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Abstrakt / Abstract

Odhad maximální věrohodnosti (Ma-
ximum Likelihood Estimation, MLE) se
stal oblíbeným nástrojem, který nabízí
přístup k odhadu parametrů statistic-
kého modelu. Oblast MLE však přináší
problémy, kterým je třeba porozumět,
aby bylo možné pokročit v teorii a apli-
kaci.

V této práci se zabýváme problémy
MLE na souboru dat o šachu. Je po-
užit a zdůvodněn nejvhodnější model
pro použití MLE při odhadu parame-
trů hráčů v souboru šachových partií.
Čtenáře seznamuje se všemi potřeb-
nými pojmy pro pochopení šachového
hodnotícího systému i modelu.

Práce ukázuje nejen potenciální pro-
blémy, které by mohly nastat při pou-
žití MLE, ale také některé zajímavé pro-
blémy, které mohou nastat v reálném
scénáři při pokusu o vytvoření modelu
porovnávání dvojic v partiích.

Klíčová slova: MLE, Elo, šachy,
FIDE, rating, odhad ratingu

Maximum Likelihood Estimation
(MLE) has become a popular tool offer-
ing an approach to estimating statistical
model parameters. However, the realm
of MLE presents challenges that must
be understood to advance theory and
application.

In this thesis, we examine problems of
MLE using a chess dataset. The most
appropriate model is employed and jus-
tified for the use of MLE in estimat-
ing the parameters of players in a set
of chess games. The reader is provided
with all the necessary terms for under-
standing of both a chess rating system
and a model.

The thesis demonstrates to the reader
not only the potential issues that could
arise with MLE, but also some interest-
ing problems that may occur in a real-
world scenario when attempting to cre-
ate a pair comparison model in games.

Keywords: MLE, Elo, chess, FIDE,
rating, rating estimation
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Chapter 1
Introduction

The objective of this thesis is to examine the issues associated with Maximum Likelihood
Estimation (MLE). The data used are drawn from chess games. The reader will be
provided with an overview of the chess rating system and the model itself, as well as
the computational techniques employed for the estimation of players’ ratings and the
subsequent impact on the estimation process.

The objective of this investigation is to examine various issues and identify potential
causes of discrepancies in estimation. Additionally, we will explore potential solutions
to enhance the accuracy and precision of these estimates. Finally, we will undertake an
experiment to examine further difficulties encountered in rating estimation.

One of the principal difficulties encountered in the estimation of parameters in our
model is the replacement of groups of data by a single value in order to reduce the
computational complexity. The thesis will concentrate on this specific problem. We
will demonstrate the impact of this phenomenon on the final estimation. The datasets
relevant to this specific issue will be presented to the reader in Chapter 3. Once the
player’s rating has been estimated, the difference between the estimated value and the
actual player’s rating will be examined.

The objective of this examination is to provide insights for researchers, practitioners
and statisticians into the nuances of MLE in order to enhance their comprehension of
its strengths and limitations. The intention is to address the challenges associated with
MLE and to improve approaches that facilitate inference and informed decision-making
from data.

The paper is structured as follows:

. Chapter 1 - introduction.

. Chapter 2 - provides definitions for the terms MLE and the chess rating system, as well
as the model that will be employed and the method of calculating players’ ratings.

. Chapter 3 - presents a series of problems that can arise based on different chess
datasets, and it examines the magnitude of the error based on the confidence interval.
It also discusses the underlying causes of these issues and suggests potential solutions
for enhancing estimation.

. Chapter 4 - potential enhancements to the model may be employed to address the
nuances that influence the estimation of a player’s rating.

. Chapter 5 - discusses what was not covered in the thesis and also considers other
factors that may influence a player’s rating.

. Chapter 6 - conclusion.

1



Chapter 2
Theory

This chapter presents the fundamental concepts related to the subject of this thesis.
We introduce the MLE and the associated mathematical formulas, as well as the chess
terminology that will be employed in the subsequent model and problem definition.

2.1 Maximum Likelihood Estimation
MLE is a method used to estimate the parameters of a statistical model by maximizing
the likelihood function, which measures the probability of observing the given data
under the assumed model. The following is a definition of MLE:

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent and identically distributed random variables with
probability density function 𝑓(𝑥; 𝜃), continuous in the first argument, where 𝜃 is a
parameter vector to be estimated.

The likelihood function 𝐿(𝜃) is defined as the joint probability density function of the
observed data, given the parameter 𝜃:

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑥𝑖; 𝜃)

The Maximum Likelihood Estimator ̂𝜃 is the value of 𝜃 that maximizes the likelihood
function:

̂𝜃 = argmax
𝜃

𝐿(𝜃)

In cases where it is more convenient to work with the logarithm of the likelihood func-
tion, the log-likelihood function 𝑙(𝜃) is defined as:

𝑙(𝜃) = log 𝐿(𝜃)

MLE is a widely used method for estimating parameters in statistical models, provid-
ing estimates that are asymptotically unbiased and efficient under certain regularity
conditions.

2.2 Chess rating system
Chess rating systems serve a variety of practical purposes. In tournaments, the use
of rating systems allows for the effective pairing of players, thus preventing the most
formidable contenders from being matched against each other in the initial rounds.

Additionally, ratings play a crucial role in tournament segmentation and in determining
prize eligibility. They are also used as a criterion of quality and importance of tour-
naments. Furthermore, they serve as a qualifying metric for prestigious events, such

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Chess rating system

as elite tournaments like the Candidates Tournament, where invitations are extended
to the highest-rated players who have not qualified through alternative pathways. The
Candidates Tournament is the event that determines the challenger for the reigning
World Chess Champion.

This thesis will utilise the Elo Rating System [4], which is currently the most widely
used rating system, although it has many variations and improvements. Elo-like rating
systems have also been adopted in other contexts, such as other games like Go, online
competitive gaming, and dating apps.

2.2.1 Elo rating system

The Elo rating system is a method for calculating the relative skill levels of players in
two-player games, such as chess. It was developed by Arpad Elo, a Hungarian–American
physics professor and chess master, in the late 20th century. The system assumes that
the outcome of a game between two players depends solely on their skills and not on
other factors.

In the Elo system, each player is assigned a numerical rating. The difference in ratings
between two players predicts the outcome of a match. If Player A has a higher rating
than Player B, Player A is expected to win more games against Player B. The magnitude
of the difference in ratings estimates the probability that each player wins.

2.2.2 Mathematical details

Let:
𝑅𝐴 be the current Elo rating of player A.
𝑅𝐵 be the current Elo rating of player B.
The expected score of player A against player B, denoted by 𝐸𝐴, is calculated using
the logistic function:

𝐸𝐴 = 1
1 + 10

𝑅𝐵−𝑅𝐴
400

. (1)

The expected score of player B denoted 𝐸𝐵 is:

𝐸𝐵 = 1
1 + 10

𝑅𝐴−𝑅𝐵
400

. (2)

The probability of drawing, as opposed to having a decisive result, is not specified in
the Elo system. Instead, a draw is considered half a win and half a loss ( 1

2 ).

The difference in Elo points between two players can be used to predict the expected
outcome of a game (or series of games) between those two players. The conversion of
the difference to probability of winning is shown in Table 2.1.
As the rating difference increases, the probability of the higher-rated player (player A)
winning also increases.

2.2.3 Updating ratings

The formula for updating ratings [2] involves adjusting a player’s rating based on newly
observed data. These adjustments are made gradually to avoid the need to recompute a
player’s estimated rating using his entire tournament history. Instead, a pre-tournament
rating serves as a condensed summary of the player’s history leading up to the current

3



2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rating difference Expected score of player A

0 0.50
100 0.64
200 0.76
300 0.85
400 0.91
500 0.95
600 0.97
700 0.99

Table 2.1. Rating difference and expected score.

tournament. To ensure computational efficiency, an approximation method is used to
calculate performance ratings.

𝑅𝑝𝑜𝑠𝑡 = 𝑅𝑝𝑟𝑒 + 𝐾(𝑆 − 𝑆𝑒𝑥𝑝) , (3)

where:
𝑅𝑝𝑜𝑠𝑡 is a player’s updated post-tournament estimated rating,
𝑅𝑝𝑟𝑒 is a player’s estimated pre-tournament rating,
𝑆 is the player’s total score in the tournament,
𝑆𝑒𝑥𝑝 is the expected total score estimated from the player’s pre-tournament rating and
the player’s opponents pre-tournament ratings,
𝐾 is an attenuation factor that determines the weight that should be given to a player’s
performance relative to his or her pre-tournament rating (speed factor of learning).

The expected score can be estimated by calculating the difference between the player’s
Elo and the average Elo of all his opponents. This method was used by the International
Chess Federation [2]. In this thesis, we compute the expected score 𝐸𝑒𝑥𝑝 using the
provided formula for computational efficiency:

𝐸𝑒𝑥𝑝 = 1
1 + 10

𝑅𝑂−𝑅𝐴
400

, (4)

𝑆𝑒𝑥𝑝 = 𝑛 ⋅ 𝐸𝑒𝑥𝑝 , (5)

where
𝐸𝑒𝑥𝑝 is the expected score,
𝑛 is the number of games played in a tournament,
𝑅𝐴 is the current Elo rating of player A,
𝑅𝑂 is the average Elo of all opponents, calculated the following way:

𝑅𝑂 = 1
𝑛

𝑛
∑
𝑖=1

𝑅𝑖 , (6)

𝑅𝑖, 𝑖 = 1, . . . , 𝑛, are the individual pre-tournament ratings of the opponents.

2.3 Model
In this section, we discuss the model used for parameter estimation and potential issues
that may arise.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Model

2.3.1 Bernouli distribution
The model will employ the Bernoulli distribution. It is a discrete probability distri-
bution representing a random variable that can take on one of two possible outcomes,
typically labeled as success (with probability 𝑝) or failure (with probability 1 − 𝑝). It
is named after Swiss mathematician Jacob Bernoulli.

𝑓(𝑘; 𝑝) = { 𝑝 if 𝑘 = 1,
1 − 𝑝 if 𝑘 = 0,

𝑓(𝑘; 𝑝) = 𝑝𝑘(1 − 𝑝)1−𝑘 .

2.3.2 The outcome of a chess game utilized by the model
The game of chess has 3 outcomes – a win, draw, and loss: if player A wins, he gets 1
point, if the game ends in a draw, both players get 1

2 point, and if player A loses, player
A gets 0 points and player B gets 1 point. In the model that will be used, each game
is treated as two half-point contests with the same Bernoulli distribution. This allows
for the determination of all three probabilities based on a single number.

Denote: 𝑝 is the probability of winning in a one half-point contest. Therefore, 1 − 𝑝
is the probability of winning for the second player. The probability of a first player
winning the game is 𝑝2, while the probability of drawing is 2𝑝(1−𝑝) and the probability
of losing is (1 − 𝑝)2. A comparable approach was adopted by Mark Glickman in his
paper [3], whereby two draws were treated as one win and one loss. Let us examine real-
world situations and players’ games to determine if the probability we have obtained is
reasonable and applicable in a real-world scenario.

The statistics to be examined are those of the top players with a rating of 2700 or
higher. It is important to note that statistics can vary depending on the rating range
and the player’s individual style. In this case, it is important to analyse the statistics of
top-rated players as upcoming chapters will focus on the performance of these players.
The relevant statistics can be found in a chess database1.

Figure 2.1. Statistics of chess game outcomes.

In the first column there is the first move in the game. In the second column there is
the number of games played with this move. Based on different opening there can be
different statistics. Here are the most common first moves in the top players’ games with
sufficient amount of recordings for statistics. Now let’s examine how it corresponds to
our formulas based on different parameter 𝑝 and how it relates to the real-world scenario.

Tables 2.2, 2.3, 2.4 demonstrate that the probabilities closely resemble those found
in real-world situations. Our assumption holds true and works well for both opening
moves and individual players. The database of individual chess games was derived from
the chess.com2 database.

1 https://old.chesstempo.com/game-database.html
2 https://www.chess.com/games
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2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑝 Winning Drawing Losing

0.55 0.30 0.50 0.20
0.56 0.31 0.49 0.20
0.57 0.32 0.49 0.19

Table 2.2. Parameter 𝑝 and probabilities of outcome of the game.

Player Name Rating Total Wins Draws Losses
Games

Anatoly Karpov 2617 4377 0.41 0.46 0.13
Garry Kasparov 2812 2419 0.49 0.42 0.09
Viswanathan Anand 2751 4253 0.36 0.50 0.14
Vladimir Kramnik 2753 4022 0.39 0.44 0.17

Table 2.3. Individual players statistics.

Player Name 𝑝 Wins Draws Losses

Anatoly Karpov 0.64 0.41 0.46 0.13
Garry Kasparov 0.7 0.49 0.42 0.09
Viswanathan Anand 0.6 0.36 0.48 0.16
Vladimir Kramnik 0.62 0.39 0.47 0.14

Table 2.4. Calculated 𝑝 for individual players and expected outcomes from it.

Based on statistics, it is reasonable to assume that two half-point contests are equivalent
to a chess game. This assumption holds true in the long run and for a sufficient number
of games. Disregarding ties simplifies the model by avoiding the need for additional
parameters to account for a third outcome.

2.3.3 Estimating the player’s expected score
The estimate of the expected score can be achieved through MLE.

Let:
𝑤𝑛 be the number of wins,
𝑑𝑛 be the number of draws,
𝑙𝑛 be the number of losses,

The likelihood function for a Bernoulli distribution with parameter 𝑝 is given by:

𝐿(𝑝) = 𝑝2𝑤𝑛(2𝑝 − 2𝑝2)𝑑𝑛(1 − 𝑝)2𝑙𝑛 .

Taking the natural logarithm of the likelihood function (log-likelihood), we get:

log 𝐿(𝑝) = 2𝑤𝑛 log 𝑝 + 𝑑𝑛 log(2𝑝 − 2𝑝2) + 2𝑙𝑛 log(1 − 𝑝) .

Now, we will determine the MLE for 𝑝 by taking the derivative of the log-likelihood
function with respect to 𝑝.

𝑑
𝑑𝑝

log 𝐿(𝑝) = 2𝑤𝑛
𝑝

+ 𝑑𝑛(1 − 2𝑝)
𝑝(1 − 𝑝)

− 2𝑙𝑛
1 − 𝑝

.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Model

Setting the derivative equal to zero:

2𝑤𝑛(1 − 𝑝) + 𝑑𝑛(1 − 2𝑝) − 2𝑙𝑛𝑝 = 0 .
The MLE for the mean of the Bernoulli distribution can be obtained by solving for 𝑝:

𝑝 =
𝑤𝑛 + 𝑑𝑛

2
𝑤𝑛 + 𝑑𝑛 + 𝑙𝑛

. (7)

The estimate of a player’s expected score:

̂𝐸 = 𝑝 .
This expression represents the sample mean, which is also the maximum likelihood
estimate for the parameter 𝑝 in the Bernoulli distribution.

2.3.4 Equation
Given an estimate of a player’s probability of winning which is ̂𝐸, we can estimate a
player’s rating if we know the ratings of his opponents in a sequence of games by solving
the following equation that we discussed above:

̂𝐸𝐴 = 1
1 + 10

𝑅𝐴−𝑅𝑂
400

.

Using MLE estimation we can estimate not only the expected score but also a rating
of a player.

The likelihood function for a Bernoulli distribution with parameter 𝑅𝐴 can be derived
from our estimate:

𝑝 =
𝑤𝑛 + 1

2 𝑑𝑛
𝑤𝑛 + 𝑑𝑛 + 𝑙𝑛

= 1
1 + 10

−𝑅𝐴+𝑅𝑂
400

,

10
−𝑅𝐴+𝑅𝑂

400 = 1 − 𝑝
𝑝

,

−𝑅𝐴 + 𝑅𝑂
400

= log10
1 − 𝑝

𝑝
,

𝑅̂𝐴 = 𝑅𝑂 − 400 log10
1 − 𝑝

𝑝
= 𝑅𝑂 − 400 log10 (

𝑙𝑛 + 1
2 𝑑𝑛

𝑤𝑛 + 1
2 𝑑𝑛

) . (8)

In this formula, which we were able to estimate using the MLE, we can interpret
400 log10 ( 𝑙𝑛+ 1

2 𝑑𝑛
𝑤𝑛+ 1

2 𝑑𝑛
) as the difference between the opponent’s player rating and the

actual player rating based on the results of the matches. The expression 𝑙𝑛+ 1
2 𝑑𝑛

𝑤𝑛+ 1
2 𝑑𝑛

can be
interpreted as the ratio of points scored by the opponent to points scored by the player.
This formula is the solution to the equation above. Now we are ready for our model
to estimate a player’s actual rating, knowing his opponent’s rating and the result in a
sequence of games.

Note that this formula can only estimate a player’s rating if their expected score is
not 0 or 1. Otherwise, the player would be considered the weakest or strongest player,
with a rating of -∞ or ∞ respectively. One draw also has the potential to lead to
a degenerate solution, as it implies that the strength of the players after one game
is equal. This estimation is not meaningful and does not accurately reflect the true
strength of a player. In this instance, our MLE estimate fails.

7



2. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Conclusion
This chapter introduced key concepts relevant to the topic of the thesis. The chapter
gives us a definition of MLE and concepts that are important for understanding the
model we are going to use. Later in the thesis we will look at possible problems with
these estimates of a chess player’s rating and possible improvements.
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Chapter 3
Maximum likelihood estimation problems

3.1 Estimating a chess player’s rating
In the previous chapter, we introduced a model for estimating a player’s rating. Here,
we have collected data on the games played by a single player in the Quatar Masters
20231, including the scores of the games and the ratings of his opponents. Using this
data 3.1, we will estimate the player’s rating and examine how the MLE works in this
scenario.

Figure 3.1. Chess player’s games.

Let:
𝑅𝐴 be the player’s rating to be estimated.
𝑅𝑂 be the average rating of the player’s opponents.
𝑤𝑛 be the number of games won by the player.
𝑑𝑛 be the number of games drew by the player.
𝑙𝑛 be the number of games lost by the player.

Average Elo of all opponents of the player:

𝑅𝑂 = 2438 + 2512 + 2470 + 2515 + 2500 + 2511 + 2611
7

= 2508 .

Estimating the player’s rating:

𝑅̂𝐴 = 𝑅𝑂 − 400 log10
𝑙𝑛 + 𝑑𝑛

2

𝑤𝑛 + 𝑑𝑛
2

= 2508 + 400 log10
2.5
4.5

Estimated player’s rating:
𝑅̂𝐴 = 2610 .

A player rating has been estimated, which can be used to compare his strength to other
players in the future. However, it is necessary to ascertain the actual rating of the
person whose games were provided (see Figure 3.2), and to determine how it differs
from the estimate.

1 https://www.chess.com/events/2023-qatar-masters/results
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Figure 3.2. Chess player’s actual rating.

The real player is Magnus Carlsen with a rating of 2839 at the time. He is considered one
of the greatest chess players of all time. During the Quatar Masters 2023 tournament,
he was the highest-rated player in the world.

Using this method, we obtained a rating of 2610, which does not even place the player
among the top 100 strongest players2, despite the original player having the highest
rating out of all players.

In accordance with the Elo formula, the player’s anticipated expected score is:

𝐸𝑒𝑥𝑝 = 1
1 + 10

𝑅𝑂−𝑅𝐴
400

= 0.87 .

The actual expected score is from the dataset:

𝐸 =
𝑤𝑛 + 𝑑𝑛

2
𝑤𝑛 + 𝑑𝑛 + 𝑙𝑛

≐ 0.64

In the next sections, we will explore the possible reasons for this discrepancy between
the actual result and the estimate, as well as potential improvements for our model.

3.2 Confidence interval
Confidence interval is an interval which is expected to typically contain the parameter
being estimated. Given the small size of our dataset, it is advisable to examine confi-
dence interval to account for the significant difference between the estimated and actual
player ratings at that time.

The standard error is:

𝑒𝑟𝑟 = (
̂𝐸(1 − ̂𝐸)

𝑛
)

1
2 .

𝑒𝑟𝑟 = ( 9
14

⋅
5
9
7

)
1
2

≐ 0.18 .

The confidence interval is calculated by adding and subtracting the standard error from
the estimated parameter.

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = ̂𝐸 ± 𝑒𝑟𝑟 .

The standard error indicates that the estimated value is expected to fall within the
interval.

(0.46, 0.82) .

The expected points gain is expected to fall within the following interval:

(3.22, 5.74) .

2 https://ratings.fide.com/top.phtml?list=men
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The rating is expected to fall within the following range:

(2480, 2771) .
However, although we calculated the expected score for the player, our calculated actual
score does not fall within the upper bound. Additionally, the player’s expected gain
should have been 6 when the upper bound for the expected points gain is 5.74, which
can be rounded to 5.5.

3.3 Analysis of an encountered problem
This section examines potential reasons for the discrepancy in our estimates and iden-
tifies areas for improvement to enhance our performance.

3.3.1 Average Elo
Using the average Elo rating of all players’ opponents can be misleading. Consider the
following fictional example. An open chess tournament, open to players of any rating.
Estimated rating of a chess player who won a game against a player with a rating of
1958 lost the game to a Stockfish computer with a rating3 of 3644 on April 2024.
Estimate of the expected score:

̂𝐸 = 0.5 .
The average Elo of all the player’s opponents:

𝑅𝑂 = 1958 + 3642
2

= 2800 .

Based on Table 2.1, our estimate of the rating is 2800, as the expected score is 0.5. By
winning a player with a rating of 1958 and losing to Stockfish, the player has the same
strength as a player with a rating of 2800, which is the rating of the strongest chess
players in history.

This estimate does not provide information about the actual strength of the player.
Using the average Elo rating of all players’ opponents is a flawed assumption that
can lead to complications and inaccurate estimates. However, calculating each game
separately can be computationally expensive. Therefore, assuming that all players have
roughly equal ratings in one tournament, the method works well.

3.3.2 Small dataset
We analysed the player’s games in a particular tournament to estimate his rating.
However, this estimate may be misleading as we did not consider the player’s previous
games. Estimating the rating based on all previous games, which could be thousands,
may be computationally demanding. Nonetheless, the described method provides a
relatively quick estimate.

3.4 Possible improvements
One possible improvement for estimating the chess player’s rating is to update it, which
can increase accuracy. Additionally, we will examine our calculation without using the
average Elo of all opponents.

3 https://computerchess.org.uk/ccrl/4040/
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3.4.1 Elo actualization

The Fédération Internationale des Échecs (FIDE)4, which is the international governing
body for chess, updates its ratings list at the beginning of each month. In contrast,
the unofficial Live ratings5 calculate the change in players’ ratings after every game.
These Live ratings are based on the previously published FIDE ratings, so a player’s
Live rating is intended to correspond to what the FIDE rating would be if FIDE were
to issue a new list that day.

All top players have a 𝐾-factor of 10, which means that the maximum ratings change
from a single game is a little less than 10 points.

3.4.2 Not using the average Elo

The equation we need to solve, which does not involve averaging Elo, is as follows:

̂𝐸 = 1
𝑛

𝑛
∑
𝑖=1

1
1 + 10

𝑅𝑖−𝑅𝐴
400

.

It is not possible to solve this equation analytically. However, it can be solved numer-
ically using known optimization methods. For this problem, Newton’s method [1] will
be used, an iterative method for finding the roots of a differentiable function.

The following steps outline the methodology employed by the algorithm to estimate
players’ ratings:

1.Initialization: Start with an initial guess 𝑅(0)
𝑝 for the player’s rating.

2.Iterative Update: Iterate through the following steps until a stopping criterion is met:
3.Calculate Expected Score: Using the current estimate of 𝑅𝑝, calculate the expected
score 𝐸 of the player against the sequence of opponents using the Elo rating formula.
4.Calculate Derivative: Compute the derivative of the expected score function with
respect to 𝑅𝑝 to determine the slope of the function at the current estimate of 𝑅𝑝.
5.Update Estimate: Update the estimate of 𝑅𝑝 using the formula:

𝑅(𝑘+1)
𝑝 = 𝑅(𝑘)

𝑝 + 𝛼𝐸 − 𝑟𝑒𝑎𝑙 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑐𝑜𝑟𝑒
𝑓 ′(𝑅(𝑘)

𝑝 )
,

where 𝛼 is the learning rate (step size) controlling the speed of convergence. This step
ensures that we move towards the root of the expected score function 𝐸.
6.Convergence Criterion: Check if the absolute difference between the estimated ex-
pected score and the real expected score falls below a predefined tolerance. If it does,
stop iterating, as we have found a satisfactory estimate of the player’s rating.
7.Output: Once the convergence criterion is met, output the final estimate of the player’s
rating.

The following Python code illustrates the implementation of the method. The func-
tions expected_score and derivative_expected_score have already been implemented
for calculating the expected score and its derivative.

4 https://www.fide.com/
5 https://2700chess.com/
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def estimate_rating(R_o, E_real, R_p, tol=1e-6, max_iter=100, alpha=0.1):
for _ in range(max_iter):

E = expected_score(R_p, R_opponents)

if abs(E - E_real) < tol:
return R_p

dE = derivative_expected_score(R_p, R_o)
R_p -= alpha*((E_real - E) / dE)

raise ValueError("Newton's method did not converge")

The implementation yielded a rating of 2612 for the initial problem, which is nearly
identical to the initial estimate. This indicates that the assumption was effective, even
when calculating independently, as the estimate did not improve significantly. The
ratings were nearly equal, suggesting that the problems were not related to the average
Elo of opponents.

3.5 A problem where the player’s performance
exceeded expectations

Consider another issue to enhance our model analysis. The dataset in Figure 3.3 was
obtained from the FIDE webpage6.

Figure 3.3. Other Chess player’s games.

Let:
𝑅𝐴 be the player’s rating to be estimated.
𝑅𝑂 be the average rating of the player’s opponents.
𝑤𝑛 be the number of games won by the player.
𝑑𝑛 be the number of games drew by the player.
𝑙𝑛 be the number of games lost by the player.

Average Elo of all opponents of the player:

𝑅𝑂 = 2126 + 1830 + 2351 + 2462
4

= 2192 .

Estimating the player’s rating using derived formula:

𝑅̂𝐴 = 𝑅𝑂 − 400 log10 (1
3

) .

Estimated player’s rating:

6 https://ratings.fide.com/calculations.phtml?id_number=33387230&period=2024-03-01&rating=0
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𝑅̂𝐴 = 2383 .

The actual player’s rating:

𝑅𝐴 = 1892 .

The player is Ashwath Kaushik, in February 2024 he was the youngest player to defeat a
grandmaster, at the age of 8 years and 6 months. The difference between our estimated
rating and the actual rating is significant, almost 500 points. However, we must consider
the small size of our dataset. Therefore, before proposing further ideas for improvement,
we should check the confidence interval, as we did in the previous example.
The anticipated expected score is:

𝐸𝑒𝑥𝑝 = 1
1 + 10

𝑅𝑂−𝑅𝐴
400

= 0.15 ,

The actual expected score is:

𝐸 =
𝑤𝑛 + 𝑑𝑛

2
𝑤𝑛 + 𝑑𝑛 + 𝑙𝑛

= 0.75 .

The standard error is:

𝑒𝑟𝑟 = (
̂𝐸(1 − ̂𝐸)

𝑛
)

1/2

,

𝑒𝑟𝑟 = (0.75 ⋅ 0.25
4

)
1/2

≐ 0.22 .

The standard error indicates that the estimated value is expected to fall within the
interval

(0.53, 0.97) .

The magnitude of the error is considerable, yet the standard error is not informa-
tive, as the true expected score does not fall within the specified interval. We can
calculate the 99% confidence interval for the true proportion using the Wilson score
interval method [5]. The Wilson score interval was developed by E.B. Wilson in 1927.
It represents an improvement over the normal approximation interval in multiple re-
spects. Unlike the symmetric normal approximation interval, the Wilson score interval
is asymmetric, and it does not suffer from the same problems of overshoot and zero-
width intervals that afflict the normal interval. It can be safely employed with small
samples and skewed observations. As with the standard interval, the interval can be
calculated directly from a formula:

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 =
̂𝐸 + 𝑧2

2𝑛 − 𝑧
2𝑛 ⋅ (4𝑛 ⋅ ̂𝐸(1 − ̂𝐸) + 𝑧2)1/2

1 + 𝑧2

𝑛
,

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 =
̂𝐸 + 𝑧2

2𝑛 + 𝑧
2𝑛 ⋅ (4𝑛 ⋅ ̂𝐸(1 − ̂𝐸) + 𝑧2)1/2

1 + 𝑧2

𝑛
.

In this context, 𝑧 represents the standard normal interval half-width, which is equivalent
to the desired confidence with a value of 2.576.
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Based on the error for 99% confidence interval, our estimated value is expected to fall
within the interval

(0.22, 0.97) .
The expected points gain is expected to fall within the following interval:

(0.88, 3.84) .
The rating is expected to fall within the range:

(1972, 2744) .
The error is of a considerable magnitude and has not yielded the desired outcome.
Furthermore, the actual expected score does not fall within the expected interval. Even
a 99% confidence interval did not assist with our estimate. The expected score’s lower
bound can be rounded to 1, indicating that the player expected to receive 1 point,
while the upper bound is 4 points. However, the actual rating shows that the player’s
expected score is 0.6, which can be rounded to half a point.

3.6 A problem where opponents’ ratings differ a lot
This section will examine the open tournament, which involved a diverse range of
players with ratings spanning from 900 to 2700. In the tournament sequence, players
were paired with opponents with significant rating discrepancies. This may lead to
inaccurate estimate in our model, as the average rating of all players is used. A player
who wins against a lower-rated opponent and then loses to a higher-rated opponent
does not provide an accurate representation of that player’s strength when the average
opponent’s rating is used as a reference point. The tournament under examination is
Candidate Blitz 20247, and the dataset to be analysed is in Figure 3.4:

Figure 3.4. A dataset of games in which the ratings of the opponents differ significantly.
7 https://www.chess.com/events/2024-candidates-blitz/results
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The following table presents the ratings of the players, with three players exhibiting
notably higher ratings than the others. The lowest-rated player has a rating of 1822
points, while the highest-rated player has a rating of 2700 points. The examined player
achieved a score of 1.5 out of 3 with the highest-rated players.

Let us now compute the average rating.

𝑅𝑂 = 1822 + 2087 + 2248 + 2198 + 2422 + 2593 + 2700 + 2076 + 2194
9

= 2260 .

Estimating the player’s rating using derived formula:

𝑅̂𝐴 = 𝑅𝑂 − 400 log10 (3
6

) .

The estimate of his rating is:

𝑅̂𝐴 = 2380 ,

The actual expected score is:

𝐸 =
𝑤𝑛 + 𝑑𝑛

2
𝑤𝑛 + 𝑑𝑛 + 𝑙𝑛

≐ 0.66 .

Let us now examine the standard error,

𝑒𝑟𝑟 ≐ 0.157 .

The standard error indicates that the estimated value is expected to fall within the
interval:

(0.51, 0.82) .

The estimated rating is expected to fall within the interval:

(2267, 2523) .

The real rating of the player is 𝑅𝐴 = 2660, which does not fall into the interval. The
actual player is Evgeny Bareev.

It is evident that there is a considerable discrepancy between the estimated and actual
ratings. The estimated ratings are approximately 300 points less than the actual rating.
The estimate indicated a weaker performance than was observed in reality. It can be
demonstrated that the inclusion of players with slightly lower ratings in the average
rating significantly alters the overall result.

In section 3.4.2, we implemented a numerical method that does not require the average
rating of a player’s opponents. In contrast, the approach taken is to consider each
game separately, which in this case should yield a more accurate estimate. Let us now
examine the outcome of this calculation.

The calculated rating, as determined by the Newton’s method, is as follows:

𝑅̂𝐴 = 2426 .
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This method yielded a rating that was more closely aligned with that of the actual
player.
The estimate of a player’s rating in a tournament where the players have a wide range
of ratings can be more challenging when using the average rating. This is due to the
fact that in such tournaments, the pairing of players can often result in an unequal
distribution of ratings. To illustrate, it will be demonstrated that another competitor
in the tournament achieved the same result, but had paired with players having slightly
less ratings. This implies that the estimated strength will be slightly different.
Let us now examine another dataset in Figure 3.5.

Figure 3.5. Same score but different opponent’s rating distribution.

In this dataset, the opponent player with the highest rating is 2404, which contrasts
with the previous dataset. A new computation of the average rating yields the following
result:

𝑅𝑂 = 1637 + 1741 + 2305 + 2404 + 2272 + 1830 + 2210 + 1840 + 1834
9

= 2008 .

Consequently, the estimated rating will be as follows:

𝑅̂𝐴 = 2128 .
The player’s rating is as follows:

𝑅𝐴 = 2107 .
Two players participated in the same tournament and achieved the same score, resulting
in their placement in the same position. However, they were paired with opponents
whose rating ranges differed slightly. Consequently, the estimated strength is disparate.
In the event of a significant discrepancy in ratings between opponents, it is recom-
mended that a more accurate estimate be obtained by utilising a method that accounts
for the ratings of all opponents, such as Newton’s method.
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3.7 Conclusion
In this chapter, we examined various issues that can arise when estimating a chess
player’s rating, as well as potential challenges. Furthermore, we presented the concept
of updating the rating or considering games independently, which can be calculated
using the defined numerical method, and demonstrated how this can influence the
estimate.

In the initial problem, we examined a small dataset in which the player was expected
to achieve a superior outcome than was actually observed.

In the second problem, we considered the converse scenario, namely, the extent to
which unexpected performance can be exhibited by a player with a relatively low rating
compared to the opponents.

In the third problem, we discussed the potential limitations of averaging ratings of op-
ponents in certain tournaments. It was noted that the ratings of players in open tour-
naments can vary considerably, which may impact the effectiveness of this approach.
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Chapter 4
Model improvements

As previously discussed, our model is subject to certain limitations in specific instances.
It is possible to enhance the model by addressing the issues identified in the previous
chapter. It would be advantageous to examine a different type of problems.

This chapter presents a series of experiments and illustrative examples that demonstrate
how the model can be enhanced to incorporate details related to the true strength of
the player. This chapter will demonstrate potential avenues for enhancing the model,
although it is not the intention to identify an optimal solution. Instead, it will illustrate
possible approaches to improving the model.

The initial step will be to analyse a novel problem and the factors that may contribute
to discrepancies between estimated and actual player ratings. The subsequent sections
will present potential enhancements to the model. One such example is the rating
advantage enjoyed by the white player. This discrepancy can be attributed to an
unequal distribution of players between the white and black sides.

It is important to note that in computer chess, the colour of the player plays a more
significant role. This is due to the fact that computers have much greater computational
power. Furthermore, the advantage that computers gain from this is much greater
than that of a human player. Consequently, this chapter will present only human chess
problems.

4.1 Long-term non-participation in tournaments
problem

The 13th world chess champion in history, Garry Kasparov, participated in the Zagreb
Rapid & Blitz 2021 tournament1. He retired from professional chess in 2005 after
holding the title of world’s best player for a record-breaking 20 years.

Using MLE, we can estimate rating. Let’s take a look at the dataset from the tourna-
ment in Figure 4.1.

The mentioned player had a rating of 2812 points but only achieved a final score of 0.5
9 .

This was despite his opponents having an average rating of 2749.

Estimating the player’s rating using the derived formula:

𝑅̂𝐴 = 𝑅𝑂 − 400 log10
8.5
0.5

.

Estimated player’s rating:

𝑅̂𝐴 = 2257 .

1 https://www.chess.com/news/view/grand-chess-tour-zagreb-rapid-blitz-day-4-kasparov
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Figure 4.1. The tournament leaderboard on which Kasparov played.

The actual expected score is:

𝐸 =
𝑤𝑛 + 𝑑𝑛

2
𝑤𝑛 + 𝑑𝑛 + 𝑙𝑛

≐ 0.06 .

The standard error is:

𝑒𝑟𝑟 = (
̂𝐸(1 − ̂𝐸)

𝑛
)

1/2
,

𝑒𝑟𝑟 = (
0.5
9 ⋅ 8.5

9
9

)
1/2

= 0.08 .

Based on the standard error, our estimate should fall within the given interval.

(0, 0.13) .

The expected score based on the pre-tournament rating should have been:

𝐸𝑒𝑥𝑝 = 1
1 + 10

𝑅𝑂−𝑅𝐴
400

≐ 0.6 .

The standard error is uninformative and unhelpful. To calculate the 99% confidence
interval for the true proportion, we will use the Wilson score interval method, as in
the previous chapter. The value of 𝑧, which is the standard normal interval half-width
corresponding to the desired confidence, is equal to 2.576.

Based on the error for 99% confidence interval, our estimate should be within the given
interval:

(0, 0.49) .

The error remains significant, and unfortunately, the provided information was not
helpful in our case.

Extended periods of non-participation in tournaments may lead to a decline in a player’s
performance. However, the formula used in this case does not account for this factor.
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It is worth noting that the player retired from professional chess in 2005. As the
tournament was held in 2021, it is possible that not participating regularly could have
had a negative impact on the performance, particularly given the age difference between
the player and his opponents.

In this case, it would be reasonable to assume that the player’s relative strength has
decreased since his last tournament. We can incorporate this into our formula by
considering the length of time the player has been absent from tournaments, as well
as the number of tournaments played during that time. This can provide a metric for
estimating how much weaker the player has become.

4.2 Long time no participating in tournaments
In the opening section of this chapter, we discussed the potential impact of a prolonged
absence from tournament play on a player’s actual strength. Nevertheless, the Elo
formula does not appear to account for this phenomenon. In this section, we will
attempt to refine our estimation methodology, acknowledging the relevance of expected
score in this context. One potential solution to be considered is the number of years
that have elapsed since the player’s retirement.

In the problem under discussion, the player retired from professional chess in 2005, and
the tournament in question was played in 2021. After estimating the player’s rating,
a reduction of almost 600 points in the player’s rating strength is found. A similar
technique to that employed in previous section may be employed to include a constant
to indicate that the player has not participated in tournaments for an extended period
of time. This would suggest that their actual strength is not proportional to their
rating, in accordance with the aforementioned assumption. The constant 𝑃 may be
employed to represent a rating penalty in real player strength for not participating in
tournaments regularly for an extended period of time.

𝐸𝐴 = 1

1 + 10
𝑅𝑂−(𝑅𝐴−𝑃)

400

.

Prior to examining the parameter 𝑃, it is necessary to examine a greater number of
players and to ascertain how their rating decreased after the peak rating. Subsequently,
an attempt can be made to estimate the parameter 𝑃 based on the length of time that
has elapsed since the player retired.

In order to estimate the parameter 𝑃, a small dataset of experimental data will be
employed, comprising players who have been less active since attaining their peak rating.
This approach is not the optimal method for estimating this parameter, as it is not a
straightforward task. Its purpose is to demonstrate the conceptual possibilities for
estimating this parameter.

Table 4.1 indicates a notable decline in the performance of players who were previously
rated at a higher level. This decline can be observed over an extended period of time.
It is also possible that the decline in rating may be attributed to the natural process
of aging. The players in the presented table demonstrated a reduction in their level of
activity following the achievement of their peak rating.
It can be observed that there is a correlation between the number of years that have
elapsed since a peak rating was achieved and the rating itself.
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Player Name Peak rating Rating Points
and Date on 2024 (April) decline

Vasyl Ivanchuk 2787 October 2007 2611 176
Anatoly Karpov 2780 July 1994 2617 163
Alexander Morozevich 2788 July 2007 2659 129
Veselin Topalov 2816 July 2015 2727 89

Table 4.1. Players rating decline over a period of time.

The following Python code calculates the average decline in rating per year for the
players from Table 4.1. This allows us to make an assumption about the mean decline
after the peak rating and use it for estimating parameter 𝑃. We can then proceed to
examine another problem and how it helped to demonstrate the true strength of the
players after retirement.

import pandas as pd

# Create a DataFrame
df = pd.DataFrame(data)

# Convert the peak rating date to datetime objects
df['Peak Rating Date'] = pd.to_datetime(df['Peak Rating Date'])

# Calculate the number of years elapsed since the peak rating
current_year = 2024
df['Years Elapsed'] = current_year - df['Peak Rating Date'].dt.year

# Calculate the average decline in rating per year
df['Average Decline per Year'] = df['Points Decline']/df['Years Elapsed']

Table 4.2 presents the calculated average decline in rating per year for each player.

Player Name Average decline in rating per year

Vasyl Ivanchuk 10.3
Anatoly Karpov 5.4
Alexander Morozevich 7.6
Veselin Topalov 9.9

Table 4.2. Average decline in rating per year.

In light of the observed average decline, the formula for 𝑃 is as follows:

𝑃 = 𝑛 ⋅ 𝐷 ,

where:
𝑛 is the number of years that have elapsed since the player retired or achieved his
highest rating.
𝐷 is the average decline in rating per year.

The calculated 𝐷 value for the collected dataset is 8.3. We will now examine another
tournament in which Garry Kasparov participated following his retirement. In 2017,
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Garry Kasparov participated in the Saint Louis Chess Rapid & Blitz tournament2,
where he achieved a final score of 12.5 out of 27. His average opponent’s rating was
2768. Consequently, the estimated rating is:

𝑅̂𝐴 = 2743 .

Given the parameter 𝑃 = 12⋅8.3 and the competitor’s rating of 2812 at the tournament,
it can be reasonably assumed that his true strength should have been:

𝑅 = 2812 − 100 = 2712 .

Despite the limitations of our small experiment, we were able to demonstrate an im-
provement in the score, despite the absence of a comprehensive database of players. In
this instance, the updated Elo formula demonstrates a more accurate representation
of the player’s strength following retirement, as it incorporates a longer period of time
after the peak rating.

4.3 Rising stars and their rating growth
It has been observed that some players who have recently commenced playing chess tend
to exhibit a significantly faster rate of rating growth than their older counterparts. For
the purposes of this section, I will refer to such players as rising stars. There have
been numerous instances where these players have demonstrated greater strength than
anticipated. This chapter will examine the issue of estimating the strength of rising
stars.

In Table 4.2, we observed a decline in the rating of an older player. In this section we
will examine a table of ratings for rising stars and their corresponding growth. Let us
examine Table 4.3 to ascertain how a player who commenced playing chess at an age
of less than 10 years was able to enhance his rating over a 10-year period.

Player Name First written Rating Rating
and Date in 10 years

Firouzja Alireza 1756 September 2012 2778
Praggnanandhaa Rameshbabu 1346 September 2011 2617
Erigaisi Arjun 1584 September 2011 2626
Gukesh Dommaraju 1291 August 2013 2751

Table 4.3. Rising stars rating growth over time.

It is evident that young players experience rapid growth in their abilities. Let us now
examine the tournament performance of one of these players and consider how the
rating reflects his true strength.

In the 2018 World Rapid Championship3, Alireza Firouzja, then 15 years of age, had
a rating of 2412 points. He commenced the tournament as the 169th seed, competing
against 206 other participants. Despite the considerable disparity in their ratings, he

2 https://theweekinchess.com/chessnews/events/saint-louis-rapid-blitz-2017
3 https://www.chess.com/events/2018-world-rapid-championship/results
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achieved a score of 10/15 points by playing against opponents with a higher rating.
The opponents’ average rating was 27234.

The estimated rating is as follows:

𝑅̂𝐴 = 2843 .

The discrepancy is considerable. The young player demonstrated considerable strength
in the tournament, exceeding expectations. The discrepancy is approximately 400
points. His performance rating was the second-best of the tournament, trailing only
that of the eventual winner, Daniil Dubov. It would be beneficial to ascertain whether
the 99% confidence interval would be of assistance in this instance, and to determine
whether the error falls within the interval.

A 99% confidence interval was calculated using the Wilson score interval method:

(0.35, 0.88) .

The rating would be in range:

(2615, 3069) .

His pre-tournament rating was:

𝑅𝐴 = 2412 ,

The expected score based on the player’s pre-tournament rating is as follows:

𝐸 = 0.14 .

The error remains significant, and unfortunately, the provided information was not
helpful in our case. One potential solution is to update the player’s live rating, given
that the expected score gain was considerably lower than the actual score gain. The
player’s rating has increased significantly since the tournament. This may result in the
player being situated within the desired range.

𝑅𝑝𝑜𝑠𝑡 = 𝑅𝑝𝑟𝑒 + 𝐾 ⋅ 𝑛( ̂𝐸 − 𝐸) .

The factor of 20 will be employed, as this is the factor officially used by FIDE for rapid
and blitz5,

𝑅𝑝𝑜𝑠𝑡 = 2570 .

The updated rating gives an expected score of:

𝐸𝑝𝑜𝑠𝑡 = 0.29 .

Nevertheless, the player’s rating did not improve to the extent that our estimate was
enhanced. This solution is not effective in this case, as it does not fall within the 99%
confidence interval.

It is possible to enhance the Elo formula by incorporating a constant that indicates
that a player is young and anticipates a rapid increase in their rating. This implies that
the player is anticipated to demonstrate enhanced performance on average, thereby

4 https://ratings.fide.com/calculations.phtml?id_number=12573981&period=2019-01-01&rating=1
5 https://ratings.fide.com/calculator_rtd.phtml
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exhibiting a strength that is greater than that indicated by the rating. The constant
will be designated as 𝑌, and the revised Elo formula will be expressed as follows:

𝐸 = 1
1 + 10

𝑅𝑜−(𝑅𝐴+𝑌 )
400

,

where:
𝑌 is the rating advantage attributed to the young player.

One possible approach to estimating 𝑌 is to examine the rate of change in the players’
ratings over a specified period, as indicated in Table 4.3. However, it would be beneficial
to examine the growth of the rating from the period of time when those players achieved
a rating of 2400. It can be observed that after the players achieve a rating of 2400 in
the classical format, the factor 𝐾 remains constant at 10. This implies that the rating
growth will be more consistent and the parameter estimate will be more accurate.

Table 4.4 presents the updated data on the achievement of a rating of over 2400 and
the rating in 3 years.

Player Name Rating Rating
and Date of rating over 2400 in 3 years

Firouzja Alireza 2455 January 2016 2618
Praggnanandhaa Rameshbabu 2429 July 2016 2540
Erigaisi Arjun 2458 February 2018 2559
Gukesh Dommaraju 2401 April 2018 2578

Table 4.4. The growth of the rating following the achievement of a rating of 2400.

From Table 4.4 we can see that young players’ rating growth is significant over time.
From this data the mean value of each year growth will be an estimate of our parame-
ter 𝑌. The 𝑌 from this data is 66.

4.4 Higher probability of white winning
It may be useful to include a small constant, denoted 𝐶, in our formula to indicate
that whites tend to have better expected scores on average than blacks. The constant
can be estimated using the MLE method or by analyzing a large database of games to
determine the percentage of white and black wins.

Let:
𝑅𝑊 be the rating of the player playing white,
𝑅𝐵 be the rating of the player playing black,
𝐶 be the rating advantage given to white.

Then the expected score for a white player is:

𝐸𝑊 = 1
1 + 10

𝑅𝐵−(𝑅𝑊+𝐶)
400

.

The expected score for the black player is:
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𝐸𝐵 = 1
1 + 10

(𝑅𝑊+𝐶)−𝑅𝐵
400

.

Let:
𝑝𝑤 be the probability of white winning,
𝑝𝑏 be the probability of black winning.

An estimate of 𝐶 can be obtained by solving the equation:

𝐸𝑊 = 1
1 + 10

𝑅𝐵−(𝑅𝑊+𝐶)
400

= 𝑝𝑤
𝑝𝑤 + 𝑝𝑏

.

The formula for 𝐶 can be obtained from the equation:

𝐶 = 𝑅𝐵 − 𝑅𝑊 − 400 log10
𝑝𝑏
𝑝𝑤

.

To calculate the equation, we shall utilise the 𝑝𝑤 and 𝑝𝑏 values provided in Table 2.2,
as it represents the most frequently used openings in the database. For equal ratings,
with 𝑝𝑤 = 0.3 and 𝑝𝑏 = 0.2, the following is obtained:

𝐶 = 70 .

On average, white players have a 70-point rating advantage according to our estimate.

One potential solution is to assign a value of 𝐶 that is proportional to the number of
games in which the player or his opponents played white. This can be expressed as
follows:
Let:
𝑛𝑝 be the number of games player played white.
𝑛 be the total number of games.

The value of 𝐶 for the player is:

𝐶𝑝 =
𝑛𝑝 ⋅ 𝐶

𝑛
.

The value of 𝐶 for the opponents is as follows:

𝐶𝑜 =
(𝑛 − 𝑛𝑝) ⋅ 𝐶

𝑛
.

The new formula for expected score looks like this:

𝐸𝑝 = 1

1 + 10
(𝑅𝑜+𝐶𝑜)−(𝑅𝑝+𝐶𝑝)

400

.

Let us now attempt to devise a formula for estimating ratings with the introduction of
new parameters, and examine the differences between this and the original formula for
rating estimate.

The derived formula is as follows:

𝑅̂𝑝 = 𝑅𝑜 + (𝐶𝑜 − 𝐶𝑝) − 400 log10 (
𝑙 + 1

2 𝑑
𝑤 + 1

2 𝑑
) .

26



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Higher probability of white winning

We can also write the formula the following way:

𝑅̂𝑝 = 𝑅𝑜 + 𝐴𝑤 − 400 log10 (
𝑙 + 1

2 𝑑
𝑤 + 1

2 𝑑
) .

The rating advantage or disadvantage, designated as 𝐴𝑤, is a value assigned to the
rating of the player whose rating is to be estimated. This value is calculated according
to the following formula:

𝐴𝑤 = 𝐶𝑜 − 𝐶𝑝 .

The sole distinction between this formula and the previous one is the inclusion of a
difference between constants for a white advantage. This formula is logical and coherent.
The greater the advantage enjoyed by opponents when playing white, the greater the
rating difference between the player and the expected rating of the opponent.

Let us now attempt to estimate the rating of the player in the first problem once more.
We know that the player who managed to win this player played white, thereby enjoying
an advantage. Furthermore, the player who managed to achieve a draw was of a lower
rating but also had the advantage of playing white. Finally, the player won another
player while he was playing black. In conclusion, all of these factors can be used to
improve our estimate, thus placing it within the confidence interval. Nevertheless, it
is uncertain how to incorporate the strength of the player into the estimation formula.
The average rating is calculated based on a set of games, rather than considering each
game independently.

The revised estimate of the rating for the problem in Section 2.1 is as follows:

𝑅̂𝐴 = 2620 .

This has led to an improvement in our estimate. However, in our case, it would be
advisable to utilise Newton’s method with a minor enhancement, whereby a constant 𝐶
is incorporated into the rating of the individual player who played white in the specific
game. A better solution would be to calculate the ratings separately for each game.
This is because the previously estimated formula would be less accurate in this case, as
a player could play half of his games as white and the other half as black. This would
result in the formula being ineffective, as it would only be accurate when the player has
played with their particular colour for a greater proportion of the games.

Accordingly, the revised formula for Newton’s method will be as follows:

̂𝐸 = 1
𝑛

𝑛
∑
𝑖=1

1
1 + 10

𝑅𝑖+𝛿𝑖⋅𝐶−𝑅𝐴
400

,

where 𝛿𝑖 is defined as follows:

𝛿𝑖 = { 1, if player 𝑖 played white,
−1, otherwise.

The same code as in Section 3.4.2 is employed, with the additional inclusion of a con-
stant 𝐶 for players who played white, with the value of 𝐶 set to 70. The result is as
follows:

𝑅𝐴 = 2607 .
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In this instance, the additional information does not alter our estimate.

From this section, it can be seen that in a series of games in a real tournament, in-
corporating the rating advantage of a white player as in the regular tournament is not
a sensible approach. In the regular tournament, games played with a certain colour
account for approximately half of all games, and thus do not significantly influence the
estimate change. However, this approach may be more appropriate in instances where
the player has participated in the majority of games with one colour.

4.5 Conclusion
The initial approach permitted a more precise estimate of the strength of retired players.
The method can be employed in the re-rating of players who have resumed participation
in chess after an extended period of inactivity. This preliminary investigation employed
a relatively modest dataset, which yielded encouraging results.

In the second problem, a study was conducted on the observation of young players and
their accelerated rating growth. This factor has the potential to influence the outcome
of a series of games. The performance of young players tends to be less predictable
than that of players who have been engaged in the sport for a longer period of time.

Finally, the attempt to include a white player advantage demonstrated only minor
influence. This is evidenced by the observation that in the majority of tournaments,
players utilise a single colour for approximately half of their games. Nevertheless, it
can be employed in certain instances where the player has only one colour available
for the majority of the games or when the ratings of opponents with black and white
differ significantly. This may result in a discrepancy in performance of current method,
compensated by our proposed correction.
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Chapter 5
Discussion

An investigation was conducted to identify potential issues with MLE, with a focus on
chess problems. The objective was to ascertain the underlying causes of these issues.
Nevertheless, it is necessary to consider a few additional points and to discuss potential
future developments.

5.1 Different time formats

The thesis did not address the issue of different time controls and their implications for
the rating and games played under these controls. It is important to note that the 𝐾
factor for blitz and rapid chess is 20, whereas the 𝐾 factor for classical chess is 10 for
players who are rated above 2400.

Additionally, players in the blitz and rapid formats are able to participate in a greater
number of games due to a shorter time control. However, the accuracy of their moves is
often inferior to that observed in a classical game, as players have less time to consider
their options.

5.2 Different rating systems

A lot of alternative chess rating systems and enhancements to the Elo formula exist,
exemplified by the use of distinct online chess platforms such as chess.com or lichess,
which employ their own rating systems to facilitate effective player pairing.

It is important to note that the rating assigned to an individual by a chess federation
may vary. To illustrate, as of April 2015, Hikaru Nakamura had a FIDE rating of
2799 and a USCF rating of 2881. It should be noted that the Elo ratings of these
organisations are not always directly comparable. Additionally, the USCF employs
distinct 𝐾 factors that differ from those utilized by FIDE. The focus of this thesis is
on the rating system used by FIDE.

5.3 Simplifying assumptions

From a contemporary perspective, Elo’s simplifying assumptions are no longer neces-
sary because computing power is inexpensive and widely available. Nevertheless, the
computational simplicity of the Elo system has proven to be one of its most valuable
assets.
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5.4 Computer chess
Computer chess is a distinct discipline that is challenging to compare with human chess.
The advantage of the white pieces for computers is considerable, as they are capable of
calculating deeply and thus identifying potential moves for a draw with great ease.

Additionally, it is challenging to ascertain the rating of a computer program, as it is
contingent upon the database of openings, as well as the hardware of the computer. To
illustrate, the computer Deep Blue, created by IBM, which defeated Garry Kasparov
in 19971, was designed with the specific intention of challenging Kasparov.

5.5 The model can be used for more than just chess

. The European Go Federation (EGF)2, which is the governing body for the sport of
Go in Europe, has adopted an Elo-based rating system. This system was initially
pioneered by the Czech Go Federation.

. In tennis, the Elo-based Universal Tennis Rating (UTR)3 is a system that rates
players on a global scale, regardless of age, gender, or nationality.

. Many video games use modified Elo systems in competitive gameplay.

1 https://www.chess.com/article/view/deep-blue-kasparov-chess
2 https://www.eurogofed.org/
3 https://www.utrsports.net/pages/rankings
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Chapter 6
Conclusion

The thesis examined the MLE problems that can arise when estimating chess players’
ratings. In Chapter 2, the essential terminology used in the thesis is introduced, in-
cluding the chess rating system and the model’s intended use for rating estimation.
Subsequently, the issues encountered are examined. One of the most significant chal-
lenges is the replacement of opponents’ ratings with a single value for the average Elo
rating.

In chapter 3, we examined the impact of this phenomenon on rating estimates and
analysed the underlying causes. We also presented potential solutions and estimated
the magnitude of the associated error. Even when utilising a 99% confidence interval,
estimation remained challenging for certain problems.

In Chapter 4, we considered other problems and factors that are not directly related to
the averaging of opponents’ ratings. It is not always the case that averaging Elo is the
problem, and the assumption works well in tournaments where opponents’ ratings are
similar.

The thesis presented a method for estimating a player’s rating, highlighting potential
limitations and considerations. The thesis utilised the FIDE rating system.
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Appendix A
AI Assistants

This appendix provides a brief overview of the artificial intelligence (AI) tools used
in the research and writing process of this bachelor thesis. The use of these AI tools
aligns with the guidelines and permitted extent outlined in the “Framework Rules for
the Use of Artificial Intelligence at CTU for Study and Teaching Purposes in Bachelor
and Follow-up Master Studies” document (issued on 29th January, 2024).

DeepL1 has been used for the correct use of academic English.

1 https://www.deepl.com/write
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