â4 =

(
t∗â1

† + r∗â2
†) (tâ1 + râ2) = |t|2n̂a1 + |r|2n̂a2 + tr∗â2

†â1 + rt∗â1
†â2 (1.102)

n̂a3 = â3
†â3 =

(
t∗â2

† + r∗â1
†) (tâ2 + râ1) = |t|2n̂a2 + |r|2n̂a1 + rt∗â2

†â1 + tr∗â1
†â2 (1.103)

Similarly, we can construct field operators corresponding to a3 and a4 modes from the
ones belonging to a1 and a2. So far, we have dealt with a generalized lossless unbalanced
beam splitter, but we can also impose additional restrictions on the elements to arrive at
a balanced beam splitter, which evenly splits each input mode in a 50:50 ratio.

|r|2 = |t|2 = 1

2
=⇒ r =

eιϕr

√
2

, t =
eιϕt

√
2

(1.104)

rt∗ + tr∗ = 0 =⇒ ϕr = ϕt ±
π

2
(1.105)

[
t r
r t

]
=
eιϕt

√
2

[
1 ±ι
±ι 1

]
(1.106)

A crucial point to note here is that the beam splitter matrix is represented as a unitary
matrix. This understanding is essential for comprehending interferometers used in the Bo-
son Sampling protocol, which are not limited to just 2 modes. A generalized interferometer
is represented by an M x M unitary matrix, transforming M input modes into M output
modes. We will study this in detail in the next chapter, which formally introduces Boson
Sampling.
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Chapter 2

Boson Sampling

Quantum computers are constructed based on an architecture governed by the postulates
of Quantum Mechanics, and they are anticipated to outperform classical computers signi-
ficantly in terms of speed. The fundamental unit in a quantum computer is the quantum
bit, or qubit. Unlike classical bits, a qubit can exist in any linear superposition of the
states 0 and 1, allowing it to perform computations on both states simultaneously. Upon
measurement in the computational basis, it probabilistically collapses to a specific result,
akin to the collapse of a wavefunction to one of its eigenstates in Quantum Mechanics.
This quantum speedup, compared to classical computers, is a crucial aspect in achieving
what has been referred to as Quantum Supremacy.

For a quantum computer to be practically useful in solving real-world problems, a more
extensive architecture is required, with elements that can be controlled coherently and are
fault-tolerant. While there have been successful attempts to build quantum computers
with multiple qubits in the industry, the realization of a scalable and universal quantum
computer may still be several years away. Nonetheless, the field of Quantum Engineering
is incredibly exciting, and one notable development in this area is Boson Sampling.

Boson Sampling, a non-universal quantum computation model, relies on linear optical
networks and states of the electromagnetic field within the context of quantum optics. In
this chapter, we will delve into the problem Boson Sampling addresses and explore several
developed protocols in this domain.

2.1 Boson Sampling - The Model

The Boson Sampling model, as originally introduced by Aaronson and Arkhipov in[10], is
a basic framework for optical quantum computing. It comprises single photon generators,
a linear optical network, and photodetectors to measure the number of photons in the
output modes.
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Figure 2.1: Boson Sampler, Source: [11]

Despite its simplicity, the authors demonstrated that such a device cannot be efficiently
simulated by classical computers. Boson Sampling is a non-universal model of quantum
computation, implying that it cannot solve all problems solvable by a Turing machine.
The authors further demonstrated that the existence of a polynomial time classical al-
gorithm capable of sampling from the exact or approximate probability distribution as an
optical network’s output would have significant implications for the polynomial hierarchy
in complexity theory.

Before delving into the model, it’s crucial to address the preference for Bosons over Fer-
mions. Bosons and Fermions categorize particles based on their fundamental properties,
with Bosons having integer spin (e.g., photons) and Fermions having half-integer spin (e.g.,
electrons, quarks). The rationale for choosing Bosons, as outlined in[10], lies in expressing
the amplitude of n Boson processes in terms of permanents of n x n matrices. Notably,
problems involving permanents belong to the #P-complete complexity class. On the other
hand, the amplitude of n fermion processes can be expressed using determinants of n x
n matrices, falling into the P complexity class and allowing for efficient classical simula-
tion. This distinction plays a pivotal role in the computational complexity of the Boson
Sampling model.

The device/optical network as illustrated in the above figure, features m input modes
through which n identical photons are transmitted, and m output modes where the out-
put state is measured in the Fock basis. The input configuration can be any multimode
state ket |s1, ..., sm⟩ satisfying the conditions

∑
i si = n and s1, .., sm ≥ 0. The nature of

photons as Bosons allows them to occupy more than one in the same mode simultaneously,
distinguishing them from Fermions. The basis states |S⟩ are defined as S ∈ Φm,n, where
Φm,n is the set of tuples S = (s1, ..., sm) satisfying the above conditions, and M = |Φm,n|
denotes the dimension of the Hilbert space in which the states exist. A simple permutation
trick facilitates the calculation of the dimension M =

(
m+n−1

n

)
. Analogous to Quantum

Mechanics, an arbitrary state ket can be expressed as a linear superposition of the base
kets.
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2.1. Boson Sampling - The Model

|ψ⟩ =
∑

S∈Φm,n

βs |S⟩ (2.1)

Here, βs represents the complex coefficients, and when the state is normalized,
∑

S∈Φm,n
|βs|2 =

1. The Hilbert space corresponding to the set Φm,n is denoted as Hm,n. Importantly, the
Hilbert space in this model is not simply a tensor product of smaller Hilbert spaces. A
standard convention for an input state, as followed in the paper by Aaronson and Arkhi-
pov, is to feed the first n modes with 1 photon each, while the remaining channels are in
the vacuum state: |1n⟩ = |1, .., 1, 0, ..., 0⟩.

The input state is then evolved through a linear optical network represented by an m x
m unitary matrix U . The output of the system consists of samples from a distribution
obtained after measuring the transformed state in the Fock basis. Any arbitrary unitary
matrix can be decomposed into a product of elementary unitary matrices. Each of these
elementary matrices represents an optical element that acts non-trivially on at most two
modes and is the identity on the remaining m− 2 modes. This decomposition was proven
by Reck et al.[12]. The most commonly used optical elements are beam splitters and phase
shifters. In other words, we can interpret this theorem to mean that any linear optical
network could be constructed using beam splitters and phase shifters.

The probability distribution of output samples is related to the permanent of a submatrix
of the original unitary matrix U. Before providing the exact expression, let’s define the
permanent of a matrix.

Per

[
a b
c d

]
= ad+ bc (2.2)

And in general for n x n matrices,

Per(X) =
∑
σ∈Sn

n∏
i=1

xi,σ(i) (2.3)

Where Sn represents the elements of the symmetry group of permutations of n elements.
Now, let’s define an output event n̄ = S = (n1, n2, ..., nm) which means that we want to
find the probability of measuring n1 photons in mode 1, n2 photons in mode 2, and so on.
The probability of such an event happening is then given by:

p (n̄) =
|Per (As) |2

n1!n2!...nm!
(2.4)

Where As is an n × n submatrix obtained from the unitary U by keeping the first n
columns, and row i is repeated ni times. An important point to note is that the probability
of each event occurring is related to the permanent of a different submatrix of the same
unitary every time, which ensures its value being less than 1 and also the normalization
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of the distribution. A common misconception that can be immediately discarded from the
previous point is that Boson Sampling helps us calculate the permanent of a matrix, but it
is not possible because to calculate the permanent, we might need an exponential number
of runs as the space of output events also grows exponentially.

When considering the scenario of Exact Boson sampling, which involves precisely sampling
from the actual probability distribution of photon interference pattern, we know that the
calculation of the permanent of a complex matrix falls under the category of #P-hard com-
plexity class. This means that if there exists any classical algorithm that could efficiently
sample from the exact distribution as that of a Boson sampler, it would imply a collapse
in the polynomial hierarchy—a situation that is highly implausible in complexity theory.

Aaronson and Arkhipov also introduced the concept of Approximate Boson Sampling to ap-
proximate the permanent of matrices composed of random numbers from a complex normal
distribution, up to an additive error represented by |GPE|2±. They utilized Stockmeyer’s

algorithm to demonstrate that |GPE|2± is in BPPNPO
, where O is an oracle that solves

the approximate Boson Sampling problem. While it is known that a problem in BPPNP is
hard for classical algorithms, whether the approximate Boson Sampling problem is in #P
remains an open question. Nonetheless, the authors provide strong evidence supporting
the #P complexity of approximate Boson Sampling by relying on two conjectures.

First, the permanent-of-gaussians conjecture posits that estimating the permanent of a
matrix up to a multiplicative error (denoted as GPEx) belongs to the #P complexity class.
Second, the permanent-anti-concentration conjecture implies a polynomial-time equival-
ence between GPEx and |GPE|2±. Assuming these conjectures are true, it follows that
P#P = BPPNP unless Approximate Boson Sampling is in #P.

2.1.1 Experimental Factors - AABS

A Boson Sampling device that surpasses the capabilities of a classical computer could
provide evidence supporting the possibility of non-trivial quantum computation without
the need for constructing a universal quantum computer. Demonstrating the superiority of
a large Boson Sampling device would present a challenge to the Extended Church-Turing
thesis. However, it’s important to note that, given the nature of complexity theory dealing
with asymptotic statements, no single experiment is sufficient to disprove the Extended
Church-Turing thesis.

One challenging aspect for experimentalists is to design an experiment with the right
number of photons. This means that while a classical computer may struggle to sample
from such a distribution, it should still be capable of verifying the results obtained from
the Boson Sampler.

The experimental setup for Boson Sampling typically requires physical resources such as
linear optical networks, photon sources and detectors as described in [10]. However, it
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is worth noting that the experiment can also be conducted in a solid-state system using
Bosonic excitations. The preparation of the standard input state ideally involves single-
photon Fock states and vacuum states. Generating single photons can be challenging, but
there are various techniques available for this purpose, as discussed in[13].

In the experimental setup, an interferometer is employed, represented by a unitary matrix.
Once the unitary matrix is fixed, the number of beam splitters and phase shifters can
be estimated using (Lemma 3.1) from Reck et al.[12]. This lemma provides a count of
elements on the order of O (m2). However, scaling such an architecture with an increasing
number of modes can be challenging. To address this issue, Aaronson and Arkhipov utilized
a reduction technique. Since photons are present only in the first n out of m modes of
the standard input state, they devised a way to parallelize the optical network. This
modification allows the requirement on the number of optical elements to scale up to
O (nm), organized into only O (n logm) layers.

The final step of the experiment involves measuring the transformed state in the Fock
basis. This step requires m photon detectors with the capability of distinguishing the
number of photons ni. However, when m (total modes) is much larger than n (total
photons), the probability of receiving more than one photon in any of the output modes
is almost negligible, as demonstrated by the authors in ”Boson Birthday Bound” [10].
Therefore, any bucket detector that clicks in the presence of a photon without giving an
accurate information about the count of photons will be sufficient for the task of Boson
Sampling. The main consideration here is the efficiency of such photodetectors, which has
significantly improved over the decade. Higher efficiency enhances the scalability of such
a setup.

What might go wrong? There are several potential sources of error that, if controlled more
effectively, could reduce errors in the experiment. Some of the sources of error, as discussed
in[10], include the low reliability of single photon Fock state generators, the inability of
optical elements (such as beam splitters and phase shifters) to induce the desired unitary
transformation, the network not being lossless, meaning photons could get lost along the
way, the inefficiency of existing photodetectors, and the arrival of photons at photodetectors
at different times due to a lack of calibration in optical fibers or a lack of synchronization
among single photon sources. The last issue can result in distinguishable photons, and
thus, the amplitudes will no longer be matrix permanents. Many of these challenges have
been addressed in recent developments of Boson Sampling protocols, and we will explore
some of them in the upcoming sections.

2.2 Scattershot Boson Sampling

We start this section by addressing the issues related to the unreliability of single-photon
Fock state sources mentioned in the previous section. The current photon sources are
not deterministic, and the probability of successfully generating the input state decreases
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exponentially with an increase in n. With this motivation in mind, Lund et al [11] proposed
an alternative scheme to generate the input state from Gaussian states of light. This is
because there are better sources available that can deterministically produce non-classical
states of light with a Gaussian Wigner function and high purity. The authors of this paper
also investigate whether sampling from Gaussian states is still a computationally hard
problem, introducing a new protocol called the Scattershot Boson Sampling protocol.

Instead of relying on single-photon Fock state sources, the authors introduced the idea of
generating photons from two-mode squeezed states. The generation of two-mode squeezed
states has traditionally been accomplished using spontaneous parametric down-conversion
(SPDC) techniques. In the SPDC process, a strong pump beam is directed onto a nonlinear
crystal, resulting in two modes: signal and idler. The output state is a two-mode squeezed
vacuum, represented by the expression:

|ψ⟩ =
√

1− χ2

∞∑
p=0

χp |p⟩1 |p⟩2 (2.5)

Here 0 ≤ χ < 1 is the squeezing strength and the overall state is a gaussian state which
can be produced quite reliably using this technique. The model of Boson Sampling from
this setting, as described by the authors in[11], consists of 2n2 optical modes, two-mode
squeezed vacuum state sources (SPDC sources), a linear optical network with m = n2

modes, and photon-counting detectors. This allows the construction of an instance of the
n-photon Boson Sampling problem. The idea is to input one mode from each of the n2

two-mode squeezed states into the interferometer, while the other one (herald mode) goes
into a photon detector, as shown in the figure given below.

Figure 2.2: Scattershot Boson Sampler, Source:[11]

The total state of all modes before measurement in the Fock basis is given by a compact
equation:
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2.2. Scattershot Boson Sampling

|ψ⟩1,2 = U
(2)
j

n2∏
h=1

√
1− χ2

∞∑
ph=0

χp |p⟩h1 |p⟩h2 (2.6)

The herald modes (h1) are not acted upon by the unitary and are used in the construction
of the standard input states with n single photon Fock states and remaining vacuum states.
Suppose that the arrangement of those 1 photons over herald modes is represented by a
string kh, then the state of the herald mode system can be written as:

|ϕ⟩1 =
n2∏
h=1

(
â†h

)kh
|0⟩1 (2.7)

Now partially tracing out the herald mode state over the total state of the system gives
us:

1 ⟨ϕ|ψ⟩1,2 = U
(2)
j

n2∏
h=1

(
â†h

)kh
|0⟩2 (2.8)

This equation represents an equivalence with an instance of Boson Sampling problem but
with an additional dependency on the probabilistic behavior of the construction of the
required input state, and the probability of detecting a particular arrangement kh as calcu-

lated by the authors is given by χ2n (1− χ2)
n2

. This probabilistic behavior introduces an
additional exponential overhead to the Boson Sampling algorithm. Following the lines of
argument in the paper[11], a rough proof (evidence) has been sketched by the authors to
keep in order the fact that even with this exponential overhead, the problem still remains
computationally hard to compute. Any existence of a classical algorithm that could effi-
ciently sample from the exact probability distribution or even the approximate probability
distribution would imply a collapse in the polynomial hierarchy, which is very unlikely.

The Scattershot Boson Sampling Protocol consists of non-adaptive linear optical networks,
construction of two-mode squeezed states, and photon counting measurements. Such a
device has the ability to efficiently solve a generalized Boson Sampling problem. Import-
antly, it remains a computationally hard problem for classical computers.

2.2.1 Experimental Factors - SBS

Experimenting with such a physical device comes with its own set of challenges. Construct-
ing n2 identical two-mode squeezers, injecting them into a large optical network (which
needs to be lossless), and dealing with the low efficiency of photodetectors are all significant
hurdles in achieving accurate results. Recent efforts in this field aim to address these chal-
lenges, with approaches such as passive error correction against loss [14], time-multiplexed
squeezed sources [15], and integrating squeezed state generators and optical networks on a
single chip to reduce losses [16].
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2.3. Gaussian Boson Sampling

2.3 Gaussian Boson Sampling

In the previous exploration of the Scattershot Boson Sampling (SBS) protocol, it was ob-
served that Gaussian states were used, but their Gaussian nature was eventually discarded
by post-selecting on the herald modes to obtain single photons in a low-gain regime. With
the aim of retaining the full Gaussian nature of the input states and reducing the size of
the sampling space by a factor of

(
N2

N

)
compared to the SBS protocol, C.Hamilton et al

introduced a new Gaussian Boson Sampling (GBS) protocol in[17]. This protocol leverages
the complete Gaussian nature of input states, allowing for operation in a high-gain regime.
Additionally, it removes the constraint on using single-photon Fock input states, as seen
in previous protocols.

The GBS protocol, as outlined in [17], involves a set of squeezed states passing through
the linear interferometer and then being detected by the photon number detectors to
measure the transformed state in the Fock basis. The paper also addresses the question
of complexity, determining whether this sampling protocol, which uses Gaussian states
instead of single-photon Fock states, remains a computationally hard problem. The authors
provide evidence for the hardness of the problem and introduce a new theoretical formula to
calculate the probability of obtaining an output photon pattern n̄ using a matrix function
called the Hafnian.

The formulation of the sampling matrix in this protocol deviates slightly from that of
previous versions of Boson Sampling. A notable feature is that the final sampling matrix
absorbs characteristics from both the interferometer matrix and the covariance matrix
representing the Gaussian input state. To comprehend this process, an understanding of the
properties of the phase space representation in quantum optics is required. Additionally,
it’s essential to acknowledge that any M-mode Gaussian state can be represented using a
2M x 2M covariance matrix (σ) and a 2M displacement vector (d), as given below:

σij =
1

2

〈
{ζ̂i, ζ̂j}

〉
− didj , dj = ⟨âj⟩ (2.9)

The expression involves the operators ζ̂j, which take the place of creation and annihilation

operators âj and â†j for each mode j. Let’s simplify the expression by assuming dj = 0,
and then we’ll handle the case with non-zero displacement vectors. Using the methods in
phase space representations of quantum states and operators [18], [19] and [20], we can
formulate the probability of measuring n̄ as given below:

Pr (n̄) = πM

∫
d2MαQρ̂ (α)Pn̄ (α) (2.10)

The Qρ̂ is the Q-function, or an alternate representation of the system state (density matrix
ρ̂), and Pn̄ is the P-function corresponding to the measurement operator ˆ̄n.

Pn̄ (α) =
e|α|

2

n!

(
∂2

∂α∂α∗

)n

δ (α) δ (α∗) for |n⟩ ⟨n| (2.11)
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2.3. Gaussian Boson Sampling

Qρ̂ (α) =
1√
|πσQ|

e−
1
2
α†
νσ

−1
Q αν (2.12)

Where σQ = σ + 1/2, αν = [α1, ...αM , α
∗
1, ..., α

∗
M ]. Plugging these definitions into equa-

tion (2.10) followed by some analysis takes us to our desired equation for calculating the
probability of obtaining an output pattern of photons n̄.

Pr (n̄) =
1

n̄!
√
|σQ|

M∏
j=1

(
∂2

∂αj∂α∗
j

)nj

e
1
2
αt
νAαν

∣∣∣∣∣
αν=0

(2.13)

A represents the sampling matrix and is defined as given below:

A =

[
0 1M

1M 0

] [
12M − σ−1

Q

]
(2.14)

For simplicity, we will assume only 0 or 1 photon in the output mode, allowing us to define
a 2M-dimensional vector, denoted as µ, which records the position of the detected photon.
For instance, if a photon is detected in the j-th mode, both the jth and (M + j)th entries
of µ will be activated. The expansion of 2N derivatives in Equation (2.11) results in a
summation over all Perfect Matching Permutations (PMP) of the vector µ.

Pr (n̄) =
1

n̄!
√
|σQ|

∑
µ′∈PMP

M∏
j=1

AS
µ
′
(2j−1),µ

′
(2j)

(2.15)

Here, AS represents a submatrix obtained by discarding the rows and columns correspond-
ing to the 0 entries in the µ vector. The summation over Perfect Matching Permutations
(PMP) is equivalent to the Hafnian of the matrix, as defined by Caianiello in [21, 22]. This
relationship allows us to finally connect the probability to the Hafnian of our sampling
matrix.

Pr (n̄) =
1

n̄!
√
|σ|

Haf (AS) (2.16)

The Hafnian of a matrix is a more general function than the permanent, and there exists
a defined relationship between them, as given below:

Per (A) = Haf

([
0 A
At 0

])
(2.17)

Now, utilizing these definitions, let’s delve into a detailed examination of the Gaussian
Boson Sampling (GBS) protocol and its architecture. In this setup, we have K single-mode
squeezed states (SMSS) as defined in (1.72), injected into an M-mode linear interferometer
(K ≤ M). The interferometer is characterized by a Haar random unitary transformation,
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2.3. Gaussian Boson Sampling

described by an unitary matrix T. Subsequently, the state undergoes a transformation, and
the resulting state at the end of the computation is measured in the Fock basis.

Figure 2.3: Gaussian Boson Sampler, Source:[23]

To initiate the description of the covariance matrix for K single-mode squeezed states as
described in [24], a symplectic form of squeezing transformation is applied to a vaccum
state which is represented by 12M

2
. The squeezing matrix is defined as follows:

S =

[⊕M
j=1 cosh rj

⊕M
j=1 sinh rj⊕M

j=1 sinh rj
⊕M

j=1 cosh rj

]
(2.18)

The squeezing transformation of the initial covariance matrix yields σ = 1
2
SS†. Unlike the

previous protocols where the unitary of an interferometer was applied directly to the state
ket, in this case, we must consider the unitary transformation of the covariance matrix, as
illustrated below:

σ =
1

2

[
T 0
0 T ∗

]
SS†

[
T † 0
0 T t

]
(2.19)

The transformed covariance matrix serves as our input to equation (2.14) for generating
the sampling matrix A, which is then employed as an argument for the Hafnian after
appropriate reduction (AS). The reduction of the sampling matrix is carried out based on
the output photon pattern. Specifically, if there is no photon detected in the jth mode,
then the corresponding row and column number j and j+M are eliminated from the final
covariance matrix. Moreover, the calculated sampling matrix A is found to be of the form
A = B ⊕B∗.

A is the direct sum of two matrices, and the hafnian of such a matrix is given by the product
of hafnians of the two sub-matrices. This enables us to reformulate equation (2.16) in the
following form:
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Pr (n̄) =
1

n̄!
√
|σ|
∣∣Haf (BS)

∣∣2 (2.20)

Here, BS is obtained by applying a similar reduction strategy as earlier. The only difference
is that we delete only the jth column and row if no photon is detected in the jth mode.

Up to this point, we’ve examined a Gaussian state with a zero displacement. However,
when the displacement vector is non-zero, certain modifications are introduced to the
equations, as outlined in[23]. We’ll address each of these changes individually, starting
with the modification reflected in the Q function of the multimode Gaussian state, which
is now defined as:

Qρ̂ (α, α
∗) =

1√
|πσQ|

e−
1
2
(αν−dν)

†σ−1
Q (αν−dν) (2.21)

Where dν is a 2M-dimensional displacement vector. Following the same analysis as in the
earlier case, we arrive at the following expression for the probability of obtaining n̄:

Pr (n̄) =
e−

1
2
d†νσ

−1
Q dν

n̄!
√
|σQ|

M∏
j=1

(
∂2

∂αj∂α∗
j

)nj

e
1
2
αt
νAαν+Fαν

∣∣∣∣∣
αν=0

where F = d†νσ
−1
Q (2.22)

It is evident that when we expand derivatives, additional terms arise due to the presence
of the linear term Fαν , in contrast to the zero displacement case. Consequently, more
partitions, such as first-order terms in αj and α∗

j , contribute to the final result. After
detailed analysis, as elucidated in[23], the expression for calculating the probability of an
output pattern n̄ is now given by:

Pr (n̄) =
e−

1
2
d†νσ

−1
Q dν

n̄!
√

|σQ|

{
Haf (AS) +

∑
j1,j2,j1 ̸=j2

Fj1Fj2Haf
(
AS−{j1,j2}

)
+ · · ·+

2N∏
j=1

Fj

}
(2.23)

The interpretation of this result is straightforward. The first term accounts for all the
photons originating from squeezed/thermal states (covariance matrix), while the last term
only encompasses contributions from the coherent state (displacement operator). The
middle terms represent a mixing of photon contributions from both the squeezed/thermal
and coherent components of the state. An alternative expression for the above formula can
be presented in terms of what we refer to as the Loop Hafnian.

Pr (n̄) =
e−

1
2
d†νσ

−1
Q dν

n̄!
√

|σQ|
Lhaf (AS, dr) (2.24)

Here, dr represents the reduced displacement vector, which is obtained from dν by excluding
the jth and (j +M)th entries, as previously done for an output mode without any photons.
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In terms of graph theory, the distinction between a hafnian and a loop hafnian lies in the
fact that the former counts the number of perfect matchings in a loopless graph, whereas
the latter has the additional capability to perform the same task on graphs with loops.

In the more general scenario where there is more than one photon in the output modes, [23]
elegantly addresses the absence of a direct formula linking the hafnian to the probability.
The authors propose a clever approach: distributing the surplus photons into virtual modes
such that each virtual mode contains only one photon. They then apply the hafnian
formula to a new matrix constructed by repeating the rows and columns of the original
matrix to appropriate dimensions. It is important to note that while this new matrix does
not represent a quantum covariance matrix, it effectively allows the use of the hafnian
machinery to compute probabilities for a multiphoton case.

After examining the model, we must address the question of whether the Gaussian Boson
Sampler (GBS) solves a computationally hard problem. The answer for the exact case
of GBS is straightforward. Hafnian, being a more general matrix function than the per-
manent, places GBS in the #P complexity class. This implies that if a classical algorithm
existed to sample from the exact distribution of a GBS, it would imply a collapse in the
polynomial hierarchy—an outcome highly implausible.

In the case of considering multiple photons in the same mode, the complexity results remain
unchanged. This is because the probabilities are still dependent on the hafnian of a matrix
that has been duplicated by repeating rows and columns, meaning that the rank of the
matrix remains the same, and there is no change in the complexity of the problem.

The question of whether Approximate Gaussian Boson Sampling (GBS) solves a computa-
tionally hard problem is more complex and involves additional considerations. In the case
of the Boson Sampling protocol, Aaronson and Arkhipov established that the Approximate
Boson Sampling probability |GPE|2± falls within the BPPNPO

complexity class. They then
utilized two conjectures, assuming them to be true, which implied that P#P = BPPNP

unless Approximate Boson Sampling is in #P. Similar lines of argument have been followed
in [23, 17] to suggest that GBS is in #P, but a complete proof remains an open question.

2.3.1 Experimental Factors - GBS

From an experimental standpoint, the GBS protocol presents several advantages over pre-
vious protocols. Firstly, the probability of generating certain photon pair events is signific-
antly higher (exponentially) compared to protocols such as SBS and other post-selection
Boson Sampling (BS) protocols. Additionally, the number of squeezers required to imple-
ment GBS is lower (quadratically) than what is required in the SBS protocol.

Another advantageous aspect of the GBS protocol is its propensity to exhibit better gen-
eration probabilities in the high photon number regime. This tendency makes it feasible to
reach a regime where 50-100 photons can be generated at reasonable rates. In this regime,
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the Boson Sampling problem becomes particularly interesting, as it becomes increasingly
challenging to simulate it classically.

2.4 Non Gaussian Boson Sampling

Sampling from pure single-mode non-Gaussian states represents an extension of previous
work and introduces a new theoretical framework in the field. The information presented in
this section is primarily derived from [25], which introduces a new protocol for the Boson
Sampling problem using the widest possible range of single-mode states. This protocol
enables sampling from Non-Gaussian states, expanding the applicability to sample from
states associated with higher order non quadratic Hamiltonians.

The procedure to construct an arbitrary pure single-mode photonic state is provided in[26].
This method involves the use of two squeezing operations, a set of displacement operations,
and some single photon subtractions. Mathematically, the series of operations to generate
the desired state can be expressed in the form given below:

|ψ⟩ = Ŝ (−r) âD̂ (αN) . . . âD̂ (α2) âŜ (r) |0⟩ (2.25)

Here, r is the squeezing parameter, and squeezing and anti-squeezing operations are applied
at the beginning and end of the series of operations. The set of αi represents the amount
of displacements needed after every step with photon subtraction. The values of α are
determined by an algorithm described in[26]. A pictorial representation of the scheme to
generate states is provided below:

Figure 2.4: Method of constructing single mode Non-Gaussian states, Source:[25]

At each step, as the light travels through a series of highly transmitting (low reflecting)
beam splitters, the state of light is combined with displaced vacuums, and a photon is de-
tected in each of the output arms. The photon subtraction operator â can be understood,
in physical terms, as a photon detection operation, particularly in the low probability
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limit. The nature of this technique is probabilistic, which means that for successful state
generation, all detectors need to detect one photon each. However, this scenario is un-
likely, making this technique impractical for experimental purposes. Nonetheless, it is
utilized in calculating the output probability of obtaining photon patterns resulting from
the interference of such states.

The Non-Gaussian Boson Sampling (NGBS) protocol integrates the Gaussian Boson Sampling
(GBS) with the previously described generation technique to sample from non-Gaussian
input states.

Figure 2.5: Non-Gaussian Boson Sampler, Source:[25]

A Non-Gaussian Boson Sampler, as illustrated in the figure above, consists of K non-
Gaussian states, each having M modes. Out of these, M-1 modes act as herald modes
where photon detection takes place, and the last one is the system mode that undergoes
an M ′ x M ′ mode interferometer. Consequently, there are a total of M ′ + K(M − 1)
modes, with each of the K system modes represented by their covariance matrices (σNG)
and displacement vectors (dNG) before measuring the herald modes. The overall input
state can be expressed in terms of this individual state information as follows:

Σin = σ⊕K
NG ⊕ I/2M ′−K and ∆in = d⊕K

NG ⊕ 0M ′−K (2.26)

The system modes enter the interferometer, and the resulting output state is represented
by the following covariance matrix and displacement vector:

Σout =
(
UM ′ ⊕ I(M−1)K

)
Σin

(
U †
M ′ ⊕ I(M−1)K

)
(2.27)

∆out =
(
UM ′ ⊕ I(M−1)K

)
∆in (2.28)

Finally, the system and herald states are measured in the photon number basis, thus giving
rise to our desired Non-Gaussian Boson Sampling scheme. The NGBS scheme is directly

30



2.4. Non Gaussian Boson Sampling

related to the GBS scheme in terms of measuring the photon pattern n̄ given that the
herald modes measure 1 photon each. This conditional probability can be formulated
using Bayes’ theorem as follows:

Pr (n̄system|1herald) =
Pr (n̄system ∩ 1herald)

(Pr (1herald))
K

(2.29)

In the expression above, the probability in the numerator and denominator can be calcu-
lated in the same manner as described in the Gaussian Boson Sampling (GBS) protocol.

Pr (n̄system ∩ 1herald) =
exp

(
−1

2
∆outΣ

−1
Q ∆out

)
n̄sys!

√
|ΣQ|

Lhaf
(
AT

s , F
T
s

)
(2.30)

Pr (1herald) =
exp

(
−1

2
dNGσ

−1
Q,NGdNG

)√
|σQ|

Lhaf
(
ANG

s , FNG
s

)
(2.31)

The primary result of[25] lies in the calculation of the probability of a photon pattern from
an array of non-Gaussian states. It is emphasized that the Non-Gaussian Boson Sampling
(NGBS) problem is not asserted to have any complexity advantages. This implies that
sampling from non-Gaussian states is not inherently more challenging than sampling from
Gaussian states. Therefore, the earlier complexity results derived for Gaussian Boson
Sampling (GBS) are applicable in the case of NGBS as well.

2.4.1 Experimental Factors - NGBS

All the aforementioned experimental limitations, such as the low efficiency of photon de-
tectors, photon loss in the optical network, and the generation of input states of light
as described in previous protocols, are applicable to the Non-Gaussian Boson Sampling
scheme as well.

Additionally, the input state construction in this model relies on a probabilistic model[25],
which further contributes to the model’s limitations. While the authors demonstrate in[26]
that the non-Gaussian state generation scheme approaches unity fidelity as the transmission
coefficient of beam splitters approaches one, it’s crucial to acknowledge the challenge of
approximating an infinite-dimensional state through finite truncation in the photon number
basis. Regardless of the chosen parameters, this approximation results in a created state
with fidelity below unity, posing a potential source of error in the presented protocol.
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Chapter 3

Our Methodology

We are presently involved in investigating the interference patterns displayed by a particu-
lar family of Non-Gaussian states. As part of this initiative, we have established a Python
repository that facilitates the simulation of arbitrary instances within this family of states.
This platform provides us with the capability to observe and analyze the resulting photon
patterns in the output channels of an interferometer.

3.1 Non Gaussian States of Light

Sophisticated quantum technologies necessitate scalable and controllable quantum resources.
Multimode light Gaussian states, such as squeezed states and cluster states, provide scal-
able quantum systems that can be generated on demand. However, Non-Gaussian features
are crucial in numerous quantum protocols, especially for attaining a quantum computa-
tional advantage [27].

In the previous chapter, we explored a specific method for constructing arbitrary single-
mode Non-Gaussian states through the implementation of photon subtraction techniques
at beam splitters. The Non-Gaussian states of particular interest in this study are charac-
terized by the following form:

|ψ⟩ = 1√
N + 1

N∑
n=0

|n⟩ (3.1)

We confine the summation to N values of 2 or 3, which enables us to compute probabilities
on a classical computer without a significant increase in the program’s runtime.

3.2 Simulating Boson Sampling on a Classical Computer

In this section, we will present the outcomes resulting from the interference of the states
mentioned earlier, within a specific interferometer which is represented mathematically by
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a Fourier matrix. For convenience, we’ll refer to this as the Fourier interferometer from
now on. Following this, we will proceed to analytically validate these results by applying
our theoretical understanding of Quantum Optics.

3.2.1 Two Mode Interference

As a simplified model, we will begin by examining the interference pattern resulting from
two modes in a Fourier interferometer, represented by the following unitary matrix:

U =
1√
2

[
1 1
1 −1

]
1. 1√

2
(|0⟩+ |1⟩)

When two such states are subjected to a two-channel Fourier interferometer, it pro-
duces the following output pattern. Here, n1 and n2 represent the number of photons
measured in the output modes 1 and 2, respectively.

Figure 3.1: Photon Distribution

Photon Pattern Probability

(0, 0) 0.250
(0, 2) 0.125
(1, 0) 0.500
(2, 0) 0.125

Table 3.1: Probability

2. 1√
3
(|0⟩+ |1⟩+ |2⟩)

By introducing an additional ket |2⟩ into the input state, we are expanding the size of
the state space, and the outcomes of its probability distribution are provided below:
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Figure 3.2: Photon Distribution

Photon Pattern Probability

(0, 0) 0.111
(0, 2) 0.009
(0, 4) 0.041
(1, 0) 0.222
(1, 2) 0.055
(2, 0) 0.323
(2, 2) 0.027
(3, 0) 0.166
(4, 0) 0.041

Table 3.2: Probability

3. 1√
4
(|0⟩+ |1⟩+ |2⟩+ |3⟩)

By further increasing the size of input state space, we can still explore all possible
scenarios regarding the photon’s output position without sacrificing any information.

Figure 3.3: Photon Distribution

Photon Pattern Probability

(0, 0) 0.062
(0, 2) 0.005
(0, 4) 0.009
(0, 6) 0.019
(1, 0) 0.125
(1, 2) 0.016
(1, 4) 0.015
(2, 0) 0.182
(2, 2) 0.015
(2, 4) 0.011
(3, 0) 0.233
(3, 2) 0.031
(4, 0) 0.162
(4, 2) 0.011
(5, 0) 0.078
(6, 0) 0.019

Table 3.3: Probability

3.2.2 Three Mode Interference

Now, let’s focus on the interference pattern for three modes in a three channel Fourier
interferometer, represented by the following Fourier Matrix.
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F =
1√
3

1 1 1
1 ω ω2

1 ω2 ω4


In the Fourier Matrix, the elements 1, ω, and ω2 represent the complex cube roots of unity.

1. 1√
2
(|0⟩+ |1⟩)

When these states undergo interference in the Fourier interferometer, it generates
the subsequent output pattern. In this context, n1, n2, and n3 signify the counts of
photons measured in the output modes 1, 2, and 3, respectively.

Photon Pattern Probability

(0, 0, 0) 0.125
(0, 1, 1) 0.125
(1, 0, 0) 0.375
(1, 1, 1) 0.041
(2, 0, 0) 0.250
(3, 0, 0) 0.027
(0, 3, 0) 0.027
(0, 0, 3) 0.027

2. 1√
3
(|0⟩+ |1⟩+ |2⟩)

Now, let’s introduce an additional contributing ket to the input state and pass it
through the interferometer. As a consequence, it produces the subsequent output
pattern.
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Photon Pattern Probability Photon Pattern Probability

(0, 0, 0) 0.037 (0, 0, 3) 0.010
(0, 0, 6) 0.004 (0, 1, 1) 0.006
(0, 1, 4) 0.008 (0, 2, 2) 0.037
(0, 3, 0) 0.010 (0, 3, 3) 0.0009
(0, 4, 1) 0.008 (0, 6, 0) 0.004
(1, 0, 0) 0.111 (1, 0, 3) 0.002
(1, 1, 1) 0.012 (1, 1, 4) 0.005
(1, 2, 2) 0.012 (1, 3, 0) 0.002
(1, 4, 1) 0.005 (2, 0, 0) 0.215
(2, 0, 3) 0.004 (2, 1, 1) 0.037
(2, 2, 2) 0.004 (2, 3, 0) 0.004
(3, 0, 0) 0.226 (3, 0, 3) 0.0009
(3, 1, 1) 0.032 (3, 3, 0) 0.0009
(4, 0, 0) 0.143 (4, 1, 1) 0.005
(5, 0, 0) 0.041 (6, 0, 0) 0.004

3. 1√
4
(|0⟩+ |1⟩+ |2⟩+ |3⟩)

This marks the point where significant computational challenges arise on a classical
computer, as attempting to compute all output scenarios leads to a substantial in-
crease in memory allocation and runtime complexity.

3.2.3 Four Mode Interference

We persist in our exploration, seeking to grasp the interference pattern for 4 input modes
when subjected to a Fourier interferometer. The representation of this four-channelled
interferometer is encapsulated by the following 4 × 4 unitary matrix:

F =
1√
4


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω4 ω6 ω9


1. 1√

2
(|0⟩+ |1⟩)

When four such states interfere within a Fourier interferometer, it produces the fol-
lowing output pattern. Here, n1, n2, n3, and n4 represent the counts of photons
measured in the output modes 1, 2, 3, and 4, respectively.
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3.3. Analytical Results

Photon Pattern Probability Photon Pattern Probability

(0, 0, 0, 0) 0.062 (0, 0, 0, 4) 0.005
(0, 0, 1, 2) 0.031 (0, 0, 2, 0) 0.031
(0, 0, 4, 0) 0.005 (0, 1, 0, 1) 0.062
(0, 1, 2, 1) 0.007 (0, 2, 0, 2) 0.003
(0, 2, 1, 0) 0.031 (0, 4, 0, 0) 0.005
(1, 0, 0, 0) 0.249 (1, 0, 1, 2) 0.007
(1, 0, 2, 0) 0.031 (1, 1, 0, 1) 0.062
(1, 2, 1, 0) 0.007 (2, 0, 0, 0) 0.281
(2, 0, 2, 0) 0.003 (2, 1, 0, 1) 0.007
(3, 0, 0, 0) 0.093 (4, 0, 0, 0) 0.005

2. 1√
3
(|0⟩+ |1⟩+ |2⟩)

Incorporating an extra ket in the input state for four-mode interference is imprac-
tical, as it leads to a significant escalation in both memory allocation and runtime
complexity.

These findings provide the initial indication of the distinct clustering behavior of photons,
which is evident across all analyzed cases.

3.3 Analytical Results

We will leverage the theoretical insights gained in Quantum Optics thus far to validate a
subset of the results emphasized in the preceding section.

3.3.1 Two Mode Calculation

Let’s pick a simple example of two state kets 1√
2
(|0⟩+ |1⟩) interfering in a Fourier inter-

ferometer, represented by the following unitary matrix:

U =
1√
2

[
1 1
1 −1

]
This unitary matrix establishes a relationship between the operators of the output and
input modes.

[
ĉ

d̂

]
=

1√
2

[
1 1
1 −1

] [
â

b̂

]
In this context, ĉ and d̂ denote the photon annihilation operators of the output modes.
It’s important to recall that annihilation operators subtract one photon from a Fock state,
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3.3. Analytical Results

while creation operators ĉ† and d̂† add one photon to it. Utilizing this understanding, we
can formulate our input state in terms of operators and vacuum state, as presented below:

|ψ⟩in =
1

2

(
1a + â†

) (
1b + b̂†

)
|0, 0⟩a,b

Now, let’s apply the transformation relations for the mode operators in the output channels.

â =
1√
2

(
ĉ+ d̂

)
b̂ =

1√
2

(
ĉ− d̂

)
This enables us to express the state of light in the output channel as follows:

|ψ⟩out =
1

2

(
1c +

ĉ†√
2
+

d̂†√
2

)(
1d +

ĉ†√
2
− d̂†√

2

)
|0, 0⟩c,d

Upon straightforward simplification of this expression, we arrive at the ultimate form of
the output state ket, as follows:

|ψ⟩out =
1

2
|0, 0⟩+ 1√

2
|1, 0⟩+ 1

2
√
2
|2, 0⟩ − 1

2
√
2
|0, 2⟩

By applying the postulates of Quantum Mechanics, we can compute the probability of
measuring (n1, n2) photons in the output channels, as described in the equation below.

P (n1, n2) = | ⟨n1, n2|ψ⟩out |
2 (3.2)

Figure 3.4: Photon Distribution

Photon Pattern Amplitude Probability

(0, 0) 1
2

0.25
(1, 0) 1√

2
0.5

(2, 0) 1
2
√
2

0.125

(0, 2) 1
2
√
2

0.125

Table 3.4: Probability

3.3.2 Three Mode Calculation

To simplify, we will once more select the state 1√
2
(|0⟩+ |1⟩). However, this time, three

instances of this state will undergo interference in a Fourier interferometer, represented by
the following matrix:
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3.3. Analytical Results

F =
1√
3

1 1 1
1 ω ω2

1 ω2 ω4


The annihilation operators for the three output channels are denoted as ê, f̂ , and ĝ, and
their respective transformation relation with the input mode operators is presented below:

êf̂
ĝ

 =
1√
3

1 1 1
1 ω ω2

1 ω2 ω4

âb̂
ĉ


Using the properties of annihilation and creation operators we can write the construct the
input state as prescribed below:

|ψ⟩in =
1

2
√
2

(
1a + â†

) (
1b + b̂†

) (
1c + ĉ†

)
|0, 0, 0⟩a,b,c

To express the output state, we need to invert the relation (3.15) and represent the input
mode operators in terms of the output ones. Upon inversion and Hermitian conjugation,
we obtain the following relations:

â† =
1√
3

(
ê† + f̂ † + ĝ†

)
b̂† =

1√
3

(
ê† + ωf̂ † + ω2ĝ†

)
ĉ† =

1√
3

(
ê† + ω2f̂ † + ωĝ†

)
Utilizing the aforementioned relations, we can express the output state as follows:

|ψ⟩out =
1

2
√
2

(
1e +

1√
3

(
ê† + f̂ † + ĝ†

))(
1e +

1√
3

(
ê† + ωf̂ † + ω2ĝ†

))
(
1e +

1√
3

(
ê† + ω2f̂ † + ωĝ†

))
|0, 0, 0⟩e,f,g

It is evident that this seemingly straightforward problem, when approached analytically,
becomes intricate. The expansion involves 64 terms, encompassing 30 distinct kets that
form the output state. Nevertheless, it is fascinating to note that only 8 of these unique
ket combinations possess non-zero probabilities. We will forego the details of this extensive
calculation and present the final output state, as described below:
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3.3. Analytical Results

|ψ⟩out =
1

2
√
2
|0, 0, 0⟩ − 1

2
√
2
|0, 1, 1⟩+

√
3

8
|1, 0, 0⟩ − 1√

24
|1, 1, 1⟩

+
1

2
|2, 0, 0⟩+ 1

6
|3, 0, 0⟩+ 1

6
|0, 3, 0⟩+ 1

6
|0, 0, 3⟩

The probability of the wavefunction collapsing into one of the constituent |n1, n2, n3⟩ kets is
also the probability of measuring n1, n2, and n3 number of photons in the output channels,
respectively.

P (n1, n2, n3) = | ⟨n1, n2, n3|ψ⟩out |
2 (3.3)

We can observe that the theoretical calculations precisely align with our experimental
data, as demonstrated in the table below. The significant observation of photon bunching
indicates a strong indication of an underlying quantum effect within this experiment.

Photon Pattern Amplitude Probability

(0, 0, 0) 1
2
√
2

0.125

(0, 1, 1) − 1
2
√
2

0.125

(1, 0, 0)
√

3
8

0.375

(1, 1, 1) − 1√
24

0.041

(2, 0, 0) 1
2

0.250
(3, 0, 0) 1

6
0.027

(0, 3, 0) 1
6

0.027
(0, 0, 3) 1

6
0.027

3.3.3 Four Mode Calculation

We can replicate the same method, which is straightforward but extensive, as employed
in previous sections to generate results for the interference pattern of 4 modes using any
arbitrary unitary matrix. However, conducting these calculations manually become highly
cumbersome due to the exponential growth in the number of terms during the expansion
of the output state ket.

In a manner analogous to the three-mode scenario, where we had 64 terms (43) in the
expansion of the output state, we would encounter 625 terms (54) in the expansion of the
output state for a four-mode scenario, assuming the unitary matrix is an arbitrary matrix
with most of its elements nonzero. In practical terms, manually expressing the output
state in a four-mode interference instance becomes nearly impossible.

In this chapter, we demonstrated the practical implementation of Non-Gaussian Boson
Sampling, showcasing the execution of Boson Sampling on Non-Gaussian states. We also
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3.3. Analytical Results

delved into the theoretical and experimental challenges of the Boson Sampling problem,
emphasizing the capabilities of optical quantum architectures and manifesting the concept
of Quantum Supremacy.
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Chapter 4

Observation of Photon Bunching

In the previous chapter, we gained insight into the operational dynamics of Boson Sampling
on non-Gaussian states, shedding light on its computational inefficiency when implemen-
ted on classical computers. We also observed a crucial phenomenon: significant photon
bunching occurred for higher numbers of modes and larger input states.

In this chapter, we aim to shed further light on this underlying effect and analyze its con-
sequences in a more structured manner. Before moving forward, it’s essential to recall the
Hong-Ou-Mandel Effect, which posits that when two photons are passed, one in each arm
of a balanced beam splitter, both photons arrive in a bunch at either of the output arms.
In an ideal scenario, the probability of simultaneously detecting photons in both output
arms diminishes to zero. We are trying to investigate a similar phenomenon in a broader
context, involving multimode input states and any arbitrary interferometer configuration.

However, for the sake of simplification and to provide a tangible illustration of the effect,
we will consider a scenario where a specific input state, 1√

2
(|0⟩+ |1⟩), is passed into each

of the N input arms, and the interferometer is represented by an N -mode Fourier mat-
rix. Extending this analysis to any other state and interferometer configuration is then
straightforward.

We will repeat the same procedure as in the previous chapter and aim to discern trends
in the data by introducing a ratio of the number of output states possessing non-zero
probability of detection to the total number of states that could be generated in this
particular setting.

|ψ⟩in =
1√
2N

(
1a1 + â1

†) (1a2 + â2
†) · · · (1aN + âN

†) |0, 0, · · · , 0⟩a1,a2,··· ,aN (4.1)

The unitary transformation between operators of the input and output modes is given by
the following matrix equation:
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b̂1
b̂2
b̂3
b̂4
...

b̂N


=

1√
N



1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

1 ω3 ω6 · · · ω3N−3

...
...

...
. . .

...

1 ωN−1 ω2N−2 · · · ωN2−2N+1





â1
â2
â3
â4
...
âN


(4.2)

The output state after passing through this interferometer can be formulated as follows
(Note: Û in the equation below represents the unitary matrix representing the interfero-

meter, and ˆ⃗a and
ˆ⃗
b are the column vectors of the mode operators).

|ψ⟩out =
1√
2N

(
1b1 + [ Û−1ˆ⃗b]†1

)(
1b2 + [ Û−1ˆ⃗b]†2

)
· · ·
(
1bN + [ Û−1ˆ⃗b]†N

)
|0, 0, · · · , 0⟩b1,b2,··· ,bN

(4.3)

With this general formula, we can calculate the number of distinct state kets that we can
theoretically obtain in the output channels, or in other words, we can determine the total
number of output photon patterns. Let’s denote this number by N̄ , and considering the
constraint that we can’t detect more than N photons combined in all the output detectors,
calculating N̄ simplifies to a straightforward solution of the permutation formula given
below:

N̄ =

∣∣∣∣∣
{
(n1, n2, n3, · · · , nN) | 0 <= n1 + n2 + n3 + · · ·+ nN <= N

}∣∣∣∣∣ (4.4)

Where n1, n2, · · ·, nN represent the number of photons detected in the respective output
channels.

However, according to our observations, we understand that not all combinations of output
photon patterns carry non-zero probabilities. A significant portion of these combinations
experience destructive interference, resulting in their cancellation. As a result, only a few
combinations retain non-zero probabilities, leading to the observation of significant photon
bunching. Let’s represent the number of unique combinations that actually persist after
transformation through the interferometer as n̄.

We determine the value of n̄ from the simulations we conducted earlier, and we utilize this
value in computing our desired ratio of interest, R.

R =
n̄

N̄
(4.5)

43



With this understanding, we will apply this theory to calculate the aforementioned ratio
for several toy multimode instances and attempt to identify any trends in the data. In
addition to computing the ratio (R), we are also interested in calculating the correlation
matrix for each instance. This matrix encodes the correlation value between each pair of
output modes. The correlation value between modes i and j is determined by the following
equation:

ci,j =
〈
ninj

〉
−
〈
ni

〉〈
nj

〉
(4.6)

ci,j =
∑
ni,nj

P (ni, nj)ninj −
∑
ni

P (ni)ni

∑
nj

P (nj)nj (4.7)

Hence, the correlation matrix is a collection of such values and takes the following form:

C =


c0,0 c0,1 c0,2 · · · c0,N−1

c1,0 c1,1 c1,2 · · · c1,N−1

c2,0 c2,1 c2,2 · · · c2,N−1
...

...
...

. . .
...

cN−1,0 cN−1,1 cN−1,3 · · · cN−1,N−1

 (4.8)

4.0.1 Two Modes

For two modes, N̄ is straightforward and is given by the following equation:

N̄ =

∣∣∣∣∣
{
(n1, n2) | 0 <= n1 + n2 <= 2

}∣∣∣∣∣
N̄ = 6

whereas, n̄ = 4 as determined from the results computed in the previous chapter.

R = 0.67

C =

[
0.4375 −0.1875
−0.1875 0.4375

]
Photon Pattern Probability

(0, 0) 0.250
(0, 2) 0.125
(1, 0) 0.500
(2, 0) 0.125

Table 4.1: Probability
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4.0.2 Three Modes

N̄ =

∣∣∣∣∣
{
(n1, n2, n3) | 0 <= n1 + n2 + n3 <= 3

}∣∣∣∣∣
N̄ = 20

whereas, n̄ = 8 as determined from the results computed in the previous chapter.

R = 0.40

C =

 0.666 −0.208 −0.208
−0.208 0.354 0.104
−0.208 0.104 0.354



Photon Pattern Probability

(0, 0, 0) 0.125
(0, 1, 1) 0.125
(1, 0, 0) 0.375
(1, 1, 1) 0.041
(2, 0, 0) 0.250
(3, 0, 0) 0.027
(0, 3, 0) 0.027
(0, 0, 3) 0.027

Table 4.2: Probability

4.0.3 Four Modes

N̄ =

∣∣∣∣∣
{
(n1, n2, n3, n4) | 0 <= n1 + n2 + n3 + n4 <= 4

}∣∣∣∣∣
N̄ = 70

whereas, n̄ = 20 as determined from the results computed in the previous chapter.

Photon Pattern Probability Photon Pattern Probability

(0, 0, 0, 0) 0.062 (0, 0, 0, 4) 0.005
(0, 0, 1, 2) 0.031 (0, 0, 2, 0) 0.031
(0, 0, 4, 0) 0.005 (0, 1, 0, 1) 0.062
(0, 1, 2, 1) 0.007 (0, 2, 0, 2) 0.003
(0, 2, 1, 0) 0.031 (0, 4, 0, 0) 0.005
(1, 0, 0, 0) 0.249 (1, 0, 1, 2) 0.007
(1, 0, 2, 0) 0.031 (1, 1, 0, 1) 0.062
(1, 2, 1, 0) 0.007 (2, 0, 0, 0) 0.281
(2, 0, 2, 0) 0.003 (2, 1, 0, 1) 0.007
(3, 0, 0, 0) 0.093 (4, 0, 0, 0) 0.005
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C =


0.906 −0.218 −0.218 −0.218
−0.218 0.343 0.031 0.093
−0.218 0.031 0.406 0.031
−0.218 0.093 0.031 0.343

 R = 0.28

4.0.4 Five Modes

N̄ =

∣∣∣∣∣
{
(n1, n2, n3, n4, n5) | 0 <= n1 + n2 + n3 + n4 + n5 <= 5

}∣∣∣∣∣
N̄ = 252

Although we didn’t present the results for the case of 5 modes in the previous chapter,
here is the data obtained from the simulation of 5 modes, which gives us n̄ = 52.

Photon Pattern Probability Photon Pattern Probability

(0, 0, 0, 0, 0) 0.031 (0, 0, 0, 0, 5) 0.001
(0, 0, 0, 1, 3) 0.007 (0, 0, 0, 2, 1) 0.012
(0, 0, 0, 5, 0) 0.001 (0, 0, 1, 0, 2) 0.012
(0, 0, 1, 1, 0) 0.031 (0, 0, 1, 3, 1) 0.001
(0, 0, 2, 1, 2) 0.0009 (0, 0, 2, 2, 0) 0.005
(0, 0, 3, 0, 1) 0.007 (0, 0, 5, 0, 0) 0.001
(0, 1, 0, 0, 1) 0.031 (0, 1, 0, 2, 2) 0.0009
(0, 1, 0, 3, 0) 0.007 (0, 1, 1, 0, 3) 0.001
(0, 1, 1, 1, 1) 0.001 (0, 1, 2, 0, 0) 0.012
(0, 1, 3, 1, 0) 0.001 (0, 2, 0, 0, 2) 0.005
(0, 2, 0, 1, 0) 0.012 (0, 2, 1, 2, 0) 0.0009
(0, 2, 2, 0, 1) 0.0009 (0, 3, 0, 1, 1) 0.001
(0, 3, 1, 0, 0) 0.007 (0, 5, 0, 0, 0) 0.001
(1, 0, 0, 0, 0) 0.156 (1, 0, 0, 1, 3) 0.001
(1, 0, 0, 2, 1) 0.009 (1, 0, 1, 0, 2) 0.009
(1, 0, 1, 1, 0) 0.056 (1, 0, 2, 2, 0) 0.001
(1, 0, 3, 0, 1) 0.001 (0, 0, 0, 0, 5) 0.056
(1, 1, 0, 3, 0) 0.001 (1, 1, 1, 1, 1) 0.0002
(1, 1, 2, 0, 0) 0.009 (1, 2, 0, 0, 2) 0.001
(1, 2, 0, 1, 0) 0.009 (1, 3, 1, 0, 0) 0.001
(2, 0, 0, 0, 0) 0.250 (2, 0, 0, 2, 1) 0.001
(2, 0, 1, 0, 2) 0.001 (2, 0, 1, 1, 0) 0.022
(2, 1, 0, 0, 1) 0.022 (2, 1, 2, 0, 0) 0.001
(2, 2, 0, 1, 0) 0.001 (3, 0, 0, 0, 0) 0.150
(3, 0, 1, 1, 0) 0.001 (3, 1, 0, 0, 1) 0.001
(4, 0, 0, 0, 0) 0.030 (5, 0, 0, 0, 0) 0.001
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C =


1.149 −0.225 −0.225 −0.225 −0.225
−0.225 0.337 0.024 0.024 0.087
−0.225 0.024 0.337 0.087 0.024
−0.225 0.024 0.087 0.337 0.024
−0.225 0.087 0.024 0.024 0.337

 R = 0.206

4.0.5 Six Modes

N̄ =

∣∣∣∣∣
{
(n1, n2, n3, n4, n5, n6) | 0 <= n1 + n2 + n3 + n4 + n5 + n6 <= 6

}∣∣∣∣∣
N̄ = 924

Due to practical constraints, we won’t present the extensive data for six modes here.
Nonetheless, the essential parameter is computed from the program as n̄ = 130.

C =


1.325 −0.214 −0.215 −0.214 −0.215 −0.214
−0.214 0.324 0.021 0.021 0.002 0.083
−0.215 0.021 0.324 0.021 0.083 0.021
−0.214 0.021 0.021 0.387 0.021 0.021
−0.215 0.021 0.083 0.021 0.324 0.021
−0.214 0.083 0.021 0.021 0.021 0.324

 R = 0.140

Computations for more than six modes could not be executed on a classical computer,
underscoring the complexity of this problem even for such a seemingly simple input con-
figuration.

4.0.6 Diminishing Trend

While the computational challenges are significant, our main focus lies in understanding
the trend of decreasing R as we increase the number of input modes. This trend provides
valuable insights into the behavior of the system.
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Figure 4.1: Decreasing Trend

While further data collection exceeds our current computational capabilities, the observed
trend strongly indicates that as the number of modes increases, the ratio R will approach a
value very close to zero. This analysis aligns with the findings established in [28], [29], and
[30], which describe the suppression laws for multiparticle interference in various classes of
interferometers.

4.0.7 Correlation Analysis using Random Interferometers

We further endeavor to deepen our understanding of non-Gaussian Boson Sampling by
conducting a series of simulations. In these simulations, we utilize arbitrary interferometers
(random unitaries) instead of confining ourselves to Fourier interferometers. The setup
involves configuring the first two input modes as 1√

2
(|0⟩ + |1⟩), while the remaining input

modes are initialized with vacuum states |0⟩.

Let’s denote the number of vacuum modes in each instance by M and plot a histogram of
the correlation value C12 for the first two output modes, according to equation (4.7), for
1000 different random unitaries.
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Figure 4.2: Histogram of correlation values C12 for different numbers of vacuum states, M
ranging from 0 to 8.

As we increase M , we observe the histogram of correlation values C12 developing a peak
structure. This peak sharpens with higher values of M , and its center shifts towards zero.
This trend suggests that increasing the number of vacuum modes in the input results in
a decrease in the correlation between the first two output modes. Our analysis expands
upon the benchmarking techniques outlined in [31], encompassing a wider range of quantum
states as well as classical states. In addition, we also explore the negative correlation values,
contrasting with [31], where the analysis is exclusively focused on positive correlation
values.
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Chapter 5

Conclusions

In summary, our journey commenced with an exploration of the quantum description of
light, revisiting the theoretical foundations of Quantum Optics. We then delved into the
construction of models for the Boson Sampling Problem, tracing its evolution over time.
Finally, we reached our focal point of interest: Non-Gaussian Boson Sampling.

The primary objective of this thesis was to comprehend the interference behavior of a
particular family of non-Gaussian states of light when subjected to an interferometer. The
major results of this work can be broadly categorized into two types.

1. Quantum Supremacy: The simulations and data presented in Chapter 3 offer com-
pelling evidence that Boson Sampling from non-Gaussian states poses a computation-
ally challenging problem. Classical computers demonstrate inefficiency in handling
large configurations. Consequently, a Boson Sampler, although a non-universal model
of a quantum processor, tends to exhibit Quantum Supremacy.

2. Bunching of Photons: In Chapter 4, it becomes evident that there exists a gen-
eralized quantum phenomenon akin to the Hong-Ou-Mandel effect for non-Gaussian
states of light interfering within an interferometer. We observed significant bunching
of photons in almost all instances of computation. The majority of photons un-
dergo destructive interference, resulting in very few output combinations retaining a
non-zero probability of detection. As the number of input states increases, we also
observed a sharp decline in the ratio of non-zero probability output states to the total
possible output states. This ratio tends to a value very close to zero as n→ ∞.
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Chapter 6

Future Direction of Work

At this stage, we could elevate the performance of our project by addressing various crucial
aspects. This strategic focus is pivotal in ensuring not only improved results but also
positioning ourselves favorably for the publication of noteworthy findings.

1. A crucial aspect that demands attention is the computational efficiency of the project.
Although the current program provides accurate results, its computational scalability
is constrained, preventing us from computing probabilities for instances with more
than six modes due to resource limitations on our standard classical computer. To
effectively address this limitation, it is crucial to explore optimal algorithms that can
leverage the low rank of the Non-Gaussian Boson Sampling problem. Our current
algorithm, which revolves around the concept of Loop Hafnians, relies on substantial
data structures for problem-solving.

2. Another major focus of the project centers on exploring the applications of Boson
Sampling. While we are accumulating compelling evidence that the Boson Sampler
exhibits inherent computational speedup or Quantum Supremacy, the practical im-
plications of this speedup remain uncertain. This open question is a highly active
area of research in numerous laboratories worldwide. Our intention is to delve into
this area once our primary goals are achieved.
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