
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics and Robotics

Methods for sampling configuration space

Vít Železný

Supervisor: Ing. Vojtěch Vonásek, Ph.D.
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507273 Personal ID number: Železný Vít Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Methods for sampling configuration space

Bachelor’s thesis title in Czech:

Metody vzorkování konfiguračního prostoru

Guidelines:

1. Study path planning problem [1] and get familiar with sampling-based path planning methods (e.g., RRT and RRT*)
[1,2,3]. Implement basic RRT in C/C++ or Python.
2. Modify the RRT-based planner to generate the random samples along several predetermined primitives. A primitive
should specify how to sample certain regions in the configuration space. Consider a 2D map/robot with rotation (3D
configuration space) and a 2D multiple-link robot. Design the primitives acquisition by hand for each scenario.
3. Extend the method from task 2) to 3D robots and obstacles (6D configuration space).
4. Design and implement automatic acquisition of sampling primitives for 2D and 3D cases. The method should automatically
find several sampling primitives based only on the shape of the robot and obstacles.
5. Experimentally verify all implemented methods and compare them with state-of-the-art planners provided by the OMPL
library [4]. Perform experiments in both 2D and 3D cases. Consider both convex and non-convex shapes of the robots
and multi-link robots in the experiments.

Bibliography / sources:

[1] LaValle, Steven M. Planning Algorithms. 1st ed. Cambridge University Press, 2006.
https://doi.org/10.1017/CBO9780511546877.
[2] LaValle, Steven. "Rapidly-exploring random trees: A new tool for path planning." Research Report 9811 (1998).
[3] Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The international journal
of robotics research, 30(7), 846-894.
[4] Mark Moll, Ioan A. Șucan, Lydia E. Kavraki, Benchmarking Motion Planning Algorithms: An Extensible Infrastructure
for Analysis and Visualization, IEEE Robotics & Automation Magazine, 22(3):96–102, September 2015.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 23.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
Ing. Vojtěch Vonásek, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor, Vo-
jtěch Vonásek, for his guidance and pa-
tience, he has been showing me these past
two years. Without him, I might have
completely missed out on the work done
on the Faculty and the experience of re-
searching something, that might get used
by others.

I would also like to thank my friend,
Jakub Jandus, for always either dragging
me, or letting himself get dragged by
me into various engineering “adventures”,
which we both always ended up really en-
joying.

Finally, I would like to thank my family,
for supporting me through these Cyber-
netics endeavours, despite all of the things
I learn being so foreign to them.

Thanks!

Declaration
Prohlášení autora práce
Prohlašuji, že jsem předloženou práci

vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodřžování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze dne

...
podpis autora práce

Author statement for undergradu-
ate thesis:

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the praparation of
university theses.

Prague, data

...
Signature

iii

Abstract
Sampling based motion planning provides
efficient solutions to many otherwise diffi-
cult path planning problems. However, it
also suffers greatly in environments with
dense obstacles or narrow passages. In
this thesis we shall discuss existing ap-
proaches to sampling based motion plan-
ning, provide a novel way of sampling con-
figuration space by using a database of
path primitives, and show its utilization
for the Rapidly-exploring random tree al-
gorithm.

Keywords: Sampling based motion
planning, Sampling configuration space,
RRT

Supervisor: Ing. Vojtěch Vonásek,
Ph.D.

Abstrakt
Vzorkovací metody plánování pohybu na-
bízí efektivní řešení řady jinak složitých
problémů plánování tras. Zároveň se však
jejich účinnost značně zhoršuje v prostře-
dích s četnými překážkami či úzkými prů-
chody. V této práci nejdříve uvedeme
existující přístupy k vzorkovacím meto-
dám plánování pohybu, dále představíme
nový způsob vzorkování konfiguračního
prostoru využívající databázi primitiv
cest a ukážeme jeho využití pro Rapidly-
exploring random tree algoritmus.

Klíčová slova: Vzorkovací metody
plánování pohybu, Vzorkování
konfiguračního prostoru, RRT

Překlad názvu: Metody vzorkování
konfiguračního prostoru

iv

Contents
1 Introduction 1
2 Sampling based planning 3
2.1 Basic SBP algorithms 4

2.1.1 RRT . 4
2.1.2 RRT* . 6
2.1.3 PRM . 7
2.1.4 EST . 8

2.2 Related works 8
2.2.1 RRT-Path 9
2.2.2 MS-RRT 9
2.2.3 Planning with diffusion 10

2.3 Open Motion Planning Library . 10
3 RRT with path primitives
database 11
3.1 Environments 12

3.1.1 Important metrics 13
3.1.2 Collision engine 14

3.2 Database of path primitives 16
3.3 Selecting optimal path primitives 17

3.3.1 Occupancy grid 17
3.3.2 Applying occupancy grid to

proposed environments and
structuring database 19

3.4 Deploying path primitives 21
3.4.1 Choosing ideal situation 22
3.4.2 Sampling primitives 22

3.5 Approaches to generating path
primitives . 24

4 Experimental results 27
4.1 Simple 2D environments 27
4.2 2D agent with joints 32
4.3 Simple 3D environment 35
5 Conclusion 39
Bibliography 41

v

Figures
1.1 The difference between uniform

sampling on the left and goal biased
sampling, which guides focuses the
expansion towards the goal and thus,
considerably less samples are
necessary to reach it. (Starting
position is red, goal is green) 2

2.1 An example image of the graph
produced by the RRT algorithm
published by Stephen M. LaValle in
the book “Planning algorithms”[2]. . 4

2.2 An example of an environment
with a narrow passage. The tree
expansion is stuck for a long time on
the left side of the obstacles. 6

2.3 An example image of the growth of
the graph produced by the RRT*
algorithm published in [3]. Purple
region is goal. 7

3.1 Basic path primitive for avoiding
an obstacle. Start and goal
configurations are shown in red and
green respectively along with a few
intermediary configurations in blue.
The blue line is the primitive itself. 11

3.2 Basic path primitive with multiple
paths for avoiding obstacles. 16

3.3 A simple example of an occupancy
grid with a triangle agent serving for
testing each position in the vicinity
of origin. 18

4.1 A simple primitive consisting of
two paths guiding the expansion in
the positive direction of both axis . 28

4.2 A simple environment. 2D
topology without rotations. 28

4.3 The cumulative distribution
function denoting the percentage of
finished runs of the algorithms for a
given time. Normal RRT,
RRTConnect and PRM are compared
against our database-based RRT with
100 or 200 samples between each
deployment of a primitive. It was
created using OMPL’s built-in
benchmarking tools and the Planner
Arena. 29

4.4 Box plot graph with hidden
outliers describing the same data as
figure 4.3. (Time is in seconds) . . . 30

4.5 A 2D environment with rotations,
denser obstacles, and more complex
agent. 30

4.6 Cumulative distribution function
describing the performance of the
tested algorithms in the more
advanced 2D environment for three
variations of the database-based RRT
as well as normal RRT, RRTConnect
and PRM. (Time is in seconds) . . . 31

4.7 Box plot graph with hidden
outliers describing the same data as
figure 4.6. (Time is in seconds) . . . 32

4.8 The environment with a
multiple-link agent and a path
connecting the start and goal
configurations. In this case the agent
had a tendency to straighten itself for
most of the path. 33

4.9 The cumulative distribution
function describing the performance
of the tested algorithms in the
advanced 2D environment with a
multiple-link agent. The cut-offs on
the right hand side means, that the
algorithms were not able to find a
solution in the allocated time. (Time
is in seconds) 34

4.10 Box plot graph with hidden
outliers describing the same data as
figure 4.9. (Time is in seconds) . . . 34

vi

4.11 A simple 3D environment with
block obstacles in a grid and a
“double-L” shaped agent (Visible in
the lower right of the image). The
tree graph was created using the
database-based RRT. Green nodes
were sampled uniformly, red were
created using path primitives. 35

4.12 The cumulative distribution
function describing the performance
of the tested algorithms in the 3D
environment. The cut-offs on the
right hand side once again means,
that the algorithms were not able to
find a solution in the allocated time.
(Time is in seconds) 36

4.13 Box plot graph with hidden
outliers describing the same data as
figure 4.12. (Time is in seconds) . . 37

vii

Chapter 1
Introduction

The aim of this thesis is to present a new method of generating samples in the
configuration space applicable for sampling based planning (further shortened
as SBP) algorithms, specifically on the RRT (Rapidly-exploring random trees
[1]) algorithm.

Many problems related to manipulating objects in space can be viewed
as a problem of path planning — finding a collision free path for such an
object from one point to another. Hence, path planning algorithms can be
considered a core component of many robotic projects, are greatly utilized in
game development or even in areas such as studies of protein folding. Many
of these problems can be tackled using simple deterministic path planning
algorithms based on graph search methods such as Dijkstra [11] and A*
[12]. This approach offers an efficient way to find optimal paths for many
simple problems. Even more complex problems such as those burdened with
continuous variables can be altered to use these deterministic methods. The
simplest way to do so being the discretization of said continuous variables
and converting the entire problem into a graph. However, using this approach
we can often lead to creating large and possibly complex graphs, thus making
usual graph-based planning algorithms computationally expensive.

The other way to handling planning with continuous variables is to use
SPB algorithms such as RRT, PRM (Probabilisitic roadmap) [4] or EST
(Expansive state trees) [5]. These algorithms provide a unique approach to
path planning by sampling of the configuration space and connecting these
samples to either directly create the desired path or construct an efficient
connected graph, which can be further explored by the aforementioned graph
search algorithms. SPB can be very advantageous in terms of providing a fast
solution to even complex problems. On the other hand the resulting solutions
are usually suboptimal. Furthermore, due to the randomness involved, these
algorithms are not guaranteed to find a solution, even if one exists. This
can be especially noticeable in problems with high amounts of obstacles and
many degrees of freedom (DOF), where collision configurations are frequent.
Some authors have already attempted to tackle this problem by introducing
non-uniform sampling methods. The effects of different sampling can be
immediately seen in figure 1.1.

This thesis introduces an approach to enhance the RRT algorithm and

1

1. Introduction

Figure 1.1: The difference between uniform sampling on the left and goal
biased sampling, which guides focuses the expansion towards the goal and thus,
considerably less samples are necessary to reach it. (Starting position is red, goal
is green)

increase its effectiveness in environments with many obstacles. When it comes
to path planning in such environments, we may often encounter situations,
where certain obstacles repeat themselves or are at least vaguely similar. In
such cases, it would be more beneficial to use out knowledge from encountering
the same or similar obstacles to aid us in avoiding them. The solution we
propose is to create a database of simple “path primitives”, which can be
inserted into the environment based on the encountered obstacles, thus
providing an efficient way to avoid such obstacles.

In the experiments, we provide various methods for creating the said
database and then use use them in an attempt to increase the efficiency of
RRT. We then compare this newly created algorithm with state of the art
implementations of RRT, EST and PRM provided in the OMPL library [13].

2

Chapter 2
Sampling based planning

Sampling based planning algorithms have undergone considerable development
in the recent years [18]. However, they are by no means a complete novelty
in the study of motion planning, with the first mentions going as far as late
1980s [19].

Their time efficiency in solving complex problems and implementation
simplicity makes them a widely sought out method. They are often utilized
in areas such as motion planning for robotic manipulators (see, for example,
[20]) or the study of protein folding [22]. Both of these problems suffer from
having many DOF and thus a highly dimensional configuration space, making
them ideal candidates for SBP.

As with most other planning algorithms the main purpose of SBP is to find
a path for the robot (in planning often interchangeable with the word agent)
through the given configuration space C which is a set of all the possible
robot’s configurations. Configuration is a set of variables which completely
describe the robot’s state in the physical space. We can further divide the
configuration space into the space of free configurations Cfree and the space
of occupied (or collision) configurations Cocc, such that

C = Cfree ∪ Cocc.

Hence we can define the desired path as a series of configurations from Cfree

with the start and goal configuration being the first and last respectively, which
can be traversed in order from start to goal by interpolating between individual
configurations while always remaining in the space of free configurations.

One of the necessary components of SBP algorithms is thus some form
of a collision engine, usually provided by the environment, which given a
configuration can determine whether it belongs to Cfree or Cocc.

The other indispensable component of SBP algorithms is a of metric
determining the distance between two given configurations. This is usually
determined by the topology of the configuration space of the environment.
For example, with the most common topology being Rn a basic metric such
as the Euclidean metric suffices.

3

2. Sampling based planning................................
2.1 Basic SBP algorithms

Probably the most commonly utilized SPB algorithms are RRT [1] and PRM
[4] algorithms. Both of these usually rely on uniform sampling and are the
basis for many other variations of algorithms. Among the simpler ones we can
mention, for example, RRT* [3] and PRM* [3], which aim to find the optimal
solution for a given problem (although it is again not guaranteed to find
such solution in finite time). Another common example is RRT-Connect [8],
which performs a bidirectional search by constructing a tree graph from both
from start and goal positions in the environment and attempts to connect
them. Common practice in SBP is also the introduction of a goal bias. Some
percentage of samples is either replaced by the goal configuration itself or by
sampling from a gaussian distribution in a small area around the goal.

The last mentioned common SBP algorithm, the EST [5], differs from the
former two as it does not utilize uniform sampling. Unlike RRT and PRM,
the EST algorithm alters the sampling based on already existing nodes of
the created graph.

2.1.1 RRT

RRT, introduced by Stephen M. LaValle [1], is undoubtedly the most sim-
plest of the SBP algorithms with high utilization in both practice and for
educational purposes. It is also the center point of this entire thesis.

In its simplest form, RRT attempts to create a tree graph of nodes in the
Cfree by gradually expanding it from the start configuration while simultane-
ously checking for collisions. An example of how such a tree might look in a
2D environment is shown in figure 2.1.5.5. RAPIDLY EXPLORING DENSE TREES 231

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

the shortest possible path. In every iteration, α(i) becomes a vertex. Therefore,
the resulting tree is dense. Figures 5.17–5.18 illustrate an iteration graphically.
Suppose the tree has three edges and four vertices, as shown in Figure 5.17a. If
the nearest point, qn ∈ S, to α(i) is a vertex, as shown in Figure 5.17b, then an
edge is made from qn to α(i). However, if the nearest point lies in the interior
of an edge, as shown in Figure 5.18, then the existing edge is split so that qn
appears as a new vertex, and an edge is made from qn to α(i). The edge splitting,
if required, is assumed to be handled in line 4 by the method that adds edges.
Note that the total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general frame-
work from Section 5.4.1; however, with the modifications suggested in Section
5.5.2, it can be adapted to fit. In the RDT formulation, the nearest function
serves the purpose of the VSM, but in the RDT, a point may be selected from
anywhere in the swath of the graph. The VSM can be generalized to a swath-point
selection method, SSM. This generalization will be used in Section 14.3.4. The
LPM tries to connect α(i) to qn along the shortest path possible in C.

Figure 5.19 shows an execution of the algorithm in Figure 5.16 for the case
in which C = [0, 1]2 and q0 = (1/2, 1/2). It exhibits a kind of fractal behavior.15

Several main branches are first constructed as it rapidly reaches the far corners of
the space. Gradually, more and more area is filled in by smaller branches. From
the pictures, it is clear that in the limit, the tree densely fills the space. Thus,

15If α is uniform, random, then a stochastic fractal [101] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.

232 S. M. LaValle: Planning Algorithms

qn

q0
Cobs

qs

α(i)

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 qn ← nearest(S, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 G.add vertex(qs);
7 G.add edge(qn, qs);

Figure 5.21: The RDT with obstacles.

it can be seen that the tree gradually improves the resolution (or dispersion) as
the iterations continue. This behavior turns out to be ideal for sampling-based
motion planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not
explicitly represented. Therefore, it must be taken into account in the construction
of the tree. Figure 5.20 indicates how to modify the algorithm in Figure 5.16 so
that collision checking is taken into account. The modified algorithm appears
in Figure 5.21. The procedure stopping-configuration yields the nearest
configuration possible to the boundary of Cfree, along the direction toward α(i).
The nearest point qn ∈ S is defined to be same (obstacles are ignored); however,
the new edge might not reach to α(i). In this case, an edge is made from qn to qs,
the last point possible before hitting the obstacle. How close can the edge come to
the obstacle boundary? This depends on the method used to check for collision,
as explained in Section 5.3.4. It is sometimes possible that qn is already as close
as possible to the boundary of Cfree in the direction of α(i). In this case, no new
edge or vertex is added that for that iteration.

5.5.2 Efficiently Finding Nearest Points

There are several interesting alternatives for implementing the nearest function
in line 3 of the algorithm in Figure 5.16. There are generally two families of
methods: exact or approximate. First consider the exact case.

Figure 2.1: An example image of the graph produced by the RRT algorithm
published by Stephen M. LaValle in the book “Planning algorithms”[2].

The entire RRT algorithm can be written in pseudo code in the following

4

.................................2.1. Basic SBP algorithms

way, where Q is the output graph, qstart are the start and goal configurations
respectively, n is the number of iterations of the algorithm and ∆q is the so
called incremental distance:

rrt(qStart, n, deltaQ) -> Q:
Q <- {}
Q.init(qStart)
for i from 1 to n:

qRand <- randomSample()
qNear <- nearestNode(Q, qRand)
qNew <- moveTowards(qNear, qRand, deltaQ)
Q.addNode(qNew, qNear)

return Q

In the beginning of the algorithm, the graph Q is initialized using the start
node (the only node of the tree representing the start configuration). The
function randomSample returns a random configuration from the configuration
space using the uniform distribution. The function nearestNode finds the
nearest node in the already existing tree. Finally, function moveTowards
attempts to interpolate from node qnear towards node qrand until either a
collision configuration is reached or a distance of ∆q has been traversed from
qnear. The new node qnew is then added to the graph with its parent node
being qnear.

The algorithm can be further improved by introducing a goal configuration
qgoal as an input variable and ending the expansion when a configuration in
a close proximity of the goal is reached. Additionally, by including a goal
bias and replacing some random samples by the goal, the goal configuration
itself can be reached. The desired path can then be obtained by backtracking
through the created tree from the goal configuration to the start configuration.

A simple example of goal biasing is shown in the following code, which
modifies the randomSample function. p is the percentage of situations, where
we choose the goal configuration instead of a random one. The function
randomFloat uniformly samples a number from the interval [0, 1].

randomSample() -> qRand:
if randomFloat < p:

return qGoal
else:

return uniformRandomSample()

The nearestNode function is for obvious reasons a notable bottleneck of
the RRT algorithm, as with its most basic implementation it has a linear
time complexity dependent on the number of nodes in the graph Q. This
problem can be avoided by organizing the points of the graph into a data
structure called k-d tree [21]. This allows for the nearest nodes search to be
done with logarithmic time complexity. Additionally, the time complexity of
adding nodes to the graph (and hence incorporating them into the existing
k-d tree) is also logarithmic.

5

2. Sampling based planning................................
An noticeable disadvantage of the RRT algorithm is its bad performance in

confined spaces and narrow passages (see figure 2.2). In such cases many of the
randomly sampled configurations lead the tree expansion into collisions, thus
hindering it from further growth. This can naturally lead to the inability of the
tree to expand into the vicinity of the goal configuration, making it impossible
to find a solution with a limited number of nodes. The randomSample function
is unexpectedly the main candidate for any possible improvements to avoid
this issue, which is after all also the focus of this thesis.

0 2 4 6 8 10
0

2

4

6

8

10

agent_goal
agent_start
obstacles
tree

Figure 2.2: An example of an environment with a narrow passage. The tree
expansion is stuck for a long time on the left side of the obstacles.

2.1.2 RRT*

RRT* [3], originaly published in [3], is an improved version of the RRT
algorithm which guarantees finding the optimal path (if one such exists) as
the number of generated nodes reach infinity. Despite that being realistically
unfeasible, the RRT* still provides a close to optimal solution even with a
finite number of nodes while keeping the benefits of simplicity and speed of
basic RRT.

The RRT* algorithm differs from the usual RRT in two points. The one
is the process of adding a new node to the generated tree. Each node keeps
track of a cost value, which represents the length of the path traversed
along the graph from the start to the aforementioned node. The process of
sampling, finding closest node in the graph and moving towards the sampled
node remain unchanged. However, instead of immediately taking the nearest
node qnear as its parent, the newly created node instead searches its vicinity
(usually in a fixed radius) for possible other neighbouring nodes. If any of

6

.................................2.1. Basic SBP algorithms

them have a lower cost value than qnear, the newly created node will favour
the cheaper one as its parent.

The second difference is the rewiring of the tree which occurs after a new
node has been connected. The neighbours of the newly added node are once
again examined and they get reconnected to the new node, if it means their
costs would reduce.

It is self explanatory, that all connections between nodes must be collision-
free. Hence, if a collision would occur by connecting two nodes with an edge
during either the tree expansion or rewiring parts, such an edge must be
discarded.

An example of the generated tree in a 2D environment is shown in figure
2.3.

11

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(i)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(j)

Fig. 1. A Comparison of the RRT∗ and RRT algorithms on a simulation example with no obstacles. Both algorithms were run with the same sample
sequence. Consequently, in this case, the vertices of the trees at a given iteration number are the same for both of the algorithms; only the edges differ. The
edges formed by the RRT∗ algorithm are shown in (a)-(d) and (j), whereas those formed by the RRT algorithm are shown in (e)-(h) and (i). The tree snapshots
(a), (e) contain 250 vertices, (b), (f) 500 vertices, (c), (g) 2500 vertices, (d), (h) 10,000 vertices and (i), (j) 20,000 vertices. The goal regions are shown in
magenta (in upper right). The best paths that reach the target in all the trees are highlighted with red.

of new connections can enhance the computational efficiency
of PRM-based algorithms. Second, the algorithms and the
analysis should be modified to address motion planning prob-
lems in the presence of differential constraints, also known

as kino-dynamic planning problems. A third direction is the
optimal planning problem in the presence of temporal/logic
constraints on the trajectories, e.g., expressed using formal
specification languages such as Linear Temporal Logic, or

Figure 2.3: An example image of the growth of the graph produced by the RRT*
algorithm published in [3]. Purple region is goal.

2.1.3 PRM

Unlike RRT the PRM does not create a tree graph but a normal connected
graph (possibly with cycles) covering the entire environment. It is therefore
not simply possible to obtain the finished path immediately once the graph is
constructed by backtracking from the goal node to the start and a separate
graph search algorithm must be used. The entire path planning process can
therefore be split into two phases — the construction phase and query phase.

The construction phase is initiated by adding the start and goal configura-
tions into the graph. Then, configurations are uniformly sampled from the
configuration space checked for collisions with only collision-less configurations
being accepted (hence, it would be better to sample only from Cfree however,
this approach is in most cases not applicable due to its complexity). Each
created sample is then connected with an edge to k nearest neighbours or
possibly to all nodes within a certain range. The connecting of the neighbours
must be accompanied by collision checking. The most common approach is

7

2. Sampling based planning................................
interpolation between the two nodes which are to be connected while checking
any intermediate configurations for collisions. If a collision is detected, the
connecting process is aborted and the possible edge between the two nodes is
discarded. This process of sampling and connecting is then repeated until a
desired density (i.e. desired number of nodes) of the graph is reached.

The query phase is then carried out by an external graph search algorithm.
The most applicable being the Dijkstra algorithm (with weights of each edge
being equal to the distance of the two nodes they connect) or possibly the A*
algorithm.

The PRM algorithm again suffers greatly in confined spaces, which force
it to discard many of the sampled configurations due to collisions. Narrow
passages on the other hand cause the graph to be disconnected, making it
impossible to find a path from one disconnected subgraph to another. Altering
the sampling process is again the most apparent way to tackle this issue.

2.1.4 EST

Similarly to RRT, the output of EST is a tree graph. As mentioned before,
this algorithm does not create its samples uniformly. Instead, a weight w is
assigned to each node in the graph inversely proportional to the number of
its neighbours (usually the number of neighbouring nodes in a fixed range
around each node):

w = 1
#neighbours

.

Instead of the usual sampling, a node is selected from the existing tree using
the weights for a randomized weighted selection. As such, the nodes with the
highest weights (and thus least neighbours) get selected most often. The tree
is then expanded from the chosen node. The expansion itself can be executed,
for example, by uniformly sampling in a fixed range around the node and
then connecting the node with the sample (while again verifying, that the
created edge is collision-less).

An often used alternative to EST is the Guided EST algorithm [6]. From the
original it differs only in the weight function. The Guided version introduces
for each of the nodes order, how recently the node was created, out_degree,
number of outgoing edges, and A∗cost, the estimated distance to the goal.
The weight equation then looks as follows:

w = (order)α

(#neighbours)β(out_degree)γ(A∗cost)δ
.

It is naturally possible to alter the behaviour of the algorithm by modifying
the parameters α, β, γ, δ.

2.2 Related works

As mentioned before, sampling algorithms are far from being considered a
finished area of research. One of the main focuses of such research is without

8

.................................... 2.2. Related works

a doubt the process of sampling utilized in each of the different algorithms.
Naturally, with the recently growing popularity of machine learning, not even
SBP has been spared from its influence [9].

The aforementioned sampling is one of the places, where various machine
learning algorithms can be incorporated. There are, however, other areas
closely related to SBP where machine learning can be indispensable. One
such area concerns the environments which are used for planning. From the
basic examples of SBP algorithms in the previous section it is apparent, that
these algorithms are most suited for static environments, that is, environ-
ments, where obstacles are fixed and only the agent moves around. That
is not to say they cannot be used for environments with multiple agents
or movable obstacles. Even for these is SBP applicable by utilizing some
simple workarounds, such as having the configuration of all agents incorpo-
rated into the configuration space or introducing a variable of time into the
configurations and creating an appropriate collision checking system.

However, such approach becomes less applicable for more realistic envi-
ronments with complex laws and seemingly nondeterministic behaviours. In
such cases, the go to solution is to rely on some form of machine learning.
Furthermore, machine learning can also aid in alleviating some burden from
complicated collision checking algorithms or even improve path quality when
searching for optimum solutions.

2.2.1 RRT-Path

RRT-Path [7] is one of the simple algorithms aiming to improve the basic
RRT algorithm by altering the inherent sampling mechanism. It also served
as an inspiration for this thesis and is used in a simplified form when using
database sampling primitives in the actual algorithm.

RRT-Path proposes an efficient method of guiding the tree expansion
through the environment by introducing temporary goals. Instead of sampling
the configuration space purely uniformly, a specific temporary goal is chosen
instead of a set percent of samples (this is the same principle as goal biasing
mentioned in the explanation of RRT). Once this temporary goal is reached,
the next one in order is selected, thus efficiently leading the tree expansion
along the temporary goals towards the main goal. This approach naturally
works best when enough information about the environment is known and
the temporary goals can be deployed into the most crutial positions.

2.2.2 MS-RRT

Another one of the algorithms which aim to augment the sampling method
of RRT is the Multi-Sample RRT (MS-RRT) [23]. In this case, instead of
sampling only once per RRT iteration, multiple samples are generated and
the tree is then directed towards their mean.

Two different algorithms have been introduced based on this one. The
first being MS-RRTa, which alters the nearest node selection process of RRT.
For each of the created samples, their nearest node in the preexisting tree is

9

2. Sampling based planning................................
found. The tree is then expanded from the node, which was selected as being
“nearest” the most with the direction of the expansion being the mean of all
samples, which selected the node as its nearest.

The second alternative called MS-RRTb is very similar to MS-RRTa when
it comes to handling the acquired samples. The only difference is, that the
samples are not generated in every iteration of RRT and are instead uniformly
generated at the beginning of the algorithm.

2.2.3 Planning with diffusion

One of the approaches which rely on machine learning to alter the sampling
in planning algorithms is presented in [10]. In this case, the underlying idea
is to use a diffusion model on a large amount of randomly generated samples
and effectively converge them to the desired path. The information about
obstacles is provided into the model in the form of a reward. This makes it
also possible to guide the sampling distribution from undesired areas into
more desirable ones. The authors show, that in the best case scenario the
planning itself becomes mostly a question of ordering the shifted samples
from start to goal.

2.3 Open Motion Planning Library

As a final part of this chapter it is necessary to introduce one of the largest
open source libraries aimed at sampling based motion planning, the Open
Motion Planning Library (OMPL) [13], which is also the center piece for
the computer program of this thesis. This C++ library provides a wide
assortment of state of the art sampling based planning algorithms, including
several variations of RRT, PRM and EST. Its structure is meant to be used as
a base building block, connectable with standalone collision and visualization
engines. Finally, the library also provides several ways for creating new
custom planners and samplers as well as means for testing and benchmarking
experiments (those can be easilly visualized using the Planner Arena tool
[17]).

10

Chapter 3
RRT with path primitives database

In this chapter, we will introduce our proposed method for augmenting
the RRT algorithm as well as the suggested implementation of its various
components. As mentioned before, the main idea of this thesis is to modify
the process of sampling of the RRT algorithm by introducing simple path
primitives (i.e. short paths created by the basic RRT algorithm) and sampling
along those to avoid obstacles. One such example of a primitive can be seen
in figure 3.1.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

obstacles
agent start
agent goal
path
agent

Figure 3.1: Basic path primitive for avoiding an obstacle. Start and goal config-
urations are shown in red and green respectively along with a few intermediary
configurations in blue. The blue line is the primitive itself.

The said path primitives will be generated in advance for any specific

11

3. RRT with path primitives database
agent. The main aim is to provide a simple solution for avoiding burdensome
obstacles such as narrow passages, which cause a decrease in performance
for the RRT algorithm. As such, the primary focus will be on creating
primitives for preset kinds of obstacles which we expect to appear in the
environment. However, we will also discuss the applicability of this method
for an environment with a more general variety of obstacles.

In the following section we will explain what kind of environments this
thesis will cover and what approaches were used to implement them. Following
that, we will focus on the only part of the RRT algorithm from part 2.1.1
which is to be modified — the randomSample function. We will discuss the
possibilities for generating the database of path primitives as well as the
ways for choosing the ideal primitive for a given situation and expanding the
generated tree with it.

3.1 Environments

In this thesis we will be strictly limiting ourselves to simpler static environ-
ments with a single agent in 2D an 3D. Hence, the obstacles will remain
unchanged with time. Furthermore, we introduce the possibility for the agent
in 2D to have simple revolute joints, since simple 2D environments are usually
do not possess much of a challenge for the RRT algorithm.

The configuration space will hence take on several different forms depending
on the environment. In terms of topology, for 2D environments without
rotation it is simply R2, similarly in 3D it without rotation it is R3. Naturally,
these configuration variables will be kept in preset bounds, as it would not
make sense for our environments to be endless. If we introduce rotations,
we need to start working with the special Euclidean groups SE(2) or SE(3)
respectively. These spaces can also be rewritten using the spherical topology
Sn as

SE (2) = R2 × S1,

SE (3) = R3 × S3.

When it comes to the revolute joints, we simply need to add an rational
additional configuration variable for each joint. Thus we expand our topology
by additional Rn, where n is the number of joints in the model. It might
be logical to use a spherical topology for the revolute joints, as they could
possibly rotate around indefinitely, however, this approach would often incite
the agent to “fold in on itself” so that it could easily overcome confined areas
of the environment. Thus it is more beneficial for our purposes to use a
simple rational number bounded in some range of values. Further expanding
on this idea, it might be more mathematically proof to express the topology
as an interval [k, m] where k and m are the appropriate bounds limiting the
joint’s rotation, however, for simplicity’s sake, we will allow ourselves to keep
using the notation of R, under the assumption that appropriate bounds will
be provided later.

12

.................................... 3.1. Environments

The configuration space C of a 2D object with rotations and 3 revolute
joints will therefore look like

C = SE(2) × R3 = R2 × S1 × R3.

Mathematically it would not pose much of a problem to combine the R2 and
R3 into R5, however, due to the way the OMPL library calculates distances,
this would be undesirable.

In the following subsections we shall briefly tackle the topic of the necessary
metrics calculations. Afterwards, we will introduce our approach to collision
checking and the methods used to represent the agent and obstacles.

3.1.1 Important metrics

Since our algorithm is built upon the OMPL library, there is no need for us
to implement any of the metrics ourselves. Despite that, it is highly desirable
to understand the underlying principles behind distance calculations, which
are one of the core mechanics of RRT and other SBP algorithms.

The first and most basic metric which will be used for distance calculations
in the Rn space is the Euclidean metric. For such spaces we can calculate
the distance de between two points x and y as

de =

√√√√ n∑
i=1

(xi − yi)2.

When it comes to distance calculations in the S1 topology necessary for 2D
rotation calculations, we must simply realize, that any variable v ∈ S1 can
have only values in the interval [0, 2π) (or possibly [−π, π), depending on our
preferences) and can “overflow” the border of these intervals. As such, the
distance between two points is necessarily constraint into an interval of [0, π].
With this, we can calculate the distance between two points x and y by first
calculating an intermediary value

d = |x − y|

with the resulting distance ds1 being calculated as

ds1 =
{

2π − d, if d > π

d, otherwise

The final distance metric we need to introduce is for the S3 group. This is
a moderately complicated problem which cannot be solved if we only rely on
convenient methods of 3D rotation interpretations such as euler angles and
the rotation matrices. For this purpose, we need the rotation to be expressed
in the form of quaternions. Quaternions offer a highly efficient, though also
quite user unfriendly, way to represent rotations in 3 dimensions. Appropriate
conversions between quaternions, Euler angles or angle axis representations
can be easily found in countless sources. Using this representation, it is

13

3. RRT with path primitives database
possible to compute the distance of two rotations in 3D space as the arclength
between their respective quaternions.

The only remaining part of our distance computations is the case of
compound spaces such as the previous example of a 2D agent with 3 joints.
In the case of OMPL, this is done with a weighted sum of the distances
from each component. As such, if the distance in the position of the agent is
calculated as de1, the distance in its rotation as ds and distance for its angles
as de2, then the total distance will be calculated using preset weights w1, w2
and w3 as

d = w1de1 + w2ds + w3de2.

The default in OMPL is to set the weights of euklid metrics to 1 (here w1
and w3) and the rotation metrics to 0.5 (here w2).

3.1.2 Collision engine

For the purposes of this thesis we opted out for using the Robust and Accurate
Polygon Interference Detection C++ library (known as RAPID) [14]. This
library provides a simple and fast method for defining rigid bodies expressed
as a triangle mesh and computing any collisions between two such defined
bodies. The time complexity is logarithmic with respect to the number of
triangles in the objects. It is even possible to determine the specific triangles
of the mesh which are in collision, although in our case the basic information
about whether two objects are in collision with each other or not will be
sufficient.

All the required objects for obstacles and agents are stored using .obj files.
These files proved to be the simplest solution as they provide an easy way
to represent simple triangle meshes without any unnecessary redundant text.
They can be easily made either by hand for smaller 2D objects or using
external programs such as Blender [15] and loaded into the RAPID library
or used for visualizing purposes.

With this combination we can already process most of the environments
we have envisioned in the previous section. RAPID library is set up to handle
3D objects, however, any 2D environment can be expressed in 3D by simply
keeping all triangles of every mash on a single plane in space and allowing
rotations only along an axis perpendicular to such plane.

With this, the only problem we need to solve is the addition of revolute
joints for an agent. This can be solved by a few preliminary calculation for
determining the position of each linkage of the agent and then feeding them
one by one into the RAPID library. We will discuss this issue only in 2D, as
that is the most we require.

We can define the joints for each child linkage as having an offset poffset

from their parent. The child linkage will then take the joint as the center of its
respective coordinate system. The rotation of each child is then determined
by the configuration variable corresponding to the joint connecting the child
with the parent (we shall call it α). As such we can find the transformation
matrix from the coordinate system of the child (c) to the coordinate system

14

.................................... 3.1. Environments

of the parent (p) as

Tp
c =

[
R (α) poffset

oT 1

]
,

where R(α) is a rotation matrix.
The transformation matrix from the coordinate system of the base linkage

(b) to the coordinate system of the environment (e) can be directly obtained
from the configuration space, as both the position and rotation is represented
in the SE(2) part of it. If we call the position of the agent (and hence the
base linkage) pbase and the angle of its rotation β, we can write the resulting
transformation matrix as

Te
b =

[
R (β) pbase

oT 1

]
.

If we were to assume an agent with three linkages connected in a way, such
that the base linkage has one child (c1) linkage which itself has one child (c2),
we could compute the transformation matrix from the coordinate system of
the second child to the environment as

Te
c2 = Te

bTb
c1Tc1

c2

As such, we can compute the transformation matrix of any linkage with
respect to the environment. With this, we can produce a simple recursive
function using an assumed linkage class (with access to information about the
model of the linkage, joint offsets, its parent and children linkages and config-
uration variables), which computes all possible collisions between linkages
and obstacles.

updateTransformAndCheckCollisions(linkage) -> FoundCollision:
// compute transformation of this
if linkage.has_parent:

linkage.tf <- (linkage.parent.tf
* tfFromJoint(linkage.jointInfo))

else:
linkage.tf <- tfFromConfigVar()

// check collisions
if isInCollision(linkage.model, linkage.tf):

return True

// recursively check other linkages
for child in linkage.children:

if updateTransformAndCheckCollisions(child):
return True

// no collision for itself or children
return False

15

3. RRT with path primitives database
The functions tfFromJoint and tfFromConfigVar represent the transfor-

mation matrix calculations from joint information and configuration variables
respectively, which were introduced earlier. The isInCollision function is
presumed to call upon the underlying RAPID library and provide it with the
mesh model of the linkage and its transform with regards to the environment.
The information about obstacles is presumed to be unchanging and is thus
omitted.

With slight modifications we could also introduce a system to check for
collisions between the linkages themselves, however, this will be unneces-
sary for our purposes, as we will be dealing with agents with only a small
amount of linkages and limiting their possible movement range by introducing
appropriate bounds for the configuration variables.

3.2 Database of path primitives

With all the preliminary requirements done, we can now focus on the main
topic of this thesis. In this section we shall discuss the database of primitives,
the methods which will be used to create them, as well as the process for
their deployment into the environment.

As mentioned before, the idea behind these primitives is to aid us in
overcoming select types of obstacles. They can also be used as a means to
guide the expansion of the tree in a certain direction. The primitives we
aim to create are mainly shaped in the form of one or multiple paths. For
multiple path primitive see figure 3.2.

2 1 0 1 2

2

1

0

1

2

obstacles
agent start
agent goal
path

Figure 3.2: Basic path primitive with multiple paths for avoiding obstacles.

16

............................ 3.3. Selecting optimal path primitives

It is quite apparent, that these path primitives will usually have to be
created for different agents separately. It is naturally completely impossible
to reuse them for environments with different topologies. However, when it
comes to the obstacles themselves, some of them may be interchangeable. As
seen in figures 3.1 and 3.2, the path primitives will achieve their goal even
when a similarly sized and shaped obstacles replaces the ones in the pictures.

3.3 Selecting optimal path primitives

Selecting the optimal path primitive for any specific situation is a major
problem we will have to tackle. A wrong primitive might be deployed into the
graph in such a way, that it overlaps with obstacles and stops the expansion
of the tree due to collisions. The easiest solution would be, to have a few
path primitives for every kind of obstacle we expect to encounter. One
issue with this method is, that even when we know the kinds of obstacles
we might encounter, we still don’t know from which direction we might be
approaching them and what shape and rotation our agent (possibly with
joints) has. Furthermore, we would require to have quite extensive knowledge
of the environment and its obstacles, which is often very unrealistic.

However, for our purposes, it is not necessary to know exactly what kinds of
obstacles we are dealing with. Instead, our only concern is their approximate
shape. Furthermore, we only need to take note of a few obstacles in the
vicinity of the space, where we want to deploy our path primitive.

There are countless methods how we could determine whether some ob-
stacles are similar. Already implemented algorithms for directly matching
shapes can be found in libraries such as OpenCV [16]. Another option might
be to scan the surrounding obstacles in a “lidar-like” fashion in order to create
a point cloud and match it with existing ones in the database. Most of these
approaches, however, require a considerable amount of computational time.
The way we chose to tackle this issue is to use an occupancy grid.

3.3.1 Occupancy grid

An occupancy grid is a set of points which help us determine occupied areas of
the environment. As shown in figure 3.3 we select a few test points in a fixed
predetermined pattern in the vicinity of the area where we wish to place our
primitive. At each of these points we determine, whether a collision occurs
and store this information into a binary array. For this collision checking we
may use our existing agent. However, with more complex agents, this might
result in a messy occupancy grid. It is therefore better, to substitute the
agent for a simpler object of adequate size (compared to the obstacles — too
small object might miss smaller obstacles, too big might on the other hand
miss gaps between obstacles). The comparison between using an complex
and simple agent is visible in figure 3.3.

Collision checking and creating binary arrays would be repeated even
when generating said primitives. This way, it is possible to classify the

17

3. RRT with path primitives database

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

origin
obstacles
free point
collision point

Figure 3.3: A simple example of an occupancy grid with a triangle agent serving
for testing each position in the vicinity of origin.

shape of obstacles each primitive is made for using but a few binary num-
bers. For example, the occupancy shown in figure 3.3, might get saved as
11000100000000000001 — with four ones in specific indexes denoting the
collision occurring at the respective four triangles.

When we wish to use our database in a specific place, we simply need to
compute the occupancy array in said place and search the database for the
most similar an array. To determine the most similar array it is possible
to either test each entry of the database against the newly created one by
counting dissimilar elements (i.e. calculate their Hamming distance). For
larger databases this approach might create some unnecessary time delay. To
solve this, we can also load each of these binary arrays from the database to a
k-d tree (which we are already necessarily using for our RRT algorithm) and
then use said k-d tree to find the closest entry to the newly created array.

When it comes t said occupancy grids. The first and most natural one
would be to generate its test points in an actually orderly grid. This approach,
however, begins to be lacking, when we start introducing environments with
highly dimensional configuration spaces. In such cases, the amount of points
necessary to cover an area with a grid increases exponentially with dimensions.

The better approach is, therefore, to generate the test points randomly,
exactly as in figure 3.3. Since we wish to have these points concentrate
around a certain area, the best method for generating them is using Gaussian

18

............................ 3.3. Selecting optimal path primitives

distribution. It is also favourable to add conditions such as minimum dis-
tance between test points, and maximum distance from the center location.
Furthermore, since we are merely generating a basic pattern of points which
will then be moved to the locations of interest it is desirable to generate these
points around the origin (that is, the point with coordinates [0, 0, 0, ...]).

3.3.2 Applying occupancy grid to proposed environments and
structuring database

The approach of spreading the occupancy grid into all dimensions of the
configuration space is one we might wish to take for a general environment,
ideally with a simple linear topology. However, if we wish to tackle the
environments we have introduced previously, which have rotations and possibly
joints, we will soon run into various issues.

The main problem is, that spreading out the occupancy grid in the rotation
and revolute joint parts of our topology does not bring us many benefits.
Especially if we were to replace our agent with a simpler one for the collision
detection purposes. Since we are primarily interested in the shape of the
obstacles, we will obtain the best results by covering only the spatial com-
ponent of the topology with test points. This will also decrease the amount
of primitives we need to create, as we will no longer need put the original
rotation of the agent into consideration when choosing the optimal primitive.

Since we now have no information from the rotational and joint parts
of the topology, we need to either find a way to avoid needing them when
choosing from the database, or incorporate their information directly into
our database.

When it comes to rotations, there is a simple way to make them irrelevant.
The only thing we need to do is to perform the occupancy grid calculations
and path primitive deployment in reference to the rotated coordinate system
of the agent. Hence, if we wish to check the occupancy at some specific
point in the environment where our agent currently is, we must transform
every point of the occupancy grid (which now has only parts related to the
spatial component of our topology; we shall call such a point v) using the
transformation matrix of the agent.

The process of obtaining said transformation matrix was explained in
section 3.1.2. The resulting moved points shall be called p. Since we are
working with transformation matrices, it is important to convert the points
into holonomic vectors (by appending a 1 to them); we will further denote
these with a lower index h. As such, the whole transformation of each
occupancy grid point can be written as

ph = Te
bvh.

A similar process will be necessary for the deployment of the path primitives,
which shall be discussed later.

The second part of topology we have omitted from the occupancy grid
are the configuration variables related to joints. If we wish to choose the

19

3. RRT with path primitives database
appropriate primitive, we need to take into consideration the configuration
the agent begins in. If an agent with several joints has its linkages folded,
we cannot try forcing it to go along a path primitive which begins with an
unfolded configuration.

From this, we can see that for agents with joints it is necessary to create
path primitives beginning with various initial joint states. When picking the
optimal primitive, we first need to choose a group of primitives whose initial
joint state is the most similar to the agents current situation. This can be
again done by comparing each available initial joint state in the database
with the state of the agent’s joints and choosing the one which is the closest
in terms of Euclidean distance. Again, we can also input all the possible
initial joint states (without the spatial and rotational parts) into a k-d tree
to increase the speed of the search. Afterwards we can proceed to choose
from selected group of primitives in the already introduced manner using an
occupancy grid.

Overall, the database can be structured into a set of directories, with each
directory containing primitives with the same initial joint conditions. The
primitives can then be saved as individual files into these directories. The
occupancy obtained during the generation of each primitive can then be set
as the name of said files (either keeping the occupancy in binary or converting
it into hexadecimal notation for shortening purposes).

With all this done, we can now write a simplified algorithm for choosing
the optimal path primitive from the database, given the complete initial
configuration of the agent and the pattern of points for the occupancy grid.

chooseAppropriatePrimitive(agentConf, occGrid) -> bestPrimitive:
// transform the occupancy grid’s points
// (using transformation matrix as mentioned before)
transformedOccGrid <- transformOccGrid(agentConf, occGrid)

// get the binary array representing occupancy
occupancy <- checkOccupancy(transformedOccGrid)

// find the directory with the closest initial state
// in the ones available in the database
bestDir <- getClosestInitJointState(agentConf)

// finaly get the primitive with the most similar
// occupancy from those in the selected directory
bestPrimitive <- closestOccupancyPrimitive(occupancy, bestDir)

return bestPrimitive

20

............................... 3.4. Deploying path primitives

3.4 Deploying path primitives

We have already discussed the classification of path primitives in the database.
With that we can focus on the actual method of using them in the environment
as well as the possible approaches for deciding whether we actually need to
use them in a given situation.

The process we have been hinting at is to pause the usual RRT tree
expansion at some suitable moment, take the position of the agent at the
point where we wish to expand our tree and deploy a path primitive into that
are, which the tree is to follow.

Overall, we are attempting to modify the randomSample function mentioned
in section 2.1.1 with a modified algorithm for using primitives. The algorithm
would look as follows:

// external variable for determining what we sample
usingPrimitive <- False
primitive <- None
conf <- None

randomSample(...) -> sample:
if conditionsToUsePrimitive(...) and not usingPrimitive:

usingPrimitive <- True
conf <- ...
primitive <- chooseAppropriatePrimitive(conf, occGrid)

if usingPrimitive:
sample <- samplePrimitive(conf, primitive)
if primitive.usedUp():

usingPrimitive <- False
else:

sample <- uniformRandomSample()

return sample

The function conditionsToUsePrimitive is meant to determine, whether
the situation the current tree is in requires the usage of primitives. As
such, we leave the parameters of the related functions undefined, since it
would require information, that is usually not provided to the randomSample
function. Similarly, the exact configuration (variable conf) from which we
intend to expand the tree might need some outside variables to be determined.
Hence we leave its specifications blank for now and shall discuss them later.

In this section, we will ponder the idea of the deployment itself and the
problems related to it as well as the issue of finding the suitable moments
and parts of the tree, which should be expanded using the path primitives.

21

3. RRT with path primitives database
3.4.1 Choosing ideal situation

As mentioned before, the first thing we need to do is determine some conditions
for switching between usual uniform sampling to sampling primitives. We
shall hence tackle the conditionsToUsePrimitive function mentioned before
as well as the process of determining the configuration, where we wish to use
the primitive.

The first and most basic approach is to use the primitives randomly or in
specific intervals. That is, we can set a fixed (or slightly random) number of
nodes which shall be generated using the uniform distribution and afterwards
switch to path primitive sampling. The configuration from which we shall
expand can be, for example, the last generated node in the tree. Since in the
early stages of the expansion most of the nodes appear on the edge of the
tree, we can afford to use this approach to aid the tree in its growth.

Another trivial method would be to start using a primitive when we fail to
expand the tree, i.e. when we detect a collision in the moveTowards function
of RRT (see 2.1.1). The configuration to expand from would then be the
last node, from which we failed to grow the tree. There are, however, several
issues with this approach. The first one being, that the primitive will start
from a place, where the agent is almost in collision. Since the primitive is
chosen only using vague information about the obstacles, it can lead to the
agent being unable to move from its already tight spot even with the aid
of the primitive. The second issue concerns the environments we shall be
using. Since we are mostly interested in environments with large amounts of
obstacles, the situation where collisions happen would occur so often, that
this approach might not differ much from using the primitives randomly.

An easy improvement that we can make for our methods is to store the
configurations where we already used a primitive. Since using path primitives
in such areas will not give us much benefit, as they might yield the same or
similar results as the ones already used and would only increase the density of
the tree in such places. We can therefore discard any attempts at deploying
the primitives in places too close to these already stored configurationss. This
can be again efficiently done using k-d trees.

3.4.2 Sampling primitives

Once we have decided to use a primitive, have selected a configuration where
we wish to deploy it, and have chosen the optimal primitive, we can move
on to sampling said primitive. However, before that, we still need to move
the primitive to our desired location. Since we have previously decided to
tackle everything with regards to the agent’s coordinate system we must first
transform the primitive using the transformation matrix of the agent. This is
the same process we described when dealing with the occupancy grid. This
time, however, the individual points of the primitive contain not only spatial,
but also rotational and possibly revolute joint parts of the configuration space.
These must be handled separately.

For the spatial parts, an identical approach as with the occupancy can be

22

............................... 3.4. Deploying path primitives

taken. Hence, if we represent the transformation matrix of the agent (with
regards to the environment) using its position p and rotation matrix R as

T =
[

R p
oT 1

]
,

we can then transform the spatial part of each point v of the path primitive
as

v′h = Tvh

(again using holonomic coordinates, variables with apostrophe are the ones
which shall be used for the deployed primitive)

To transform the rotational part of the primitive we first need to represent
it in the form of a rotation matrix Rprim. With that, we can rotate it using
the rotation matrix of the agent:

R′prim = RRprim.

The revolute joint parts of the topology can be left unchanged. If the path
primitive guides the agent to fold its linkages, then this should not change
when we simply transform the primitive. The agent should still be guided to
fold itself.

With the path primitive in place, we can finally start sampling the points
from it. This process was heavily inspired by the RRT-Path algorithm
mentioned section 2.2.1. We can, however, still make several variations to
this approach.

The most simple way to implement the sampling is to return the points of
the path primitive one by one until we reach the end of the primitive. This is,
however, highly susceptible to unexpected variations in obstacles. If a path
primitive which leads us into a collision was chosen (for example, because the
obstacles were not grasped completely with the occupancy grid or because
there was no perfect match in the database), then the expansion could be
quickly stopped and a large part of the primitive’s samples would be wasted.

To avoid this, we can adopt a similar approach to RRT-Path. As mentioned
before, RRT-Path combines sampling of intermediate goals and uniform sam-
pling. As such, we can treat the points of the path primitives as intermediate
goals (we do not even have to use all of them; we can, for example, use every
n-th point). Since uniform sampling would expand the RRT tree even in areas
unrelated to the current primitive, we can instead use a Gaussian distribution
centered either on the primitive itself, or one of the intermediate goals. We
also don’t necessarily need to wait until we reach the intermediate goals and
can limit ourselves to taking a fixed amount of samples from each, before
we move on to the next one. The rest is only a question of determining the
percentage of samples taken from the intermediate goals themselves and from
the distribution around them.

23

3. RRT with path primitives database
3.5 Approaches to generating path primitives

The last thing we need to discuss is the process of creating the path primitives.
For this, we can use the usual RRT algorithm to find single or multiple short
paths avoiding obstacles. This process will differ noticeably depending on
how big we wish to create our database, what kinds of obstacles we expect to
encounter and possibly what other effects we wish for the path primitives to
have on the expansion of the tree.

The simplest approach is to manually introduce the agent to the most
problematic situations we expect to find and create a small amount of path
primitives to handle them. We can also use this method to create path
primitives aimed at guiding the expansion of the tree in a certain direction.
For example, if we are working with environments, where we expect to reach
the goal by increasing a specific configuration variable (such as moving along
one of the spatial axes of the environment), we can create primitives which
attempt to avoid the given obstacles while expanding in the desired direction.
Overall we can, for example, manually set the start and goal of a normal
RRT algorithm to be at the opposite sides of a simple obstacle, run the RRT
algorithm and save the outputted path. We can also set up multiple goals for
each start and save all the outputted paths into one primitive, with the idea,
that it would try overcoming encountered obstacles using multiple different
routes.

It is important to notice, that when creating such primitives, our agent
must start from the origin of the coordinate system without any rotation,
since the primitives will be later transformed into the position of the agent
during deployment. If we wish to start from an arbitrary position in the
environment, we will need to save the primitive with respect to the coordinate
system of the agent. Hence, we must perform an inverse operation to the
one during deployment. The spatial parts of the path primitive’s points v
must be transformed with the inverse of the agents transformation matrix
T (variables with an apostrophe are the ones, which shall be saved into the
database):

v′h = T−1vh.

The rotation parts of the points must be again represented with a rotation
matrix as Rprim and rotated by the inverse of the agents rotation matrix R:

R′prim = R−1Rprim.

The joint parts of the configuration space can once again remain unchanged.
With this, we can also afford to generate our database automatically inside

a given environment. We simply need to randomly select an unoccupied
configuration in the environment and note down its occupancy using the
occupancy grid. This selected configuration will be treated as the starting
configuration for the simple RRT algorithm. The goal configuration can
be set, for example, by moving slightly in a predetermined direction from
the start or by randomly selecting another unoccupied configuration in the

24

........................ 3.5. Approaches to generating path primitives

vicinity of the start. Afterwards, the RRT algorithm can be used to connect
these configurations and the resulting path (the soon to be path primitive)
will be saved under the computed occupancy as its identifier. This approach
is especially useful, if we expect all environments to be structured in the
same, or at least similar manner, since a single database will be usable for all
of them.

The last and most general approach is to randomly generate obstacles of
different sizes and shapes and attempt to find a path leading through them
which will, for example, result in the agent moving a certain distance from
the start. This approach naturally works best for a very large database and
a fine occupancy grid, as it attempts to cover most situations the occupancy
grid can differentiate (naturally, the distinguishable situations double with
each additional point in the occupancy grid). As such, to make this approach
beneficial for us, we would need to create a considerably large database, which
would in turn slow down the search for optimal path primitives and thus slow
down the whole path planning. Hence, we will not focus on this approach
further.

25

26

Chapter 4
Experimental results

In this chapter, we shall focus on several different environments and compare
our proposed methods for enhancing RRT with a state of the art implemen-
tation of SBP algorithms provided by the OMPL library (see 2.3).

4.1 Simple 2D environments

To begin the experiments, we have opted for a simple grid environment with
triangle agent in 2D space without rotations (see figure 4.2). The premise is
to manually create only very simple path primitives akin to straight lines (as
shown in figure 4.1). Hence, we can use them to aid the tree in advancing
through straight corridors in the environment.

The primitives were all created in a scaled down version of the environment
visible in figure 4.1 by shifting the surrounding obstacles around the start
position while testing for occupancy using an occupancy grid with 20 test
points. Two variations of the database-based RRT were tested. One with
100 samples between each usage of path primitives, one with 200 (figure 4.2
was created using the first one). Goal bias was set to 5% (and it shall stay
unchanged for all the other experiments as well).

In figure 4.2 we can see the tree created by our algorithm. There are
noticeable instances, where the red primitives clearly aided the expansion
such as in the middle of the picture. On the other hand, there are also cases,
where a primitive was created close to an already grown part of the tree and
was engulfed into the tree. Such case happened in the bottom right of the
image, where a part of the primitive got mostly wasted and only increased
the density of the existing tree.

In figures 4.3 and 4.4 we can take at how our algorithm compares to
standard RRT, RRTConnect and PRM. Unfortunately, the our approach is
noticeably slower than the other two. This shows, how extremely efficient
the original algorithms are, especially on such easy environments. We can
also deduce, that the usage of primitives is, in this case, clearly detrimental,
due to the necessary computations needed and due to the time wasted, when
a primitive is placed inefficiently and leads the expansion into collisions.

27

4. Experimental results..................................

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

obstacles
agent start
agent goal
path

Figure 4.1: A simple primitive consisting of two paths guiding the expansion in
the positive direction of both axis

0 2 4 6 8 10
0

2

4

6

8

10

obstacles
agent start
agent goal
normal sample
database sample

Figure 4.2: A simple environment. 2D topology without rotations.

28

................................4.1. Simple 2D environments

0.00

0.25

0.50

0.75

1.00

0.00 0.01 0.02 0.03 0.04
time

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty planner

RRT

RRTConnect

PRM

DatabaseRRT_100

DatabaseRRT_200

Figure 4.3: The cumulative distribution function denoting the percentage of
finished runs of the algorithms for a given time. Normal RRT, RRTConnect and
PRM are compared against our database-based RRT with 100 or 200 samples
between each deployment of a primitive. It was created using OMPL’s built-in
benchmarking tools and the Planner Arena.

The next environment we will tackle is a 2D environment with rotations,
denser obstacles, and an L-shaped agent. Due to the design of the environment,
the agent is forced to use its rotation to get through. The environment is
shown in figure 4.5.

In this case, a database consisting of 40 different primitives was created
by randomly selecting start and goal configurations in the environment and
connecting them with a path, as discussed in section 3.5.

As we can see in figure 4.5, the tree became visually significantly denser.
This is caused by the additional dimension (for rotations), which is projected
onto the 2D canvas of the image.

Using this specific environment we shall try to get some insights into
what effects have different aspects of our algorithm, such as the method
of following the primitive or the frequency of using said primitives, on its
efficiency. Afterwards, we will compare the best variation of our program
with standard RRT, RRTConnect and PRM.

The first variation of our algorithm, which we shall call “basic”, will follow
the path primitives by sampling them one point after another. The next
variation (“skip”) will use only every tenth configuration of each path primitive.
After using said configuration ten times while altering it slightly (by adding
a random number from the interval [−0.1, 0.1] to each of its coordinates) it
will move on to the next one configuration. The last variation (“gap”) will

29

4. Experimental results..................................

0.003

0.004

0.005

0.006

0.007

RRT RRTConnect PRM DatabaseRRT_100 DatabaseRRT_200
planner

tim
e

Figure 4.4: Box plot graph with hidden outliers describing the same data as
figure 4.3. (Time is in seconds)

0 2 4 6 8 10
0

2

4

6

8

10

obstacles
agent start
agent goal
normal sample
database sample

Figure 4.5: A 2D environment with rotations, denser obstacles, and more
complex agent.

ensure, that no primitive will be used near a place, where another one was
already deployed (the distance is calculate purely from the spatial part of the

30

................................4.1. Simple 2D environments

configuration space and the minimum distance between primitives is 0.5).
There are 500 samples between each usage of path primitives. When “gap”

algorithm determines the chosen configuration as too near to an already
deployed primitive, it has to wait another 500 samples (that is, to avoid
unnecessary search for empty space, especially in a situation, where there
might be none).

The performance of these three variations as well as the performance of
RRT, RRTConnect and PRM is shown in figures 4.6 and 4.7.

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
time

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

planner

RRT

RRTConnect

PRM

DatabaseRRTbasic

DatabaseRRTskip

DatabaseRRTgap

Figure 4.6: Cumulative distribution function describing the performance of the
tested algorithms in the more advanced 2D environment for three variations of
the database-based RRT as well as normal RRT, RRTConnect and PRM. (Time
is in seconds)

From the shown results, we can clearly state, that an approach similar to
RRT-Path, as proposed in section 3.4.2, has a positive effect on the efficiency
of our algorithm. The reason is simple — while sampling path primitives
using this approach, we gain a small leeway in the placement of the primitives
and can avoid obstacles more easily. Hence the expansion of the tree is also
slightly accelerated.

The improvement caused by distancing primitives from each other in the
“gap” variation might be at first sight surprising. However, upon closer
inspection we can find out, that the effect our modification caused is mainly a
decrease in the usage of path primitives. Hence, the algorithm became more
similar to normal RRT.

This also means, that moderate usage of path primitives is not much
detrimental to the efficiency of the algorithm. Unfortunately, the difficult
question of when to use which primitive still remains.

31

4. Experimental results..................................

0.5

1.0

RRT RRTConnect PRM DatabaseRRTbasicDatabaseRRTskip DatabaseRRTgap
planner

tim
e

Figure 4.7: Box plot graph with hidden outliers describing the same data as
figure 4.6. (Time is in seconds)

What is surprising is the effectiveness of the PRM and RRTConnect
algorithms, which cannot be even compared to normal RRT or any of our
RRT-based variants in these environments.

4.2 2D agent with joints

In this section we will take a look at a simple agent with multiple links in a 2D
environment with rotations. In our case, the agent will be shaped as a simple
“snake” with three body parts joint by two links. The links’ movements
are limited in such a way, that they can be at most about perpendicular to
one another (here, the joints’ angles are limited to an interval of [−1.5, 1.5]
radians). The environment will again be a grid, although this time, with a few
extra obstacles to increase the difficulty. Both the agent and the environment
are shown in figure 4.8. The full generated tree is not shown this time, since
we are working with a 5D configuration space and the visualization in 2D
space would be messy.

The primitives were once again generated by placing the agent into the
environment, checking for occupancy (this time with an occupancy grid
with 25 test points for better resolution) and creating a path towards a
randomly selected nearby configuration. This time, however, it was necessary
to divide the database into separate directories according to the position of
the two joints in the start configuration of each primitive (as explained in
3.3.2). 9 joint starting positions were selected, hence, 9 folders were created,

32

................................. 4.2. 2D agent with joints

0 2 4 6 8 10
0

2

4

6

8

10

obstacles
agent start
agent goal
path
agent

Figure 4.8: The environment with a multiple-link agent and a path connecting
the start and goal configurations. In this case the agent had a tendency to
straighten itself for most of the path.

each containing approximately 100 primitives. Furthermore, the number of
configurations in the primitives ranged from around 30 to 100.

Both findings from our previous environment were adopted when testing
the newly created database. That is, the sampling is again done similarly to
RRT-Path and deploying primitives close to one another is prohibited.

Our algorithm was tested with four different intervals of samples between
each path primitive deployment — 250, 500, 750, and 1000. The resulting
plots are shown in figures 4.9 and 4.10 alongside the usual RRT algorithm.
This time, we are focusing purely on the comparison with the RRT algorithm.

From the results we can clearly see, that we have finally reached a scenario,
where our database-based RRT triumphs over the traditional one. It should be
noted, that the improvement is not as drastic as we would wish. Furthermore,
it is was necessary to find the appropriate balance of the frequency of using
primitives, the distance between two path primitives deployment and the
optimal method for sampling the primitive. All these values are influenced
by the properties of the environment.

On the other hand, the results also show, that the optimal way to utilize
the path primitives is to use them moderately (although also not too little),
while having a big enough database to accommodate most possible situations
in the environment.

33

4. Experimental results..................................

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
time

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty planner

RRT

DatabaseRRT_250

DatabaseRRT_500

DatabaseRRT_750

DatabaseRRT_1000

Figure 4.9: The cumulative distribution function describing the performance
of the tested algorithms in the advanced 2D environment with a multiple-link
agent. The cut-offs on the right hand side means, that the algorithms were not
able to find a solution in the allocated time. (Time is in seconds)

0.0

2.5

5.0

7.5

10.0

RRT DatabaseRRT_250 DatabaseRRT_500 DatabaseRRT_750 DatabaseRRT_1000
planner

tim
e

Figure 4.10: Box plot graph with hidden outliers describing the same data as
figure 4.9. (Time is in seconds)

34

................................ 4.3. Simple 3D environment

4.3 Simple 3D environment

In the last section of this chapter we will use the database-based RRT to
solve a simple 3D environment with rotations, that is to say, an environment
with 6-dimensional configuration space.

We shall still use a grid-like environment, as they provide sufficient com-
plexity and will give us a more clear view of the situation the planning is in
(although rendering it just as an image might still make it probably confusing).
In this case, block shaped obstacles and a “double-L” shaped agent shall be
used, as seen on figure 4.11.

The database creation will proceed similarly as in section 4.2 with the
difference, that the occupation grid is 3D. Method of sampling primitives and
keeping gaps between deployed primitives remains unchanged since previous
section. Three different intervals between path primitive usages were tested.

Figure 4.11: A simple 3D environment with block obstacles in a grid and a
“double-L” shaped agent (Visible in the lower right of the image). The tree
graph was created using the database-based RRT. Green nodes were sampled
uniformly, red were created using path primitives.

35

4. Experimental results..................................
Once again, we can see the results of benchmarking our algorithms and

others in figures 4.12 and 4.13. Unlike in the previous section, we were not
able to achieve better results than RRT. It is clear, that the environment was
not by any means too easy, as especially normal RRT seemed to be struggling,
though not as much as in section 4.2. Despite that, the database-based
RRT was not completely ill-suited for this environment, as it even achieved a
similar performance to RRT.

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
time

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

planner

RRT

RRTConnect

PRM

DatabaseRRT_500

DatabaseRRT_750

DatabaseRRT_1000

Figure 4.12: The cumulative distribution function describing the performance
of the tested algorithms in the 3D environment. The cut-offs on the right hand
side once again means, that the algorithms were not able to find a solution in
the allocated time. (Time is in seconds)

Judging by the experiences we gained throughout this chapter, it might
still be possible to further increase the solving speed of our algorithm by
tinkering with the size of the database, the method of sampling primitives, or
the interval between usages of primitives. However, such approach would be
already akin to “cherry picking” and would be detrimental to possible future
attempts at generalizing our algorithm.

36

................................ 4.3. Simple 3D environment

0.2

0.3

0.4

0.5

0.6

0.7

RRT RRTConnect PRM DatabaseRRT_500DatabaseRRT_750DatabaseRRT_1000
planner

tim
e

Figure 4.13: Box plot graph with hidden outliers describing the same data as
figure 4.12. (Time is in seconds)

37

38

Chapter 5
Conclusion

In this thesis, we discussed existing sampling based motion planning algo-
rithms, their advantages, and also their disadvantages. We attempted to
tackle one of these disadvantages by introducing a novel way of sampling
configuration space by following predetermined path primitives. We have
shown a few methods for creating databases of said primitives and used them
in an attempt to enhance the RRT algorithm.

In the experimental section, we have tested the proposed algorithm in
various environments and compared it against state of the art implementations
of sampling based algorithms. The results show, that in simpler environments
the path primitives do not provide much improvement for the already highly
efficient RRT algorithm and are often rather hindering it. However, in more
complex environments, we have seen the database-based RRT not only keep
up with with standard RRT algorithm, but in some cases even outperform it.

The best results were obtained by using a large database of path primitives,
efficient methods for sampling the primitives, and by deploying the primitives
moderately. This leads us to believe, that the path primitives should never
overtake the RRT algorithm. Instead, they should only be used when the
RRT algorithm encounters a complicated situation hindering the expansion
of its tree. However, the question of how to recognize or predict the optimal
moment for using a path primitive, remains still largely unanswered and is,
therefore, open to further research.

39

40

Bibliography

[1] “Rapidly-exploring random trees: A new tool for path planning,” Com-
puter Science Department, Iowa State University, Tech. Rep. 9811, Oct.
1998.

[2] Steven M. LaValle, “Planning Algorithms”, Cambridge University Press,
2006.

[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, Jun.
2011.

[4] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580, Aug.
1996.

[5] D. Hsu, J. C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,“ in Proc. IEEE Int. Conf. Robot. Autom., vol. 3.
Apr. 1997, pp. 2719–2726.

[6] J. M. Phillips, N. Bedrossian, and E. E. Kavraki, “Guided expansive
spaces trees: A search strategy for motion- and cost-constrained state
spaces,” in Proc. IEEE ICRA, vol. 4. Apr./May 2004, pp. 3968–3973.

[7] Vojtěch Vonásek, Jan Faigl, Tomáš Krajník, and Libor Přeučil,
“RRT–Path: a guided Rapidly-exploring Random Tree”, The Gerstner
Laboratory for Intelligent Decision Making and Control Department of
Cybernetics, Faculty of Electrical Engineering Czech Technical University
in Prague, 2009.

[8] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in Proc. IEEE International Conference on
Robotics and Automation ICRA’00., vol. 2. IEEE, 2000, pp. 995– 1001.

[9] Troy McMahon, Aravind Sivaramakrishnan, Edgar Granados, Kostas E.
Bekris, “A Survey on the Integration of Machine Learning with Sampling-
based Motion Planning”, Rutgers University, 2022.

41

5. Conclusion......................................
[10] Michael Janner, Yilun Du, Joshua B. Tenenbaum, Sergey Levine, “Plan-

ning with Diffusion for Flexible Behavior Synthesis”, 2022.

[11] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybern., vol. 4, no. 2, pp. 100–107, 1968.

[13] OMPL — The Open Motion Planning Library.
https://ompl.kavrakilab.org/ (cited: May 2024).

[14] RAPID — Robust and Accurate Polygon Interference Detection
http://gamma.cs.unc.edu/OBB/ (cited: May 2024).

[15] Blender
https://www.blender.org/ (cited: May 2024).

[16] OpenCV
https://opencv.org/ (cited: May 2024).

[17] Planner Arena.
https://plannerarena.org/ (cited: May 2024).

[18] Mohamed Elbanhawi (Student Member, IEEE) and Milan Simic,
“Sampling-Based Robot Motion Planning: A Review”, 2014.

[19] B. R. Donald, “A search algorithm for motion planning with six degrees
of freedom,” Artif. Intell., vol. 31, no. 3, pp. 295–353, Mar. 1987

[20] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, Mar. 1986.

[21] Louis Bentley, “Multidimensional Binary Search Trees Used for Associa-
tive Searching”, Stanford University, 1975.

[22] I. Al-Bluwi, T. Siméon, and J. Cortés, “Motion planning algorithms for
molecular simulations: A survey,” Comput. Sci. Rev., vol. 6, no. 4, pp.
125–143, Jul. 2012.

[23] S. R. Lindemann and S. M. LaValle, “Steps toward derandomizing RRTs,”
in Robot Motion and Control, K. Kozłowski, Ed. London: Springer
London, 2006, pp. 287–300.

42

