
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Physics

Break junction data clustering using supervised and
unsupervised machine learning

Oliver Klimt

Supervisor: Ing. Ladislav Sieger, CSc.
Supervisor–specialist: RNDr. Jindřich Nejedlý, PhD.
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499151 Personal ID number: Klimt Oliver Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Break junction data clustering using supervised and unsupervised machine learning

Bachelor’s thesis title in Czech:

Navrhněte metodu pro zpracování měření typu break junction

Guidelines:

1) Research machine learning methods for processing Break-Junction data (measurement of conductivity of organic
molecules)
2) Choose a suitable algorithm for solving the specified task
3) Verify the suitability of the selected method on real measured data

Bibliography / sources:

1) SHUKLA, Nishant a FRICKLAS, Kenneth. Machine learning with TensorFlow. Shelter Island: Manning, [2018]. ISBN
978-1-61729-387-0.
2) GÉRON, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: concepts, tools, and techniques
to build intelligent systems. Second edition. Beijing: O'Reilly, 2019. ISBN 978-1-4920-3264-9.
3) Bro-Jørgensen, William – Hamill, Joseph M. – … Solomon, Gemma C. (2022): Trusting Our Machines: Validating
Machine Learning Models for Single-Molecule Transport Experiments. Chemical Society Reviews, Roč. 51, Č. 16, s.
6875–6892, <https://doi.org/10.1039/d1cs00884f>.
4) Cabosart, Damien – El Abbassi, Maria – … Perrin, Mickael L. (2019): A Reference-Free Clustering Method for the
Analysis of Molecular Break-Junction Measurements. Applied Physics Letters, Roč. 114, Č. 14,
<https://doi.org/10.1063/1.5089198>.
5) Komoto, Yuki – Ryu, Jiho – Taniguchi, Masateru (2023): Machine Learning and Analytical Methods for Single-Molecule
Conductance Measurements. Chemical Communications, Roč. 59, Č. 45, s. 6796–6810,
<https://doi.org/10.1039/d3cc01570j>.

Name and workplace of bachelor’s thesis supervisor:

Ing. Ladislav Sieger, CSc. Department of Physics FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 25.01.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Ladislav Sieger, CSc.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank Doctor Ladislav
Sieger for introducing me to this very
topic. Doctor Sieger not only showed me
how fascinating can molecular physics be
but also introduced me to the great col-
leagues of Starý group.

I’d like to thank Doctor Jindřich Ne-
jedlý for his guidance a patience. I learned
chemistry in high school, but I came short
on advance topics. Doctor Nejedlý took
the time to introduce me into break junc-
tion experiments and related chemistry.

My thanks go to Doctor Jaroslav Vacek
for allowing me to use data from the
Breaker programme, a desktop applica-
tion written exclusively for IOCB to anal-
yse breaking curves.

And, of course, I want to thank Doctor
Irena G. Stará and Doctor Ivo Starý for
welcoming me into their group. And all
members for a friendly atmosphere in their
lab.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

v

Abstract
Break junction experiments require us to
collect many conductance traces. How-
ever, not every trace has a meaningful
value. For example we can observe ex-
ponential decay of tunnelling current af-
ter a snapback event when no molecule is
present or due to contamination; a trace
can have a non-standard slope as elec-
trodes move apart. We want to filter
out traces with no molecule present and
preserve traces that follow an expected
trend. We have settled on using super-
vised and unsupervised machine learning
techniques.

Keywords: Machine learning,
supervised and unsupervised machine
learning, data annotation, break junction,
conductance traces, molecular electronics

Supervisor: Ing. Ladislav Sieger, CSc.
Technická 1902/2,
Praha,
místnost: B2-42

Abstrakt
Experimenty typu break junction vyža-
dují sběr velkých dat vodivostních křivek.
Avšak ne všechny křivky mají pro nás vý-
povědní hodnotu. Kupříkladu se molekula
nemusí na elektrody navázat a tím pádem
po snapbacku (odtržení) pozorujeme ex-
ponenciální útlum tunelovacího proudu
nebo má vodivost při oddalování elektrod
nestandardní trend, což může být zapří-
činěno kontaminací roztoku. Naším cílem
je rozlišit a vytřídit křivky bez molekuly
a ty, které obsahují další význačný rys.
Pro tento účel jsem se rozhodli využít ná-
strojů strojového učení typu unsupervised
i supervised.

Klíčová slova: Strojové učení, strojové
učení typu supervised a unsupervised,
anotace dat, break junction, vodivostní
křivky, molekulární elektronika

Překlad názvu: Navrhněte metodu pro
zpracování měření typu break junction

vi

Contents
1 Motivation 1
2 Introduction 3
2.1 Understanding our data 3
2.2 Clustering . 5
2.3 Desired goals 5
2.4 Related works 6
3 Break junction experiment 9
3.1 Principles of break junction
experiments . 9

3.2 Execution of break junction
experiment . 10
3.2.1 Mechanically Controllable
Break Junction 10

3.2.2 Scanning Tunneling
Microscopy-Based Break Junction 10

3.3 Technical parameters 11
4 Data processing 13
4.1 Neural networks 14
4.1.1 Convolutional Neural Network
for snapback detection 14

4.1.2 Curating output of CNN 14
4.2 Detecting limit 16
4.3 Extracting useful data from traces 16
4.4 Indifactor . 16
4.5 Principal component analyses . . 17
4.6 Filters . 17
5 Clustering algorithms and clusters 19
5.1 Data pipeline 19
5.2 K–Means . 20
5.3 Balanced Iterative Reducing and
Clustering using Hierarchies 23

5.4 Unsuitable algorithms 25
5.4.1 Density based clustering 25
5.4.2 Centroid based clustering . . . 26

6 iCluto programme 27
6.1 Dataset annotation 27
6.2 Model validation 29
6.3 Clustering and Cluster inspection 30
7 Conclusion 31
8 Future work 33
A Index of terms 35
Bibliography 37

vii

Chapter 1
Motivation

Molecular electronics, in terms of studying electro-chemical, electro-sterical properties started
in 70s, but is still a fascinating field of study.

Todays transistors are etched into silicon wafers. Diodes in those transistors take advantage
of dissimilarity in materials where one side contains free-moving holes and the other free-
moving electrons, which makes p-n junction; a key element in electronics.

Bulk silicon conducts electricity at certain energy levels (band-gap), but bulk metal conducts
electricity for all levels [1]. This behavior changes for applications with few atoms, where
only for some many atoms a band-gap will reappear, which makes it challenging to shrink
transistor designs [2].

Single molecule electronics are systems of few nanometers and they are an alternative for
anorganic silicon based electronics.

Molecule metal bonds, as two dissimilar substances, can act as p-n junction, thus creating
molecular diode. First molecular diode was proposed by Aviram and Ratner in 1974 [3]. These
diodes can be a foundation for molecular devices, such as switch [4].

Organic devices are nothing new, we can find organic light-emitting diodes (OLED) in
screens of phones or televisions, there are organic field-effect transistors (OFET) that can be
produced cheaply [5]. Another application of organic devices are various biosensors [6].

We want to examine how organic molecules conduct current in order to examine their
potential for replacing or supplementing present silicon based technologies [7, 8].

1

2

Chapter 2
Introduction

We focus on analyzing big data from break junction experiment. Our datasets contains
thousands of curves, millions of points and are several hundreds of megabytes large. That is
quite a lot of data that needs to be processed in a acceptable time frame. Our programme
should utilize all available resources, such as operating memory and CPU cores.

To accomplish this, we use both supervised and unsupervised machine learning techniques
to gain a valuable insight of our datasets [9].

2.1 Understanding our data

A typical conductance trace can look like this (figure 2.1): It starts in a bulk, which is the
golden wire itself, then we can distinguish one, two or three steps, that is an electrode tip
forming, consisting from three to one atom. After that a snapback occurs. Snapback is a
rapid loss of conductivity on a very short distance. At this very moment a wire broke into
two distinct pieces and a metal-molecule-metal bond can be formed.

0 10 20 30 40 50
Distance [Å]

0 500 1000 1500 2000
Index

7

6

5

4

3

2

1

0

1

Co
nd

uc
ta

nc
e

[lo
g(

G
/G

0)
]

2 Atoms
Snap start, 1 Atom

Snap end

Limit

Bulk
3 Atoms

Figure 2.1: A typical conductance trace with a molecule present.

3

2. Introduction ..
One can ask how do we determine whether a metal-molecule-metal bond has formed, how

can one be sure that the conductance level is not a tunneling current or some contamination
of solution.

We can plot a 1D histogram (see 2.2) and observe a peak at around G ≈ 10−4 G0, which
corresponds with a plateau at 12 - 25 Å.

0 5 10 15 20 25 30 35
Distance [Å]

6

5

4

3

2

1

0

1

Co
nd

uc
ta

nc
e

[lo
g(

G
/G

0)
]

Trace

0 20 40
Counts [-]

1D histogram

Figure 2.2: A typical conductance trace with a molecule present and a corresponding 1D histogram
in logarithmic scale.

Our data from one experiment contains tens of thousands of traces, so visualizing one by
one does not tells us much. Therefore, we can plot all traces at once using 2D histogram, as
in figure 2.3. Both histograms are normalized per traces, meaning that bins are divided by
total count of traces in dataset or cluster. In 2D histogram dark red means high count of
traces, dark blue means low or no count of traces, white marks a half of the scale.

If we compare pictures 2.2 and 2.3, we are not able to locate traces with molecules in 2D
histogram. There might not be enough of them or they can be so scattered around that 2D
histogram is not very helpful.

For this very reason, we have to inspect our datasets with the help of machine learning in
order to be able to find how many traces made metal-molecule-metal bridge and if the rest is
unuseful data of tunneling current.

On closer inspection, our curves should start at G = 10 that is 1 in logarithmic scale. Most
of them does (see 2.3), but there are hundreds traces which does not and those traces need to

4

.. 2.2. Clustering

Figure 2.3: 2D and 1D histogram of traces from one dataset.

be filtered out. An example of such trace is in figure 2.4.
Discarding all bad traces, we are able to align curves in snapback and plot 2D histogram

with distance in Å as in figure 2.5.

2.2 Clustering

When we filter out bad traces, we can inspect the rest of them using various clustering
algorithms. Those algorithms will sort curves into different clusters, which gives us insights
into our dataset.

2.3 Desired goals

We want to write application named iCluto to aid physicians and chemists with analyses of
breaking curves. We want to improve clustering capabilities of CLUTO (Cluster Toolkit) [10],
hence the ’i’.

Thanks to modern libraries, iCluto can recognize important events (start and end of
snapback) using neural networks and can cluster utilizing all available CPU cores. Our
programme is written solely in Python, which is very popular and actively used programming

5

2. Introduction ..

0 500 1000 1500 2000 2500
Index (~ distance [-])

7

6

5

4

3

2

1

0

1

2

3

Co
nd

uc
ta

nc
e

[lo
g(

G
/G

0)
]

Figure 2.4: Example of a bad trace.

language. Python packages allow us to develop new functions and expand iCluto’s possibilities.
This means we can sort thousands of curves in a acceptable time frame.1

2.4 Related works

There are many studies to cluster traces into meaningful groups.
They all differ in selected feature space, whether they used unsupervised or supervised

machine learning or what clustering algorithms they used [11–16].
Our data comes in a form of matrix, where each row represents one trace and each column

of that row yields value Gi. There are 2500 points for each trace and roughly 35000 traces
per measurement. That puts us into a similar situation as others.

To process this vast amount of data, one can make histograms for each trace and use
this histogram as an input for clustering, reducing the input length further via principal
component analyses [11]. Another paper proposes to assign each trace 5-tuple segment that
encodes individual plateaus in a trace [12]. A straightforward method is to use a segment
of trace after snapback and transform it into a M × N image, thus reducing data points
needed [13]. Assigning each trace into a cluster can be done with various unsupervised
clustering algorithms [14].

One can have their dataset labeled and use supervised machine learning where, a model
has to be trained in order to cluster data properly. Such a model can be a recurrent neural
network [15], deep neural network [16] or different machine learning architecture.

IOCB uses Breaker programme, a FORTRAN application written by Dr. Vacek, which
uses only one CPU thread.

1Under an hour for ∼ 37000 traces.

6

...2.4. Related works

Figure 2.5: All traces aligned in snapback as our origin of distance.

7

8

Chapter 3
Break junction experiment

3.1 Principles of break junction experiments

Break junction (BJ) is a method of measuring conductivity at nanoscale level acquiring
breaking curves. This experiment relies on the ductility and malleability of a thin metal wire,
typically a gold wire, where we stretch it so much until it breaks apart. Those two parts with
pointy tips work as electrodes, allowing a molecule to bond in between them. When a thin
wire breaks we observe a huge loss of conductivity. But before it breaks, with high grade
amplifiers, we do see discrete steps in conductivity. In general, we write conductivity as

G = I

U
, (3.1)

where G [S] is electrical conductivity, I [A] is electrical current and U [V] is voltage, but it is
also defined as

G = σ
A

l
, (3.2)

where σ [S ·m−1] is electrical conductivity per meter, A [m2] is a cross-sectional area and
l [m] is a length of wire.

For very small A in equation 3.2 we observe discrete steps in conductance, because the
cross-sectional area of our wire consists of N ∈ N Au atoms. Therefore equations 3.1-3.2 can
be simplified for gold as

G = NG0, (3.3)

where N is number of gold atoms, and G0 = 2 e2

h [S] is von Klitzing1 constant [17],where
e = 1.602 · 10−19 C is elementary charge and h = 6.626 · 10−34Js is Planck’s constant.

At G = 1 ·G0 the gold wire breaks, forming two electrodes and allowing a tunneling current
to flow between them. As the space between electrodes widens a molecule can bond. The
possibility of molecule bonding relies on many factors, such as geometry of electrodes, used
anchoring groups or shape of the molecule.

1G0
.= 7.75 · 10−5 S

9

3. Break junction experiment
3.2 Execution of break junction experiment

There are two main types of BJ apparatuses; Mechanically Controllable Break Junction
(MCBJ) and Scanning Tunneling Microscopy-Based Break Junction (STM-BJ). They differs
in electrodes fabrication.

3.2.1 Mechanically Controllable Break Junction

Forming electrodes requires thin gold wire that is stretched until it breaks, see figure 3.1.
When contracted, both tips join forming a single piece of wire again. The process repeats.
Wire is oriented horizontally and the electrodes are symmetrical to each other.

This method was introduced by Moreland in 1985 [18] and improved by Muller in 1992,
where it got its name "Mechanically Controllable" [19].

(a) : Closed bridge, the gold wire is still in one
piece.

(b) : Open bridge, the gold wire broke into two
electrodes.

Figure 3.1: Principles of MCBJ experiment. Taken from [7].

3.2.2 Scanning Tunneling Microscopy-Based Break Junction

Apart from MCBJ, in this method the electrodes are asymmetrical, there is only one pointy
tip and the other electrode is a golden substrate. Electrodes are aligned vertically.

Figure 3.2: Schematic of STM-BJ. Taken from [7].

10

..................................... 3.3. Technical parameters

3.3 Technical parameters

Our apparatus is custom made because we have not found any commercially viable option. It
was designed and built in collaboration with Prof. Josef Zicha (CTU) and Jiří Miletín (BMD,
s.r.o Teplice). It is capable of detecting currents down to 100 fA, with a sampling rate of up
to 200 kSa. Our apparatus can be configured for both MCBJ and STM-BJ types, but our
datasets are mostly acquired by STM-BJ, therefore we will describe only this type.

In 3.3a at the center we can see that breaking is done by a pushing rod activated by a piezo
crystal, that has pushing force of 100 N. Piezo crystal is activated using Keysight K_33512B
wave generator. We are using two custom made voltage stabilizers (STAB1 and STAB2); the
first one stabilize voltage from lead-acid batteries, and the second one is shielded (thin blue
dashed line) and is used to offset measurement bias. Our custom current to voltage converter
(IVC) utilizes logarithmic operational amplifier, that covers several orders of magnitude. We
sense the output voltage with Agilent 3458 digital multimeter. Data acquisition is done with
LabView software [20]. All sensitive parts are shielded and grounded [7].

(a) : Wiring diagram of our apparatus. Taken from [7]. (b) : Current version of our apparatus.
Photo by Dr. Nejedlý.

Figure 3.3: Apparatus for collecting breaking curves.

11

12

Chapter 4
Data processing

Data from break junction are not linear and are time variant, but mainly the data consists of
GBs of data, therefore we need to preprocess our data. To do so, we will introduce several
functions to handle our data better.

Our first attempt of clustering curves was simply focused on a specific interval. Apart from
selecting range (length interval) and applying log10 element wise, no other modifications were
made. From figure 2.3 we can determine that our desired interval starts at around 500 and
ends roughly at 1000 (or 1200). That yields 500 points to work with. We applied several
clustering algorithms such as K-Means, DBSCAN or HDBSCAN. Those mentioned algorithms
separated curves into several groups and from those groups we could make another 2D and
1D histograms. We roughly estimated where snapback happens and where a limit is present.
But that is only a rough approximation, because not all traces really do have snapback event
at 500 and not all limits are at 1000 (see 4.1a-b).

0 500 1000 1500 2000 2500
Index

0

200

400

600

800

1000

1200

Hi
ts

Snapback event

(a) : Locations of snapback.

0 500 1000 1500 2000 2500
Index

0

100

200

300

400

500

Hi
ts

Limit event

(b) : Locations of limits.

Figure 4.1: Even though most of the traces do snap at 500 the spread of snapback event is huge.
The same can be said about limit event.

We track 2 main events in traces: start of snapback and limit. We also keep track of where
snapback ends, which might be useful in future. We marked those annotations in 4.2.

It would be crucial to locate snapback and use it for calculating displacement of electrodes
in Å and for alignment of traces in 2D histograms.

13

4. Data processing...

0 500 1000 1500 2000 2500
Index (~distance)

7

6

5

4

3

2

1

0

1

Co
nd

uc
ta

nc
e

[lo
g(

G
/G

0)
]

Snap start

Snap end

Limit

Figure 4.2: Annotated trace.

4.1 Neural networks

We utilized a Convolutional Neural Network (CNN) for snapback detection.
Detecting the snapback is crucial because this event allows us to align individual traces

into our 2D histograms and give them a length scale (more in section 4.4).

4.1.1 Convolutional Neural Network for snapback detection

Our network consists of two convolution layers and one batch norm in between (figure 4.3).
Kernel sizes are 128 and 64 for 1st and 2nd convolution respectively. First convolution takes
1 channel as input and outputs 16 channels that are, after batch normalization, fed into
second convolution that again outputs single channel. We add padding to our trace, so after
convolution the output has the exact dimensions as input. Argmax of our output vector
represents an index of snapback, see figure 4.4.

It was crucial for us to utilize batch normalization; without it, our netowrk would not learn.
This normalization happens in-between convolutional layers and for each input it performs:

y = x− E[x]√
Var[x]

, (4.1)

where x is our input vector (in this case 2500 point), E is arithmetic mean and Var is variance.
Batch normalization allows using higher learning rates and reduce the need of Dropout or
eliminating it completely [21].

4.1.2 Curating output of CNN

Our CNN was accurate in only 82 % of our testing dataset. We found that it detected snaps
at deficient levels. Noted that snapback should occur at level of G = 1 G0, we can force our

14

..4.1. Neural networks
1× 1× 2500, Trace0 · · · 0 0 · · · 0

1× 16× 128, Convolution layer

Batch norm

16× 1× 64, Convolution layer

1× 1× 2500, Score

Figure 4.3: Convolutional neural network for snapback detection. Padding is symbolized as block
of zeros, convolution layers are defined as input channels× output channels× kernel size and input
and output vectors have one channel.

network to be active at this level and zero the score elsewhere. By doing so, we have improved
its accuracy to 99 %.

0 10 20 30 40 50
Distacne [Å]

7
6
5
4
3
2
1
0
1
2

Co
nd

uc
ta

nc
e

lo
g(

G
/G

0)

0 500 1000 1500 2000
Index [-]

0.0

0.1

Sc
or

e
[-]

Prediction for 'Snapback start'

(a) : A raw output from CNN.

0 10 20 30 40 50
Distacne [Å]

7
6
5
4
3
2
1
0
1
2

Co
nd

uc
ta

nc
e

lo
g(

G
/G

0)

0 500 1000 1500 2000
Index [-]

0.0

0.1

Sc
or

e
[-]

Prediction for 'Snapback start'

(b) : Curated output.

Figure 4.4: Our model is not robust enough, in some cases it flags snapback in very low conductance
levels. We can curate our model so it performs more appropriate.

This simple step can be considered as physics-informed machine learning. We can curate
our data on many levels. Physics-informed machine learning means handpicking a criteria
that our system should follow and inserting it into machine learning pipeline [22]. When
modeling an AI model, we need to decide on:..1. Dataset,..2. Model,..3. Loss function,..4. Optimizer.

And at each level we can "bake" our requirements, in our case snap specific interval. For
example choosing only traces that satisfies our interval (10 G0, 0.1 G0) will change the training

15

4. Data processing...
dataset and thus influencing the rest of ML learning process. Or as in our case, annulling the
score for conductance outside our specified range is considered as informing our model; such a
thing can also be done when designing a loss function. Loss function is used prior calculating
backpropagation and parameter tuning so that it can penalize more for scores outside our
range.

4.2 Detecting limit

There is no need for neural networks in detecting the limit of our traces. Values that are lower
than G = 10−6 G0 are near the limit of our OPAMP. So we can take the first occurrence of
G < 10−6 G0 and mark it as a limit. This "hardcoded" approach is better, because we can
omit labeling traces and training another neural network, which saves time and it serves the
same purpose.

4.3 Extracting useful data from traces

From observations of individual traces, we can mark G = 10−6 G0 as the limit and set the
rest of the trace to this value. This helps us clear traces that have clear snapback but after
the limit, they rise (as depicted in figure 4.4).

The same can be done at the start of our trace. Values before snapback are bulk1, which
means that we can get rid of them and shorten the trace, reducing input vector for clustering
algorithms.

4.4 Indifactor

Indifactor denotes start of our coordination system. It is calculated per trace, hence indi as
individual, and it yields scale factor in Angström (10−10 m or Å).

For indifactor, we write

f = g1
j0s

+ 1
2
g2
j2s

, (4.2)

where s = 1.28 is slope and was chosen empirically, j0 is index of snapback starting point, j2
lies in the middle of indices 0 and j0, g2 is a value at index j2 and g1 ≈ 10 is first value of a
trace.2

It is convenient to assign origin (0 Å) at the beginning of snapback, because electrode
separation starts at this very point. We do this for all 2D histograms.

1By bulk we mean a thin wire with more than 20 atoms in diameter.
2All our measurements for individual traces roughly starts at g1 ≈ 10.

16

..................................4.5. Principal component analyses

4.5 Principal component analyses

Principal component analyses (PCA) is a common technique for dimensionality reduction. It
is a method for finding subspaces for a given dataset [23].

Let A = [a1 · · ·an] be matrix of traces ai, then

AAT = VΛVT , (4.3)

where Λ = diag(λ1 λ2 · · ·) is a matrix of eigenvalues λi such that λ1 > λ2 > · · · and
V = [X Y] is orthogonal matrix with submatrix X that gives us basis vectors to our
subspace [24]. We get reduced (or compressed) data by simple

B = XT A. (4.4)

The advantage is that we can fit our transformation on one dataset and use it on another.
This might help to separate traces with molecules and without them even on noisy datasets.

4.6 Filters

We mentioned example of bad trace (see figure 2.4). In order to mark a trace as bad, it needs
to meet one of these following criteria:. start of the trace is G > 30 G0,. at index 80, the conductivity is G < 0.1 G0,. prediction of snapback is at index 0,. prediction of limit precedes prediction of snapback,. indifactor is higher than 400 Å,. prediction of snapback and limit are more then 600 points apart,. there is G = 0 G0 or G = ±∞ G0 in a trace.

The first three points should eliminate very short traces and traces that are false in general.
The following three points aim to filter out traces that are too noisy or too long, and the last
criteria is for eliminating traces that do not make sense, because infinite or no conductivity is
impossible.

17

18

Chapter 5
Clustering algorithms and clusters

We have chosen to work with SciKit learn [25], a Python’s scientific library, for its wide
adoption and active development.

iCluto can cluster using several algorithms. We were successful with some of them. We
aimed to cluster "out of the box"; meaning that we wanted to use SciKit learn’s default
parameters for a given algorithm.

In general there are two main families of clustering algorithms; density based and centroid
based.

5.1 Data pipeline

We chained previously mentioned methods (chapter 4) and created a data processing pipeline
(figure 5.1).

First we load all traces, then we select only good traces (criteria described in 4.6), we choose
what feature we want to cluster. A feature can be histogram of trace or section of trace after
snapback. Than we select principal components and feed it into clustering algorithm.

Traces Good/Bad Feature PCA Clustering

Figure 5.1: iCluto’s data processing pipeline.

Histograms are generated from snapback to limit, so only a relevant part of trace is processed.
Our feature hist32 is a 350 points long histogram that was compressed with PCA to 32 points.

In case of trace64 feature, we took 600 consecutive points after snapback and compressed
them with PCA to 64 points.

We have always fitted PCA on 2139 dataset, because we noticed that it helped with
discovering new clusters and 2D histogram of clusters were clearer.

We are only considering clusters with at least 700 members, that is 2 % of traces of our
datasets, this percentage was chosen arbitrary and is based on long-term experience with these
types of measurements . All clusters with fewer members are merged into cluster labeled -1.

We ran clustering on two datasets. One that contains 4,4’-Bipyridine, which is used as
standard example [26], because at G0 ≈ 10−3.5 and G0 ≈ 10−4 we observe clear peaks at 1D
histogram. We refer to it by number 2139 (figure 5.2a). The other dataset, with reference

19

5. Clustering algorithms and clusters.................................
number 1954, is noisy and is intended as a benchmark, because at previously mentioned
conductance levels the peaks are not clear (figure 5.2b).

(a) : Filtered 2139 dataset. (b) : Filtered 1954 dataset.

Figure 5.2: Histograms of datasets after Good/Bad filtration.

5.2 K–Means

K–Means algorithm [27] uses iterative refinement technique. It initialize N cluster centroids
randomly and assigns nearest traces. Then it recomputes centroids by taking the mean of all
traces in a cluster. Next, traces are assigned to cluster based on their proximity to cluster
centroid. The process repeats until convergence. Because the algorithm is not guaranteed to
find the optimum, SciKit learn repeats random initialization 10 times [25].

The number of clusters is the only parameter to set, which is hard to guess [28]. If the
number of clusters is set to low, we might get some clusters merged into one (see figure 5.3).
On the other hand, too many clusters means that some clusters may become splitted.

(a) : Cluster of tunneling current. (b) : Molecule present.

Figure 5.3: K–Means can differentiate between tunneling current and molecule. But there are
two possible configurations of molecule bonding to gold atom, therefore 3 clusters would be more
suitable.

20

...5.2. K–Means

Having 3 groups, we can distinguish between tunneling current and 2 configurations of
molecule bonding (figure 5.4).

(a) : First configuration. (b) : Second configuration.

(c) : Tunneling current. (d) : First configuration.

(e) : Second configuration. (f) : Faulty cluster.

Figure 5.4: Clustered datasets 1954 and 2139 by K–Means into 3 groups. Only 1954 clustered well.

We also ran K–Means for 20 clusters. We used both histograms and traces as features.
For this many clusters K–Means starts to be very sensitive for niche variance in groups.

21

5. Clustering algorithms and clusters.................................
For example using histograms as input, K–Means was able to group noisy traces together
(see figure 5.5a), which can be marked as bad, because from physical perspective these traces
do not make sense, because peaks in 1D histogram are too low.

Yet we were able to separate clusters with molecule even in our noisy 1954 dataset (figure
5.5b).

(a) : Bad traces with histogram peaks near
OPAMP limit.

(b) : Cluster with molecule.

Figure 5.5: Examples of bad and good cluster from K-Means; selection out of 20 clusters.

We were not able to distinguish between two configurations of molecule bonding with
trace64 feature (figure 5.6), but with this feature space we were able to distinguish between
traces with molecule and without.

Figure 5.6: Clustered with K-Means with trace64 feature space.

22

.................... 5.3. Balanced Iterative Reducing and Clustering using Hierarchies

5.3 Balanced Iterative Reducing and Clustering using
Hierarchies

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [29] is a centroid
based clustering algorithm that builds a feature tree from given data. Branching factor B
and threshold T are the two parameters involved in tree creation. Each leaf of that tree is
called Clustering Feature (CF) and it is essentially a triple

CF = (N, ~LS, SS), (5.1)

where N is number of entries in a node, linear sum ~LS =
∑N

i=1
~Xi and squared sum

SS =
∑N

i=1
~Xi

2.

Branching factor sets the maximum number of subclusters in a node and threshold defines
the maximum ||CF || of leafs. Each non-leaf node contains up to B entries in form of
(CFi, childi), where i = 1, . . . , B and childi is i-th pointer to another node. We insert a new
sample Xi into the root of CF tree and recursively merge with a node of smallest ||CF || after
merging, leaf nodes should satisfy ||CF || < T , if not the leaf is splitted.

After CF tree creation we use AgglomerativeClustering algorithm [25] to obtain final K
clusters.

SciKit learn sets the number of clusters to 3 by default, it also sets branching factor to 50
and threshold to 0.5 [25].

We opted for hist32 feature space, because trace64 feature space failed to sort traces with
and without molecule. (figure 5.7).

Figure 5.7: BIRCH failed clustering with trace64 feature space. There is no considerable peak in
1D histogram in any cluster.

BIRCH was able to discover both geometry configurations in 1954 dataset (see figures 5.8d
and 5.8f). But the distinction between one geometry group and tunneling current in 2139
dataset is not that clear (figures 5.8a and 5.8c).

23

5. Clustering algorithms and clusters.................................

(a) : Molecule in second configuration. (b) : Noisy tunneling current.

(c) : Tunneling current. (d) : Molecule in first configuration.

(e) : Molecule in first configuration. (f) : Molecule in second configuration.

Figure 5.8: Clusters from BIRCH.

24

..................................... 5.4. Unsuitable algorithms

5.4 Unsuitable algorithms

We were not successful with other clustering algorithms. We tried algorithms as follows. Some
of them created many small clusters and failed to recognize traces with and without molecule.
Others failed to find any other cluster and returned only one cluster.

We tried both hist32 and trace64 feature spaces.

5.4.1 Density based clustering

Density Based Spatial Clustering of Applications with Noise (DBSCAN). DBSCAN is
a deterministic algorithm for discovering clusters based their density. It is able to discover
non-convex clusters, its only parameter is eps, lower the eps means higher density clusters. [30]

Parameter eps is a neighborhood ε. If distance between two samples satisfies ||xi− xj || < ε,
those samples are candidates for cluster (see figure 5.9). If there is more than 700 samples
satisfying this condition we assign these samples into a cluster.

Figure 5.9: Example of DBSCAN clustering on a 2D plane with ε visualized, where blue and red
dots are members of cluster and black dots represent noise.

We had to fine-tune eps parameter. We iteratively changed eps in range of 1 to 50. We
settled down on eps = 15, which divided our dataset into two parts. Albeit this division
does not yield meaningful clusters (figure 5.10). Cluster labeled −1 means that those traces
do not belong into a cluster, they are outliers. Cluster 0 contains traces with and without
molecule, therefore we conclude that DBSCAN is not a suitable candidate for break junction
data clustering. For eps < 15 the outlier cluster −1 was too big and based on K–Means and
BIRCH clusters we were not observing clusters with molecule present.

25

5. Clustering algorithms and clusters.................................

Figure 5.10: Clusters from DBSCAN. Cluster labeled -1 contains outliers, which is similar to
cluster 1.

Hierarchy Density Based Spatial Clustering of Applications with Noise. Hierarchy Density
Based Spatial Clustering of Applications with Noise (HDBSCAN) [31] is based on previously
mentioned DBSCAN. It builds a weighted reachability graph across all samples and than it
greedily removes edges with highest weight. A cluster is formed if it contains more than k
connected components.

The algorithm with k = 700 did not find any clusters for neither hist32 and trace64 feature
spaces.

Ordering Points to Identify the Clustering Structure. Ordering Points to Identify the
Clustering Structure (OPTICS) [32] is similar to DBSCAN, it uses a range of ε instead of a
fixed value.

Samples of dataset are processed in such order, that the closest points become neighbors in
the ordering.

We were not able to obtain any cluster from OPTICS algorithm. But fine-tuning parameters
or different feature spaces [12] might give us meaningful clusters.

5.4.2 Centroid based clustering

Mean Shift. Mean Shift algorithm [33] discovers blobs in feature space, it selects centroids
based on density gradient and assign samples to cluster based on centroids proximity.

We were not able to discover any clusters with Mean Shift.

Affinity propagation. Affinity propagation [34] treats each sample as centroid candidate. It
sends availability and reachability messages between samples and based on message traffic
centroids are discovered.

The algorithm returned hundreds of clusters with very similar traces, but no cluster
contained more then 700 members, which does not meet our criteria of minimal cluster size.

26

Chapter 6
iCluto programme

Previous histograms and graphs were generated by iCluto.
iCluto expands the capability of CLUTO (Clustering Toolkit) from Karypis [10], a general

clustering toolkit. The need to manage our datasets led us to develop our own set of tools.
iCluto aims to connect unsupervised and supervised methods and incorporate parallelization
of data processing.

Used language and libraries. iCluto is written in Python 3 [35]; it requires Python 3.8
and higher. It is packaged by Poetry [36], which allows us to deploy iCluto on desktops and
servers easily. We use Torch library [37] for designing and training snapback model (see 4.1.1)
and SciKit Learn [25], a library for scientific data analysis, for all clustering algorithms. All
plots are generated with Matplotlib [38].

iCluto is not a stand-alone application, it is more of a set of tools that one needs to analyze
breaking traces. We will describe each tool in following sections.

6.1 Dataset annotation

In section 4.1.1 we came up with CNN. In order to learn and validate our models, we need
labelled data. This task is very monotonous and time-consuming. For this reason we developed
a GUI application for data annotation. One can notice that our interface (see figure 6.1) can
label many events: bulk, 3,2 and 1 atom, snap start, snap end, limit, presence of molecule,
quality of trace.

Bulk. This is an area of high conductivity, where the change is continuous function and not
discrete, it precedes all other labels. It should be placed some distance before atom plateaus.
This label is reserved for future use; therefore, its specifications are not exact.

Atoms. In section 3.1 we introduced a simplified equation for conductivity (equation 3.3).
We label 3 atoms, 2 atoms and 1 atom are for N = 3, N = 2 and N = 1 respectively.
Label 1 atom is in most cases redundant with Snap start label, but its intended use was for
training a neural network for atom plateaus detection. Atom plateaus are not obvious in
some traces, therefore 3, 2 and 1 atom labels cannot be placed for every trace in our datasets.
We put these labels at the end of the atom plateau.

Snapback. Snapback event is significant, as mentioned in section 4.1. Our first attempt to
detect snapback was done at the end of the event, later on, we have decided to mark the start.

27

6. iCluto programme..
Presence of molecule. Molecule can bridge electrodes only after snapback, we mark its
presence with buttons Molecule Yes and its absence with Molecule No. At the current version
of iCluto we do not use this label.

Quality of trace. This label marks whether we can extract valuable data from the trace.
Traces similar to 2.4 are marked as bad, while the rest are marked good. Most of the bad
traces are filtered out thanks to filters described in section 4.6. We use this label for verifying
whether our criteria for good traces are met.

Figure 6.1: GUI for labeling traces.

Currently, we are using only labels for the start and end of snapback, but we have decided
to include other labels for future use. Even though it is easy to add different labels to our
GUI, having them already implemented will speed up future development.

Our GUI exports labels as JSON files [39]. This format was chosen for its simplicity and
readability. It is also a part of Python’s standard libraries. If needed, we can easily change
any value in a text editor.

28

....................................... 6.2. Model validation

Listing 6.1: Example of labels for trace number 8 from .JSON file.
" 8 " : {

" Molecule " : 1 ,
" Qual i ty " : 1 ,
" Snap s t a r t " : 488 ,
" Snap end " : 511 ,
" Limit " : 1318 ,
" Bulk " : 244 ,
"2 Atoms " : 429
} ,

6.2 Model validation

The first validation of our models is done on the testing dataset. We split our dataset into
training and testing sets; during training, we feed training data into our model, and we let it
do the forward pass and back propagation so it can adjust its weights. Then, we validate its
accuracy on a testing dataset. We have labelled ∼ 600 traces so far, which means our training
dataset has ∼ 480 traces, and the testing dataset has ∼ 120 traces.

We have developed another GUI for inspecting traces one by one (see figure 6.2).

Figure 6.2: Inspecting models described in section 4.1.

29

6. iCluto programme..
6.3 Clustering and Cluster inspection

Clustering. Clustering is done mainly in Jupyter notebooks [40]. This allows us to quickly
change features and clustering parameters without loading traces again. It saves us time
while keeping clustering pipeline organized.

Cluster inspection. The last GUI (figure 6.3) was developed for inspecting individual clusters
trace by trace. This is important; as only from histograms we cannot tell if there are only
traces with molecule present and if some anomaly is present in the cluster.

Figure 6.3: Inspecting cluster and its traces. Two left windows show 2D and 1D histograms of
whole cluster, two right windows show current trace and its 1D histogram. User can list through
clusters and their traces using buttons.

30

Chapter 7
Conclusion

In this thesis we report on successful concept, design and creation of program for data
clustering of conductance traces from break junction experiment.

Molecule bridging electrodes is a pseudo-random phenomena, therefore we need large
quantity of data, files consisting of several GBs, which needs to be analyzed statistically. Only
a fraction of these traces are usable for statistical interpretation.

We have developed iCluto that is capable of clustering large datasets efficiently. Our toolkit
uses modern programming language, it runs fast and it utilize available resources economically.
Clustering algorithms spread the workload across all available CPU cores. Filtering of 36000
traces is done under 2 minutes, clustering, depending on used algorithm, ranges from 30
seconds to 120 seconds. This is an improvement over CLUTO and Breaker programs, where
clustering took hours.

Our development of graphical user interfaces for data annotation and cluster inspection
allows us to inspect more datasets quickly. iCluto’s GUIs can be accessed remotely on a server
or locally on Linux, MacOS or Windows. Both labeling and inspection tools are user friendly.

We proposed a clustering pipeline, that contains filtration and processing blocks. We
ran various clustering algorithms with success, capable separating traces with and without
molecule.

K-Means clustering for 3 clusters is suitable for standard dataset. It is capable of sorting for
two geometry groups and tunneling current for not noisy dataset, but fails for noisy one. For
high number of clusters it can find molecules in both geometry groups even in noisy datasets.

We have demonstrated, that BIRCH algorithm is suitable for noisy datasets, because it
can distinguish between two geometry groups and tunneling current, yet it was not able to
detect them in a standard dataset.

A combination of the two mentioned algorithms might cover the majority of datasets.
We ran iCluto’s clustering pipeline only on two datasets, which limits our tests and

validations. We are still relying on knowledgeable personnel to determine presence of molecule.
From a clustering application iCluto has grown into a break junction research ecosystem.

We sped up clustering by a significant margin and we are able to process big data.

31

32

Chapter 8
Future work

This thesis serves as foundation for future research. The possibilities for further development
are new feature spaces, more labels or fine tuning implemented algorithms.

Features. We discussed hist32 and trace64 feature spaces, but there are more features spaces
to consider. For example we can train encoder and decoder for traces and use the middle
hidden layer as feature space (figure 8.1) [41].

Encoder Features Decoder

Figure 8.1: Encoder and decoder in neural network.

Labels. Obtaining labels is very time consuming. Once we annotate our data, we treat them
as ground truth, which means we use them for training and validation of machine learning
models without questioning their correctness. We rely on persons labeling these data, which
means we want as many as possible knowledgeable researches to participate in data labeling.

Fine tuning. In section 5.3 we noticed that BIRCH can cluster well noisy 1954 dataset but
fails on 2139, this might require fine tuning its branching and threshold parameters. The
same applies for the other algorithms mentioned in section 5.4.

33

8. Future work ..
Supervised clustering. Labeled data would allow us to use Support Vector Machine (SVM)
or an outlier detection, thus adding another filter to our toolkit.

We can train classifiers for not only filtering, but also for molecule recognition. If trained
well, our classifiers could predict the type of molecules in solution.

34

Appendix A
Index of terms

BJ. Break junction is an apparatus for obtaining breaking curvers and measuring conductivity
on a nanoscale level. 3, 9

breaking trace. Breaking trace or conductance traces (or curve) is function of conductivity
versus displacement. 3

bulk. Bulk is a high conductance state, where the change is continuous function not discrete.
In case of wire it is at least 20 atoms in diameter. 3

snapback. Snapback is an event in breaking trace where a sudden loss of conductivity
happens when a wire breaks. 3

FORTRAN. FORTRAN is an acronym for Formula Translator; a programming language. 6.

MCBJ. MCBJ is an acronym for Mechanically Controllable Break Junction. 10

STM-BJ. STM-BJ as an acronym for Scanning Tunneling Microscopy-Based Break Junction.
10

GB. GB is giga byte. 13,31

limit. Limit is an event in conductance trace at G = 10−6. 13

NN. NN is an acronym for Neural network. 14

CNN. CNN is an acronym for Convolutional neural network. 14

Padding. Padding means adding zeros to input vector. 14

Dropout. Dropout is a technique in learning phase of neural network, where we randomly
zeroes elements of NN. 14

indifactor. A scaling factor for distance in Å. 16

OPAMP. OPAMP is an acronym for Operational Amplifier. 16

PCA. Principal component analasys is a common dimensionality reduction technique. 17

35

K–Means. K–Means is a centroid based clustering algorithm. 20

BIRCH. BIRCH is an acronym for Balanced Iterative Reducing and Clustering using
Hierarchies; a centroid based clustering algorithm.23

CF. CF is an acronym for Clustering feature. 23

DBSCAN, HDBSCAN. (H)DBSCAN is an acronym for (Hierarchy) Density Based Spatial
Clustering of Applications with Noise; a density based clustering algorithm. 25

OPTICS. OPTICS is an acronym for Ordering Points to Identify the Clustering Structure;
a density based clustering algorithm. 26

Mean Shift. Mean Shift is a centroid based clustering algorithm. 26

Affinity propagation. Affinity propagation is a centroid based clustering algorithm. 26

GUI. GUI is an acronym for Graphical user interface. 28, 29

SVM. SVM is an acronym for Support vector machine; a classification method in machine
learning. 34

Bibliography

[1] M. Bednařík, Studjní texty k předmětu Fyzika 2. Katedra fyziky, Fakulta elektrotechnická,
České vysoké učení technické v Praze, 2020.

[2] M. Kamenetska, Single molecule junction conductance and binding geometry. Columbia
University, 2012.

[3] A. Aviram and M. A. Ratner, “Molecular rectifiers,” Chemical Physics Letters, vol. 29,
no. 2, pp. 277–283, 1974. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0009261474850311

[4] T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, and C. Nuckolls, “Chemical
principles of single-molecule electronics,” Nature Reviews Materials, vol. 1, no. 3, pp.
1–15, 2016.

[5] H. Sirringhaus, “Device physics of solution-processed organic field-effect transistors,”
Advanced Materials, vol. 17, no. 20, pp. 2411–2425, 2005. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200501152

[6] H. A. Alhadrami, “Biosensors: Classifications, medical applications, and future
prospective,” Biotechnology and Applied Biochemistry, vol. 65, no. 3, pp. 497–508, 2018.
[Online]. Available: https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bab.1621

[7] J. Nejedlý, “The synthesis of π-electron systems suitable for transfer and retention of
charges,” 2021.

[8] J. R. Widawsky, Probing Electronic and Thermoelectric Properties of Single Molecule
Junctions. Columbia University, 2013.

[9] W. Bro-Jørgensen, J. M. Hamill, R. Bro, and G. C. Solomon, “Trusting our machines:
validating machine learning models for single-molecule transport experiments,” Chemical
Society Reviews, vol. 51, no. 16, pp. 6875–6892, 2022.

[10] G. Karypis, “Cluto-a clustering toolkit,” 2002.

[11] J. M. Hamill, X. T. Zhao, G. Mészáros, M. R. Bryce, and M. Arenz, “Fast data sorting
with modified principal component analysis to distinguish unique single molecular break
junction trajectories,” Phys. Rev. Lett., vol. 120, p. 016601, Jan 2018. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.120.016601

37

https://www.sciencedirect.com/science/article/pii/0009261474850311
https://www.sciencedirect.com/science/article/pii/0009261474850311
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200501152
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/bab.1621
https://link.aps.org/doi/10.1103/PhysRevLett.120.016601

[12] N. D. Bamberger, J. A. Ivie, K. N. Parida, D. V. McGrath, and O. L. A. Monti,
“Unsupervised segmentation-based machine learning as an advanced analysis tool for single
molecule break junction data,” The Journal of Physical Chemistry C, vol. 124, no. 33,
pp. 18 302–18 315, 2020. [Online]. Available: https://doi.org/10.1021/acs.jpcc.0c03612

[13] D. Cabosart, M. El Abbassi, D. Stefani, R. Frisenda, M. Calame, H. S. Van der Zant,
and M. L. Perrin, “A reference-free clustering method for the analysis of molecular
break-junction measurements,” Applied Physics Letters, vol. 114, no. 14, 2019.

[14] M. El Abbassi, J. Overbeck, O. Braun, M. Calame, H. S. van der Zant, and M. L. Perrin,
“Benchmark and application of unsupervised classification approaches for univariate data,”
Communications Physics, vol. 4, no. 1, p. 50, 2021.

[15] K. P. Lauritzen, A. Magyarkuti, Z. Balogh, A. Halbritter, and G. C. Solomon,
“Classification of conductance traces with recurrent neural networks,” The Journal
of Chemical Physics, vol. 148, no. 8, p. 084111, 02 2018. [Online]. Available:
https://doi.org/10.1063/1.5012514

[16] T. Fu, Y. Zang, Q. Zou, C. Nuckolls, and L. Venkataraman, “Using deep learning to
identify molecular junction characteristics,” Nano Letters, vol. 20, no. 5, pp. 3320–3325,
2020, pMID: 32242671. [Online]. Available: https://doi.org/10.1021/acs.nanolett.0c00198

[17] J. Ulrich, D. Esrail, W. Pontius, L. Venkataraman, D. Millar, and L. H. Doerrer,
“Variability of conductance in molecular junctions,” The Journal of Physical Chemistry
B, vol. 110, no. 6, pp. 2462–2466, 2006.

[18] J. Moreland and J. W. Ekin, “Electron tunneling experiments using Nb-Sn “break”
junctions,” Journal of Applied Physics, vol. 58, no. 10, pp. 3888–3895, 11 1985. [Online].
Available: https://doi.org/10.1063/1.335608

[19] C. Muller, J. van Ruitenbeek, and L. de Jongh, “Experimental observation of the
transition from weak link to tunnel junction,” Physica C: Superconductivity, vol. 191,
no. 3, pp. 485–504, 1992. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/092145349290947B

[20] “What is NI LabVIEW? Graphical Programming for Test & Measurement — ni.com,”
https://www.ni.com/en/shop/labview.html, [Accessed 29-04-2024].

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” 2015.

[22] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control, 1st ed. USA: Cambridge University Press, 2019.

[23] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "
O’Reilly Media, Inc.", 2022.

[24] T. Werner, Optimalizace. Katedra kybernetiky, Fakulta elektrotechnická, České vysoké
učení technické v Praze, 2023.

https://doi.org/10.1021/acs.jpcc.0c03612
https://doi.org/10.1063/1.5012514
https://doi.org/10.1021/acs.nanolett.0c00198
https://doi.org/10.1063/1.335608
https://www.sciencedirect.com/science/article/pii/092145349290947B
https://www.sciencedirect.com/science/article/pii/092145349290947B
https://www.ni.com/en/shop/labview.html

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] A. Borges, E.-D. Fung, F. Ng, L. Venkataraman, and G. C. Solomon, “Probing the
conductance of the σ-system of bipyridine using destructive interference,” The Journal
of Physical Chemistry Letters, vol. 7, no. 23, pp. 4825–4829, 2016, pMID: 27934052.
[Online]. Available: https://doi.org/10.1021/acs.jpclett.6b02494

[27] J. MacQueen, “Some methods for classification and analysis of multivariate observations,”
1967.

[28] D. J. KETCHEN and C. L. SHOOK, “The application of cluster analy-
sis in strategic management research: An analysis and critique,” Strate-
gic Management Journal, vol. 17, no. 6, pp. 441–458, 1996. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0266%
28199606%2917%3A6%3C441%3A%3AAID-SMJ819%3E3.0.CO%3B2-G

[29] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering method
for very large databases,” SIGMOD Rec., vol. 25, no. 2, p. 103–114, jun 1996. [Online].
Available: https://doi.org/10.1145/235968.233324

[30] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise,” in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[31] L. McInnes and J. Healy, “Accelerated hierarchical density based clustering,” in 2017
IEEE International Conference on Data Mining Workshops (ICDMW), 2017, pp. 33–42.

[32] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering points
to identify the clustering structure,” in Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’99. New York,
NY, USA: Association for Computing Machinery, 1999, p. 49–60. [Online]. Available:
https://doi.org/10.1145/304182.304187

[33] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp.
603–619, 2002.

[34] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.1136800

[35] “Welcome to Python.org,” Apr. 2024, [Accessed 28-04-2024]. [Online]. Available:
https://www.python.org/

[36] S. Eustace and The Poetry contributors, “Poetry: Python packaging and dependency
management made easy.” [Online]. Available: https://github.com/python-poetry/poetry

https://doi.org/10.1021/acs.jpclett.6b02494
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0266%28199606%2917%3A6%3C441%3A%3AAID-SMJ819%3E3.0.CO%3B2-G
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0266%28199606%2917%3A6%3C441%3A%3AAID-SMJ819%3E3.0.CO%3B2-G
https://doi.org/10.1145/235968.233324
https://doi.org/10.1145/304182.304187
https://www.science.org/doi/abs/10.1126/science.1136800
https://www.python.org/
https://github.com/python-poetry/poetry

[37] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell,
D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison,
Z. DeVito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang,
K. Kalambarkar, L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. Luk,
B. Maher, Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, M. Suo,
P. Tillet, E. Wang, X. Wang, W. Wen, S. Zhang, X. Zhao, K. Zhou, R. Zou, A. Mathews,
G. Chanan, P. Wu, and S. Chintala, “PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation,” in 29th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, Apr. 2024. [Online]. Available:
https://pytorch.org/assets/pytorch2-2.pdf

[38] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[39] “JSON — json.org,” https://www.json.org/json-en.html, [Accessed 29-04-2024].

[40] “Project Jupyter — jupyter.org,” https://jupyter.org, [Accessed 28-04-2024].

[41] Y. Komoto, J. Ryu, and M. Taniguchi, “Machine learning and analytical methods for
single-molecule conductance measurements,” Chem. Commun., vol. 59, pp. 6796–6810,
2023. [Online]. Available: http://dx.doi.org/10.1039/D3CC01570J

https://pytorch.org/assets/pytorch2-2.pdf
https://www.json.org/json-en.html
https://jupyter.org
http://dx.doi.org/10.1039/D3CC01570J

	Motivation
	Introduction
	Understanding our data
	Clustering
	Desired goals
	Related works

	Break junction experiment
	Principles of break junction experiments
	Execution of break junction experiment
	Mechanically Controllable Break Junction
	Scanning Tunneling Microscopy-Based Break Junction

	Technical parameters

	Data processing
	Neural networks
	Convolutional Neural Network for snapback detection
	Curating output of CNN

	Detecting limit
	Extracting useful data from traces
	Indifactor
	Principal component analyses
	Filters

	Clustering algorithms and clusters
	Data pipeline
	K–Means
	Balanced Iterative Reducing and Clustering using Hierarchies
	Unsuitable algorithms
	Density based clustering
	Centroid based clustering

	iCluto programme
	Dataset annotation
	Model validation
	Clustering and Cluster inspection

	Conclusion
	Future work
	Index of terms
	Bibliography

