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Abstract

Neurodegenerative diseases, such as mul-
tiple sclerosis (MS), often impair motor
functions, including the articulatory sys-
tem. This project investigates dysarthria
in MS patients by developing an al-
gorithm to detect articulatory events
in speech recordings of diadochokinetic
(DDK) tasks, focusing on under-studied
voiced syllables. The study analysed
speech recordings from 120 MS patients
and 60 healthy control (HC) individuals,
all of whom performed steady repetitions
of /ba/-/da/-/ga/ syllables. Four speech
events were extracted from these record-
ings, achieving high detection accuracies
of 94.7%, 74.6%, and 79.8% for three of
the events with a 5 ms threshold. These
events facilitated the calculation of six
speech parameters used to differentiate
between the HC and MS groups and to
train a Support Vector Machine (SVM)
classifier.

The comparative analysis revealed mi-
nor differences across all calculated fea-
tures, with the most significant distinc-
tions found in DDK rate and DDK fluctu-
ation. The SVM classifier demonstrated
a notable success rate of 70.4% in distin-
guishing between the two groups. This
study underscores the potential of using
detailed articulatory event detection and
speech feature analysis to improve diag-
nostic tools for MS-related dysarthria.

Keywords: Speech, Dysarthria,
Multiple Sclerosis, Acoustic Analysis,
Diadochokinesis

Supervisor: Ing. Michal Novotny, Ph.D.

Abstrakt

Neurodegenerativni onemocnéni, jako je
roztrousend skleréza (RS), ¢asto narusuji
motorické funkce, véetné hlasového tistroji.
Tento projekt zkouma dysartrii u pacientt
s RS, a to vyvojem algoritmu pro detekci
artikula¢nich jevii v fe¢ovych zadznamech
diadochokinetickych (DDK) tloh, se za-
méfenim na dosud malo zkoumané znélé
slabiky. Soucésti studie byla analyza fe-
¢ovych zdznamu od 120 pacientii s RS a
60 zdravych jedinci (HC), ktefi opako-
vané vyslovovali slabiky /ba/-/da/-/ga/.
7 téchto zdznamu byly extrahovany ¢tyri
FeCové jevy, pricemz tii z nich dosahly vy-
soké presnosti detekce 94,7 %, 74,6 % a
79,8 % pii prahu 5 ms. Tyto jevy byly
pouzity k vypoctu recovych parametri,
které slouzily k rozliSeni mezi skupinami
HC a RS a k natrénovani SVM klasifika-
toru.

P1i porovnani vypoctenych parametri
byly zjistény drobné rozdily ve vsech z
nich, pricemz nejvyraznéjsi byly zjistény
v rychlosti DDK a kolisavosti DDK. SVM
klasifikator ukazal vyznac¢nou uspésnost
70,4 % pfi rozliSovani mezi obéma skupi-
nami. Tato studie ukazuje potencial vyu-
7ziti podrobné detekce artikulac¢nich jevu a
analyzy fecovych rysi ke zlepseni diagnos-
tickych nastroju pro dysartrii souvisejici
s RS.

Klicova slova: Re¢, Dysartrie,
Roztrousend Skleréza, Akusticka
Analyza, Diadochokineze

Preklad nazvu: Automatickd analyza
recové diadochokinetické tlohy znélych
konzonant pro hodnoceni artikulace
pacientil s roztrousenou sklerézou
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Chapter 1

Introduction

B 1.1 Definition and Overview of Multiple Sclerosis

Multiple sclerosis (MS) is a neurodegenerative disease that frequently im-
pacts young adults. This debilitating disease significantly reduces the quality
of life of around 2.8 million people globally [I]. Moreover, it has been shown
that the incidence of the disease is rising. Yet the cause of the disease remains
unresolved, with many causes including genes increasing disease susceptibility
or environmental factors such as Epstein-Barr virus, ultraviolet B light (UVB)
exposure, obesity or smoking - MS prompts an adverse immune reaction to
myelin, disrupting communication between neurons and thus impairing the
entire nervous system’s function [2].

B2 Key Signs and Symptoms: Clinical Features

Multiple sclerosis progresses through various phases, including at-risk,
preclinical, prodromal, and symptomatic stages. The disease is usually sus-
pected on the basis of the presence of clinically isolated syndrome (CIS) [2].
The CIS can be mono- or poly-symptomatic and with different presentations
due to the different eloquent lesion locations.

Historically, the disease was viewed as a two-stage disease, including early

1



1. Introduction

inflammation resulting in a relapsing-remitting stage (RRMS) followed after
10 to 15 years by neurodegeneration causing non-relapsing progression, i.e.
secondary progressive (SPMM) stage. Disease may also be classified as a
primary progressive (PPMS) in the case that the relapsing-remitting phase
is not present and only occasional relapses appear [3]. Current state-of-the-
art research challenges the traditional two-stage view and suggests that the
disease varies across the spectrum between relapsing and progressive stages.
Even the RRMS causes persistent damage due to incomplete relapse recovery.
The MRI revealed that for every clinically evident attack, approximately
ten asymptomatic lesions are present; moreover, on a microscopic level, MS
causes large amounts of lesions that are not MRI-visible. The set of symptoms
results from the size and location of the MS lesions. [2]

Common symptoms include motor and cognitive impairments, particularly
optic neuritis, spinal cord syndrome and brainstem syndrome [2]. Patients
may suffer from imbalance, speech and swallowing-related difficulties, de-
pression and anxiety [4]. These challenges not only introduce patients to
physical and mental hardships but also influence their surroundings. As of
now, a definitive cure for MS remains elusive; hence, treatment predominantly
involves symptomatic management and disease-modifying therapies to delay

3

its progression [2].

B 13 Management and Treatment:
Disease-modifying Therapies

Acknowledging the absence of a definitive cure for MS, the focus shifts to
disease-modifying therapies (DMTs), which are key in managing this condi-
tion. DMTs are designed to modify the disease course, aiming to reduce the
frequency and severity of relapses and slow down the progression of disability.
These therapies, while not curative, offer significant benefits in terms of
reducing the impact of symptoms and enhancing the overall quality of life for
individuals living with MS [5].

To build upon the foundational knowledge of DMTs in MS management,
a brief overview of the various therapies is essential for appreciating their role
in influencing the disease’s progression. Traditionally, MS treatments have
fallen into two categories: immunosuppressants, exemplified by drugs like
fingolimod and natalizumab, and immunomodulators, including agents such
as interferon beta. More recent advances, potentially leading to a definitive
cure, have introduced immune reconstitution therapies, such as alemtuzumab,
which provide longer-lasting effects. The 'no evidence of disease activity’
(NEDA) principle has emerged, concentrating on a combination of clinical
assessments, MRI results, and biomarker measures to steer more proactive
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and robust treatment approaches [2].

In addition to these disease-modifying therapies, symptomatic treatments
play a significant role in MS management. This approach comprises of drugs
for bladder issues and neuropathic pain, along with MS-specific treatments
like sativex for spasticity. Equally important is the focus on managing lifestyle
habits, emphasising proper sleep, consistent exercise and a balanced diet.
Such strategy targets both the illness and its symptoms, thereby enhancing
the quality of patient care overall [2 [5, [3].

B 14 Diagnosis

The diagnosis of MS relies on a set of criteria due to the potential overlap
of its symptoms with other conditions. The current standard is the 2017
McDonald Criteria, which combines clinical symptoms with diagnostic tests
such as magnetic resonance imaging (MRI) [3]. MS is typically suspected
and later identified due to the CIS, which usually occurs at the relapsing-
remitting stage. However, in many patients, the MRI showed older inactive
lesions, showing that MS begins before CIS occurrence, and the current
search suggests that the preclinical phase of the disease may last for decades.
Moreover, there is evidence of brain damage in the earliest stages, including
brain volume loss in young people with CIS, decreased school performance
in children later developing MS, and cognitive impairment in people with
radiologically isolated syndrome detected in MRI done due to the unrelated
causes [0, [7, [§]. Early diagnosis is critical as treatments are most effective
during the initial stages of the disease [2].

Conventional diagnostic methods for multiple sclerosis, such as MRI, while
effective, have several drawbacks that limit their accessibility and convenience
for patients. Firstly, the cost of an MRI scan can be prohibitive for many,
which means that some people may delay or forego essential diagnostic testing.
Secondly, MRI machines are not universally available, especially in rural or
under-resourced areas. This lack of availability can result in further delaying
the diagnosis. Additionally, undergoing an MRI can significantly increase
stress levels in patients, especially in those with chronic pain and mobility
issues, as the procedure requires the patient to remain still in an enclosed
space, which often induces feelings of claustrophobia, discomfort, and anxiety.
Given these challenges, there is a growing interest in alternative diagnostic
methods that are more accessible, cost-effective, and patient-friendly.
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B 15 Speech Impairment in Multiple Sclerosis

Dysarthria in MS is characterised by various speech impairments, including
slow articulation, imprecise consonants, and instability in pitch and loudness.
Additionally, patients often face prosodic challenges, such as extended pauses
and inadequate loudness control [9]. These characteristics are crucial in the
conventional evaluation of speech issues in MS, providing a framework for
assessment and diagnosis.

Expanding upon these traditional methods, a recent study, "Automated
Assessment of Oral Diadochokinesis in Multiple Sclerosis Using a Neural
Network Approach: Effect of Different Syllable Repetition Paradigms" by
Rozenstoks et al. employed a neural network approach to investigate oral
diadochokinesis, offering new insights into the condition. This innovative
research focused on analysing different syllable repetition paradigms in MS pa-
tients [10]. This study demonstrated significant differences in speech patterns
between MS patients and healthy controls, particularly noting slower speech
for sequential motion rate tasks and more irregularity in voiced paradigms.
These observations underscore the importance of paying closer attention to
unvoiced syllables when detecting speech impairments in MS. This approach
could potentially lead to more accurate and early diagnosis, thereby improving
patient care and treatment strategies.

B 16 Speech Analysis in Multiple Sclerosis

Speech analysis has emerged as a highly promising method for diagnos-
ing neurodegenerative diseases, including multiple sclerosis. This approach
is particularly relevant given that such conditions often impair the motor
system, leading to distinctive changes in speech patterns, such as disrupted
speech loudness, harsh voice quality and imprecise articulation, that can
be early indicators of the condition. The importance of speech analysis lies
in two primary aspects: firstly, it may serve as an early detection tool to
predict disease relapse, and secondly, it can accurately monitor the disease
progression. Esteemed for being non-invasive, cost-effective, and convenient
for patients, speech analysis is a significantly beneficial tool in medical di-
agnostics. Its utility extends beyond mere diagnosis; it also offers insights
into the effectiveness of treatments and patient responses over time. Previous
research has underscored the effectiveness of speech analysis in neurode-
generative diseases, which notably achieved a success rate of up to 88% in
accurately distinguishing patients with Parkinson’s Disease from healthy
individuals [II]. This impressive success rate shows how speech analysis is

4
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not only useful for diagnosis but also plays a vital role in ongoing efforts
to understand and tackle the challenges of neurodegenerative diseases like MS.

. 1.7 State-of-the-Art

The exploration of speech analysis in MS, particularly in the context of
dysarthria, underscores the importance of previous studies. The work by
K. Rozenstoks et al., focusing on the analysis of syllable repetition in MS
patients, is a prime example. This research, employing a neural network
approach to assess oral diadochokinesis, uncovered significant differences in
speech patterns between MS patients and healthy controls, thereby enriching
our understanding of this aspect of the disease [10]. However, it’s important
to highlight that Rozenstoks’ study did not explore the articulatory features
of voiced syllables, leaving a noticeable gap in the research.

This gap is particularly relevant considering the earlier discussion about the
importance of speech analysis in MS and the varied symptoms of dysarthria.
While the study by Novotny, Rusz, Cmejla, and Rizicka primarily focused
on Parkinson’s Disease and offers valuable methodologies for speech analysis,
its applicability to MS, especially for voiced syllables, remains unexplored.
Their work, “Automatic Evaluation of Articulatory Disorders in Parkinson’s
Disease”, could provide a framework for future studies in this area [11].

Additionally, the research conducted by J. Rusz provides a comprehen-
sive overview of motor speech phenotypes in multiple sclerosis. This study
contributes significantly to the understanding of speech impairments in MS,
detailing various speech characteristics and their implications for diagnosis
and treatment [I2]. However, like the studies before it, this research does not
address the analysis of articulatory deficits of voiced syllables in MS.

The absence of in-depth research on voiced syllables in MS highlights a
significant opportunity for groundbreaking work in this area. Investigating
these syllables could reveal new dimensions of speech impairments in MS,
potentially leading to more effective diagnostic and monitoring strategies.
This research direction aligns with the need for non-invasive, cost-effective
diagnostic tools in neurodegenerative diseases and promises to make a sub-
stantial contribution to the field.
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B 1.8 Aim of This Project

The primary aim of this project is to delve into the relatively unexplored
area of voiced syllable analysis in multiple sclerosis patients. While previous
studies have provided valuable insights into unvoiced syllables, this project
seeks to extend that knowledge by focusing on how MS affects the articulation
of voiced syllables, specifically the syllables /ba/-/da/-/ga/. By analysing
these specific syllable types, the study aims to uncover potentially distinct
speech patterns associated with MS, which could lead to a more accurate
and early diagnosis of the disease. Additionally, this research could con-
tribute to the development of improved monitoring techniques for tracking
the progression of MS, ultimately aiding in the optimisation of treatment
plans and enhancing the quality of life for patients. This project stands to
fill a significant gap in current MS research and could pave the way for more
comprehensive speech analysis methods in the diagnosis and management of
neurodegenerative diseases.



Chapter 2

Methods

B 21 Participants and Recordings

Speech recordings were obtained from a group consisting of 120 individuals
diagnosed with MS (31 males, 89 females) and a control group of 60 healthy
subjects (16 males, 64 females). Both groups comprised individuals aged
between 18 and 74 years, with the MS group having a mean age of 43.9 +
10.9 years and the control group 43.9 + 12 years. Within the MS group,
the duration of disease varied from 2 to 37 years with an average of 14.5 +
7.6 years. Disease severity within the MS patients was assessed using the
Expanded Disability Status Scale (EDSS), developed by Kurtzke. This scale
ranges from 0 to 10, where 0 indicates no disability, and 10 signifies death due
to MS. Scores from 1 to 4.5 refer to patients who are fully ambulatory despite
increasing disability, while scores above 5.0 indicate assistance requirements
for walking. The participants’ scores involved in this project varied from 1 to
6, with a mean of 3.4 + 1.5, which signifies mild to moderate disability [13].

Recordings were obtained in a quiet room to minimise ambient noise. Fach
participant was instructed to quickly and consistently repeat the syllable
sequence /ba/-/da/-/ga/, which is pronounced as voiced in the Czech language.
Each subject completed two recordings of this sequence, resulting in 360
recordings in total. The recordings were captured at a sampling rate of 48
kHz and a 16-bit resolution to ensure high-quality audio, clarity, and detail.

7



2. Methods

. 2.2 Reference Labels

To assess the performance of the algorithm, 20 recordings from each group
were previously labelled by a speech expert with experience in the field. These
labels provided timestamps for key speech events such as the beginning of the
voicing segment, initial vowel burst, vowel onset, and occlusion. The labels,
which followed previously established guidelines [IT], were provided with the
recordings. This setup allowed assessing the algorithm’s accuracy in detecting
these events, ensuring that it could identify speech patterns effectively and
reduce the time and potential bias associated with manual marking.

B 23 Algorithm for Signal Analysis

B 23.1 Pre-Processing

The initial phase of signal processing involves resampling the audio data
from 48 kHz to 20 kHz. This reduction in sampling rate decreases memory
requirements and reduces computational complexity in later processing stages.
Importantly, a sampling frequency of 20 kHz preserves all essential speech
information, preventing the loss of essential data during the transformation.
After resampling, any existing DC offset, which is the mean amplitude shift
from zero, was removed from the signal. The signal was then normalised to
standardise the maximum amplitude from -1 to 1 across all recordings to
ensure easier processing and application of thresholds during the following
syllable segmentation.

B 2.3.2 Automatic Syllable Segmentation

The diadochokinetic task requires participants to rapidly repeat a sequence
of syllables in a single breath, resulting in a variable number of syllables
within each recording. To analyse and identify pronunciation events within
each syllable, it was essential to segment the signal and individually extract
each syllable for further investigation. Each syllable in the /ba/-/da/-/ga/
sequence consists of a consonant followed by a vowel, with the vowel typically

8



2.3. Algorithm for Signal Analysis

displaying higher energy than the consonant. This difference in energy served
as the primary criterion for segmenting the signal.

Recording Signal

—— original Signal

Amplitude (normalised)
°
o
a3

—1.00

Time [s]

Moving Mean and Filtered Peaks

—— Moving Mean
x  Filtered Peaks

Amplitude (normalised)

T T T T T
0 1 2 3 4 5
Time [s]

Figure 2.1: The upper plot in this figure displays the original audio signal of a
diadochokinetic task, capturing the rapid repetition of syllables. The lower plot
presents the smoothed signal after applying a moving average, with highlighted
peaks indicating the high-energy vowel components of each syllable.

The segmentation process began with applying a moving average to
smooth the signal. This method averaged data points over a specified window
length set as 800, or 1/25 of the sampling frequency, reducing noise, clarifying
underlying trends, and enabling more accurate segmentation. The next step
was to identify peaks in the smoothed signal, which correspond to vowels
due to their higher energy. To ensure accurate detection and minimise false
positives, the following filters were implemented:

1. Minor peak elimination: Peaks significantly lower in amplitude than
neighbouring peaks were discarded as they often represent minor stammers
or noise.

2. Adjacent peak analysis: Peaks without a significant drop in amplitude
relative to adjacent peaks were likely components of the same vowel sound
and were, therefore, removed.

3. Initial peak evaluation: The initial peak was excluded from analysis
if its amplitude was significantly lower than the subsequent peaks, typically
indicating it resulted from the initial breath rather than a vowel.

These processing steps are visualised in Figure which displays two
plots: the upper plot shows the original audio signal and the lower plot

9



2. Methods

presents the smoothed signal with highlighted peaks, marking the locations
identified as significant for analysis.

Signal Segment Boundaries

1004 original Signal
| ——- Beginning of Sighal Segment
=== End of Signal Segment

Amplitude (normalised)

I
1

1

1

1

1

1

I

1

1

1
:‘
0.

0.45 0.50 0.55 0.60 0.65 0.70
Time [s]

Figure 2.2: A segment of a speech signal with roughly established boundaries
that define each syllable. The end of the previous vowel and the start of the
next voicing segment are included to provide general comparisons and validate
detections.

Lastly, the total count of valid peaks was calculated. As each complete
/ba/-/da/-/ga/ cycle should contain three syllables, the presence of a total
number of peaks not divisible by three indicates possible misdetections. Sig-
nals that failed to meet this criterion were later olny used for label comparison,
however, not for the SVM training, as it was not possible to confirm whether
individual detected syllables corresponded accurately to the intended syllables
in the /ba/-/da/-/ga/ sequence.

After identifying each vowel in the signal, the borders between individual
syllables were approximated at the midpoint between two adjacent peaks.
Since the peak of each vowel might not be perfectly centred, each segment
was expanded by 1.25 times in both directions. This adjustment ensured that
both the beginning of the consonant and the end of the vowel were included
within the segment, as visible in Figure [2.2l In the signal segment, the end
of the previous vowel was also present, allowing for comparison between the
occlusion of the previous vowel and the beginning of the voicing segment of
the current syllable. This comparison helped to identify and eliminate any
invalid detections. This method effectively divided the signal into overlapping
segments, allowing for individual analysis of each one.

Bl 2.3.3 Speech Rate

The analysis of intervals between detected vowel peaks was crucial in
evaluating the participants’ speech rate and the consistency of their syllable
repetition. Initially, the speech rate was calculated from these peak intervals
to determine the number of syllables pronounced per second. Following that,

10



2.3. Algorithm for Signal Analysis

variability in speech rate was measured with higher variability, often sug-
gesting a lack of control over speech muscles, while more consistent intervals
indicated stable motor control.

B 2.3.4 Detection of Initial Burst

Signal Segment with Reference Initial Burst
T

—— oOriginal Signal
——- Initial Burst

Amplitude (normalised)

0.85 0.90 0.95 1.00 1.05 110 115
Time [s]

Figure 2.3: A signal segment showing an initial burst of a vowel within a syllable
sequence. The initial burst is characterised by a distinct high-frequency spike
which occurs due to the release of built-up pressure as the articulators position
themselves to produce the vowel.

The initial burst, the first event detected in the analysis, is marked by a
distinct, high-frequency spike that occurs just before the full onset of each
vowel in the sequence and is marked in Figure Each burst arises from the
release of built-up pressure as the articulators move into position to produce
the next vowel sound, resulting in a brief, intense burst of sound energy.
These bursts serve as indicators that provide valuable insights into the timing
and precision of syllable articulation within the speech sequence.

To effectively analyse the initial bursts preceding each vowel in the /ba/-
/da/-/ga/ sequence, the signal first underwent a high-pass filtering process.
This was essential to emphasise the high-frequency components indicative of
the bursts and eliminate lower-frequency noise. A Butterworth filter with a
1500 Hz cutoff was used due to its efficiency in isolating these frequencies and
its minimal phase distortion, ensuring that the crucial characteristics of the
bursts were preserved.

After filtering, the signal was converted into the frequency domain using
a spectrogram, which provides a visual representation of the spectrum of
frequencies as they vary with time, as illustrated in Figure 2.4, The spec-
trogram itself was then subjected to further processing using a thresholding
technique. Specifically, a threshold matrix was applied such that any values
in the spectrogram falling below 80% of the mean value of each frequency
bin were set to zero [II]. This step effectively enhanced the visibility of
higher-frequency components by suppressing lower amplitude frequencies,
thereby emphasising the significant features relevant for further analysis.
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Figure 2.4: Analysis of the Initial Burst in a Speech Signal Segment: The
first plot displays the spectrogram of a signal segment, highlighting frequency
variations over time, while the second one shows the energy plot of a filtered
spectrogram, pinpointing the beginning of a significant peak that marks the
initial burst.

The signal was reconstructed from the pictogram by summing the upper
half, which contains frequencies high enough to capture the initial bursts.
This approach helped emphasise peaks in the signal that correspond to these
bursts. After this, the signal was smoothed with a moving average and
normalised to even out the amplitude, making the data clearer and more
consistent for analysis.

From the reconstructed signal, the peak corresponding to the initial vowel
burst could then be detected. Since this burst occurs before the vowel onset,
the search focused on peaks preceding the vowel peak within the specific
signal segment. Additionally, because high-frequency peaks from the previous
vowel can also be present at the beginning of the segment, the search for the
initial burst started at the midpoint between the two vowel peaks. All peaks
from the midpoint and before the vowel peak time of the current syllable
were identified and examined. The first peak detected in this sequence was
identified as the initial burst. To confirm the accuracy of this detection, it
was essential to later compare this identified burst with the voice onset and
occlusion times of the previous syllable, ensuring that the correct peak was
pinpointed.
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2.3. Algorithm for Signal Analysis

B 2.3.5 Detection of Voice Onset

To accurately detect the onset of a vowel in the signal, the analysis pri-
marily focused on regions preceding the vowel’s peak energy. Given that
vowels typically exhibit higher energy compared to consonants, pinpointing
the onset required careful examination of the signal leading up to this peak.
The detection process commenced by computing the energy envelope of the
signal with a window length of 5 ms. This specific window length was chosen
to preserve the visibility of individual glottal pulses, which are crucial for
setting an accurate threshold for detecting vowel onset.

Following this initial calculation, the segment of the signal was nor-
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Figure 2.5: The original speech signal with the indicated vowel onset. This
speech event is characterised by a noticeable increase in energy, marking the
transition where vocal fold vibration begins, leading to the production of vowel
sounds.

malised, and peaks corresponding to the glottal pulses were identified. These
steps were essential as they enhanced the signal’s characteristics, making the
bursts of energy that mark the vowel onset more discernible. Detecting these
peaks accurately is critical because they reflect the precise moments when
the vocal folds start to vibrate, marking the beginning of vowel articulation.

The peaks in the signal segment leading up to the previously identified
vowel centre were analysed to determine the vowel onset. This analysis
involved reviewing all peaks before the vowel centre, focusing on their ampli-
tudes. A peak exceeding half of the maximum vowel amplitude was initially
identified as the potential start of the onset.

However, to reduce the influence of random spikes in energy, a verification
process was implemented. It was confirmed that the marked onset was pre-
ceded by two consecutive glottal pulses, each with an amplitude less than 50%
of the maximum, and immediately followed by two consecutive glottal pulses,
each at or above 50% of the maximum amplitude. The vowel onset was then
definitively marked at the first peak within this higher amplitude region, ensur-
ing accurate detection of the true beginning of the vowel sound. This method
helps to ensure that the detected onset is not merely a random fluctuation but
a consistent increase in vocal activity, signalling the start of vowel articulation.
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Figure 2.6: The signal envelope of a speech segment, marking the vowel onset.
Yhis event is identified by a sharp rise in amplitude, illustrating the transition
from lower to higher energy levels, which indicates the start of a vowel sound.

B 2.3.6 Detection of Occlusion

The occlusion, marking the end of a vowel, is characterised by a gradual
decrease in signal energy. This is in contrast to the sharper changes seen at
the vowel’s onset. Due to this subtler shift, detecting the occlusion requires
a more targeted approach than simply applying a universal threshold. To
address this, techniques such as dynamic thresholding were used to highlight
and track these gradual changes, ensuring that the precise moment of occlu-
sion is accurately identified in the analysis.

Signal Segment (Second Half) with Reference Occlusion

0.8 1 —— Original Signal

T
i
1

! === Occlusion
0.6 1 !
1
|
1

0.4+

-« il AAAAAARAAAN,

—0.2 4

Amplitude (normalised)

—0.6 4

140 142 144 1.46 148 150 152
Time [s]

Figure 2.7: The second half of a speech signal segment with the marked occlusion.
This event, indicating a moment where the articulators close to block the airflow,
is evident from the abrupt change in the signal amplitude.

The first step in detecting the occlusion involved filtering the signal to
highlight the frequency components that are key for accurately identifying
the vocal activity. Unlike the analysis of initial vowel bursts, which targeted
higher frequencies, the detection of the occlusion primarily focused on lower
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2.3. Algorithm for Signal Analysis

frequencies. To achieve this, a low-pass Finite Impulse Response (FIR) filter
was employed. This filter was designed using a Hamming window to minimise
the effects of spectral leakage, which helps in maintaining the integrity of the
frequency components near the cutoff edge. The cutoff frequency was set at
1500 Hz, effectively suppressing frequencies higher than this threshold while
preserving those lower, which are significant for capturing the subtle changes
that indicate occlusion. This selective filtering ensured that only the essential
lower-frequency components were retained for further analysis, enhancing the
accuracy of detecting the onset within the vocal sequence.

Following the application of the low-pass filter, the next step involved
squaring the filtered signal. This transformation amplified variation in the
signal’s amplitude, particularly emphasising the decreasing energy typical
for an occlusion. By squaring the signal, subtle fluctuations in amplitude
became significantly more pronounced, providing easier identification of the
gradual decline that marks the end of a vowel.

Once the signal has been squared, it underwent polynomial fitting. A
ninth-order polynomial was fit to the squared signal, as it was previously
shown to be a sufficient approximation [I1], starting from the vowel peak time
identified earlier. This polynomial fitting was used to smooth out any noise
and irregularities, providing a clearer view of the underlying trends in the
signal. Additionally, it helped to set a dynamic threshold for detecting the
occlusion, which adjusted better to the complexities of vocal fading compared
to a fixed threshold.
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Figure 2.8: Filtered and squared signal used to identify vocal occlusion. The
green curve represents a dynamic threshold adapted to changes in the signal,
enhancing the detection accuracy. Yellow points represent points compared
against the threshold, and the red dashed line marks the detected occlusion,
pinpointing where the examined points drop below this threshold for a longer
period of time, indicating the end of vocal activity.

The dynamic threshold was calculated as the negative value of the polyno-
mial evaluation, adjusted by twice the mean of the squared signal post-peak.
This adjustment allowed the threshold to adapt to the signal’s specific charac-
teristics at the given moment, thus providing a tailored baseline against which
the signal’s decline could be compared. When the squared signal remained
consistently above this dynamic threshold, it indicated ongoing vocal activity.
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2. Methods

In contrast, a drop below this threshold for a longer period of time, set as 40
milliseconds, signified occlusion, marking the termination of vocalisation.
The exact point of occlusion was determined by identifying the first
significant gap in indices where the squared signal values dropped below
the dynamic threshold. This gap, defined as being greater than 2% of the
sampling rate, signified a substantial decrease in signal energy, marking the
end of vocal activity. This method provided a precise and reliable means
of detecting occlusion, which is crucial for speech assessment in the DDK task.

B 2.3.7 Detection of Voicing

The final event detected in the analysis was the onset of the voicing
segment, visible in Figure 2.9 that precedes each consonant in the sequence
of /ba/-/da/-/ga/. This characteristic differs from tasks involving unvoiced
syllables such as /pa/-/ta/-/ka/, as discussed in the study by Novotny et
al.[IT]. Identifying the precise onset of voicing is especially challenging in
sequences like /ba/-/da/-/ga/ because the voiced segments directly follow
vowels. This continuous alternation between vowels and consonants with
minimal interruption complicates the detection of where exactly the consonant
voicing begins.

Signal Segment with Reference Voicing Onset
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Figure 2.9: The dashed red line indicates the onset of the voicing segment,
directly following vowels and preceding the consonants in the /ba/-/da/-/ga/
syllables sequence.

To address the challenge of detecting voicing onset in the sequence of /ba/-
/da/-/ga/, the focus turned on the analysis of two indicators: zero-crossing
rate (ZCR) and energy. The ZCR, which counts how frequently the signal
crosses the baseline, helps to pinpoint moments of transition between vowels
and consonants. This measure is particularly useful when combined with
the calculation of short-time energy, which assesses the power within short
segments of the audio signal and highlights areas of significant vocal activity.

After initial calculations, both the ZCR and short-time energy were
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2.3. Algorithm for Signal Analysis

smoothed with a Gaussian filter to reduce noise and minimise temporary
fluctuations. The smoothed signals were then normalised, enabling the
application of consistent threshold levels.

Inverted Energy with Detected Voicing Onset

Inverted Normalised Energy

—— Inverted Energy
——- Detected Voicing Onset

T
i
i
i
i
i
i
i
]
]
I
]
]
]
]
]
]
]
i
]
i
i
i
i
i
i
L

0.

.025 0.050 0.075 0.100 0.125 0.150 0.175

0.000

Inverted ZCR with Detected Voicing Onset

—— Inverted ZCR
-=- Detected Voicing Onset

Inverted Normalised ZCR

T
I
T
I
I
I
I
1
1
1
1
|
1
1
1
1
|
I
1
I
I
I
I
1
I
I
I

0.

.025 0.050 0.075 0.100 0.125 0.150 0.175
Time [s]

0.000

Figure 2.10: Inverted zero-crossing rate (ZCR) and inverted energy of the signal
segment to determine voicing onset in the signal segment. The ZCR identifies
transitions between vowels and consonants, while energy highlights significant
vocal activity. The dashed red lines in both plots mark the detected voicing
onset.

To accurately determine the onset of the voicing segment, both the energy
and ZCR signals were analysed after smoothing and normalisation. Peaks
were identified in these inverted signals, representing the troughs of the
original measurements where the voicing typically starts with lower energy
and ZCR values compared to the preceding vowel. The initial peaks detected
below an elevated threshold in both signals were compared, and the later of
these peaks was marked as the onset of voicing, as displayed in Figure [2.10]
This approach ensured that the voicing was not detected prematurely, given
that both energy and ZCR can momentarily fall below the threshold during
the occlusion. If a detected voicing onset occurred before the occlusion of the
preceding vowel, it was considered an invalid detection, ensuring only valid
voicing onsets were recognised.
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. 2.4 Data Evaluation

B 2.4.1 Algorithm Accuracy Evaluation

The initial phase of the data evaluation focused on comparing the
timestamps of reference labels with those of detected events, specifically the
initial vowel burst, vowel onset, occlusion, and the onset of voicing in the
consonant. All timestamps for these labels were compared to the reference,
and the average differences for each event were calculated. This analysis
offered a detailed assessment of the algorithm’s performance in event detection,
enabling the identification of which events were accurately detected and could
be reliably used in the later classification experiment.

Events that were successfully detected by the algorithm were the only ones
compared with the reference. If an event was not detected, its timestamp was
marked as invalid and excluded from the comparison. Across the 20 labelled
recordings from each group, a total of 859 timestamps in the MS group and
1,094 in the HC group were evaluated.

B 2.4.2 Calculation of Speech Features

After verifying the accurate detection of events, these were utilised
to calculate parameters for comparison between the two groups. These pa-
rameters included voice onset time (VOT) and vowel onset to occlusion time
(VO-OT). Additionally, the diadochokinetic rate (DDT rate) and diadochoki-
netic fluctuation (DDK fluctuation) were derived from the timestamps of
vowel peaks. Each of these calculated parameters was saved in a separate file
corresponding to its respective speech recording to be further utilised in the
classification segment of the project.

B 2.4.3 Statistics

Firstly, the data corresponding to each recording was utilised to calculate
the average of all speech features for each individual. This means that if
a subject had two valid recordings, the data from those recordings were
averaged; however, if there was only one valid recording, then that single
recording was utilised. If there was no valid data in any of the recordings,
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2.5. SVM training

the individual was excluded from the analysis. This approach ensured that
each subject had the same weight in the final statistical analysis.

Specifically, for each subject, the following features were extracted: VOT
for the three syllables /ba/-/da/-/ga/, VO-OT, DDK rate, and DDK fluctua-
tions. If there was insufficient data for one of these features, the rest could
still be utilised in the final statistics, resulting in a slight variance in the
number of participants contributing to the calculation of each feature. Once
the data were calculated for each individual, it was averaged across the entire
group for the final result.

Once the mean values for both groups were calculated and compared,
statistical tests were employed to establish the significance of differences.
Specifically, a two-sample t-test was used to compare the groups’ means,
with results including the t-statistic, measuring the difference size relative to
sample variation, and the p-value, indicating the probability of the difference
occurring by chance. Additionally, the number of subjects contributing to
each feature’s statistical test was reported, ensuring clarity in the sample size
for comparison.

B 25 svm training

The data extracted from each recording were used to train a Support
Vector Machine (SVM) classifier. This classifier was designed to differentiate
between the HC and MS groups based on key speech features. These features
include the VOT for syllables /ba/, /da/, and /ga/, as well as the VO-OT,
DDK rate, and DDK fluctuation. These features were chosen because the
events used to calculate them were detected with high accuracy. Additionally,
they have the potential to uncover significant differences in speech between
the HC and MS groups, providing insights into the neurological impact of
MS on speech.

For this analysis, each participant’s file was checked to exclude any with
missing data, ensuring the model was trained on complete and accurate
information. The features extracted from these files were standardised to
ensure uniform treatment across all data points. To ensure fair representation
of both groups and to reduce model bias toward the more prevalent MS group,
the dataset was manually balanced beforehand by duplicating all entries for
the HC group, given that there was approximately twice as much data for
the MS group.

The dataset was randomly divided into training and testing subsets, with
90% allocated for training and 10% for testing. This process was repeated 10
times to ensure robustness. Additionally, different cross-validation methods,
specifically 3-fold, 5-fold, and 7-fold cross-validation, were used to test the
model’s stability and efficiency.
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Chapter 3

Results

B 31 Algorithm Performance

The average differences between manually labelled events and those de-
tected by the algorithm are presented in Table
The algorithm effectively detected the initial burst, vowel onset, and

Event HC (ms) MS (ms)
Beginning of Voicing 10 4+ 14 20 £ 64
Initial Burst 2+2 242
Vowel Onset 3£2 443
Occlusion 4+10 445

Table 3.1: Average differences between reference labels and detected labels by
the algorithm.

occlusion in both the HC and MS groups, with success rates of 94.8%, 77.8%,
and 88.0% for the HC group, and 94.7%, 74.6%, and 79.8% for the MS group
respectively, when using a 5 ms accuracy threshold. However, the detection
of the beginning of the voicing segment was considerably less accurate in
both groups. Specifically, the MS group’s success rate was markedly low at
38.9%, and in the HC group, it was 39.8%. The number of compared voicing
segments was also considerably lower than any other event due to the high
number of invalid detections. Given the inadequate performance in voicing
segment detection, this component was not included in the further analysis
across both groups.
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B 32 Articulatory features comparison

Feature HC (ms) MS (ms) t-value p-value
VOT /ba/ 123432 148+61  -31  <0.005
VOT /da/ 15.1+6.5 17.6+8.0 -2.0 =0.05
VOT /ga/ 21.54+7.0 22.8 £8.8 -0.9 =0.4
VO-OT /all/ 82.7+15.5 89.7+14.7 -2.5 =0.01
Performance Metrics HC MS t-value p-value
DDK Rate (syll/s) 6.54 £0.63 6.01 +£0.77 4.4 <0.001

DDK Fluctuation (%) 203£85 26.5+94 -3.9 <0.001

Table 3.2: Articulatory features calculated for HC and MS groups with t-values
and p-values.

The articulatory features extracted from the data analysis are detailed
in Table[3.2. For this analysis, only signals where the number of syllables was
divisible by three were used, as this configuration was more likely to ensure
that all syllables were correctly assigned to the corresponding syllable from
the /ba/-/da/-/ga/ sequence. Notable differences were observed across all
calculated parameters between the groups, with the VOT being consistently
longer in the MS group for all analysed syllables, indicating a slight delay in
the activation of vocal mechanisms compared to the HC group. Specifically,
the average VOT for the syllable /ba/ was longer by 2.5 ms (t(132)=-3.1,
p<0.005), for /da/ by 2.5 ms (t(136)=-2.0, p=0.05), and for /ga/ by 1.3 ms
(t(135)=-0.9, p=0.4). The table also shows that the standard deviations are
more pronounced for the MS group, particularly for the /da/ and /ga/ sylla-
bles, with standard deviations of 8.0 ms and 8.8 ms, respectively, indicating
greater variability among patients with multiple sclerosis. The VO-OT mea-
surements in the MS group were also slightly elevated (t(138)=-2.5, p=0.01),
suggesting prolonged durations in the transition phases between syllables.

Further analysis of the performance metrics showed that the HC group
could repeat the syllable sequence faster than the MS group. On average, the
HC group repeated 6.54 syllables per second, while the MS group managed
slightly fewer, averaging 6.01 syllables per second, meaning the average differ-
ence was 0.53 syllables per second (t(139)=4.4, p<0.001). Additionally, the
HC group showed slightly less variability in the intervals between individual
syllables (t(139)=-3.9, p<0.001), indicating a more stable and consistent
speech production pattern.
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3.3. SVM Classification

B 3.3 SVM Classification

The SVM classifier demonstrated consistent performance across 10 random
training-testing splits and various cross-validation methods. The average
accuracy rates were as follows: 70.5 +4.4% for 3-fold, 70.6 + 7.6% for 5-fold,
and 70.7 4+ 7.8% for 7-fold cross-validation. The best-performing model from
each split was then evaluated on the test data, achieving an average accuracy
of 70.4 +7.8%.
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Chapter 4

Discussion

This project introduced an automated approach to detect articulatory
events in diadochokinetic tasks among patients with multiple sclerosis, with
a specific focus on voiced syllables—a shift from past studies that primarily
concentrated on unvoiced syllables. This shift to focusing on voiced syllables
introduced unique challenges, particularly in detecting the voicing segment
that precedes the vowel. Despite these complexities, the SVM classification
achieved an impressive success rate of 70.4%, which can be compared to the
70.6% success rate reported by Rozenstoks et al. in their study, which utilised
a CNN-based approach to detect voiced syllables in the DDK task and used
calculated repetition paradigms to classify multiple sclerosis patients. [10].

This success rate in distinguishing between the MS and HC groups is
particularly remarkable given the complex nature of multiple sclerosis, which
is characterised by its variable stages, including RRMS and progressive forms,
which lead to fluctuating symptoms over time. The patients involved in this
project were all free from relapses for at least 30 days before their recordings
were taken, meaning that their symptoms were not in their most severe or
noticeable phase, making the task of distinguishing them based on speech
patterns more challenging. The ability of the algorithm to accurately differ-
entiate in this context highlights its sensitivity and potential usefulness in
clinical settings.

Statistical analyses showed significant differences between HC and MS
groups in several features. Notably, the DDK rate (t = 4.4, p < 0.001), DDK
fluctuation (t = -3.1, p < 0.001), and the VOT for /ba/ (t =-3.1, p < 0.005)
suggested a potential alteration in articulatory timing in MS patients. The
VOT for /da/ (t = -2.0, p = 0.05) and VO-OT (t = -2.5, p = 0.01) also
suggested some impairment, though less definitively. However, the VOT for
/ga/ (t =-0.9, p = 0.4) was not significantly different, indicating variability
in sensitivity. These results suggest that while DDK measures and some
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VOT parameters could be reliable indicators of speech dysfunction in MS, a
comprehensive assessment is necessary.

The event detection algorithm demonstrated considerable effectiveness,
achieving an average success rate of 94.7% in the less-performing MS group
for detecting the initial burst, 74.6% for vowel onset, and 79.8% for occlusion,
with a threshold of 5 ms. It performed particularly well in identifying the
initial burst from the signal spectrogram, which is typically very distinct,
allowing precise localisation due to a pronounced shift in frequencies. Inter-
estingly, the success rate for detecting the vowel onset was lower than for the
occlusion, despite the onset of a vowel typically showing a clearer and quicker
change in energy. This lower performance might be due to the more complex
detection techniques used for occlusion, where squaring the signal to make
energy changes more visible and applying a dynamic threshold were key to
successful detection. For future analysis, applying similar techniques to vowel
onset detection could likely enhance its accuracy.

On the other hand, the detection of the beginning of the voicing segment
posed significant challenges, with a notably lower overall accuracy of 39.4%.
This lower accuracy can be attributed to the method and threshold settings
selected for this detection. Occasionally, the energy and the ZCR would
temporarily drop below the set threshold too soon, causing the event to be
detected before the actual occlusion of the preceding vowel. This timing
difference led to a higher rate of invalid detections compared to other detected
events. Moreover, the ZCR frequently fluctuated at the onset of the voicing
segment, which often resulted in detections being significantly delayed. To
enhance detection accuracy, implementing a dynamic threshold that considers
both the energy level and the zero-crossing rate might provide a more reliable
identification of the voicing segment. Given these challenges, if improvements
were made to accurately detect the onset of voicing, it could then become an
important parameter that might potentially enhance the SVM classification
process, thereby improving the model’s overall predictive accuracy.

It is also important to acknowledge certain limitations of the project.
Firstly, the detection of voicing onset was shown to be unreliable, which
prevented further analysis of features related to this event, such as the length
of the voicing segment before the vowel onset. Accurate detection of the
voicing segment’s length could add another parameter to the classification
task, potentially improving the results if differences are found between the HC
and MS groups. Additionally, better voicing onset detection could allow for a
more thorough analysis of speech patterns, uncovering subtle variations that
help differentiate these groups. This could lead to more accurate diagnostics
and better-targeted treatments. Furthermore, as all participants were Czech
speakers, the findings may not generalise to other languages regarding the
speech features of voiced consonants between healthy individuals and those
with multiple sclerosis.
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The following goals were addressed in this project:

1. The primary aim was to explore the less-studied area of dysarthria in
MS patients, focusing on voiced syllables. This was achieved by reviewing
the literature and understanding the specific speech challenges faced by MS
patients.

2. The project included a review of current methods for assessing speech
in DDK tasks. These techniques were identified and compared, providing a
foundation for using existing methods in a new context.

8. An automatic approach was proposed and implemented for event
detection in voiced plosives in DDK tasks. In the less-performing MS group,
the event detection algorithm had high accuracy: 94.7% for initial burst
detection, 74.6% for vowel onset, and 79.8% for occlusion, with the success
rates being even higher for the HC group. Challenges in detecting the voicing
segment were noted, with suggestions for future improvements.

4. The disruption of voiced plosives in MS patients was analysed. An
SVM-based classification algorithm was developed, demonstrating significant
effectiveness with a 70.4% success rate. Additionally, all calculated parame-
ters were compared between the HC and MS groups using statistical tests.
The most significant differences were observed in the DDK rate (t = 4.4, p <
0.001), DDK fluctuation (t = -3.9, p < 0.001), and the VOT for the syllable
/ba/ (t =-3.1, p < 0.005).
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Chapter 5

Conclusion

This study explored the challenges of detecting dysarthria in MS patients
by introducing an automated approach for identifying articulatory events
in DDK tasks. The proposed event-detection algorithm demonstrated high
reliability in pinpointing speech events in voiced syllables, achieving significant
accuracy rates. Additionally, an SVM-based classification experiment was
conducted, resulting in an overall success rate of 70.4% in distinguishing
between MS patients and healthy controls. The speech features calculated
from these detected events showed great potential for assessing and monitoring
the progression of MS. These findings demonstrate the algorithm’s clinical
relevance and potential usefulness in medical settings. This project provides
a foundation for further advancements in speech analysis for better diagnosis
of neurodegenerative diseases.
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