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Abstract
The evolution of electronic driver assis-
tance systems, from the second half of the
20th century, has significantly increased
the demand for accurate vehicle state data.
Nowadays the demand is critical with the
advent of autonomous and overactuated
vehicles, whose critical vehicle systems
rely on accurate and reliable vehicle state
estimation. This thesis addresses these
needs by developing an in-house sensor
fusion system for vehicle state estimation.
The sensor fusion system will be devel-
oped on embedded vehicle platforms built
by the SDS Research Center. The sen-
sor fusion solution has two parts. The
complementary filter merges data from
GNSS, IMU, and wheel odometry to pro-
vide estimates of longitudinal and lateral
velocities and vehicle heading. And the
EKF, adapted from a Matlab-based of-
fline original to a real-time C++ imple-
mentation modular to be integrable to
multiple vehicle platforms and also into
ROS2 environment. The EKF estimates
all important vehicle dynamics states -
slip angle, heading, yaw rate, longitudinal
and lateral velocities, and body velocity.
Experimental validation was conducted
on the ToMi2 platform, a sub-scale vehi-
cle designed for testing advanced driver
assistance systems. Despite the physical
and hardware limitations of the platforms,
the implemented sensor fusion solutions
showed reliable state estimation. The the-
sis demonstrated that the development of
a real-time in-house sensor fusion system
on embedded hardware can match the
performance of professional equipment.

Keywords: sensor fusion, Matlab,
Simulink, C++, GNSS, IMU, kinematic
models, single track model, code
generation, embedded platforms,
overactuated vehicles, GPS outage,
complementary filter, Extended Kalman
filter, senzorická rekonfigurace
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Abstrakt
Vývoj elektronických asistenčních systémů
v automobilech, počínaje druhou polovi-
nou 20. století, významně zvedá poptávku
po precizních měřeních dat o stavu vozi-
dla. S nástupem autonomních aut a pře-
aktuovaných vozidel, jejichž kritické řídící
szstémy na tato data spoléhají se spo-
lehlivá dostupnost těchto dat stává zá-
sadní. Tato práce, s ohlédnutím na výše
popsaný problém, má za cíl vývoj sys-
tému pro senzorickou fůzi dat s použitím
dostupné výpočetní techniky. Tento sys-
tém pro senzorickou fůzi dat bude vyvý-
jen pro platformy výzkumného střediska
SDS. Tento systém má dvě hlavní části,
komplementární filtr, používající data z
GNSS,IMU a odometrie kol pro odhad
směru vozidla a podélné a příčné rych-
losti. Druhou částí je rozšířený kalmanův
filtr, převzaný z původní verze napsané v
Matlabu do podoby schopné fungovat v re-
álném čase a napsané v C++ tak, aby byla
zajištěno snadné přemigrování szstému na
jinou platformu a také jeho integrace do
prostředí systému ROS2.Tento filtr při-
dává k už zmíněným zdrojům dat ještě
vizuální odometrii a mezi jeho výstupz
patří všechna důležitá data pro jízdní dy-
namiku - slip angle, heading, yaw rate, lon-
gitudinal and lateral velocities, and body
velocity.
Validace experimenty byla provedena na
platformě ToMi2 - zmenšeného model pře-
aktuovaného vozidla. Navzdory některým
fyzickým a vybavenostním limitacím se
povedlo prokázat, že navržené systémy
fungují. Tato práce dokázala, že navrh-
nout systém pro senzorickou fůzi dat pou-
žitelný na vestavěných počítačových plat-
formách a schopný funkce v reálném čase
je možné s běžně dostupným vybavením
a přístroji. Zároveň je možno s takovýmto
systémem konkurovat i porfesionálním za-
řízením.

Klíčová slova: senzorická fůze, Matlab,
Simulink, C++, GNSS, IMU,

kinematický model, jednostopý model,
přeaktuovaná vozidla, Extended Kalman
filter, komplementrární filtr, vestavěné
platformy, generování zdrojového kódu,
výpadek GPS, senzorické rekonfigurace
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Chapter 1
Introduction

1.1 Motivation

With the invention of electronic driver assistants in the 1970s, such as the
Anti Lock Braking System (ABS), a demand for collecting data about vehicle
states appeared. The demand for reliable data collection grew as the driver
assistants were evolving into more capable and more complex systems able to
control the vehicle without the need for driver input, such as Adaptive Cruise
Control, automatic parking assistants, etc. To bring some method to the
madness and categorize these systems, the Society of Automotive Engineers
(SAE) came up with the 5 levels of automated driving[20]. Starting at level 0
these systems can be summarized as passive indicators of the surrounding
environment with visual or audio indication, such as ultrasonic parking sensors
or the Blindspot Information System. The middle ground is level 3, where
the driver and the car can simultaneously cooperate. When the right scenario
appears, the car can automatically perform a set task, but if any danger or
unexpected situation occurs, the driver is alerted and requested to take over.
Level 4 means that the driver can be omitted from the driving tasks, a good
example is Automatic Valet Parking, where the driver can already be out of
the vehicle. Full autonomy belongs to level 5, at this stage, a person sitting
in the car is no longer considered a driver, but more a passenger. The car can
perform all driving tasks on its own, thus the interface to directly operate the
car is no longer mandatory. A comprehensive description and visual layout
of these levels can be seen on 1.1.
All the systems mentioned above need reliable information about the vehicle
states to be able to function accordingly (to save on words written and keep
the readability at a reasonable level, this information about vehicle states
will be called data from now on). Data from, let‘s call them traditional,
sensors in cars like wheel RPM, odometry, GNSS positioning, and cameras,
is sufficient for lower-level autonomous systems. The closer to full autonomy
it gets, the more sensors are utilized[21], such as LiDaRs, stereo cameras,
etc. To enable proper functionality of the autonomous systems and advanced
driver assistants the data collected has to match strict reliability and precision
requirements, this is often done by utilization of sensor fusion[22].
Professional-grade measuring units use a variety of sensor fusion algorithms

1



1. Introduction .......................................
to satisfy the requirements in question. Since these are really capable systems
with large computation potential and all sorts of safety licenses, the prices can
get really expensive. For example, the internal navigation system Vbox 3iS
by VBox Automotive[23], can measure just about anything possible in the car
and has an integrated Kalman filter for sensor fusion retails in the hundreds
of thousands Kč range. This, in combination with the fact, that these units
tend to be fairly large in size, poses two problems for the development of
embedded testing vehicle platforms. Another disadvantage is that since these
units are meant to offer robust solution in a variety of conditions, such an
aim for robustness usually means losses in the accuracy department.
This thesis aims to solve these problems by developing an in-house sensor
fusion system for estimating vehicle states on vehicle platforms created by
my colleagues of the Smart Driving Solutions Team.

Figure 1.1: Levels of autonomous driving as established by the Society of
Automotive Engineering[1].

1.2 Basic Introduction

Sensor fusion can be described as a process of combining data from multiple
sources so that the result has less uncertainty and is more accurate and reliable
than if the sources were used individually. Complementary and Extended
Kalman filters will be used in this project. The Complementary filter is a

2



.....................................1.3. State Of The Art

method to combine data from two different sources with independent errors to
achieve more accurate results than if the data were used separately[24]. The
Kalman filter, named after its inventor Rudolf Kalmam is an algorithm
used for state estimation of linear dynamic systems. Extended Kalman filter
adds the ability to predict nonlinear systems by linearizing the system in the
corresponding operating point[25].

1.2.1 Vehicle State Estimation

To enable the functionality of all the complex and autonomous systems it is
first needed to have a robust and reliable sense of the inner and outer vehicle
states. Usually obtained through sensor measurements and consequent data
fusion, to yield the best possible results. This process is called vehicle state
estimation and in this thesis, the estimated states will be,

x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽
𝜓
̇𝜓

𝑝𝑥
𝑝𝑦
𝑣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(1.1)

where x is vector of states, 𝛽 is slip angle of the car, 𝜓 is heading, ̇𝜓 is yaw
rate, 𝑝𝑥 and 𝑝𝑦 are position coordinates and 𝑣 is vehicle velocity.

1.3 State Of The Art

The advent of overactuated platforms and autonomous vehicles introduced
new requirements for both vehicle dynamics control and the demand for
various sensor measurements. Due to their more complex longitudinal and
lateral dynamics, the overactuated platforms have to measure and control
more states than the traditional vehicles. This fact means the need for more
advanced state estimation (described in section 1.2.1 is growing. The following
sections show, how are these problem currently approached in the industry
and research.

1.3.1 Overactuated Vehicles

REE Automotive

The Israeli-based company is currently one of the major players in the
development of EV overactuated utility vehicles. The pivotal point of their
innovation is the REEcorner[26] - a comprehensive unit of all the critical
vehicle components (steering, powertrain, brakes, suspension, and control),
as shown in figure 1.2. Thanks to the integrated ECU, the wheel can be
completely independent of the other wheel modules, enabling four-wheel
independent steering to increase maneuverability. Another advantage of

3



1. Introduction .......................................
having this neat package is the modularity of the chassis platform. The
vehicle can be built with various footprints and sizes since all is packaged in
the corner. This freed-up space translates to a flat cargo bed leading to better
space usage than traditional trucks. The modular flat platform housing 4
REEcorner units can be seen in figure 1.3. The company strives to make its

Figure 1.2: Construction of the REEcorner with all vital driving systems
integrated in one unit[2].

Figure 1.3: Modular REE automotive platform utilizing 4 REEcorner units[3].

first large shipments to customers in 2025.

Hyundai Mobis e-Corner

At CES 2024, Hyundai’s sister company Mobis unveiled their concept of an
overactuated vehicle built on the Hyundai Ionic 5 platform, called Mobion.
Like the REEcorner (1.3.1), Mobis developed an integrated wheel module

4



.....................................1.3. State Of The Art

Figure 1.4: Hyundai Mobion equipped with the e-Corner module at CES 2024,
showcasing the 90∘ steering angle[4].

housing all critical vehicle components utilizing by-wire technology called
the e-Corner. The main difference from REEcorner is that the e-Corner
has in-wheel motors and each wheel can turn up to 90∘. This large steering
angle unlocks the potential to execute interesting maneuvers, the ”piece de
resistance” of the Mobion car[27].

Thanks to the e-Corner module, the car can shorten the turn radius to
execute a tight turn, when the rear and front axles steer in the opposite
directions. Axles steered in the same direction (also called the ”Crab walk”),
can be used to execute turning at high speeds, helping with stability and
reducing body roll. Another class of movements relates to parking. To
effortlessly execute parallel parking into a tight spot, all four wheels can be
turned 90∘ to slide into said spot. When the need to make a 180∘ turn in a
constrained environment occurs, the motors can turn in an opposite direction
to make a 180∘ pivot. This configuration also allows the possibility of a J-turn.
The rear left wheel stays put, the rear right drives backward, and the front
wheels are turned to the right and drive forward, performing a J-turn.

Hummer EV Truck

Hummer is a staple of the rugged SUV market, taking pride in its vehicles’
robustness and toughness. In 2020, Hummer EV was unveiled, powered by
up to 3 motors, ready to show the world, that electric vehicles can withstand
the harsh conditions of off-road driving. It was one of the first cars to feature
rear-wheel steering of up to 10∘. This meant it could reduce its turn radius to
perform tight turns when the rear axle counter-steered and when steered in
the same direction, one of the main selling points of the car - the Crab Walk
mode, enabled the possibility of avoiding obstacles by moving diagonally[28].
A photo of the crab walk mode can be seen in figure 1.5.

5



1. Introduction .......................................

Figure 1.5: Hummer EV with wheels in the Crab Walk mode configuration[5].

1.3.2 Autonomous Systems

Tesla Autopilot

Tesla is generally known as a front-runner in the development of autonomous
driving software with its Tesla Autopilot. It is classified as a level 2 au-
tonomous system, meaning that driver oversight is always required and must
be ready to take control at moment’s notice[29]. The main feature is a
self-driving mode, providing lane keeping, adaptive cruise control, and au-
tomatic lane changing interconnected with the navigation system to ensure
the optimal route to given destination. Tesla claims that the Autopilot is
capable to function without human intervention and oversight fully, but it
cannot be made available due to the legislative obstacles the autonomous
systems face. As opposed to other manufacturers Tesla uses only camera data
for its system, omitting the use of ultrasonic sensors and LiDaRs[30]. The
car is equipped with 8 cameras covering full 360∘ field of view and with 250
meters of maximum front-facing range. The data acquired is then processed
by Tesla’s in-house developed neural network which is said to provide all
necessary data to enable the function of the Autopilot.

Mercedes Drive Pilot

The Mercedes Benz Drive Pilot boasts to be the first road-legal level 3 system
on the market. Mercedes markets this system as conditionally automated
driving. The conditions required include clear line markings on approved
freeways, moderate to heavy traffic with speeds under 40 MPH (65 km/h),
daytime lighting, and clear weather. When these conditions are met, the car
is able to navigate and drive itself in the traffic without needing the driver’s

6



.....................................1.3. State Of The Art

attention. To provide data needed to execute these automated tasks the car is
equipped with a battery of sensors. Opposite to Tesla, Mercedes uses various
types of sensors to acquire its data. The cameras are accompanied by LiDaR,
radars, ultrasonic sensors, and road moisture sensors to gather information
about the car’s state and surrounding environment. When the conditions
are no longer met, the car issues a takeover request to the driver who has to
respond in 10 seconds otherwise, the car performs an emergency stop in its
current lane and calls for medical help. The Mercedes Drive Pilot is currently
available only on selected roads in California and Nevada[31][32].

Figure 1.6: Mercedes Drive Pilot sensor instrumentation[6].

Waymo

The USA-based company prides itself in having the world’s first Autonomous
ride-hailing service. Its fleet of so-called autonomous taxis comprises of
modified Jaguar I-pace vehicles equipped with Waymo’s custom sensor units.
The units house multiple LiDaRs, radars, and 29 cameras (1.8) to provide
sufficient data for autonomous driving[8]. From the beginning of 2024,
Waymo has offered its services in Los Angeles, Phoenix, and Austin, where it
underwent extensive mapping and testing to get precise maps of the area and
prove the system’s functionality to the governing bodies[33]. To guarantee the
safety of the passengers and the other vehicles and pedestrians on the road,
Waymo has implemented many redundancies in the vehicle to ensure safety
in the case of any system failure. Also, the car can use external speakers to
communicate with other traffic members to further improve pedestrian safety.

7
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Figure 1.7: Waymo-modified Jaguar I-pace serving as the world’s first au-
tonomous taxi[7].

1.3.3 Sensor Fusion

Several sensor fusion methods are used to obtain optimal results by com-
bining data from multiple sensors to achieve better performance than is
taken separately. Sensor fusion methods can be categorized by the way the
measurements are combined[22].

Competetive - multiple sensors measuring the same data to increase ro-
bustness and reliability.

Complementary - different measurements combined to negate weaknesses
of individual sensors - gyroscope and accelerometer data combined to
get velocity measurement.

Cooperative - measurements from different sensors combined in a way that
leads to output unattainable if used separately - images from individual
lenses of stereo camera to get a 3D scene.

The two most used in the topic of vehicle state estimation (and also in this
thesis) are a frequency-based method called the complementary filter and
model-based method call the Extended Kalman Filter.

Complementary filter

As mentioned, the complementary filter is a frequency-based sensor fusion
method. It combines sensor data with independent noise, best if one noise
source is high and the other is low frequency-based. The corresponding signals
are sent through low-pass and high-pass filters and then added together to
form new measurements with reduced error[24].
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Figure 1.8: Description and localization of the sensors on the 5th gen Waymo
Driver[8].

Extended Kalman filter

The Kalman filter, presumably the most frequent solution for state estimation
is a model-based method measuring the system states and their covariances[25].
As can be seen in figure 1.9 the Kalman filter comprises of 2 main tasks.

Prediction step
Based on e.g.

physical model

Prior knowledge
of state

Update step
Compare prediction

to measurements
 

Measurements

Next timestep

Output estimate
of state

Figure 1.9: The basic visualization of phases in Kalman filter. P is the state
covariance matrix and ̂x is vector of the predicted states[9].

Prediction step - calculation of the predicted estimate of the system states
based given mathematical model of the system.

Update step - the predicted state is compared and adjusted by the mea-
surement taken.
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Unfortunately, even when the Kalman filter is the optimal linear state esti-
mator, physical systems are more often than not nonlinear. To resolve this
issue the Extended Kalman filter was developed. It takes over most of the
Kalman filter’s functionalities and solves the nonlinear system problem by
adding linearization to the process. The system is linearized using the Taylor
series in a suitable operating point and the rest of the computation is slightly
tweaked to accommodate this change. This process will be explained more
in-depth in section 4.2.

1.3.4 Inertial Navigation Systems

As mentioned in the previous sections, with the current and future rise of
autonomous and overactuated vehicles, the importance of accurately measur-
ing and estimating vehicle states becomes ever more significant. To acquire
accurate and reliable data INS units are often used in basically all vehicle
types - road, air, space, and nautical. The function of INS can be split into 3
main parts. The internal measurement unit (IMU - described in 2.2) mea-
sures linear acceleration, angular rates and object orientation. GNSS provides
absolute positional data from its measurements. The data processing phase
(often represented by some form of Kalman filter) is responsible for fusing
the measurements. The main benefit of using INS is dead reckoning, which
is a way of estimating an object’s state when no absolute data is available -
when GNSS signal is lost for longer periods, the dead reckoning can compute
its location from the relative data provided by IMU. In combination with
the Kalman filter, the INS can provide robust state estimation in difficult
conditions[34]. The only downside is that professional INS units able to
provide high-precision data can be expensive when considering the usage for
smaller projects with limited budgets.

Figure 1.10: Diagram of major functional blocks in INS

The only downside is that professional INS units able to provide high-
precision data can be expensive when considering the usage for smaller
projects with limited budgets.
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VBox 3iS

The VBox Automotive company specializes in the development of positioning
systems for land vehicles. The VBox 3iS[23] is the range-topping INS unit.
Apart from traditional INS which use IMU and GNSS data, the VBox can be
connected to the wheel odometry data via the CAN interface. The integration
of wheel odometry into the INS computation significantly reduces the drift
of IMU measurements when no GNSS data is available. The manufacturer
promises a 100 Hz GNSS receiver, and high-precision IMU, in the dual antenna
variant, the VBox has RTK capabilities leading to centimeter precision
positioning. The retail price for this unit is in the hundreds of thousands of
Kč range.

Figure 1.11: The VBox 3iS[10]

1.4 My contribution

As already mentioned in the sections 1.1 and 1.3, the demand for collecting
vehicle data is growing. Robust vehicle state estimation is required for all
the advanced and autonomous control systems to function properly. Also,
with the advent of various forms of overdrive vehicles, the importance of
thoroughly controlling and understanding vehicle dynamics, and in particular
side-slip angle and lateral speed, is high. In full-size automobiles, the sensor
instrumentation possibilities are virtually endless. Multiple cameras, LiDaRs,
sets of ultrasonic sensors, and more. On the other hand, when it comes to
developing sub-scale platforms the limitations in the form of usable space
and power start to appear. My contribution to the problem is the creation
of a sensor fusion system for the development vehicle platform created by
my colleagues from the Smart Driving Solutions Research Center. Given
the size of the platform and the fact, that it is subject to multiple student
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projects, the use of a professional-grade INS unit is not considered a viable
option. This thesis aims to create a complementary filter as a baseline form of
sensor fusion, and an Extended Kalman Filter using the ”Golde Tschechische
Hande” to combine attainable hardware and custom-made software to match
the performance of the professional equipment. The EKF is based on the
enviable work of Tomáš Twardzik[35], who has developed it as a part of his
master’s thesis. My adaptation of said EKF will be written in C++ and
deployable in real-time on the car. The goal is to prove, that robust vehicle
state estimation is possible on embedded platforms and that a bit of elbow
grease and wit can outmatch full pockets of the green ones when it comes to
performance.
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Chapter 2
Theoretical Part

This chapter aims to shed light on the theoretical basics of sensors and
concepts used in this thesis.

2.1 GNSS

GNSS stands for Global Navigation Satellite System and is the leading solution
for position tracking in the world. The most famous GNSS system is GPS, a
technology developed by the US Army in the 20. century, later other major
world powers also recognized the need for their own GNSS tracking system
for strategic reasons, which led to the creation of the Russian GLONASS
system, Chinese BeiDou, and EU-made Galileo. India and Japan also have
their technologies, but they are used only in their respective countries. GPS,
GLONASS, and BeiDou are available globally.
The position data is successfully measured and calculated when the ground-
level receiver obtains from the satellites orbiting in space. They carry precise
atomic clocks, which are crucial for the final solution. These timestamps, in
conjunction with other data sent by the satellites, are used to calculate the
receiver’s position.

2.1.1 Differential GNSS

To improve the precision of the standard GNSS solutions another receiver,
called the base, can be added. The base has to be in a known position, usually
obtained by averaging the measurement over several days. The difference
between known and measured positions serves as a corrcection, which is sent
to the receiver (in DGNSS term called the rover) to improve the accuracy of
the final solution. Layout and short description of DGNSS can be seen in
figure 2.1

2.1.2 Real-Time-Kinematics

In order to achieve centimetre-level accuracy in position measurements, a
technology known as Real-Time Kinematics (RTK) has been developed. It is
based on the DGNSS configuration of two receivers, rover and base, where
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Figure 2.1: Layout and description of the DGNSS system[11].

standard corrections calculated from the difference between the known and
received base positions are combined with corrections obtained by carrier
phase measurement, which counts the number of wavelengths the signal
sent by the satellite has, and pseudo-range measurement, which estimates
the distance the signal had to travel to get from the satellite to the receiver.
The RTK algorithm combines this data and outputs the new corrections,
now called Real Time Correction Measurements (RTCM), which are then
sent to the rover, where they are used to achieve the desired centimeter-level
precision.

2.2 IMU

The inertial measurement unit measures orientation, linear and angular
acceleration of an object. It houses accelerometers, gyroscopes, and in some
cases also magnetometers.

2.2.1 Accelerometer

In most modern IMUs, MEMS (micro-electromechanical systems) accelerom-
eters are used. As depicted in figure 2.2, the acceleration acting on the proof
mass creates its displacement, which in turn changes the distance between the
fixed plates and plates of the proof mass. This change in distance leads to a
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change in electrical capacity between the plates which is converted into voltage
change at the output and further in the resulting acceleration measurement.

Figure 2.2: A schematic representation of MEMS accelerometer construction[12].

2.2.2 Gyroscope

The gyroscope measures the angular rate of an object. Like the accelerometers
used in IMUs, most gyroscopes today are also MEMS. The gyroscope leverages
the Coriolis effect to measure the angular rate. As can be seen in figure 2.3,
the drive combs make the whole orange casing vibrate, hence when a torque is
applied to the object, due to the mentioned Coriolis effect a change of capacity
between the sense combs occurs, which is then converter to voltage change at
the output and then into the resulting angular rate measurement[13].

Figure 2.3: Structure of MEMS gyroscope[13].
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2.2.3 Magnetometers

Magnetometers measure the object orientation in the earth’s magnetic field.
The ones mainly used in IMU work based on the Hall effect. As can be seen
in figure 2.4, the magnetic field introduced to the conductor offsets the flow of
electrons, thus a voltage can be measured across the conductor, which is then
converted into magnetic field measurement. One hall sensor can measure the
field only on one axis. To measure the magnetic field in all three directions
standard magnetometer houses three hall sensors each measuring one axis[14].

Figure 2.4: Visual representation of Hall effect magnetometer[14].

2.3 RPM Sensors

RPM can be measured in a number of ways the main types of the sensor are
optical and Hall effect sensors. Optical sensors use the difference in the
reflected light of contrasting parts of the encoder, as can be seen in figure
2.5a. The Hall effect sensors use a similar principle but instead of reflected
light, they leverage the voltage change caused by the changing magnetic field
of the magnet fixed to the rotor. This can be seen in figure 2.5b.

2.4 Camera

In general terms, a camera is a visual sensor capturing color images via
photosensitive chips, which turn light into a signal, that is processed to form
the final image. To preserve the color information to the digital world, the
photosensitive pixels are aligned in what is called the Bayer filter and the
construction can be seen in figure 2.6. Since the pixels can only detect light
intensity and not color, the Bayer filter sets one of red, blue or green to each
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(a) : Visual representation of the op-
tical RPM sensor[36].

(b) : Visual representation of the Hall
RPM sensor

Figure 2.5: Visual representation of different RPM sensors[15].

pixel on the grid. These positions are firmly set, and because of this, the final
image looks natural to the human eye. In the present-day automotive industry,
cameras are all the rage. They can be utilized in computer vision-related
tasks like driving lanes, traffic signs and lights detection. More advanced
cameras with multiple lenses, called stereo cameras, can be used to get a
depth sense of the captured environment. These stereo cameras will be used
later in this thesis to obtain visual odometry data with the help of certain
computer vision algorithms[16].

Figure 2.6: Pattern of the Bayer filter, each pixel on the grid has set RGB color,
which is represented in the final processed image[16].

2.4.1 Visual Odometry

Visual odometry can be defined as a process of estimating vehicle states from
given camera images. The raw image data do not offer much to work with
and for that reason it has to be fed into a visual odometry algorithm. The
algorithm typically consists of several phases. Image processing pahse,
where tasks like adjusting for lens distortion are executed.Feature detection
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phase, where objects of interest are tracked in the images. Data processing
phase, where the extracted information is used to compute wanted results.
Visual odometry can be aided by IMU measurements, often built into the
camera body.
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Chapter 3
Vehicle Platform

Since the developed sensor fusion algorithms are designed to be modular
and used on multiple platforms created by the SDS Research Center, this
chapter shows which vehicle platforms currently belong to the SDS Research
Center, their architecture, attributes, and design. The modularity of the
devised sensor fusion solutions is fueled by having the right vehicle model for
each platform and quality sensor instrumentation on each platform to supply
needed data to the models and algorithms.

3.1 ToMi2

The ToMi2 platform was developed[37] by my colleagues from the Smart
Driving Solutions Team in collaboration with the Toyota Research Institute.
It was created to provide a testing and verification platform for various
research projects in the field of overactuated and autonomous vehicle control.

3.1.1 Physical Design

ToMi2 is built on top of the Losi Desert Buggy E-XL 2 RC platform, which in
its unchanged form is a 1:5 RC model with a BLDC motor powering all four
wheels. The main changes revolve around steering. To achieve independent
steering on all wheels the front axle mechanism had to be altered and the rear
axle completely changed for another front axle with the same modifications
as the first one. In the final version, ToMi2 is only rear-wheel driven due to
the noisiness of the revolution speed measurements on driven axes. Because
of this, only the rear wheels are driven, so the data from the front axle
can be used for reliable measurements. The independent steering of all four
wheels is enabled by adding four servo motors, one to each wheel, which are
responsible for steering. Other minor changes to the original car include a
redesigned differential mount, repositioned batteries, and casing for all the
microcontrollers that provide the control for the car.
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Figure 3.1: The ToMi2 platform developed by the SDS Research Center in
collabration with TRI.

3.1.2 ECUs Architecture

Raspberry Pi 4 is used as a head unit. It uses data from other microcon-
trollers that provide interfaces with corresponding sensors. To manage the
communication with other mentioned controllers and data processing, ROS2
is used.
Navio2 board in combination with Raspberry Pi 3 is used to provide data
from the GNSS module and IMU[38]. It also reads radio protocol SBUS
data to send inputs for dynamic simulations and generates PWM inputs for
steering servos and the traction motor.
The STM432 measures the angular rates of the traction motor and all four
wheels.
Arduino Micro reads accelerometer data from wheel axes and serves as the
handler of radio communication with the handheld controller, which is used
to manually control the car if desired.
Nvidia Xavier is in charge of processing camera images. It handles computer
vision tasks, path planning and provides visual odometry data[39] .
All external boards communicate with the main Raspberry via UART, except
the Nvidia Xavier, which uses Ethernet communication. A visual representa-
tion of this configuration can be seen in 3.2.
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Figure 3.2: Diagram of ToMi2 system architecture

3.1.3 Sensors Used

DGNSS

As a part of the thesis of Tomáš Twardzik, a differential GNSS system added
to the ToMi2 platform. The Stationary Base (SB) is placed in a known
location and sends RTK corrections to the car carrying two receivers - Moving
Base (MB) and Heading Module (HM), which enable precision body heading
measurement instead of the movement heading measurable when only one
receiver is on the car. All three GNSS modules used are U-Blox Zed F9P able
to receive multiband GNSS signal, measuring rate of 20 Hz, and horizontal
position accuracy of 1.5 or with RTK enabled up to 0.01 meters.

IMU

As described in section 3.1.2 the Navio2 board has built-in dual 9DOF
IMU, which provides accelerometer, gyroscope, and magnetometer data. The
location of the dual IMU on the Navio board can be seen in figure 3.3.

RPM Sensors

ToMi2 has RPM sensor for the main traction motor and for each wheel. These
sensors are Hall effect RPM sensors (their function is described in section 2.3)
and the were implemented by former SDS team member Tomáš Rutrle[37].
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Figure 3.3: Navio board layout, the IMU placement highlighted in red.[11].

Figure 3.4: StereoLabs Zed2 camera with 2 sensors visible[17].

Camera

The StereoLabs Zed2 camera is also an addition by Tomáš Twardzik[35]. It
was selected for its ability to provide data for deep learning, motion tracking,
and depth sensing tasks. In this thesis, the camera in combination with
the Nvidia Isaac Elbrus algorithm will be used to acquire data relevant for
visual odometry. This algorithm was selected due to its high performance
and the fact, that it is specially implemented for the Nvidia Xavier platform,
which is used to process all the image data. The camera also has a built-in
IMU to help increase measurement precision in combination with the Elbrus
algorithm. The main yield of the Elbrus algorithm is linear and angular
velocity estimation, which are important data for localization and vehicle
state estimation.
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3.1.4 Vehicle Model Parameters

This section lists the physical parameters of the ToMi2.

Table 3.1: Table of ToMi2 vehicle parameters

ToMi2 paramaters
Name Parameter Value Units

Cornering stiffness front 𝐶𝑓 1232.4 𝑁/𝑟𝑎𝑑
Cornering stiffness rear 𝐶𝑟 1232.4 𝑁/𝑟𝑎𝑑
Front distance to COG 𝑙𝑓 0.3 𝑚
Rear distance to COG 𝑙𝑟 0.3 𝑚

Wheel diameter 𝑟 0.085 𝑚
Weight 𝑚 21 𝑘𝑔

Moment of inertia 𝐼𝑧 245.5 𝑘𝑔 ⋅ 𝑚2

3.2 Smart Sub-Scale Verification Platform

When the demand for research of new control algorithms started to outgrow
the potential of ToMi2, an idea to create a new, bigger and better vehicle
platform was born. The main upgrades sought after are all four wheels
independently powered and steered, bigger space for housing various sensors
that might be needed, and more computing power. This platform is still
under construction, but all the work done in this thesis for ToMi2 is developed
to be modular with easy transferability to this platform.

3.2.1 Physical Design

The vehicle is based on a 100x60 cm rectangular aluminum frame. The
body frame is fitted with a motor at each corner. The motors are driven by
SOLO motor controllers and can be controlled independently. The steering is
provided by servo motors connected to each wheel making them independently
steered with full 360∘ of rotation.

3.2.2 ECU Architecture

Two main components in the electronics layout are the BeagleBone AI-64
responsible for the low-level controls and data logging from sensors, and
the Zotac E-series Zbox thanks to its GPU handling camera tasks and
computationally expensive tasks such as path planning and image processing.

BeagleBone AI-64

The BeagleBone AI-64 is an embedded Linux-based computer utilizing the 64-
bit ARM architecture with a huge range of fast interfaces. The combination
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Figure 3.5: Smart Sub-scale Verification Platform developed by SDS Research
Center.

of its size and ability makes the BeagleBone an ideal building block of custom-
made vehicle control architecture. In this case, the board has 3 peripheries
connected communicating via 100 Hz UART and CAN[40].

Aceinna IMU - the Aceinna OpenRTK330 INS unit has both IMU and
GNSS capabilities but this application has higher requirements for GNSS,
so only its 100 Hz triple-redundant IMU is used[41].

Dual GPS - the dual GNSS receivers in moving base + heading module
configuration used are the U-Blox ZED-F9P-00B-02, combined with
static base station sending RTK correction to the car the system is
capable of centimeter-level precision[42].

SOLO motor controllers - the SOLO UNO V2 controllers are used to
drive the traction motors, capable of generating PWM output signal of
frequency up to 80 kHz and CAN communication[43].

Zotac E-series Zbox

The Zotac is a mini-PC with Intel Core i7 CPU and NVIDIA GeForce RTX
4070 GPU[44]. These parameters mean, that on this platform Zotac is used
for Image processing, Visual odometry computation, path planning, and all
tasks requiring GPU in general. It is used to handle 2 peripheries, a stereo
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camera and a Navio2 board, which is used only to receive signals from the
remote controller used to control the motors.

BeagleBone Zotac

Navio2 Board

Camera
Aceinna IMU

Dual GPS

SOLO Motor Controlers

Figure 3.6: Block diagram of control architecture of the Smart Sub-scale Verifi-
cation Platform.
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Chapter 4
Implementation

4.1 Complementary Filter

The complementary filter is a sensor fusion method that combines different
measurements to acquire more reliable data. It uses two filters complementing
each other to improve sensor readings. When one source of measurement
contains high-frequency noise, it gets sent through a low-pass filter to filter
the noise out. The second source of measurements can contain drift as
a form of low-frequency noise. That gets sent through a high-pass filter,
that complements the low-pass filter, to filter out the drift. The filtered
measurements get summed forming the output of a complementary filter,
more accurate than the two inputs combined[24].

4.1.1 Implementation

The complementary filter in this thesis is used to filter three vehicle states,
longitudinal and lateral velocity of the vehicle and its heading. To obtain
data for the filter, pure sensor measurements are used along with the kine-
matic vehicle model to compute desired filter inputs. The derivation of the
complementary filter is as follows:

1 = 𝐺(𝑠) = 𝐻(𝑠) + 𝐿(𝑠), (4.1)
𝐺(𝑠) represents the complementary filter, 𝐻(𝑠) the high-pass filter, and 𝐿(𝑠)
the low-pass filter. The equation 4.1 can be reformulated as,

1 = 𝜏𝑠 + 1
𝜏𝑠 + 1

= 𝜏𝑠
𝜏𝑠 + 1

+ 1
𝜏𝑠 + 1

, (4.2)

Meaning that the filters 𝐻(𝑠) and 𝐿(𝑠) are,

𝐻(𝑠) = 𝜏𝑠
𝜏𝑠 + 1

𝐿(𝑠) = 1
𝜏𝑠 + 1

. (4.3)

Given the measurement 𝑦(𝑡), measurement rate ̇𝑦(𝑡) and their respective
laplace transformations 𝑌 (𝑠) and 𝑠𝑌 (𝑠) and an assumption that the filtered
value ̂𝑦(𝑡) equals to the sum of the measurement and the measurement rate,

̂𝑌 (𝑠) = 𝑌 (𝑠) + 1
𝑠
𝑠𝑌 (𝑠), (4.4)
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Figure 4.1: Block representation of a complementary filter. The input 𝑥 is with
high-frequency noise and the 𝐿(𝑠) is a low-pass filter. The input 𝑦 contains drift
and 𝐻(𝑠) is a high-pass filter.

The final equation for the complementary filter is,

̂𝑌 (𝑠) = 𝜏𝑠
𝜏𝑠 + 1

1
𝑠
𝑠𝑌 (𝑠) + 1

𝜏𝑠 + 1
𝑌 (𝑠), (4.5)

and can be shortened to,

̂𝑌 (𝑠) = 𝜏
𝜏𝑠 + 1

𝑠𝑌 (𝑠) + 1
𝜏𝑠 + 1

𝑌 (𝑠), (4.6)

where the 𝑠𝑌 (𝑠) corresponds to ̇𝑦(𝑡) and 𝑌 (𝑠) to the 𝑦(𝑡). Visual represen-
tation can be seen in figure 4.1. For real implementation in the vehicle, the
filter has to be converted to the discrete domain using the zero-order hold
method.

4.1.2 Kinematic Model

The kinematic model is a way to mathematically describe the motion of
a vehicle without considering the forces that affect the motion. Several
assumptions have to be made for the model to work[45]. They are:

Bicycle model - the vehicle is represented by two wheels, front and rear.
The respective wheels are considered to be in the center of the original
wheel axis.

Front and rear steering - the model is derived assuming both wheels are
steered. The front steering angle is represented by 𝛿𝑓 and the rear angle
by 𝛿𝑟.

Center of gravity - the weight of the vehicle is assumed to be at one point.
The distance from the COG to wheel axes is 𝑙𝑓 for the front axle and 𝑙𝑟
for the rear and the wheelbase corresponds to 𝐿 = 𝑙𝑓 + 𝑙𝑟.

Planar motion - the assumption of planar motion means that the 𝑍 coor-
dinate and pitch and roll angles are neglected.

28



................................... 4.1. Complementary Filter

Figure 4.2: Image of representation of the kinematic model

Three coordinates are needed to describe the motion of the vehicle.

⎡⎢
⎣

𝑋
𝑌
𝜓
⎤⎥
⎦
, (4.7)

[𝑋, 𝑌 ] are the inertial coordinates of the location and 𝜓 is heading describing
the orientation of the vehicle. The velocity at the COG is denoted by V and
makes and angle 𝛽 with the vehicle’s longitudinal axis. This angle 𝛽 is called
the slip angle of the vehicle. The kinematic model can be described by four
equations.

𝑋̇ = 𝑉 cos(𝜓 + 𝛽), (4.8)

̇𝑌 = 𝑉 sin(𝜓 + 𝛽), (4.9)

̇𝜓 = 𝑉 cos(𝛽)
𝐿

(tan(𝛿𝑓) − tan(𝛿𝑟)), (4.10)

𝛽 = arctan(
𝑙𝑓 tan(𝛿𝑟) + 𝑙𝑟 tan(𝛿𝑓)

𝐿
). (4.11)
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4.1.3 Longitudinal Velocity

Two data sources are used to obtain accurate longitudinal velocity measure-
ments. First is an acceleration in the x-axis measured by the accelerometer
in IMU, that must be compensated for the centrifugal force effect affecting
MEMS accelerometers.

𝑎𝑐
𝑥 = 𝑎𝑥 − ̇𝜓𝑣𝑦, (4.12)

𝑎𝑐
𝑥 is the compensated accelerometer measurement, 𝑎𝑥 is the raw accelerometer

measurement and the 𝑣𝑦 is lateral velocity computed from the kinematic
model. The second source of data is 𝑣𝑥 computed from the kinematic model,
concretely from this equation.

𝑣𝑥 = 𝑉 cos(𝛽) (4.13)

Which is an adapted version of the equation 4.8 the slip angle 𝛽 is used to
compute 𝑣𝑥 respective to the vehicle. The 𝛽 is computed by 4.11. Since the
integration introduced accumulated drift to the measurement, a high-pass
filter is applied to the 𝑣𝑥𝑎𝑐𝑐. The 𝑣𝑥 contains high-frequency noise from
the steering angle measurements used to compute 𝛽 and a low-pass filter is
applied.

Implementation

As described in the section 4.1.1 the filer is first designed in a continuous
domain and then discretized for better implementation in the car. Thus in
the equation,

̂𝑉𝑥(𝑠) =
𝜏𝑠

𝜏𝑠 + 1
𝐴𝑐

𝑥(𝑠) +
1

𝜏𝑠 + 1
𝑉𝑥(𝑠), (4.14)

the 𝑌𝑟(𝑠) corresponds to the measurement rate - the accelerometer measure-
ment and 𝑌 (𝑠) represents the velocity computed from the kinematic model.
During tuning of the filter, 𝜏 = 0.05 was found to get the most accurate
results. Using the zero-order hold method, the filter is discretized to,

̂𝑉𝑥(𝑧) =
𝑧 − 1

𝑧 − 0.8187
𝐴𝑐

𝑥(𝑧) +
0.1813

𝑧 − 0.8187
𝑉𝑥(𝑧). (4.15)

The Simulink implementation can be seen in figure 4.3. To deploy the
lateral velocity complementary filter on the ToMi2 platform, C++ code was
generated from the Simulink model and integrated into the vehicle control
systems.

4.1.4 Lateral Velocity

Similar to the longitudinal velocity filter, for the lateral velocity filter, ac-
celerometer measurement in the y-axis is compensated for the effect of the
centrifugal force and then integrated over time,

𝑎𝑐
𝑦 = 𝑎𝑦 − ̇𝜓𝑣𝑥, (4.16)
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Figure 4.3: Simulink implementation for the discrete complementary filter for 𝑣𝑥

where 𝑎𝑐
𝑦 is the compensated accelerometer measurement, 𝑎𝑦 is the pure

accelerometer measurement and 𝑣𝑥 is the longitudinal velocity from the kine-
matic model. The lateral velocity from the kinematic model 𝑣𝑦 computation
is based on 4.9, but to acquire only the velocity respective to the car, the
equation is:

𝑣𝑦 = 𝑉 sin(𝛽) (4.17)
where 𝑉 is the velocity of the car and 𝛽 is vehicle slip angle. As the longitudinal
case, the 𝑣𝑦𝑎𝑐𝑐 contains drift due to the integration, so a high-pass filter is
applied. The 𝑣𝑦𝑘𝑖𝑛 is subject to noise from the steering angles used in 𝛽
computations requiring the use of a low-pass filter.

Implementation

Similar to section 4.1.3, the filter is designed first in Laplace domain and then
discretized. The Laplace representation is,

̂𝑉𝑦(𝑠) =
𝜏𝑠

𝜏𝑠 + 1
𝐴𝑐

𝑦(𝑠) +
1

𝜏𝑠 + 1
𝑉𝑦(𝑠), (4.18)

where ̂𝑉𝑦(𝑠) is the lateral velocity estimate in the Laplace domain, 𝐴𝑐
𝑦(𝑠) is the

compensated accelerometer measurement in the Laplace domain, and 𝑉𝑦(𝑠)
is the lateral velocity from the kinematic model in the Laplace domain. By
the use of cyclic constant optimization, the best-performing value if 𝜏 = 0.2
was found. The discretized filter equation is,

̂𝑉𝑦(𝑧) =
𝑧 − 1

𝑧 − 0.9512
𝐴𝑐

𝑦(𝑧) +
0.04877

𝑧 − 0.9512
𝑉𝑦(𝑧), (4.19)

The Simulink implementation can be seen in figure 4.4. To deploy the
lateral velocity complementary filter on the ToMi2 platform, C++ code was
generated from the Simulink model and integrated into the vehicle control
systems.

4.1.5 Heading

The heading complementary filter takes the body heading from the differential
GNSS as the measurement with high-frequency noise and the yaw rate from
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Figure 4.4: Simulink implementation for the discrete complementary filter for 𝑣𝑦
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Figure 4.5: Simulink implementation for the discrete complementary filter for 𝜓

IMU measurements as the measurement with low-frequency noise. The body
heading gets passed through a low-pass filter and the yaw rate is passed
through a high-pass filter.

Implementation

Like the two previous complementary filters, this filter is also first designed
in the Laplace domain and the discretized. The Laplace representation is,

Ψ̂(𝑠) = 𝜏𝑠
𝜏𝑠 + 1

Ψ𝑟(𝑠) +
1

𝜏𝑠 + 1
Ψ𝑏(𝑠), (4.20)

where Ψ̂(𝑠) corresponds to the filtered heading, Ψ𝑟(𝑠) to the yaw rate, and
the Ψ𝑏(𝑠) to the body heading. The filter is tuned for the best performance, 𝜏
was set by cyclic optimization as 𝜏 = 0.1. Using the zero-order hold method
the Laplace domain filter is discretized to,

Ψ̂(𝑧) = 𝑧 − 1
𝑧 − 0.9512

Ψ𝑟(𝑧) +
0.04877

𝑧 − 0.9512
Ψ𝑏(𝑧). (4.21)

The Simulink implementation can be seen in figure 4.5. To deploy the heading
complementary filter on the ToMi2 platform, C++ code was generated from
the Simulink model and integrated into the vehicle control systems.
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4.2 Extended Kalman Filter

This section encompasses the Kalman and Extended Kalman filter definition,
implementation description, and verification.

4.2.1 Kalman Filter

As already briefly described in section 1.2 the Kalman filter is a state estimator
for linear systems, utilizing model dynamics to enhance the precision of its
outputs. Kalman represents its estimates in states and covariances. It consists
of two main parts the state prediction and the state update[25].

State Prediction

Also called the time step uses the system dynamics to compute state pre-
dictions and its covariances for the next iteration. To the prediction phase
belong 2 equations. The State Propagation equation,

̂x𝑛+1,𝑛 = F ̂x𝑛,𝑛 + Gu𝑛, (4.22)

where ̂x𝑛+1,𝑛 is the predicted state estimate, F is the state transition matrix,
describing the system dynamics, x̂𝑛,𝑛 is the current estimate, G is the control
matrix mapping inputs to the system, and u𝑛 is the current input vector.
As mentioned above the Kalman filter works with state estimates and their
covariances, so the second equation of the prediction phase is the Covariance
Propagation equation,

P𝑛+1,𝑛 = FP𝑛,𝑛F𝑇 + Q, (4.23)

where P𝑛+1,𝑛 is the predicted estimate covariance, P𝑛,𝑛 is the current estimate
covariance, and Q is the process noise covariance. After the state prediction
phase has finished, the predicted estimates and their covariances are sent to
the state update phase, where they no longer have the 𝑛 + 1, 𝑛 stamp but
since they are already predicted the sample signature is 𝑛, 𝑛 for the outputs
of the prediction phase.

State Update

The state update phase takes the predicted values and physical measurements
of the tracked states and combines them in a correction for the Kalman filter,
yielding more accurate and precise estimates. This phase consists of the
Kalman gain equation,

K𝑛 = P𝑛,𝑛−1H𝑇(HP𝑛,𝑛−1H𝑇 + R𝑛)−1, (4.24)

where K𝑛 is the Kalman gain, Rn is the measurement covariance, and H
is the observation matrix. The Kalman gain indicates how trustworthy the
measurements are and how much the prediction from the prediction phase
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should be corrected. To compute the updated state estimate, the State
Update equation is used,

̂x𝑛,𝑛 = x̂𝑛,𝑛−1 + K𝑛(z𝑛 − H ̂x𝑛,𝑛−1), (4.25)

where ̂x𝑛,𝑛 is the updated state estimate, and z𝑛 is the physical measurement.
The output of the state update equation is considered the most precise and
accurate current state estimate. The third equation of the update phase is
the Convariance update equation,

P𝑛,𝑛 = (I − K𝑛H)P𝑛,𝑛−1(I − K𝑛H)𝑇 + K𝑛R𝑛K𝑇
𝑛, (4.26)

where P𝑛,𝑛 is the current covariance estimate, I is identity matrix, and P𝑛,𝑛−1
is the last covariance estimate. The equation computes the correction of the
predicted covariance matrix.
The state update phase provides reliable state estimates, which can be further
used in subsequent applications. The Kalman filter is accepted as the optimal
state estimator, but only for liner systems. Since most of the real-world
systems in need of state estimation are nonlinear a variation of the Kalman
filter was devised - the Extended Kalman filter.

4.2.2 Extended Kalman filter

The Extended Kalman filter was developed by NASA in the ’60s. It builds on
the capabilities of the Kalman filter but with the ability for state estimation
of nonlinear systems. The system equations in the EKF do not have to be
linear but have to be differentiable. Instead of the linear state transition
and observation matrices, the EKF works with jacobians of the respective
differentiable functions. In other words, the EKF does linearization in the
current state and covariance estimates as the operating points and then
proceeds to function as standard Kalman filter[46][46].

Prediction Phase

In the same way as the KF the EKF can be split into two phases, predic-
tion and update. The prediction phase contains the State Propagation
equation, where the linear system transition matrix F is replaced by,

F ⇒ 𝑓(x𝑛), (4.27)

where 𝑓(x𝑛) represents the nonlinear equations of the system, so the EKF
version of the State Propagation equation is,

x̂𝑛+1,𝑛 = 𝑓(x𝑛,𝑛) + Gu𝑛, (4.28)

where ̂x𝑛+1,𝑛 is the new state prediction, G is the control matrix and u𝑛
is the vector of external system inputs. The Covariance Propagation
equation has also undergone some changes the system transition matrix is
now the jacobian of the nonlinear transiton matrix,

P𝑛+1,𝑛 = FP𝑛,𝑛 (F)𝑇 + Q, (4.29)
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where P𝑛+1,𝑛 is the new state covariance prediction, 𝜕𝑓
𝜕x is the jacobian of the

state transition matrix, P𝑛,𝑛 is the current covariance estimate and Q is the
process noise covariance matrix.

Update Phase

Similar to the prediction phase, the update phase of the EKF also introduces
changes to the equations known from the KF. In the Kalman Gain equation
is the observation matrix replaced by the jacobian of the nonlinear observation
matrix,

K𝑛 = P𝑛,𝑛−1 (
𝜕ℎ
𝜕x)

𝑇
(𝜕ℎ

𝜕xP𝑛,𝑛−1 (
𝜕ℎ
𝜕x)

𝑇
+ R𝑛)

−1

, (4.30)

where K𝑛 is the Kalman gain, 𝜕ℎ
𝜕x is the observation matrix jacobian, P𝑛,𝑛−1

is the covariance estimate, and Rn is the measurement covariance. The State
Update equation for the EKF is,

x̂𝑛,𝑛 = x̂𝑛,𝑛−1 + K𝑛(z𝑛 − ℎ(x̂𝑛,𝑛−1)), (4.31)

where ̂x𝑛,𝑛−1 is the updated state estimate, z𝑛 is the measurement, and
ℎ( ̂x𝑛,𝑛−1) represents the nonlinear observation matrix. The Covariance
Update equation of the EKF is,

P𝑛,𝑛 = (I − K𝑛
𝜕ℎ
𝜕x)P𝑛,𝑛−1 (I − K𝑛

𝜕ℎ
𝜕x)

𝑇
+ K𝑛R𝑛K𝑇

𝑛, (4.32)

where P𝑛,𝑛 is the updated covariance estimate, and I is the identity matrix.

4.2.3 Single-Track Model

The nonlinear dynamic model used in the EKF is the single-track vehicle
model. This section provides insights into the function of said model. The
implementation of the by Ing. Denis Efremov[18] is used. The single-track
model has 3 degrees of freedom, representing the planar and yaw motion of
the vehicle. In order for the model to work a number of assumptions have to
be taken into account.. Lift, roll, and pitch motion are neglected..Vehicle mass is centered at the center of gravity..The front and rear tires are assumed in the center of their respective

axes..Mass distribution on the axles is assumed to be constant..Vehicle dynamics is controlled by the angular velocities of the wheels
and steering angles.
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.Aligning torque and the pneumatic trail resulting from the side-slip angle

of a tire are neglected.

The model can be split into a number of functional blocks each representing
different part of vehicle dynamics.

Figure 4.6: Single track model representation[18].

Rigid Body Dynamics

The rigid body dynamics block represents the behavior of the chassis. It has
three degrees of freedom represented by the velocity of the COG (𝑣 = |v|),
side-slip angle 𝛽, and the rotational motion represented by yaw rate ̇𝜓. The
equations are as follows,

̇𝛽 = 1
𝑚𝑣

(cos(𝛽)𝐹𝑦 − sin(𝛽)𝐹𝑥) − ̇𝜓,

̇𝑣 = 1
𝑚

(cos(𝛽)𝐹𝑥 + sin(𝛽)𝐹𝑦),

̈𝜓 = 1
𝐼𝑧

𝑀𝑧,

where [𝛽, 𝑣, 𝜓] are the model states, 𝑚 is the weight of the car, 𝐹𝑥 is the
longitudinal force on the COG of the car, 𝐹𝑦 is the lateral force on the COG of
the car, 𝐼𝑧 is the yaw moment of inertia and the 𝑀𝑧 is rotational momentum.

Steering Angles Projection

The steering angles projection transforms the forces acting on tires in the
wheel coordinate system to the forces and rotational momentum action on
the COG. The transformation matrix can be written as,

⎛⎜
⎝

𝐹𝑥
𝐹𝑦
𝑀𝑧

⎞⎟
⎠

= ⎛⎜
⎝

cos 𝛿𝑓 − sin 𝛿𝑓 cos 𝛿𝑟 − sin 𝛿𝑟
sin 𝛿𝑓 cos 𝛿𝑓 sin 𝛿𝑟 cos 𝛿𝑟
𝑙𝑓 sin 𝛿𝑓 𝑙𝑓 cos 𝛿𝑓 −𝑙𝑟 sin 𝛿𝑟 −𝑙𝑟 cos 𝛿𝑟

⎞⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝐹𝑥𝑓
𝐹𝑦𝑓
𝐹𝑥𝑟
𝐹𝑦𝑟

⎞⎟⎟⎟⎟
⎠

, (4.33)

where 𝛿𝑓 is the steering angle of the front wheels and 𝛿𝑟 is the steering angle
of the rear wheel.
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Tire Models

The tire model has two stages, a raw calculation of the lateral and longitudinal
forces on the wheels via the Simplified Pacejka Magic Formula[47] and a
scaling stage called the traction ellipse. The Simplified Pacejka equations:

𝐹 𝑟𝑎𝑤
𝑥𝑓 (𝜆𝑓) = 𝑐𝐷,𝑥𝐹𝑧𝑓 sin(𝑐𝐶,𝑥 tan−1(𝑐𝐵,𝑥𝜆𝑓 − 𝑐𝐸,𝑥(𝑐𝐵,𝑥𝜆𝑓 − tan−1(𝑐𝐵,𝑥𝜆𝑓)))),

𝐹 𝑟𝑎𝑤
𝑥𝑟 (𝜆𝑟) = 𝑐𝐷,𝑥𝐹𝑧𝑟 sin(𝑐𝐶,𝑥 tan−1(𝑐𝐵,𝑥𝜆𝑟 − 𝑐𝐸,𝑥(𝑐𝐵,𝑥𝜆𝑟 − tan−1(𝑐𝐵,𝑥𝜆𝑟)))),

𝐹 𝑟𝑎𝑤
𝑦𝑓 (𝛼𝑓) = 𝑐𝐷,𝑦𝐹𝑧𝑓 sin(𝑐𝐶,𝑦 tan−1(𝑐𝐵,𝑦𝛼𝑓 − 𝑐𝐸,𝑦(𝑐𝐵,𝑦𝛼𝑓 − tan−1(𝑐𝐵,𝑦𝛼𝑓)))),

𝐹 𝑟𝑎𝑤
𝑦𝑟 (𝛼𝑟) = 𝑐𝐷,𝑦𝐹𝑧𝑟 sin(𝑐𝐶,𝑦 tan−1(𝑐𝐵,𝑦𝛼𝑟 − 𝑐𝐸,𝑦(𝑐𝐵,𝑦𝛼𝑟 − tan−1(𝑐𝐵,𝑦𝛼𝑟)))),

where 𝜆𝑓, 𝜆𝑟 are front and rear longitudinal slip ratios, 𝛼𝑓, 𝛼𝑟 are front and
rear lateral slip ratios. The 𝑐𝐵, 𝑐𝐶, 𝑐𝐷, 𝑐𝐸 are Pacejka magic constants, and
the 𝐹𝑧𝑓, 𝐹𝑧𝑟 are the load forces applied on the front and rear wheels. The
load forces on the car are calculated as follows,

𝐹𝑧𝑓 = 𝑔𝑚𝑙𝑟
𝐿
, 𝐹𝑧𝑟 = 𝑔𝑚

𝑙𝑓
𝐿
, (4.34)

where 𝐹𝑧𝑓 is the load force on the front wheel, 𝑔 is the gravity coefficient of
the Earth, 𝐹𝑧𝑟 is the load force on the rear wheel, 𝑙𝑓 is the distance from the
front wheel to the COG, 𝑙𝑟 is the distance of the rear wheel to the COG, and
𝐿 = 𝑙𝑓 + 𝑙𝑟. The raw forces have to be scaled with respect to the tire. For
that purpose, a traction ellipse model is used. The sum of the lateral and
longitudinal forces on the tire cannot be greater than the load force acting
on the wheel. This restriction is guaranteed by the use of the traction ellipse
equaling,

𝐹𝑡𝑜𝑡 = √ 𝐹 2
𝑥

𝑐2
𝐷,𝑥

+
𝐹 2

𝑦

𝑐2
𝐷,𝑦

≤ 𝜇𝐹𝑧 (4.35)

where 𝜇 is the friction coefficient of the road. The scaling of the forces to
comply with the limitations of the traction ellipse is performed as follows,

𝛽∗ = arccos⎛⎜⎜
⎝

|𝜆|

√𝜆2 + sin2(𝛼)

⎞⎟⎟
⎠

(4.36)

𝜇𝑥,𝑎𝑐𝑡 =
𝐹 𝑟𝑎𝑤

𝑥
𝐹𝑧

, 𝜇𝑦,𝑎𝑐𝑡 =
𝐹 𝑟𝑎𝑤

𝑦

𝐹𝑧
, (4.37)

𝜇𝑥,𝑚𝑎𝑥 = 𝑐𝐷,𝑥, 𝜇𝑦,𝑚𝑎𝑥 = 𝑐𝐷,𝑦, (4.38)

𝜇𝑥 = 1

√( 1
𝜇𝑥,𝑎𝑐𝑡

)2 + ( tan 𝛽∗

𝜇𝑦,𝑚𝑎𝑥
)2

, 𝐹𝑥 = | 𝜇𝑥
𝜇𝑥,𝑎𝑐𝑡

|𝐹 𝑟𝑎𝑤
𝑥 , (4.39)

𝜇𝑦 = tan𝛽∗

√( 1
𝜇𝑥,𝑚𝑎𝑥

)2 + ( tan 𝛽∗

𝜇𝑦,𝑎𝑐𝑡
)2

, 𝐹𝑦 = |
𝜇𝑦

𝜇𝑦,𝑎𝑐𝑡
|𝐹 𝑟𝑎𝑤

𝑦 , (4.40)

where 𝐹𝑥, 𝐹𝑦 are maximum forces applicable in the longitudinal and lateral
direction, and the 𝜇 are traction coefficients.
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Wheel Kinematics

Wheel kinematics equations calculate the lateral and longitudinal velocity
of each wheel (𝑣𝑥, 𝑣𝑦), and the side-slip angle of the respective tires. The
equations are,

(𝑣𝑥𝑓
𝑣𝑦𝑓

) = ( cos 𝛿𝑓 sin 𝛿𝑓
− sin 𝛿𝑓 cos 𝛿𝑓

)( 𝑣 cos𝛽
𝑣 sin𝛽 + 𝑙𝑓 ̇𝜓) , (4.41)

(𝑣𝑥𝑟
𝑣𝑦𝑟

) = ( cos 𝛿𝑟 sin 𝛿𝑟
− sin 𝛿𝑟 cos 𝛿𝑟

)( 𝑣 cos𝛽
𝑣 sin𝛽 + 𝑙𝑓 ̇𝜓) . (4.42)

The side-slip angles (𝛼𝑓, 𝛼𝑟) can be calculated as,

𝛼𝑓 = − arctan
𝑣𝑥𝑓

|𝑣𝑥𝑟|
, (4.43)

𝛼𝑟 = − arctan 𝑣𝑥𝑟
|𝑣𝑥𝑟|

. (4.44)

Slip Ratios

The slip ratios of the wheels can be calculated using,

𝜆𝑓 =
𝜔𝑓𝑟 − 𝑣𝑥𝑓

𝑚𝑎𝑥(|𝜔𝑓𝑟|, |𝑣𝑥𝑓|)
, 𝜆𝑟 = 𝜔𝑟𝑟 − 𝑣𝑥𝑟

𝑚𝑎𝑥(|𝜔𝑟𝑟|, |𝑣𝑥𝑟|)
, (4.45)

where 𝜔 is the angular velocity of the wheel and 𝑟 is the wheel diameter.

4.2.4 Implementation

As mentioned, this thesis builds on top of the already near-perfect EKF
implementation by Tomáš Twardzik. The original is written in Matlab as
an offline tool for post-processing logged data from CSV files. The program
takes data from two main sources - GNSS, IMU, odometry measurements,
and visual odometry data from images captured by a stereo camera. This
thesis adds and changes several things about the original implementation:. Online usability - the EKF outputs should be disposable in real-time to

provide data for control algorithms and others..Modularity for deployment on other platforms - obtain a C++ library
with the EKF functionality for easy integration to multiple platforms.

The changes were first made in Matlab, then Matlab Coder utility was used
to generate the demanded C++ library. These two main objectives can be
further divided into smaller subtasks and the goal of this section is to shed
light on the modification made to the original program to meet the goals of
this thesis.
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Structure

To ease the cognitive strain needed to understand the changes made, the EKF
can be divided into sections, on which can be better shown what modifications
were made and why.

Inputs - handling input data to the filter.

Data sampling - parse the input data into set messages for the EKF.

Initial data gathering - get data to initialize the EKF.

Time step - update the estimates and covariances based on the system
dynamics.

Data step - correct the predictions with the real-world measurements.

Inputs

Original - the original implementation takes two CSV files as inputs. Data
logged from GNSS, IMU, odometry, and various miscellaneous information
about the vehicle. The second CSV file contains visual odometry data
processed by the Nvidia ISAAC-Elbrus algorithm.
Modified - the modified version adopts all the data types from the original,
even though not all of it gets used, but is left in the program for possible
future utilization. The data is only in form of one dimensional arrays, since
the modified version works in real-time and only one data sample at the time
is needed.

Data Sampling

Original - the offline version has a data sampling function, that parses all the
data from the CSV files and sorts them into four message types - GNSS, IMU,
VO (visual odometry), CTRL (wheel odometry). These messages get stored
in a Matlab data object, and all have corresponding time stamps based on
which they get sent to the EKF. This data sampling method utilizes Matlab’s
ability to handle variable-sized objects to store messages for a given time in a
structure.
Modified - keeping in mind that the modified version has to check all the
boxes for Matlab C++ code generation, the use of variable-sized objects is
unacceptable. Luckily the real-time nature of the modification means that
only one time sample at once has to be processed. The data is still sorted
into the mentioned message types to ensure compatibility with the rest of the
code, but the implementation has to be ”dumbed down” to meet the C++
requirements. That means fixed-size variables, preallocated arrays and etc.

EKF initialization

Before the EKF itself can start, it needs data about its initial position.
The data include lattitude, longitude, attitude, body heading, accelerometer
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measurements, and yaw rate from gyroscope.
Original - since the offline version gets the data from a CSV file containing
records of the whole session, the initial data is just the mean values of the
first 1000 samples.
Modified - the initial data gathering is limited by time, not the number of
samples. The sequence is set to last 30 seconds and the mean of the gathered
samples is then used as the initial data needed for the EKF initialization.

Time Step

When data measurements is received, the EKF performs a prediction step,
the theory is described in section 4.2.2.
Original - during the prediction step implementation the inputs are parsed
to fit the model. The system matrices are computed and the Matlab lsim
function is used to compute the system prediction. Modified - since the lsim
function is not compatible with Matlab Coder C++ generation, a fourth-order
Runge-Kutta solver was implemented instead.

Data Step

The update step is performed when sensor measurement data is received to
compute the state and covariance estimate update. First, the observation
matrix, measurement covariance matrix and their linearizations are computed.
With these matrices the rest of the EKF update phase, as described in 4.2.2
is performed.
Original - the original version utilizes Matlab’s ability to handle variable-
sized objects to compose the measurement matrices.
Modified - since the C++ generation must use fixed-size variables, the beauty
of the original function had to be unfortunately destroyed to be replaced
by rigid if statements that cover all possible combinations of incoming data
messages.
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Chapter 5
Experiments

This chapter aims to show the promised functionality of the modified EKF
and the Complementary filter. Given that the Sub-Scale Verification platform
is still under construction, all tests and experiments will be conducted on the
ToMi2 platform. Due to the size limitation of the car, carrying additional
verification instrumentation directly on the vehicle, like the Vbox 3iS, is out
of the question. The direct comparison between the Vbox and the developed
algorithms would be ideal, but the second best thing and comparable method
in terms of validating this thesis’s outcomes is to set a validation track as a
grand truth. Both the EKF and the complementary filter run simultaneously,
to get plausible data for further validation and cross-comparison.

5.1 Validation track

As mentioned in 3.1.3, the ToMi2 platform is equipped with RTK-capable
GNSS receivers, which can be leveraged to obtain precise measurements
required to set the validation track. The individual points were obtained by
averaging stationary position measurements along the desired track. Having
individual points is only half of the work. To obtain a real validation track,
Centripetal Catmull-ROM spline is used[48]. The spline generates a trajectory
between the measured points as can be seen in figure 5.1. Since the validation
track has only three states, which can be checked - [𝑥, 𝑦, 𝜓], where 𝜓 is
calculated by,

𝜓𝑡 = arctan 𝑦𝑡 − 𝑦𝑡−1
𝑥𝑡 − 𝑥𝑡−1

, (5.1)

in other words, 𝑎𝑡𝑎𝑛 of the difference between the current and the last position.
Thanks to the attributes of the single-track model (4.2.3) these three states
are enough to guarantee the accuracy of the other three states - [𝛽, ̇𝜓, 𝑣],
estimated by the EKF.

5.2 Complementrary filter

The implemented complementary filters handle lateral and longitudinal veloc-
ity and heading. The validation is conducted on the same data as the EKF
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Figure 5.1: Validation track created from measured points using Catmull-ROM
spline.

validation - a test ride around the validation track with speed change.

5.2.1 Longitudinal Velocity

The implementation of the filter is described in 4.1.3. The filter output is
compared to the longitudinal velocity of the car’s COG obtained from the
kinematic model (also described in section 4.1.3). As can be seen in figure 5.3
the filtered measurement still has quite a bit of high-frequency noise and has
an offset. Since this version of the complementary filter is tuned to minimize
the difference, these remaining imperfections in the filtered signal can be
tracked to the limitations of the vehicle platform, the sensor measurements,
and the computed data from the kinematic model, which assumes non-existent
slip at the wheels and works best at low-speed maneuvers - conditions hard
to meet in real-world testing.

5.2.2 Lateral Velocity

The filter implementation is described in 4.1.4. The output is compared to
the lateral velocity of the car’s COG obtained from the kinematic model
(also described in section 4.1.4). At first glance, the figure 5.4 could look
like the filter in not properly tuned. Unfortunately, this output is the best
performance, that could be achieved, due to similar reasons as mentioned in
5.2.1. In addition to that, the lateral dynamics of the overactuated vehicle are
considerably faster than the longitudinal, so the limitations of the kinematic
model show even more.
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Figure 5.2: The validation track points displayed on satellite images for con-
text[19].

5.2.3 Heading

The implementation is described in 4.1.5. Filter output is compared to
the EKF heading, because the vehicle platform does not measure another
independent source of body heading other than used as one of the inputs. As
can be seen in figure 5.5 the headings are almost identical, apart from some
offset. The heading complementary filter is the only filter shown, that can
compare its performance to the EKF output of the respective state.

5.3 Extended Kalman filter

In section 4.2.2 it is stated that the Extended Kalman filter is prepared to fuse
GNSS, IMU, odometry, and visual odometry data. Before any experiments
are shown, it needs to be stated that at the time of the deadline of this
thesis, I have not managed to successfully launch the Nvidia Isaac Elbrus[49]
algorithm in combination with the Zed 2 STK camera. With the help of
my smarter and more experienced colleagues, we only managed to locate
the possible source of troubles as a non-compatible current Isaac algorithm
version with our Zed camera. However, this is only a minor complication,
as the EKF is more than capable even without the visual odometry data,
and its modular architecture means, that when the Isaac algorithm is up and
running, nothing has to change. The EKF is ready to process the additional
data.
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Figure 5.3: Filtered longitudinal velocity 𝑣𝑥 compared to the longitudinal
velocity of the car’s COG 𝑣𝐶𝑂𝐺

𝑥 .

5.3.1 Methodology

The experiments can be split into three categories,

General experiments - under ideal conditions to prove the baseline function-
ality

Offset experiments - these tests are meant to prove that the EKF is capable
of withstanding the effects of offset in the GNSS measurements - in the
real world experienced, when the receiver is surrounded by high obstacles
and the signal has rebounded off the obstacles.

Sensor error - this category tests that the EKF is able to stay on course
when a signal outage for a short period of time occurs.

Because of the lack of any trajectory-tracking technology, the author is left
to rely on his vehicle-controlling skills via the wireless transmitter, meaning
that the final accuracy of the validation trajectory tracking reflects human
imperfections. Anyhow, this fact has no impact on the quality of the results,
because, with the EKF, there are more ways how to show its abilities.

5.3.2 General

In term of the general functionality of the EKF, it should be first demonstrated,
that the modified real-time C++ implementation has the same outputs as
the original Matlab version. Figures 5.6 and 5.7 show that the conversion of
the offline Matlab version to the real-time C++ version is valid - the logged
data is the same.
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Figure 5.4: Filtered lateral velocity 𝑣𝑦 compared to the lateral velocity of the
car’s COG 𝑣𝐶𝑂𝐺
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5.3.3 Offset

In these experiments, the ability of the EKF to react on permanent offset in
GNSS data - 0.5 meters in both directions, is tested. The desired behavior of
the EKF is that due to the offset, the covariance of the GNSS data is high
and the filter will rely more on the model prediction, and other sources of
data, therefore the drift due to the GNSS offset should be minimal. In figures
5.8a and zoomed figure, the 5 seconds of GNSS offset are marked with yellow
circles.

The average distance between the EKF with offset and the EKF without
offset over the 5 seconds of the skewed GNSS data can be computed as the
average of,

𝑑 = √(𝑥 − 𝑥𝑜)2 + (𝑦 − 𝑦𝑜)2, (5.2)

where 𝑑 is the distance between the offset EKF and normal EKF position,
(𝑥𝑜, 𝑥) are their respective 𝑥 positions and (𝑦𝑜, 𝑦) are the 𝑦 positions. The
offset distance is 𝑑𝑜 = 0.7071 m, and the average difference between the offset
EKF and the normal is 𝑑𝑎𝑣𝑔 = 0.6296 m. From this data, it is easy to see
that the EKF reduces the offset in GNSS data by 7.75 cm, which is 10.96%
of the GNSS offset. The heading data of this experiment can be seen in
figure 5.8b. During the offset data, the heading follows the same curve as the
default data.

5.3.4 Sensor Outages

The sensor outages are simulated for 5 seconds, during which the EKF has to
rely on other measurements to compensate for the outage.
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Figure 5.5: Filtered heading compared to the EKF heading

GNSS outage

In 5.9a the orange circles mark the start and end of the GNSS outage, as can
be seen from the yellow line - EKF position without the GNSS data, when
the signal drops out, the EKF is relying on the relative measurements from
the IMU and the prediction data from the model. As can be seen, the EKF
positon without GNNS data slowly starts to drift from the desired position
(violet line - fully functional EKF) - the longer the outage lasts, the bigger
error the positional data accumulates. After the outage, the EKF position
regains accuracy almost immediately - the sharp turn in the position graph
5.11c is caused by the regained GNSS connection, the drifted position was
correted by the absolute measurement from the GNSS. The average error
(difference between normal EKF position and EKF position with outage) can
be computed via the equation 5.2. The average error is 𝑑𝑔𝑛𝑠𝑠 = 61.4 cm. The
error behavior over the time of the outage can be seen in figure 5.10.

In figure 5.9b can be seen, that during the outage the heading difference
grew. After the outage, the heading regained accuracy with the original
EKF data. The error in relation to the original EKF heading curve during
the outage is described in figure 5.9a. The seemingly large discrepancy in
the slopes of the curve (heading changes during steering) between the EKF
heading and the validation heading occurs due to the absence of autonomous
steering - the human inputs can never precisely follow the desired path,
mainly during steering and because of that the difference between the curves
is created. Since the heading curves do not have increasing offset over time,
the heading after finishing the turn is the same - indicating that the prevailing
source of error is the author’s inability to follow a turn, the EKF heading
output can be considered valid.
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Figure 5.6: Positional data comparison of the EKF versions.

IMU outage

The start and end of the IMU outage are marked by orange circles in figure
5.11a. From the difference in the EKF position with and without the outage
can be seen, that the algorithm can support itself with predictions from
the single-track model and data from wheel odometry and absolute position
from GNSS. From these findings can be deduced, that short periods of IMU
outages are negligible. The average error calculated with 5.2 is 𝑑𝑖𝑚𝑢 = 3.01
cm. The behavior of the error over the outage can be seen in 5.12.

The results 5.11b are in a similar fashion as the positional data in 5.11a,
the IMU outage is barely noticeable and the EKF filter can compensate for
it.

5.4 Comparison

In this section, the comparison of the two sensor fusion methods, the Extended
Kalman filter a the complementary filter will take place. The EKF measures
six states (𝛽, 𝜓, ̇𝜓, 𝑥, 𝑦, 𝑣) and the complementary filter only three (𝑣𝑥, 𝑣𝑦, 𝜓),
that leads to two meaningful ways to compare their performance.

5.4.1 Heading Comparison

The heading comparison was already done in section 5.2.3 because the EKF
heading is used for validation of the complementary filter. So from figure 5.5
can be seen, that the two outputs match very closely.
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Figure 5.7: Heading data comparison of the EKF versions.

5.4.2 Velocity Comparison

Even though the EKF filters 𝑣 and complementary filter has 𝑣𝑥 and 𝑣𝑦 as
stated the comparison can be made because of the fact, that 𝑣𝑥 and 𝑣𝑦 are
always perpendicular and can be combined into 𝑣 using the equation,

𝑣𝑐𝑓 = √𝑣2
𝑥 + 𝑣2

𝑦, (5.3)

where 𝑣𝑐𝑓 is the velocity from the complementary filter, which is compared
to the EKF velocity in figure 5.13. From the figure is quite clear which one is
the better velocity filter. Although both velocities follow the same general
curve (which is good news for the complementary filter), the 𝑣𝑒𝑘𝑓 is clearly
less noisy showcasing, that in this application, the EKF is superior to the
complementary filter.
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Figure 5.8: Figures for the GNSS offset experiment.
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Figure 5.9: Figures for the GNSS outage experiment.
50



....................................... 5.4. Comparison

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

0.5

1

1.5

2

2.5

3

d
is

ta
n
c
e
 [
m

]

GNSS outage - error of EKF positons

error

error average

Figure 5.10: Error behavior over the time of GNSS outage
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Figure 5.11: Figures for the IMU outage experiment.
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Figure 5.12: Error behavior over time of the IMU outage.

0 5 10 15 20 25 30 35

time [s]

0

1

2

3

4

5

6

7

8

v
e
lo

c
ti
y
 [
m

/s
]

Velocity comparison

v
ekf

v
cf
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complementary filter velocity 𝑣𝑐𝑓.
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Chapter 6
Conclusions

In this chapter, a summary of the goals of this thesis and their fulfillment
will be made, shortcomings found during the process of writing this thesis
addressed and the solutions presented. The goal of this thesis was to implement
a real-time complementary filter and EKF able to estimate the states of
the overactuated vehicle platforms developed by the SDS Research Center -
specifically the ToMi2 platform until the Smart Sub-Scale vehicle is completed
and ready for testing.

6.1 Complementary Filter

The implementation of the complementary filter was quite straightforward,
based on the signals from GNSS, IMU, and wheel odometry accompanied
by the kinematic vehicle model. The baseline structure was designed in the
continuous domain in Simulink and subsequently discretized. C++ code for
deployment on the embedded hardware and the ROS2 environment running on
the ToMi2 platform was generated from the Simulink model. The expriments
to validate the correct design and tuning of the filter were successful, although
the increased noisiness and imperfection due to the limitations of the used
kinematic model, can be subject to future improvements.

6.2 EKF

The original implementation of the used EKF was done by Tomáš Twardzik -
model-based offline EKF written in Matlab able to fuse GNSS, IMU, wheel
odometry, and visual odometry data. The goal of this thesis was to adapt
this EKF implementation to work in real-time on embedded hardware in
the ROS2 environment used on the ToMi2 platform while making the EKF
functions modular for further use on other vehicle platforms. To match
these goals, C++ code had to be generated from the original Matlab code.
This relatively simple-sounding task proved to be the most painstakingly
difficult part of the whole project. Due to the limitations of the Matlab code
generator, a vast number of adaptations had to be made to the Matlab code,
the major modifications are described in section 4.2.4. After the code was
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generated, the resulting C++ class was integrated into the existing ROS2
environment on the ToMi2 platform. Unfortunately, during the integration
a problem with the visual odometry algorithm occurred and could not be
solved by the time of this writing - the current release of the Nvidia Visual
Slam algorithm seems not to work with the Zed 2i Camera present in the
car. This means the EKF is currently only handling data from GNSS, IMU,
and wheel odometry, with the visual odometry handling ready to use when
the camera issues are resolved. Regardless of the absence of visual odometry
data, the experiments conducted to validate the performance of the EKF
were still successful, only in the GNSS offset experiment was the absence of
the positional correction from visual odometry felt - the EKF position drifted
a bit too much in the direction of the offset. Otherwise, the main goals were
met - successful creation of real-time EKF able to run on embedded hardware.

6.3 Discussion

All in all, the goals set at the beginning were met, apart from the visual
odometry in EKF but that does not pose any major setbacks on the function-
ality. The work on this thesis, although sometimes a bit boring, daunting,
and difficult, was an enjoyable experience creating an opportunity to push
one’s boundaries and to discover new areas of knowledge and abilities, that
can be leveraged in future life and work.

6.4 Future work

The main aspects calling for improvement are:

Visual odometry - wait for Nvidia to respond and update its release to
support the Zed 2i camera.

New platform - part of the performance limiting factors is the vehicle
platform itself. The ToMi2 is at the end of its lifecycle and the limits
can be felt, given its based on an RC model car.

Sensors - a good way to improve the EKF performance is to try to equip
the vehicle with better and more precise sensors. Some of them arrived
during the work on this thesis, but the timeframe did not allow their
integration and testing.
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