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Abstrakt / Abstract

Ve snaze držet krok se stále rostoucí
popularitou velkých jazykových modelů
see rychle rozvíjí i techniky pro jejich
evaluaci. Přestože stále vznikají nové
testovací nástroje a datové sady, často
jsou určeny pouze k užití v anglickém
jazyce, a schopnosti, které tyto modely
třímají v ostatních jazycích zůstávájí
z většiny neprověřeny.

Tato diplomová práce prozkoumává
techniky, které jsou v současnosti po-
užívány k evaluaci velkých jazykových
modelů a aplikuje je ve snaze ověřit
jak dobře tyto modely fungují v čes-
kém jazyce. K tomuto účelu představuje
Czech-Bench, nový evaluační framework
využívající existující české datasety pro
evaluaci úloh zpracování přirozeného
jazyka spolu s nově přeloženými nejpo-
užívanějšími anglickými sadami. Tento
framework je pak použit k porovnání
schopností, které nejmodernější ja-
zykové modely prokazují v českých
a anglických úlohách.

Klíčová slova: velké jazykové modely,
LLM, evaluace, zpracování přirozeného
jazyka, čeština

Překlad titulu: Metody pro evaluaci
velkých jazykových modelů

The field of large language model
evaluation is currently rapidly devel-
oping in an attempt to keep up with
the surging popularity of these pow-
erful instruments. Even though new
benchmarks and evaluation datasets are
being proposed regularly, most of them
are English-exclusive, leaving the per-
formance these models achieve in less
prominent languages largely uncertain.

This thesis explores the techniques
currently employed when evaluating
large language models and utilizes them
to determine how performant these
models are in the Czech language. It
introduces Czech-Bench, a new evalu-
ation framework utilizing pre-existing
Czech natural language processing
datasets together with newly translated
mainstream LLM benchmarks. This
framework is then used to compare the
performance of selected state-of-the-art
language models achieved in Czech and
English tasks.

Keywords: large language models,
LLM, evaluation, natural language
processing, Czech language
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Chapter 1
Introduction

The popularity of large language models (LLMs) has recently witnessed a great surge,
aided by the release of powerful chat tools, such as ChatGPT and Gemini (previously
Bard). The demand for such technologies from both the general public and businesses
keeps rapidly increasing, as do the incentives to train even more powerful models with
better capabilities. The need to assess these models’ performance and compare them
against each other calls for the development of objective and automated evaluation
techniques that provide reproducible results.

Many such methods are already available and are actively used by researchers to
compare their models’ capabilities. New techniques also keep emerging at a rate similar
to the models themselves, as there are still many evaluation approaches to be explored.
Although the selection of these methods is already quite sprawling, they are often
implemented only for the English language, as it is the most widely used and boasts
the greatest selection of both training and testing data. Even though the newest models
are often trained on multilingual corpora and are perfectly capable of generating text
in less common languages, their performance in such cases is seldom evaluated and is
generally believed to be significantly inferior when compared to English.

This thesis aims to explore this rapidly evolving domain and provide a summary of
the techniques currently employed when evaluating large language models from vari-
ous perspectives. It then mainly focuses on exploring the possibility of adopting these
methods to assess the performance achieved by LLMs in the Czech language. For this
purpose, it aims to introduce a dedicated evaluation framework designed to compare
the competence levels these models demonstrate in equivalent Czech and English bench-
marks. The framework will then be used to evaluate available multilingual open-source
models, as well as their most popular commercial alternatives. The obtained results
can then inform the decisions of Czech service providers planning to incorporate LLMs
into their offerings. The framework can also aid Czech researchers in selecting the
most perspective models for their fine-tuning efforts and monitoring the accomplished
performance gains.

1.1 Thesis structure
The following second chapter reviews the already existing efforts focused on depicting
the current state of the LLM evaluation field and extending it with new non-English
benchmarks. The third chapter provides a brief introduction to language model archi-
tectures and training approaches, while the fourth chapter describes the distinct eval-
uation metrics employed when assessing LLMs’ performance in a variety of tasks and
regards. It discusses the differences in evaluation approaches utilizing human judges,
machine learning models, and other automated assessment techniques. It also provides
a structured overview of the evaluated aspects of LLMs and the datasets designed to
facilitate their assessment. The fifth chapter describes the newly proposed evaluation
framework dedicated to evaluating the performance LLMs demonstrate in the Czech

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
language, as well as comparing it with results achieved in identical tasks formulated in
English. The sixth chapter is dedicated to reports on the performed evaluation exper-
iments, comparing the results of individual models in both target languages. Finally,
the last chapter summarizes the outcomes of this thesis and discusses opportunities for
future advancements.
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Chapter 2
Related work

There were multiple recent efforts attempting to capture the current state of the LLM
evaluation field and provide a comprehensive review of available methods and ap-
proaches. The survey of Chang et al. [1] from July 2023 approaches the topic from
three separate perspectives denoted “what to evaluate”, “where to evaluate”, and “how
to evaluate”. In the first perspective, they discuss individual evaluation tasks and
assessed LLM attributes, including classic natural language processing (NLP) tasks,
domain-specific tasks, as well as alignment properties, such as bias, factuality, and ro-
bustness. The second perspective encompasses the datasets available for assessment of
the specified LLM properties and competencies, and the third explains specific metrics
and evaluation approaches that can be applied together with the individual evaluation
datasets. [1]

Guo et al. [2], in their survey from November 2023, propose a highly structured tax-
onomy of the competencies and properties of LLMs that require evaluation. Their main
defined evaluation attributes include knowledge and capability, alignment, and safety.
They also discuss the nuances of evaluating LLMs in the context of specific domains and
provide an overview of available benchmark datasets, while not particularly focusing
on evaluation metrics. [2]

The work of Liu et al. [3] from August 2023 pays particular focus to the aspects
of LLM alignment, reliability, and safety. They propose 7 main categories of LLM
alignment properties that require evaluation, including reliability, safety, fairness and
bias, resistance to misuse, interpretability, social acceptability, and robustness. They
provide a well-structured overview of the defined categories and the underlying topics
and then propose a set of evaluation methods for a selection of the described aspects. [3]

Efforts to expand the LLM evaluation field to less prominent languages have recently
started to emerge. Notable contributions include the Okapi framework [4], providing
a range of multilingual instruction tuning datasets, as well as three LLM evaluation
datasets in 26 languages; Belebele [5] a parallel reading comprehension dataset sup-
porting 122 languages, including Czech, based on high-quality human-translated texts;
and FIN-Bench [6], a suite of Finnish LLM evaluation benchmarks.

For the Czech language, multiple evaluation datasets covering classical NLP tasks
are readily available. These were originally aimed at evaluating specialized NLP models
trained on specific tasks, but they can also be utilized for LLM evaluation. Ullrich et
al. [7–8] have published a plethora of natural language inference datasets created using
original Czech texts or translated from English. Habernal et al. [9] proposed a set of
original Czech datasets for sentiment analysis, while Kydlíček et al. [10] created datasets
for news article classification and advanced mathematical inference [11]. Macková et
al. [12] published a translated version of the SQuAD question-answering dataset, while
Medved et al. [13] created a similar dataset using original Czech texts. Přibáň et
al. [14] also published an original Czech dataset for statement subjectivity classification.
My work utilizes many of the mentioned datasets to form the Czech-Bench evaluation
framework. Further details about them are discussed in Sections 5.4 and 5.5.

3



2. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
During the creation of this thesis, other efforts in the formation of a Czech LLM eval-

uation framework have emerged. Kydlíček et al. have utilized their Klokan-QA dataset
together with an unpublished suite of study preposition tests to form a leaderboard of
cloud-hosted models1, and the Czech LLM Consortium2 community prepares a com-
prehensive Czech evaluation suite exclusive to open-source models. Together with my
supervisor and other colleagues, we have contacted the other teams and are currently
coordinating our future efforts.

1 https://huggingface.co/spaces/hynky/CZ-EVAL
2 https://huggingface.co/CZLC
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Chapter 3
Language model architectures

Language modeling is the task of predicting the next word in a text, conditioned by
the preceding words. Language models are designed to capture the statistical proper-
ties of a natural language and enable the estimation of the probabilities of all words
that could follow after a given text excerpt. The captured understanding of language
characteristics can then be utilized for automatic processing of textual inputs, such as
information retrieval or text classification. The capabilities of language models have
gradually increased, starting with statistical n-gram models capable of performing sim-
ple input prediction or text classification tasks, followed by recurrent neural networks
with wider context awareness, quickly surpassed by today’s transformer models capable
of producing texts indistinguishable from works of human professionals. It was indeed
transformers that were first denominated as large language models in reference to their
comparatively large number of trainable parameters. This chapter serves as a brief
introduction to the various architectures of language models, their design and training
techniques, and the most common use cases.

In order to effectively process a text written in natural language, it first needs to be
divided into elementary units with well-understood meanings. For humans, these are
typically words that we use to assemble the more complex meanings of sentences and
whole texts. In natural language processing, these elements are referred to as tokens.
In simple cases, tokens can directly represent words, with special tokens dedicated to
punctuation characters. In the case of commonly occurring word sequences, such as
names of geographical locations, it can also be beneficial to encode them into a single
token. In today’s neural language models, tokens are typically representing smaller sub-
word elements or even single characters. Modern tokenization techniques are designed to
optimally select sequences encoded into a single token to achieve a prescribed vocabulary
size. [15]

3.1 Statistical language models
The most dominant representative of traditional statistical methods for language mod-
eling is the n-gram model, which stores probabilities of token n-grams (ordered n-tuples)
occurring in the text corpus on which it was trained. Smoothing techniques are also
often used to compensate for unseen n-grams. When predicting a new token, it selects
the one that forms the most probable n-gram when appended to the previous 𝑛 − 1
tokens. Advanced inference techniques such as beam search can be used to maximize
the probability of generated sequences, and techniques utilizing the currently processed
documents for real-time model adaptation can also improve performance. [16–17]

N-grams extracted from input texts can even serve as the basis for manually designed
features. When combined with a simple classification algorithm, these can then be used
to solve various text classification tasks, such as sentiment analysis, document sorting,
or spam detection. [16–17]

5



3. Language model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Although other classical approaches to statistical language modeling do exist, none of

them match the versatility and viability of the n-gram model. Expert-designed grammar
models can provide performance gains in specific areas but require significant manual
design efforts, while techniques based on decision trees suffer from the problem’s high
dimensionality and fail to deliver improvements justifying their high computational
costs. Exponential language models, on the other hand, offset their high computa-
tional demands with considerable performance increases. While they did not manage
to supersede the n-gram model in efficiency-focused applications, their utilization of
the softmax function for the normalization of probabilities induced from hand-crafted
features marks them as conceptual predecessors of neural language models. [16, 18]

Although statistical language models have already been surpassed by powerful neural
networks in most NLP tasks, the n-gram model, in particular, is still regularly used in
simple systems for typing completion, machine translation, malware or spam detection,
and speech recognition.

3.2 Neural language models
With the surging popularity of neural networks witnessed in recent years, they quickly
managed to dominate the field of natural language processing. Unlike the simpler
models that were able to treat words and other elementary structures in their original
form, neural networks are designed to process tensors with numerical values. This
poses an interesting challenge of transforming elements of written natural language
into structured numerical objects, with values representing semantic properties rather
than simple morphological and syntactic features. This task is achieved using word
(or token) embeddings, representing elementary language units as fixed-dimensional
vectors encoding their semantic properties and relations.

Dedicated word embedding models can be trained in an unsupervised manner by
analyzing word co-occurrence patterns in large training text corpora. Vector repre-
sentations of words that are likely to occur close to each other are gradually updated
to have similar values, while representations of unrelated words are pushed further
apart. This approach has a fascinating effect on the resulting high-dimensional embed-
ding space, where specific relations between words’ meanings translate into virtually
invariable translations, as illustrated in Figure 3.1. The most popular word embedding
models include Word2Vec and fastText, proposed by Mikolov et al. [19–20], and GloVe
by Pennington et al. [21]. Their typical applications include simple text classification
and document retrieval tasks. Commonly used word embedding dimensionalities range
from 100 to 1000 parameters. [22–23]

In today’s neural language models, embeddings are computed by the input layer of
the network. Instead of words, the layer processes one-hot vectors corresponding to the
token IDs supplied by the model’s tokenizer. The layer consists of a single weight matrix
that multiplies the one-hot vectors and produces token embeddings. These weights are
typically trained together with the rest of the model but can also be initialized using
one of the previously mentioned algorithms. The embeddings used in current state-of-
the-art (SOTA) models can have up to several thousand dimensions. [17, 24]

3.2.1 Feed-forward neural networks
Language models based on feed-forward neural networks, commonly referred to as
NNLMs (Neural Network Language Models), find their roots in the work of Bengio
et al. [25]. They utilize the embedding layer, followed typically by a single hidden layer.

6
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Figure 3.1. Semantic word relations manifested in a projected word embedding space. The
left pane shows the translation corresponding to male-to-female gender transfer, while the
right pane presents a different projection capturing the singular-plural transformation. [23]

The network’s output layer is activated with the softmax function, which outputs prob-
abilities of all tokens in the model’s vocabulary. As the fully connected hidden layer
requires a fixed input dimension, the number of input tokens needs to be constant.
This is achieved by using a sliding window to select a fixed number of tokens from the
input sequence. These are then individually processed by the embedding layer, and the
resulting embedding vectors are concatenated to form the hidden layer’s input. In this
regard, NNLMs are equivalent to the n-gram model, as they are both limited to a fixed
context length. NNLMs can, however, benefit from the abstraction capabilities of the
embedding layer and the approximation power of neural networks. [17, 25]

The neural model’s training is performed in an unsupervised manner by processing
large text corpora. Input token sequences are sequentially selected from the text and
processed through the network to obtain the probabilities of all following token candi-
dates. The model’s weights are then adjusted to increase the probability of the ground
truth token, which actually follows the input sequence. This is achieved via gradient
optimization of the cross-entropy loss function, defined by the following formula:

𝐿𝐶𝐸 = −𝑙𝑛 𝑝(𝑡true), (1)

where 𝑝(𝑡true) is the probability assigned by the network to the ground truth token. [17]

3.2.2 Recurrent neural networks
Language models based on recurrent neural networks (RNNLMs) finally overcome the
limitation of fixed-length context windows. Recurrent layers can process inputs se-
quentially while preserving the information from previous computations inside their
state vectors. This allows the network to accept the input tokens one by one, always
performing a single prediction and accumulating abstractions of the previous context
in its layers’ state vectors. This would theoretically allow for processing of long in-
put sequences with unlimited access to information recorded at their beginning, but
in practice, it is not the case. The state vector is constantly updated with fresh data,
and the long-term context is quickly suppressed. When training on long sequences, the
recurrent computations also lead to problems with vanishing gradient. [17, 26]

In an attempt to resolve these issues, more advanced RNN architectures were pro-
posed. Significant improvements have been achieved by introducing the long short-term
memory (LSTM) layer. LSTMs use a second additional state vector intended for stor-
ing long-term context. Additions, removals, and extractions of information from this
vector are controlled by feed-forward “gating” units with trainable parameters. The

7



3. Language model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
networks thus essentially learn how to best utilize this additional memory element to
preserve long-term context for as long as it is required. [17, 27]

The training of RNNLMs is performed by processing whole training sequences and
feeding them into the networks one token at a time. Special tokens are used to indicate
the start and end of the sequence, allowing the original singular tokens on the sequence
edges to be processed as normal. For each input token, a single output token is predicted
and compared with the next token originally present in the sequence. The training loss
for the whole input sequence 𝑆 is then computed by averaging the cross-entropy loss
defined in (1) over all input tokens:

𝐿CE(𝑆) = 1
|𝑆|

|𝑆|

∑
𝑖=1

𝐿CEi
= − 1

|𝑆|

|𝑆|

∑
𝑖=1

𝑙𝑛 𝑝𝑖(𝑡true
𝑖 ). (2)

The recurrent neural architecture is typically “unrolled” in time during training in order
to simplify gradient back-propagation. This creates a cascade of identical layers, each
receiving a single token from the sequence as input, together with the state vector of
the previous layer. This technique is well illustrated in Figure 3.2, adopted from the
excellent textbook by Jurafsky et al. [17]

Figure 3.2. A recurrent neural network unrolled in time. The figure depicts three instances
of a single recurrent layer with shared weight matrices 𝙐, 𝙑 , 𝙒. The model receives a se-
quence of input token embeddings 𝙭1, 𝙭2, 𝙭3 and produces probability distributions 𝙮1, 𝙮2, 𝙮3
for each time step. The layer’s state vector 𝙝 is forwarded between its instances through

its transformation matrix 𝙐. [17]

A prime use case for RNN-based language models is part-of-speech (POS) tagging,
where each element is assigned a label corresponding to its semantic role in a sentence.
This leverages RNNs’ ability to produce an individual output distribution for each
input token while accumulating contextual information from previous inputs. Instead
of generating a distribution over the next possible tokens, the probabilities of individual
POS classes are approximated. [17]

An RNNLM can also be used for autoregressive text generation by reusing the net-
work’s output tokens as its inputs in consecutive time steps. Encoder-decoder architec-
tures have been proposed to facilitate sequence-to-sequence generation with arbitrary
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output length, and the attention mechanism was introduced to streamline the distribu-
tion of contextual information between state vectors. These techniques will be further
discussed in the following section about the transformer architecture, which utilizes
them to their full potential. [17]

3.2.3 Transformers
The transformer architecture takes full advantage of the attention mechanism, first
introduced in RNN-based language models. In its original form, attention was used to
compare RNN state vectors by calculating a dot product between them. This helped
to identify relevant entries in a recurrent layer’s state history, which could then be used
to form an aggregate context vector, serving as additional conditioning for currently
generated tokens. [17]

Transformers adapted this mechanism by introducing self-attention. Instead of oper-
ating with state vectors of recurrent layers, they compare the embedding vectors of input
tokens to identify semantic relations and enable an exchange of relevant information
between them. This leads to the formation of so-called contextual (or contextualized)
token embeddings, enhanced with relevant contextual information gathered from other
tokens in the sequence. [17, 28]

This time, the vectors are not compared directly via a dot product, but a sophisti-
cated system enabling information requests and advertising is employed instead. For
each embedding vector 𝙭𝑖, representing a single token from the input sequence, a triplet
of characteristic vectors is computed. The query vector 𝙦𝑖 encodes a request for ad-
ditional information that should be incorporated into the token’s updated contextual
vector representation. The key vector 𝙠𝑖 advertises information that is already present
in the token’s current representation and can be requested by others. The value vec-
tor 𝙫𝑖 then encodes the actual information that is being advertised. These vectors are
computed using dedicated weight matrices 𝙒 𝙌, 𝙒 𝙆, 𝙒 𝙑 common to all input tokens:

𝙦𝑖 = 𝙭𝑖𝙒 𝙌; 𝙠𝑖 = 𝙭𝑖𝙒 𝙆; 𝙫𝑖 = 𝙭𝑖𝙒 𝙑. (3)

[17, 28]
When considering two input tokens on positions 𝑖 and 𝑗 in the input sequence, the

dot product 𝙦𝑖 ⋅ 𝙠𝑗 is proportional to the relevance of the information encoded in 𝙫𝑗 to
the vector representation 𝙭𝑖 of the 𝑖th input token. Given a simple example sequence:

“The dog is blue”,

where each word is encoded as a single token, the query vector corresponding to the
token “dog” could encode a request for a representation of the “color” property. The
key vector corresponding to the token “blue” would be very similar, resulting in a high
mutual dot product. The value vector of the token “blue” would thus have a strong
influence on the newly created contextual embedding of the token “dog”. [17, 28, 24]

Transformers leverage the fact that these dot product computations are mutually
independent to parallelize them using matrix multiplications. The input token embed-
dings are stacked to form the rows of input matrix 𝙓, which is then used to compute
query, key, and value matrices 𝙌, 𝙆, and 𝙑:

𝙌 = 𝙓𝙒 𝙌; 𝙆 = 𝙓𝙒 𝙆; 𝙑 = 𝙓𝙒 𝙑. (4)

All query-key relevance scores can then be obtained simultaneously by multiplying
the matrices 𝙌 and 𝙆⊺. The scores are scaled down by a factor proportional to the
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dimensionality of the key and query vectors 𝑑𝑘 to ensure numerical stability. Then,
they are processed by the softmax function to form vectors of weights summing up to
one. These are finally used to compute the contextual embeddings of all input tokens,
forming the rows of matrix 𝘼 as described by the following formula:

𝘼 = softmax (𝙌𝙆⊺

√𝑑𝑘
) 𝙑, (5)

where the softmax function is applied independently across all rows. [17, 28, 24]
A single attention layer in a transformer network leverages multiple self-attention

blocks in parallel, allowing for multiple simultaneous and independent information ex-
changes for each token representation. Each of such multi-head self-attention layers is
typically combined with fully connected layers and layer normalization units to form
the transformer block depicted in Figure 3.3. The fully connected layers process each
contextual embedding individually using the same weights. Residual connections are
also employed to improve the flow of information and training gradients. A transformer
network typically utilizes multiple such blocks stacked in sequence. [17, 28, 24]

Figure 3.3. A transformer block consisting of a multi-head attention layer, fully connected
layers, layer normalization units, and residual connections. [17]

Although there is no implicit limitation of the input sequence length imposed by the
transformer architecture, the number of input tokens is typically limited explicitly to
control memory usage and avoid diminishing returns in performance. Today’s state-of-
the-art models can handle up to several thousands of input tokens [29–30]. Thanks to
the unconstrained flow of information between arbitrary input tokens inside the self-
attention layer, transformers are much more effective in capturing relations between
distant words than RNNs. Even though recurrent layers are capable of processing
input sequences with unlimited length, they can never forward contextual information
as far as transformers. [17]

The token embeddings computed by the network’s input layer are well-suited to
encode semantic properties, but they do not employ any notion of syntactic relations,
nor does the self-attention mechanism itself. To utilize the information about the
relative positions of input tokens, their embeddings are summed with an additional
set of positional embeddings. One of the possible techniques to obtain them exploits
the properties of periodical functions with variable frequencies to generate vectors with

10
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Figure 3.4. Vertically stacked 64-dimensional positional embeddings for 30 input tokens.
Generated using code from [31].

distances proportional to the relative positions of their respective tokens. An example
set of these positional embedding vectors is depicted in Figure 3.4. [28, 24, 31]

Transformer models can occur in three variants, differentiated by their inner structure
and the way they process inputs into outputs:

. Decoder-only models are currently the most represented variant, with model families
like GPT, Llama, and Mistral among their ranks. Their architecture is optimized for
causal autoregressive text generation, only allowing contextual information to flow
in the left-to-right (causal) direction. This is achieved by masking out the upper-
triangle portion of the attention comparison matrix 𝙌𝙆⊺. All of its values above
the main diagonal are set to −∞, which gets transformed into zero by the following
softmax operation. [17, 24]

Decoder-only transformers are trained in a similar fashion to RNNLMs, utilizing
the cross-entropy loss averaged over whole input sequences (2). But unlike RNNs,
transformers can process the whole input sequence in parallel. Each contextual em-
bedding on the output of the network’s last transformer block is used to produce a
single probability distribution over all candidate tokens. This is achieved by process-
ing them through a fully connected output layer followed by a softmax activation.
The fully connected layer is identical at all output positions, and its weight matrix is
equal to the transposed weight matrix of the input embedding layer. This effectively
forces the hidden network layers to produce output embeddings that are compliant
with the original input embedding space. [17, 24]

The process described above is commonly referred to as pre-training, and it utilizes
large unannotated text corpora to teach the model to understand natural language.
To enable the models to follow instructions or reply to questions instead of trying
to present their continuations, a supervised fine-tuning process can be employed. In
the case of causal LLMs, it is most common to employ instruction tuning, utilizing
datasets containing instruction-answer pairs. The models are presented with the in-
struction text followed by the correct answer, and they are trained to generate the
tokens contained in the answer. The resulting models can then serve as versatile as-
sistants, and if trained on longer conversations, they can also be used as chatbots. [17,
24]

11



3. Language model architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
During inference, the model first processes the whole input sequence, and only its

last generated distribution (inferred from the contextual embedding of the last input
token) is used to produce a new token. This output token is then appended to the
input sequence, and the process is repeated. Caching mechanisms and additional op-
timizations are often employed to reduce the overhead of repeated computations. The
generation process is terminated when the model outputs a special end-of-sequence
token. [17, 24]. Encoder-only models do not restrict their attention mechanism to follow the causal
direction. This allows them to process an input sequence as a whole and capture all
contextual relations. However, it also makes them unsuitable for the task of causal
text generation, as there are no future tokens for them to be trained to predict.
Instead of text generation, these models are thus utilized for simpler tasks like text
classification or sequence embedding. A special token is usually defined in the models’
dictionary to serve as a representation of the whole input sequence. This token’s final
contextual embedding holds a semantic summary of the whole sequence. It can then
be used for further neural processing or as the final output of the network. [17, 24]

When training an encoder-only model, randomly selected tokens from the input
sequence are masked with a special token or randomly replaced. The model’s task is
to reconstruct the corrupted tokens from the available context and correctly predict
them at their appropriate output position. This time, only the output distributions
on these specific positions are used to compute the average cross-entropy loss. [17,
24]

To fine-tune a decoder-only model for a classification task, additional neural layers
need to be added after the last transformer block to form the desired outputs. These
so-called “heads” can process all individual token representations, i.e., for part-of-
speech tagging or the aggregate sequence embedding for sequence classification tasks,
such as sentiment analysis. The resulting network is then trained in a supervised
manner, usually only updating the parameters of the additional layers and preserving
the transformer unchanged. [17, 24]

A prime representative of encoder-only transformers is BERT, a vastly popular
architecture with numerous derivatives, such as RoBERTa, DestilBERT, and AL-
BERT. [17, 24]. Encoder-decoder models combine the powerful contextual knowledge of the encoder
with the autoregressive text-generation capabilities of the decoder. The encoder net-
work is identical to the one described above, utilizing full self-attention to process the
input sequence in a non-causal way. It produces a sequence of contextual embedding
vectors as outputs of its last transformer block. [17, 24]

The decoder block uses causal self-attention, same as in the decoder-only architec-
ture, but this time, it is supplemented by a second attention layer, which allows it to
utilize the outputs of the encoder. In this cross-attention layer, key and value vec-
tors are computed from the contextual embeddings on the decoder’s output, while the
query vectors are computed from the embeddings propagated through the decoder.
This allows the model to consider the full context of the encoded input sequence
when generating a new token. [17, 24]

Encoder-decoder models are an excellent fit for sequence transformation tasks,
where information from tokens at the end of the input sequence may be required to
generate the initial tokens of the output sequence. A prime example of these tasks is
machine translation, as word order may vary substantially across different languages.
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Another is summarization, aiming to capture the full semantic information from the
input in a significantly shorter output sequence. [17, 28, 24]

Encoder-decoder models can be trained in a supervised manner using pairs of
source and target sequences. The source sequence serves as input for the encoder,
while the decoder is trained to autoregressively generate the target sequence. An
unsupervised training technique is also available, where the encoder is presented with
a corrupted input sequence, similarly to encoder-only training, while the decoder uses
the original unimpaired sequence for autoregressive training. The decoder outputs
expected to generate the corrupted tokens are used for loss computation. [17, 32]

Although encoder-decoder models were originally intended only for specific tasks,
their popularity in generative language modeling has recently started to rise. The
ranks of encoder-decoder models include the open-source T5 model and its deriva-
tives, as well as the Claude model family. [24, 32–34]

During language modeling inference, several different strategies can be employed
when selecting the generated tokens from a language model’s output distribution. These
are commonly referred to as decoding strategies. The most straightforward option is to
always select the token with the highest probability. This “greedy” decoding strategy is
beneficial when reproducible model outputs are desired, which makes it ideal for model
evaluation. The greedily produced outputs are typically also the most grounded and
factual. [17]

Other decoding approaches rely on sampling the output tokens from their probability
distributions. Top-𝑘 sampling considers only the 𝑘 tokens with the highest probabilities,
while top-𝑝 sampling considers the smallest possible number of tokens that have a
cumulative probability of at least 𝑝 in the original distribution. Temperature sampling
does not limit the size of the sampling pool but reshapes the probability distribution
by scaling the model’s pre-softmax logit outputs. This approach can be described by
the formula:

𝑃(𝑡𝑖) = softmax( 𝑙𝑖
𝜏

) = 𝑒
𝑙𝑖
𝜏

∑𝑉
𝑗=1 𝑒

𝑙𝑗
𝜏

, (6)

where 𝑃(𝑡𝑖) is the probability of the 𝑖th token being selected, 𝑙𝑖 is the original logit
value corresponding to the 𝑖th token, 𝜏 is the temperature value, and 𝑉 is the model’s
vocabulary size. Setting temperature 𝜏 < 1 increases the discrepancy between prob-
abilities, while 𝜏 > 1 renders the resulting distribution more flat. Low temperatures
thus keep the outputs more predictable and grounded, while high temperatures make
them more creative and diverse. [17, 35]

Beam-search is an advanced decoding algorithm that operates with multiple output
sequence hypotheses. It selects a limited set of the most probable output tokens at
each step and uses them to generate new tokens in parallel. It keeps track of the joint
probabilities of token sequences and prunes hypotheses with low likelihoods to limit
computation overhead. Beam-search can significantly improve the quality of generated
texts but comes at substantial computation costs, as the language model needs to
process each individual token candidate. It is typically employed in situations where
output quality is preferred to inference speed, such as in offline machine translation. [17]
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Chapter 4
Evaluation of Large Language Models

Evaluating specialized encoder-only models fine-tuned for specific tasks is quite straight-
forward. Classification models can be assessed using annotated test datasets similar
to those they were trained on, while sequence embedding models can be evaluated on
downstream tasks with well-defined, mostly categorical outputs. These can include text
classification, clustering, semantic text similarity computation, or document retrieval.
Open-source embedding models can be evaluated using the Massive Text Embedding
Benchmark1 (MTEB), which combines multiple evaluation approaches.

Evaluating generative large language models proves significantly more difficult, espe-
cially as they quickly approach human-like levels of fluency and language proficiency.
Simply assessing the models’ ability to predict the next word in a sequence becomes
a largely irrelevant evaluation strategy, and new methods for exploring their inherent
qualities need to be developed. As the general public starts to rely on these models’
knowledge and problem-solving capabilities, it is also important to assess how well they
align with human values and intentions.

This chapter offers an overview of the techniques and approaches used to evaluate
generative large language models from multiple different perspectives. It compares the
strengths of human evaluation with the benefits of automated techniques and covers
the most suitable usages for individual methods.

4.1 Human evaluation
A straightforward and arguably the most accurate approach to evaluating the per-
formance of generative large language models is to employ human evaluators. When
provided with comprehensive instructions, humans can evaluate the model’s outputs
from an arbitrary set of perspectives and provide scores with theoretically unlimited
granularity. They can also offer general insights about the generated texts that could
not be obtained with automated evaluation techniques. However, human opinions are
very subjective. To obtain relevant results, a large number of evaluators need to be
employed, making this approach very financially demanding. Human evaluation is typ-
ically employed in tandem with automated techniques whenever it is financially feasible.
It is also common to improve the LLMs further using feedback from human evaluators.
This practice is known as reinforcement learning from human feedback (RLHF). [1, 3]

4.2 LLM as a judge
As the text-processing capabilities of large language models rapidly approach human
levels, it is becoming viable to employ these models to evaluate generated texts. Such
an approach may be financially more viable than employing human evaluators and
produce similar results, as the evaluation model can thoroughly describe its decision
1 https://huggingface.co/spaces/mteb/leaderboard
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reasoning and provide comprehensive assessments from multiple distinct perspectives.
However, the evaluation models may introduce unintentional bias or hallucinations. It
can be expected that when evaluating generated texts, an LLM would assign higher
scores to inputs that better align with its training corpora and would thus favor models
trained on the same data.

Instead of directly generating a text evaluation of a given input, large language models
can also be used to extract semantic information that can be used for comparison with
reference texts. Approaches utilizing encoder LLMs for semantic feature extraction or
for direct assessment of the similarity of two input texts are being regularly proposed,
and their utilization is becoming widespread.

The most prominent examples of evaluation approaches utilizing LLMs include the
AlpacaEval benchmark2, the BERTScore metric discussed in 4.3.2, and the COMET
evaluation framework. [36–38]

4.3 Automated evaluation metrics
Standardized evaluation metrics play a crucial role in estimating the performance of
a machine-learning system, allowing researchers to quantify the system’s qualities and
compare it with other solutions. They can also be used during the system’s development
to track improvements and prevent regressions. This section describes the metrics most
commonly used to automatically quantify the performance of generative large language
models and their typical use cases.

4.3.1 Perplexity
Perplexity is a metric inherently tied to the language modeling task, as it directly relates
to cross-entropy, which is used as the loss function during a language model’s training.
A model’s perplexity on a test input sequence 𝑆 is defined as

PPL(𝑆) = 𝑒− 1
|𝑆| ∑|𝑆|

𝑖=1 𝑙𝑛 𝑝𝑖(𝑡true
𝑖 ) =

|𝑆|

∏
𝑖=1

𝑝𝑖(𝑡true
𝑖 )− 1

|𝑆| = |𝑆|√
1

∏|𝑆|
𝑖=1 𝑝𝑖(𝑡true

𝑖 )
, (1)

where 𝑝𝑖(𝑡true
𝑖 ) is the probability of the ground truth token in the model’s output dis-

tribution at position 𝑖. It is clearly visible that perplexity has an exponential relation
with the sequence cross-entropy loss (2) defined in the previous chapter. Here, lower
perplexity values also mean better language modeling performance. [16–17]

The perplexity value is specific to the evaluated model as well as the input text. It
is thus best used to measure performance improvements during an LLM’s training or
to compare the ability of different models to train on a dedicated invariant dataset,
such as the Penn Treebank [39]. To effectively compare the models’ performance in
real-world tasks, other automated metrics need to be employed. [16–17]

4.3.2 Text generation
Text generation is a family of tasks most natural to generational LLMs. Yet these
tasks are also intrinsically very difficult to evaluate. These include classical natural
language processing tasks, such as text summarization and automatic translation, as
well as more recent utilizations of LLMs, including informative question-answering and
chat conversations. Here, we will focus on automated metrics designed to compare
LLM-generated texts to their ground truth references, giving brief descriptions of the
most commonly adopted representatives.
2 https://tatsu-lab.github.io/alpaca_eval/

15

https://tatsu-lab.github.io/alpaca_eval/


4. Evaluation of Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. Exact Match (EM) is a primitive comparison technique relying on exact string match-

ing of the candidate and reference texts. Each generated text thus receives a score of
either 0 or 1, based on whether it is identical to one of the provided reference texts.
The final accuracy is computed as a simple average of these scores over all evaluation
examples. With such a low tolerance for output variability, this metric is only viable
for evaluating simple question-answering systems, generating short answers that are
often extracted directly from the source documents. Even in such cases, it is often
supplemented by other comparison techniques that provide higher flexibility. [1, 40]

. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a family of metrics
originally proposed by Lin [41] in 2004. Rouge-N compares generated texts to ground
truth references using their word n-gram overlap. It was originally formulated as n-
gram retrieval recall, as defined in the following formula:

𝑅𝑁 = |n-grams(𝑇𝐶) ∩ n-grams(𝑇𝑅)|
|n-grams(𝑇𝑅)|

, (2)

where 𝑇𝐶 is a generated candidate text, 𝑇𝑅 is a reference text, and n-grams(𝑇 )
denotes a multiset (bag) of all word n-grams present in text 𝑇. In today’s applica-
tions, ROUGE-N is commonly employed in the form of an F1 score. This requires
computing the complementary precision metric as described by this formula:

𝑃𝑁 = |n-grams(𝑇𝐶) ∩ n-grams(𝑇𝑅)|
|n-grams(𝑇𝐶)|

, (3)

and then the F1 score can be computed as:

F1 = 2 𝑃𝑁 ⋅ 𝑅𝑁
𝑃𝑁 + 𝑅𝑁

. (4)

Another notable variant of ROUGE is ROUGE-L, which compares a candidate text
with its reference using their longest common subsequence. [41–42]

ROUGE is commonly used to evaluate automatic text summarization tasks, where
there are typically multiple reference summaries available for comparison. The orig-
inal paper is unclear about how to handle such cases. Common implementations
either compare the candidate with each reference separately and consider only the
maximum obtained score or combine all references together into a single reference
n-gram set. When evaluating automatic summarization, ROUGE-1, ROUGE-2, and
ROUGE-L F1 scores are the most commonly reported metrics. [41–43]

The reference Python implementation of ROUGE3, adopted in the Hugging Face
Evaluate4 library, utilizes an English stemmer, stop-word removal, and synonym
matching, which makes it unsuitable for use in other languages. To address this
issue, Straka et al. [44] proposed ROUGE𝑅𝐴𝑊, a language-agnostic variant of the
metric, which omits the English-specific preprocessing steps.

. BLEU (Bilingual Evaluation Understudy), originally proposed by Papineni et al.
in 2002 [45], is a metric intended for automatic evaluation of machine translation
systems. It compares the generated translation with a set of references on a per-
sentence basis via modified n-gram precision scores. For a candidate sentence 𝑠 and
a set of references 𝑅, the modified n-gram precision is computed as

𝑝𝑛(𝑠, 𝑅) =
|n-gramsclip(𝑠, 𝑅)|

|n-grams(𝑠)|
, (5)

3 https://github.com/google-research/google-research/tree/master/rouge
4 https://huggingface.co/spaces/evaluate-metric/rouge
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where n-grams(𝑠) is a multiset of all n-grams contained in 𝑠, and n-gramsclip(𝑠, 𝑅) is
a multiset where the number of occurrences for each n-gram in n-grams(𝑠) is limited
to the maximum number of its occurrences in any of the reference sentences in 𝑅. [45]

An evaluation dataset is usually comprised of multiple source sentences in the
original language and a reference translation corpus containing one set of references
for each original sentence. The modified precision for a whole evaluation dataset 𝐷
would be computed using the following formula:

𝑝𝑛(𝐷) =
∑(𝑠,𝑅)∈𝐷 |n-gramsclip(𝑠, 𝑅)|

∑𝑠′∈𝐷 |n-grams(𝑠′)|
. (6)

[45]
To prevent short and repetitive translations from obtaining high scores, a brevity

penalty is introduced as
BP = 𝑒min(1− 𝑟

𝑐 ,0), (7)

where 𝑐 is the cumulative length of all translated candidate sentences, and 𝑟 is the
cumulative length of the shortest references for each input sentence. [45]

The final BLUE metric is then computed as a weighted geometric average of mod-
ified n-gram precisions for 𝑛 ∈ [1, 𝑁], scaled by the brevity penalty:

BLEU = BP ⋅ 𝑒(∑𝑁
𝑛=1 𝑤𝑛𝑙𝑜𝑔 𝑝𝑛). (8)

The parameter 𝑁 is typically set to 𝑁 = 4, while 𝑤 is a uniform set of weights
𝑤𝑖 = 1/𝑁. [45]

The BLEU metric reports a high correlation with human judgment. It is also
computationally inexpensive and implemented as language agnostic. It, however,
requires exact matches of individual words without taking their meaning into account.
It can thus unjustly penalize translations that would be eligible to be identified as
correct. Similarly to other metrics with values ranging from 0 to 1, BLEU is typically
reported in percentage. [45]. METEOR is a machine translation metric proposed by Banerjee et al. [46] as an
alternative to BLEU. It computes unigram retrieval precision and recall scores sim-
ilarly to the ROUGE-1 metric, but its F-score is weighted to depend more heavily
on the recall component. It also introduces a penalty coefficient derived from the
mutual alignment of words in the reference and candidate texts. It also utilizes word
stemming and synonym matching to increase the influence of semantic similarity over
morphological uniformity. [46]

The authors of METEOR report a higher correlation with human judgment than
achieved by BLUE. The introduction of stemming and synonym matching helps to
better align with the way humans compare texts, but it also limits the application
of each individual implementation to a specific language. [46]. BERTScore, proposed by Zhang et al. [37] in 2020, uses an encoder-only transformer
network to obtain contextual embeddings of all tokens in the reference and candidate
sequences. It then computes their pairwise cosine similarities and greedily selects
the maximum obtained values for each token. It uses the similarity values of the
candidate tokens to compute precision and the reference tokens to compute recall.
These operations are described by the following formulas:

𝑃BERT = 1
| ̂𝑥|

∑
̂𝙭𝑗∈�̂�

max
𝙭𝙞∈𝑥

𝙭𝙞
⊺ ̂𝙭𝑗, 𝑅BERT = 1

|𝑥|
∑
𝙭𝙞∈𝑥

max
̂𝙭𝑗∈�̂�

𝙭𝙞
⊺ ̂𝙭𝑗, (9)
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where ̂𝑥 and 𝑥 are sets of normalized contextual embeddings of the candidate and
reference tokens, respectively. These values are employed to compute a standard
F1 score, as defined in (4). As the cosine similarity values can range from -1 to 1,
the final score then needs to be normalized to report values in the [0, 1] range, as is
customary. [37]

BERTScore abandons standard string comparison methods in favor of utilizing
semantic similarity. By employing contextual token embeddings, the relations be-
tween tokens are taken into account, which further improves the metric’s relevance.
Its applicability in specific languages is dependent on the availability of trained en-
coder models, but the authors claimed over 100 languages were supported in 2020.
They tested the metric on translations between Czech and English, among other
language pairs, using a multilingual BERT model, and reported correlations with
human judgment matching or exceeding those achieved by the BLEU metric. The
main disadvantage of BERTScore and other approaches utilizing neural models is
their computational cost. Given the size of the employed models, it is, however,
practically negligible in comparison to the inference costs of the evaluated LLMs.
Despite its intended usage for machine translation, BERTScore is also suitable for
other tasks involving unconstrained text generation, such as summarization or image
captioning. [37]
Many modifications of the above-mentioned metrics were also proposed, but their

usage is not yet as widespread. However, the popularity of techniques leveraging neu-
ral models to evaluate the quality of generated texts seems to be presently gaining
momentum. [38, 47]

4.3.3 Code generation
Code generation is one of the most popular use cases of large language models, as the
time savings they offer for programmers solving simple algorithmic problems are very
enticing. It is, however, crucial to ensure the generated codes are robust, return correct
outputs, and correctly treat all edge cases. Automatic metrics able to assess the quality
of generated code snippets are therefore necessary to drive improvements in terms of
code generation models’ reliability.

As code is represented in a text form, standard text comparison metrics were first
employed to evaluate the similarity of candidate and reference code samples. In par-
ticular, exact match accuracy and the BLEU metric were the most popular. As the
qualities of programming languages significantly differ from natural languages, it was
soon realized that these differences should be taken into account, and specialized code
evaluation metrics were proposed. The most prominent of these metrics are described
below: [48–49]. CodeBLEU is a major enhancement of the original BLEU metric designed specifically

for the comparison of code samples. Proposed by Ren et al. [49] in 2020, CodeBLEU
computes a weighted average of 4 separate metrics designed to compare the candidate
and reference code samples from distinct perspectives. The first of the components is
the original BLEU metric for machine translation, the second is a modified version of
BLEU computed using modified unigram precisions, where programming keywords
are assigned a higher weight than regular unigrams. The third component is an
abstract syntax tree (AST) matching score, which compares the samples from the
perspective of code syntax. Finally, the fourth component is a semantic data-flow
match score, which tracks defined variables and operations performed on them and
thus helps to compare the code snippets from a semantic perspective. [48–49]
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CodeBLEU unsurprisingly achieves a higher correlation with human judgment
than the BLEU and exact match metrics. It employs a comprehensive approach to
the code snippet comparison by combining multiple specialized code analysis tools.
An unofficial implementation of CodeBLEU for Python is available at the PyPI5
package repository. [48–49]. RUBY, proposed by Tran et al. [50] in 2019, follows a similar approach to the Code-
BLEU metric by utilizing the abstract syntax trees and program dependence graphs
(PDG) to analyze the code’s syntax and semantics. But instead of combining the
independent scores obtained using each method, RUBY employs a cascade evalua-
tion strategy. It always uses the most advanced analysis tool that is applicable, as
the evaluated code samples are not always of sufficient quality to be analyzed. If
the approach using PDG is applicable, it computes a similarity score between the
candidate and reference dependence graphs and reports it as the final metric. If the
candidate code snippet cannot be analyzed using PDG, AST is employed, and the
reported metric is the similarity of the candidate and reference abstract syntax trees.
If AST fails as well, a simple string similarity score is computed as

Sstr(𝐶, 𝑅) = 1 − SED(𝑠𝐶, 𝑠𝑅)
max(length(𝑠𝐶), length(𝑠𝑅))

, (10)

where 𝑆𝐸𝐷(𝑠𝐶, 𝑠𝑅) is the string edit distance between the candidate and reference
code strings, 𝑠𝐶 is the string representation of the candidate code sample 𝐶, and 𝑠𝑅
is the string representing the reference code snippet 𝑅. [48, 50]

This approach may theoretically lead to situations where a semantically un-
parseable code snippet achieves high syntactic or string similarity scores and,
therefore, also a high overall score. For this reason, CodeBLEU appears to be a
more robust choice when evaluating code generation models. [48–50]. Pass@k, introduced by Chen et al. [51] in 2021, assesses the correctness of generated
code samples by running unit tests on them. Such tests are successful if the code runs
without errors and returns all expected outputs. Pass@k is designed to represent the
probability that at least one out of 𝑘 code samples generated by the evaluated model
will succeed in all unit tests. This is effectively estimated by generating 𝑛 > 𝑘 code
samples for each evaluation example and using the following formula:

pass@𝑘 = 𝔼
Problems

[1 −
(𝑛−𝑐

𝑘 )
(𝑛

𝑘)
], (11)

where 𝑐 is the number of samples passing all unit tests out of the 𝑛 generated samples,
and 𝔼Problems denotes the expected value of a variable for the whole test set. [48, 51]

4.3.4 Categorical NLP tasks
Not all LLM benchmarks require free-form text generation. Some classical NLP tasks,
such as sentiment analysis and natural language inference, are formulated as classi-
fication problems. There are also many evaluation tasks formulated as single-choice
questions, where it is enough to generate a single token associated with the correct
answer. In these cases, there is no need for complex text comparison metrics. The
model is tasked to generate a single token representing the selected class or answer
label, which is then either parsed from the model’s generated output or determined
directly from its output token distributions. Standard classification metrics can then
be used to evaluate the models performance. The most commonly applied classification
metrics are described here:
5 https://pypi.org/project/codebleu/
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. Accuracy is the most basic metric for evaluating classification performance. It simply

captures the ratio of correctly classified examples, typically reported in percentage.
The main weakness of this metric is that it takes no regard for the distribution of
classification errors across individual classes. It can be, therefore, misleading in the
case of imbalanced datasets, where even a naive approach, always selecting the most
common class, can achieve high accuracy values. Its simplicity, however, makes it
a highly universal metric suitable for any classification problem, regardless of the
number of feasible classes. It is also the only metric that can be used to evaluate
LLM’s performance in answering single-choice questions, as their answers do not
follow any categorical structure. [52]. Precision is a metric often used to assess the performance of binary classifiers, where
inputs can be classified either as positive or negative. It is defined by the following
formula:

Precision = TP
TP + FP

, (12)

where TP denotes the number of examples correctly recognized as positive, and FP
is the number of examples incorrectly identified as positive. In order to employ this
metric for multi-class classification problems, precision can be computed per class,
while treating all remaining classes as negative, and then aggregating all the obtained
values. [52–53]. Recall is a complementary metric to precision. Their values are usually tied together
via the decision threshold of a binary classifier. By changing the threshold, one
metric can be increased on account of the other. Recall is defined as:

Recall = TP
TP + FN

, (13)

where TP again holds the number of correctly classified positives, while FN denotes
the number of positive samples incorrectly identified as negative. Similarly to preci-
sion, recall can also be generalized for multi-class problems. Together, they can be
combined to obtain the F1 score metric. [52–53]. F1 score (formally F1) is a harmonic mean of the precision and recall metrics, defined
as:

F1 = 2 Precision ⋅ Recall
Precision + Recall

. (14)

It is a specific case of the 𝐹𝛽 score, defined generally as:

F1 = (1 + 𝛽2) Precision ⋅ Recall
𝛽2 ⋅ Precision + Recall

, (15)

where 𝛽 is a parameter balancing the influence of precision and recall on the final
score. In the case of the F1 score, the parameter is set to 𝛽 = 1. [52–53]

As already mentioned, precision, recall, and the F1 score are primarily intended
for binary classification problems, but they can also be utilized in multi-class cases
by treating them as sets of individual binary classifications. The metrics can be
computed for each class separately by merging all other classes into the negative class.
The overall metrics can then be computed by aggregating these over all classes. The
most commonly employed representative of these approaches is the macro-averaged
F1 score, which is computed as the arithmetic mean of all per-class F1 scores. It
assigns equal significance to each class and thus serves as a useful complement to the
accuracy metric for imbalanced datasets. [52–53]
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. Expected calibration error (ECE) is a metric designed to assess the correspondence
between a model’s confidence in its classification decisions and its actual achieved
accuracy. It is approximated by splitting the 𝑛 evaluation examples into 𝑀 bins
based on the value of the model’s highest softmax output and comparing the averaged
probabilities with achieved accuracies for each bin. This approach is described by
the following set of formulas:

acc(𝐵𝑚) = 1
|𝐵𝑚|

∑
𝑖∈𝐵𝑚

𝟏( ̂𝑦𝑖 = 𝑦𝑖), (16)

conf(𝐵𝑚) = 1
|𝐵𝑚|

∑
𝑖∈𝐵𝑚

̂𝑝𝑖, (17)

ECE =
𝑀

∑
𝑚=1

|𝐵𝑚|
𝑛

|acc(𝐵𝑚) − conf(𝐵𝑚)| , (18)

where acc(𝐵𝑚) denotes the average classification accuracy for the 𝑚-th bin of exam-
ples, conf(𝐵𝑚) is the average probability assigned to the selected classes in the 𝑚-th
bin, and ̂𝑦𝑖, ̂𝑝𝑖, and 𝑦𝑖 are in order the predicted class, its softmax probability, and
the ground truth class for the 𝑖-th example in the 𝑚-th bin. [54–55]

Utilizing this metric for the evaluation of general-purpose LLMs requires access to
the models’ softmax outputs, which may not always be available. Their generated
output can then be limited to a single token representing the chosen class in order
to apply the aforementioned approach.

4.4 Taxonomy of evaluation criteria
The surveys by Chang et al. [1], Guo et al. [2], and Liu et al. [3] take distinct ap-
proaches to providing comprehensive reviews of LLM evaluation aspects and their cate-
gorizations. This section attempts to provide a streamlined overview of the topics these
surveys cover while combining their approaches to propose a generalized taxonomy of
LLM evaluation factors and perspectives.

The main proposed evaluation criteria include Competence, Reliability, and Safety.
When evaluating a model’s competence, the focus lies on assessing its ability to correctly
perform prescribed tasks, while its reliability describes how dependable its solutions
and suggestions are in real-world scenarios. The safety criterion then focuses on the
potential harm the model could cause due to it not being fully aligned with social and
ethical norms. These individual perspectives, as well as their underlying sub-criteria
and available evaluation datasets, are discussed below. It is important to note that some
datasets are suitable for LLM evaluation in multiple aspects, so they can be mentioned
multiple times.

4.4.1 Competence
Competence is traditionally the main evaluation criterion of natural language processing
systems. These were originally designed to perform specific tasks, so their performance
was evaluated using dedicated test datasets targeted at the specific domain. In the
case of LLMs, competence is still a major factor, while other aspects also need to be
considered. The competence evaluation can cover a wide range of NLP tasks as well
as novel usages such as code generation, chatting, and mathematical reasoning. These
tasks are further discussed below. [1–2]
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. Summarization is a classical NLP task requiring generating a short summary of a

longer input text. The ROUGE metric and its variants are typically applied to eval-
uate the generated summaries, together with more novel evaluation techniques, such
as the BERTScore metric and other methods utilizing semantic features. The most
prominent datasets for benchmarking summarization capabilities include CNN/Daily
Mail [56] and XSum [57] for English, and XLSum [58] and WikiLingua [59] for mul-
tilingual evaluation. [1–2]. Machine translation (MT) is another typical language generation task. Given a
source text, the models are expected to generate its equivalent in a target language.
MT outputs can be evaluated using the BLEU or METEOR metrics, as well as
semantics-focused techniques utilizing neural models, such as BERTScore. The pool
of available parallel corpora for machine translation training and evaluation is quite
extensive. The most notable representatives include the FLORES-200 dataset [60]
and the WMT family of machine translation datasets published annually as part of
the Conference on Machine Translation [61]. [1–2]. Text classification is a simple task requiring assigning an input text into a category
from a predefined set. The most typical utilization of text classification in NLP is
sentiment analysis, seeking to determine whether a text excerpt conveys a negative
or positive opinion or whether it is neutral. Prime sentiment analysis evaluation
datasets include the IMDb [62] and Rotten Tomatoes [63] movie reviews, but many
more exist. [1–2]. Natural language inference is another classical NLP task. It is formulated as a
classification of pairs of texts — a premise and a hypothesis. The task’s objective
is to determine whether the hypothesis is supported by the premise, whether the
premise refutes it, or if there is no sufficient connection. The most renowned natural
language inference datasets include SNLI [64], ANLI [65], and MultiNLI [66]. [1–2]. Reading comprehension is a task involving the extraction of an answer to a given ques-
tion from a provided source text. It can occur in multiple variants. The SQuAD [40]
dataset, further discussed in 5.4.14, is a prime representative of the open-form an-
swer generation variant. The model is typically asked to generate a concise answer,
often extracted directly from the source text in an unchanged form. The answer is
then compared to a set of references using text generation evaluation metrics. These
commonly include the exact match accuracy and unigram retrieval F1 score, which is
defined identically to the ROUGE-1 metric. Another variant formulates the problem
as a single-choice question, only expecting the model to select the correct answer.
The model’s performance is then assessed using the accuracy metric. The Open-
BookQA [67] and Belebele [5] datasets are both popular representatives of this task
formulation. [1–2]. Question answering aims to probe the extensiveness of the knowledge LLMs acquire
during their unsupervised pre-training. The questions are usually in the single-choice
format, providing a set of possible answers and expecting the evaluated model to
select the correct one. No additional context is provided in this case. The MMLU [68]
and ARC [69] datasets are certainly the most popular question-answering benchmark
representatives, while some MMLU subtasks also evaluate reading comprehension.
TruthfullQA [70], aimed primarily at assessing LLM factuality, is also a question-
answering dataset that is also available in multi-choice and open-form generation
variants. [1–2]. Mathematical reasoning involves the comprehension of mathematical problem defi-
nitions and their successful solving. It is typically evaluated on word problems of
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varying difficulties. A common practice is to instruct the evaluated models to gen-
erate full descriptions of their step-by-step problem solutions, as this allows them to
condition their reasoning with previously generated outputs. The final result is then
usually formatted in a distinct way to allow successful parsing. The most commonly
applied metric is the exact match accuracy of the final numerical results. Popular
mathematical reasoning datasets include GSM8K [71], MATH, and SVAMP. [1–2]. Commonsense inference is a family of tasks focused on evaluating the LLMs’ deeper
understanding of semantic nuances present in natural language. WinoGrande [72] is
an adversarial dataset focused on the task of pronoun resolution, requiring the models
to correctly resolve the coreference between nouns and pronouns. Hellaswag [73], also
created adversarially, requires the models to select a correct continuation of a given
sentence fragment. The original sentences are sourced from automatic video captions
and are inherently hard to comprehend, even for human readers.. Code generation is a novel task specific to large language models. Given a description
of an algorithm’s objective, inputs, and outputs, the models are expected to generate
correct code snippets in a requested programming language. The generated code can
be evaluated from the perspective of functionality or similarity with ground truth
references, as described in 4.3.3. The most renowned code generation datasets include
HumanEval [51], MBPP [74], and CoNaLa [75]. Currently, the options for code
generation evaluation are almost completely exclusive to the Python programming
language. [1–2]. Chat quality is another novel evaluation aspect that is becoming gradually more
significant as the selection of LLM-powered chatbots rapidly expands. The models’
chat contributions can be evaluated from different perspectives, including conversa-
tion coherence, helpfulness of provided answers, ability to maintain prescribed roles
and characteristics, and presence of impertinence and harmful content. Chatbot
Arena [76] is a project aimed at crowd-sourcing chatbot evaluation by allowing par-
ticipants to interact with a pair of anonymous chatbots simultaneously and rate
which one performs better. MT-Bench [76], on the other hand, utilizes an LLM
judge to assess the quality of chat responses of other models on a fixed evaluation
dataset. Other chat evaluation datasets include PERSONA-CHAT [77], CoQA [78],
and QuAC [79]. The unigram retrieval F1 score proposed for the SQuAD dataset [40]
is usually utilized to compare the generated chat responses to reference answers. In
the case of Chatbot Arena and other competition-based evaluation approaches, an
Elo rating system is typically employed. [1–2]. Downstream tasks involve integrating LLMs into more complex systems aimed at
achieving specific goals. Such utilizations are becoming ever more common, with
one of the main examples being retrieval-augmented generation (RAG), which allows
users to ask for information contained in large text documents. RAG systems then
use semantic text similarity search to extract sections of interest from the source
documents and then employ an LLM to generate an answer based on these sections.
Large language models can also act as autonomous agents with access to exter-
nal tools, which enable them to perform more complex tasks, such as software and
game development, web shopping or information scraping, or inference on structured
data. [1–2]

These systems typically need to be evaluated as a whole, with options to compare
different employed LLMs as well as other parameters. The final outputs of RAG sys-
tems are typically evaluated using LLM judges, but extra focus is given to the retrieval
system component with dedicated automatic metrics [80–81]. A prime benchmark
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dataset for LLM agent evaluation is AgentBench [82], consisting of distinct tasks,
such as web shopping, operating system navigation, and database retrieval. [1–2]. Knowledge exams, originally designed to evaluate humans, can also be employed
to assess the competence of LLMs in a variety of specialized domains. Medicine,
law, history, economics, and major natural science exams were used to report the
performance of the GPT-4 model [83], and they are commonly used by researchers
to assess the performance of already released models [84–85]. [1–2]. Domain-specific evaluation is further supported by standard NLP datasets designed
to evaluate field-specific competencies. These include the PubMedQA [86] med-
ical dataset, the COLIEE [87] and SARA [88] legal datasets, and the FDB (Fi-
nancial PhraseBank) [89] and ConvFinQA [90] financial benchmarks. The versatile
MMLU [68] dataset also includes several tasks dedicated to distinct professional do-
mains. [1–2]

4.4.2 Reliability
With the emergence of neural networks as the most well-performing machine learning
algorithms, the field has witnessed a dramatic decline in the interpretability of model-
generated outputs and decisions. The fact that the inner logic of these models cannot
be fully understood leaves no room for assumptions regarding the reliable transfer of
their testing performance to real deployment situations. This is even more pronounced
in the case of large language models trained on vast web-scraped corpora, which are
virtually impossible to curate for erroneous or undesirable content. [1–3]

In an effort to address these issues and improve insight into the reliability of LLMs,
dedicated benchmarks and evaluation techniques were developed. Adversarially fabri-
cated datasets can be utilized to probe the models’ performance on fake and erroneous
inputs; additional metrics, such as the expected calibration error, can be employed to
assess the models’ confidence; and new tasks can be developed to further examine the
credibility of generated outputs. [1–3]

. Robustness is a prime factor influencing LLM reliability. It also plays an important
role in the safety evaluation perspective, but it will only be covered here for the
sake of conciseness. A robust model should not be susceptible to noise or distribu-
tion shifts introduced into its inputs by ingenious factors or malicious acts. These
input alterations should not be able to cause the model to provide incorrect or unin-
tended outputs, and the model’s confusion should be correctly reported (in relation
to the honesty aspect covered below). Semantically identical prompts differing in
formulation should also produce mutually similar results. [1–3]

Standard NLP datasets created using adversarial filtering can be utilized to assess
the effect of erroneous and malicious inputs on LLM performance. These include, for
example, the ANLI [65], AdvGLUE [91], and HellaSwag [73] benchmarks. Prompt-
Bench [92] is an evaluation suite utilizing a plethora of pre-existing NLP datasets with
adversarially introduced input alterations, mimicking user typing errors and wording
variations. It introduces a relative performance decline metric called performance
drop rate (PDR). [1–3]. Honesty is an important reliability factor, especially in the case of LLMs, which have
a common tendency to generate fluent and admissible answers that are factually
incorrect or unfounded. This phenomenon is commonly referred to as LLM hallu-
cination. To mitigate these effects, instruction tuning, reinforcement learning, and
advanced prompting techniques are commonly employed to force models to admit
not knowing the answer to a given question. New evaluation methods also emerge
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to tackle this undesirable property of LLMs. SQuAD 2.0 [93], an updated version of
the original SQuAD [40] reading comprehension dataset, includes newly introduced
unanswerable questions and updated metrics encouraging models to correctly identify
them. SelfAware [94] is a benchmark designed specifically to evaluate LLMs’ ability
to withhold from answering questions requiring speculation or expressing opinions.
The identification of unanswerable answers is inherently a binary classification task,
typically evaluated using a standard F1-score metric. [1–3]. Factuality of LLM-generated texts is also a major concern, as it is very likely for the
web-crawled corpora used for their training to contain significant amounts of false
and misleading information. This can then easily lead to the models relaying these
false claims in their answers. Natural language inference benchmarks are designed
to assess the models’ understanding of factual entailment and can thus indirectly
indicate how well they can process and verify facts. However, this approach is not
sufficient on its own. The TruthfulQA [70] dataset was created specifically to examine
the tendency of LLMs to spread misinformation commonly found in online sources.
It includes an open-form generation task variant, as well as single-choice and multi-
choice question variants. [1–3]

Azaria et al. [95] were also able to determine how truthful LLM-generated outputs
are by accessing the hidden layer activations of the evaluated models. It is thus pos-
sible that future LLMs could include dedicated outputs indicating how trustworthy
the generated texts are. [1–3]

4.4.3 Safety
As the popularity of large language models rises and their integration into complex
systems becomes common, it is important to stay aware of the risks imposed by using
these uninterpretable machine learning models trained on largely uncurated corpora.
By assuming and even amplifying social biases found in their training data, they can
potentially contribute to spreading these opinions or generate harmful content. In the
case of LLM agents capable of influencing external processes, this could lead to even
greater issues. [1–3]

As already mentioned, the models’ robustness acts as a major factor in their overall
safety. Models that can be disturbed by erroneous inputs or exploited by malicious
actors could impose major risks when deployed in critical settings or used by vulnerable
individuals. There are, however, other aspects contributing to LLM safety concerns,
which are further discussed below. [1–3]

. Data protection is a significant concern with LLMs. Even though their training cor-
pora are gathered from public sources, there are significant possibilities they may
encompass copyright-protected content or sensitive personal information. Malicious
actors could then employ elaborate prompt engineering to elicit this information
from the models’ outputs and attempt to misuse them. Mitigating these issues is
an active research topic, with proposed approaches utilizing the concepts of differ-
ential privacy and specially designed training optimizers [96–97]. The P-Bench [98]
evaluation framework was recently proposed to facilitate the evaluation of these tech-
niques, employing a comprehensive set of data elicitation approaches and evaluation
metrics. [1–3]. Toxicity and harmfulness of LLM-generated content are further risks related to the
nature of their training data. They could manifest through the generation of hateful
statements or providing potentially dangerous information, jeopardizing public or
personal safety. The HarmfulQA [99] and RealToxicityPrompts [100] datasets can
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be used to evaluate the models’ tendency to generate harmful content, while the
commercially available Perspective API [101] can directly evaluate the toxicity of
generated texts. [1–3]. Bias is also an inherent attribute of LLM training corpora, with a high potential
for spreading and amplification through automatically generated content. There are
multiple evaluation benchmarks aimed at probing the tendency of LLMs to con-
vey biased and stereotypical claims. Winogender [102] and WinoBias[103] focus on
associations between particular job titles and gender assumptions, while the Stere-
oSet [104], CrowS-Pairs [105], and BOLD [106] datasets evaluate the presence of
various kinds of stereotypical biases. [1–3]

4.5 Existing benchmark collections
Apart from the already mentioned individual datasets, several larger benchmark col-
lections also exist, combining official datasets with other custom tasks. Some of these
frameworks provide an option to aggregate all individual task results into a single final
score in order to streamline the performance comparison of individual LLMs.

. GLUE (General Language Understanding Evaluation) and SuperGLUE, published
successively by Wang et al. [107–108], are collections of classical NLP tasks proposed
during the era of early transformer models. They are now largely considered obsolete,
as state-of-the-art models have already achieved superhuman performance.. HELM (Holistic Evaluation of Language Models), proposed by Liang et al. [109], at-
tempts to establish a comprehensive and standardized approach to evaluating LLM
performance. They utilize a large set of tasks covering all previously discussed evalu-
ation criteria. They also propose an arbitrary set of high-level metrics encompassing
different properties of the evaluated models. To standardize the evaluation conditions
for all models, they employ a set of invariant 5-shot prompts (the few-shot prompting
approach is further described in Section 5.1).. BIG-bench (Beyond the Imitation Game benchmark), proposed by Srivastava et
al. [110], is Google’s contribution to the LLM evaluation field. It incorporates a
large set of tasks that are designed to be beyond the capabilities of current LLMs.
Smaller subsets, denoted as BIG-bench Lite and BIG-bench Hard, are usually used
for reported evaluations.. OpenAI Evals6 is an evaluation framework published by OpenAI. It currently includes
over 300 separate tasks in a limited set of languages.. Language Model Evaluation Harness7 is an evaluation framework developed by
EleutherAI. It contains a large portion of the already-mentioned mainstream
datasets and is utilized in the Open LLM Leaderboard8 by Hugging Face.

6 https://github.com/openai/evals
7 https://github.com/EleutherAI/lm-evaluation-harness
8 https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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Chapter 5
The Czech-Bench evaluation framework

In this chapter, I would like to present the Czech-Bench LLM evaluation framework,
the main implementational outcome of this thesis. I gathered already existing Czech
NLP datasets together with some of their English equivalents, added six new dataset
translations, and integrated them into a single evaluation suite capable of running all
27 included benchmarks using a single command.

Czech-Bench is a fully open-source project hosted on Gitlab1. It is written in Python3
and utilizes the Langchain2 library to provide a universal interface for all evaluated mod-
els. The currently supported LLMs include OpenAI’s and Anthropic’s chat-completion
APIs, models run using the local Ollama3 runtime, and open-source models compatible
with the AutoModelForCausalLM and AutoModelForSeq2SeqLM classes of the Trans-
formers library from Hugging Face. The suite contains 17 Czech benchmarks in total,
accompanied by 10 English benchmark equivalents, included for the sake of cross-lingual
performance comparison. All the datasets and files required for running any of the in-
cluded benchmarks are provided inside the repository and can be downloaded using the
Git Large File Storage (LFS) utility.

The following sections are dedicated to the description of the framework’s creation
process, its inner structure and usage details, as well as the introduction of all in-
cluded datasets, the means they were obtained, data processing details, and evaluation
strategies.

5.1 Methodology
I started the development process by familiarising myself with the field of LLM evalua-
tion and the methods used, mainly for English evaluations. Chapter 4 summarizes the
information I have gathered during these efforts. Simultaneously, I also started search-
ing for evaluation datasets available in the Czech language. I started with simple web
searches and found several publications describing newly proposed or translated Czech
datasets. I also searched the Hugging Face4 hub for datasets published there. Even
though its search feature supports filtering datasets by language, this approach did not
prove very effective at filtering out irrelevant datasets, often containing multilingual
text corpora not suitable for LLM evaluation. Searching directly for dataset names
containing the “cs” substring proved much more effective and allowed me to find more
10 ten Czech datasets, with a majority of them based on original Czech texts. Reading
the proposal papers of individual datasets and following their referenced related work
also helped to expand the dataset portfolio. Identifying specific tasks that would make
valuable additions to the Czech-Bench collection and specifically searching for suitable
datasets also led to additional discoveries that could have been missed otherwise.
1 https://gitlab.com/jirkoada/czech-bench
2 https://github.com/langchain-ai/langchain
3 https://github.com/ollama/ollama
4 https://huggingface.co/
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After exploring the space of available Czech benchmarks, I decided to select a handful

of popular English datasets without already existing Czech variants and perform their
translation using a suitable machine translation tool. I focused on the benchmarks most
commonly used in recent performance reports of SOTA models while keeping in consid-
eration the diversity of the tasks and evaluation aspects covered. The datasets selected
were ARC, GSM8K, MMLU, and TruthfulQA. Later on, I decided to translate two
original Czech datasets into English, in order to examine the effect of data degradation
caused by automatic translation, contrasted with the inherent performance discrepan-
cies between both considered languages. The process of dataset translation is described
in Section 5.2. Detailed information about all datasets included in Czech-Bench, in-
cluding those already mentioned, are provided in Section 5.4

The framework’s architecture was designed to allow for simple integration of differ-
ent models and services, by using a universal interface between models and evaluation
prompts. This was achieved by utilizing the Langchain5 library, a popular tool com-
monly used for LLM dispatching and their integration into larger NLP pipelines. It
provides two wrapper classes for LLMs accepting plain-text inputs, as well as chat mod-
els that require pre-formatted messages. These are complemented with corresponding
classes for prompt template creation.

Another desired property was the framework’s ability to run an arbitrary selection of
benchmarks using a single command while allowing for independent custom implemen-
tations of individual benchmark evaluation procedures. This was achieved by creating
a single evaluation script that parses its parameters from a YAML configuration file
and instantiates individual benchmark evaluator classes on demand. More details on
the framework’s technical implementation are provided in Section 5.3

I also contemplated utilizing an already existing evaluation framework. The most
suitable option would be the Language Model Evaluation Harness6, which supports a
wide selection of open-source models but offers limited compatibility with commercial
APIs. I was also unable to successfully run evaluations using this framework due to
software limitations of our compute cluster. For these reasons, I opted for a simpler
custom implementation that provided more control over benchmark definitions and
evaluation procedures, and allowed me to earn more hands-on experience with the
evaluated models.

To ensure the evaluated models perform at an adequate competence level, I opted for
a few-shot prompting strategy, which improves the models’ understanding of the tasks
presented to them by providing a handful of already solved exemplary task instances.
This also improves the models’ ability to follow the prescribed response format, al-
lowing for automatic parsing of their answers and their comparison with ground truth
references. To unify the prompting strategy across all benchmarks and ensure the tests
of different models are always comparable, I decided to use a fixed number of 5 few-shot
examples in all evaluations.

5.2 Dataset translation
In order to expand the pool of available benchmarks and improve the potential for
cross-lingual comparison of LLMs’ performance, I chose to translate several selected
datasets into the Czech language. The datasets selected were ARC, GSM8K, MMLU,
and TruthfulQA, which are very commonly used by SOTA researchers to report their
5 https://github.com/langchain-ai/langchain
6 https://github.com/EleutherAI/lm-evaluation-harness
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models’ performance. To further explore the nuances of cross-lingual evaluation, namely
the influence of the translation process on data quality and, subsequently, the measured
performance, I translated two original Czech datasets into English. This would poten-
tially improve the insight into the amount of performance loss that could be attributed
to translation errors versus actual differences in competence across the two languages.

A family of open-source models presented by Tran et al. [111] in 2021 was employed
for the translation. The WMT 21 En-X7 and WMT 21 X-En8, both available on
Hugging Face, were Facebook AI’s contribution to the WMT 21 Machine translation
conference, where both managed to achieve the highest evaluation scores in the trans-
lation challenges from English to Czech and vice versa [112]. They are designed to
perform translations between English and 7 languages, including Czech. They were
chosen for their high performance, open-source availability, and reasonable hardware
requirements.

For both translation directions, the input texts were processed by individual sen-
tences, as the models were designed to output a maximum of 200 tokens, which, in the
case of Czech output, would encompass only a few sentences and could cause output
cut-offs. This approach can potentially lead to incoherence in longer texts, as some
information required for correct sentence formation may be carried over from previ-
ous sentences. Given that the translated datasets mostly consist of short, often only
one sentence long, texts and the evaluation tasks are focused on processing explicit
information rather than resolving language nuances, this was considered an acceptable
shortcoming of the translation process. Details on the translation in each particular
direction, together with the challenges faced, are described in the following two subsec-
tions.

5.2.1 English-to-Czech translation
The WMT 21 En-X model performed well on texts with fluent language. However,
it struggled with texts containing numbers, symbols, and formulas. These were often
present in the science-focused questions and answers in the ARC and MMLU datasets.
Their translations were often riddled with repeating patterns of special characters,
digits, or even unusual character groups. For example, the translation of an answer
containing only the chemical symbol for magnesium, “Mg”, would result in a string
repeating the letters “Mg” tens of times. To resolve this problem, I tried setting the
repetition_penalty model parameter to higher non-default values. I settled on the final
value of 5 after reaching satisfactory outputs.

To further prevent the corruption of purely symbolic answers and avoid unnecessary
translation attempts, I implemented a filter for texts containing only digits and math-
ematical operators using a regular expression and excluded these from the translation.
This eliminated all problems with numerical answers and mathematical formulas.

The remaining problematic inputs were mostly present inside the MMLU dataset.
One of them was the answer “I only”, meaning “Only the statement number I (one)
satisfies the given criterion.”. While its alternatives “II only”, “II and III”, etc., were
translated correctly, “I only” would be unsurprisingly translated as “Já pouze” (“I” was
interpreted as “me” instead of a Roman numeral). This was easily fixed by inserting
a custom translation “Pouze I” and not employing the translation model if the input
matched the given expression. A similar situation arose with answers containing boolean
pairs, associated with questions requiring the model to independently classify a pair of

7 https://huggingface.co/facebook/wmt21-dense-24-wide-en-x
8 https://huggingface.co/facebook/wmt21-dense-24-wide-x-en
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claims as true or false. The translations of these two words appeared to be inconsistent,
as they have multiple Czech counterparts and can also be interpreted as both nouns
and adjectives. This was again solved by rule-based translation using a dictionary
containing four input-output pairs. For example, the answer “true, false” would then
always be translated as “pravda, nepravda”.

The last issue involved the model arbitrarily translating surnames into female form
when no first name preceded them. In extreme cases, this effect would not only be
limited to surnames. For example, the word “Xia”, referring to an ancient Chinese
dynasty, would be translated as “Xiaová”, the female form of the surname “Xia”. This
was apparently a result of the authors’ efforts to mitigate the model’s gender bias. Given
the use of the ending “-ová”, especially in the case of foreign surnames, is not explicitly
codified in the Czech language [113–114], and no Czech surnames were expected to
appear in the English source texts, it was desirable to mitigate this effect. As detecting
surnames pre-translation was not feasible, I decided to implement a post-translation
correction filter. If an input string contained only one word, and it ended with “-ová”,
the ending would be stripped, and the remaining part of the word would form the
final output. These corrections were logged into the console and promptly checked for
unintended edits after the translation was finished. No issues were registered.

5.2.2 Czech-to-English translation

The WMT 21 X-En model was employed to translate the selected datasets from Czech
into English. The value of its repetition_penalty parameter remained set to 5, as it was
well-proven from the English-to-Czech translations. All the implemented adjustments
were kept, but only the exclusion of mathematical formulas remained active. The only
implementation difference was the handling of the model and its tokenizer, which was
adjusted according to the instructions on its Hugging Face page.

5.3 Implementation details
All benchmarks can be run using a single Python script named run_evaluation.py,
which is stored in the root directory of the project. It accepts two optional arguments:
a path towards a YAML configuration file and a note describing details about the
performed test, which would then be stored in the output log file in order to provide
easier identification of individual test runs. These arguments can be passed using the “-
c” and “-n” switches, respectively. If no custom configuration file is provided, the script
automatically uses the default YAML file named eval_config.yml. This file defines all
configuration parameters of the evaluation, including the model to be evaluated and
benchmarks to be used.

All supported models are defined in their respective Python files inside the models
directory. Each of these files includes a get_llm function, which accepts arbitrary key-
word arguments and returns an object compliant with either the LLM9 or ChatModel10

classes of the Langchain library. The model to be evaluated is selected by setting the
model_name parameter inside a YAML configuration file to contain the name of the
model’s Python file without extension. Optional keyword arguments for the model’s
get_llm function can be specified in the form of a dictionary assigned to the optional
model_parameters field inside the YAML file.

9 https://python.langchain.com/docs/modules/model_io/llms/custom_llm/
10 https://python.langchain.com/docs/modules/model_io/chat/custom_chat_model/
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When the evaluation script is run, it parses the configuration file and loads the eval-
uated model by calling its get_llm function supplied with the specified parameters. It
then creates a time-stamped text file inside a subfolder of the results directory named
after the currently evaluated model. This file’s header includes the model’s name, all
specified model parameters, and the optional note parsed from the evaluation script’s
arguments. During the evaluation, the file is gradually appended with individual bench-
mark results.

The script then loops over all elements of the benchmarks list, which is also defined in
the configuration file. Each of its elements is a dictionary containing the benchmark’s
name, a boolean parameter use, indicating whether it should be used for this particular
evaluation, and a second boolean parameter local, indicating whether the dataset should
be loaded from local files or downloaded from Hugging Face or another hosting service.
It should be noted that not all benchmarks support automatic dataset downloading
during evaluation runtime.

If a benchmark’s use parameter is set to “true”, its respective Evaluator class is
instantiated. These classes are defined inside Python files named evaluator.py, placed
in each benchmark’s respective subfolder inside the benchmarks directory. During its
initialization, the Evaluator class automatically loads its required dataset from local files
or online sources, respecting the benchmark’s local parameter. Then the Evaluator ’s
run_eval method is called. It accepts the evaluated model object as its first parameter,
together with the path to the result text file and an additional stop_idx parameter. This
parameter, defined at the very end of the configuration file, can be used to prematurely
finish all evaluations when a set number of examples is processed. It is meant mainly
for debugging purposes and should not be used to alter the size of evaluation datasets.
Its value is set to “null” by default, which completely disables this feature.

The run_eval method loops over the loaded dataset’s examples, formulates the
model’s input prompts, and assesses the correctness of its outputs. The number of
already processed examples, together with their total count, is displayed in the console
to provide a notion of the benchmark’s progress. When the benchmark or one of its
subtasks is finished, its final metrics are displayed and logged into the result text file.
At the end of the benchmark, additional statistics, such as average inference time, total
number of valid examples, and number of unparseable model responses, are displayed
and logged. If a task requires the model to generate full-text answers, a set of tools
for Czech morphological analysis integrated into the framework can be used to reduce
the texts’ morphological variability. This can increase the values of text comparison
metrics and allow for fairer confrontation with results in English, a morphologically
simpler language. These tools are further described in 5.4.13.

The input prompts for all evaluation examples are formed using Langchain’s Prompt-
Template and ChatPromptTemplate classes. These enable the creation of prompt tem-
plates with variable input fields that support inserting example-specific values. Each
benchmark’s prompt templates are defined inside the prompts.py Python file within its
respective subfolder. The prompt template strings are always divided into three sepa-
rate parts. The first part contains the description of the model’s task and its expected
output format. It is always a simple string with no input fields. The second part con-
tains a set of few-shot examples demonstrating the input structure together with the
expected output format. All benchmarks use a fixed number of 5 few-shot examples.
These can differ across the benchmark’s individual subtasks, so this part of the prompt
template can occasionally contain variable input fields. The third part contains the
actual evaluation example formatted identically to the few-shot instances but without
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the final answer, which is expected to be supplied by the evaluated model. This part
always contains variable input fields that are later populated by the example’s input
properties.

The PromptTemplate is utilized when evaluating simple models that expect a single
string on input. All the previously described parts are concatenated and treated as a
single template for a plain-text prompt. Meanwhile, the ChatPromptTemplate holds
the prompt in the form of individual messages. Langchain’s ChatModels expect a sys-
tem message explaining the model’s general task, followed by a user message asking the
model to finally generate a case-specific answer. The system message is composed of the
task definition and few-shot sections, and the user message holds the final prompt part
containing the evaluation request. Both template variants are created for each bench-
mark, and the correct one is selected during evaluation runtime utilizing Langchain’s
is_chat_model function.

There are multiple exception-catching mechanisms implemented at different levels of
the evaluation pipeline. Each call of the evaluated model, as well as the benchmarks
output parsing logic, are encased in try-except blocks, preventing the whole evaluation
from being compromised by a single model runtime or output parsing error. The
instantiation and execution of each individual benchmark are also monitored for errors,
so a single faulty benchmark does not affect those following it. Errors in configuration
file parsing and model loading are also automatically caught and reported before safely
terminating the evaluation. This makes the framework robust to errors in benchmark
or LLM design, as well as API timeouts and usage limit breaches.

The implementation approach selected during the development of this framework
allows for a nearly unconstrained low-level approach to LLM integration and benchmark
design, including the ability to apply custom processing on models’ outputs before they
are evaluated. It also allowed me to gain valuable hands-on experience with various
LLM types and architectures while determining the optimal integration approach for
each model type. The framework’s structure is also quite streamlined, making it easy
to understand and expand with new benchmarks and models. However, this simplicity
comes at the cost of effectiveness, as the framework currently does not support batch
inference on evaluated models, and its eventual implementation may be complicated
due to the technical differences in supported model types.

5.4 Included benchmarks and datasets
This section describes the benchmarks currently included in the Czech-Bench repository,
together with their respective dataset sources, data formats, pre-processing steps per-
formed during their integration, and employed evaluation strategies. Each subsection
first describes the original benchmark and, where applicable, follows with additional
information about its translated variant.

5.4.1 AGREE

The Czech grammar agreement (AGREE) is a dataset introduced by Vít Baisa in his
2016 dissertation thesis [115], and made available on its official website11. It consists
of nearly 10 million examples split across 3 subsets. Each example contains a single
tokenized sentence, where all verbs in the past tense are marked with a triplet of “∗”
characters. The validation and evaluation subsets also include a variant where suffixes
11 https://nlp.fi.muni.cz/~xbaisa/agree/
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in these verbs are replaced with the “_” character. Suffixes possible to fill in these gaps
are “-a”, “-o”, “-i”, “-y”, and “-” (no suffix). The correct suffix depends on the gender
and number properties of the sentence subject. For example in the sentence

“Jeho kapacita byl_ až 36 tisíc diváků.”,

meaning “Its capacity was up to 36,000 spectators.”, the correct suffix to insert would
be “-a”, as the subject is feminine singular. [115]

The test set containing 996 examples was selected for evaluation, and several pre-
processing steps were performed to transform the data into the desired format, that
would accommodate a missing word selection task. First, sentences with more than one
marked verb were discarded, and the remaining 673 sentences were detokenized by re-
moving spaces between words and following punctuation characters. Then, the marked
verbs were completely replaced with the “____” token (four consecutive underscores).
Five possible verb forms were made by appending all possible suffixes in place of the
original “_” character. These were stored in a list of options, and the index of the
correct form was stored as the ground truth label. The example from above would now
consist of the input sentence

“Jeho kapacita ____ až 36 tisíc diváků.”,

a list of options “byla”, “bylo”, “byli”, “byly”, “byl”, and the ground truth label in the
form of the integer 0.

At this stage, the dataset still contained multiple samples with ambiguous solutions,
where even a Czech native speaker could not select a single correct answer. For example,
in the originally formatted sentence

“Klidně v Mladějově mohl_ zůstat, snad tomu nic nebránilo.”,

meaning “He/She/It/They could have stayed in Mladějov, perhaps nothing was pre-
venting it.” all five verb forms would be both grammatically and semantically admis-
sible. An iterative filtering strategy was employed to address this problem. First, the
Claude 3 Haiku model was evaluated on the whole dataset, while keeping track of all
incorrectly answered examples. These were then extracted and used for the second
round of evaluation performed on the Claude 3 Sonet model. The remaining incorrect
examples were used once more to evaluate the GPT-4 Turbo model, which left 115
examples answered incorrectly. This subset was then manually checked for ambiguities,
and 46 examples were removed. This left 627 samples remaining, while there is a real
possibility of several ambiguous examples being missed due to the LLMs successfully
matching the ground truth answers by pure chance. This approach was selected as an
acceptable balance between manual checking, susceptible to human error, and the costs
and uncertainties of relying fully on LLMs.

The few-shot evaluation prompt incorporates five illustrative examples that were
manually selected from the validation set and converted to the target format. The five
verb forms are presented to the model as numbered options along with the incomplete
sentence, and the model’s task is to output a single integer corresponding to the chosen
option. The only evaluation metric reported in this benchmark is accuracy, representing
the percentage of correctly completed sentences.

Two other benchmark variants were considered for this dataset. One would involve
directly generating the correct suffix for sentences with one target verb, the other would
utilize the full original set of sentences and require generating a list of suffixes for
multiple target verbs. These versions proved very challenging, particularly for many
open-source models, which struggled to select suffixes from the five available options and
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generated lists with incorrect lengths. These versions were, therefore, not incorporated
for the time being.

5.4.2 ANLI
The Adversarial Natural Language Inference (ANLI) dataset was introduced in 2019 by
Nie et al. [65]. It was created by an iterative process, where human annotators, given
a premise text, were tasked to create an adversarial hypothesis that would deceive
a model trained on existing NLI datasets to classify the resulting example incorrectly.
The resulting data were then then used to train a new and more capable model, and the
whole process was repeated two more times. More than 100,000 samples were collected
in total, with a test set containing 1,200 examples. [65]

The original English version of the dataset was obtained from Hugging Face12. The
test_r3 subset is used for the evaluation, and five manually selected examples from the
train_r3 subset are included in the few-shot prompt. The model is tasked to output
a single integer from the [0, 2] range, corresponding to the correct entanglement label.
Classification accuracy and macro-averaged F1 score are reported at the end of the
evaluation.

The Czech translation of ANLI comes from the efforts of the Artificial Intelligence
Center at FEE CTU Prague, which focused on introducing new Czech datasets for the
NLI task [8]. Although it is not specifically mentioned in their released article by Ullrich
et al. [7], it is published by the same organization on Hugging Face13. It includes three
subsets corresponding to the r3 variant of the original ANLI dataset, but the numerical
labels of the entailment and contradiction classes are switched. The test set is employed
for the evaluation, and the few-shot examples are chosen to match the ones used for
the original dataset.

5.4.3 ARC
The AI2 Reasoning Challenge (ARC) is a dataset introduced by Clark et al. [69] in
2018. It consists of nearly 8,000 examples of single-choice grade-school level science
questions, split across two variants denoted as Challange and Easy, based on the in-
cluded examples’ difficulty. These are then each split into train, validation, and test
subsets. The dataset is available on Hugging Face14.

The ARC-Challange and ARC-Easy are treated as separate benchmarks with com-
mon evaluation logic but separate data. The test sets are used for the evaluation, and
the few-shot prompts are composed of five examples that are manually picked from each
variant’s validation set. The model’s task is to output a single capital letter correspond-
ing to the answer chosen from the options given in the prompt. The final percentage
of correctly answered questions is reported as the accuracy metric.

This dataset was translated using the process described in Section 5.2. Only the ques-
tion and answer texts were translated, while the answer labels and the ground truth
label remained unchanged. The answer text fields often consisted of isolated num-
bers, mathematical expressions, or short chemical symbols and formulas. These were
very susceptible to the translation model’s tendency to repeat irregular text patterns.
Thanks to increasing the model’s repetition penalty and preventing isolated numbers
and mathematical expressions from being translated, these problems were mitigated
substantially. The translation of one ARC’s example took approximately 1.6 seconds

12 https://huggingface.co/datasets/facebook/anli
13 https://huggingface.co/datasets/ctu-aic/anli_cs
14 https://huggingface.co/datasets/allenai/ai2_arc
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while running on a single Nvidia A40 card. The translated dataset has been published
on Hugging Face15.

The evaluation techniques employed for the translated dataset, as well as the utiliza-
tion of its variants and subsets, mimic the original English version.

5.4.4 Belebele
Belebele is a multilingual reading comprehension dataset published by Bandarkar et
al. [5] in 2023. It is available on Hugging Face16 in 122 language variants, including
Czech and English, which makes it a unique and valuable proposition. The source pas-
sages come from the Flores-200 machine translation dataset composed of high-quality
human-translated texts [60]. The reading comprehension questions and answer options
were created manually in English and translated into the remaining languages by fluent
experts. Each of the dataset’s equivalent language variants contains 900 examples. [5]

As there are no distinct subsets present in Belebele, the few-shot examples had to
be picked directly from the whole set and then excluded from the evaluation. Equiv-
alent examples were picked for both variants to ensure the best possible performance
comparison. During evaluation, the model is presented with the source passage and a
related question and given four numbered answer options. It is expected to generate
an integer corresponding to the number of the chosen answer. The reported evaluation
accuracy is computed as the percentage of correctly solved examples.

5.4.5 CTKFacts
CTKFacts is an original Czech natural language inference dataset presented by Ullrich
et al. [7] in 2022. The premise texts were sourced from an archive of the Czech News
Agency (ČTK), and the hypotheses were contributed by human annotators. [7]

The dataset is hosted on Hugging Face17 and contains over 4,000 examples. The 558
samples present in the test subset are utilized for the evaluation, and the five few-shot
examples were selected from the training set. The task is formulated analogically to the
previously mentioned ANLI dataset, as the data structure is identical. Classification
accuracy and macro-averaged F1 score are again the reported metrics.

To further explore the influence of the automatic dataset translation on the results
of cross-lingual performance comparisons, this original Czech dataset was translated to
English. The evaluation methodology is analogous to the original version, with few-
shot examples selected to match. The translated dataset has been published on Hugging
Face18.

5.4.6 CZE-NEC
The Czech News Classification dataset (CZE-NEC), proposed by Kydlíček et al. [10] in
2023, is a large collection of news articles gathered from various sites. Apart from the
articles’ first paragraphs stored inside the “brief” field and the rest of the text inside
the “content” field, it also contains the articles category and additional metadata, if
they were available.

The second revision of the dataset, which is available on Hugging Face19, contains
almost 2 million examples, with 145,000 inside the test set. The category labels, with

15 https://huggingface.co/datasets/CIIRC-NLP/arc-cs
16 https://huggingface.co/datasets/facebook/belebele
17 https://huggingface.co/datasets/ctu-aic/ctkfacts_nli
18 https://huggingface.co/datasets/CIIRC-NLP/ctkfacts_nli-en
19 https://huggingface.co/datasets/hynky/czech_news_dataset_v2
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26 unique values, are rather noisy. One-third of the examples bear the label “none”,
and some category names have very similar meanings. For example, the categories “Re-
vue” and “Koktejl” both generally revolve around celebrity gossip, while “Ekonomika”
(Economy), “Byznys” (Business), and “Finance” (Finance) are also highly overlapping.

To address this issue, together with the high evaluation cost of such a large test set,
the data was automatically filtered and subsampled. First, only five major categories
were selected, including “Zahraniční” (Foreign news), “Domácí” (Local news), “Sport”
(Sport), “Kultura” (Culture), and “Ekonomika” (Economy). For each category, 200
samples were randomly selected to form a balanced dataset with 1000 samples in total.

The evaluated model’s task is then to classify each article based solely on its brief
(first paragraph). It is provided with the five categories as numbered options and asked
to return only the correct category number. Five few-shot examples selected manually
from the test subset are used to demonstrate the correct answer format. The model’s
performance is measured using classification accuracy and macro-averaged F1 score.

5.4.7 Facebook Comments
This dataset emerged from the efforts of Habernal et al. [9] to form new datasets
for Czech sentiment analysis. They gathered user comments from nine commercial
Facebook pages and used up to four annotators to obtain the ground truth classification
of each example. [9]

A label-balanced version of this dataset is available on Hugging Face20 and contains
6600 total samples with 1000 assigned in the test set. The models evaluated using the
test set are asked to generate an integer label (-1, 0, or 1) for the given input text based
on its sentiment. Five few-shot examples from the training set are used to illustrate
the correct answer format. The reported metrics are accuracy and macro-averaged F1
score.

5.4.8 GSM8K
Grade School Math 8K (GSM8K), proposed by Cobbe et al. [71] in 2021, is a dataset
of math word problems complete with step-by-step solutions. The grade-school level
problems are relatively easy to solve for most humans but require multiple computation
steps performed in sequence, which still poses a challenge for most LLMs. [71]

The dataset is published on Hugging Face21 and contains almost 9,000 problem-
solution pairs, with 1,319 assigned to the test set. The answers are stored in the
form of a string containing the solution explained in natural language, with calculator
annotations enclosed in double “<>” brackets inserted into the plain-text formulas
describing elementary calculations. The final numerical answer to the problem is then
appended at the end of the solution, separated by a “####” token. An example
solution to a problem from the test set would look like this:

“Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24 = «48+24=72»72
clips altogether in April and May. #### 72”.

To better align the solution format with the outputs of current general-purpose LLMs
and ease the process of dataset translation, the data was reformated by removing the
calculator annotations but keeping the plain text formulas expressing the calculation
steps and separating the numerical solution from the step-by-step thought process. The
resulting dataset would thus have three fields per example, including “question” — the

20 https://huggingface.co/datasets/fewshot-goes-multilingual/cs_facebook-comments
21 https://huggingface.co/datasets/gsm8k
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word problem, “thoughts” — the thought process, and “answer” — the final numerical
answer stored as an integer. For the example above, the “thoughts” field would contain
the string

“Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April
and May.”,

and the “answer” field would hold the integer 72. During the automated translation of
the dataset, only the “question” and “thoughts” fields were processed by the translation
model, and the numerical answer remained unchanged. It took approximately 3.2
seconds to translate a single example using an Nvidia A40 GPU. The translated dataset
has been published on Hugging Face22.

In both language variants, the evaluated model is tasked to generate a solution to
the given word problem by explaining its thought process and then appending the final
numerical solution after the “####” token. This is similar to the original data format,
except the calculator annotations are missing. The few-shot examples selected from the
training set are formatted accordingly and include the same problems in both languages.
During the evaluation, only the final numerical answer is parsed from the model’s out-
put and compared to the ground truth value. Only an exact match of both values is
considered a success, and the final reported accuracy metric represents the percentage of
such successfully solved examples. To supplement this arguably strict evaluation strat-
egy, the mean absolute and relative errors of the computed values are also presented,
but their purpose is purely informative. Comparing the generated thought processes
using text-based metrics was also considered but not implemented. No sources that
would previously adopt this strategy with this dataset have been found.

5.4.9 Klokánek dataset

Matematický Klokan (Mathematical Kangaroo) is an international mathematics compe-
tition held annually and participated in by a majority of schools in the Czech Republic.
Participants are given a test consisting of challenging word problems with five possible
answers, only one of which is correct. There are three categories of problems in each
test, differing in problem difficulty and the number of points awarded. There are also
six variants of the test for participants in different age groups.

The Klokánek dataset, published on Hugging Face23 by Kydlíček et al. [11], contains
813 problems from the competition, all formulated in natural Czech language. The
problems are divided into six difficulty categories based on the target age groups. For
each problem, there are five answer options marked with letters A to E. Unlike in the
case of GSM8k, no step-by-step solutions are provided for the problems.

The evaluated models are tasked to output only the letter corresponding to the
selected answer. These are then compared with the references in order to compute the
models’ accuracy in selecting correct answers. These are reported separately for each
of the six difficulty categories, together with the final accuracy metric computed over
all examples.

I have attempted to replicate the chain-of-thought prompting approach from GSM8K
by asking the models to first explain their thought process and then append the final
answer. I also tried annotating the few-shot examples with step-by-step solutions. In
both cases, these changes rendered the models unable to follow the prescribed answer
format and needed to be reverted. This issue should be revisited in the future, as chain-

22 https://huggingface.co/datasets/CIIRC-NLP/gsm8k-cs
23 https://huggingface.co/datasets/hynky/klokan-qa
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of-thought prompting has the potential to significantly increase the models’ performance
in this task [116].

5.4.10 Mall.cz Product Reviews
The Mall.cz Product Reviews dataset is another work of Habernal et al. [9] focused on
the task of sentiment analysis. It gathers product reviews from a Czech e-commerce
site and uses the associated one-to-five-star rankings to assign ground truth labels
automatically. [9]

A label-balanced version of the dataset is available on Hugging Face24 and contains
30,000 total examples, with 3,000 assigned to the test set. Similarly to the Facebook
Comments dataset, the model is asked to generate an integer label in the range [−1, 1]
corresponding to the correct sentiment class. The few-shot examples are selected from
the training set, and the metrics reported include classification accuracy and macro-
averaged F1 score.

5.4.11 MMLU
Massive Multitask Language Understanding (MMLU), proposed by Hendrycks et al. [68]
in 2020, is one of the most widely used benchmarks when reporting the performance of
newly released foundational LLMs. This also makes it a popular choice when comparing
the capabilities of these models. It consists of 57 independent tasks, all formulated as
single-choice questions with four answer options. Each task contains between 100 and
1700 examples, and they collectively encompass a wide range of topics, covering multiple
science and technological disciplines, as well as humanities and social sciences.

MMLU is available on Hugging Face25 and contains over 14,000 examples in its test
set. There is also a separate development set dedicated to few-shot prompting, con-
taining 5 examples per topic. The dataset was translated into the Czech language
using the process described in Section 5.2. All the described adjustments, including
repetition penalty tuning, excluding math expressions, direct translation rules, and
post-translation correction of surname forms, were crucial to ensure satisfactory out-
comes in this case. Nevertheless, some examples still suffer from translation errors and
artifacts. These problems are most pronounced in highly technical tasks, such as the
“abstract_algebra” topic. The average translation time of one example was approxi-
mately 3 seconds, but several examples took up to 8 seconds to translate on a single
Nvidia A40. The translated dataset has been published on Hugging Face26.

During the evaluation, each task (topic) is processed separately in sequence. The
five few-shot examples from the development test dedicated to the specific task are
used to form the few-shot prompts, and the examples from the test set are used for the
performance assessment. The tasks are grouped into four categories as described in the
original publication [68]. These include Humanities, Social Sciences, STEM (Science,
Technology, Engineering, and Mathematics), and Other.

The “professional_law” task is deliberately excluded from the evaluation for two
reasons: It contains more than 1700 examples consisting of long descriptions of specific
legal cases and related questions, which makes it by far the most expensive task to
evaluate. The questions are also all specific to U.S. law, which makes them irrelevant to
the cultural and political context of the Czech language. To ensure direct comparability
of the results achieved in both the Czech and English versions of this dataset, the task
24 https://huggingface.co/datasets/fewshot-goes-multilingual/cs_mall-product-reviews
25 https://huggingface.co/datasets/cais/mmlu
26 https://huggingface.co/datasets/CIIRC-NLP/mmlu-cs
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is excluded from both language variants. This reduced the total size of the dataset to
12505 samples.

After each task’s completion, a dedicated accuracy metric is computed and logged.
These are then averaged to compute the aggregate accuracies in the four task categories,
and finally, all 56 individual task accuracies are averaged to form the overall benchmark
accuracy metric. In total, this benchmark produces 61 accuracy values that can be used
for a detailed comparison of models’ performance.

5.4.12 SNLI

The Stanford Natural Language Inference corpus (SNLI), originally published by Bow-
man et al. [64] in 2015, is a collection of 570,000 NLI examples consisting of fully
human-written texts. The authors utilized a pre-existing corpus of human-written
image captions and complemented them with new sets of hypotheses that were also
supplied by human annotators. [64]

The dataset is available on Hugging Face27 and consists of three subsets with a test
set containing 10,000 examples. The premise and hypothesis texts are very short and
use plain language, making them quite easy to translate automatically. Indeed, a Czech
translation is already available on Hugging Face28, published by the AIC, FEE CTU
Prague [7]. It follows the same structure as the original version and contains the same
number of examples. The numerical labels of the entailment and contradiction classes
are again switched as they were in the case of ANLI’s translation.

The evaluation process is analogical to the ANLI dataset. The model outputs the
numerical label of the expected entailment class, which is compared to the ground truth
value. The reported metrics are, again, classification accuracy and macro-averaged F1
score.

5.4.13 SQAD

Simple Question Answering Databases (SQAD) is a Czech reading comprehension
dataset originally proposed by Medved et al. [13] in 2014 and subsequently updated
up to version 3 [117]. The source texts were extracted from Wikipedia articles, and
questions were created using human annotations. Each question can have multiple pos-
sible answers in the form of direct excerpts from the source text, paraphrases, or simple
yes or no answers.

The original dataset is published on LINDAT29, but Czech-Bench uses a filtered
version that is available on Hugging Face30. It contains over 7,000 examples, with 843
assigned to the test set. Apart from the source text, question, and the set of accepted
answers, each example contains a short evidence text extracted from the source context,
the word index span of the extractable answer within the context, if applicable, and
additional metadata, including the full text of the source article and its URL.

During the evaluation, the model is instructed to generate the shortest possible an-
swer to a given question, taking the provided source text into account. Five samples
selected from the training set are used for few-shot prompting. When all examples are
processed, the SQuAD31 evaluation metric from the Hugging Face Evaluate library is
employed to assess the model’s performance. This metric, proposed by Rajpurkar et

27 https://huggingface.co/datasets/stanfordnlp/snli
28 https://huggingface.co/datasets/ctu-aic/snli_cs
29 http://hdl.handle.net/11234/1-3069
30 https://huggingface.co/datasets/fewshot-goes-multilingual/cs_squad-3.0
31 https://huggingface.co/spaces/evaluate-metric/squad
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al. [40], compares all generated answers with their respective ground truth answer sets,
computes the maximal exact match and unigram retrieval F1 scores for each example,
and then averages them over the whole dataset.

To compensate for the morphological richness of the Czech language, two steps of
morphological analysis are performed on both the generated and ground truth answers,
as proposed by Macková et al. [12]. First, all words are lemmatized using the Mor-
phodita32 morphological dictionary, and then the lemmas are replaced with roots of
their respective word-formation relation trees using the Derinet33 word formation net-
work [118–119]. After each step, a new set of evaluation metrics is computed. The
evaluation thus produces three pairs of exact match accuracies and unigram retrieval
F1 scores. The metrics computed at the end of the morphological analysis process are
proposed as final.

5.4.14 SQuAD

The Stanford Question Answering Dataset (SQuAD), originally published by Rajpurkar
et al. [40] in 2016, is a collection of more than 100,000 reading comprehension tasks. In
2018, it was further expanded with 50,000 questions, that cannot be answered based on
the contexts given [93]. This version, commonly referred to as SQuAD 2.0, allows for
further assessment of models’ honesty in admitting not knowing an answer to a given
question. The original paper also proposed using the exact match metric coupled with a
unigram retrieval F1 score to measure the performance of question-answering systems.
This F1 score is implemented identically to the ROUGE-1 metric variant, where the
generated answer is compared with each reference answer separately, and only the best
comparison score is considered for each example. [40].

A translation of this dataset into the Czech language was performed by Macková et al.
in 2020 [12]. They used an in-house machine translation system [120] to translate both
versions of SQuAD and published the results on LINDAT34. They also proposed to
enhance the evaluation process by performing morphological analysis on the compared
answer pairs, as already described in 5.4.13. The translated dataset only includes the
training and development subsets, as the original test set is not publicly available.
The training set includes 107,000 examples and the development set contains 10,845
questions.

Czech-Bench only utilizes the translated version of SQuAD 2.0 at the moment. The
inclusion of the original English version will be further considered, but given the al-
ready mentioned differences in the morphological richness of the Czech and English
languages, the comparability of the results obtained in both languages does not raise
high expectations, even when considering the applied morphological normalization. To
limit the evaluation costs, only the first 4,000 samples from the development set are
used. Five examples selected from the training set are integrated into the few-shot
prompt.

The formulation of the evaluation task is similar to the SQAD benchmark, but here,
the model is also allowed to signal its inability to answer the given question by out-
putting a single “-” token. The SQuAD v235 metric from the Hugging Face Evaluate
library is employed to compare the expected and generated answers. Apart from the
answer strings, this metric also requires the probabilities of the respective questions

32 https://ufal.mff.cuni.cz/morphodita
33 https://ufal.mff.cuni.cz/derinet
34 http://hdl.handle.net/11234/1-3249
35 https://huggingface.co/spaces/evaluate-metric/squad_v2
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having no answer. These are set to one if the model only returns the “-” token, and
otherwise, they are kept at zero. An empty answer is then represented with an empty
string to correspond with the reference answer formatting. Morphological analysis is
again employed to normalize the compared texts. As in the case of SQAD, one pair
of EM accuracy and unigram retrieval F1 score metrics is reported per each normal-
ization step. Apart from these six values, the report also includes the classification
accuracy and macro-averaged F1 score in the binary classification task of identifying
unanswerable questions.

5.4.15 Subj-CS
The Czech subjectivity dataset (Subj-CS), published by Přibáň et al. [14] in 2022, is
a collection of subjectivity classification tasks. The source texts were extracted from
movie reviews and plot descriptions gathered from the Czechoslovak Movie Database
(ČSFD). These were then manually annotated with binary labels distinguishing objec-
tive and subjective claims.

The dataset is available on Hugging Face36, containing 10,000 label-balanced exam-
ples, with 2,000 of them assigned to the test set. During the evaluation, the model
is provided with the source text and instructed to output either 0 if it considers the
text as subjective or 1 if it considers it to be objective. Five examples chosen from the
training set are used to form the few-shot prompt. The evaluation metrics reported are
classification accuracy and macro-averaged F1 score.

This dataset was also translated into English to provide another cross-lingual com-
parison opportunity. The translation was performed as described in Section 5.2, and the
resulting dataset was published on Hugging Face37. The evaluation process is analogous
to the original version, with matching few-shot examples.

5.4.16 TruthfulQA
TruthfulQA, proposed by Lin et al. [70] in 2021, is a popular benchmark dataset fo-
cused on assessing LLMs’ ability to refrain from spreading misconceptions and false
information, that often appear in online sources used as training corpora. It consists of
817 manually designed questions, all belonging to a single validation set.

The dataset is available on Hugging Face38 in two versions. The first version, intended
for human-evaluated full-text answer generation, provides the questions together with
exemplary sets of correct and incorrect answers. The second version, intended for
automatic evaluation, provides two sets of answers meant for single-choice and multi-
choice task formulations. The number of provided answers varies between examples, as
does the ratio of correct answers in the multi-choice answer set. The single-choice set
always contains only one correct answer. Both sets are sorted to include the correct
answers first.

Czech-Bench only uses the single-choice variant. When formulating the model’s task,
the answer options are shuffled using a reproducible random seed. Five examples are
used for few-shot prompting and excluded from the evaluation. The model is asked
to select the correct answer for a given question by outputting the answer’s number
and is not informed about the true nature of the task. The 5-shot evaluation setting
was chosen to correspond with the remaining benchmarks and to ensure the models
follow the desired output format. Even though TruthfulQA was specifically intended

36 https://huggingface.co/datasets/pauli31/czech-subjectivity-dataset
37 https://huggingface.co/datasets/CIIRC-NLP/czech-subjectivity-en
38 https://huggingface.co/datasets/truthful_qa
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for zero-shot evaluation, other publications often explore few-shot settings as well [70,
121, 83]. The reported accuracy metric represents the percentage of correctly answered
questions.

To assess the truthfulness of LLMs in the Czech language as well, the dataset was
translated using the techniques described in Section 5.2. Both the single-choice and
multi-choice answer sets were translated, while the full-text generation version of the
dataset was omitted. The translated dataset was published on Hugging Face39. The
evaluation procedure of the translated version mirrors the original, with few-shot ex-
amples selected to match.

5.5 Other considered datasets and future plans
The benchmarks already included in Czech-Bench cover a decent range of LLM com-
petencies, while the included adversarial datasets aim to probe their robustness. Tasks
dedicated to assessing their honesty and factuality are also present. Furthermore, the
inclusion of English benchmark versions allows for cross-lingual performance compar-
ison across 10 datasets. However, there is still an ever-growing selection of English
benchmarks targeted at specific model attributes that would be viable to translate into
Czech. There are also several more datasets already available in the Czech language that
have not yet been incorporated due to time constraints or their lower utility compared
to others. This section describes these datasets and benchmarks to complete the pic-
ture of today’s Czech LLM evaluation scene and to outline the path of the framework’s
future development.

5.5.1 WikiLingua
WikiLingua is a multilingual dataset focused on automatic text summarization, pro-
posed by Ladhak et al. [59] in 2020. It leverages tutorial articles from the WikiHow40

page, which include thorough explanations as well as one-sentence summaries of each
procedure step. By concatenating the respective description variants for all steps, the
full-length procedure descriptions, together with their summaries, were obtained. The
dataset is available on Hugging Face41 in 18 language variants. The Czech version
includes 2,520 article-summary pairs, and the English version has 58,000 examples.

WikiLingua is a prime candidate for integration into Czech-Bench but has not yet
been incorporated due to time constraints. To allow for a reasonable comparison of
the models’ Czech and English summarization capabilities, the English version of the
dataset will need to be filtered to contain only the same set of examples as the Czech ver-
sion. The language-agnostic implementation of the ROUGE metric proposed by Straka
et al. [44] can then be used for evaluation, together with the morphological analysis ap-
proach proposed by Macková et al. [12] for the Czech language. Whether this approach
leads to comparable results for both languages is a question worth investigating.

5.5.2 ČSFD Movie Reviews
ČSFD Movie Reviews, proposed by Habernal et al. [9], is a second dataset leveraging
the Czechoslovak Movie Database, this time focusing on the task of sentiment analysis.
The data are available on Hugging Face42, and instead of direct sentiment labels, the
39 https://huggingface.co/datasets/CIIRC-NLP/truthful_qa-cs
40 https://www.wikihow.com/
41 https://huggingface.co/datasets/wiki_lingua
42 https://huggingface.co/datasets/fewshot-goes-multilingual/cs_csfd-movie-reviews
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reviews are paired with rating values ranging from zero to five stars. Inferring the sen-
timent labels requires setting arbitrary thresholds on the rating values. In the original
paper, using two consecutive values per sentiment class yielded promising results [9].
Another task suitable for this dataset would be direct estimation of the rating value
from the review text, but that would likely prove too challenging for current LLMs. As
Czech-Bench already includes two original Czech datasets for sentiment analysis, the
integration of ČSFD Movie Reviews was delayed in favor of other benchmarks, but it
will likely be revisited in the future.

5.5.3 ÚFAL Bilingual Abstracts Corpus
This dataset, published by Rosa et al. [122], contains 3,079 parallel records of Czech
and English scientific paper abstracts gathered at the Institute of Formal and Applied
Linguistics, Charles University in Prague. These pairs of high-quality human-written
texts are suitable for the evaluation of machine translation capabilities. This dataset’s
integration into Czech-Bench will be considered in the future, as the utilization of
general-purpose models, such as ChatGPT, for machine translation seems to be on the
rise. An up-to-date version of the data is available on Hugging Face43.

5.5.4 WMT datasets
The annually held Conference on Machine Translation [61] is traditionally accompanied
by a competition in machine translation, evaluated using a newly created benchmark
dataset. These are then commonly publicly released after a certain period of time. As
the competition typically includes a translation task between the English and Czech lan-
guages, these datasets could also be utilized in Czech-Bench to evaluate the translation
capabilities of foundational LLMs.

5.5.5 SumeCzech
SumeCzech is an original Czech summarization dataset proposed by Straka et al. [44]
in 2018. It uses articles from Czech news sites as source texts and their first paragraphs
or headlines as ground truth summaries. As already described in the original paper,
this makes the task significantly biased in favor of extractive approaches, selecting the
first paragraph of a given text as its summary [44]. For copyright reasons, the dataset is
also not publicly available and needs to be downloaded from CommonCrawl44 using the
scripts45 provided by the authors. For these two reasons, SumeCzech is not considered
to be included in Czech-Bench, as WikiLingua also appears to be more suitable. Yet the
language-agnostic variant of the ROUGE metric, denoted as ROUGE𝑅𝐴𝑊, proposed
alongside this dataset is an important contribution to the field of multilingual LLM
evaluation [44].

5.5.6 CsFEVER
The CsFEVER dataset family, available on HuggingFace46, completes the collection
of Czech NLI datasets developed at the Artificial Intelligence Center at FEE CTU
Prague [7, 123]. They are based on the original FEVER and FEVER 2.0 datasets
proposed by Thorne et al. [124–125] in 2018 and 2019, respectively. The localization

43 https://huggingface.co/datasets/ufal/bilingual-abstracts-corpus
44 https://commoncrawl.org/
45 http://hdl.handle.net/11234/1-2615
46 https://huggingface.co/datasets/ctu-aic/csfever, https://huggingface.co/datasets/ctu-
aic/csfever_nli, https://huggingface.co/datasets/ctu-aic/csfever_v2
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process utilized cross-lingual alignment of Wikipedia articles to produce Czech premises
equivalent to the English originals, together with machine translation of the hypothe-
ses. As Czech-Bench already includes three NLI-focused benchmarks, one of them
composed fully of original Czech texts, the inclusion of the CsFever datasets has not
been considered beneficial at the current stage.

5.5.7 Further possible extensions
Some of the aforementioned planned inclusions aim to expand the range of tasks cov-
ered by Czech-Bench, with WikiLingua being the prime candidate offering the ability
to evaluate automatic summarization capabilities. However, no Czech datasets are cur-
rently present that would focus on the safety perspective on LLM evaluation. Obtaining
these datasets by simply translating available English variants would be infeasible or
counterproductive in most cases. Especially in the case of bias-focused datasets, which
are often tailored to cultural and societal characteristics of the U.S. Furthermore, the
datasets focused on gender ambiguity of job titles would have close to no use in Czech,
as most job titles have unique forms for each gender in this language. Developing simi-
lar datasets for the Czech language will, therefore, require wider cooperation of experts
in multiple domains, including social sciences.

Including more tasks similar to the AGREE dataset, focused specifically on linguistic
competence in the Czech language, would also be of great utility. Creating such datasets
will most likely have to rely on the expertise of linguists and other professionals and
will require wider collaboration. It could also be beneficial to employ the EVALD47

language quality evaluation tool by Rysová et al. [126] in tandem with a simple dataset
of prompts for essay generation to evaluate the cohesion of LLM-generated Czech texts.

There are currently no plans to include code generation tasks in Czech-Bench, as
there is very little reason to believe there would be significant demand for models
facilitating code generation with prompting in languages other than English.

47 https://ufal.mff.cuni.cz/evald
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Chapter 6
Evaluation Experiments

To explore the possibilities potential Czech adopters of LLM-based systems currently
have, I decided to perform a full evaluation of available multilingual open-source models,
together with the currently most economically viable commercial alternatives. The
following sections describe the individual evaluation experiments that were performed.

6.1 Baseline commercial models

For a long time, OpenAI’s models, accessible through their paid API, were the most
sensible option for developers aiming to provide their customers with a satisfactory
experience in the Czech language, while not having to spend resources developing or
fine-tuning a custom model. Currently, OpenAI’s most financially attractive offering is
the GPT-3.5 Turbo model (version 0125), offered at the cost of $0.50 per million input
tokens and $1.50 per million output tokens1. Only recently have other providers started
to make their APIs available in this region, with Anthropic entering the market last
autumn. Their currently cheapest offered option is the Claude 3 Haiku model (version
20240307), charging $0.25 per million input tokens and $1.25 per million output tokens2.
This makes it a strong competitor to OpenAI’s offerings, especially for workloads that
do not require generating long outputs.

The performance these two models achieve on all Benchmarks included in Czech-
Bench is recorded in Table 6.1. The temperature parameter was set to 0 during both
evaluations. It is, however, generally impossible to guarantee fully reproducible out-
puts with these models. In classification tasks, the macro-averaged F1 score is reported
alongside the standard accuracy metric. For the SQAD and SQuAD generational
question-answering benchmarks, the exact match accuracy and unigram retrieval F1
score metrics are utilized.

In the presented results, Claude 3 Haiku shows significantly superior performance
in most Czech Benchmarks, as well as all natural language inference tasks in both
languages. GPT-3.5 Turbo takes the lead in a minority of mostly English benchmarks.
Its winning margins are small in most cases, with a clear exception in the SQAD
dataset, where it apparently managed to better resemble the reference answers. Claude
also appears to provide more factual answers than its competitor in both languages,
based on the scores achieved in the TruthfulQA benchmark. Given its generally superior
performance and favorable pricing, it can be inferred that the Claude 3 Haiku model is
currently the better option for developers willing to economically integrate an LLM API
into their Czech applications. The performance of these models in Czech benchmarks
is further graphically compared in Figure 6.1, together with the Llama 3 8B model
discussed shortly.

1 https://openai.com/api/pricing/
2 https://www.anthropic.com/api
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Benchmark Metric GPT-3.5 turbo Claude 3 Haiku
AGREE Acc [%] 46.7 65.7

ANLI Acc [%] 44.7 51.5
F1 [%] 41.9 50.8

ANLI EN Acc [%] 44.3 55.3
F1 [%] 40.6 54.2

ARC Challenge Acc [%] 73.1 76.8

ARC Challenge EN Acc [%] 82.9 77.6
ARC Easy Acc [%] 85.8 85.3
ARC Easy EN Acc [%] 93.1 89.1
Belebele Acc [%] 80.3 88.2

Belebele EN Acc [%] 87.0 91.0

CTKFacts Acc [%] 61.8 69.6
F1 [%] 47.7 62.0

CTKFacts EN Acc [%] 67.6 68.1
F1 [%] 63.2 62.2

Czech News Acc [%] 78.9 81.3
F1 [%] 78.5 81.3

Facebook Comments Acc [%] 71.5 75.8
F1 [%] 69.0 74.1

GSM8K Acc [%] 64.2 78.6

GSM8K EN Acc [%] 83.1 89.0

Klokánek Acc [%] 29.3 24.5
Mall Reviews Acc [%] 59.8 57.7

F1 [%] 55.4 55.2
MMLU Acc [%] 58.0 67.3

MMLU EN Acc [%] 64.9 73.0

SNLI Acc [%] 61.8 71.7
F1 [%] 51.5 70.5

SNLI EN Acc [%] 60.6 72.7
F1 [%] 43.3 53.8

SQAD EM Acc [%] 66.2 59.8
BoW F1 [%] 83.5 76.3

SQuAD(Generation) EM Acc [%] 37.3 36.3
BoW F1 [%] 43.0 44.7

SQuAD (No-Answer Detection) Acc [%] 52.4 60.3
F1 [%] 44.2 56.4

Subjectivity Acc [%] 80.2 81.5
F1 [%] 80.2 81.2

Subjectivity EN Acc [%] 86.8 86.6
F1 [%] 86.8 86.6

TruthfulQA Acc [%] 53.5 65.8

TruthfulQA EN Acc [%] 58.5 70.8

Table 6.1. Performance achieved on all Czech-Bench tasks by GPT-3.5 Turbo and Claude 3
Haiku. EM ACC represents the exact match accuracy metric, and BoW F1 is the unigram

retrieval F1 score associated with the SQuAD dataset.
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6.2 Multilingual open-source models

The selection of open-source models offering at least minimal support for the Czech
language is fairly limited. After researching and testing out a plethora of models,
I finally performed a full evaluation of 5 candidate LLMs. FLAN-T5 is a family of
models published by Google [127]. It is based on the T5 encoder-decoder architecture
and includes 5 variants ranging from 77 million to 11.3 billion parameters. Here, the
FLAN-T5-XL and FLAN-T5-XXL variants will be evaluated with 2.9 billion and 11.3
billion parameters, respectively. Aya 101 is a new multilingual model proposed by
Cohere For AI [128]. It employs a similar T5-based architecture as FLAN-T5, but
utilizes a newly created multilingual instruction tuning dataset [129]. It is available in
a single variant with 12.9 billion parameters. The mT0-XXL-MT is another T5-based
multilingual model published by Muennighoff et al. [130]. It uses the same architecture
as Aya 101 but was not trained on the same data. The final evaluated model is the
recently released Llama 3 from Meta3, which is the only included representative of
decoder-only LLMs. In particular, the Llama 3 8B Instruct model is evaluated. I also
tested the pre-trained Llama 3 8B model, and when limiting its output length to a
single token, it managed to reach comparable results with the instruction-tuned variant
in most answer-selection tasks. It was, however, not suitable for open-end generation,
as it lacked any self-stopping mechanism. There is also generally no benefit in using
the pre-trained model instead of the instruction-tuned variant, so it is left out of the
presented results. Other models, most notably the Mistral 7B Instruct and Falcon 11B,
were also considered, but they failed to follow the prescribed answer format or achieved
unsatisfactory results in most Czech benchmarks.

All evaluated models were loaded directly from Hugging Face, using 16-bit floating
point precision. The auto_hf model loader provided in Czech-Bench was used to load
most of the models, while Llama 3 required the creation of its own loader compatible
with its specific prompting format. The evaluations were run on the internal CIIRC
cluster4 and the Karolina cluster accessed via the IT4Innovations initiative5. A single
Nvidia A40 (45GB VRAM) or Nvidia A100 (40GB VRAM) sufficed for all evaluations,
while the inference times varied greatly depending on the evaluated models and uti-
lized hardware. Generally, a single model could be evaluated in under 12 hours on all
currently included benchmarks.

The evaluation results are presented in Table 6.2. It is apparent that Llama 3 achieves
supreme performance in the majority of benchmarks, while the remaining models occa-
sionally outperform it in singleton tasks. All the open-source models, however, occasion-
ally struggled to generate output in the pre-defined format, leading to parsing errors.
These formats were specified in the evaluation prompts and demonstrated through the
few-shot examples identically for all models, including the commercial ones. Some mod-
els have, however, proven to be more capable of adhering to these guidelines better than
others. If more than 20% of all answers in a test could not be correctly parsed, the
resulting score was marked with the “∗” symbol, while tests with more than 50% of
unparsable answers were considered invalid and marked with the “-” symbol.

3 https://llama.meta.com/llama3/
4 https://cluster.ciirc.cvut.cz/
5 https://www.it4i.cz/en
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Benchmark Metric FXXL FXL Aya mT0 Lm3

AGREE Acc [%] 40.8 39.7 33.25* - 40.8

ANLI Acc [%] 28.8 32.8 30.0 34.4 43.0
F1 [%] 24.5 13.2 24.1 20.9 39.2

ANLI EN Acc [%] 34.4 29.5 32.1 29.9 46.8
F1 [%] 25.3 25.0 18.9 17.9 38.8

ARC Challenge Acc [%] 31.7 28.8 54.9 50.7 64.3

ARC Challenge EN Acc [%] 78.0 73.6 58.7 37.9 78.5

ARC Easy Acc [%] 43.3 39.3 72.4 64.9 79.4

ARC Easy EN Acc [%] 88.7 86.0 78.5 56.8 91.4

Belebele Acc [%] 46.7 36.0 78.2 69.23* 76.5
Belebele EN Acc [%] 94.5 92.9 79.0 39.58* 83.4
CTKFacts Acc [%] 31.1 20.6 35.1 45.5 61.7

F1 [%] 23.1 11.4 34.4 36.0 51.6

CTKFacts EN Acc [%] 54.8 44.8 24.6 40.7 69.0
F1 [%] 54.1 43.2 20.4 30.1 65.0

Czech News Acc [%] 27.6 - 77.2 66.8 71.6
F1 [%] 17.2 - 77.7 66.7 70.7

Facebook Comments Acc [%] 60.9 60.0 72.1 52.7 66.8
F1 [%] 59.5 60.6 71.0 32.9 64.1

GSM8K Acc [%] - - 6.9 - 67.07*

GSM8K EN Acc [%] 18.1 11.8 8.2 - -
Klokánek Acc [%] 18.7 16.2 19.1 20.1 21.8

Mall Reviews Acc [%] 45.8 49.9 46.3 57.4 59.5
F1 [%] 41.5 50.5 24.3 17.4 57.3

MMLU Acc [%] - 23.5 39.98* - 46.8

MMLU EN Acc [%] - 47.1 41.36* - 53.5

SNLI Acc [%] 47.3 32.7 59.0 36.8 60.9
F1 [%] 45.9 17.3 57.3 26.2 58.7

SNLI EN Acc [%] 46.7 57.8 32.1 42.6 65.5
F1 [%] 31.2 37.8 12.4 29.2 47.4

SQAD EM Acc [%] 35.0 37.1 56.9 56.6 67.6
BoW F1 [%] 48.2 50.9 64.5 67.3 82.5

SQuAD(Generation) EM Acc [%] 13.2 14.2 46.1 55.3 36.6
Bow F1 [%] 21.5 22.3 51.4 56.2 44.5

SQuAD (No-Answer Detection) Acc [%] 45.7 45.6 49.6 57.4 56.8
F1 [%] 31.5 31.3 39.1 50.3 51.3

Subjectivity Acc [%] 59.4 50.5 72.8 50.1 78.3
F1 [%] 53.6 4.9 72.7 11.3 77.6

Subjectivity EN Acc [%] 79.3 70.5 70.6 27.1 87.1
F1 [%] 78.9 70.2 70.3 8.5 87.1

TruthfulQA Acc [%] 21.1 22.8 26.72* 36.9 41.0

TruthfulQA EN Acc [%] 35.0 32.0 31.3 37.92* 41.6

Table 6.2. Performance achieved on all Czech-Bench tasks by Flan-T5-XXL (FXXL), Flan-
T5-XL (FXL), Aya-101 (Aya), mT0-XXL-MT (mT0), and Llama 3 8B Instruct (Lm3).
Values marked with ∗ come from tests where less than 80% of answers could be correctly

parsed. Empty values (-) represent tests with less than 50% parsable answers.

48



. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Closer comparison of best-performing models

6.3 Closer comparison of best-performing models
Figure 6.1 captures a graphical comparison of the performance achieved in all the Czech
benchmarks by GPT-3.5 Turbo, Claude 3 Haiku, and Llama 3 8B. It illustrates how well
the open-source Llama 3 model actually compares to the baseline commercial models.
It performs competitively in many tasks, and in SQAD, it even manages to take a
close lead. Its ability to extract concise answers from the source texts likely gives it an
advantage over the unnecessarily verbose remaining models. Despite beating GPT-3.5
Turbo in the GSM8K benchmark, it needs to be noted that Llama 3 struggled to follow
the correct answer format in this task, and only less than 80% examples were considered
when computing its score.

Given the model’s overall accessibility and reasonable parameter count, it could be
a tempting alternative for developers willing to host their own LLM infrastructure.
With proper fine-tuning, it even has the potential to outperform its arguably more
costly alternatives in the remaining Czech tasks. However, there is significant room for
improvement in the factuality scores it achieved in both languages.

When comparing the obtained results in English benchmark variants with the values
originally reported for the individual models6, there are noticeable differences in abso-
lute values, caused likely by differences in prompting formats and numbers of few-shot
examples employed. This is a major issue plaguing the LLM-focused scientific commu-
nity, as the reported performance values are heavily dependent on specific evaluation
conditions. This is the main reason Czech-Bench offers both language variants for
relevant benchmarks, allowing for fair cross-lingual performance comparison in equal
conditions.

It can also be seen that the Klokánek task in its current state proves too difficult
for the evaluated models, which barely manage to exceed the 20% random baseline. It
is, therefore, desirable to revisit the idea of introducing chain-of-thought prompting for
this benchmark, as discussed in 5.4.9.

6 https://www.anthropic.com/news/claude-3-family, https://llama.meta.com/llama3/
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Figure 6.1. Performance comparison between GPT-3.5 Turbo, Claude 3 Haiku, and
Llama 3 8B Instruct on the complete set of Czech evaluation tasks.
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6.4 Cross-lingual performance comparisons
In order to assess the performance disparities these models encounter in the tasks with
Czech and English variants, I created a set of dedicated comparison graphs. They
are captured in Figures 6.2, 6.3, and 6.4 for GPT-3.5 Turbo, Claude 3 Haiku, and
Llama 3 8B, respectively. It is apparent that Claude 3 Haiku achieves the lowest cross-
lingual performance disparity, with an average relative performance difference of 6.3%.
GPT-3.5 Turbo comes second with an average relative difference of 10%, and Llama
3 is not far behind with 10.9%. Unsurprisingly, the models usually achieve higher
performance in the English benchmark variants. This holds even for the CTKFacts
and Subjectivity tasks, which were translated from Czech into English. It can thus
be inferred that the main cause of the performance disparities is the models’ inherent
preference for the English language rather than dataset translation errors.

These performance differences are, however, much less pronounced in benchmarks
focusing on natural language inference. We can even notice the Czech variants report-
ing higher scores in several instances. It seems that the NLI task is inherently difficult
enough to render the language disparities insignificant. It is also possible that the auto-
matic translations preserve the entailment relations between premises and hypotheses
well enough to not affect the performance.

Figure 6.2. Graphical comparison of the performance GPT-3.5 Turbo achieves in equiva-
lent Czech and English benchmarks.
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Figure 6.3. Graphical comparison of the performance Claude 3 Haiku achieves in equivalent
Czech and English benchmarks.
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Figure 6.4. Graphical comparison of the performance Llama 3 8B Instruct achieves in
equivalent Czech and English benchmarks.
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6.5 High-end commercial models
Even though we have previously focused on the entry-level variants of commercial LLMs,
it is worth noting that there are also more powerful variants on offer for higher prices.
OpenAI’s current GPT-4 Turbo model charges $10 per million input tokens and $30
per million output tokens, 20 times the price of GPT-3.5 Turbo. GPT-4o, their newest
offering announced in May 2024, is available for half the price of GPT-4 Turbo7. An-
thropic’s Claude 3 Sonnet charges $3 per million input tokens and $15 per million
output tokens, while its most powerful Claude 3 Opus model is offered for $15 per
million input tokens and $75 per million output tokens8.

While the full evaluation of GPT-3.5 Turbo and Claude 3 Haiku cost altogether just
under $50, repeating the same for the remaining models would come at a much higher
cost (estimated evaluation costs are provided in Appendix B). In order to provide at
least a limited overview of the performance these models achieve, I decided to compare
them using the AGREE dataset. With its focus on a core Czech grammar concept, it
offers a good insight into the models’ competence in this language.

This comparison is captured in Figure 6.5. It shows expectable results on OpenAI’s
side, with the cheapest model achieving the lowest score, while the newest offering
performs the best despite being cheaper than its predecessor. We see that Claude
3 Opus, Anthropic’s most expensive option, scores the highest, but there is also a
surprising disparity between the performance achieved by Claude 3 Haiku and Claude
3 Sonnet. While Sonnet charges more than 10 times the price of its cheaper alternative,
it fails to deliver superior performance.

Figure 6.5. Performance comparison of commercial models on the AGREE Czech gram-
mar dataset. The evaluated models are GPT-3.5 Turbo (0125), GPT-4 Turbo (2024-04-
09), GPT-4o (2024-05-13), Claude 3 Haiku (20240307), Claude 3 Sonnet (20240229), and

Claude 3 Opus (20240229).

7 https://openai.com/api/pricing/
8 https://www.anthropic.com/api
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To further explore this phenomenon, I evaluated Claude 3 Sonnet on four additional
Czech datasets and compared its results to Claude 3 Haiku. This comparison is depicted
in Figure 6.6. It seems that Sonnet manages to achieve higher scores in classification
tasks, while it struggles to beat Haiku in open-form text generation and Czech grammar
competence. Overall, it is clear that in the Czech language, Sonnet does not offer any
substantial performance gains that would justify its higher price compared to its cheaper
counterpart.

Figure 6.6. Performance comparison of the Claude 3 Haiku and Sonnet models on selected
Czech datasets.

6.6 ChatGPT’s performance evolution
I also tried to verify my subjective observation regarding a gradual degradation of
ChatGPT’s performance in the Czech language. As OpenAI kept introducing revised
and more efficient versions of the baseline model, it seemed as if the quality of its
responses deteriorated. Several of my peers also confirmed they noticed the same issue.
This impression could have been caused by an actual decline in performance, likely
induced by insufficient monitoring of multilingual performance during model updates,
or by our gradually increasing expectations and depleting enthusiasm.

To inspect this issue, I evaluated 3 different versions of GPT-3.5 Turbo released in
June 2023, November 2023, and January 2024 on 5 selected Czech datasets, which were
previously used for the comparison of Claude 3 models. This comparison is captured
in Figure 6.7. It is apparent that the performance has not remained consistent across
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model releases, with most benchmarks witnessing a dip in performance when comparing
the versions from June 2023 and January 2024. The differences are, however, not
significant enough to justify the perceived performance drop and rule out the described
subjective factors. To obtain more informative results, it will likely be required to
implement the language coherence test using the EVALD framework discussed in 5.5.7.

Figure 6.7. Performance achieved by different versions of GPT-3.5 Turbo on selected Czech
datasets. Version 0613 was released on 13.6.2023 (23/06/13), version 1106 was released on
6.11.2023 (23/11/06), and the latest version 0125 is available since 25.1.2024 (24/01/25).

56



Chapter 7
Conclusion

The thesis has provided an introduction to the field of large language model evaluation,
starting with an overview of language model architectures, including n-gram models,
recurrent neural networks, and transformer-based LLMs. It further focused on dis-
tinct evaluation approaches, contrasting human evaluation with techniques utilizing
LLM judges and automated metrics. These metrics were discussed in further detail in
the context of individual task categories, including language modeling, text and code
generation, classification, and answer selection.

A taxonomy of evaluation aspects and perspectives was proposed in Chapter 4, sepa-
rating the evaluation factors into three categories, including competence, reliability, and
safety. This refined structure was based on the individual distinct approaches proposed
by the authors of contemporary surveys on the given topic [1–3]. The individual under-
lying factors were then discussed, together with their associated evaluation techniques
and available datasets.

The main outcome of the thesis is the introduction of the Czech-Bench evaluation
framework, focused on facilitating comprehensive assessments of LLMs’ performance
in the Czech language, with options to directly compare results achieved in equivalent
Czech and English benchmark variants. Czech-Bench is publically available on Git-
Lab1 and currently offers 17 Czech benchmarks complemented by 10 of their English
equivalents. While most of the utilized datasets were obtained from public sources, 6 of
them were newly created via automated machine translation, as discussed in 5.2. The
ARC, MMLU, GSM8K, and TruthfulQA datasets were translated from English into
Czech, while CTKFacts and Subj-CS were translated reversely. This allowed for unique
cross-lingual evaluation insights, assessing the influence of dataset degradation caused
by the automatic translation process in contrast to the inherent language competence
discrepancies of the evaluated models.

Several evaluation experiments were performed using the presented framework. A
comprehensive performance comparison between two entry-level commercial models,
GPT-3.5 Turbo and Claude 3 Haiku, was performed, concluding that the latter provides
significantly better performance on Czech benchmarks while being offered at a lower
price. A limited evaluation of higher-end commercial offerings has shown that the mid-
tier Claude 3 Sonnet model offers negligible performance gains over its cheaper variant,
while the most expensive available model, Claude 3 Opus, performs the best. The
recently released GPT-4o model also outperforms its more expensive predecessor, the
GPT-4 Turbo.

Five open-source multilingual LLMs were also evaluated, witnessing a decisive dom-
inance of the recently released Llama 3 8B Instruct. This model’s performance is
directly comparable to the entry-level commercial options in many Czech benchmarks,
as demonstrated in Figure 6.1. This signals interesting possibilities in fine-tuning the
model to further improve its performance in the Czech language, potentially even over-
coming its commercial counterparts.
1 https://gitlab.com/jirkoada/czech-bench
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The cross-lingual performance comparisons presented in Figures 6.2, 6.3, and 6.4

have shown average relative performance differences between the Czech and English
languages reaching up to 11%. The Claude 3 Haiku model has proven the most mul-
tilingually consistent with only a 6.3% performance discrepancy. In most cases, the
evaluated models achieved better performance in the English benchmark variants. As
this held true even for the original Czech datasets translated into English, it can be
concluded that the LLMs’ inherent preference for the English language comfortably
outweighs the negative impacts of automatic dataset translation on evaluation perfor-
mance.

During this spring, other Czech LLM evaluation efforts have emerged, with the Czech
LLM Consortium2 planning to release their evaluation framework in the upcoming
months. Their work is based on Language Model Evaluation Harness3 and focuses
heavily on evaluating open-source models, integrating support for model calibration
evaluations (discussed in 4.3.4), which are not compatible with current commercial
APIs. Our teams are already in contact, and we are currently working on integrating
both frameworks as closely as possible. Even though they are designed with different
priorities, which are not fully compatible, we aim to offer them as two alternatives
serving different purposes while providing a similar user experience. We have also
begun to combine our diverse portfolios of datasets.

Czech-Bench is thus going to become part of a larger project with more ambitious
outlooks, even though its technical form may need to change in the process. In the
meantime, it can be used in its current state to assess newly released models and aid
in the efforts of researchers aiming to train dedicated Czech LLMs.

2 https://huggingface.co/CZLC
3 https://github.com/EleutherAI/lm-evaluation-harness
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Appendix A
Abbreviations

AI . Artificial Intelligence
AIC . Artificial Intelligence Center
API . Application Programming Interface
AST . Abstract Syntax Tree
BoW . Bag of Words
CIIRC . Czech Institute of Informatics, Robotics and Cybernetics
CTU . Czech Technical University
ČSFD . Česko-Slovenská filmová databáze (Czechoslovak Movie Database)
ČTK . Česká tisková kancelář (Czech News Agency)
ECE . Expected Calibration Error
EM . Exact Match
FEE . Faculty of Electrical Engineering
GPU . Graphics Processing Unit
IMDb . Internet Movie Database
LLM . Large Language Model
LSTM . Long Short-Term Memory
MT . Machine Translation
NLI . Natural Language Inference
NLP . Natural Language Processing
NNLM . Neural Network Language Model
PDG . Program Dependence Graph
PDR . Performance Drop Rate
POS . Part of Speech
RAG . Retrieval-Augmented Generation
RLHF . Reinforcement Learning from Human Feedback
RNN . Recurrent Neural Network
RNNLM . Recurrent Neural Network Language Model
SOTA . State of the Art
STEM . Science, Technology, Engineering, and Mathematics
URL . Uniform Resource Locator
VRAM . Video Random-Access Memory
WMT . Workshop on Machine Translation
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Appendix B
Evaluation cost estimates

Table B.1 includes the estimated evaluation costs of all benchmarks currently included
in Czech-Bench. The estimates were computed by iterating over the datasets, generat-
ing the evaluation prompts, and counting their included tokens. For the GPT models,
the official tiktoken4 tokenizer was used to obtain the token counts. For the Claude 3
models, an unofficial tokenizer from Hugging Face5 was utilized. Only the input token
counts were considered in the computation, and output tokens were ignored. In the
case of GPT, the estimates have proven to be slightly optimistic, while evaluations of
Claude 3 turned out to be less expensive than predicted.

4 https://github.com/openai/tiktoken
5 https://huggingface.co/Xenova/claude-tokenizer
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cost [$]
GPT- Claude 3

Benchmark 3.5 Turbo 4 Turbo 4o Haiku Sonet Opus

AGREE 0.19 3.84 1.92 0.11 1.27 6.34
ANLI 0.55 10.94 5.47 0.30 3.61 18.03
ANLI EN 0.32 6.30 3.15 0.17 2.05 10.24
ARC Challenge 0.52 10.48 5.24 0.29 3.51 17.54
ARC Challenge EN 0.26 5.18 2.59 0.14 1.72 8.61
ARC Easy 1.04 20.81 10.41 0.58 6.97 34.84
ARC Easy EN 0.43 8.64 4.32 0.25 2.95 14.75
Belebele 0.97 19.46 9.73 0.52 6.30 31.49
Belebele EN 0.50 9.98 4.99 0.26 3.11 15.54
CTKFacts 0.46 9.11 4.56 0.24 2.93 14.63
CTKFacts EN 0.26 5.17 2.59 0.13 1.61 8.07
Czech News 0.61 12.14 6.07 0.33 3.95 19.74
Facebook Comments 0.16 3.24 1.62 0.09 1.08 5.41
GSM8K 0.82 16.30 8.15 0.42 5.02 25.11
GSM8K EN 0.48 9.63 4.82 0.24 2.84 14.20
Klokánek 0.36 7.29 3.65 0.19 2.27 11.34
Mall Reviews 0.87 17.36 8.68 0.48 5.77 28.83
MMLU 7.65 153.03 76.52 4.24 50.84 254.21
MMLU EN 3.94 78.80 39.40 2.10 25.21 126.07
SNLI 2.33 46.50 23.25 1.31 15.69 78.44
SNLI EN 1.26 25.27 12.64 0.73 8.73 43.65
SQAD 1.03 20.57 10.29 0.56 6.71 33.54
SQuAD 3.83 76.68 38.34 2.10 25.20 126.01
Subjectivity 0.46 9.23 4.62 0.26 3.13 15.63
Subjectivity EN 0.23 4.50 2.25 0.13 1.52 7.61
TruthfulQA 0.48 9.65 4.83 0.27 3.23 16.16
TruthfulQA EN 0.24 4.72 2.36 0.13 1.59 7.97
Total 30.24 604.82 302.41 16.57 198.81 994.00

Table B.1. Estimated evaluation costs per benchmark.
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