U BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: Blaho$ Jan Personal ID number: 498841
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction
Study program: Open Informatics
Specialisation: Computer Games and Graphics
k J
Il. Bachelor’s thesis details
~
Bachelor’s thesis title in English:
Pruning for Best-Response Algorithms for Imperfect Information Extensive-Form Games
Bachelor’s thesis title in Czech:
Profezavani pro vypocet nejlepSi odpovédi v extensivnich hrach s netplnou informaci
Guidelines:
Computing a best response to a fixed strategy of the opponent is a key method used in game theory either to evaluate
the quality of the strategy or it is directly incorporated into many equilibrium-computation algorithms (for example Fictitious
Play, Double-Oracle algorithm, etc.). Computing best response in imperfect information extensive-form games requires
traversing through exponentially large game tree, hence the full search algorithm does not scale well. The goal of the
student is:
1) to review existing methods on computing exact best response in imperfect-information extensive-form games
2) implement exact best response in imperfect-information extensive-form games based on [3] into OpenSpiel
3) extend the implementation to compute an error-bounded approximate variant of best response
4) compare the performance of newly implemented algorithms with full best response and other methods identified in step
1)
Bibliography / sources:
1. Marc Lanctot et al. 'OpenSpiel: A framework for reinforcement learning in games." arXiv preprint arXiv:1908.09453
(2019).
2.Yoav Shoham and Kevin Leyton-Brown. 'Multiagent systems.' Cambridge Books (2009).
3. B. BoSansky, C. Kiekintveld, V. Lisy, and M. Pechoucek (2014). 'An Exact Double-Oracle Algorithm for Zero-Sum
Extensive-Form Games with Imperfect Information.' Journal of Artificial Intelligence Research, 51, 829-866.
Name and workplace of bachelor’s thesis supervisor:
doc. Mgr. Branislav BoSansky, Ph.D. Artificial Intelligence Center FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 14.06.2023 Deadline for bachelor thesis submission: 24.05.2024
Assignment valid until: 16.02.2025
doc. Mgr. Branislav BoSansky, Ph.D. Head of department's signature prof. Mgr. Petr Péata, Ph.D.
k Supervisor’s signature Dean'’s signature)

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Bachelor’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Pruning for Best-Response Algorithms for
Imperfect Information Extensive-Form
Games

Jan Blahos

Supervisor: doc. Mgr. Branislav Bosansky, Ph.D.
Field of study: Open informatics

Subfield: Computer Games and Graphics

May 2024

ii

Acknowledgements

I would like to thank doc. Mgr.
Branislav Bosansky, Ph.D. for helping
me better understand the theory behind
the algorithm and his overall guidance. I
would also like to express my gratitude to-
wards OpenSpiel developers and contrib-
utors for maintaining this amazing frame-
work. Finally I'd like to thank my family
and friends for all of their support during
my studies.

iii

Declaration

I declare that the presented work is all
my own work and I have cited all sources
I have used in the bibliography.

In Prague, 27. May 2024

Abstract

This thesis aims to identify and re-
view existing methods of computing ex-
act best response. It provides descrip-
tion and implementation of exact best
response algorithm with pruning inspired
by [Bos14] extended to compute an ap-
proximate best response. Another algo-
rithm based on Monte Carlo tree search
similar to [Tim22| is described and im-
plemented. All implementations are done
in OpenSpiel [OS19] framework. Finally,
we compare above mentioned algorithms
and the current version of best response
in OpenSpiel.

Keywords: game theory, artificial
intelligence, sequential games, imperfect
information games

Supervisor: doc. Mgr. Branislav
Bosansky, Ph.D.
Katedra pocitaci, FEL

iv

Abstrakt

Tato prace se zabyva identifikovanim
a prezkoumanim existujicich metod pro
vypocet presné nejlepsi odpovédi. Je po-
skytnut popis a implementace algoritmu
presné nejlepsi odpovédi s profezavanim
inspirovany [Bos14] rozsifeny o vypocet
priblizné nejlepsi odpovédi. Déle je po-
pséan a implementovan algoritmus zalo-
Zzeny na metodé Monte Carlo prohleda-
vani, ktery vychdzi z [Tim22]. Vsechny
implementace jsou realizovany v prostredi
OpenSpiel [OS19]. Nakonec porovnavame
zminéné algoritmy a soucasnou verzi nej-
lepsi odpovédi v prostiedi OpenSpiel.

Klicova slova: herni teorie, uméla
inteligence, sekvencni hry, hry s nedplnou

informaci

P¥eklad nazvu: Profezavani pro
vypocet nejlepsi odpovédi v extensivnich
hrach s netiplnou informaci

Contents
1 Introduction 1

2 Background 3
2.1 Extensive form game
2.2 Information set 4

7

2.3 Best response
3 Related work

4 Best response with pruning 9
4.1 Basic logic, 9
4.2 Pseudocode and pruning........ 9
4.2.1 Nodes of the other players ..
4.2.2 Nodes of the responding player
4.3 Error bounded approximation . .

5 MCTS based algorithm

51 MCTS ...
52ISMCTS. ...
53 ISMCTS-BR

15
15l
16l

6 Implementation and Testing 17
6.1 Implementation
6.1.1BRS.............. ..., 17
6.1.2 ISMCTS-BR 18]
6.2 Testing
6.21 Games.................... 18|
6.22BRS........ 18
6.2.3 Approximate BRS
6.2.4 ISMCTS-BR 19
21

23

7 Conclusion

Bibliography

Figures
2.1 Rock-paper-scissors represented as
a sequential game

4.1 BRS in nodes of other players ..
4.2 BRS in nodes of best responding
player

6.1 Convergence to BRS value based
on number of samples

vi

Tables

4.1 Expressions used in the

pseudocode

Chapter 1

Introduction

Finding a best response strategy is a common task in competitive games
that aids game solving algorithms and agents. The best response sequence
algorithm finds an optimal strategy for a player, given the opponent strategies,
which is particularly useful for finding equilibria in games. It is mostly used
as a part of oracle algorithms, such as [Bosl4], but also has other uses, for
example evaluating the exploitability of a strategy or as a pruning method to
speed up algorithms such as counterfactual regret minimization [BS17].

OpenSpiel'| provides a simple yet efficient implementation of the best
response algorithm. While the algorithm is fast and in many cases sufficient,
it requires enough memory to store the entire game tree. Since most of the
games are exponential in size, storing the entire tree isn’t a viable option for
larger games.

The goal of this thesis is to implement exact best response algorithm with
pruning inspired by Section 4.2 of [Bosl4], which should be more memory
efficient than the OpenSpiel version, since storing the tree in memory is not
required for it to work. The original algorithm is extended by the computation
of approximate best response. We also explore another algorithm (slightly
altered version of [Tim22]) that takes the Monte Carlo approach, which
converges to best response. Finally, we compare implemented algorithms
together with OpenSpiel’s best response algorithm on two games: Kuhn and
Leduc poker.

'OpenSpiel[OSTY)] is an open source framework by Deepmind, which offers a variety of
game theory related algorithms and games that these algorithms operate on.

Chapter 2
Background

In this section we discuss some important concepts from game theory, estab-
lish a few definitions and introduce notation in order to better understand
the algorithm description in chapter 4. The definitions are derived from
[Bos14], [SL0O9] and [Sch21] while the notation is kept similar to [Bosl4]
where applicable.

B 2.1 Extensive form game

Our algorithm operates on two player zero-sum extensive form games (EFGs)
with imperfect information. An extensive form game is represented as a
tree, where nodes represent the current game state and edges correspond to
actions that may be taken by the acting player in that state. Each node has
its unique history of actions. The leaf nodes are called terminal and assign
rewards to each player. Zero-sum means the sum of utilities at each terminal
node of both players equals zero, this models competition between the two
players. They have perfect recall of their own actions, however are deciding
with uncertainty, which can be either a result of working with stochastic
environment or some of the opponent’s actions not being observable.

Definition 2.1 (Extensive form game). Two player EFG is formally defined
as a tuple (N, H,Z, A,p,u,C,T), where N is a set of two players, typically
{1,2}, H represents all nodes in the game tree, Z C H denotes the set of
terminal states. A denotes the set of all actions, we use A(h) to represent all
actions available at node h. The function p : H — N U ¢ assigns nodes to
players that are acting in that state or to Nature player (¢). Nature player
picks an action based on a predetermined probability distribution known
to each player. For each terminal node, the function u : Z — R is defined,
which assigns utility values to each player in this node. For each node, the
value C(h) represents the probability of reaching this node based on Nature
player’s policy, assuming the other players play the necessary actions. Finally,
7 represents the set of information states (or sets) of acting players, which is
explained in the following section.

For better understanding, let’s have a look at Figure [2.1L In this case, N
would be {Red player, Blue player}, Z are all 9 leaf nodes of depth 2 to which

3

2. Background

Scissors

Figure 2.1: Rock-paper-scissors represented as a sequential game

function u assigns utility values for both players. A is the set {Rock, Paper,
Scissors}. Function p is represented by colouring of vertices. We can see the
root node assigned to the Red player while Blue player has 3 nodes in depth
1. There are no nodes assigned to the Nature player, yet the game can still
be an imperfect information game by players not being able to observe the
opponent’s action.

. 2.2 Information set

Each player’s acting nodes in imperfect information games can be partitioned
into information sets. The players cannot distinguish between nodes in a
given information set, since the observed actions leading to these nodes and
available actions at them are the same.

As an example, please see the game tree representing the game rock-paper-
scissors in Figure 2.1, All decision nodes of Blue player are in the same
information set: the player doesn’t know which action Red player had chosen
to play and the actions available are the same in each of those nodes. Trivially,
the single decision node of Red player is part of their only information set.

B 23 Best response

When talking about players, we will refer to the best responding player as i
and other players as -i. Strategy or policy of a player can be either mixed or
pure. Players decide what action to play based on probability distribution
over available actions at each information state. If in every information state
one action is assigned the probability 1.0, it is referred to as pure strategy,
mixed otherwise ||

Best response of player i to a fixed strategy of player -i can be understood as

a mapping of actions and their probabilities of being played to each information

'Pure strategy is a special case of mixed strategy, meaning every pure strategy is mixed
and a mixed strategy can but doesn’t have to be pure

4

2.3. Best response

set of player i that maximizes their utility. There doesn’t necessarily have to
be one unique best response as explained in Section 3.3.2 of [SL0O9].

Definition 2.2 (Best response). Let u;(m;, m—;) be the expected utility gained
by player i, when following strategy m; against the opponents’ strategies m_;
and II; be the set of all possible strategies of player i. Best response against
policy m_; is a mixed strategy 7} that satisfies:

wi(my, m—s) > wi(m, m—;) YV € 11,

Chapter 3

Related work

There are many ways to tackle the computation of best response in imperfect
information games. They can be separated into two categories: domain-
specific, meaning optimized for a given game or a set of similar games and
general, which should work in any environment. In this thesis, we will focus
on the latter. The simplest approach is performing full search of the game
tree, as described in Section |4.1. However, the game tree is exponential in
size, meaning we want to avoid traversing as many branches of the tree as
possible.

An algorithm that applies pruning to this naive approach is introduced
in [Bosl4]. Unfortunately, pruning a percentage of the exponentially large
tree isn’t a feasible approach for larger games. A different approach based on
Monte Carlo tree search is proposed in [Tim22]. Both of these algorithms are
further described in the following chapters.

Another way of computing an approximation of best response is the Local
Best Response algorithm [LB17], which relies on game-specific knowledge and
heuristics.

Parallelization and avoiding game-specific isomorphisms can lead to signifi-
cant speed-ups in computation [Joh11], where the former depends on hardware
and the latter is a domain-specific method and are thus not explored further
in this thesis.

Chapter 4

Best response with pruning

In this chapter we will discuss the basic logic behind the algorithm, the the
ideas behind pruning and computing error bounded best response.

B 41 Basic logic

The algorithm aims to exploit a predetermined strategy of player —i and find
a best response policy together with returning the expected utility value.

The logic is based on a classic depth-first search (DFS) algorithm that
differentiates between several options: we are either in a terminal node, chance
node or a decision node of one of the players.

® Terminal node: returns the utility of best responding player weighted
by the probability of reaching this node, assuming ¢ plays the necessary
actions to reach it.

Chance node and decision node of player -i: the value of this state
is gained by accumulating the returns of subsequent calls of the DFS
function for each of the available actions in current state

8 Decision node of player i: determines which action has the maximum
expected utility, considering all nodes in current information set, caches
this action in order to build a best response policy and returns the value
of this action, but only the value gained from the current node

B 2.2 Pseudocode and pruning

In this section we explain the pseudocode of the algorithm shown in Figures
and [4.2/["| Please see Table for better understanding of the notation
used. Before starting, we need to know the game’s minimum and maximum
utility values and set A to minimum utility.

Wery similar pseudocode can be found in [Bosl4) Section 4.2]

9

4. Best response with pruning

Expression ‘ Meaning
BRS; recursive function
7_i(seq—i(h)) | probability of reaching node h based on —i’s strategy
C(h) probability of reaching node based on Nature play
ha node reached by playing action a at h
A(h) actions available at node h
I; current information set of player ¢

Table 4.1: Expressions used in the pseudocode

B 4.2.1 Nodes of the other players

First, let’s talk about processing nodes of the opponent and Nature player
(Figure 4.1). The case of node h being terminal can be viewed as a separate
part of the algorithm, since no player is acting there. Both here and in nodes
of the best responding player, a weighted value is returned, where the weight
is the probability of reaching this node, assuming player ¢ picks the necessary
actions to reach it. This can be easily calculated from policy of player -i and
public knowledge of Nature player’s policy.

1: w4 F_i(seq_i(h)) . C(h)

2: if h € Z then

3: return u;(h)-w

4: end if

5. sort a € A(h) based on probability w, + 7_,(seq_;(ha)) - C(ha)
6: Uh ~—0

7. for a € A(h), w, >0 do

8 N A= [P+ (w — w,)- MaxUtility]
9: if) < w,- MaxUtility then

10: v' < BRS;(ha, \')

11: if v = —o0o then

12: return —oo

13: end if

14: o — P o

15: W W — Wq

16: else

17: return —oo

18: end if

19: end for

20: return v"

Figure 4.1: BRS in nodes of other players

To start, we set up variables w, which represents the probability of reaching
the current node and set the expected utility v" to 0. We iterate over all
available actions sorted by their probability of play, which we know either
from the fixed policy 7_; of the best responder’s opponent or the publicly

10

4.3. Error bounded approximation

known policy of Nature player C. Actions with 0 probability are omitted.
First, a new lower bound (') for child node is calculated. This represents
the minimal value that must be returned from the following call of BR.S; in
order for this node to be relevant for the best response. If this value cannot
be gained, a cut-off occurs (line 16.). The other possible cut-off happens by
propagation from a child node (line 11.). If no cut-off occurs, the value v" is
incremented by the value returned from recursive call and w is decremented
by the probability of reaching node ha. The value accumulated in v" is

returned at the very end.

B 4.2.2 Nodes of the responding player

Handling the terminal case is the same as explained in Section [4.2.1. Addi-
tionally, if the value of the current information state is already calculated, we
simply return the cached value.

We begin by collecting all nodes from the information set of node h (line 7.),
which are then sorted based on the probability of being reached. The variable
w is set to represent the probability of reaching the current information set,
which is the sum of probabilities of reaching each of its nodes and the value
vg 18 set to 0 for each action a € A(h). We then iterate over the sorted list of
nodes and evaluate all actions for every node (line 11.).

A new lower bound)\ is calculated (lines 15. and 17.), which represents the
minimum value that needs to be acquired from the recursive call in order for
the current action to remain a potential best response action ("If the current
action yields maximum value in all unprocessed nodes from this information
set, can it still be the best action?"). If the current action can no longer be
the best action, the recursive call is not performed, otherwise the current
action value is updated. At line 26., a cut-off occurs when the original node
h was evaluated and the greatest utility that can be achieved at this node
is less than the lower bound A. Finally at line 30., the individual expected
utilities for found best action are stored for each node in current information
set and the expected value of current node h is returned.

B 4.3 Error bounded approximation

This section describes error bounded best response which should return no
more than € worse value than the exact best response. There are approxima-
tion methods for computing best response ([Tim22], [LB17]), however, they
do not guarantee any error bound. To the best of our knowledge, there is no
research related to computing error bounded best response.

Regarding the algorithm described in this chapter, it accumulates return
values from recursive calls for each action (and in the case of responding player
fully evaluates best action at each information set). We could theoretically
allow each node to return a value that is at most €; lower. Unfortunately, it
isn’t that simple. Imagine a game where player ¢ decides to play an action
in root node, then player —i plays and a terminal state is reached. If we

11

4. Best response with pruning

1: if h € Z then
2. return u;(h)-7_,(seq_;(h))-C(h)

3: end if

4: if v" is already calculated then

5. return ov”

6: end if

7. H « {hW;n eI}

8: sort H' descending according to value 7_;(seq_;(h’)) - C(h)
9: w4 Y e T-i(seq-i(h')) - C(R')

10: vg < 0 Va € A(h); mazxAction + ()

11: for ' € H do

12 wp T (seq—i(h')) - C(h')

13: for a € A(R) do

14: if maxAction is empty then

15: N <« wyp- MinUtility

16: else

17: N (UmazAction +w - MinUtility) — (vq + (w — wps) - MaxUtility)
18: end if

19: if N < wy - MaxUtility then

20: vl «— BRS;(ha, \)

21: Vg < Vg + vgl

22: end if

23: end for

24: mazAction < arg maX,cA(p') Va

25: W < W — Wy

26: if h was evaluated A (mazacan)) v < X then

27: return —oo

28: end if

29: end for

30: store v as v Vh e H'

maxAction

X h
31: return v, . Action

Figure 4.2: BRS in nodes of best responding player

allow both states to return a value that is €; lower, the final return value
can suddenly be 2¢; lower and this would continue with increased depth. A
similar problem is mentioned in [Atz18, page 12].

The games are not usually represented as a full tree, but we could al-
low each node to return a value (€1 / normalizationFactor) lower, where
normalizationFactor would be the greatest depth. We believe this would
waste the potential of the allowed error, as many games have varying number
of player actions before reaching a terminal node (e.g. in poker, a player may
fold immediately or perhaps both players are opting to check to the very end)
and in the low action count branches the allowed error would be very low
compared to the original €;.

We instead propose a solution that allows one information state of player ¢

12

4.3. Error bounded approximation

on each path to a terminal node to return at most n % worse value than the
exact best response.

Lemma 4.1. Given the algorithm described in Section [4.2; if we allow at
most one node on each path from root to leaf to return a value at most n%
lower, the final expected value is guaranteed to be at most n% lower.

Proof. Let’s mark nodes that are allowed to return n% lower value as E and
those guaranteed to do so as G. We start with a graph that has no nodes
marked as G and some amount marked as E with respect to the assumptions.
We can mark all nodes that don’t contain any node E in their subtree as G as
they return an unchanged value. When all nodes are marked, then the root
node is guaranteed to return a value at most 7% lower and the statement is
true (1).

As long as there are unmarked nodes, we have at least one unmarked node
h which has all of its child nodes {h1, ..., h} marked as E and/or G. (Note
that from the assumption of allowing only one node on each path to return
less, node h or any of its ancestors can no longer be marked as E.)

Due to the nature of our algorithm, the nodes of player —i and chance
simply accumulate values from child nodes and return it or —oo when this
branch is irrelevant and to be pruned. When the branch is still relevant, we
are summing up the values of child nodes, which allows node h to be marked
as G, since in the extreme case of each child node returning lowest possible
value, we still get:

k k
I =n)w)=10=n)> u (2)
i=1 i=1
Here u; represents the original return values of nodes {h1, ..., hy}. Similarly,

in the nodes of player i, the algorithm is guaranteed to fully explore the best
action and return its value, which we get by summing up the value of this
action in each node of the information set that is nothing else than the value
of the child node given by the action taken. We can thus mark all nodes in
a given information set H' of player i as G when each child node of nodes
h' € H' had been marked, based on the same principle as (2).

The algorithm sometimes backpropagates the values —oo in no longer
relevant branches and all such nodes can be ignored as they do not contribute
to the final value.

By repeatedly labeling unmarked nodes h, we eventually label the entire
tree and according to (1), the final return value is guaranteed to be at most
n% lower than the original.

O

13

14

Chapter 5
MCTS based algorithm

In this chapter we discuss how to get from Monte Carlo variant for perfect
information games to the best response information set Monte Carlo tree
search for games with imperfect information.

B 51 mcTs

Monte Carlo tree search (MCTS) algorithms are a popular way to deal with
large perfect information games and has been most successful in games like
Go, where an algorithm such as minimax with a-S pruning or NegaScout
struggles due to the extreme size of the game tree. Apart from scalability,
MCTS is an anytime algorithm, meaning it can return a value even when the
computational time is limited.

MCTS conctructs a subtree of the game by repeating these 4 steps:

B Selection: Repeatedly descend nodes in the tree using a bandit algorithm
(UCB being the most popular) until a node that has not yet been added
is reached or the state is terminal.

® Expansion: Add a new node to the tree.

® Simulation: Run a simulation from the newly added node to the end of
the game. Popular methods to achieve this are random rollout evaluator
or a learned value function.

® Backpropagation: Update node visit counts and utility based on the
value returned from simulation.

MCTS is described in more detail in [Cow12] and there are many sources
online.

B 52 I1smcTs

One way to apply MCTS to imperfect information games is using determiniza-
tion, which means sampling states from information sets and thus analyzing
games of perfect information. Some of the weaknesses of this approach are

15

5. MCTS based algorithm

addressed in [Cowl2, Chapter 1], the main one is evaluating nodes that are
shared between the sampled trees multiple times.

The other approach is using information set MCTS (ISMCTS) described
in detail in [Cow12, Chapter 4], which eliminates some of the determinization
weaknesses by instead constructing a tree where each node represents an
information set, thus collecting all the information in one tree.

B 5.3 ISMCTS-BR

The first step to computing best response using ISMCTS is to use the policy
of player —i during action selection in states where the opponent is acting.
With this modification, we still can’t use the ISMCTS directly, since it doesn’t
sample from the belief distribution and the result doesn’t converge to the
exact best response [Tim22) Section 3.2].

When sampling a history at each information state of player ¢, we need
to consider their belief and compute the probabilities P(h|s) ("What is the
probability of being in node h given that we’re in information state s?") for
each node in given information state. This can be calculated using Bayes’
rule:

P(s[h)P(h)
P(s)
It is easy to see that P(s|h) =1 and the priors P(h) and P(s) are the reach
probabilities derived from the opponent’s strategy (and strategy of Nature

player).
The full ISMCTS-BR algorithm can be found in [Tim22) Section 3.2].

P(hls) =

16

Chapter 0

Implementation and Testing

In this section we discuss some changes made during the implementation to the
previously described algorithms and forms of testing. BRS and ISMCTS-BR
shorts are used for the two implemented algorithms.

B 6.1 Implementation

B 6.1.1 BRS

The structure of the final implementation was inspired by OpenSpiel’s version.
For the purpose of better code readability, OpenSpiel introduces a secondary
recursive function that essentially makes the decision if we are in a terminal
node, chance node or a decision node, and based on this calls a matching
recursive function. The algorithm logic still follows the rules described in
section

One of the challenges was collecting all nodes in a given information set
(can be seen in Figure , line 7). In order to achieve this in OpenSpiel
without building the entire game tree, we have to follow the known history to
player i, and add all nodes matching this partial history to the information
set.

OpenSpiel doesn’t offer a well defined observation vector (varies with each
game) nor are there other ways of knowing which actions should be visible to
player i, so we have to do more branching than actually needed. This could
be avoided at the cost of additional memory to remember which chance and
player nodes change the information state string, which the State method
provides. This string varies between different game implementations, so it is
not possible to extract the information directly from it. Our final solution
includes a Leduc poker specific implementation, using the knowledge of which
actions can be observed by player i.

The option to compute an approximate best response was added by modi-
fying the algorithm according to Section [4.3|

17

6. Implementation and Testing

B 6.1.2 ISMCTS-BR

Our implementation of ISMCTS-BR algorithm is a modification to Open-
Spiel’s ISMCTS, extended to utilize policy of player —i and adjusting the
sampling function in order to guarantee convergence to best response as ex-
plained in Section |5.3. The sampling function needs probabilities of reaching
each state and should return a pointer to one of them based on chance. This
task is similar to collecting all nodes in given information set and the same
function is reused, again optimized for Leduc poker.

B 6.2 Testing

B 6.2.1 Games

The algorithms were tested on OpenSpiel’s Kuhn poker and Leduc poker
implementations. Kuhn poker is a very simplified version of poker: the deck
contains only 3 cards of ascending value and the actions are either check/fold
or bet/call. At the beginning of the game, the chance player deals one random
card to each of the players and then each player picks an action to play; they
are allowed to play the bet/call action once. The greatest depth of the game
tree is reached by first dealing two cards and then the sequence of actions
check — bet — call. The player with the higher card wins. If there is a called
bet, the winner receives a positive reward of +2, +1 otherwise. Note that
there is no draw scenario.

Leduc poker is also a greatly simplified version of poker, however has
significantly more nodes in the game tree (around 9500 vs 58 for Kuhn). This
is achieved by a deck of 3 pairs of cards in ascending value and a 2 round
betting with a public card revealed in between rounds.

As may be obvious from the description above, Kuhn Poker is ideal for
testing and debugging, since it is easy to follow and the values can even be
computed by hand. Leduc Poker on the other hand is great for testing the
speed, pruning capabilities and memory used by the algorithm.

B 6.2.2 BRS

During testing we made use of the existing OpenSpiel implementation and
compared the return values and best response policies. A short mass test-
ing script that can run a given amount of tests on target game with fully
randomized opponent’s policy was written.

The overall speed of the algorithm is worse than OpenSpiel’s unless we
implement game specific function to collect information states as mentioned
in Section |6.1.1. The average run of 1 Leduc Poker game on our hardware'
takes slightly under 18s, compared to OpenSpiel’s 1.5s. However, after
implementing the mentioned function, the results are much better. The
algorithm runs on average 1.4 times faster than OpenSpiel’s version on Leduc

Lprocessor: AMD Ryzen 5 4500U with integrated graphics, 8GB RAM

18

6.2. Testing

Poker. Additionally, it consistently prunes between 600-1000 nodes out of
9457 game states (that is about 6-10%) and uses around 1/3 of OpenSpiel’s
memory. When using random deterministic policy for player —i, meaning
random action in each information set gets assigned the probability 1.0, we
explore about 1/4 of the game tree.

B 6.2.3 Approximate BRS

When allowed to compute an approximate best response, the algorithm
doesn’t run faster unless a large deviation is allowed (greater than 20%). At
10% deviation, although it prunes a few hundred nodes more than the exact
best response, the times are comparable to exact best response likely due to
more calculations needed in each information state of player 1.

In practice, the algorithm prunes up to 1000 nodes more than the exact best
response with pruning, however, at the cost of allowed deviation approaching
100%. The actual deviation doesn’t usually surpass 5% even with 100%
deviation allowed, however we can’t guarantee this.

A parameter was added to allow returning a lower value starting at depth
[param], which lead to slightly improved performance on Leduc when set to
6, as it allowed more nodes to return a lower value.

B 6.2.4 ISMCTS-BR

The algorithm was tested with UCB exploration constant set to 10. While
the ISMCTS-BR algorithm should be scalable for larger games, it doesn’t
converge to the exact best response value fast enough to be usable on Leduc
Poker. With low sample size, it is no better than a random player and when
the sample size is approaching 50000, the results get better, but timewise
gets outperformed by exact best response algorithm. The deviation to sample
count dependency is shown in Figure [6.1. The flat deviation is an average
flat deviation out of 100 tests with the given sample size.

19

6. Implementation and Testing

Flat deviation from BRS value

| | |

0 1 2 3 4)

Number of samples 104

o
L

Figure 6.1: Convergence to BRS value based on number of samples

20

Chapter 7

Conclusion

Best response algorithm with pruning was implemented and extended to
compute error bounded approximate best response. The algorithm has been
tested with successful results on OpenSpiel’s Kuhn poker and Leduc poker
games. It appears to be slightly faster than the current OpenSpiel variant,
given that a game specific function to collect nodes from target information
set is implemented. Otherwise, the algorithm still uses less memory than
OpenSpiel’s, but timewise appears to be marginally worse. The ISMCTS-BR
algorithm converges quite slowly to the actual best response value and actions,
however, should be scalable for larger games where BRS would struggle to
return any value due to exponential node count.

21

22

Bibliography

[Atz18] Atzmon, D. et al. (2018) Bounded Suboptimal Game Tree Search.
https://ojs.aaai.org/index.php/S0CS/article/view/18448/18239

[Bosl4] Bosansky, B. et al. (2014). An ezxact double-oracle algorithm for
zero-sum extensive-form games with imperfect information. Journal of
Artificial Intelligence Research, 51, 829-866. URL: https://www. jair!|
lorg/index.php/jair/article/view/10924/26040

[BS17] Noam Brown and Tuomas Sandholm. Reduced Space and Faster
Convergence in Imperfect-Information Games via Pruning. Proceedings
of the 34th International Conference on Machine Learning, PMLR 70:596-
604, 2017. URL: http://proceedings.mlr.press/v70/browni7a.html|

[Cow12] Cowling, P. et al. (2012) Information Set Monte Carlo Tree Search
URL: https://ieeexplore.ieee.org/abstract/document/6203567

[Joh11] Johanson, M. et al. (2011) Accelerating Best Response Calculation
in Large Eztensive Games. URL: http://johanson.ca/publications/
poker/2011-ijcai-abr/2011-ijcai-abr.pdf]

[LB17] Lisy, V. and Bowling, M. (2017) Eqgilibrium Approzimation Quality
of Current No-Limit Poker Bots. URL: https://arxiv.org/abs/1612,
07547

[OS19] Lanctot, M.et al. (2019). OpenSpiel: A framework for reinforcement
learning in games. arXiv preprint arXiv:1908.09453. URLthttps://arxiv,
lorg/pdf/1908.09453 . pdf|

[Sch21] Schmid, M. Search in Imperfect Information Games. URL:
//arxiv.org/pdf/2111.05884.pdf

[SL0O9] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems. Cam-
bridge Books (2009). URL: http://www.masfoundations.org

[Tim22] Timbers, F. et al. (2022). Approzimate exploitability: Learning a best
response in large games. URL: https://www.ijcai.org/proceedings/
2022/0484 . pdf|

23

https://ojs.aaai.org/index.php/SOCS/article/view/18448/18239
https://www.jair.org/index.php/jair/article/view/10924/26040
https://www.jair.org/index.php/jair/article/view/10924/26040
http://proceedings.mlr.press/v70/brown17a.html
https://ieeexplore.ieee.org/abstract/document/6203567
http://johanson.ca/publications/poker/2011-ijcai-abr/2011-ijcai-abr.pdf
http://johanson.ca/publications/poker/2011-ijcai-abr/2011-ijcai-abr.pdf
https://arxiv.org/abs/1612.07547
https://arxiv.org/abs/1612.07547
https://arxiv.org/pdf/1908.09453.pdf
https://arxiv.org/pdf/1908.09453.pdf
https://arxiv.org/pdf/2111.05884.pdf
https://arxiv.org/pdf/2111.05884.pdf
http://www.masfoundations.org
https://www.ijcai.org/proceedings/2022/0484.pdf
https://www.ijcai.org/proceedings/2022/0484.pdf

	Introduction
	Background
	Extensive form game
	Information set
	Best response

	Related work
	Best response with pruning
	Basic logic
	Pseudocode and pruning
	Nodes of the other players
	Nodes of the responding player

	Error bounded approximation

	MCTS based algorithm
	MCTS
	ISMCTS
	ISMCTS-BR

	Implementation and Testing
	Implementation
	BRS
	ISMCTS-BR

	Testing
	Games
	BRS
	Approximate BRS
	ISMCTS-BR

	Conclusion
	Bibliography

