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Abstract

In autonomous robotics, the properties of an onboard camera are crucial for the
successful execution of numerous robotic tasks. The most important property is the
camera’s image quality, which directly affects performance of the tasks relying on it.
One of the primary factors influencing said quality is the selection of an appropriate
exposure time of the camera. In dynamic conditions, to ensure optimal image quality
through accurate exposure, cameras utilize Automatic Gain Control (AGC) and
Automatic Exposure Control (AEC) to determine the ideal exposure time. Camera
manufacturers, however, frequently use simplistic AGC and AEC techniques, which
can lead to a reduction in image quality and the incorrect functioning or failure of the
running onboard task, by not adjusting the cameras’ exposure and gain correctly.
This thesis discusses the topic of camera control, explores current State-Of-The-
Art (SOTA) AEC strategies, and suggests a simple AEC method with feedback from
an onboard object detector. Several strategies are implemented and their exposure
control ability is evaluated. Based on these preliminary results, several algorithms
are then selected and deployed on board a Micro Aerial Vehicle (MAV) performing
a detection task.

Keywords Automatic control, Computer vision, Unmanned aerial vehicles
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Abstrakt

proto dulezité zajistit vstupni data v dostateéné kvalité k jejich spravnému vykondni.
Kvalita obrazu jako takova je primarné ovlivnéna spravnym vybérem zesileni a doby
expozice, které jsou predany kamete. Jestlize se ale prostfedi dynamicky méni, je
nutné zesileni a dobu expozice kontinualné upravovat. Tyto tpravy jsou zajistovany
algoritmy Automatického Rizeni Expozice (ARE) a Automatického Rizeni Zesilen
(ARZ). Vyrobci kamer viak ¢asto pouzivaji algoritmy ARE a ARZ, které nejsou
dostatecné robustni, coz muze vést k preexponovani nebo podexponovéani obrazu a
selhani na ném zavislych disciplin, jako napiiklad detekce ¢i lokalizace. Tato prace
se zabyvéa zakladnim rozborem fizeni kamery, nasledné predstavuje a implemen-
tuje nékteré aktudlni nejpokrocilejsi metody ARE spolu s vlastni metodou i{zeni
ARE, kterd bere v potaz zpétnou vazbu z detekéni tlohy. Implementované algo-
ritmy jsou prvné experimentdlné otestovany pro jejich schopnost fizeni expozice a
pomoci metrik je vyhodnocena kvalita obrazu fizenych kamer a porovnana s ves-
tavéenym ARE kamery. Dle vysledki jsou pak vybrané algoritmy nasazeny na bezpi-
lotni letecky prostiedek vykondavajici detekéni tilohu. Data z tohoto experimentu
jsou posléze empiricky vyhodnocena a je ukazéno, ze pfidani zpétné vazby z de-
tekéni dlohy do Fizeni expozice kamery vede ke zlepSeni detekce.

Klicéova slova Automatické fizeni, Pocitacové vidéni, Bezpilotni letouny
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B 1 Introduction

Since humans have been able to transfer and display captured images in digital form,
camera digital image processing has been an important area of computer science. It has
received increased attention in recent years, primarily because of advancements in autonomous
driving and artificial intelligence that use camera imaging technology for tasks like image
classification, semantic segmentation, image captioning, pose estimation, image enhancement,
and more. If these tasks receive images of inadequate quality, it can lead to failure in their
execution and potential loss of equipment or life.

Many manufacturers of digital cameras use simple, reliable AEC and AGC algorithms,
which are sufficient for the majority of autonomous tasks. Nevertheless, these cameras fre-
quently reach their hardware limits when used in high dynamic range environments (settings
with significant brightness variation) and are unable to deliver sufficient image quality for the
tasks listed to be completed correctly.

The resulting images frequently have either an excessively high or low exposure (see
Figure 1.1), which severely restricts or eliminates the ability to extract the necessary informa-
tion from them. However, an image that appears excessively exposed or inadequately exposed
to humans may be correctly exposed for computer vision or image processing task.

(b) Example of an underexposed image.

Figure 1.1: Examples of scenes with bad exposure from the perspective of a human eye.

In this thesis, several SOTA AEC and AGC methods were researched, implemented, and
compared along with a rapid and lightweight control algorithm that takes feedback from on-
board detection into account. The verification of implemented methods was conducted in two
separate experiments. The first experiment served as preliminary testing of all implemented
methods together with built-in AEC and AGC to see how well they perform in an outdoor
environment, and whether their control of exposure time had desired properties, such as re-
sponse time to incoming change or stability. Based on the results of the first experiment, the
second experiment was conducted onboard a MAV running an object detector to determine
if the implementations provide an improvement in detection compared to built-in AEC and
AGC. Both experiments are evaluated, and the results are presented.

CTU in Prague Department of Cybernetics
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B 1.1 Related works

Even though camera exposure control is a long-standing area of study, advances in
technology in the past two decades made it feasible to implement this problem in ways that
require more processing power, and are not integrated into the camera itself. [1] is frequently
cited work providing an understanding of the AEC and AGC methodologies being used by the
industry, most of them involving light metering sensors and weighted averaging of images. It
is important to note, that this work was released nearly 30 years ago, and current approaches
can be different. For example, the cameras used in this work, introduced in subsection 4.1.1,
use a binary search algorithm to locate the ideal exposure time.

Nearly all methods state an improvement of an onboard task relying on the camera
images as the primary reason for their motivation. Developing an algorithm that enhances
a Visual Odometry (VO) or Simultaneous Localization And Mapping (SLAM) is one such
popular field [2]-[7].

The simplest approach, besides setting a fixed exposure time, is to use a P regulator to
control the exposure time. For this, the error value is determined by averaging intensity of
pixels in an image following the application of masks [8]-[10]. This simplicity is a compromise
for evaluation speed.

Some techniques employ one or more look-up tables to anticipate brightness change
given a new exposure in an effort to maximize speed [11], [12]. However, these works only
show a minor sample of useful test findings.

More sophisticated methods try to assess the input images based on factors relevant to
the onboard task, like entropy [5], [13], gradient [2], [14]-[16], their combination [3], [17], or
intensity, mapped as a function [7], [18]. The subsequent exposure time and gain are obtained
by an optimization problem provided with the image evaluation. These approaches frequently
deliver results that are well-balanced between complexity and effectiveness.

Deep learning and neural network-based techniques have become more prevalent in the
recent years [6], [19]-[21]. Their primary drawback is that they are importable, meaning that
altering how onboard tasks are carried out would necessitate total network retraining. While
they can produce satisfactory outcomes with fast calculation times, they typically require
additional hardware, such as GPU, which can be inconvenient when employed on a MAV.

Very few studies [19], [21] include input from onboard computer vision tasks, such as
detection or feature matching, into their exposure control. To the best of your knowledge,
none of such studies provides a method that would not assume a very specific task.

Several of the approaches listed in this section are explored and then implemented,
compared, and assessed in this work. In addition to that, a relatively universal feedback loop
from the onboard detection task into a AEC and AGC control system is designed, showing
that a simple method can yield better results when given additional data.

CTU in Prague Department of Cybernetics



CHAPTER 2. PRINCIPLES OF CAMERA OPERATION 3/38

B 2 Principles of camera operation

This chapter provides a brief overview of the image acquisition and processing procedure
of a typical video camera.

M 2.1 Mechanical aspects
Image sensor

The photosensitive image sensor, which converts incoming light into a usable electrical
signal before being further processed to create an image, is a crucial component of a camera.
Charge-Coupled Device (CCD) and active-pixel sensors (also known as Complementary Metal
Oxide Semiconductor (CMOS) sensors) are the two primary types of sensors. Based on Metal
Oxide Semiconductor (MOS) technology, each sensor offers a distinctive set of advantages
for its targeted application, such as production cost, noise, speed, dynamic range or power
consumption [22], [23].

CCD CMOS

ical '
EEERE BN m e
= = = = register = . . .
EEEE EEEE

E B B

E E E BE 5 B B B
HHH i

. output
EEEE H B B E o
horizontal shift register column-by-column decoding

and readout

Figure 2.1: Architecture comparison between CMOS and CDD sensor. In the CCD sensor, the
charge is shifted pixel by pixel and read out at the end. In the CMOS sensor is read directly,
increasing speed. Image taken from Astrobasics website!.

The size of the image sensor is another crucial factor. Together with pixel size, it de-
termines the image resolution and affects the depth of field, noise, low-light performance, and
other factors. It is also crucial to consider what color space the sensor covers and what color
depth (bit depth) it can achieve [23].

Optical aperture
The optical aperture is another factor that influences the quality of an image. It describes
the opening through which light passes on its way to the camera’s image sensor.

The size of an aperture affects the depth of field and exposure time. Larger apertures
achieve lower exposure times at the cost of shallower depth of field, while smaller apertures

!Source: https://astrobasics.de/en/components/camera/ccd-or-cmos/
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4/38 2.1. MECHANICAL ASPECTS

achieve high depth of field, but require longer exposure time, which is necessary to achieve
the same image brightness.

The aperture typically includes a lens, which alters the image’s distortion and field
of view. A polarization filter can also be added to the lens to increase contrast, and color
saturation, or reduce the effect of reflections, though this will result in less light passing
through the aperture, thus requiring a longer exposure time.

Camera shutter

A camera shutter [24] is a part of camera that controls the duration for which the image
sensor is exposed to light. The camera’s shutter may be electrical, mechanical, or both. The
majority of modern digital video cameras rely on an electronic shutter that is managed by the
camera control unit rather than a mechanical shutter. This gives the start and stop triggers
a negligible delay. Electronic shutters are primarily of two types:

a) Global shutter
All sensor row values are reset upon the acquisition trigger, initiating a fresh ex-
posure cycle. All sensor rows halt the exposure after the exposure time has passed,
and the camera then reads out each row one after the other. Global shutters require
a more complex design than rolling shutters, which increases their cost, however,
they benefit from precise image synchronization which is essential for capturing
fast motion.

b) Rolling shutter
The camera resets and begins exposing the first row upon receiving the acquisi-
tion trigger. With an offset approximately comparable to the read-out time, the
subsequent row exposure is always initiated after the preceding one. The same ex-
posure time is given to each row, and the results are read out immediately after
finishing. Rolling shutter is not suitable for capturing fast-moving objects as the
sequential exposure and readout distort the image. However, besides lower cost and
power-effectiveness, it allows the camera to capture images at higher frame rate.

Frame start

tragered Frame start

+ triggered
Row 1 * Sensor readout time
Row 2 | ] h—‘
Row 1
Row 3 |
2 Row 2| | 1
Row 3 -
l. i ]
n
[] . 1
' - .
[] - ]
L] ]
]
. . . [
Row n-2 [ ]
Row -1 1 Row n-2 . : ]
Row n [ Row n-1 r .
Exposure time Sensor readout time Row n Reset tine o
| = Exposure N - Exposure
¥ - Readout ¥ = Readout
(a) Global shutter (b) Rolling shutter

Figure 2.2: Examples of shutter types. Image taken from Basler website!.

!Source: https://docs.baslerweb.com/electronic-shutter-types
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B 2.2 Digital operations

Many procedures are frequently used to improve an image’s final quality either while or
after it is captured in an effort to make up for undesirable effects of the environment in which
the scene is shot as well as inherent flaws in the camera hardware.

Exposure time

Exposure time is the duration of the image sensor capturing the incoming light. It is
one of the crucial values in camera control. If it is set incorrectly, the image’s information ca
be irreversibly lost. Additionally, it sets a restriction on the camera’s maximum frame rate,
which cannot be higher than the inverse of exposure time.

Gain

In order to maintain desirable image characteristics like brightness or frame rate, a
camera with insufficient sensor sensitivity may artificially boost the brightness of the image
when it captures a dimmer scene. It can be accomplished by amplifying the signal that is
coming in from the camera sensor by a certain factor called gain. However, gain also amplifies
flaws like noise, making it more prominent. Consequently, the used gain is typically desired
to be minimal.

light source set at + 4000 K

2500K 3500 K 4500 K 5500K 6500 K 7500 K 8500 K 9500 K

(a) The black body locus on a (b) Example of how different camera color temperature settings

chromaticity diagram. Image affect the outcoming image. Image taken from Fstoppers?.
1

taken from Luminus-.
Figure 2.3: Color temperature in color space (left) and how it affects the characteristics of an
image (right).

White balance

Light from various sources contains different wavelength mixtures, which are referred to
as color temperatures. Color temperature is defined by a curve on a chromaticity diagram that
represents the color of light emitted by an ideal black body at various temperatures, as can
be seen in Figure 2.3a. The human eye has an ability to adapt to these changes, but cameras
may have trouble accurately interpreting the light in the scene, resulting in an image color
distribution that deviates from the actual situation, as can be seen in Figure 2.3b. Automatic

!Source: https://fstoppers.com/natural-light /there-difference-between-color-temperature-and-white-
balance-596031

2Source:  https://luminusdevices.zendesk.com/hc/en-us/articles/4403685063437-What-do-CCT-CIE-and-
SPD-mean-in-LED-lighting
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6/38 2.2. DIGITAL OPERATIONS

white balance algorithms [25], [26] are commonly used in modern video cameras, allowing
for real-time adjustments and counteracting the adverse impacts of light sources. However,
problems can arise, when several light sources with different color temperatures are present
in the scene.

Color balance

As with white balance, which is occasionally seen as a subset of color balance, the main
focus is on the adjustment of the image’s red, green, and blue channels [27], [28]. However,
rather than moving along a curve on a chromaticity diagram like white balance, color balance
can adjust each color channel independently, similarly as in Gain. The adjustment is usually
done manually by the user. In computer vision, color balance or white balance is not universally
required or desired, as it depends on the specific requirements of the task. An incorrect choice
can potentially lead to a loss of information contained in the image, for example through
grayscale conversion [29].

Dark current

Due to reverse-bias leakage in diodes, a tiny current flows through the sensor even when
no photons are reaching the photosensitive image sensor, producing fixed-pattern noise in
the image. This is typically eliminated through digital post-processing, such as dark-frame
subtraction, or it can also be reduced by a creative sensor construction [30], [31].

Noise reduction

Though steps can be taken to mitigate it, noise comes from a variety of sources, including
the previously mentioned dark current and gain. As such, it is something that can never
be eliminated. Thus, cameras use a wide range of various noise reduction techniques and
algorithms in image post-processing to assure at least a reduction, even at the expense of
small image distortion. There are numerous approaches to this topic, such as mathematical
morphology [32], median filtering [33], fuzzy filtering [34], weighted averaging [35], [36] or
spatiotemporal smoothing [37].

CTU in Prague Department of Cybernetics



CHAPTER 3. CONTROL ALGORITHMS 7/38

B 3 Control algorithms

This chapter introduces several SOTA AEC methods, some of which were implemented
and evaluated. The methods that were implemented are described in more detail.

B 3.1 Image gradient-based methods

These exposure control algorithms exploit gradient information contained in an image,
to highlight extractable features while suppressing uniform areas that are redundant. Addi-
tionally, they introduce metrics to evaluate the image gradient quality and achieve better
exposure control.

B Gamma correction mapping

Shim et al. employ one such strategy in [14], where they introduce an evaluation metric
along with functions that calculate the desired exposure time. Subsequently, they expand on
these foundations in [4] by adding exposure control to a multi-camera system and introducing
a non-linear function to calculate the new exposure time.

The image’s normalized gradient magnitude serves as the foundation for the evaluation
metric itself. A threshold is included to disregard minor gradients in the final evaluation
because the majority of the gradients in the image have small values, and they desire to focus
on strongly defined gradients. The evaluation metric M is defined as

log(A(mi —6) +1) . .
=] logM(1-0)+1) M= (3.1)

0 otherwise,

M= m, (3.2)

where m; is the normalized gradient magnitude of the image in range (0; 1), m; is the amount
of gradient information corresponding to gradient magnitude, ¢ is the activation threshold,
and A is a control parameter. Both A and § are parameters adjustable by the user.

This provides an evaluation of quality of the current image, which is to be maximized.
To get information about direction and magnitude of the new exposure update, the method
introduces an algorithm based on 7-correction, which for v < 1 increases and for v > 1
decreases the image brightness. The definition of ~-correction is

¥ I \"

where I;;, is the original image (incoming image), 7 is the gamma correction power to which
the image is raised and I is the image with applied gamma correction.

This is used in the «y-correction mapping evaluation, described as
Y = arg maxv(M(Ii’L))v (34)

where ¥ is the optimal value of ~.

CTU in Prague Department of Cybernetics



8/38 3.1. IMAGE GRADIENT-BASED METHODS

In order to solve Equation 3.3, several anchor points with predetermined v values are
created, which are then fitted by a fifth-degree polynomial. The optimal 4 is then obtained by
finding the maximum of the fitted polynomial on an interval [0.5; 2], empirically determined by
Shim. This should, in theory, ensure the methods’ smoothness while maintaining acceptable
computational time.

The original paper [14] proposes a linear update function to control the camera exposure
time, defined as

1/2, y > 1,
v 7= (3.5)
1, otherwise,
B = (1+aKy(1 - 9)E, (3.6)

where « is a control parameter used to decrease the steepness of descent, Fi is the current
exposure time, Fiiq is the new exposure time and K, is an adjustable gain parameter to
control the speed of convergence.

The author’s subsequent work presents a non-linear update function and shows that it
has better convergence than the linear update function [4]. The definition of the non-linear
update function is

Eiy1 = (1+aKy(R—1))E,, (3.7)

p=aan {25 st (1) - vt (1)} 1. o)

where d is an adjustable parameter.

This method’s primary drawback is that it relies on gradient information, which is very
low in homogeneous images (completely black or white). The method fails to control the
exposure if such a state is reached, and the authors do not mention this scenario or elaborate
on how to avoid it.

[ | Gradient ascent

Zhang et al. provide an alternative gradient-based method [15], which is often compared
with Shim [14]. Similar to [14], Zhang et al. present a unique metric for assessing the quality
of an image and demonstrates that the metric performs better than the one presented in [14].
However, rather than using it to evaluate the image, the approach from [15], uses this metric
to establish an optimization problem using gradient ascent, which then yields the new desired
exposure time.

CTU in Prague Department of Cybernetics
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Lens Shutter Photometric Response Function
Radiance (L) Irradiance (E) At Exposure (X) f Intensity (1)
R — >

Figure 3.1: A visualization of the effect of the scene radiance on the resulting image brightness.
Image taken from [15].

At first, a photometric response function is established [38], which is the outcome of the
image creation process (illustrated in Figure 3.1). The photometric function is defined as

X = EAt, (3.9)
F(X) = f(BAY) =1, (3.10)

where F is the scene irradiance, which is the amount of energy that reaches the camera sensor
per time unit, At is the current exposure time, which, when combined with F, gives the total
amount of energy X that the sensor receives during an exposure cycle. Upon completing the
internal processing outlined by function f, the image brightness I is obtained.

For convenience, since the photometric function f is invertible and grows monotonically,
the natural logarithm of inverse response function g can be defined as

Y1) = EAt, (3.11)
In{f~Y(I)} = In(E) + In(At), (3.12)
g(I) = Wn{f~H(D)}. (3.13)

The exposure control problem is then formulated as maximization of a gradient-based
metric Mo fipere, defined as

Mm
%

softperc (314)
=0
1 ™1 K

—si ) 1 S psy

N 2(p- S)> (3.15)
. k .
i i E Tr(Z — (-5)) otherwise
N 2 2AS—(pS5))) ’
S

N = Z Wi (3.16)

.
||

where G(7) represents gradient magnitudes, obtained via the Sobel operator, sorted in ascend-
ing order, and 7 represents the i-th index of G and k the scaling factor. The number of pixels
in the image is denoted S. The weight function W (i) emphasizes values of the sorted gradient
magnitudes and is dependent on the set percentile p. N serves as a normalization factor of
the weight function. The effect of parameter p on the outcome of the weight function can be
seen in Figure 3.2, where S =99 and k = 7.

CTU in Prague Department of Cybernetics



10/38 3.1. IMAGE GRADIENT-BASED METHODS

T T T T T T
0 20 40 60 80 100
Index number i [-1

Figure 3.2: Behavior of a weight function W (i) based on p.

The gradient ascent optimization method, which determines the next optimal exposure
time Atpext, can be used to maximize the metric (3.14). The complete method for obtaining
the formula is explained in [15], and results in

9G(-) 1 r

8Msoftperc o 5 . 8G(Z)

AL = ;W(z) oAL (3.18)
Atpext = At + 7%, (3.19)

OAt

where ~y controls the step size, At represents the current exposure time in seconds and (-)
means ’apply to all pixels’. Equation (3.17) utilizes the image gradient and the derivative of
the inverse photometric response function g.

Obtained response functions —— Obtained derivatives
—6 | mmm Fitted polynomial g(k) 14 = Final function g'(k)

In(EAR) [In(s)]

11 ]
0.0 1 ;‘
6 5'0 lll)ﬂ lSID 260 2_‘;0 6 5'0 lll)G l.‘;G ZE‘IU 2_‘;0
Average image grayscale value [-] Grayscale value [-]
(a) An example of fitting polynomial function on (b) A plot of the derivates of all fitted
a dataset obtained on a sunny day. polynomials from all datasets together with the

final approximation function.

Figure 3.3: An example of recovering g for one dataset and obtaining the final approximation
of the function ¢'.

The requirement for obtaining a valid inverse photometric response function g is a scene
with constant illumination. To estimate the function, the camera exposure time is set at its
lowest possible value, and is then raised exponentially (linearly in case the camera response

CTU in Prague Department of Cybernetics



CHAPTER 3. CONTROL ALGORITHMS 11/38

is linear and not logarithmic), while recording the image’s grayscale value for each unique
exposure time, yielding a set of points representing the relationship between exposure time
and image brightness, which is then fitted by a tenth-degree polynomial to obtain a continuous
function representing the estimation of g.

To obtain an accurate representation of ¢ in a specific environment, such as a sunny
day, the measurement is repeated multiple times at different locations to obtain coefficients of
multiple functions g, completing a single dataset. Averaging the coefficients of a given dataset
presents a reasonable estimation of the function g for the given environment. Figure 3.3a
shows an example of estimating function g from a dataset.

(a) 24 ps (b) 103 ps (c) 215 us | (d) 455 ps

Figure 3.4: Example scenes from one of the datasets obtained on a sunny day at different
exposure times.

In total, over 200 different scenes split into 19 datasets were captured with two cameras,
producing 19 diverse approximations of the function g. The final approximation of function ¢’
was then obtained by least-squares fitting the derivatives of the 19 approximations of function
g. Figure 3.3b shows the retrieval of the final approximation of function ¢'.

This can be then applied in equation (3.19) to determine the next exposure time, where
for each pixel value in I, the derivative of the photometric response function is calculating
using the formula ¢’(I(-)). As a result, equation (3.17) returns a two element vector for each

pixel that describes the gradient in the x and y axes. A scalar product is then used to get the
derivative of a particular pixel. In order to obtain agA(?, the pixel derivatives are ordered in

ascending order and together with W (1), % can be computed.

Theoretically, both gradient-based methods should settle at approximately the same
exposure times when operating in parallel. This means that the primary areas where the
approaches should differ are response time and robustness. [15], in contrast to [14], deals with
the issue of an entirely overexposed or underexposed picture, by adding —2 for overexposed
pixels and 2 for underexposed pixels to the gradient when a pixel’s gradient equals zero, which
indicates that the pixel and its surroundings are fully saturated. This should guarantee that
the algorithm handles saturated images correctly.

B 3.2 Extended gradient methods

The methods described in this section employ not only the use of image gradients to
determine image quality but also additional metrics to introduce additional information into
the evaluation.
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n Gradient, noise and entropy

Shin et al. [17] present a method that builds on the gradient method introduced by [14]
(discussed in section 3.1.1) by adding additional evaluation metrics to compute the overall
image quality. This information can then be used to determine the next exposure time using
an optimization method. The suggested gradient-based metric is

G ={G1;Ga;...;Gn.}, (3.20)
Gy=> mi, j=1,2,.,Ng, (3.21)
iGCj
Lgradient = Kg : E(G)/S(G)v (322)

where m; denotes the gradient calculated using equation (3.1). [17] divide the obtained gra-
dient image into a total of N¢ segments. Cj represents the number of pixels in each segment
j and is used to calculate the segment’s value. By computing the mean and standard devia-
tion of G, represented here by operators E(-) and s(-), respectively, the final gradient metric
evaluation is obtained.

In addition to the enhanced gradient-based metric, the image’s entropy and noise are
assessed. The noise assessment metric is based on a filter methodology, and is defined as

w1 . .
N S H U 160 (3.23)

where Ng is the number of non-zero elements in H o U, * is the convolution operator, |- | is the
absolute value operator, and o is the element-wise product, H (i) and G(i) are masks defined
as

. 17 mj S 57
H(i) = ] (3.24)
0, otherwise,
1, nn<I(7) <y,
U(i) = = ()_.h (3.25)
0, otherwise,

where § is the p-th percentile of gradients in the image and m; represents the values of
normalized gradients. Thus, homogeneous sections in the image can be obtained by applying
the mask H. U represents a mask of the unsaturated regions in the image, determined by
the lower bound 71 and upper bound 7},. Since [17] assume that the noise in the picture is
zero-mean additive Gaussian noise, M is used as the noise estimate kernel, and defined as

1 -2 1
M=| -2 4 -2|. (3.26)
1 -2 1

In case the image has multiple color channels, the noise level is estimated in each channel
using this metric, and the results are averaged to obtain the final value.

The final metric to be introduced is designed to evaluate the image’s low-level informa-
tion based on entropy. It is defined as

255

Lentropy = _Ke : Z Pl(k)logQ(PI(k))ﬂ (327)
k=0
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where K, is a normalization factor and Pi(k) represents the likelihood that a given pixel value
k appears in the image, defined as

Pi(k) = — (3.28)

where Ny is the number of pixels with value k in the image, and Ny is the total number of
pixels in the image.

These three metrics are then combined with the user-defined weights a and 3 to generate
the final image quality metric

f(I) = aLgradient + (1 - a)Lentropy + 6Ln0ise- (329)

An image with a higher value of f(I) contains lower noise levels and more strongly defined
texture details. As a result, it is desired to maximize its value.

[17] opt to achieve that by utilizing the Nelder-Mead method [39], [40], which makes use
of the concept of simplex and does not necessitate the use of a derivative. In Appendix B, the
complete algorithm is explained. The simplex yields the optimal exposure time and gain for
a particular scene with impact to f(I) after convergence or an approximation after a given
number of iterations.

This method’s primary drawback is that it was designed for static scenes. To resolve this
problem, our implementation periodically resets the simplex to provide it with new values.

B 3.3 Non-gradient methods

Unlike earlier approaches, these methods do not take advantage of the image gradient.
To properly adjust exposure time, a feedback loop from the running onboard task utilizing
the resulting images is introduced.

[ ] Neural networks

One of the latest State-Of-The-Art approaches [21] proposes a 1D Convolutional Neu-
ral Network (CNN) evaluation of raw image histograms, together with processing of image
features extracted using the ResNet architecture, as shown on Figure 3.5.

- (00 - - [ ﬁﬂﬁ

Scene Camera optics Sensor

Raw image

ResNet

ResNet conv2 : T

RPN pool class pred. | |

ResNet conv4

i1 Feature extractor ' Obiject detector

@ 3x3 avg. pool

‘ﬁ\v\ }ﬁ] Bx6 max pool .
[ Exposure channel
12x12 max pool

7 settings compress. e
concat +
histogram 1D CNN + dense dense | whole image average pool | dense

i | Multi-scale
_AEC Detection result

%‘g?/g

Figure 3.5: Over-view of the proposed CNN-based exposure control architecture with live
object detection. Image taken from [21].

This method was not implemented due to its complexity and non-portability (it would
have to be implemented on a unique camera hardware, limiting its usability). The technique
is intended for usage on Unmanned Ground Vehicles (UGVs) equipped with an onboard GPU
to attain acceptable computational times. However, this is severely limiting for aerial robots,
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especially for Size, Weight and Power (SWaP) MAVs. Additionally, altering the detection’s
target object would necessitate starting over with a fresh dataset acquisition and network
training, even further reducing its possible applications.

[ | Detection area focus

This method was designed as a part of this thesis. It uses a proportional regulator control
algorithm and a feedback loop to improve the image quality after onboard detection. This
ensures accurate target detection despite changes in surroundings conditions, until detection
is no longer possible due to moving out of frame, moving too far away from the target, or due to
too complex environmental conditions, (for example very quick changes in scene illumination).

If no detection is observed, the algorithm uses the P regulator to compute the average
grayscale value of the picture and adjusts the exposure time based on the difference from the
desired control value using the proportional regulator.

In the case of a detection, the method receives data from the detector in the form of at
least four corner points defining a rectangle that encompasses the detected object. This region
then defines the region of interest, for which a mask is generated. The mask is then enlarged
and blurred using Gaussian Blur to include extra information about the target’s immediate
surroundings and compensate for a potentially inaccurate detection.

The regulator utilizes the average of the pixel values weighted by the mask defined as
i={0;1;...; Nt — 1}, (3.30)
Np = > _D(i), (3.31)

i

E = ;D Z D(i) - I(3), (3.32)

where N7 is the number of pixels in the image, D(7) is the generated mask, Np is the sum of all
weights in the mask D(i), I(7) is the same incoming image as used by the detector and F is the
average of the pixel values weighted by the mask. From E and the control value, a deviation
is calculated, which is then used by the proportional regulator to control the exposure time.
In the case of detection, the deviation is quintupled to improve the response time to sudden
illumination changes of the target.

This approach is designed to work with a single target that, once detected, remains
detectable for as long as possible. It is easy to add the ability for multiple target detections.
However, this raises the possibility of many targets with varying levels of illumination, which
can lead to unexpected results and would require more complex implementation. The detection
of multiple targets is outside the scope of this work.

CTU in Prague Department of Cybernetics



CHAPTER 4. EXPERIMENTS 15/38

B 4 Experiments

The conducted experiments, used cameras, and their parameters are elaborated on in
this chapter, together with the environments in which the experiments were conducted, the
evaluation of the obtained data, and the presentation of the results.

B 4.1 Setup & configuration

B Used cameras & their parameters

For the experiments, two cameras were used. A Basler dart daA1600-60uc camera and
Baluff Matrix Vision mvBlueFOX-MLC200wC. Both cameras were equipped with a fish-eye
lens of similar properties.

For both cameras, the region of interest was limited to 480 x 480 pixels, to mask out the
MAV rotors from the image. Since the Basler camera offers a default resolution of 1600 x 1200
pixels, a binning of 2 was applied to reduce noise in the image, resulting in a resolution of
800 x 600 pixels. Every other image quality-enhancing option such as auto white balance was
kept on. The camera frame rate limits were disabled. Thus, the frame rates were limited purely
by the exposure time, camera readout, image processing, and bandwidth. The images were
captured in the BGRS pixel format. Parameters of the different AEC algorithms are listed in
Appendix A and were constant for all experiments.

[ ] Camera holders

To ensure a fair comparison, the control algorithms run on separate cameras in parallel
and the cameras are mounted as close to each other as possible, ensuring the perceived scene
is nearly identical. To achieve that, the camera holders were modeled in a CAD software (see
Figure 4.1) and 3D-printed. The holders were designed to be mounted onto the MAV.

(a) Bluefox camera holder. (b) Basler camera holder - (c) Basler camera holder - top
bottom part. part.

Figure 4.1: Models of custom camera holders.

The design takes into consideration safety of the mounted cameras since both types come
with exposed components that can be easily broken off under mechanical stress. Additionally,
both holders are equipped with protective covers for the lenses to ensure the cameras are not
damaged during transportation. The cameras mounted are shown at Figure 4.2.
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= - 2 e
(a) Bluefox camera holder with mounted cameras. (b) Basler camera holder with mounted cameras.

— m

Figure 4.2: The camera holders with mounted cameras.

B 4.2 Preliminary testing

This section describes a set of tests that were conducted in order to determine per-
formance and functionality of the implemented control algorithms and assess their usability
onboard a MAV.

B Configuration

The experiments, were conducted on a sunny day in a feature-rich environment of a park,
in a location that offered a high brightness range. A photo of the testing area is presented in
Figure 4.3. The evaluation datasets were captured on an approximately 50-meter-long circular
path with the cameras facing forwards, which provided roughly a one minute of footage for
each dataset. Since only three Bluefox cameras were available, the number of used Basler
cameras was also reduced to three to provide an easy comparison.

| Results

For the evaluation of each dataset, three feature extractors were used: FAST [41], Shi-
Tomasi [42] and SIFT [43]. The used evaluation metric was the mean number of extracted
features from each extractor is a given dataset. The captured images were also examined
visually to assess the reaction to changes and stability of the control algorithms.
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Label Control method name

A Built-in AEC & AGC control

B Gamma correction mapping([4])

C Gradient ascent ([15])

D Gradient Noise Entropy ([17])

E Detection area focus with no detection feedback

Table 4.1: The implemented and compared AEC and AGC methods.

Basler Bluefox
FAST FAST

A B C D E A B C D E
park 1 | 6578 | 624 | 412 - - park 7 | 3648 | 2981 | 2555 | - -
park 2 | 6213 | 3184 - 1840 - park 8 | 3527 | 668 - 358 -
park 3 | 6287 | 1135 - - 2487 park 9 | 4060 | 3061 - - | 2539
park 4 | 5873 - 608 | 3145 - park_10 | 4195 - 2985 | 618 -
park 5 | 5719 - 1574 - 2699 park_11 | 4358 - 2419 | - | 2689
park 6 | 5747 - - 3053 | 2519 park_12 | 4733 - - 704 | 3040

Shi-Tomasi Shi-Tomasi

A B C D E A B C D E
park_1 | 4670 | 541 | 532 - - park 7 | 3853 | 3165 | 2911 - -
park 2 | 4369 | 2769 - 2474 - park.8 | 3527 | 685 - 3070 -
park 3 | 5041 | 1136 - - 2536 park 9 | 3878 | 3114 - - 2687
park 4 | 5194 - 643 | 4211 - park_10 | 4023 - 3313 | 2419 -
park 5 | 4302 - 1499 - 2963 park_11 | 4305 - 2673 - 4305
park 6 | 4618 - - 3605 | 2887 park 12 | 4401 - - 1177 | 2985

SIFT SIFT

A B C D E A B C D E
park_1 | 2551 | 201 | 140 - - park 7 | 1943 | 1491 | 1289 | - -
park 2 | 2398 | 1175 | - 607 - park 8 | 1684 | 341 - 182 -
park 3 | 2462 | 397 - - 791 park 9 | 2065 | 1488 - - | 1089
park 4 | 2319 - 212 | 920 - park_10 | 2159 - 1482 | 324 -
park 5 | 2349 - 540 - 893 park 11 | 2236 - 1173 | - | 1222
park 6 | 2364 - - | 1058 | 782 park 12 | 2710 - - 356 | 1356

Table 4.2: Results of the preliminary testing. The considered methods are abbreviated using
the
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Figure 4.3: Overview of the preliminary testing area.

As seen in Table 4.2, the built-in AEC and AGC performed better in all applications.
Although that does not imply that it is the best control algorithm, it shows that in an
environment saturated with information it outperforms the more advanced methods, such as
the gradient-based methods, which showed a tendency to overexpose the scene, because it
provided stronger gradients. However, that resulted in the removal of less prominent features
in the image, such as sky or tree foliage.
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Figure 4.4: The average grayscale value from the park_12 dataset using different control algort.
The light blue line marks the control value passed to the Built-in AEC and Detection area
focus with no detection feedback algorithms.

The Gradient Noise Entropy control algorithm oscillated heavily as can be observed in
Figure 4.4. It may be argued that these oscillations are caused by too high constants used
in the simplex. The main reason for this oscillation is the discontinuity of the Nelder-Mead
simplex, amplified by the adjustment for dynamic scenes.
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Figure 4.5: The experimented MAV platform at the launch location equipped with three
Bluefox cameras.

B 4.3 Application on drones

The results presented in the previous section provide an insight into the possible appli-
cations and the usability of implemented methods. The Gradient, noise, and entropy method
was deemed not usable on drones due to its tendency to oscillate resulting in only three
methods reaching satisfactory results for their application onboard an MAV.

B Configuration

The experiment was conducted on an MAV provided by the Multi-robot Systems Group
group [44], [45] and operating using the MRS UAV system [46]. The drone was equipped with
a specialized frame designed for mounting the camera holders. The camera holder with the
cameras was mounted on the frame, extending approximately 20 centimeters from the MAV
axis and aiming directly forward. The mounting can be seen in Figure 4.5.

When mounted on the MAV, the four Basler cameras overwhelmed the bandwidth of the
available USB ports, which caused random conflicts between transferred data packets. When
the camera firmware detected such collision, it evaluated it as a critical error and proceeded
to restart or shut down the camera. This interrupted the ongoing AEC and detection task.
Because this behavior was consistent even with three cameras, Basler cameras were ruled out
and the experiment onboard the MAV was conducted only using three Bluefox cameras.

The target was first placed flat on the ground. However, in combination with a low
image resolution and the almost perpendicular position of the target relative to the camera’s
optical axis, the resulting detection was unreliable. To eliminate this problem, the target was
erected at 45° angle, which greatly improved its visibility for the cameras, resulting in an
improvement in the target detection. An example of scene perceived by the cameras onboard
an MAV can be seen in Figure 4.6.
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(a) Example from datasets drone_6 to drone_10, (b) Example from datasets drone_11 and
taken at sunset and with the target erected. drone_12, taken at sunrise and with the target
erected.

Figure 4.6: Example of scenes captured by a camera running the Built-in AEC algorithm
onboard a MAV.

The MAV started from the ground approximately 50 meters away from the target. It
settled at a height in the range of 2 to 7 meters, and then slowly approached the target in a
straight line, with occasional corrections, until it flew over it. Then it stopped and proceeded
to return on the same trajectory without turning. The MAV then landed, and the whole
experiment was repeated several times, with different control algorithms.

The experiment was conducted in the evening and once in the morning. These times
of day offer a high range of luminosity values. The scenes captured by the onboard cameras
running different algorithms are shown in Appendix C.

| Results

From the evaluation metrics introduced in section 4.2.2, the FAST metric, due to its
evaluation speed, has been used for the evaluation of data obtained during the experiment
onboard an MAV. Additionally, the DETECTION metric is introduced. It is defined as the
smallest area of a valid detection of the target captured by the camera. This metric was
introduced to show methods performance at keeping the detection target better exposed,
resulting in a longer detection range. The AprilTag target is of a size 10 x 10 pixels meaning
the best possible result is 100. Lower values of the DETECTION metric are thus better.

Table 4.5 evaluates the number of frames at which detection occurred realtive to the
number of total frames in a given dataset and the performance compared to the Built-in AEC
algorithm described in %.

The Detection area focus method achieved the best result, however, because it was the
most tested algorithm, comparing it with other control methods would produce a biased result.
There were two cases where it performed unexpectedly. The first case was at dataset drone_12
where it produced the only result that was worse than the Built-in AEC and Detection area
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Y

(b) Photo of the setup of the detection target. (c) Close-up photo of the MAV mid-flight.

Figure 4.7: Photos of the MAV in action during the experiment and the target setup.

focus without detection feedback. The second case was at the dataset drone_10, where it
performed overwhelmingly better than the Built-in AEC.

Figures 4.8a and 4.9a show an analysis of datasets drone_10 and drone_12, which includes
the average grayscale value of an image over time. In the first case shown in Figure 4.8, the
Detection area focus algorithm reacted to target detection by increasing the exposure time
resulting in an overall brighter image and a better exposed target. However, it did not affect
the detection quality, which performed worse than both built-in AEC control and Detection
area focus without detection feedback.
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4.3. APPLICATION ON DRONES

HTEHOOQ® >

Built-in AEC & AGC control

Gamma correction mapping([4])

Gradient ascent ([15])

Gradient Noise Entropy ([17])

Detection area focus

Detection area focus (no detection feedback)

Table 4.3: The implemented and compared AEC and AGC methods.

FAST DETECT

A B C D E F A B C D| E F
drone 6 | 321 - - - | 340 - 161 - - - 1 139 -
drone_7 | 549 - - - 648 - 155 - - - | 141 -
drone 8 | 490 | 711 - - - - 163 | 1325 - - - -
drone_9 431 - 2601 | - - - 174 - NULL | - - -
drone_10 | 329 - - - | 341 164 - - -] 122 -
drone_11 | 873 - - - | 982 870 155 - - - | 144 | 129
drone_12 | 1078 - - - 11360 | 1113 155 - - - 1160 | 135

Table 4.4: Results of the onboard exposure control experiments. The best values are marked
in red. The best values for a given dataset are marked with a bold font.

Detection ratio

Comparison with the Built-in AEC (in %)

A B C | D E F A B C | D E F
drone 6 | 0.211 - - - 1 0.284 - 100 - - - 134.6 -
drone_7 | 0.294 - - - | 0.299 - 100 - - - 101.7 -
drone 8 | 0.471 | 0.140 | - - - - 100 | 29.7 | - - - -
drone 9 | 0.384 - 0.0 | - - - 100 - 0.0 | - - -
drone_10 | 0.162 - - - 1 0.388 - 100 - - - | 239.5 -
drone_11 | 0.324 - - - 10.364 | 0.360 100 - - - 112.3 111.1
drone_12 | 0.493 - - - | 0.491 | 0.509 100 - - - 99.6 103.2

Mean 0.334 | 0.140 | 0.0 | - | 0.365 | 0.434 100 | 29.7 | 0.0 137.54 107.15

Table 4.5: Detection ratios and their deviation in percentage from Built-in Automatic Expo-

sure Control.
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(a) The average grayscale values from the drone_12 dataset. The light blue line marks
the desired control value passed to all three algorithms.
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(c) Detection ration over time of the Detection area focus algorithm in the drone_-12
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(d) Detection ration over time of the Detection area focus with no feedback from the
detection task in the drone_12 dataset.

Figure 4.8: Case of the worst performance of the Detection area focus algorithm compared to

Built-in AEC.
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(a) The average grayscale values from the drone_10 dataset. The light blue line marks the
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Figure 4.9: Case of the best performance of the Detection area focus algorithm compared to
the Built-in AEC(drone_12 dataset).
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The opposite happened in the second presented case, where the Detection area focus
performed overwhelmingly better despite no clear effect on image brightness. This either
implies that the target luminosity was similar to the average luminosity of the scene or the
detection area focus algorithm did not receive any feedback from the detection task. Despite
that, it demonstrates superior performance to the Built-in AEC control algorithm, as can be
seen in the table 4.5.
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Figure 4.10: The average grayscale values from the drone_8 dataset. The light blue line marks
the desired control value passed to the Built-in AEC algorithm. The green line marks the
MAYV takeoff.

]
o
o

=
~
[e]

—— Built-in AEC
Gradient ascend

W’““%MJ\MJN Nl eyt

0 20 40 60 BU ].DG 12(}
Time [s]

Average pixel value [~]
= =
N w
w [=]

-
o
[=]

~
U

Figure 4.11: The average grayscale values from the drone_9 dataset. The light blue line marks
the desired control value passed to the Built-in AEC algorithm. The green line marks the
MAV takeoff.

The gradient-based methods yielded better results of the FAST metric than during
the preliminary testing. This may be caused by areas of the image, such as the background
forest, that had sharply defined gradients combined with a reduced feature-richness of the less
prominent image regions. Despite that, their performance regarding the detection task was
still worse than when the Built-in AEC was used.

Both used gradient methods suffered from overexposing the image, which hindered tar-
get detection. An extreme situation was encountered with the Gradient ascent method which
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Figure 4.12: Examples of scenes captured by the camera running the Gradient ascent algo-
rithm.

did not manage to achieve a single detection. A high exposure time paired with the Sun’s
position caused the target to be strongly overexposed which made the AprilTag on the target
appear completely white as can be seen in Figure 4.12.

B 4.4 Limitations

The implementation was faced with several forced and self-imposed limitations. The self-
imposed limitations consisted of a minimum update rate of 20 Hz, to ensure competitiveness
with Built-in AEC and high enough frame rate for possible subsequent task to run smoothly.
These conditions were successfully achieved.

The forced limitation stemmed from the camera capabilities, such as the duration be-
tween setting an exposure time and camera applying the new exposure time. The considered
cameras required three frames, meaning that after the evaluation of the current image and
sending new values to the camera, the image at which the update took effect arrived three
frames later. Thus, to ensure a minimal evaluation frame rate of 20 Hz, the minimum camera
frame rate for the implemented control methods was set to 60 Hz. This was not a problem in
the conducted experiments, as all of them were conducted in bright environment, but could
pose problems in the future, if deployed in dimmer conditions.

Another limitation was the image resolution captured by the camera. As mentioned
earlier, the image was cropped to limit the effect of the MAV rotors on the control algorithms.
However, small resolution was could be the main reason the gradient based methods performed
so poorly.

A significant amount of time was spent on resolving problems regarding the function-
ality of the cameras, such as missing or incorrect implementations in the API, and random
disconnects, which were happening both with Bluefox and at a larger scale, Basler cameras.
These problems were not foreseen and were discovered in the process of creating this work.
Knowledge of these problems before the beginning of the implementation would be helpful.
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B 5 Conclusion

In this thesis, several SOTA AEC methods were researched and implemented for an
improvement in onboard detection task of a Micro Aerial Vehicle. These methods mostly
employed control based on gradient information in the incoming images, paired with custom
metrics to control the exposure time. Additionally, an AEC algorithm utilizing feedback from
an onboard detection task was designed, implemented and compared with the other methods
and the Built-in AEC as a baseline.

The gradient-based methods managed to control the camera exposure, but consistently
produced overexposed images, severely limiting the detection. One explanation is an imple-
mentation mistake, however similar results were also achieved by [16], so it may be the flaw of
the algorithm. These methods struggled or completely failed when the gradient information
in the image was nearing zero.

A detection improvement was achieved by a Detection area focus algorithm with and
without detection feedback. The improvement without detection feedback was too small to
be conclusive, and more experiments are needed. The improvement with detection feedback
is conclusive, as many tests were conducted resulting in an improvement of target detection
by 137.5% on average compared to the Built-in AEC, when used onboard the MAV.

The experiments have shown that the high speed of convergence of the Built-in AEC
algorithm can cause undesirable behavior, since its rapid adjustments caused a temporal
overexposure or underexposure of the image, resulting potential temporal loss of the detected
target. This could be negated by implementing a control algorithm with a slower response
to changes. This might be one of the reasons why Detection area focus without detection
feedback performed better.

The main conclusion of this work is that the introduction of a feedback loop from the
onboard detection task results in improved detection performance compared to the Built-in
AFEC. The results of other methods performed worse than the Built-in AEC, however still
managed to control the camera exposure. These methods could achieve better results in the
future if the evaluation metrics are improved.

B 5.1 Future improvements & suggestions

One of the problems this implementation did not solve was the elimination of method
parameter adjustment for specific environment. This was planned to be achieved by mapping
parameter values to a scene radiance, similarly to photometric response function introduced
in Section 3.1.2, which could, in theory, cover most scenarios.

Considering new method implementations, instead of targeting a wide variety of tasks,
the new methods should focus more on a specified area of tasks, and then let the user pick the
algorithm that is the best suited for their task. This means that the CNN-based algorithms,
which were rejected due to their importability, could play a significant role here.

Through the experiments, it was demonstrated that it is not necessary to incorporate
complex image evaluation techniques to reach an improvement of the onboard detection task.
A simple and fast solution can perform better than the Built-in AEC. Future implementations
should not focus on covering a whole range of scenes ranging from direct sunlight to dark
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rooms, and instead limit themselves to a specific set of scenes, such as outdoor scenes during
daylight, to make fine-tuning control methods easier.
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B 6.1 Used Generative AI

List of software tools that affected the quality of this work.
ChatGPT:

= OpenAl. (n.d.). ChatGPT (Version 4.0) [Software]. Retrieved from https://www.
openai.com/gpt
Usage: Generation of simple python scripts and illustrative examples of the use of
OpenCV C++ functions. Assisted with an explanation of functionality of C++4 and
OpenCV.

QuillBot:

® QuillBot. (n.d.). QuillBot [Software]. Retrieved from https://quillbot.com/
Usage: Proofreading and grammar assistance paired with structural improvement of
sentences.

Grammarly:

® Grammarly. (n.d.). Grammarly [Software]. Retrieved from https://app.grammarly.
com/
Usage: Proofreading.
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B A Implemented method parameters

Gamma correction mapping

) 0.8
A 1000
d 0.5
K 0.1

p

Gradient ascent

ol 0.8
k 7
p 0.00001

Gradient, noise and entropy

1) 0.1
A 1000
K, 2

Ke 0.125
Th 240
al 15

P 0.1
«o 0.4
B 0.4

€ 0.4
N¢ 100
€ 1.7
(simplex 0.2
“simplex 1.2
Psimplex 0.2
Osimplex 0.2

Detection area focus

Control value 85
ol 0.4
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B B Algorithms

Algorithm 1 Nelder-Mead Simplex Algorithm

1:
2:
3:

=

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

© 3 >R

Init simplex

xg < [ExposureTime0, Gain0|

Jxo + mean(Image)

b { —e1(J0/255) if Jo > 128

e 11 — Jy/255) if Jo < 128

Xi < X0 + h(IQ . Xo)

Evaluate f(I) for x;, where i = 1,2
Sort

Sort fi in descending order

Compute centroid

1 oo
n 2wi=1%i

Xe
Reflect
Xy ¢ Xc + a(Xe — X2)
Replace
if fi < f1 then
Replace xo with x,
end if
Expand
Xe ¢ X + Y(Xr — X¢)
if fo < f; then
Replace xo with x,
else
Replace xo with x,
end if
Contract
if f, < fn4+1 then
Outside contraction: zo. = z. + p(z, — x.)
if f,c < fr then
Replace z9 with z,.
else

Shrink towards the best vertex: x; = xg + o(z; — o) for i = 2,3

end if
else
Inside contraction: x;j. = z. — p(z. — x2)
if fic < fant1 then
Replace (") with z;.
else

Shrink towards the best vertex: x; = xo + o(z; — zo) for i = 2,3

end if
end if
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B C Scene Examples

™
-
(a)

Figure C.1: Scene examples from dataset drone_9 captured by camera using the Built-in AEC.

()

(d)

Figure C.2: Scene examples from dataset drone_8 captured by camera using the Gamma
correction mapping method.
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Figure C.3: Scene examples from dataset drone_ 9 captured by camera using the Gradient
ascent method.
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(a) (b)

Figure C.4: Scene examples from dataset drone_6 captured by camera using the Detection
focus method. The target detection was present at (b) and (d).

=
(d)

(a) (b)

Figure C.5: Scene examples from dataset drone_12 captured by camera using the Built-in
AEC.

(a) (c)

Figure C.6: Scene examples from dataset drone_12 captured by camera using the Detection
focus method. The target detection was present at (b).
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