
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Cost Efficient Wireless Sensor Network for
Long Term Data Acquisition

Tomáš Reichl

Supervisor: Ing. Ladislav Sieger, CSc.
Study Program: Cybernetics and Robotics
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499130 Personal ID number: Reichl Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Cost efficient wireless sensor network for long term data acquisition

Bachelor’s thesis title in Czech:

Bezdrátová senzorová síť pro dlouhodobý sběr dat

Guidelines:

Research available technologies for low-power wireless sensor networks. Compare the suitability of these technologies
for a mode of operation in which wireless sensors conserve battery power by reducing the wireless communication time
frame while maintaining sufficient communication range for use in large buildings. Based on this research, choose a
suitable development board and implement a laboratory prototype of a wireless sensor network for long-term temperature
and humidity monitoring, focusing on a long battery life (which shall be experimentally evaluated) and low unit cost.

Bibliography / sources:

NIKOUKAR, Ali; RAZA, Saleem; POOLE, Angelina; GÜNEŞ, Mesut; DEZFOULI,
Behnam. Low-Power Wireless for the Internet of Things: Standards and Applications.
IEEE Access. 2018, vol. 6, pp. 67893–67926. issn 2169-3536. Available from doi:
10.1109/ACCESS.2018.2879189.
KHALIFEH, Ala’; MAZUNGA, Felix; NECHIBVUTE, Action; NYAMBO, Benny
Munyaradzi. Microcontroller Unit-Based Wireless Sensor Network Nodes: A Review.
Sensors. 2022, vol. 22, no. 22, article no. 8937. issn 1424-8220. Available from doi:
10.3390/s22228937.

Name and workplace of bachelor’s thesis supervisor:

Ing. Ladislav Sieger, CSc. Department of Physics FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________ Date of bachelor’s thesis assignment: 25.01.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Ladislav Sieger, CSc.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor,
Ladislav Sieger, for offering me the op-
portunity to work on this project and for
always being helpful and keeping me mo-
tivated.

I want to also thank Michael Brabec for
sharing with me his experience with WSN
design and helping me refine the basic
concept, and Oxmi Kelruc for helping me
with the ESP32 platform.

I would also like to express my immense
gratitude to my family, who went out of
their way to give me the support and space
I needed.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských prací.

V Praze dne 24. května 2024

..............................
Tomáš Reichl

v

Abstract
The aim of this thesis is to evaluate the
suitability of available wireless communi-
cation technologies for use in ultra-low
power wireless sensor networks for long-
term data acquisition. It focuses on envi-
ronment monitoring applications, which
tend to prioritize high reliability and en-
ergy efficiency over frequency of measure-
ment.

The possibility of using inexpensive and
wide-spread IoT chipset platforms is
looked-into. Although often not being op-
timized for use in ultra-low power designs,
their low-cost and popularity makes them
a promising option, which may have the
potential to make wireless sensor networks
accessible to a wider range of applications.

A communication protocol based on the
research of available technologies is then
proposed and implemented on a develop-
ment platform for evaluation. The goal
is to create a prototype, on the basis of
which a fully functional wireless sensor
node could be developed if the proposed
technologies prove to be viable.

Keywords: wireless sensor network,
low-power, Bluetooth LE, ESP32-C3,
FreeRTOS

Supervisor: Ing. Ladislav Sieger, CSc.

Abstrakt
Cílem této práce je porovnat vhodnost
různých bezdrátových technologií pro po-
užití v bezdrátových senzorových sítích
určených pro dlouhodobý sběr dat. Zamě-
řuje se na aplikace monitorování prostředí,
ve kterých se upřednostňuje velmi nízká
spotřeba a vysoká spolehlivost na úkor
množství a frekvence měřených dat.

Je zkoumána možnost využití levného
a rozšířeného IoT hardware, který ob-
vykle není optimalizovaný pro tuto apli-
kaci, ale díky své popularitě a nízké ceně
se jedná o velmi atraktivní možnost, která
má šanci zpřístupnit bezdrátové senzorové
sítě pro větší škálu použití.

Na základě výzkumu je navržen komuni-
kační protokol, který je implementován
na vývojové platformě za účelem ověření
jeho vlastnosti. Účelem je vytvořit proto-
typ, na jehož základě bude možné později
založit plně funkční zařízení, osvědčí-li se
navrhované postupy.

Klíčová slova: bezdrátová senzorová síť,
low-power, Bluetooth LE, ESP32-C3,
FreeRTOS

Překlad názvu: Bezdrátová senzorová
síť pro dlouhodobý sběr dat

vi

Contents
1 Introduction 1

1.1 Motivation and goals 2

2 Research 5

2.1 Comparison of WCPs 5

2.1.1 Cellular networks (LTE, 5G) . 5

2.1.2 Low power WANs (LoRa, LTE
Cat-M1, NB-IoT) 6

2.1.3 Bluetooth 6

2.1.4 IEEE 802.11 (Wi-Fi) 7

2.1.5 IEEE 802.15.4 (Zigbee, Thread) 8

2.2 Hardware selection 9

2.2.1 Considered parameters 9

2.2.2 Viable hardware platforms . . 10

2.2.3 Hardware comparison 11

3 Hardware 15

3.1 SoC . 15

3.2 Development board 16

3.3 Device design 17

4 Application architecture 19

4.1 Network architecture 19

4.2 Measurement data storage and
transmission 23

4.3 Reliability 24

5 Firmware and software 25

5.1 Node and server firmware 25

5.1.1 Server operation 25

5.1.2 Node operation 25

5.1.3 ESP-IDF framework 26

5.2 Bluetooth LE stack and
implementation 27

5.2.1 Bluetooth-related terminology 27

5.2.2 Establishing connection (GAP) 28

5.2.3 Data transfer (GATT) 28

5.3 Data readout application 31

6 Experiments and results 33

6.1 Current consumption testing . . . 33

6.2 Communication range testing . . 39

6.3 Testing at different TX power
levels . 41

7 Discussion, conclusion and future
work 45

A Bibliography 49

vii

Figures
3.1 Espressif ESP32-C3 block diagram 16

3.2 Seeed Studio XIAO ESP32-C3
board photo . 17

3.3 WSN node schematic 17

3.4 WSN server and node 18

4.1 Example network communication
diagram . 21

5.1 Example readout application
output plot . 31

6.1 Current consumption of a node . 34

6.2 Current consumption of a node –
communication cycle detail 35

6.3 Current consumption of a node –
measurement cycles enabled 36

6.4 Current consumption of a server 37

6.5 Current consumption of a server –
communication detail 38

6.6 Signal strength drop across a
corridor . 40

6.7 Signal strength drop across
different floors 40

6.8 Signal strength drop across a
corridor for different TX power
levels . 42

Tables
2.1 Comparison of wireless SoCs . . . 12

2.2 Estimated daily electric charge
consumption of wireless SoCs 13

5.1 GATT services, characteristics and
descriptors . 29

6.1 Average current and electric charge
consumption of nodes and server
with default parameters 39

6.2 Comparison of average electric
charge consumption at different TX
power levels . 41

6.3 Estimated daily electric charge
consumption of a WSN node 43

viii

Chapter 1

Introduction

Wireless sensor networks (WSN) have in recent years become an indispensable tool for
many applications, including but not limited to environmental monitoring, portable
medical devices and industrial sensors [1][2]. Compared to many traditional wired
sensor systems, WSN nodes require less or no static infrastructure, can be powered
with batteries for off-grid operation and may perform data processing in the node.
WSNs have enabled new applications and are often being used in place of wired sensors
due to their ease of installation.

Since WSNs may be deployed in many different ways with widely differing requirements,
many wireless communication protocols (WCP) have been adapted or developed for
use in WSNs. Many of these are also being used in consumer electronics, the Internet
of Things (IoT) or mobile robotics [3][4].

When selecting the optimal WCP for a particular application, there are many different
aspects that need to be considered. Some of the most important are:

. communication range,. data rate and latency, and. power consumption.

The microcontroller (MCU) platforms, on which WSN nodes are built, have significantly
evolved in recent years. Thanks to advances in manufacturing and instruction set
architecture (ISA) development, microcontrollers have been getting more power efficient,
while the move from legacy 8-bit to modern 32-bit architectures like ARM or RISC-V
has greatly expanded the features and improved the performance of the microprocessors.

Thanks to increased popularity of IoT, microcontrollers and wireless transceivers
supporting one or more WCP are now often combined onto integrated modules or, in
some cases, into one IC package or even a single silicon die. This usually improves cost

1

1. Introduction ...
efficiency, requires less space in the finished product and has the potential to simplify
development.

1.1 Motivation and goals

The focus of this thesis are wireless sensor networks used for long-term data acquisition.
These are used in many applications which require a large amount of measurements
gathered by multiple sensors over a long time period.

Due to the long term nature of these measurements in combination with the sensors
being possibly located in hard to reach areas, it is crucial for the WSN nodes to
have exceptional energy efficiency. This requirement influences not only the selection
of utilized technologies – WCP, microcontroller and sensor type – to maximize energy
efficiency, but also requires the mode of operation to be optimized. Unlike IoT, where
all devices are usually permanently connected the network to allow accessing any device
at any time, the communication in this WSN should only connect to each other at
predetermined intervals. This will allow the nodes to turn off the radio for most of
their operation, which should result in a significant efficiency increase, since wireless
transmission is usually one of the highest power consuming operations of a WSN node.

Communication range is the second most important parameter to consider. In a usual
application of this WSN, it is expected that the maximum distance between adjacent
nodes should be on the magnitude of tens of meters, with possibly one or two walls
blocking the line of sight between the two nodes.

Cost efficiency is another significant factor. Minimizing the unit cost of the nodes
as well as the operational cost (cost of setup and installation as well as required
maintenance) would make the finished product competitive against existing solutions.
The unit cost needs to be addressed in the prototyping process by choosing cost-efficient
components that, however, should not compromise on functionality and reliability.

The network topology is not strictly predetermined. There should be one central unit –
a server – that collects measurement data from all nodes in the network and allows
the user to read it out. Whether the nodes connect directly to the server in a star
topology, or whether the nodes connect to each other in a mesh topology (or any other
configuration) is not important, as long as the transmission is reliable and efficient.

Data rate is not especially crucial in this application, since the measurement data is
not expected to be particularly large. However, the network may be configured to
collect measurements over longer periods and then send them all at once, which could
disqualify some WCPs with a particularly low data rate.

The goal of this thesis is to find suitable technologies and implement a prototype
of the WSN described above. There should be a comparison of available WCPs
and their suitability for the application. A suitable hardware platform that meets

2

.................................... 1.1. Motivation and goals

the application’s requirements should then be selected. Using a development board for
the chosen hardware platform, a working prototype should then be implemented. This
prototype should be used to prove, whether the selected WCP and hardware platform
are, in fact, suitable for the application. However, the prototype itself is not required
to be a fully functional WSN, only the basic functionality of the network needs to be
implemented to allow for testing and evaluation of the chosen solution.

3

4

Chapter 2

Research

2.1 Comparison of WCPs

Nowadays, many different wireless technologies are used in WSNs and IoT. In this
section, I will describe the most popular wireless communication protocols and compare,
which one has the most advantageous properties for this application.

2.1.1 Cellular networks (LTE, 5G)

Cellular networks are wide area networks (WAN) that have been developed for wireless
voice calls and simple text messaging. As their data transmitting capabilities were
further developed for mobile Internet access, they also started to be used by other
portable devices for data connectivity. Nowadays, LTE and 5G networks have achieved
speeds on par with DSL broadband and are often used in fixed installations [5].

Cellular networks rely on signal coverage from fixed transceivers (cellular radio towers),
which each serve many devices in a multi-kilometer radius. They usually operate on
licensed frequency bands between approximately 800 and 2000 MHz. Access to cellular
network is a paid service.

High data throughput and almost universal coverage of mobile networks have made
them a popular option for IoT and sensor networks, which need to send a lot of data
and/or require real-time remote access [4].

While the virtually unlimited range of WANs is advantageous for sensor networks since
it effectively removes any limitation on maximum distance between nodes or from
node to central, this is unnecessary for my application, where all sensor nodes will
be concentrated on a small area. The relatively high power consumption of LTE and
the dependence on a network operated by a third party with the associated monetary
costs makes this option unsuitable for my WSN.

5

2. Research...
2.1.2 Low power WANs (LoRa, LTE Cat-M1, NB-IoT)

Since most IoT and WSN applications tend to prioritize energy efficiency over high
data rate, new WAN technologies have been developed which utilize many power
saving techniques. Some of these are based on existing mobile cell network technologies,
including LTE Cat-M1 and NN-IoT, which are based on 4G LTE. Others, like LoRa
or SigFox, have been developed independently and usually operate on unlicensed
ISM (Industrial, Science, Medical) radio bands, most commonly on 868 / 915 MHz
(depending on region) or 2.4 GHz [5][6].

Although the energy efficiency of Low Power WANs is better than that of conventional
cellular networks, its other properties still make it not an ideal choice for my application.

2.1.3 Bluetooth

Bluetooth is a personal area network (PAN) operating on the 2.4 GHz ISM band.
There are two versions of Bluetooth – Bluetooth Classic and Bluetooth Low Energy
(Bluetooth LE / BLE). Bluetooth (Classic) was originally specified in the IEEE 802.15.1
standard. Currently, Bluetooth is maintained and developed by Bluetooth SIG [7].

Bluetooth Classic is the original Bluetooth protocol, which has been developed for use
with consumer electronics. Every Bluetooth Classic device supports a 1 Mb/s physical
layer (PHY) using FM modulation and may support optional 2 Mb/s or 3 Mb/s PHYs
using PSK modulation.

Bluetooth LE was introduced in Bluetooth Core Specification version 4.0. It has
a mandatory 1 Mb/s PHY and can support an optional 2 Mb/s PHY, both using FM
modulation. To increase effective range and link reliability, devices can implement
optional coded PHYs, which utilize forward correction codes with the 1 Mb/s PHY,
resulting in 500 kb/s (for 2 coded bits per uncoded bit) or 125 kb/s (for 8 coded bits
per uncoded bit) data rates. With increased transmit power of up to +20 dBm, the
Bluetooth LE Long Range devices have a significantly increased range over Bluetooth
Classic [8].

Bluetooth normally operates in point-to-point mode, where a master device connects
directly to a slave device. However, since version 5.0, Bluetooth Mesh is an optional
part of the standard. It is built upon Bluetooth LE using uncoded 1 Mb/s PHY [7][9].

Bluetooth Classic is not suitable for my application due to its relative low range
and energy efficiency. Bluetooth LE is however much more optimized for use in
WSNs and also has longer range. Thanks to the relative simplicity of the protocol
and transceiver hardware which results in good energy efficiency even with increased
transmit RF power [3], Bluetooth LE is suitable for my application.

6

.................................... 2.1. Comparison of WCPs

2.1.4 IEEE 802.11 (Wi-Fi)

Wi-Fi is a local area network (LAN), which operates on the unlicensed ISM bands
of 2.4, 5 or 6 GHz. It is the main wireless LAN technology used in consumer electronics
for Internet access. Its ubiquity makes it one of the most common choices of WCP
in consumer IoT.

Wi-Fi is defined by the IEEE 802.11 family of standards. The most up-to-date version,
at the time of writing, is Wi-Fi 6, which is defined by the IEEE 802.11ax standard
[10][11]. While newer versions of Wi-Fi tend to focus on increasing data throughput
and maximum number of connected devices, they often also bring optimizations to
energy efficiency [12].

Wi-Fi 4 and newer support multiple frequency bands – 2.4 GHz, 5 GHz and (introduced
in Wi-Fi 6E) 6 GHz. The benefit of the higher frequency bands lies in greater data
rates, which are a result of less congestion in this spectrum and wider channel width.
However, communication range at these frequencies is lower compared to 2.4 GHz,
since they are absorbed by solids more than lower frequency signals, and they also
tend to be less energy efficient. This, in combination with lesser need for high data
rates, results in most IoT applications only using the slower 2.4 GHz band.

Wi-Fi is usually operating in infrastructure mode, which means that devices (stations)
connect to a wireless access point (base station) in a star topology. All communication
thus goes through the access point and every device has to be in its range. There
may be multiple access points in one network to extend it, either connected wirelessly
(acting as repeaters) or wired (usually through IEEE 802.3 – Ethernet).

Alternatively, Wi-Fi can also work in ad-hoc mode, where stations connect directly to
each other in mesh topology. The implementation is often vendor specific. The consumer
standard Wi-Fi Direct uses this mode, although it only allows communication between
two devices at a time and cannot connect multiple devices in a mesh network.

The usual range of 2.4 GHz Wi-Fi is tens of meters without obstacles, however, this
significantly depends on transmit power, antenna gain and radiation pattern and if
there are any obstacles in the signal path. Current consumption is similarly dependent
on transmit power and other parameters as well as the specific transceiver’s hardware
design.

Wi-Fi meets many requirements of my WSN, although its energy efficiency is usually
worse than that of Bluetooth Low Energy, which may be a better choice for my
application.

7

2. Research...
2.1.5 IEEE 802.15.4 (Zigbee, Thread)

The IEEE 802.15.4 family of standards specifies the PHY and MAC for ultra-low
power, low data rate WCPs [13]. There are many WCPs which utilize this specification,
including Zigbee and Thread.

Zigbee is an IoT protocol, which is developed by Connectivity Standards Alliance.
Unlike Bluetooth and Wi-Fi, Zigbee was specifically designed for use in embedded
electronics, industrial control and IoT. It aims to be a low-power and low-cost commu-
nication technology with sufficient data-rate for many IoT and WSN applications.

Zigbee can utilize two of the PHYs defined by the IEEE 802.15.4 standard, one
operating at 2.4 GHz ISM band and the other operating at 868 / 915 MHz ISM band.
It is not required for Zigbee devices to implement both PHYs. Power requirements,
communication range and data rate depend on which PHY is used. Data is transmitted
in small packets with maximum data rate ranging between 48 kb/s and 1 Mb/s.

Zigbee supports star, tree and mesh topologies. There are multiple device roles in
a Zigbee network. Each network contains a coordinator which creates and controls
the network and manages its security, storing cryptographic keys. Routers extend
the networking, acting as repeaters (they are not present in star topology networks).
Finally, end devices connect to the network through a coordinator or a router.

Zigbee and other IEEE 802.15.4-based WCPs tend to be very energy efficient, matching
or exceeding Bluetooth LE. Thanks to being developed specifically for low-power
embedded electronics, Zigbee is a suitable WCP for my application.

To summarize, I have ruled out wide area networks from the selection, because many
of their advantages over other WCPs are not applicable to my WSN, which would be
mostly affected by the weaknesses of WAN technologies. This leaves only LAN or PAN
protocols. From those, I have determined, that Bluetooth Low Energy and Zigbee
(and possibly other protocols using the IEEE 802.15.4 standard) are the most suitable
WCPs for my application.

In these comparisons, I have only considered open standards or very wide-spread
technologies. There are other, proprietary WCPs, which may be suitable for my needs;
however, these could bring other disadvantages in the form of smaller user base or
lesser hardware selection and result in higher cost of the solution or possibly licensing
fees.

8

......................................2.2. Hardware selection

2.2 Hardware selection

As was already stated, the aim of this thesis is to create a prototype that will proof
the viability of the selected protocol and communication strategy for the specific use
case of long-term monitoring WSN. There are several key differences from a finalized
product, which include the following.

.The prototype will be based on a development board, while the finished product
would use a custom PCB..There is no need to power the prototype from batteries – powering from USB or
a laboratory power supply is sufficient for the development, while communication
range tests and other operations, which could require the device to be moved away
from static power supplies, can be powered with a USB power bank.. Data storage and readout may be simplified (and less user-friendly) when compared
to the finished product.

2.2.1 Considered parameters

There are several important parameters that need to be considered when selecting the
microcontroller and wireless communication chip (or a combined wireless microcon-
troller or SoC), as well as the development board, on which the WSN prototype will
be built.

Wireless connectivity. As I determined in section 2.1, the selected hardware should
support either Bluetooth LE or Zigbee, or possibly both. Higher maximum supported
RF power level is desirable, as it should allow for longer communication range. External
antenna connector is preferred over a PCB trace antenna.

Sleep and RTC. The WSN nodes will operate in a way, where they will be inactive
for very long periods of time, significantly more in fact, then actively communicating
or measuring. Thus, both the microcontroller and the communication chip need to
be able to enter sleep or powered-down mode, where their power consumption will be
significantly reduced. However, since the node needs to perform periodic measurements
and communicate with other devices in the network, there needs to be a real time
clock (RTC) that can wake the microcontroller. This can either be a part of the
microcontroller or added as an external component.

Power consumption. There are three power modes which are important for our
application. As was already mentioned, the node will spend most of the time in a sleep
mode. The microcontroller will then periodically wake up and take a measurement

9

2. Research...
using a connected sensor – active mode. Then, either after every measurement or after
a longer period, the wireless communication will be enabled and the measured data
will be transmitted through the network – radio mode. The total power consumption
depends on the amount of time the node spends in each of these modes – this is not
entirely possible to accurately predict, since it may depend on many different factors
including the relative distance of nodes, the obstacles between them, distance of hops
from node to server and, of course, the measurement and communication periods,
which can differ between applications.

Firmware development and library support. Due to the relative complexity of imple-
menting wireless communication, IoT applications are usually built upon a framework
or a library, which implements parts of the WCP’s layer stack and provides the user
with an API to use in their application. Also, if the framework has good third party
library support, it has the potential to greatly simplify development. In my application,
this would be especially useful for implementing support for new sensors. Since many
of the currently available frameworks are built specifically for one hardware platform,
this will also be considered when choosing the microcontroller.

2.2.2 Viable hardware platforms

I have looked at a number of BLE and Zigbee wireless platforms and have selected the
following 3 as viable options.

Texas Instruments SimpleLink CC13xx / CC26xx. These are low-power wireless
microcontrollers. They are based on various ARM Cortex M-series CPU cores and
a variety of wireless cores. All CC13xx microcontrollers include a sub-1 GHz radio
with support for IEEE 802.15.4 (including sub-1 GHz Zigbee) and various other
protocols. All CC26xx, but also some CC13xx microcontrollers, support Bluetooth LE.
Additionally, some CC13xx and CC26xx microcontrollers also support 2.4 GHz Zigbee
[14].

These microcontrollers can be programmed using Texas Instruments’ SimpleLink Low
Power F2 SDK. It is a C framework built on FreeRTOS and Texas Instruments’ own
ZigBee and Bluetooth stacks [15].

Espressif ESP32-C Series. This is a family of wireless SoCs based on single-core
RISC-V microprocessors. The ESP32-C2 (ESP8684) and ESP32-C3 (ESP32-C3 and
ESP8685) SoCs support Wi-Fi 4 and Bluetooth 5 LE [16][17], while the ESP32-C6
supports 2.4 GHz IEEE 802.15.4 (Zigbee and Thread) in addition to 2.4 GHz Wi-Fi 6
and Bluetooth 5 LE [12].

All microcontrollers in the ESP32 family are programmed using the Espressif IoT
Development Framework (ESP-IDF) [18]. This SDK is based on a modified version of
FreeRTOS and wireless stacks based on existing open source solutions – BlueDroid or

10

......................................2.2. Hardware selection

MyNewt NimBLE for Bluetooth and ZBOSS for Zigbee. In addition to low-power and
low-cost oriented ESP32-C and ESP32-H Series SoCs, which use single core RISC-V
CPUs, the framework also supports single- or dual-core Tensilica Xtensa processors
used in the original ESP32 or the ESP32-S Series SoCs.

Nordic Semiconductor nRF52 Series. This is a family of Bluetooth LE SoCs based
on single-core ARM Cortex-M4 CPUs. In addition to Bluetooth 5.4 LE, some SoCs in
this series also support 2.4 GHz IEEE 802.15.4 (Zigbee and Thread) [19].

Nordic supports these SoCs through their nRF Connect SDK [20][21]. It is built on the
Zephyr RTOS, Nordic Semiconductor’s own Bluetooth LE stack and ZBOSS ZigBee
stack. In addition to this, nRF52 Series is also supported by Apache MyNewt, an open
source RTOS and framework which includes the NimBLE Bluetooth LE stack.

2.2.3 Hardware comparison

I have selected 5 candidates from the hardware platform selection presented in section
2.2.2. In table 2.1, I list datasheet values of the parameters which I determined to be
significant for my application in section 2.2.1.

Both Texas Instruments MCUs are a great low power option, having the most energy
efficient CPU from the selection. Nordic Semiconductor nRF52840 consumes more
current, approximately 50 to 85 % more for equivalent operations (higher CPU current
consumption would be partially caused by higher clock speed as compared to the
TI MCUs). Both Espressif chips have far higher datasheet current consumption as
compared to both other vendors.

When it comes to radio capabilities, both Espressif chips support much higher maximum
TX power than their competitors – +21 dBm for ESP32-C3 or +20 dBm for ESP32-C6.
Also, their RX sensitivity is on par or slightly better than the other 2.4 GHz capable
SoCs. The higher TX power is one of the causes of the significantly higher current
consumption which, at the highest supported TX power, is more than 10× that of
the competitors.

To find out whether the lower energy efficiency of the Espressif chipsets would signifi-
cantly affect the application, I calculated the daily electric charge consumption1 for
the following example scenario:

.measurements every 15 minutes, which require 10 seconds of CPU active time
each,

1I use electric current and electric charge instead of power and energy in my calculations, because
every component of the system is powered by 3.3 V outputted by a voltage regulator, whose efficiency
might change depending on the current consumption of the entire system. Thus, in my opinion, using
current and charge consumption is more appropriate in this application.

11

2.Research...

SoC

Bluetooth LE ZigBee Current consumption

TX max
power
(dBm)

RX sen-
sitivity2

(dBm)

PHY
freq.
band

TX max
power
(dBm)

RX sen-
sitivity
(dBm)

CPU
active
(mA)

Deep
sleep3

(µA)

Radio
RX

(mA)

Radio TX
0 dBm
(mA)

Radio TX
max po-

wer (mA)

Texas
Instruments

CC1312R [14]
— — sub-1

GHz +12 -110 2.894 2.78 5.8 8.0 24.9

Texas
Instruments

CC2652R [22]
+5 -97 2.4

GHz +5 -99 3.394 3.2 6.9 7.0 9.2

Espressif
ESP32-C3 [17] +21 -97 — — — 175 5 ∼ 606 ∼ 1006 ∼ 2906

Espressif
ESP32-C6 [12] +20 -98.5 2.4

GHz +20 -104 195 7 607 928 2778

Nordic Se-
miconductor

nRF52840 [19]
+8 -95 2.4

GHz +8 -100 6.39 3.16 10.1 10.8 16.4

Table 2.1: Comparison of wireless SoCs

21 Mb/s PHY, 0.1 % bit error rate (BER)
3With RTC and memory retention enabled
448 MHz CPU clock, running CoreMark, peripheral power consumption not included
580 MHz CPU clock, active, all peripheral clocks disabled
6No value for Bluetooth LE radio current provided – value is approximated from Wi-Fi current consumption and values from ESP32-C6 datasheet
7Datasheet value includes CPU idle current at 160 MHz with all peripheral clocks disabled, which was subtracted to get this value
8Datasheet value includes CPU active current at 160 MHz with all peripheral clocks enabled, which was subtracted to get this value
964 MHz CPU clock, running CoreMark from flash, not using DC/DC regulator

12

......................................2.2. Hardware selection

. communication every 3 hours, which requires 30 seconds of RX and 10 seconds
of TX (at 0 dBm TX power to allow for an equivalent comparison) with CPU
active for the whole time, and. deep sleep in between.

This is a rough estimate made before the application architecture was known, so
the chosen time durations are not representative of the actual mode of operation. Also,
this only compares the SoC electric charge consumption and not that of the sensor and
supporting components. However, since the power requirements of the final application
greatly depend on the environment and how the mode of operation of the network is
configured, this estimate was deemed sufficient to compare the SoCs to each other.

SoC
Estimated daily
electric charge

consumption (mAh)

Texas Instruments CC1312R 1.65

Texas Instruments CC2652R 1.90

Espressif ESP32-C3 12.38

Espressif ESP32-C6 12.97

Nordic Semiconductor nRF52840 3.23

Table 2.2: Estimated daily electric charge consumption of wireless SoCs

As can be seen in table 2.2, the electric charge (energy) consumption of Espressif chips
is approximately 3× to 6× higher than that of other chips. However, if the SoCs
were to be powered by a typical 18650 lithium-ion battery with 3000 mAh capacity,
the Espressif chipsets would (without accounting for other components and power
inefficiencies) still run for over 200 days. Given that current consumption of other parts
of the node would be virtually identical regardless of which SoC is chosen, the difference
between the SoCs is likely to be much smaller.

The Texas Instruments SoCs have the best energy efficiency from the selection. However,
I have decided against using them. One reason was the cost of development boards
– I could only find official development boards for these chipsets, which cost over
1000 CZK and would make the development fairly expensive since multiple boards are
needed for testing. Also, compared to the software development options for the other
chipsets, I have found the Texas Instruments’ SimpleLink SDK to be fairly closed
down with far less community material being available.

The Espressif chipsets are a very popular option for hobbyists interested in IoT and
other wireless projects. Thus, over the years, a large community has formed, providing
help in forums and releasing third party libraries for use with the ESP-IDF framework.
Similarly, although arguably to a lesser extend, the Nordic Semiconductor’s chipsets
are also a popular option in this space.

13

2. Research...
In the end, I have decided to use the Espressif ESP32-C3 in my application’s proto-
type for the following reasons. Despite the negative impact on its energy efficiency,
the ESP32-C3’s radio capabilities for Bluetooth were the best out of the selection –
it has the highest maximum TX power and second best RX sensitivity. Also, not only
the chipset and modules (which integrate SoC, memory, antenna or antenna connector
and supporting components), but also the first party development boards are very
inexpensive. As an example, the ESP32-C3-MINI-1U-H4 module costs around 50 CZK
and the ESP32-C3-DevKitC-02 development board costs under 200 CZK.

I have considered the Espressif ESP32-C6 as a potentially better option, since it also
has Zigbee in addition to BLE. However, because the selection and purchasing of
development boards for this project was done in spring of 2023, only shortly after
the ESP32-C6 became widely available on the market, almost no development boards
for it were available at the time, and none of the few available ones supported external
antenna connector. Also, at the time, the support for the chipset in the ESP-IDF
framework was incomplete, making it impossible to evaluate all of its features.

The Nordic Semiconductor nRF52840 seems to also be a very good option. However,
I found the Espressif chipsets to have more useful features for the prototyping process.
Also, both the chipsets and development boards are more expensive than the Espressif
ESP32-C family.

I have selected the Espressif ESP32-C3 SoC for its combination of good RF performance,
well-documented SDK with great community support, low cost and sufficient energy
efficiency. The SoC supports Bluetooth LE and Wi-Fi WCPs, I will be using Bluetooth
LE due to its better energy efficiency.

The official development framework, ESP-IDF, supports two Bluetooth stacks. I have
decided to use the Apache MyNewt NimBLE stack, since it is less resource intensive
than the other option, BlueDroid. Also, this would allow me to port the wireless
protocol from my application with relatively few changes to any SoC supported by
Apache MyNewt, including the Nordic Semiconductor nRF52 Series.

As a development board, I have chosen the Seeed Studio XIAO ESP32-C3. This is
a very compact development board, which can also be used as an SoC module. It was
one of the few development board options with an external antenna connector available
at the time of purchase (spring of 2023), while also being inexpensive and including
additional features which could potentially be useful for my application.

14

Chapter 3

Hardware

In this section, I will describe the hardware architecture of the selected development
board and of the WSN node prototype.

3.1 SoC

The ESP32-C3 has a single RISC-V core that can run at either 80 MHz or 160 MHz
generated from an external crystal clock or internal fast RC oscillator. It includes
400 KiB of SRAM and 8 KiB of RTC memory, which can retain data in deep-sleep
mode. Some variants of the ESP32-C3 SoC also include 4 MiB of on-package flash
memory, up to 16 MiB of external QSPI flash is also supported.

The selected development board uses the ESP32-C3FN4 chip variant which includes
the aforementioned 4 MiB of on-package flash and has an on-board 40 MHz crystal
oscillator as well as a low-speed 32.768 kHz crystal oscillator for RTC [17][23].

The SoC supports multiple low-power modes. In figure 3.1, the block diagram shows
which modules are powered in either the light or deep sleep modes. While this prototype
does not use the sleep modes, the power consumption in these modes will be tested,
since they will be crucial to achieve sufficiently low energy consumption in the final
application.

The SoC can be programmed without the use of a dedicated programmer thanks to
a bootloader contained in the ROM memory. The CPU can be programmed using
UART or the internal USB Serial / JTAG controller [24]. My application also uses this
integrated controller for serial communication between the server and a data-readout
device.

15

3. Hardware ..

Figure 3.1: Espressif ESP32-C3 block diagram [17]

3.2 Development board

Seeed Studio XIAO is a series of miniature development boards. They come with
USB-C connectors and a unified 20 × 17.5 mm footprint with 14 pins. In addition to
2.54 mm pin headers for use as a development board, these pins are extended into
castellated holes, which allow for the development board to be soldered to a custom
PCB to be used as a microcontroller module [25].

The XIAO ESP32-C3 board includes an LDO linear voltage regulator and a Li-Ion
battery charger. The ESP32-C3FN4 SoC and all supporting components are placed
under an RF shield. Li-Ion battery (in a 1S configuration) can be connected by soldering
wires to pads on the underside of the board (or, when used as a wireless SoC module,
by reflow soldering the pads on the module to pads on a custom PCB) [26]. The USB-C
is connected to the integrated USB Serial / JTAG controller of the ESP32-C3 and can

16

..3.3. Device design

Figure 3.2: Seeed Studio XIAO ESP32-C3 board photo [26]

be used for flashing the SoC [23][17]. An antenna can be connected to a U.FL coaxial
connector (a flexible PCB antenna is included with the board). There are also two
push switches (boot mode and reset) and a charging indicator LED.

3.3 Device design

Design of the prototype devices is very simple, as can be seen on the schematic in figure
3.3 and on the photo in figure 3.4. Since most of the required components is already
present on the development board, the only required external component is a sensor.
In the prototype, a DHT11 temperature and humidity sensor (U2) is connected to
GPIO 3 of the ESP32-C3. It is powered with 3.3 V from the board’s linear regulator.

Both server and node use the same firmware. To switch between server and node roles,
GPIO 2 is pulled up internally and when shorted to ground using a jumper link (JP1),
the board switches to server role.

Figure 3.3: WSN node schematic

17

3. Hardware ..

Figure 3.4: WSN server (left) and node (right)

18

Chapter 4

Application architecture

The main features of this application are the following:

. collecting measurements using a sensor connected to a node,. transmitting data from node to server,. storing measured data, and. transferring the data to a readout device.

In this chapter, I will look in greater detail into the data transmission and storage
features, since they influence the application architecture the most. I will describe
the decisions I have made when designing these aspects of the applications, which I had
to consider in the implementation of the device firmware and accompanying software.

Also, because of the application’s requirements for long term reliable operation with
minimal maintenance, I will briefly discuss the consideration I had to make when
designing and implementing the firmware.

4.1 Network architecture

The network architecture design has been largely influenced by the properties and
limitations of the selected WCP – Bluetooth LE. In this section I will only mention
those that were important for the design process – see section 5.2 for a more detailed
description of Bluetooth LE.

Due to the communication range and network structure flexibility requirements of my
application, combined with the relatively short range of Bluetooth LE, simple star
networks cannot be used. Other topologies, which allow for other nodes in the network

19

4. Application architecture
to relay information to the central from nodes, which are not in its range, should be
used. The most common options are tree and mesh networks.

Since ESP32-C3 supports the optional Bluetooth Mesh extension of Bluetooth LE
which allows for simple implementation of a mesh network, I considered using it for my
application. However, after further research and testing of the ESP-BLE-MESH stack,
several disadvantages of Bluetooth Mesh became apparent that made it unsuitable for
my application.

. Small message size – due to only using the GAP profile to transmit data, a single
Bluetooth Mesh message is limited to 11 bytes of payload. The protocol supports
message segmentation, which however decreases the payload size to 10 or 9 bytes.
The maximum message size is then increased to 384 bytes, but the data rate is
very low due to segmentation, which creates a significant overhead of headers sent
with each message [9].. No Bluetooth LE Long Range support – Bluetooth Mesh only supports the uncoded
1 Mb/s PHY and cannot utilize the significantly increased range of the coded
PHY variants.. Limited low power support – Bluetooth Mesh supports low-power devices that
disconnect and sleep to save power. However, to keep the network running, they
always need to be in range of a permanently powered device which stores and
relays messages for them. Otherwise, the network would need to be restarted
every time devices need to connect and, due to the relatively high complexity of
the Bluetooth Mesh protocol and security system, this operation would greatly
increase connected time and thus energy consumption.

I have therefore decided to use a protocol built on top of “traditional” point-to-point
Bluetooth LE connections using the connection-oriented GATT protocol. Due to
the specific requirements of my application I have designed this protocol from scratch
with focus on simplicity, reliability and extendibility.

My protocol creates a tree network with a single server device and many node devices,
that other nodes, which are out of range of the server, can connect to. The network
naturally forms layers based on their distance from the server. Two types of data are
transmitted through the network:

. configuration changes (including server’s current time for RTC synchronization),
which propagate from server to nodes, and.measurement data, which propagates from nodes to server.

As was already mentioned, the wireless network is powered down most of the time to
save energy and only starts up periodically, the devices using RTCs to stay synchronized.

20

.....................................4.1. Network architecture

After the network starts up, the nodes are in peripheral mode, advertising their presence,
while the server is in central mode and scans for nearby nodes (see section 5.2.1 for
explanation of Bluetooth-related terminology that I use in this thesis).

After the server finds an advertising node, it connects to it, sends configuration data
to it and retrieves stored measurement data. This includes measurements collected
by the node and also measurements from nodes on lower network layers. After
the transmission is completed, the node switches from peripheral to central mode,
effectively turning into a server. It then proceeds to scan for nearby nodes, pass on its
configuration and collect measured data. In figure 4.1, there is an example of data
transmission in a network with a server and 3 nodes in 2 layers.

Possible connection Active connection

DATA X (t = -n)
Measurement data from node X,

which is n cycles old
(the most up to date data the
node has from this source)

SERVER
scanning

NODE 1
advertising

NODE 3
advertising

NODE 2
advertising

Layer 1 Layer 2

DATA 1 (t = -1)
DATA 2 (t = -1)
DATA 3 (t = -2)

DATA 1 (t = 0)
DATA 3 (t = -1)

DATA 2 (t = 0)

DATA 3 (t = 0)

SERVER

NODE 1

NODE 3
advertising

NODE 2
advertising

Layer 1 Layer 2

DATA 1 (t = -1)
DATA 2 (t = -1)
DATA 3 (t = -2)

DATA 1 (t = 0)
DATA 3 (t = -1)

DATA 2 (t = 0)

DATA 3 (t = 0)

Figure 4.1: Example network communication diagram

21

4. Application architecture

SERVER
scanning

NODE 1
scanning

NODE 3
advertising

NODE 2
advertising

Layer 1 Layer 2

DATA 2 (t = -1)
DATA 1 (t = 0)

DATA 3 (t = -1)

DATA 2 (t = 0)

DATA 3 (t = 0)

SERVER

NODE 1

NODE 3

NODE 2

Layer 1 Layer 2

DATA 2 (t = -1)
DATA 1 (t = 0)

DATA 3 (t = -1)

DATA 2 (t = 0)

DATA 3 (t = 0)

SERVER
scanning

NODE 1
scanning

NODE 3
scanning

NODE 2
scanning

Layer 1 Layer 2

DATA 1 (t = 0)

DATA 3 (t = -1)
DATA 2 (t = 0)

DATA 3 (t = 0)

Figure 4.1: Example network communication diagram (continued)

22

.......................... 4.2. Measurement data storage and transmission

One disadvantage of this approach is that measurement data only propagates towards
the server by one layer per communication cycle – for example, if a node is 3 layers deep,
the most up-to-date data the server has from the node is at least 2 communication
cycles old. However, since the intended application is long term monitoring, it was
assumed that this would not be an issue. Also, this only affects data transmission and
not the configuration change messages, which propagate through the entire network
in one cycle. This approach helps with decreasing communication time each cycle
and greatly simplified the protocol.

4.2 Measurement data storage and transmission

Due to the architecture of the communication protocol and, generally, the mode of
operation of the application, nodes need to be able to store measurement data before
it can be sent to the server.

The data needs to contain information about its origin and when it was collected. Since
the application could be adapted to any type of sensor and there could theoretically be
different types of sensor nodes present in the same network, the type of measurement
needs to be included with the data. A checksum should be calculated to guarantee
that the data was not damaged in storage or during transmission.

I have decided to use the node’s SoC’s Bluetooth hardware MAC address as the node’s
origin ID, as it is reasonable to expect that there will not be two nodes with identical
MAC addresses in any network. Since the data collection occurs periodically and there
may be multiple measurement cycles in between communication cycles (and thus more
than one measurement per file or message), timestamp of the batch measurement start
as well as the measurement cycle period is stored and sent with the data.

In the prototype, data is stored in the same way in both the node and the server – on
a portion of the main flash memory of the SoC. However, this would not be an optimal
solution for a final product, since, in the selected board, an ESP32-C3 variant with
on-package flash is used, which cannot be replaced when degraded from writes. In
the final application, a separate flash memory should be used to store the measurements.
Also, since the ESP32-C3 has 8 KiB of RTC SRAM, which can retain data even in
deep sleep, it should be more than sufficient for most applications to use it for data
storage in nodes in place of non-volatile flash memory.

To transfer the data from server to a readout device (a PC), the prototype server uses
UART via the integrated USB-UART bridge. A Python script communicates with
the server via specifically formatted plain text messages and plots the measured data.

23

4. Application architecture
4.3 Reliability

Microcontrollers have very limited resources when compared to modern desktop com-
puters or servers. While these more powerful computer systems usually contain many
different mechanisms for ensuring long-term stability and reliability, the options avail-
able to low-power embedded systems are very limited. Instead of extensive software
checks or system redundancy, simpler and more energy efficient solutions are required.

While RAM capacity has traditionally been quite limited on microcontrollers, modern
IoT SoCs usually have at least 256 KiB of RAM to facilitate communication stacks,
which can be quite resource intensive. Still, with relatively lightweight protocols and
stacks like Bluetooth LE and NimBLE, user applications are not nearly as memory
limited as was the case in the past.

However, even though memory capacity may not be an issue, heap fragmentation,
which occurs with frequent dynamic memory allocation and deallocation, can cause
the system to run out of memory due to no continuous blocks of heap being left after
a long enough run time. Thus, it is preferable to avoid dynamic allocation when
possible.

One solution is to have a number of statically allocated memory blocks or buffers,
which the application itself allocates to its components when needed. This is one of the
reasons why higher level languages like Python, which is supported on the ESP32-C3
platform via the MicroPython or CircuitPython frameworks, are not optimal for
long-term operating embedded applications like mine.

Another technique used to increase reliability are watchdog timers. These can be used
to restore the function of the system in case of a freeze-up caused by a programming
bug, unexpected inputs or other non-standard situations. A watchdog timer can reset
the CPU if it itself is not reset in time, which would happen regularly in normal
program operation.

24

Chapter 5

Firmware and software

5.1 Node and server firmware

As was already mentioned, the node and server share the same firmware, because they
share a significant amount of functionality.

5.1.1 Server operation

After the server is initialized, it waits for time synchronization. This is done through
the data readout application and is further described in section 5.3.

After synchronization is done, the application runs two tasks in parallel.

One is the server process, which scans for advertising nodes. When it finds one, it
connects to it as described in section 4.1, sending it configuration and current time
and reading measurement data off of it. This measurement data is then saved in a file
stored on a SPIFFS partition on the system’s main flash memory. The process runs
indefinitely, with no timeouts and unlimited tries.

The second process periodically checks, whether there is any new data stored in
the SPIFFS partition. If yes, it reads the data and sends it to the readout application
over serial.

5.1.2 Node operation

When started, the node initializes the temperature and humidity sensor DHT11
connected to it. After that, it starts advertising for an unlimited time for the purpose
of time synchronization. When a server or another node connects to it, it writes
configuration and current time into the node.

25

5. Firmware and software.....................................
After the time is synchronized and the node is configured, the application waits for
the next cycle. There are two types of cycles – measurement cycles, when a measurement
is taken by the node, and communication cycle, where after taking the measurement
the network starts communicating to transmit the measured data. The period as well
as the ratio of measurement and communication cycles can be configured. All nodes
in the network are synchronized with a 1-second precision to ensure they all start
communicating at the same time.

When a cycle starts, the application reads out measurement data from the connected
sensor and writes it to a file on a SPIFFS partition on the system’s main flash memory.
The specifics of data storage are described in section 4.2.

If the current cycle is a communication cycle, the node then starts the node process,
which advertises its presence, allowing server or other nodes to connect to the node,
reading out its data. This is described in section 4.1. Then, either after the data was
successfully read out or the connection times out, the node service stops and the server
process is started. In this mode, the node acts similarly to the server, scanning for
other nodes and trying to read out data from them. This way, the measurement data
can propagate through the network from outermost layers to the server. The node
only spends limited time in this mode, after which it waits for the next cycle.

5.1.3 ESP-IDF framework

ESP-IDF is the official framework for the Espressif ESP32 family of SoCs. It supports
C and C++ programming languages and comes with several open-source libraries,
some of which I use in my application. It has a flexible configuration system which
can set most of the system parameters and include or exclude some optional libraries.
Its build system is based on CMake [27].

ESP-IDF utilizes a modified version of FreeRTOS as its real-time operating system.
It supports preemptive task scheduling and multiple ways of secure task-to-task
communication and resource management, including queues, mutexes and semaphores.

The firmware for my application is written in C17 using ESP-IDF v5.2.1. It uses no
third party library other than those included with ESP-IDF.

My code uses parts of example code provided by Apache and Espressif, which is
licensed under Apache license [18] and is attributed in my application’s source code.
Also, examples by Espressif are used, which have been released into public domain
under Creative Commons CC0.

26

............................ 5.2. Bluetooth LE stack and implementation

5.2 Bluetooth LE stack and implementation

For my application, I have selected the Apache Mynewt NimBLE Bluetooth LE stack,
which is included in ESP-IDF. As compared to the other included stack, Bluedroid,
NimBLE is less resource intensive and, thanks to being a part of the multi-platform
Apache Mynewt RTOS / framework, would allow the Bluetooth-related code to be
relatively easily ported to another platform, if desired.

Bluetooth LE applications mainly utilize two Bluetooth profiles (sets of protocols) [7]:

.Generic Access Profile (GAP), which is used to broadcast information about
the device for purposes of discovery (advertising) and establishing connection
between devices, and

. Generic Attribute Profile (GATT), which are used to transmit information between
two connected devices using a hierarchical structure of services, characteristics
and descriptors.

5.2.1 Bluetooth-related terminology

There are two sets of roles defined by the two Bluetooth LE profiles.

GAP defines four roles: broadcaster, observer, central and peripheral. The broadcaster
and observer roles will not be used in my application, since they do not support
connections. Central is a device which actively scans for peripheral devices and can
establish a connection with one or more of them. Peripheral devices advertise their
presence when they are ready to be connected to.

GATT defines two roles: server and client. When a client connects to a server, it can
access (read or write) its characteristics and descriptors.

Although generally independent of each other, the central GAP role is usually linked
with the client GATT role and the peripheral GAP role with the server GATT role.
However, in my application (as described in chapter 4.1), the device I call “server”
uses the cental and client GAP and GATT roles respectively, while the “node” devices
start with peripheral and server roles and later switch to the central and client roles.

To avoid confusion, from now on, I will be using the term “central” to describe both
the GAP central role and the GATT client role, and the term “peripheral” for both
the GAP peripheral role and the GATT server role.

27

5. Firmware and software.....................................
5.2.2 Establishing connection (GAP)

In my application, peripherals broadcast advertising packets to signify they are available
for connection – they have not sent data yet in this communication cycle. Centrals
scan for the advertisement packets and connect to any advertising node they find.

The advertisement packet in my application contain the device name, TX power level
and supported device features. The packets can also contain other data, including
information required for pairing and custom data, which may for example communicate
information about the device before establishing connection or may be used for device
identification or verification.

In my application, to simplify the debugging process, nodes are discovered by matching
the device name from the advertising packet. Further, no pairing is used, which would
enable encryption. In the final application, out-of-bounds pairing should be used, which
will enable any two devices in the network to pair and establish a secure connection
thanks to a single security key which can be loaded into them when they are added to
the network.

5.2.3 Data transfer (GATT)

GATT is based on services, which define a specific function of the device. There are
several standardized services, for example the Blood Pressure Service or the Media
Control Service. Each service has a 128-bit UUID, while the standardized services also
have a shortened 16-bit UUID (which can also be purchased for use with a custom
non-standardized service) [28].

While services by themselves do not contain any value, each service has at least one
characteristic. Characteristics have a data value that can be read or written (depending
on the application) and may also contain one or more descriptors. Characteristics are
usually used to transfer data, while descriptors should contain additional information
about the data – for example, a characteristic may contain a measured value with
a descriptor containing the unit. Same as services, characteristics and descriptors also
have a 128-bit UUID.

The communication protocol, whose basic architecture was described in section 4.1,
uses GATT to send data between pairs of devices (node and server or two nodes),
propagating it through the network. The GATT services, characteristics and descriptors
implemented in my application are listed in table 5.1.

28

............................ 5.2. Bluetooth LE stack and implementation

Attribute UUID Permission Description

Node service
e4a4f6ce-5d66-

4468-9e6e-
58eac601aad2

— Measurements

Data
characteristic

4ab41637-0bdc-
400d-b1f1-

2f3f489e110b

R Read measured data

W Request data at
given index

Count
descriptor

7de6febc-a0c8-
404e-a4d2-

6a53e0ec358b
R Count of available

measured data files

Confirm
descriptor

dff2573f-bc93-
4efe-a3bf-

da770125529d
R

Perform read to
confirm data was
received correctly

Config service
bc3b6bd1-d1b0-

4965-8500-
06b50a5dde7e

— Configuration and
time synchronization

Time
characteristic

ccaa1cec-8804-
4c27-8cbd-

bd6aa54e4010

R Read current time
W Set current time

Values
characteristic

5ea04c21-345f-
4483-85c1-

04883cb9e229
W Update device

configuration

Table 5.1: GATT services, characteristics and descriptors

There are two services representing the two types of data which are transmitted
through the network: measurement data are transmitted through the Node service
and the configuration changes and real time are transmitted using the Config service.
The following description illustrated the way data is exchanged after a central (server
or node which has already transmitted data) connects to a peripheral (node which has
not yet transmitted data)...1. Central runs GATT service discovery on peripheral to find all supported services,

characteristics and descriptors...2. Central sets the maximum transmission unit (MTU) to 256 B (from 23 B default)...3. Central writes current Unix timestamp as a 64-bit signed integer to the Time
characteristic of the Config service, peripheral confirms write...4. Central writes its configuration, which contains settings for communication cycle
synchronization and connection timeouts, to the Values characteristic of the Config
service, peripheral confirms write...5. Central reads peripheral’s data count as a 16-bit unsigned integer from the Count
descriptor of the Data characteristic of the Node service.

29

5. Firmware and software.......................................6. If there is no data left (everything was already read or peripheral has 0 data
count), skip to step 10. Otherwise, central requests data by writing its index as a
16-bit unsigned integer to the Data characteristic of the Node service, peripheral
confirms write...7. Central then reads from the Data characteristic of the Node service to receive
a set of measurements. As described in section 4.2, this contains information
about measurement type and count, its origin (the MAC address of the node that
measured the data), Unix timestamp of first measurement, measurement interval
in seconds, and the measured data points. In this prototype, the data points are
a pair of single-precision float values representing temperature (◦C) and relative
humidity (%)...8. To confirm that data was successfully received, central reads from the Confirm
descriptor of the Data characteristic of the Node service. This causes the node to
delete the data from its memory, marking is as sent...9. Back to step 6....10. If there is no data left to read, central disconnects from peripheral, sending the HCI
disconnect code 0x13 – Remote user terminated connection.

If any error occurs during communication or an invalid operation is performed, including
attempting to read data before setting the index, requesting non-existent or already
deleted data or sending incorrect length data, the connection can be terminated by
either the central or the peripheral. HCI disconnect code, which describes the nature
of the error, is sent.

If transmission ends with an error, it is retried. Nodes only try to reconnect three times
before skipping the current transmission cycle and the scanning operation has a set
timeout. Server is configured to try for an unlimited period of time with unlimited
attempts.

If the peripheral receives code 0x13, marking successful transmission, it stops advertising
and switches to central mode.

30

................................... 5.3. Data readout application

5.3 Data readout application

For the purposes of reading data off of the server in the prototype application, I have
created a Python 3 script which communicates with the server through serial interface
over the ESP32-C3’s integrated USB-UART bridge.

Because there are logs being sent over this serial line as well, the application uses
specifically formatted text strings instead of sending raw binary data, which could
potentially cause issues with serial monitor applications. Currently, there are two such
data strings implemented:

. Current time string, starting with !@CTIME.Measurement data string, starting with !@DATA

Upon startup, the script connects to the provided serial interface and sends a current
time string. This synchronizes the server’s RTC and allows it to propagate current
time to the nodes.

A plot window with temperature and relative humidity subplots is created. When
the script receives a measurement string, it adds the data to the plot, dynamically
updating it. Example output plot can be seen in figure 5.1.

24.0

24.5

T
e
m

p
e
ra

tu
re

 (
°C

)

19
 1

9:
11

19
 1

9:
12

19
 1

9:
13

19
 1

9:
14

19
 1

9:
15

19
 1

9:
16

19
 1

9:
17

19
 1

9:
18

19
 1

9:
19

19
 1

9:
20

Time (s)

40
.0

42
.5

45
.0

47
.5

H
u

m
id

it
y
 (

%
)

D4:F9:8D:05:AC:E2

EC:DA:3B:AA:CE:D6

D4:F9:8D:03:D3:56

Figure 5.1: Example readout application output plot

31

32

Chapter 6

Experiments and results

After implementing the firmware for the server and nodes, I have performed a series of
tests to evaluate the network’s reliability, power consumption and communication range.
Unless otherwise stated, the network was configured with the following parameters:

. 60 s measurement cycle period, 1 communication cycle every 4 cycles;. 15 s advertising timeout of node in peripheral role, up to 3 connection retries;. 10 s scanning timeout of node in central role;.+9 dBm TX power level;. 160 MHz CPU clock and 80 MHz flash clock.

The testing was done on a server and up to three nodes. The network was run in
various conditions and configurations to find possible issues and ensure stable long-term
operations.

After debugging the firmware, I have performed a series of stability tests, the longest
of which has run for over 10 hours. In all of these tests, the network performed as
expected with no dropped or lost data and with no unhandled errors affecting the
operation of the devices.

6.1 Current consumption testing

In this section I will go through a series of tests, showing and explaining the measured
current consumption plots. At the end of this section, I will give approximate current
charge (energy) consumption figures for the common operations.

33

6. Experiments and results
I measured the current consumption of the devices with a FNIRSI FNB-48 USB power
meter. I collected the data using an unofficial data logger program [30], which logs the
measurements with a period of 10 ms.

It is important to note that the measured current consumption is of the entire system –
including the DHT11 sensor connected to nodes.

To measure the node’s current consumption during communication I have changed the
network’s parameters so that communication occurs on every 60 s cycle. In figure 6.1,
the current consumption of a node is plotted with labels marking different parts of
the node’s operation.

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

50

60

70

C
u

rr
e
n

t
(m

A
)

A

B

C

D E

Node current consumption

Figure 6.1: Current consumption of a node

After start-up, label A marks the node advertising and waiting for time synchroniza-
tion. This consumes on average 44.1 mA.

Because the entire flash memory of the node was erased before it was programmed for
this test run, it was necessary to initialize the SPIFFS file system where measurement
data is stored. This operation is marked B , the node consumes on average 31.2 mA
over 20.4 s for a total charge consumption of 18 µAh.

After the initialization is complete, the node waits for the upcoming cycle, the waiting
period is labeled C . Because I have not implemented sleep in the prototype, the CPU
stays active while being idle, consuming on average 17.9 mA.

34

................................. 6.1. Current consumption testing

In this example, communication occurs every cycle. Labels D and E mark the wireless
transmission – in the first case the node just communicates with the server, while in
the second case the node also connects with another node in a lower network layer.
These two examples are shown in more detail in figure 6.2.

85 90 95 100 105 110
Time (s)

10

20

30

40

50

60

Cu
rre

nt
 (m

A)

Node current consumption (server only)

(a) : Communicating with server only

205 210 215 220 225 230
Time (s)

10

20

30

40

50

60

Cu
rre

nt
 (m

A)

Node current consumption (server and node)

(b) : Communicating with server and another
node

Figure 6.2: Current consumption of a node – communication cycle detail

The communication is visibly divided into two parts. First, the node is in peripheral
mode and advertises for up to 15 s. The actual length of advertising and subsequent
communication depends on the order in which the nodes are being discovered by
the server or another node – in my testing I saw the time measurements to be grouped
around 3.7 s and 6.8 s, which would correspond with the node being first and second,
respectively, to be connected to by the central. The average current during the read
operation was 43.2 mA. This resulted in approxite charge consumption of 44 µAh or
81 µAh depending on the order of connection.

In the second part of the communication cycle, the node switches into central mode
and proceeds to scan for 10 s. The average current was 49.6 mA, which results in
average charge consumption of 138 µAh per communication cycle.

When an advertising node in peripheral mode is found, the node in central mode
connects to it and reads out its measurement data. This can be identified on the cur-
rent consumption plot by a peak greater than 60 mA followed by decreased current
consumption for around 3 seconds. I measured average consumed charge of 43 µAh,
which is very close to the consumption of a node in peripheral mode.

35

6. Experiments and results
While the node is in central mode, it can sequentially connect to multiple peripheral
nodes, because the scanning restarts after every successful communication. Since
the connection can be established anytime during the 10 s of scanning and will not
happen equally to every node in the system, the actual energy consumption depends
heavily on the spatial configuration of the network.

I have done another test with the default configuration to measure current consumption
during measurement cycles, the current plot is in figure 6.3.

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

50

60

70

C
u

rr
e
n

t
(m

A
)

Node current consumption (with measurement-only cycles)

A
B

C

Figure 6.3: Current consumption of a node – measurement cycles enabled

As expected, the measurement cycles labeled A and B consume far less energy than
the communication cycle labeled C . The first measurement cycle requires slightly
more power, because a new file is created in the SPIFFS file system on the flash memory.
The measurement cycles last 0.6 s with an average electric charge consumption of 3.4
µAh, the new file creation (which happens after every communication cycle) consuming
extra 0.2 µAh.

A notable difference between figures 6.1 and 6.3 is the missing initialization of SPIFFS
(marked B in 6.1), because the SoC’s flash memory was not cleared before the second
test run.

I have also recorded power consumption of a server, plot of which is in figure 6.4.
For this test, I have again changed the network’s parameters so that communication
occurs on every 60 s cycle and I used two nodes for the testing.

36

................................. 6.1. Current consumption testing

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

50

60

70
C

u
rr

e
n

t
(m

A
)

Server current consumption

A

B C

Figure 6.4: Current consumption of a server

After the server synchronizes its RTC over serial, it starts scanning for nearby nodes,
which is labeled A in the plot. The average current consumption of the server was
50.4 mA, very close to a scanning node in central mode.

There are two types of connection events visible in the current consumption plot.
The short synchronization when node first connects to a network is labeled B ,
while C marks the synchronized communication cycles when measurement data is
sent to the server. In figure 6.5, these two types of communication are shown in more
detail.

Both of the plots contain the specific current consumption curve that could also be seen
with node in central mode in figure 6.2b. A notable difference is that the communication
during synchronization is slightly shorter due to no measurement data being sent –
initial setup takes on average 2.6 s, while communication cycle takes 3.1 s per connected
node. The average consumed electric charge is 33 µAh for initial setup and 39 µAh
per node for communication cycle.

Compared to the node, the server’s overall current consumption was not nearly as
optimized in the prototype, with the server scanning for nodes the entire time it is
running. Because scanning is by far the most energy intensive operation, in the final
application, a better strategy would need to be implemented.

37

6. Experiments and results

45.0 47.5 50.0 52.5 55.0 57.5 60.0
Time (s)

35

40

45

50

55

60

65

70

Cu
rre

nt
 (m

A)
Server current consumption (node setup)

(a) : Initial node synchronization

65.0 67.5 70.0 72.5 75.0 77.5 80.0
Time (s)

35

40

45

50

55

60

65

70

Cu
rre

nt
 (m

A)

Server current consumption (measurements)

(b) : Communication cycle

Figure 6.5: Current consumption of a server – communication detail

As a final test, I measured the development board’s current consumption when the SoC
is in deep sleep mode. I used a simple test program that periodically goes to sleep and
wakes up after a few seconds using RTC.

When powering the board through USB, I have measured an average current consump-
tion of 205 µA in deep sleep, which is much higher than the datasheet figure of 5 µA
for the SoC by itself. I suspect most of the difference is consumed by the charging
status LED on the development board, which is lit at a low intensity (visibly flickering)
when the board is powered via USB with no battery attached.

To confirm this theory, I soldered a Li-Ion battery to the battery pads on one of
the boards. To measure the current, I used a Pro’sKit MT-1710 multimeter in its
µA range, which has a datasheet resolution of 0.1 µA and accuracy of ±1.0 % of
reading ±1 µA [31]. With this setup, I measured 38.4 µA current consumption during
sleep.

In table 6.1, I have summarized the current or electric charge consumption of various
operations that I measured and calculated.

In repeated measurement, the tolerance of the results was within 10 %.

38

................................. 6.2. Communication range testing

Operation Current Electric charge
consumption Note

CPU idle 17.9 mA — —
Deep sleep 38.4 µA — —

Node – measurement — 3.4 µAh / cycle —

Node – communication
in peripheral mode 43.2 mA

44 µAh / cycle when connected to
first by the server

81 µAh / cycle when connected to
second by the server

Node – scanning
in central mode 49.6 mA ≥ 138 µAh / cycle

at least 10 s
of scanning per

communication cycle
Node – communication

in central mode — 43 µAh / connected
device

connection to nodes
on a lower layer

Server – scanning 50.4 mA — —

Server – communication —

33 µAh / connected
device

initial node
synchronization

39 µAh / connected
device

communication
cycle

Table 6.1: Average current and electric charge consumption of nodes and server with
default parameters

6.2 Communication range testing

To measure communication range, I used the signal strength reported by the server
when it discovers a node. Because this network is intended mainly for indoor operation,
I measured signal strength drop in a long corridor and across multiple floors to simulate
signal strength loss from both distance and obstacles. The measurements were done in
a residential apartment building constructed from reinforced concrete panels.

For these tests, I shortened the communication cycle period to 15 s with no measurement
cycles in between, the advertising timeout was shortened to 10 s and the scanning
timeout was set to 1 s. The TX power level was kept at +9 dBm. Every measurement
was repeated 3 times in separate test runs.

For distance testing without obstacles, a node was placed on one end of a corridor and
the server was moved in 5 m increments down the corridor. In figure 6.6, the signal
strength drop is plotted.

To test signal loss due to obstacles, the node was placed in a residential floor access
corridor and measurements were taken on the floors above in the same spot. The floor
to ceiling height of the corridor is 2.5 m and the floor is 270 mm thick. In figure 6.7,
the signal strength drop is plotted. The test run was ended if more than 3 in the first
5 measurements on the particular floor ended with a communication error.

39

6. Experiments and results

0 5 10 15 20 25 30 35
Distance (m)

110

100

90

80

70

60

50

40

30

20
RX

 si
gn

al
 st

re
ng

th
 (d

Bm
)

Signal strength drop across a corridor
Test run 1
Test run 2
Test run 3

Figure 6.6: Signal strength drop across a corridor

0 1 2 3 4 5 6 7 8
Number of floors above sensor

110

100

90

80

70

60

50

40

30

20

RX
 si

gn
al

 st
re

ng
th

 (d
Bm

)

Signal strength drop across different floors
Test run 1
Test run 2
Test run 3

Figure 6.7: Signal strength drop across different floors

40

.............................. 6.3. Testing at different TX power levels

As can be seen from the graph, the signal can pass through multiple reinforced concrete
walls or tens of meters of free space without any issues. This confirms that Bluetooth
LE has suitable range for the application.

6.3 Testing at different TX power levels

I have repeated some of these tests with different TX power levels to see their impact
on the communication range and energy efficiency of the nodes.

I have decided to test at 0 dBm because, from the range testing, it was clear that
+9 dBm offered higher range than would be required by many applications. At 0 dBm,
I would also be able to put the measured current consumption in context with
the datasheet values in table 6.1.

The ESP32-C3 SoC supports up to +21 dBm TX power for Bluetooth LE [17]. However,
in the Czech Republic, the maximum radiated power at the 2.4 GHz frequency band
is legally limited to 100 mV e.i.r.p., or +20 dBm [32]. Because the ESP32-C3 has
TX power configurable in steps of 3 dBm, I selected +18 dBm as the value to be tested.

The power testing for 0 dBm and +18 dBm was done with a server and a single node.
Current consumption during scanning was identical with +9 dBm due to scanning
not depending on transmission. In table 6.2, the average electric charge consumption
of operations which transmit data is compared.

Operation
Average electric charge

consumption at power level

0 dBm +9 dBm +18 dBm

Node – communication
in peripheral mode

43 µAh
/ cycle

44 µAh
/ cycle

47 µAh
/ cycle

Server – initial
node synchronization

32 µAh
/ device

33 µAh
/ device

34 µAh
/ device

Server – communication
during cycle

39 µAh
/ device

39 µAh
/ device

40 µAh
/ device

Table 6.2: Comparison of average electric charge consumption at different TX power levels

As can be seen, the difference caused by transmission power level is negligible except
for node communicating in peripheral mode due to the measurement data that is
being transmitted by the node. If a larger amount of data was to collect in the node’s
memory, the difference would be even greater. It can also be seen that the power
difference between 0 dBm and +9 dBm is smaller, than between +9 dBm and +18 dBm
– this is expected, because the power level is measured on a logarithmic scale.

41

6. Experiments and results
I tested the communication range of all three power levels in the corridor. Identical
configuration was used and for all power levels 3 separate runs were performed. Average
RX signal strength is compared in a plot in figure 6.8.

0 5 10 15 20 25 30 35
Distance (m)

110

100

90

80

70

60

50

40

30

20

R
X

 s
ig

n
a
l
st

re
n
g
th

 (
d
B

m
)

Signal strength drop across a corridor for different TX power levels

0 dBm TX power

+9 dBm TX power

+18 dBm TX power

Figure 6.8: Signal strength drop across a corridor for different TX power levels

In this test, with 0 dBm TX power the communication started dropping out at 15 m
node to server distance, at notably higher signal strength compared to the drop-outs
in the test of signal loss across different floors.

The difference in received signal power between +9 dBm and +18 dBm TX power
levels was notably higher than 9 dBm, namely 15 dBm on average. This could be due
to imperfect measurement, imprecise TX power regulation in the SoC, as well as due
to the unpredictable way the RF signal might have propagated through the corridor.

With the data I measured using the prototype, I could refine the daily energy consump-
tion estimate I made in section 2.2.3. The following parameters were kept the same
between the two estimations:

.measurement cycle period of 15 minutes,. communication cycle period of 3 hours, and. deep sleep to save power.

42

.............................. 6.3. Testing at different TX power levels

While deep sleep was not implemented in the prototype, it was tested separately and
would certainly be utilized in the final application. I have added 3 s of idle time to
each measurement operation to compensate for the wake-up time.

I decided to use +9 dBm TX power – its slight increase in energy consumption over
0 dBm is outweighed by its significantly longer range. I have decided to set node
peripheral timeout to 30 s and node central timeout to 10 s.

I calculated the power consumption for the following scenario: a node in first layer,
which contains 9 nodes in total – on average, it is connected to after 4 previous
nodes (the energy consumption of this will be interpolated from the measured values).
The node then, on average, connects to 2 other nodes in second layer (the number
could change depending on whether another nearby node in the range of the lower-layer
nodes finishes its communication sooner).

In table 6.3 the estimated daily electric charge consumption of the described network
based on my design is calculated.

Operation Daily count Daily time
required (s)

Daily electric charge
consumption (mAh)

Measurement 96 384 1.8
Communication in
peripheral mode

after on avg. 4 nodes
8 152 1.8

Communication in
central mode

with on avg. 2 nodes
8 49 0.6

Scanning until
timeout 8 80 1.1

Deep sleep — 85735 0.9
Total — 86400 6.2

Table 6.3: Estimated daily electric charge consumption of a WSN node

In section 2.2.3 and table 2.2, I have estimated the daily current consumption of the SoC
by itself to be 12.38 mAh – almost exactly double the currently estimated value. This
was caused in large part due to largely overestimating the current consumption of
the radio. The datasheet values are specified for a 100 % duty cycle, but, in my
application, the radio is utilized at a much lower percentage due to the small size
of most exchanged messages.

Even though the value in table 6.3 might be underestimated, there are still areas which
could be optimized, and so, in my opinion, a daily energy consumption on this order
of magnitude could realistically be achieved using a solution based on my prototype.

43

44

Chapter 7

Discussion, conclusion and future work

In this thesis, I proposed a cost-efficient wireless sensor network for long-term data
acquisition. I designed a prototype device, on the basis of which a fully featured WSN
could be developed. I then tested the prototype’s communication range and power
consumption to evaluate the design’s suitability for its intended application.

By researching currently available wireless technologies and weighing their strengths
and weaknesses in the context of an ultra-low power WSN, I have selected two wireless
communication protocols which seemed to be the best suited for the application’s
requirements – Bluetooth LE and Zigbee.

I have decided to base the nodes on the Espressif ESP32-C3 wireless SoC because
of its exceptional RF performance, well-documented SDK and very low cost of both
the SoC and its development boards. Compared to competing solutions from other
manufacturers, including Texas Instruments SimpleLink series and Nordic Semiconduc-
tor nRF52 series, the considered parameters of the Espressif ESP32-C3 were on-par or
better, except for its notably higher current consumption. Calculations of estimated
daily energy consumption however showed that the difference, while significant, would
not make the ESP32-C3 unusable for the application and, in my opinion, its other
advantages outweighed this flaw.

Since the selected SoC does not support Zigbee, I based the network’s communication
protocol on Bluetooth LE. In the design of the protocol, I focused on simplicity,
reliability and extensibility. The network consists of a server and a number of nodes
which operate in synchronized cycles, collecting measurements and then connecting
together to send the measurement data to the server. The network has a tree topology
with the server as its root and the nodes separated into layers by their physical
distance from the root. The nodes located closer to the server relay data from more
distant nodes, which may be outside the server’s communication range. To simplify
the design and lower energy consumption, the measurement data only propagates
through the network by one layer towards the server per communication cycle. This
was considered to be an acceptable trade-off for the intended application of long-term
monitoring, where the increased latency is not likely to pose an issue.

45

7. Discussion, conclusion and future work..............................
The firmware was implemented in the C programming language, using the ESP-IDF
development framework, FreeRTOS real-time operating system and Apache MyNewt
NimBLE Bluetooth LE stack. To read out data from the network, a Python 3 script
was created, which communicates with the server via its integrated USB-UART bridge.

In testing, the network proved to be reliable and was able to achieve better energy
efficiency than was at first estimated. Due to a relatively low data bandwidth utilization,
the RF current consumption was significantly lower than the datasheet values, which
are given for 100 % network utilization. After measuring the energy consumption of all
common operations, I was able to update my initial energy consumption estimate with
real-world values, proving that a final node based on this design could have a run-time
of more than 200 days on a single charge of a common 3000 mAh 18650 Li-Ion battery.

Thanks to the simple and highly configurable design of the WSN, large networks
consisting of more than 100 nodes can be constructed. The tree topology of the network
helps to keep the communication cycles shorter by aggregating data in nodes closer to
the server and allowing multiple parallel connections between nodes further from it.

Bluetooth LE proved in my testing to have sufficient range for more spread-out
networks. I have tested at three different TX power levels, of which the medium value
of +9 dBm proved to have a very good range of more than 35 m and to be able to
pass through multiple reinforced concrete walls, while consuming only marginally more
power compared to the lower TX power level of 0 dBm.

In the prototype, not all features of the final WSN were implemented. The omitted
features, which would need to be implemented in the final product, include encryption,
wireless communication with readout device and on the fly configuration of the network.
The selected solution however proved itself to be a viable basis for development of
a fully featured product. The network protocol and data storage format are ready to
be extended to support multiple types of sensors in addition to the currently supported
temperature and humidity sensor DHT11.

The ESP32-C3 platform is very well suited for sensor applications thanks to sup-
porting many digital interfaces including SPI, I2C and CAN-compatible automotive
interface [17]. The size of the flash image of the current firmware is 654 KiB, or
65.4 % of the currently assigned 1 MiB flash program partition, which allows for many
more sensor drivers and other features to be implemented. If necessary, the program
partition can be expanded to use a larger portion of the 4 MiB system flash memory,
meaning that memory limitation is unlikely on this platform.

The SoC proved to be sufficiently power efficient, however, the prototype does not
implement most of the power saving features which I suggested in the thesis. Some were
tested on their own to prove they could be used to achieve the energy efficiency required
for the intended application. Of these features, the most important to implement is
deep sleep when the node is idle while waiting for a next cycle. This also requires special
hardware design considerations to minimize any energy loss in the power delivery both

46

..............................7. Discussion, conclusion and future work

during and outside deep sleep periods, which could significantly decrease the battery
runtime.

Throughout this thesis, I have suggested a number of features which could be im-
plemented in the final product to make it a very capable and competitive solution.
The extensible design of the application has a great potential to find many uses if it is
implemented into a cost-efficient and user-friendly device.

47

48

Appendix A

Bibliography

1. MOSTEFA, Benfilali; ABDELKADER, Gafour. A survey of wireless sensor net-
work security in the context of Internet of Things. In: 2017 4th International
Conference on Information and Communication Technologies for Disaster Man-
agement (ICT-DM) [online]. 2017, pp. 1–8 [visited on 2024-04-15]. Available from
doi: 10.1109/ICT-DM.2017.8275691.

2. KHALIFEH, Ala’; MAZUNGA, Felix; NECHIBVUTE, Action; NYAMBO, Benny
Munyaradzi. Microcontroller Unit-Based Wireless Sensor Network Nodes: A
Review. Sensors [online]. 2022, vol. 22, no. 22, article no. 8937 [visited on 2023-
07-12]. issn 1424-8220. Available from doi: 10.3390/s22228937.

3. NIKOUKAR, Ali; RAZA, Saleem; POOLE, Angelina; GÜNEŞ, Mesut; DEZ-
FOULI, Behnam. Low-Power Wireless for the Internet of Things: Standards and
Applications. IEEE Access [online]. 2018, vol. 6, pp. 67893–67926 [visited on 2023-
07-11]. issn 2169-3536. Available from doi: 10.1109/ACCESS.2018.2879189.

4. CHEN, Wu; LIU, Jiajia; GUO, Hongzhi; KATO, Nei. Toward Robust and Intelli-
gent Drone Swarm: Challenges and Future Directions. IEEE Network [online].
2020, vol. 34, no. 4, pp. 278–283 [visited on 2023-06-22]. issn 1558-156X. Available
from doi: 10.1109/MNET.001.1900521.

5. AKPAKWU, Godfrey Anuga; SILVA, Bruno J.; HANCKE, Gerhard P.; ABU-
MAHFOUZ, Adnan M. A Survey on 5G Networks for the Internet of Things:
Communication Technologies and Challenges. IEEE Access [online]. 2018, vol. 6,
pp. 3619–3647 [visited on 2024-04-15]. Available from doi: 10.1109/ACCESS.
2017.2779844.

6. MOUSAVI, Seyed Mehdi; KHADEMZADEH, Ahmad; RAHMANI, Amir Masoud.
The role of low-power wide-area network technologies in Internet of Things: A
systematic and comprehensive review. International Journal of Communication
Systems [online]. 2022, vol. 35, no. 3, e5036 [visited on 2023-06-22]. Available from
doi: 10.1002/dac.5036.

7. Bluetooth Core Specification [online]. Bluetooth SIG, 2016. Version 5.0 [visited
on 2023-07-15]. Available from: https://www.bluetooth.com/specifications/
specs/core-specification-5-0/.

49

https://doi.org/10.1109/ICT-DM.2017.8275691
https://doi.org/10.3390/s22228937
https://doi.org/10.1109/ACCESS.2018.2879189
https://doi.org/10.1109/MNET.001.1900521
https://doi.org/10.1109/ACCESS.2017.2779844
https://doi.org/10.1109/ACCESS.2017.2779844
https://doi.org/10.1002/dac.5036
https://www.bluetooth.com/specifications/specs/core-specification-5-0/
https://www.bluetooth.com/specifications/specs/core-specification-5-0/

A. Bibliography...
8. Bluetooth Core Specification Addendum 5 [online]. Bluetooth SIG, 2015. [visited

on 2023-07-20]. Available from: https://www.bluetooth.com/specifications/
specs/csa-core-specification-addendum-5/.

9. Mesh Profile [online]. Bluetooth SIG, 2019. Version 1.0.1 [visited on 2023-07-17].
Available from: https://www.bluetooth.com/specifications/specs/mesh-
profile-1-0-1/.

10. IEEE Standard for Information Technology–Telecommunications and Informa-
tion Exchange between Systems - Local and Metropolitan Area Networks–Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications [online]. 2020. [visited on 2023-07-15]. Standard.
The Institute of Electrical and Electronics Engineers. isbn 978-1-5044-7284-5.
Available from doi: 10.1109/IEEESTD.2021.9363693.

11. IEEE Standard for Information Technology–Telecommunications and Information
Exchange between Systems Local and Metropolitan Area Networks–Specific Re-
quirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications Amendment 1: Enhancements for High-Efficiency
WLAN [online]. 2021. [visited on 2024-04-21]. Standard. The Institute of Elec-
trical and Electronics Engineers. isbn 978-1-5044-7389-7. Available from doi:
10.1109/IEEESTD.2021.9442429.

12. ESP32-C6 Series Datasheet [online]. Espressif Systems, 2023. Version 1.0 [visited
on 2024-04-22]. Available from: https://www.espressif.com/sites/default/
files/documentation/esp32-c6_datasheet_en.pdf.

13. IEEE Standard for Low-Rate Wireless Networks [online]. 2020. [visited on 2023-
07-15]. Standard. The Institute of Electrical and Electronics Engineers. isbn
978-1-5044-6689-9. Available from doi: 10.1109/IEEESTD.2020.9144691.

14. CC1312R SimpleLink High-Performance Sub-1 GHz Wireless MCU datasheet
[online]. Texas Instruments Incorporated, 2020. [visited on 2024-04-28]. Available
from: https://www.ti.com/lit/ds/symlink/cc1312r.pdf.

15. TexasInstruments/simplelink-lowpower-f2-sdk [online]. Texas Instruments Incor-
porated, 2024. Version lpf2-7.40.00.77 [visited on 2024-04-27]. GitHub reposi-
tory. Available from: https://github.com/TexasInstruments/simplelink-
lowpower-f2-sdk/tree/lpf2-7.40.00.77.

16. ESP8684 Series Datasheet [online]. Espressif Systems, 2024. Version 1.5 [visited
on 2024-04-28]. Available from: https://www.espressif.com/sites/default/
files/documentation/esp8684_datasheet_en.pdf.

17. ESP32-C3 Series Datasheet [online]. Espressif Systems, 2023. Version 1.4 [visited
on 2023-07-15]. Available from: https://www.espressif.com/sites/default/
files/documentation/esp32-c3_datasheet_en.pdf.

18. espressif/esp-idf [online]. Espressif Systems, 2024. Version 5.2 [visited on 2024-04-
28]. GitHub repository. Available from: https://github.com/espressif/esp-
idf/tree/v5.2.

50

https://www.bluetooth.com/specifications/specs/csa-core-specification-addendum-5/
https://www.bluetooth.com/specifications/specs/csa-core-specification-addendum-5/
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/
https://www.bluetooth.com/specifications/specs/mesh-profile-1-0-1/
https://doi.org/10.1109/IEEESTD.2021.9363693
https://doi.org/10.1109/IEEESTD.2021.9442429
https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c6_datasheet_en.pdf
https://doi.org/10.1109/IEEESTD.2020.9144691
https://www.ti.com/lit/ds/symlink/cc1312r.pdf
https://github.com/TexasInstruments/simplelink-lowpower-f2-sdk/tree/lpf2-7.40.00.77
https://github.com/TexasInstruments/simplelink-lowpower-f2-sdk/tree/lpf2-7.40.00.77
https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8684_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_datasheet_en.pdf
https://github.com/espressif/esp-idf/tree/v5.2
https://github.com/espressif/esp-idf/tree/v5.2

... A. Bibliography

19. nRF52840 ProductSpecification [online]. Nordic Semiconductor ASA, 2023. Ver-
sion 1.8 [visited on 2020-04-28]. Available from: https://infocenter.nordicsemi.
com/pdf/nRF52840_PS_v1.8.pdf.

20. nrfconnect/sdk-nrf [online]. Nordic Semiconductor ASA, 2024. Version 2.6.1
[visited on 2024-04-28]. GitHub repository. Available from: https://github.
com/nrfconnect/sdk-nrf/tree/v2.6.1.

21. NRF Connect SDK v2.6.1 documentation [online]. Nordic Semiconductor ASA.
[visited on 2024-04-28]. Available from: https://docs.nordicsemi.com/bundle/
ncs-2.6.1/page/nrf/index.html.

22. CC1310 SimpleLink Multiprotocol 2.4 GHz Wireless MCU datasheet [online].
Texas Instruments Incorporated, 2023. [visited on 2024-04-28]. Available from:
https://www.ti.com/lit/ds/symlink/cc2652r.pdf.

23. XIAO ESP32-C3 schematic [online]. Seeed Studio, Inc, 2022. [visited on 2024-
04-29]. Available from: https://files.seeedstudio.com/wiki/XIAO_WiFi/
Resources/Seeeduino-XIAO-ESP32C3-SCH.pdf.

24. ESP32-C3 Technical Reference Manual [online]. Espressif Systems, 2024. Ver-
sion 1.1 [visited on 2024-05-14]. Available from: https://www.espressif.com/
sites/default/files/documentation/esp32- c3_technical_reference_
manual_en.pdf.

25. Seeed Studio XIAO INTRODUCION [online]. Seeed Studio, Inc. [visited on 2024-
04-29]. Available from: https://wiki.seeedstudio.com/SeeedStudio_XIAO_
Series_Introduction/.

26. Getting Started with Seeed Studio XIAO ESP32C3 [online]. Seeed Studio, Inc.
[visited on 2024-04-29]. Available from: https://wiki.seeedstudio.com/XIAO_
ESP32C3_Getting_Started/.

27. ESP-IDF Programming Guide [online]. Espressif Systems. [visited on 2024-04-29].
Available from: https://docs.espressif.com/projects/esp-idf/en/v5.2.
1/esp32c3/index.html.

28. Assigned Numbers [online]. Bluetooth SIG, [n.d.]. 2024-05-03 [visited on 2024-
05-05]. Available from: https://www.bluetooth.com/wp-content/uploads/
Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.
pdf?v=1714945359311.

29. FNB48 User Manual [online]. Shen Zhen Shi Fei Ni Rui Si Technology Co., Ltd.
(FNIRSI). Version 0.6 [visited on 2024-05-20]. Available from: https://img.
wqdres.com/res/0/20231229/f87ff89d49524b1180cc0c52a99fc2a2.pdf.

30. BARYLUK, Witold. baryluk/fnirsi-usb-power-data-logger [online]. 2023. [visited
on 2024-05-21]. GitHub repository. Available from: https : / / github . com /
baryluk/fnirsi-usb-power-data-logger.

31. Pro’sKit(R) MT-1710 3-3/4 True-RMS Auto Range Multimeter User’s Manual
[online]. Prokit’s Industries Co., Ltd., 2013. 1st Edition [visited on 2024-05-22].
Available from: https://www.manualslib.com/manual/738267/Proskit-Mt-
1710.html.

51

https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.8.pdf
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.8.pdf
https://github.com/nrfconnect/sdk-nrf/tree/v2.6.1
https://github.com/nrfconnect/sdk-nrf/tree/v2.6.1
https://docs.nordicsemi.com/bundle/ncs-2.6.1/page/nrf/index.html
https://docs.nordicsemi.com/bundle/ncs-2.6.1/page/nrf/index.html
https://www.ti.com/lit/ds/symlink/cc2652r.pdf
https://files.seeedstudio.com/wiki/XIAO_WiFi/Resources/Seeeduino-XIAO-ESP32C3-SCH.pdf
https://files.seeedstudio.com/wiki/XIAO_WiFi/Resources/Seeeduino-XIAO-ESP32C3-SCH.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3_technical_reference_manual_en.pdf
https://wiki.seeedstudio.com/SeeedStudio_XIAO_Series_Introduction/
https://wiki.seeedstudio.com/SeeedStudio_XIAO_Series_Introduction/
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32c3/index.html
https://docs.espressif.com/projects/esp-idf/en/v5.2.1/esp32c3/index.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf?v=1714945359311
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf?v=1714945359311
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf?v=1714945359311
https://img.wqdres.com/res/0/20231229/f87ff89d49524b1180cc0c52a99fc2a2.pdf
https://img.wqdres.com/res/0/20231229/f87ff89d49524b1180cc0c52a99fc2a2.pdf
https://github.com/baryluk/fnirsi-usb-power-data-logger
https://github.com/baryluk/fnirsi-usb-power-data-logger
https://www.manualslib.com/manual/738267/Proskit-Mt-1710.html
https://www.manualslib.com/manual/738267/Proskit-Mt-1710.html

A. Bibliography...
32. General Authorisation No. VO-R/12/11.2021-11 for the use of radio frequencies

and for the operation of equipment for broadband data transmission in the bands
2.4 GHz–71 GHz. [online]. Czech Telecommunication Office, 2021. [visited on
2024-05-23]. Available from: https://ctu.gov.cz/en/sites/default/files/
obsah/stranky/74784/soubory/vo-r-12-11.2021-11enfin.pdf.

52

https://ctu.gov.cz/en/sites/default/files/obsah/stranky/74784/soubory/vo-r-12-11.2021-11enfin.pdf
https://ctu.gov.cz/en/sites/default/files/obsah/stranky/74784/soubory/vo-r-12-11.2021-11enfin.pdf

	Introduction
	Motivation and goals

	Research
	Comparison of WCPs
	Cellular networks (LTE, 5G)
	Low power WANs (LoRa, LTE Cat-M1, NB-IoT)
	Bluetooth
	IEEE 802.11 (Wi-Fi)
	IEEE 802.15.4 (Zigbee, Thread)

	Hardware selection
	Considered parameters
	Viable hardware platforms
	Hardware comparison

	Hardware
	SoC
	Development board
	Device design

	Application architecture
	Network architecture
	Measurement data storage and transmission
	Reliability

	Firmware and software
	Node and server firmware
	Server operation
	Node operation
	ESP-IDF framework

	Bluetooth LE stack and implementation
	Bluetooth-related terminology
	Establishing connection (GAP)
	Data transfer (GATT)

	Data readout application

	Experiments and results
	Current consumption testing
	Communication range testing
	Testing at different TX power levels

	Discussion, conclusion and future work
	Bibliography

