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Abstract

In recent years, multi-robot systems have
received significant attention due to their
potential to solve complex problems in var-
ious fields, including intelligence, surveil-
lance and logistics. Reinforcement learn-
ing (RL) has emerged as a promising ap-
proach for teaching robots to effectively
navigate and cooperate in dynamic envi-
ronments. In this study, we explore the
application of RL techniques to enable
autonomous navigation of multiple robots
while avoiding collisions and efficiently ex-
ploring the environment.

Keywords: multi robot navigation,
reinforcement learning, neural networks

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.

Abstrakt

V posledních letech se multirobotním sys-
témům dostává značné pozornosti kvůli
jejich potenciálu řešit složité problémy
v různých oblastech, včetně zpravodaj-
ství, sledování a logistiky. Posílení učení
(RL) se ukázalo jako slibný přístup pro
výuku robotů, jak efektivně navigovat a
spolupracovat v dynamických prostředích.
V této studii zkoumáme aplikaci technik
RL, abychom umožnili autonomní navi-
gaci více robotů a zároveň zabránili koli-
zím a efektivně prozkoumali prostředí.

Klíčová slova: navigace s více roboty,
posilovací učení, neuronové sítě

Překlad názvu: Navigace více robotů s
využitím posilovaného učení
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Chapter 1

Introduction

Multi-robot navigation stands as a significant challenge within the field of
mobile robotics. The task entails guiding robots to their respective goals
while concurrently avoiding collisions with obstacles and other robots. For
example, navigation of robots through a warehouse to sort goods. Amazon
Robotics [12] uses a fleet of autonomous mobile robots (AMRs) to transport
items in its fulfillment centers. Another field where multi-robot navigation is
used is agriculture, where robots are used to automate tasks such as planting,
watering, and harvesting crops. An example is Blue River Technology [11].
By using multi-robot navigation, Blue River Technology (John Deere) can
automate the process of applying herbicides to weeds, reducing the need
for manual labor and minimizing the use of chemicals. This improves the
efficiency of farming operations, reduces costs, and helps to protect the
environment. This work presents two types of robots, Circle which is a round
robot like Turtlebot and Car-Like which represents a car [more in Chapter 3].

There are two primary approaches to address this challenge: centralized and
decentralized methods. In the centralized approach, all robots are controlled
by a single overarching system. However, this approach encounters scalability
issues, restricting robot movement to predetermined areas. Additionally,
reliable communication between the robots and the central system becomes
imperative.

In contrast, the decentralized approach, which is the focus of this paper,
circumvents these issues. It allows robots to operate independently of one
another. The robots get information about the environment, in this case,
mostly from sensors. Sensors are used because they allow you to determine
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1. Introduction .....................................

w1

w2

w3

w4

input output

hidden layer

Figure 1.1: Simple Neural Network, where weights θ = [w1, w2, w3, w4] using
which output will be calculated, input in our case is observation, output is an
action.

distances to objects, which allows the robot to make decisions based on the
data received from the sensor, one of the most popular sensors is LIDAR.

LIDAR (Light Detection and Ranging) sensors are remote sensing devices
that use laser light to measure distances with high accuracy. LIDAR sensors
are used in various applications, including autonomous vehicles, robotics,
terrain mapping, forestry, agriculture, and environmental monitoring, due
to their ability to provide highly accurate 3D measurements of objects and
environments.

Our proposed solution involves employing Deep Reinforcement Learning
algorithm to train our policy. In our case, policy means a neural network
[Figure 1.1] that will take actions based on observations. Neural networks,
roughly speaking, are functions with a number of configurable parameters
called weights. Depending on these weights, our policy will return certain
actions; accordingly, by training a policy we mean iterative updating of the
weights in the neural network. The weights are updated by optimization
algorithms called optimizers, which are also described in this work.

These policies get observations from the environment [Figure 1.2], in our
case consisting of static obstacles and other agents, most of the literature
uses the word agent, in this work robot and agent mean the same thing.
This makes our environment dynamic, which means that for each iteration,
the position of not only one robot changes, but also the rest. This adds
complexity to training, since it is necessary to take into account the movement
of other agents, to solve such problems people have memory, but modern
architectures of neutron networks are fedforward, which means that they have
no such thing as memory, this problem is solved in this work in the same
way as in [2]. Each robot is assigned a distinct goal to achieve and possesses
its own set of observations. These observations include data from LIDAR
sensors in the form of laser readings, as well as relative directional vectors
to the goal and the robot’s orientation. This enables each robot to operate

4



......................................1. Introduction

autonomously and make informed navigation decisions.

Reinforcement learning (RL) is a type of machine learning paradigm where
an agent learns to make decisions by interacting with an environment. The
agent learns to achieve a goal by maximizing cumulative rewards obtained
through its actions. The agent’s objective is to learn a policy π(s) that maps
states (s) to actions (a) in order to maximize the cumulative reward (R) it
receives over time:

π(s) → a

Where:

. π(s) is the policy that maps states to actions.. s represents the current state of the environment.. a represents the action chosen by the policy π in state s.. R is the cumulative reward the agent receives over time.

In RL, the agent explores the environment by taking actions and receives
feedback in the form of rewards or penalties. Based on this feedback, the
agent updates its strategy, aiming to maximize the total reward it receives
over time. So in this work the following elements of Reinforcement learning
were implemented:

. 2D Environment [Chapter 3] with two kind of agents, where we determine
the parameters and kinematics of agents from the target and the collision
between agents and obstacles. the entire environment was written in
Python, all calculations were performed using the Numpy library created
for working with vectors, the graphical part was made using the PyGame
library,. Reward system [Chapter 4] that will evaluate the taken action in each
iteration, we receive information for assessment from the environment..The neural network [Chapter 5] that will represent our policy, it was
implemented using the PyTorch library,

5



1. Introduction .....................................

agent 1

agent 2goal 2

goal 1

Figure 1.2: Example of an environment with two agents, where the black zones
are obstacles, the green circles are the agents, the red circles are their goals,
and the blue circles show the possible trajectories of the agents’ movements to
achieve the goals.

.A learning algorithm [Chapter 5] that will determine how we will train
the neural network, it also was implemented using the PyTorch library.
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Chapter 2

Related work

In recent years, multi-robot navigation has attracted significant attention due
to its applications in various fields such as surveillance, search and rescue,
and warehouse automation. Using reinforcement learning (RL) to coordinate
multiple robots in complex environments has emerged as a promising ap-
proach to solve problems associated with decentralized decision making and
coordination. In this section, we review previous studies that have studied
multi-robot navigation using RL methods.

Mnih and his colleagues made a significant advancement in the realm of
Deep Reinforcement Learning (DRL) through the development of Deep Q
Learning (DQN), which demonstrated remarkable performance in playing
Atari games [2]. Additionally, the actor-critic framework has been effectively
utilized in addressing various DRL challenges [5]. Several enhancements to
the actor-critic model, including Proximal Policy Optimization (PPO) [4],
which will be describe later, have been proposed. In our DRL approach, we
want to train the police to achieve the goal.

2.1 Single Robot Navigation using RL

Before discussing multi-robot navigation, it is essential to understand the
advancements in single robot navigation using RL. Early studies such as [10]
demonstrated the effectiveness of RL algorithms, such as Q-learning and Deep
Q-Networks (DQN), in enabling robots to learn navigation policies in static

7



2. Related work.....................................
environments.

2.2 Multi-Robot Navigation using Traditional
Approaches

Traditional approaches to multi-robot coordination have focused on centralized
planning algorithms such as auctions, consensus-based methods, and potential
fields. While these approaches have shown promise in certain scenarios, they
often suffer from scalability and coordination overhead issues, particularly in
large-scale environments with a high number of robots. Here some traditional
approaches:

Consensus-based algorithms: Consensus-based algorithms aim to achieve
consensus among multiple robots by iteratively updating their positions or
trajectories based on local interactions with neighboring robots. One example
is the consensus-based pooling algorithm (CBBA), where each robot maintains
a local set of tasks and negotiates with neighboring robots to resolve conflicts
and distribute tasks efficiently [6].

Potential field methods. Potential field methods use artificial potential
fields to guide robots toward a goal while avoiding obstacles and other robots.
Each robot creates a repulsive potential around obstacles and other robots
and an attractive potential towards the target. By summing these potentials,
robots move towards the goal and avoid collisions. An example is the artificial
potential field (APF) method, in which robots adjust their speed based on
the potential field gradient generated by the environment [7].

2.3 Multi-Robot Navigation using RL

Recent research has explored the application of RL techniques to multi-
robot navigation problems, aiming to overcome the limitations of traditional
approaches. Here are a couple of examples of multi-robot navigation using
reinforcement learning:

Decentralized navigation of multiple robots: In this approach, each robot
independently learns its navigation policy using RL methods. Robots interact

8



.............................2.4. Challenges and Open Problems

with their environment and learn to achieve their goals while avoiding collisions
with obstacles and other robots. Through decentralized learning, robots can
coordinate their movements without requiring explicit communication or
central control. An example of this approach is the work of Gupta et al. [8],
where multiple robots learn decentralized policies using deep reinforcement
learning to navigate complex indoor environments.

Centralized Multi-Robot Navigation: In this approach, a centralized RL
agent coordinates the movements of multiple robots to achieve common
objectives. The centralized agent receives observations from all robots and
learns a joint navigation policy that optimizes the overall performance of the
robot team. An example is the work [9].

2.4 Challenges and Open Problems

Although significant progress has been made in the field of multi-robot navi-
gation using RL, a number of challenges remain. These include challenges of
scalability in large-scale environments, robustness to uncertainty and dynamic
change, and the need for efficient exploration strategies in complex, high-
dimensional state spaces. Addressing these issues requires further research
into advanced RL algorithms, hierarchical coordination mechanisms, and
real-world deployment considerations.

9
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Chapter 3

Environment

The environment serves as the external system with which the RL agent
engages, embodying the intricate dynamics of the surrounding world. It
functions as the stage upon which the agent operates, furnishing it with
observations, feedback, and rewards predicated on its actions and decisions.
Characterized by a discrete action space comprising ten possible actions, as
well as in [1], since they were not described in this article we chose actions
[Table 3.1], and a continuous state space, the environment encompasses a
diverse array of objects represented by polygons or circles. Within this
dynamic landscape, two distinct types of agents are implemented, each tasked
with navigating through the environment’s obstacles and reaching designated
goals.
In this environment setup, obstacles are depicted as polygons, serving as

v w

a1 0 0
a2 vmax 0
a3 vmax 0.25wmax

a4 vmax −0.25wmax

a5 vmax 0.5wmax

a6 vmax −0.5wmax

a7 vmax 0.75wmax

a8 vmax −0.75wmax

a9 vmax wmax

a10 vmax wmax

Table 3.1: Possible actions, where vmax/wmax is the maximum linear/angular
speed, each type has its own speed.

11



3. Environment .....................................
barriers that impede the agents’ progress, while goals are represented as
circles, signifying the targets that the agents aim to reach. The agents’
overarching objective is to navigate through the environment, maneuvering
past obstacles, and successfully reaching their designated goals.

Furthermore, it’s worth noting that the environment scale is defined as
5[pix] : 100[mm], providing a crucial metric for interpreting the spatial dimen-
sions within the environment. This scale facilitates a coherent understanding
of the relationship between the pixel-based representations of objects and
their real-world counterparts, ensuring accurate navigation and interaction
within the environment.

3.1 Agents

A collision between an obstacle agent or another agent is represented as an
intersection of figures; if there is an intersection, then a collision has occurred.
A successful episode is considered if the agent managed to approach the
target at a certain distance in a certain number of steps. Movement of both
agents represented by vector that consist of two numbers first one is linear
and second is angular velocity.

3.1.1 Circle agent

This kind of agents represented by circle. The movement of this robot occurs
as follows: first, we rotate the coordinate system by an angle equal to the
angular velocity and then we shift the center of the circle along the X axis by
a vector whose length is equal to the linear velocity.

r[pix] wmax[rad/it] vmax[pix/it]
30 π/6 5

Table 3.2: Circle agent parameters.

3.1.2 Car-like agent

A car-like robot [Figure 3.1], often referred to as a car-like mobile robot, is a
type of wheeled robot designed to move in a similar manner to a car. These

12



..................................... 3.2. Observation

Figure 3.1: Simple car kinematic explanation. Image is taken from [15]

robots usually have two or more wheels. This work presents a model with
4 wheels and dimensions similar to those of an average car. Car-like robots
are popular in robotics research and development due to their simplicity,
versatility, and ease of control. They provide an excellent platform for
experimenting with different navigation algorithms and control strategies.
This type of agent is represented by a rectangle, movement is given by the
equations:

ẋ = v sin(θt) (3.1)

ẏ = v cos(θt) (3.2)

θ̇ = v

L
tan(w) (3.3)

W [pix] H[pix] L[pix] wmax[rad/it] vmax[pix/it]
93 223 159 π/6 10

Table 3.3: Car-like agent parameters.

3.2 Observation

We are dealing with a dynamic environment, where for each iteration several
robots move at once, each robot initially does not know in which direction the
robot will move. Therefore, it is impossible to get a complete picture of the

13



3. Environment .....................................
environment from the current observation, because in this case it is impossible
to determine in which direction the other robots are moving. To solve this
problem, I used the approach from [2], in which the neural network receives
the last 4 observations from sensors as input, thanks to which the robot
will be able to determine its movement and the directions of movement of
nearby robots. Each agent’s observation consists of laser lengths ol, direction
vector to goal od, and orientation of agent oor. Limitation for laser lengths
is lmax = 500 px, each agent has 16 laser beams. Observation has following
form:

ot = [olt , olt−1 , olt−2 , olt−3 , odt , oort ] (3.4)

where ol is vector of length 16, od is vector of length 2, oor single number,
and at t = 0 observation will be

o0 = [ol0 , ol0 , ol0 , ol0 , od0 , oor0 ]

at t = 2:
o2 = [ol2 , ol1 , ol0 , ol0 , od2 , oor2 ]

and so on.

3.2.1 Laser observation part

Lasers are represented by many segments having one common vertex and also
the angles between adjacent segments are equal. Afterwards, the intersection
between the segments and obstacles and robots is searched, and if there are
any, then the new length of the segment is equal to the distance from the
common vertex to the point of the closest intersection point. Each agent has
its own position where we will send lasers from. In case of circle agent it is
its center, in case of car-like agent it is point between forward wheels.

Table 3.4: Laser observation, where the agents are indicated and the ends of
the lasers of each agent are indicated by the corresponding color.

14



..................................... 3.2. Observation

3.2.2 Direction vector and agent orientation

The direction vector is defined as the difference between the robot’s position
and its target. Thanks to it, the robot will be able to determine in which
direction it needs to move. Orientation means the angle by which the robot
is rotated relative to the world coordinate system. Thanks to it, the robot
will be able to understand what angle it needs to turn to move in the desired
direction.

3.2.3 Data normalization

Data normalization is a preprocessing technique used to rescale the values
of numerical features to a standard range without distorting the differences
in the ranges of the original data. It involves adjusting the values of the
features so that they fall within a similar scale.. This process ensures that all
functions contribute equally to the analysis and modeling process, preventing
certain functions from becoming dominant due to their larger scale. The
normalization in our case will be in following form.

olnorm = ol

lmax
(3.5)

odnorm = od

∥od∥
(3.6)

oornorm = op

2π
(3.7)

Further, when mentioning observation, we mean its normalized version.

15



16



Chapter 4

Rewards

In reinforcement learning, rewards are used to indicate the success or failure
of an agent’s actions in the environment. Reward is a measure of the quality
of action in a given position. Reward does not have units of measurement, but
only a numerical value, so in this chapter all calculations are made without
taking into account units of measurement. Positive rewards usually mean
that the agent has performed a desired action or achieved a certain goal.
Negative rewards indicate that the action taken was undesirable or took the
agent away from the goal.

The agent’s goal is to learn a policy, mapping between states and actions,
that maximizes the total reward it receives over time. By receiving feedback
in the form of a reward, the agent can learn which actions are more favorable
in a given environment. In order to stimulate the agent to achieve the goal
as quickly as possible, discounted rewards are used.

RT =
T∑

k=0
γkrk (4.1)

The reward function is defined as

17



4. Rewards .......................................

r =


rgoal goal reached
rcollision collision
0 timeout
rlaser + rdirection + rdistance else

(4.2)

Where rgoal represents reward for reaching the goal. And rcollision represents
negative reward for collision with world or other agent. No reward is given if
a timeout occurs. But this will not be enough to train the policy, therefore
there is also a 4th point that evaluates the quality of the action.

Laser reward

In order to understand in which direction robot can move and in which
direction robot cannot move, because a collision will occur, we use the laser
reward.

rlaser =
{

(rcollision + llaser − lmin)(−lneg) lmin < rcollision + llaser

0 else
(4.3)

this part is equal to [1] (equation 9), where lneg is a manually chosen scaling
factor and lmin is the measured distance of the laser beam currently measuring
the lowest distance of all beams.

Direction reward

In order to stimulate the agent to move along the shortest possible path to
the goal, its movement for each action is estimated relative to its maximum
linear speed. because each agent for each step can get as close as possible to
the target at a distance numerically equal to the maximum linear speed.

rt+1
direction = (rdir_max)

dt
goal − dt+1

goal
vmax

(4.4)

where rdir_max is manually chosen, dt
goal is distance from agent position to

goal. This formula allows you to receive rewards in a certain interval, which
prevents you from receiving too large numbers.

18



....................................... 4. Rewards

Distance reward

It seemed that the two upper parts would be enough to train the policy,
but as it turned out later at the training stage, sometimes this led to the
agents simply starting to spin around in place, which is why the whole reward
became approximately equal to zero. Therefore, I also calculate the reward
for the distance at which the agent approached the goal relative to its initial
position.

rt
distance = (rdist_max)

d0
goal − dt

goal
d0

goal
(4.5)

Final states

Our main goal is to achieve the goal without collisions; therefore, it is necessary
to give a negative reward for a collision, and a collision with an agent will be
considered worse than a collision with an obstacle.

rcollision =
{

−cworld collision with world
−cagent collision with agent

(4.6)
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Chapter 5

Training

The Actor-Critic algorithm is a popular reinforcement learning technique
that combines aspects of both value-based methods (like Q-learning) and
policy-based methods (like Policy Gradient). In Actor-Critic, the agent has
two main components:..1. Actor: The policy network, which learns to select actions based on the

current state of the environment. It directly maps states to actions...2. Critic: The value function, which evaluates the actions taken by the
actor by estimating the expected return (cumulative future rewards)
from a given state. It provides feedback to the actor by critiquing its
actions.

5.1 Network architecture

Architecture [Figure 5.1] of our neural network can be divided into two
parts, Feature extractor and actor-critic parts, where actor and critic will
share the same feature extractor, thus they will receive the same features
as inputs. Extractor has observation as an input, where ol will go through
two one dimensional layers with kernel size of 4 and stride 1, but fist one
has 16 output channels and second one 32 output channels. od and or will
together go through the fully-connected layer with 32 output units, then we
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Figure 5.1: actor-critic policy architecture. The architecture of network is similar
to the architecture of [1], differing only in the number of cores in convolutional
layers and the sizes of linear layers.

concatenate the features and this result will go through fully-connected layer
with 352 output units.

Actor is represented by fully-connected layer with 10 output units and
critic has 1 output unit.

5.2 PPO algorithm

Proximal Policy Optimization (PPO) [Algorithm 1] is an advanced rein-
forcement learning algorithm that aims to improve the stability and sample
efficiency of Policy Gradient methods like Actor-Critic. PPO addresses the
problem of unstable policy updates by introducing a clipped objective function
that constrains policy updates to a trust region. This prevents large policy
changes and leads to more stable training.

Usually when we talk about PPO algorithm we mean CLIP version, which
mean Proximal Policy Optimization Contrastive Learning for Policy Improve-
ment. It is an advanced reinforcement learning algorithm that combines
Proximal Policy Optimization with Contrastive Learning for improved policy
learning. It leverages contrastive learning to enhance the policy improvement
step, resulting in more efficient and stable training. PPO-CLIP has shown
promising results in various challenging environments, making it a popular
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choice for training complex reinforcement learning agents.

To deal with this algorithm we need to define some definitions.

5.2.1 Distribution space

Directly using the outputs of a neural network (deterministic actions) can
limit exploration, potentially causing the agent to get stuck in local optima. If
the policy were deterministic, it would be challenging to compute meaningful
policy gradients, as the gradient estimation relies on the probability of actions.
PPO leverages probability distributions to model the policy. This allows for
sampling different actions according to their probabilities, fostering better
exploration during training.

Distribution spaces are mathematical spaces used to represent sets of
probability distributions. These spaces are equipped with mathematical
structures that allow probability distributions to be compared, manipulated
and analyzed. They are needed in fields such as statistics, machine learning
and signal processing to understand and work with uncertain data.

Due to we have 10 discrete possible actions we have deal with discrete
distribution space [Figure 5.2]. A discrete distribution space refers to a set
of outcomes or events, each of which has a specific probability assigned to
it. In the context of reinforcement learning, particularly in algorithms like
Proximal Policy Optimization (PPO), a discrete distribution space is used
to model the probabilities of selecting different actions from a finite set of
possible actions.

5.2.2 Generalized advantage estimation

Generalized Advantage Estimation (GAE) is a method used in reinforcement
learning to estimate the advantages of taking a particular action in a given
state. It addresses the issue of high variance in estimating advantages, which
can lead to unstable training when using Policy Gradient methods.

The advantage At of taking action at in state st at time step t is estimated
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Figure 5.2: Example of discrete distribution with ten possible actions.

using the following formula:

At =
∞∑

l=0
(γλ)lδt+l (5.1)

Where:
δt+l = rt+l + γV (st+l+1) − V (st+l) (5.2)

V (st) represents the estimated value of being in state st. γ: discount factor,
λ : GAE parameter. The generalized advantage estimator for 0 < λ < 1
makes a compromise between bias and variance, controlled by parameter λ.

5.2.3 Value loss

The value loss measures the error between the predicted value of a state V (st)
and the estimated return V̂ (st). It is minimized during training to make the
value function V accurately predict the expected cumulative reward from a
given state.

The value loss function is often the mean squared error (MSE) between
the predicted value and the estimated return:

Lval = 1
N

N∑
t=1

(
V (st) − V̂ (st)

)2
(5.3)
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Figure 5.3: Clip visualization with A > 0 and A < 0, image is taken from [14].

in our case N is amount steps per epoch. Minimizing the value loss helps the
value function to better approximate the expected future rewards, which in
turn improves the performance of the actor in the Actor-Critic algorithm.

5.2.4 PPO Loss "CLIP"

In the Proximal Policy Optimization (PPO) algorithm, the PPO loss is the
objective function used to update the policy network. The goal of the PPO
loss is to improve the policy while ensuring that the policy updates are not
too large, preventing instability during training.

LCLIP (θ) = −Et [min (rt(θ) · At, clip(rt(θ), 1 − ϵ, 1 + ϵ) · At)] (5.4)

where πθ(at|st) is probability of action at in state st returned by policy π

with weights θ, rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio between the new

policy and the old policy. At is the advantage of taking action at in state st.
ϵ is a hyperparameter that controls the size of the policy update.
The clip function ensures that the probability ratio rt(θ) is bounded between
1 − ϵ and 1 + ϵ. This prevents large changes in the policy during training,
stabilizing the learning process.

5.2.5 Optimizers

Optimizers in the field of machine learning, or more specifically in our case,
in the case of reinforcement learning, are algorithms or methods for updating
weights in neutron networks based on the outputs of loss functions. Below is
an explanation of how they work, moving smoothly to the optimizer used in
this work.
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Gradient Descent (GD) and Stochastic Gradient Descent (SGD)

Gradient Descent (GD) differs from stochastic gradient descent (SGD) only
in that in the second case we divide the dataset into batches and weight
optimization occurs after each batch. These algorithms are based on finding
the gradient of the loss function based on the weights of our model, and the
weights are updated as follows:

gt = ∇L(θt) (5.5)

θt+1 = θt − αgt (5.6)

where α is learning rate, and due to the fact that the gradient is always
directed towards the growth of function, we will subtract it to minimize the
loss function. But these algorithms suffer from the local minimum problem,
which means that if a local minimum is found, our optimization will stop
before reaching the global minimum [13].This problem is solved by the method
of moments:

mt = βmt−1 + (1 − τ)gt (5.7)

where β ∈ [0, 1], τ is damping, this is how much we will lower the current
gradient, and if t = 0 then m = g, and the update of the weights looks like
this:

θt = θt−1 − αmt (5.8)

Root Mean Square Propagation (RMSProp)

The tasks in which optimizers are used are quite different and the gradient
values can differ thousands of times, and each time you have to select the
learning rate. To solve this problem, an algorithm with an adaptable learning
rate called RMSProb was invented:

vt = γvt−1 + (1 − γ)g2
t (5.9)

this formula is called Exponential Moving Average, and v is called square
average where v0 = 0, and usually γ = 0.999, then update of the weights has
folloving equatation:

θt = θt−1 − α
gt√
vt

(5.10)

subsequently this optimizer formed the basis of the most popular optimizer
called Adam.
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Adaptive Moment Estimation (Adam)

The optimizer used in this work, thanks to its efficiency, Adam converges
faster and performs well with large datasets or parameters, and robustness, it
works well in practice and is less sensitive to the choice of hyperparameters
compared to other optimization algorithms. Roughly speaking, Adam is SGD
with momentum and RMSProb and one feature:

m̂t = mt

1 − βt
1

(5.11)

v̂t = vt

1 − βt
2

(5.12)

Bias-corrected estimates are used in the Adam optimizer to counteract the
biases that occur in the estimates of the first and second moments during the
initial stages of training. Then the weights update is:

θt = θt−1 − α
m̂t√
v̂t + ϵ

(5.13)

5.2.6 Pseudo code

Now using the points above we can describe the learning algorithm.

Algorithm 1 Proximal Policy Optimization (CLIP)
1: Initialize policy network πθ(a|s) with parameters θ, value function Vϕ(s)

with parameters ϕ
2:
3: Initialize hyperparameters, buffer, and optimizer settings
4: for each iteration do
5: Collect trajectories using current policy: (st, at, rt, st+1, dt)
6: Compute advantages A(st, at) and target values Vtarget(st) using re-

wards and value function
7: for each epoch do
8: Compute policy loss LCLIP (θ) and value loss Lval(ϕ) using col-

lected data
9: Compute total loss L = LCLIP (θ) + c1LV F (ϕ)

10: Update policy and value function parameters using optimizer
11: end for
12: end for

Usually values of LV F (ϕ) much higher then LCLIP (θ) so there is coef-
ficient c1 which will minimize LV F (ϕ). In this work PPO has following
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hyperparameters:

Learning rate 0.0003
Discount γ 0.99

GAE parameter α 0.95
PPO clipping 0.2

c1 0.5

Table 5.1: PPO hyperparameters.
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Chapter 6

Experiments

The learning process was constrained by the computational complexity inher-
ent in the laser observation calculations. These calculations were executed
using Python libraries, which perform operations on the processor. This
reliance on processor-based computations, as opposed to utilizing more effi-
cient parallel processing units such as GPUs, resulted in limitations on the
number of agents that could be effectively trained. Calculating 126 step of one
Circle agent takes 2.8 seconds, 3 seconds for Car-Like, these calculations were
performed on the Apple M2 chip, macOS version 14.2. This complicated the
process of selecting the necessary hyperparameters, so most of the training
did not produce results.

Initially, in one epoch we initialized one environment and as a result we
had N*M, where N is number of steps per one epoch, M is number of robots
per initialization, pairs (at, st),this led to the fact that the training was very
unstable and did not give any results. Therefore we initialized 20 environments
at each epoch, which gave 20 times more pairs (at, st). This made training
more stable and produced greater results. Furthermore, the dependency of
the learning process on the specific environmental conditions necessitated a
tailored approach in this study. Unlike the setup described in [1], this work
introduced several variations, including a different number of lasers, distinct
maps, and varying robot parameters. Consequently, it was imperative to
independently determine the appropriate values for the reward function to
suit these unique conditions. The reward function parameters I employed are
detailed below.
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rgoal 2
cworld 1.2
cagent 1.5

rdir_max 1
rdist_max 0.75

lneg 0.2

Table 6.1: Reward parameters.

Figure 6.1: Robot movement on an initialized policy without training.

Circle agent training

Initially, the training involved three agents operating on the map illustrated
on Figure 6.1. The movement in which the agent moved from the moment of
its initialization can be seen from the following: the agent started moving
from the thin part and stopped in the thicker part. During this stage, the
maximum number of steps was restricted to 126. For each iteration, targets
were assigned to the agents in a random sequence. Additionally, the position
of each agent was adjusted within a specific radius, and their orientation
was modified within a 30-degree range. This randomized approach aimed to
enhance the robustness and adaptability of the agents’ learning process by
exposing them to a variety of positional and directional scenarios.
The training process extended over 1300 epochs. During the initial stages,

the average reward exhibited significant fluctuations, oscillating dramatically
from small positive values to negative values [Figure 6.2]. This variability in
the average reward likely reflects the agents’ attempts to explore and learn
from the environment, adjusting their strategies and behaviors in response to
the different scenarios they encountered. Such fluctuations are common in the
early phases of reinforcement learning as the agents are actively experimenting
to find optimal policies.

The training process yielded the following results [Table 6.2], which were
quantified by calculating success percentages based on 100 random attempts.
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Figure 6.2: Reward during training with 3 robots on map given by Figure 6.1.

This approach provided a robust measure of performance, ensuring that the
results were not influenced by any specific sequence of events or conditions
within the environment. We also want to evaluate how well our policies work,
for this we initialize 100 environments and the success rate is equal to the
number of agents who achieved their goals divided by the total number of
agents multiplied by 100%, the remaining percentages are calculated in a
similar way [Table 6.2].
It was also observed that when the agent failed to hit the target, it tended

success rate 78%
collision with world 0.66%
collision with agents 4%

time out 17.33%

Table 6.2: Results on map given by Figure 6.3 after 1300 epochs.

to execute large turns. This behavior stems from the agent’s inability to
move backward and the limited availability of sharply turning maneuvers. In
situations where the target was missed, the agent encountered difficulty in
adjusting its trajectory smoothly, resulting in exaggerated turning motions.
In the case of testing one robot from different positions and orientations and

without obstacles, the robot always reaches the goal, but it made too much of
a turn [Figure 6.4]. In my opinion, the fact that the agent moves in a circle
even taking into account that there are no other agents and obstacles is due
to the fact that when training three agents [Figure 6.3], the optimal strategy
was to move in a circle, which prevented collisions with other agents.

However, on more complex maps, with narrow passages and a large number
of robots, this model cannot cope. Therefore, taking the weights of the trained
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Figure 6.3: Random attempts of pretrained policy.

Figure 6.4: One robot from different positions without obstacles.

model, I launched a new training with a large number of steps per epoch
equal to 256 [Figure 6.5].

The rate at which the reward increased was notably sluggish, and regret-
tably, the robots were unable to reach the goal within the allocated time
frame. However, a positive outcome emerged from the situation: instances of
collisions were exceedingly rare, and, overall, the robots exhibited consistent
movement toward the designated goal location. Despite falling short of the
ultimate objective, this outcome underscores a notable achievement in the
navigation process, indicating a level of proficiency in navigating the environ-
ment and avoiding collisions [Figure 6.5].Furthermore, I hold the belief that
by augmenting the number of epochs in the training process, we can enhance
the capability of our models to handle increasingly intricate scenarios. This
extended training duration will afford the models more opportunities to learn
and adapt to a wider range of situations, ultimately leading to improved
performance in navigating complex environments.
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Figure 6.5: Reward during training with 4 robots on map given by Figure 6.6.

Figure 6.6: 4 agents in difficult map.

Car-Like

Due to the fact that agents have different methods of movement, they should
have different policies. To begin with, the model was trained for straight
driving [Figure 6.7], with obstacles on both sides with a maximum number of
steps of 126, and the following results were achieved [Table 6.3].

success rate 97%
collision with world 2%

time out 1%

Table 6.3: One Car-Like agent in map given by Figure 6.7.

Car-like agents were trained [Figure 6.8] with a maximum of 126 steps per
episode. The training process was conducted across multiple maps [Figure
6.9], which were selected randomly for each training session.
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Figure 6.7: One Car-Like agent in simple map.

Figure 6.8: Reward during training policy for Car-Like agent on maps given by
Figure 6.9.

However, an unexpected problem emerged during this phase. Certain
situations occurred with disproportionate frequency during training, leading
to an overfitting issue. As a result, the model became overly specialized in
responding to these frequently encountered scenarios, at the expense of its
generalizability. This overfitting caused the agents to perform poorly in less
common situations, often resulting in the agents moving in incorrect directions
when faced with unfamiliar or less frequently encountered circumstances. This
highlighted the need for a more balanced and varied training dataset to ensure
robust and adaptable agent performance. Also, the inability to drive back
created additional problems, since there were places where the agent would
no longer be able to get out. Evaluation of this policy [Table 6.4].
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success rate 34.5%
collision with world 7%
collision with agents 5%

time out 53.5%

Table 6.4: Two Car-Like agents in maps given by Figure 6.9.

Figure 6.9: Performance of pretrained policy on map with two Car-Like agents
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Chapter 7

Conclusion

Reinforcement learning holds immense promise for robot navigation, as evi-
denced by the remarkable achievements showcased in this study. In particular,
we were able to attain a success rate of 100% for the Circle agent and 97% for
the Car-like agent in navigating simple scenarios with a single robot. However,
challenges become more pronounced in complex environments. Nevertheless,
as demonstrated above, even under these challenging conditions, the poten-
tial of reinforcement learning remains evident. I believe that increasing the
number of epochs as well as increasing the variety of maps will improve the
results, because neural networks will learn to identify more general features,
which will allow them to navigate effectively on unknown maps.

The main obstacle encountered in improving these results was optimizing
the computation required for the environment while meeting time constraints.
Also specifically in our work, there was a problem with debugging errors due
to the fact that many things were implemented independently. Which led
to uncertainties during training. For example, it often happened that the
reward did not change and it was initially unclear where the error was; it
could be in the implementation of the environment, the architecture of the
neural network, the reward system, the learning algorithm, or the selected
parameters. Despite these challenges, the results highlight the promising
potential of reinforcement learning in developing the navigation capabilities
of robots.

In the future, it is necessary to consider the possibility of moving backwards
for a Car-Like agent, which would help solve the problem associated with
places from which the agent will no longer be able to get out. It is also worth
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conducting training with continuous action space, which could potentially lead
to smoother movement of agents and a greater number of possible actions.
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