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Abstract

Kaitai Struct (KS) is a powerful tool designed for working with binary formats.
It offers a declarative domain-specific language Kaitai Struct YAML (.ksy),
enabling the description of complex structures within binary data. With KS,
users can generate parsing modules in 11 target programming languages based
on provided specifications. The goal of this thesis is to add Julia as a 12th
target language to Kaitai Struct. This involves extending the Kaitai Struct
Compiler, implementing the Julia runtime library, and integrating the solution
into Kaitai Struct CI system. All these steps were successfully completed.
This allows users of the increasingly popular Julia language to use KS in their
projects.

Keywords Kaitai Struct, Julia, parsing, parser generator, binary format

Abstrakt

Kaitai Struct (KS) je mocný nástroj navržený pro práci s binárńımi formáty.
Nab́ıźı deklarativńı doménově specifický jazyk Kaitai Struct YAML (.ksy),
který umožňuje popis složitých struktur v rámci binárńıch dat. KS umožňuje
uživatel̊um generovat moduly pro parsováńı v 11 ćılových programovaćıch
jazyćıch na základě poskytnutých specifikaćı. Ćılem této práce je přidat Julii
jako 12. ćılový jazyk do Kaitai Struct. To zahrnuje rozš́ı̌reńı kompilátoru
Kaitai Struct, implementaci runtime knihovny v Julii a integraci řešeńı do
systému Kaitai Struct CI. Všechny tyto kroky byly úspěšně dokončeny. To
umožňuje uživatel̊um stále populárněǰśıho jazyka Julia použ́ıvat KS ve svých
projektech.

Kĺıčová slova Kaitai Struct, Julia, parsováńı, generátor parser̊u, binárńı
formát
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Chapter 1

Introduction

Binary files are versatile and widely used across various applications and in-
dustries. They are used for storing executable programs, multimedia content
like images and videos, structured data in databases, networking protocols,
system configuration files, and data interchange between different software ap-
plications and systems. They play a fundamental role in computer systems,
providing an efficient way of storing and processing data in a format that
computers can directly understand and manipulate.

Binary formats define the structure and organization of data within binary
files, specifying how different data types are encoded and stored.

Parsing is the process of extracting structured data from binary sources,
and it is crucial for analyzing and interpreting digital information. However,
several factors can make implementing parsers for binary formats challeng-
ing. Firstly, binary formats can vary widely in complexity, requiring parsers
to handle different data types, encoding schemes, etc. Additionally, parsing
binary data requires meticulous error handling to manage unexpected input
and edge cases, further complicating the implementation. Furthermore, endi-
anness and alignment add even more complexity to parser development. One
approach to make a parser implementation easier is to utilize tools that gen-
erate parsers from high-level descriptions. These tools abstract away low-level
implementation details, simplifying the parser development and reducing the
risk of errors.

Kaitai Struct (KS) is a free and open-source project designed for work-
ing with binary formats. KS offers a declarative domain-specific language to
describe the structure of binary data, allowing users to work with it in dif-
ferent programming languages. In Kaitai Struct, the format specification is
separate from the choice of programming language. A specification can be
automatically compiled into any of the 11 supported languages.

This thesis aims to improve KS by adding support for the Julia program-
ming language. This means extending the KS compiler, implementing a Julia
runtime library, and integrating the solution into Kaitai Struct CI system.

1



Thesis structure 2

1.1 Thesis structure

This thesis is structured as follows:
Chapter 2 provides an overview of binary formats and binary data parsing,

along with an introduction to the Julia programming language and the Kaitai
Struct project. Additionally, it explores several tools that address similar
challenges as Kaitai Struct.

Chapter 3 shows what KSC-generated parsing modules in Julia look like.
It also presents the Julia runtime library in the process.

In Chapter 4 we analyze how features of the Kaitai Struct YAML (KSY)
language can be translated and implemented in Julia.

Chapter 5 demonstrates the testing and briefly discusses the evaluation of
the implemented solution.



Chapter 2

Background

This Chapter provides an overview of binary formats and binary data parsing,
along with an introduction to the Julia programming language and the Kaitai
Struct project. Additionally, it explores several tools that address similar
challenges as Kaitai Struct.

2.1 Binary formats

A binary file is any file that contains at least some data that consists of se-
quences of bits that do not represent plain text [1]. Plain text formats use a
byte of computer memory to interpret it as a character. A binary format is a
more complex storage solution than a plain text format. Still, it will typically
provide faster and more flexible access to the data and use up less memory.

A file with a binary format is simply a block of computer memory, just like
a file with a plain text format. The difference lies in how the bytes of computer
memory are used [2].

The characteristic feature of a binary format is that there is no simple rule
for determining how many bits or how many bytes constitute a basic unit of
information. Given a series of, say, four bytes, we cannot assume that these
correspond to four characters, a single four-byte integer, or half of an eight-
byte floating-point value. A description of the rules for the format that states
what information is stored and how many bits or bytes are used for each piece
of information is necessary to extract the information from a binary file. [3].

2.2 Parsing binary data

Binary parsing is the process of extracting structured data from binary files
or streams. Unlike text-based formats such as JSON or XML, binary formats
store data in a compact, binary representation that is not human-readable.

3



Parsing binary data 4

Therefore, parsing binary data requires an understanding of the underlying
binary format and how to interpret it.

Parsing binary data involves several techniques depending on the complex-
ity of the format:

Fixed-Length Fields: Fields have fixed lengths, making parsing straight-
forward by reading a fixed number of bytes for each field.

Variable-Length Fields: Some formats use markers or delimiters to indicate
the start and end of variable-length fields, requiring more sophisticated
parsing techniques to identify and extract these fields.

Offset Pointers: Some formats may use pointers or offsets to refer to other
parts of the binary data, requiring additional steps to resolve these refer-
ences and navigate through the data.

2.2.1 Endianness
Endianness describes how multi-byte data is represented by a computer system
and is dictated by the CPU architecture of the system. There are two common
byte orders: big-endian and little-endian. In big-endian representation, the
most significant byte comes first, while in little-endian representation, the least
significant byte comes first [4].

The term comes from Swift’s “Gulliver’s Travels” via the famous paper
“On Holy Wars and a Plea for Peace” by Danny Cohen [5].

2.2.2 Data Types
Binary formats define specific data types and their representations within the
binary data. Types supported by most programming languages include inte-
gers (signed and unsigned), floating-point numbers, strings, and structures [6].

Integers can be represented using various bit widths (e.g., 8-bit, 16-bit,
32-bit, 64-bit) and can be signed or unsigned.

Floating-point numbers represent real numbers with fractional parts. They
are typically encoded using IEEE 754 standard formats.

Strings are sequences of characters [7] encoded using specific character
encodings such as ASCII, UTF-8, or UTF-16.

Structures define the layout of composite data types composed of multiple
fields. Each field may have a different data type and size.
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2.3 Julia Programming Language

Julia is a high-level, high-performance programming language specifically de-
signed for technical and scientific computing. Developed to address the short-
comings of existing languages in the domain of numerical and data-intensive
computing, Julia aims to provide a perfect balance between simplicity and
speed.

The creators of Julia experienced in languages like Matlab, Lisp, Python,
Ruby, and others, wanted to create a programming language that combines the
strengths of various languages while minimizing their limitations. The result
is an open-source language that combines the speed of C with the dynamism
of Ruby, the macros of Lisp, and the usability of Python. It is mainly used
in scientific computing, machine learning, data mining, and large-scale linear
algebra, offering the power of C with the simplicity of other languages. Julia
aims to be interactive yet compiled, providing the speed of C without the
complexity [8].

2.3.1 Key Features and Strengths
Julia features optional typing, multiple dispatch, and good performance that
is achieved using type inference and just-in-time (JIT) compilation (and op-
tional ahead-of-time compilation), implemented using LLVM. It is a multi-
paradigm, combining features of imperative, functional, and object-oriented
programming. Julia provides ease and expressiveness for high-level numerical
computing, in the same way as languages such as R, MATLAB, and Python,
but also supports general programming. To achieve this, Julia builds upon the
lineage of mathematical programming languages but also borrows much from
popular dynamic languages, including Lisp, Perl, Python, Lua, and Ruby. The
most significant departures of Julia from typical dynamic languages are [9]:

The core language imposes very little; Julia Base and the standard library
are written in Julia itself, including primitive operations like integer arith-
metic.

A rich language of types for constructing and describing objects, that can
also optionally be used to make type declarations.

The ability to define function behavior across many combinations of argu-
ment types via multiple dispatch.

Automatic generation of efficient, specialized code for different argument
types.

Good performance, approaching that of statically compiled languages like
C.
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Although one sometimes speaks of dynamic languages as being typeless, they
are not: every object, whether primitive or user-defined, has a type. The lack of
type declarations in most dynamic languages, however, means that one cannot
instruct the compiler about the types of values, and often cannot explicitly
talk about types at all. In static languages, on the other hand, while one can
and usually must annotate types for the compiler, types exist only at compile
time and cannot be manipulated or expressed at run time. In Julia, types are
themselves run-time objects, and can also be used to convey information to
the compiler [9].

Apart from the breakout in runtime performances from traditional high-
level dynamic languages, the fact that Julia was created from scratch means it
uses the best, most modern technologies, without concerns over maintaining
compatibility with existing code or internal architectures [10]. With substan-
tial assistance from Julia developers, particularly those involved in the devel-
opment of the JuMP (Julia for Mathematical Programming) package, Julia
is an ideal tool for students and professionals engaged in operations research
and its related domains, including industrial engineering, management science,
transportation engineering, economics, and regional science [11].

2.4 Kaitai Struct

Kaitai Struct is a free and open-source project that has been developed since
2016. It provides a declarative domain-specific language Kaitai Struct YAML
(KSY). Some of the provided features include a powerful expression language,
primitive built-in data types, and the ability to define new types. KSY offers
a structured approach to define data formats in a human-readable format,
making it easier to understand and maintain complex data structures. Format
specifications written in that language have .ksy extension. Kaitai Struct
Compiler then can compile the KSY format specifications into parsing modules
in 11 target languages. Those specifications also can be translated to GraphViz
diagrams.

Let us see what the KSY language looks like. As an example, we can use
a fixed-size structure. Below is an illustration of a database entry represented
in the Julia programming language [12]:

struct AnimalRecord
name::Vector{UInt8}; /* Name of the animal */
birth_year::UInt16 /* Year of birth */
weight::Float64; /* Current weight in kg */

end

And here is what its .ksy specification would look like [12]:
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meta:
id: animal_record
endian: be

seq:
- id: name

type: str
size: 24
encoding: UTF-8

- id: birth_year
type: u2

- id: weight
type: f8

The Kaitai Struct Language is a YAML-based language. Each .ksy file
serves as a description of a type (format). Descriptions usually start with
a meta section. Top-level info on the whole described structure is specified
in this section. seq element with an ordered sequence of elements describes
which attributes this structure consists of. Every attribute includes several
keys, namely [12]:

id is used to give the attribute a name

type designates the attribute type:

no type means that data are represented as a raw byte array; size des-
ignates the number of bytes in the array
s1, s2, s4, u1, u2, u4, etc for integers
∗ “s” means signed, “u” means unsigned
∗ number is the number of bytes
∗ non-default endianness can be used by appending be or le - i.e. s4be,

u8le, etc
f4 and f8 for IEEE 754 floating point numbers; 4 and 8, again, designate
the number of bytes (single or double precision)
∗ non-default endianness can be enforced by appending be or le - i.e.

f4be, f8le, etc
str is used for strings; that is almost the same as “no type”, but a string
has a concept of encoding, which must be specified using encoding

2.4.1 KSY format gallery
Kaitai Struct provides a Format Gallery that shows a variety of binary file
formats along with their respective Kaitai Struct specifications. Exploring
the Format Gallery can help to understand the main features of the Kaitai
Struct Language. The gallery includes formats from different fields such as
multimedia, cryptography, compression, and networking.
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2.4.2 Kaitai Struct Compiler
In its most general form, a compiler is a program that accepts as input a
program text in a certain language and produces as output a program text in
another language, while preserving the meaning of that text. This process is
called translation, as it would be if the texts were in natural languages [13].

The Kaitai Struct Compiler1 translates .ksy specifications into parsers in
11 programming languages. It is written in Scala language. The compiler is
released under the GPLv3 license.

2.4.3 Runtime Libraries
To generate a parsing module in a target language Kaitai Struct Compiler
requires a utility language-specific runtime library. The library must follow
the Kaitai Stream API. Generated modules use that library to parse data
types provided by KSY, position in byte stream, and process byte arrays. Not
only do runtime libraries make work with the byte streams easier but also they
improve the readability of the generated modules. The Kaitai Stream API also
standardizes some functions that may differ in different languages and provides
processing operations to aid the conversion of byte arrays into their unpacked
forms.

Runtime libraries provide throwable validation errors. These errors help
validate files during the parsing process of the file formats that have security
measures to ensure that parsed files are in the required format.

2.4.4 Kaitai CI
Ensuring the stability and reliability of Kaitai Struct across multiple languages,
platforms, and compilers is a difficult task. With 11 programming languages
and various platforms involved, manually testing everything becomes imprac-
tical. To address this, Kaitai Struct has set up an automated testing system
that is integrated into its Continuous Integration (CI) setup.

The system puts together the testing process across 233 test KSY specifi-
cations. Each test consist of three parts: the KSY specification, a binary file,
and the expected parsed values.

The testing process begins with the compilation of KSY specifications into
parsers across all supported languages, using the latest version of the Kaitai
Struct compiler. After that, the binary file associated with each test is parsed
with the generated parser. The parsing output is then compared against the
expected results.

Kaitai Struct uses the Kaitai Struct Test (KST) language to make the test-
ing process consistent. This language defines the expected output for each test
case. The KST translator uses these specifications to automatically generate

1https://github.com/kaitai-io/kaitai_struct_compiler

https://github.com/kaitai-io/kaitai_struct_compiler
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unit tests. These unit tests contain assertions that validate the equality of
expected and actual parsed values.

Let us take a look at what KST specifications look like. Consider this KSY
specification [14]:

meta:
id: term_strz
endian: le

seq:
- id: s1

type: str
encoding: UTF-8
terminator: 0x7c

- id: s2
type: str
encoding: UTF-8
terminator: 0x7c
consume: false

- id: s3
type: str
encoding: UTF-8
terminator: 0x40
include: true

Once a parser is generated based on this format, it can be tested with
arbitrary binary data. However, we select a specific binary input and create
a corresponding KST specification with test assertions for expected values.
Here’s what the corresponding KST specification might look like [14]:

id: term_strz
data: term_strz.bin
asserts:

- actual: s1
expected: '"foo"'

- actual: s2
expected: '"bar"'

- actual: s3
expected: '"|baz@"'

2.5 Similar works

There are lots of tools and frameworks for parsing binary data, each offering
unique approaches and capabilities. This section briefly overviews several tools,
that solve similar problems as Kaitai Struct does.
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2.5.1 EverParse
EverParse is a framework for generating parsers and serializers from tag-length-
value binary message format descriptions. The resulting code is verified to be
safe (no overflow, no use after free), correct (parsing is the inverse of serializa-
tion), and non-malleable (each message has a unique binary representation).
These guarantees underpin the security of cryptographic message authentica-
tion and enable testing to focus on interoperability and performance issues [15].

EverParse consists of two parts: LowParse, a library of parser combinators
and their formal properties written in F*; and QuackyDucky, a compiler from
a domain-specific language of RFC message formats down to low-level F* code
that calls LowParse. While LowParse is fully verified, we do not formalize the
semantics of the input language and keep QuackyDucky outside our trusted
computing base. Instead, it also outputs a formal message specification, and F*
automatically verifies our implementation against this specification. EverParse
yields efficient zero-copy implementations, usable both in F* and in C [15].

2.5.2 Spicy
Spicy is a parser generator that makes it easy to create robust C++ parsers for
network protocols, file formats, and more [16]. Spicy offers a domain-specific
scripting language to define the syntax and semantics of input formats.

The Spicy toolchain turns such grammars into efficient C++ parsing code
that exposes an API to host applications for instantiating parsers, feeding them
input, and retrieving their results. At runtime, parsing proceeds fully incre-
mentally—and potentially highly concurrently—on input streams of arbitrary
size. Compilation of Spicy parsers takes place either just-in-time at startup
(through a C++ compiler), or ahead-of-time either by creating pre-compiled
shared libraries or by giving you generated C++ code that you can link into
your application [16].

2.5.3 BinData
BinData provides a declarative way to read and write structured binary data.
The programmer specifies the format of the binary data and BinData works
out how to read and write data in this format. It is an alternative to Ruby’s
#pack and #unpack methods [17].

The BinData documentation provides the following comparison of parsing
data using Ruby’s built-in functionality and using the library. Here is what
the first option may look like:
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io = File.open(...)
len = io.read(2).unpack("v")[0]
name = io.read(len)
width, height = io.read(8).unpack("VV")
puts "Rectangle #{name} is #{width} x #{height}"

Here is what parsing the same structure using BinData looks like:

class Rectangle < BinData::Record
endian :little
uint16 :len
string :name, read_length: :len
uint32 :width
uint32 :height

end
io = File.open(...)
r = Rectangle.read(io)
puts "Rectangle #{r.name} is #{r.width} x #{r.height}"

It supports all the common datatypes that are found in structured binary data.
Support for dependent and variable length fields is built in [17].

2.5.4 FileIO.jl
FileIO aims to provide a common framework for detecting file formats and
dispatching to appropriate readers/writers. The two core functions in this
package are called load and save, and offer high-level support for formatted
files (in contrast with julia’s low-level read and write) [18].

If a format is supported by FileIO, the load function can be used to read
data from a formatted file. FileIO will attempt to find an installed package
capable of reading filename; if no such package is found, it will suggest an
appropriate package for the user to add [18].



Chapter 3

Methodology and design

Parsers are pervasive software basic blocks: as soon as a program needs to
communicate with another program or to read a file, a parser is involved.
However, writing robust parsers can be difficult, as is revealed by the amount
of bugs and vulnerabilities related to programming errors in parsers. One way
to solve the problem is to rely on tools to generate the actual parsers from
high-level descriptions [19]. This chapter shows how one can use one of such
tools the Kaitai Struct to generate parsing modules in the Julia programming
language.

3.1 Generated parsers design

Let us consider the following example of a binary format specification in KSY:

meta:
id: example
bit-endian: be

seq:
- id: a

type: b1
- id: b

type: b32
- id: c

type: b7

This specification describes a simple format named “example”, consisting of
three fields of different sizes. The meta section provides additional information
for the “example” format. In some cases, the meta section might be used
in intermediate types as well, for example, to switch default endianness or
encoding [20]. The fields inside seq are parsed sequentially, one after another.

12
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The id and type specify the name and type of the field. The identifier b
represents bits, with the number indicating the number of bits.

We can define a mutable struct and override its constructor to create a
parser for the format above in Julia. Fields inside seq can naturally serve
as attributes of the struct. Since these fields are parsed sequentially, we
can populate them during parsing using Julia’s incomplete initialization. The
parsing and assigning can be extracted to a function to make the code more
readable. Each parser generated by the Kaitai Struct Compiler must provide
a from_file method for ease of use. A user can call the from_file function
with the path to the binary file to parse it. The generated parser looks like
this:

mutable struct Example
a::Bool
b::UInt32
c::UInt8
_io::KaitaiStruct.KaitaiStream
_root::Union{Example, Nothing}
_parent::Any
function Example(_io, _parent = nothing, _root = nothing)

this = new()
this._io = _io
this._parent = _parent
this._root = _root === nothing ? this : _root
_read(this)
this

end
end

function from_file(filename::String)::Example
Example(KaitaiStruct.KaitaiStream(open(filename, "r")))

end

function _read(this::Example)
this.a = KaitaiStruct.read_bits_int_be(this._io, 1) != 0
this.b = KaitaiStruct.read_bits_int_be(this._io, 32)
this.c = KaitaiStruct.read_bits_int_be(this._io, 7)
nothing

end

Each generated struct includes special pseudo-attributes: _io, _parent,
and _root. The _parent attribute can be used to access the parent structure
in each generated type. In some cases, writing several _parent attributes
in a row may be impractical or impossible, especially if describing a type
that might be used on several different levels, requiring a different number of
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_parent attributes. In such cases, the special pseudo-attribute _root can be
used to navigate from the top-level type.

Notice how the generated parser follows the corresponding .ksy specifica-
tion. This alignment is possible because the parsing of common data structures
is extracted to a dedicated utility library called the runtime library, which pro-
vides methods to read commonly used data types from a byte stream.

3.2 The Julia Runtime library

The Julia Runtime library is a Julia package that follows the Kaitai Stream
API. It is published as a Julia package under KaitaiStruct.jl name, making
it accessible to the broader Julia community. The package is published under
KaitaiStruct.jl name. Kaitai Stream API includes the following methods, that
can be classified into the following categories:

stream positioning functions include: checking for the end of the stream
iseof, moving the stream position seek, retrieving the current position
pos, and determining the size of the stream size.

Integer number operations include reading signed read_s1 and unsigned
read_u1 values. Both big-endian and little-endian formats are supported
for signed (e.g., read_s2be, read_s4le) and unsigned (e.g., read_u2be,
read_u4le) integers.

Floating-point number operations provide reading for both big-endian and
little-endian (read_f4be, read_f8be, read_f4le, read_f8le) formats.

Unaligned bit values can be processed using functions like align_to_byte,
read_bits_int, and read_bits_array.

Byte arrays can be read with functions read_bytes, read_bytes_full,
and read_bytes_term. Those methods can be used to work with variable-
length structures or delimited structures.

Byte array processing methods include XOR operations process_xor, ro-
tation process_rotate_left, and zlib compression process_zlib.

Miscellaneous runtime operations include a static modulo function static
mod. It is important to ensure that such operations work in the expected
way with for example negative numbers.

These methods operate on the KaitaiStream structure defined within the
module:
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mutable struct KaitaiStream
io::IO
bits_left
bits
KaitaiStream(io) = new(io, 0, 0)

end

The code above declares a KaitaiStream structure that has io, bits_left,
and bits attributes. The attributes bits_left, and bits allow to work with
bits. Julia built-in functions can read only bytes from byte streams, so to
overcome that KaitaiStruct.read_bits reads bytes from the stream and
saves unused bits in the KaitaiStream.bits field. It is important to note
that while Julia’s built-in Base.eof function will return true when there are
unread bits left, KaitaiStruct.iseof should be used when working with bits
to ensure correct behavior.

The Kaitai API also defines several error types that can be thrown during
parsing. Let’s take a closer look at each of them:

ValidationFailedError: This serves as an abstract type for validation
errors. It encompasses the following specific validation errors. All of them
help to safely handle scenarios when KSY’s valid key is used:

ValidationNotEqualError: Indicates that a value is not equal to the
expected value.
ValidationLessThanError: Occurs when a value is less than the ex-
pected value.
ValidationGreaterThanError: Occurs when a value is greater than
the expected value.
ValidationNotAnyOfError: Indicates that a value does not match any
of the expected values.
ValidationExprError: Indicates that a value does not match the ex-
pected expression.

UndecidedEndiannessError: This error occurs when the endianness of
the data cannot be determined.

3.3 Extending KSY compiler to support Julia

KS compiler is written in Scala language. Adding support for Julia language
to KS compiler consists of implementing a language-specific compiler that can
generate code in Julia. Typically a language-specific compiler consists of two
basic parts. In our case they are called JuliaCompiler and JuliaTranslator.
But we also need the third part called JuliaClassCompiler.
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The JuliaCompiler maps KS concepts to corresponding concepts in Julia
and generates the parsing modules in Julia. For example, it defines how KS’s
repeated parsing of a field is mapped to a for cycle in Julia. JuliaCompiler
uses JuliaTranslator to translate basic data types, operators, and expres-
sions from KSY to Julia syntax. For instance, an integer in KS would be trans-
lated to an integer in Julia by the JuliaTranslator. JuliaClassCompiler
focuses on complex types. It translates KS types into Julia structs, ensuring
that data structures are appropriately represented in the generated Julia code.

The next Chapter provides the detailed information about how KS concepts
are mapped to Julia code.



Chapter 4

Implementation

Kaitai Struct offers a declarative domain-specific language Kaitai Struct YAML
(KSY). This chapter shows how KSY’s primitive types, methods, and its other
concepts are translated to Julia.

4.1 KSY primitive types

KSY byte arrays are defined by omitting the type attribute.The size of a byte
array is thus determined using size, size-eos, or terminator fields, one of
which is mandatory in this case [12].

seq:
- id: byte_array

size: 16

In Julia, they can be represented by using Base.Vector{UInt8} type. Fixed-
sized byte arrays can be represented using a byte-array string literal: b"...".
KSY booleans can be specified as boolean literal true and false values or
can be derived by using type: b1. This type specifies that a single bit from
a stream is parsed and represented as a boolean value: 0 becomes false, and
1 becomes true [12]. However, assigning 0 or 1 directly to a field with type
Base.Bool in Julia is not allowed. To handle this, the parsed value can be
compared to 0, as shown in the following code snippet:

KaitaiStruct.read_bits_int_be(io, 1) != 0

It is important to be aware of incomplete initialization in Julia. To allow for
the creation of incompletely initialized objects, Julia allows the new function to
be called with fewer than the number of fields that the type has, returning an
object with the unspecified fields uninitialized [21]. In Julia, an uninitialized
Base.Bool defaults to false, not nothing. To simulate three-valued logic
Union{Bool, Nothing} type can be used.

17
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Three-valued logic may be needed for example when endianness was addi-
tionally specified in the KSY meta section. Consider the following example:

meta:
endian:

switch-on: indicator
cases:

'[0x49, 0x49]': le
'[0x4d, 0x4d]': be

Kaitai Struct handles such cases by adding _is_le attribute to the type [22]. In
case indicator matches neither of the cases, the special undecided endianness
error must be thrown. However, if Base.Bool is used for _is_le, it will
be initialized to false, potentially leading to parsing data with the wrong
endianness. Adding the third nothing option helps avoid this issue.

In KSY, strings are typically specified using the type: str or type: strz
which implicitly adds terminator: 0. Literal strings can be specified using
double quotes or single quotes. Single-quoted strings are interpreted literally,
meaning backslashes \, double quotes ", and other special symbols carry no
special meaning; they are treated as part of the string [12]. In Julia strings are
denoted by double quotation marks "text" [23]. Single quotation marks are
used for characters in Julia 'c'. Certain characters, such as $, must be escaped
during the translation. This is necessary because Julia allows interpolation into
string literals using $.

4.2 Relational, bitwise and logical operators

Literals in KSY can be combined using operators to create meaningful expres-
sions. Operators vary depending on the types involved: for instance, the +
operator applied to two integers represents arithmetic addition, while the same
operator applied to two strings signifies string concatenation [12]. Relational
operators can be directly translated to Julia without any alterations. In KSY,
bitwise XOR is denoted by ˆ, whereas in Julia the same operator is presented
by ⊻ [24]. KSY logical operators require the following translation not becomes
!, and becomes &&, and or becomes ||.

4.3 Arithmetic operators

KSY arithmetic operators are almost identical to the ones in Julia. However,
some adjustments must be made during translation. In KSY, if both operands
are integers, the result of a division operation is an integer [12]; otherwise,
it is a floating-point number. For example, 7 / 2 equals 3 in KSY, whereas
7 / 2.0 equals 3.5. In Julia, 7 / 2 produces 3.5, so for integer division, KSC
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uses the Base.fld function instead of /. It’s worth noting that the // operator
in Julia yields the special type Rational, and the comparison 7//2 == 3.5
evaluates to true [24].

In KSY, % denotes modulo, whereas in Julia, this symbol represents the
remainder operator [24]. The Kaitai Stream API standardizes the computation
of modulo, and the Julia Runtime library provides its implementation [25].

The addition operator can be used with two strings in KSY, resulting in
their concatenation [12]. Julia, on the other hand, uses the multiplication
operator for string concatenation. It’s important to be aware of potentially
dangerous situations such as the concatenation of invalid UTF-8 strings. The
resulting string may contain different characters than the input strings, and its
number of characters may be lower than the sum of the number of characters
of the concatenated strings [23].

4.4 Conversion methods

The KSY expression language provides several built-in conversion methods for
various data types.

Floating-point numbers in KSY can be converted to integers using the
to_i method, which truncates the floating-point value [12]. In Julia, the same
operation is performed using the Base.trunc() function.

KSY provides the to_s(encoding) method to convert byte arrays into
strings [12]. The similar functionality is available in the StringEncodings1

package in Julia. The package offers support for decoding and encoding texts
across various character encodings.

Converting a string to an integer can be done in KSY by the to_i method,
with an optional radix argument to specify the base [12]. Julia has a built-in
Base.parse() function that serves the same purpose. It allows base specifi-
cation as well.

For booleans and enums, KSY provides the to_i method to convert them
to their corresponding integer representations [12]. In Julia, this functionality
can be achieved using the Base.Int() function [9].

For integers, the to_s method in KSY allows conversion to strings [12]. In
Julia, the same result can be achieved by using the Base.string() function.
KSY allows using prefixes indicating base we have to be careful to translate
the literal with the wanted base. It is possible to use as a visual separator in
KSY integer literals. Julia’s built-in Base.string() has the functionality to
choose the output base and handles as well [23].

1https://github.com/JuliaStrings/StringEncodings.jl

https://github.com/JuliaStrings/StringEncodings.jl
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4.5 String Methods

KSY offers several methods for string manipulation. The length method re-
turns the number of characters in a string, while reverse provides the reversed
version of the string. Additionally, the substring(from, to) method extracts
a portion of the string between the characters at the specified offsets (from
and to - 1), inclusive of from and exclusive of to [12].

To translate these methods to Julia, we can use Base.length() for ob-
taining the string length, Base.reverse() for reversing the string, and range
indexing for substring extraction [23]. It’s important to note that Julia’s in-
dexing starts from one, so when using range indexing, we need to adjust the
from value by incrementing it by one. However, the original to value can be
directly used in range indexing as it is inclusive in the indexing scheme of
Julia [9].

4.6 Array methods

KSY provides the following methods to work with arrays [12]:

first: Retrieves the first element of an array.

last: Retrieves the last element of an array.

size: Returns the number of elements in an array.

min: Retrieves the minimum element of an array.

max: Retrieves the maximum element of an array.

In Julia, the keywords begin and end can be used in indexing to ac-
cess the first and last elements of an array respectively. For obtaining the
minimum and maximum elements of an array, Julia provides the functions
Base.minimum() and Base.maximum(). To determine the number of elements
in an array, Base.size() can be used [9].

It’s important to note that in KSY, the term “number of elements in an
array” for a 2-dimensional array refers to the number of “rows”. In Julia, how-
ever, Base.length() returns the total number of elements across all dimen-
sions of an array, while Base.size() returns a tuple containing the number of
elements for each dimension. To replicate the behavior of KSY’s size method,
we can call Julia’s Base.size(_, 1). The second argument 1 means that size
over the first dimension is calculated.

4.7 KSY features

Let us explore specific features of the KSY language. Notice that code snippets
in Julia do not always show the exact way of what generated parsers look
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like. They are meant to show how the corresponding feature in KSY can be
implemented in Julia.

4.7.1 Variable-length structures
Variable-length structures are common in many protocols and file formats,
especially for strings where conserving bytes is crucial. For instance, using a
fixed buffer size of 512 bytes for a string that typically ranges from 3 to 5 bytes
in length would be inefficient. To address this, Kaitai Struct offers support for
variable-length structures [12].

In Kaitai Struct, handling variable-length structures is straightforward.
For example, consider parsing a string preceded by an integer that designates
its length:

seq:
- id: my_len

type: u4
- id: my_str

type: str
size: my_len
encoding: UTF-8

To achieve this functionality in Julia we can just read my_len and pass it as
an argument to KaitaiStruct.read_bytes to specify the number of bytes to
parse. After that, we can decode the read bytes using the specified encoding:

my_len = KaitaiStruct.readU4(io)
my_str = decode(KaitaiStruct.read_bytes(io, my_len), "UTF-8")

Kaitai Struct also allows specifying a size that spans automatically to the
end of the stream. This can be achieved using a slightly different syntax [12]:

seq:
- id: string_spanning_to_the_end_of_file

type: str
encoding: UTF-8
size-eos: true

In this case, we can not use KaitaiStruct.read_bytes as the number of
needed bytes is unknown. Instead, the Julia Runtime library provides a func-
tion to read bytes until the end of a stream KaitaiStruct.read_bytes_full:

string_spanning_to_the_end_of_file
= decode(KaitaiStruct.read_bytes_full(io), "UTF-8")
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4.7.2 Delimited structures
Delimited structures offer a flexible way to handle data without requiring fixed-
size buffers, and Kaitai Struct provides support for defining and parsing such
structures. Let’s explore this concept further with examples and options avail-
able in KSY.

Consider a common scenario of parsing a null-terminated string [12]:

seq:
- id: my_string

type: str
terminator: 0
encoding: UTF-8

In this example, the string is terminated by the null byte (0). By default,
the terminator is consumed and not included in the read data. However, KSY
provides options to customize this behavior [12]:

consume: false: Specifies not to consume the terminator.

include: true: Includes the terminator in the read data.

KSY also has the option to silence an end-of-stream error and use parsed
data if no terminator is met eos-error: false. It is set to true by default.

We can use KaitaiStruct.read_bytes_term from the Julia Runtime li-
brary to read such structures in Julia. This function reads bytes from the
stream until the terminator byte is encountered or the end of the stream is
reached. It offers flexibility through arguments such as including or consuming
the terminator byte and handling end-of-stream errors. The arguments are:

stream::KaitaiStream: The input stream from which bytes will be read.

term::UInt8: The terminator byte.

include_term::Bool: A flag indicating whether to include the terminator
byte in the output.

consume_term::Bool: A flag indicating whether to consume the termina-
tor byte.

eos_error::Bool: A flag indicating whether to raise an error if the end of
the stream is reached before encountering the terminator byte.

The null-terminated string can be parsed in the following way:

bytes = KaitaiStruct
.read_bytes_term(io, 0x00, false, true, true)

my_string = decode(bytes, "UTF-8")
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Reading “until the terminator byte is encountered” could be dangerous.
What if we never encounter that byte? A common way to avoid that danger
is to have both a fixed-sized buffer and a terminator [12].

It‘s possible to model that kind of behavior in Kaitai Struct just by com-
bining size and terminator [12]:

seq:
- id: name

type: str
size: 16
terminator: 0
encoding: UTF-8

This works in 2 steps:

size: Ensures that exactly 16 bytes are read from the stream.

terminator: Given that size is present, only works inside these 16 bytes,
cutting the string short early with the first terminator byte encountered,
saving the application from getting all that trailing garbage.

This functionality can be reached by using KaitaiStruct.read_bytes to
read a specified number of bytes and calling KaitaiStruct.bytes_terminate
to trim out unnecessary data. The function allows choosing whether to include
the terminator byte.

raw_bytes = KaitaiStruct.read_bytes(io, 16)
cut_bytes = KaitaiStruct

.bytes_terminate(raw_bytes, 0x00, false)
name = decode(cut_bytes, "UTF-8")

4.7.3 Substructures (subtypes)
In KSY, you can define additional types within the same .ksy file, making it
easier to manage repetitive data structures. Let’s take a closer look at how
this works and how you we can achieve similar functionality in Julia.
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seq:
- id: track_title

type: str_with_len
- id: album_title

type: str_with_len
- id: artist_name

type: str_with_len
types:

str_with_len:
seq:

- id: len
type: u4

- id: value
type: str
encoding: UTF-8
size: len

Here, a type named str_with_len is defined, allowing for its reuse in
the track_title, album_title, and artist_name fields. The types section
encapsulates the definition of str_with_len, where its structure is specified
using the seq designation.

Notice that there is no need for meta:/id: in the types: section, as the
type name is derived from the type key name here [12].

To achieve the same functionality in Julia, we can create a struct and
customize its constructor to parse the necessary data from the stream. Here’s
an example implementation

mutable struct StrWithLen
len::UInt32
value::String
...
function StrWithLen(...)

this = new()
this.len = KaitaiStruct.readU1(this._io)
this.value = decode(

KaitaiStruct.read_bytes(this._io, this.len), "UTF-8")
this

end
end

With this setup, parsing becomes straightforward:

track_title = StrWithLen(...)
album_title = StrWithLen(...)
artist_name = StrWithLen(...)
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The format description may contain several types: fields at different levels.
A type name must be unique only within the scope of the types: field in which
it is declared. This may lead to naming conflicts for languages that do not
support classes. Consider this example [12]:

seq:
- id: main_data

type: main
- id: dummy

type: dummy_obj
types:

main:
seq:

- id: foo
type: foo_obj

types:
foo_obj:

seq:
...

dummy_obj:
seq:

- id: foo
type: foo_obj

types:
foo_obj:

seq:
...

Two types with the same name, foo_obj, are declared at different levels.
Class-based languages can implement a parser for such formats using inner
classes, as an inner class is associated with an instance of its enclosing class [26].
Julia, however, is not a class-based language, so in my implementation, the
name of a type includes the name of the parent type as a prefix:

mutable struct DummyObj
...

mutable struct DummyObj_FooObj
...

KSY’s expression language also allows users to refer to attributes of other
types. Here’s an example of its usage [12]:
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seq:
- id: header

type: main_header
- id: body

size: header.body_len
types:

main_header:
seq:

- id: body_len
type: u4

If the body_len attribute were in the same type as the body, we could
simply use size: body_len. However, in this case, we have decided to split
the main header into a separate subtype, so we must access it using the dot
operator — i.e., size: header.body_len. In Julia, we can access attributes
of other objects using the dot operator, similar to how it’s done in KSY.

4.7.4 Conditionals
Certain fields may be optional and exist only under specific conditions in some
protocols and file formats. For instance, a byte may designate whether another
field exists 1 or not 0. In Kaitai Struct, we can handle such scenarios using
the if key [12]:

seq:
- id: has_crc32

type: u1
- id: crc32

type: u4
if: has_crc32 != 0

In this example, a boolean expression is specified in the if key using ex-
pression language. If the expression evaluates to true, the field is parsed and
the result is assigned. If the expression evaluates to false, the field is skipped,
and accessing it will return nothing (or its closest equivalent in our target
programming language).

In Julia, this can be done the following way:

has_crc32 = KaitaiStruct.readU1(io)
if has_crc32 != 0

crc32 = KaitaiStruct.readU4be(io)
end

Note that by default has_crc32 can be initialized with a random value [21].
This is because UInt32 is a plain data type and the initial contents of plain
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data types are undefined. To avoid undefined behavior the type of has_crc32
is a union of UInt32 and Nothing.

Julia also supports short-circuit evaluation behavior. This behavior is fre-
quently used in Julia to form an alternative to very short if statements [10]. In-
stead of if <cond> <statement> end, one can write <cond> && <statement>
which could be read as: <cond> and then <statement>. Similarly, instead
of if !<cond> <statement> end, one can write <cond> || <statement>. So
the code above can be rewritten as:

has_crc32 = KaitaiStruct.readU1(io)
has_crc32 != 0 && crc32 = KaitaiStruct.readU4be(io)

But for consistency with other languages supported by Kaitai Struct, I
have decided not to use short circuit evaluation behavior.

4.7.5 Repetitions
Many file formats consist of repeated patterns rather than single elements.
These repetitions can take different forms:

Elements repeated until the end of the stream

Elements repeated while a certain condition is not satisfied (or until a
condition becomes true)

Elements repeated a predefined number of times

Kaitai Struct supports all these types of repetitions. In each case, it creates
a vector or its nearest equivalent available in the target language and populates
it with elements [12].

In Julia, there are two main constructs for repeated evaluation of expres-
sions: the while loop and the for loop. The while loop is suitable for the
first two types of repetition because the number of repetitions is unknown.
The for loop is appropriate for the third type since we know the number of
repetitions [9].

In the next three subsections, we’ll explore each type of repetition in more
detail.

4.7.5.1 Repeat for a specified number of times

Sometimes, an element needs to be repeated a certain number of times. This
can be achieved by referencing an attribute to determine the array’s length [12]:



KSY features 28

seq:
- id: num_floats

type: u4
- id: floats

type: f8
repeat: expr
repeat-expr: num_floats

In Julia, this structure can be parsed like so:

num_floats = KaitaiStruct.readU4le(_io)
floats = Vector{Float64}()
for i in 1:num_floats

push!(floats, KaitaiStruct.readF8(_io))
end

The code above creates a vector of doubles and populates it with parsed
data. Preallocation may seem like a good idea since we know the number of
floats in advance, which can potentially speed up the code execution. However,
in reality, it may not always be the best approach. This is because if there’s
a parsing error or data corruption, a large amount of extra memory may be
allocated unnecessarily. This can lead to memory wastage and performance
issues. Therefore, it’s often better to dynamically allocate memory as needed,
especially in scenarios where the integrity of input data is uncertain. Notice
that expression language can be used to determine the number of repetitions.

4.7.5.2 Repeat until end of stream

This is the simplest type of repetition, done by specifying repeat: eos. For
example:

seq:
- id: numbers

type: u4
repeat: eos

This yields an array of unsigned integers, each 4 bytes long, which spans
till the end of the stream. Notice that if we have some amount of bytes left in
the stream that‘s not divisible by 4, we‘ll end up reading as much as possible,
and then the parsing procedure will throw an end-of-stream exception [12].

A generated parser of such format in the Julia language could look like
this:
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numbers = Vector{UInt32}()
while !KaitaiStruct.iseof(_io)

push!(numbers, KaitaiStruct.readU4le(_io))
end

4.7.5.3 Repeat until a condition is met

In some file formats, the number of elements in an array is not specified.
Instead, a special element acts as a terminator to signify the end of the data.
Kaitai Struct supports this using the repeat-until syntax. For example:

seq:
- id: numbers

type: s4
repeat: until
repeat-until: _ == -1

The description above reads 4-byte signed integer numbers until encounter-
ing −1. On encountering −1, the loop will stop and further sequence elements
(if any) will be processed. Note that −1 would still be added to the array [12].

The underscore ( ) is used as a special variable name that refers to the
element that was just parsed. In Julia, this can be implemented as follows:

numbers = Vector{Float32}()
while true

_it = KaitaiStruct.readS4le(_io)
push!(numbers, _it)
if _it == -1

break
end

end

This code continuously reads 4-byte signed integers from the stream until
encountering −1. Once −1 is encountered, the loop terminates, and further
processing continues.

4.7.6 Switching types on an expression
In Kaitai Struct, you can utilize a switch-type operation to handle different
types based on an expression’s value. This is particularly useful when parsing
formats where the type of data varies depending on a specific code or indicator.
Here’s an example [12]:
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seq:
- id: code

type: u1
- id: body

type:
switch-on: code
cases:

1: u1
2: u2
4: u4
8: u8

Notice that size is specified on the attribute level, thus it applies to all
possible type values, setting us a good hard limit. If a type description is
missing the match, as long as it has size specified, body would still be parsed
with the given size, but instead of interpreting it as some user type, it would
be treated as having no type, thus yielding a raw byte array. This allows a
user to work on TLV-like formats step-by-step, starting by supporting only 1
or 2 types of records, and gradually adding more and more types [12].

The generated parser in Julia uses an if - elseif - end structure to
achieve the same functionality:

code = KaitaiStruct.readU1(io)
_on = code
if _on == 1

body = KaitaiStruct.readU1(io)
elseif _on == 2

body = KaitaiStruct.readU2le(io)
elseif _on == 4

body = KaitaiStruct.readU4le(io)
elseif _on == 8

body = KaitaiStruct.readU8le(io)
end

It’s important to ensure that the type used in switch-on and the types
used in cases are either identical or at least comparable [12].

Additionally, KSY provides a special keyword “ ” for the default (else) case
which will match every value that was not listed explicitly. For example:

type:
switch-on: code
cases:

1: u1
2: u2
_: u4
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In Julia, the same functionality can be achieved by using else for the
case:

code = KaitaiStruct.readU1(io)
_on = code
if _on == 1

body = KaitaiStruct.readU1(io)
elseif _on == 2

body = KaitaiStruct.readU2be(io)
else

body = KaitaiStruct.readU4be(io)
end

This setup ensures that if the code value does not match any of the specified
cases, body will be parsed as u4.

4.7.7 Instances: data beyond the sequence
Up to this point, all data specifications were defined within a seq, meaning
they would be parsed immediately from the beginning of the stream, one by
one, in strict sequence. But what if the desired data is located elsewhere in
the file, or arrives out of sequence [12]?

Kaitai Struct’s “Instances” feature provides support for such scenarios.
They are specified within a instances block at the same level as seq. Consider
the following example:

meta:
id: instance
endian: le

instances:
header:

pos: 2
type: str
size: 5
encoding: ASCII

Within the instances block, a map is created where the keys represent
attribute names, and the values specify attributes in a manner similar to how
it’s done in seq. However, an important additional feature is introduced: using
pos:..., one can specify the position from which to start parsing that attribute
(in bytes from the beginning of the stream). Expressions and references to
other attributes can also be used in pos, similar to size.

Another significant difference between the seq attribute and the instances
attribute is that instances are lazy by default. It means that unless someone
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would call that body getter method programmatically, no actual parsing of
body would be done [12].

Let us first understand how data can be parsed from a specified position to
achieve similar functionality in Julia. We need first to store the stream’s cur-
rent position to return to it after parsing the needed data. Then, we seek the
stream to the specified position, read the data, and seek back to the stored po-
sition. It’s important to ensure that the same instance is not parsed more than
once. The following code snippet demonstrates how this can be implemented:

function get_header(this::InstanceStd)
if this.header !== nothing

return this.header
end

_pos = KaitaiStruct.pos(this._io)
KaitaiStruct.seek(this._io, 2)
this.header

= decode(KaitaiStruct.read_bytes(this._io, 5), "ASCII")
KaitaiStruct.seek(this._io, _pos)
return this.header

end

Notice that from the programming point of view (from the target pro-
gramming languages and internal Kaitai Struct‘s expression language), seq
attributes and instances are the same. So users can access them the same
way. To achieve it in Julia we can override Base.getproperty() method in
the following way:

function Base.getproperty(obj::InstanceStd, sym::Symbol)
if sym === :header

return get_header(obj)
else

return getfield(obj, sym)
end

end

4.7.8 Enums (named integer constants)
The nature of binary format encoding dictates that we‘ll often be using some
integer constants to encode certain entities. For example, an IP packet uses a 1-
byte integer to encode the protocol type for the payload: 6 would mean “TCP”
(which gives us TCP/IP), 17 would mean “UDP” (which yields UDP/IP), and
1 means “ICMP” [12].

It is possible to live with just raw integers, but most programming lan-
guages provide a way to program using meaningful string names instead. This
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approach is usually dubbed “enums” and it‘s possible to generate an enum in
the Kaitai Struct [12]:

seq:
- id: protocol

type: u1
enum: ip_protocol

enums:
ip_protocol:

1: icmp
6: tcp
17: udp

Corresponding Julia code would look like this:

@enum IP_Protocol::Int8 begin
icmp = 1
tcp = 7
udp = 12

end

# protocol has type Union{IP_Protocol, Integer}
protocol = KaitaiStruct

.resolve_enum(IP_Protocol, KaitaiStruct.readU1(_io))

In Julia, attempting to assign an Integer to a field declared as type Enum
would throw an exception [9]. However, KSY allows the assignment of an
invalid enum, treating it as an integer. We declare such fields as a union
of integer and enum Union{Integer, Enum} to handle invalid enum values.
Note that resolve_enum() from Kaitai Julia Runtime library will return Enum
if there is a corresponding “key” in the given Enum found (it will try to cast
the given Integer), otherwise Integer is returned.

4.7.9 Checking for “magic” signatures
Many file formats use some safeguard measure against a completely different
file type instead of the required one. The simple way to do so is to include
some “magic” bytes (AKA “file signature”): for example, checking that the
first bytes of the file are equal to their intended values provides at least some
degree of protection against such blunders.

To specify “magic” bytes (i.e. fixed content) in structures, Kaitai Struct
includes a special contents key. For example, this is the beginning of a seq
for Java .class files:
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seq:
- id: magic

contents: [0xca, 0xfe, 0xba, 0xbe]

The description above can be translated into the Julia language like this:

magic = KaitaiStruct.read_bytes(_io, 4)
if !(magic == [0xca, 0xfe, 0xba, 0xbe])

throw(KaitaiStruct.ValidationNotEqualError(...))
end

This code reads the first 4 bytes and compares them to CA FE BA BE. If
there is any mismatch (or less than 4 bytes are read), it throws an error and
stops parsing at an early stage, before any damage (pointless allocation of huge
structures, waste of CPU cycles) is done [12].

There is no need to specify type or size for fixed content data. Contents
are very flexible and you can specify:

A UTF-8 string — bytes from such a string would be checked against

An array with:

bytes in decimal representation
bytes in hexadecimal representation, starting with 0x
UTF-8 strings

All elements’ byte representations would be concatenated and expected in
sequence when using an array. Some examples [12]:

- id: magic1
contents: JFIF
# expects bytes: 4A 46 49 46

- id: magic2
# we can use YAML block-style arrays as well
contents:

- 0xca
- 0xfe
- 0xba
- 0xbe

# expects bytes: CA FE BA BE
- id: magic3

contents: [CAFE, 0, BABE]
# expects bytes: 43 41 46 45 00 42 41 42 45
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4.7.10 Validating attribute values
The Kaitai Struct provides a mechanism for validating attribute values us-
ing the valid key to ensure attributes in data structures adhere to expected
formats and ranges. This key allows you to define constraints for values, en-
hancing the robustness of your specifications [12].

To ensure the attribute value exactly matches the given value eq (or directly
valid: value) can be used [12]:

# Equality constraint: the only valid value is 0x42
valid: # can be shortened to valid: 0x42

eq: 0x42

Which will be translated into the Julia language like this:

if !(exact_value == 0x42)
throw(KaitaiStruct.ValidationNotEqualError(...))

end

min and max: specify the minimum and maximum valid value for the at-
tribute [12]:

# Value must be at least 100 and at most 200
valid:

min: 100
max: 200

And corresponding Julia code:

if !(bounded_value >= 100)
throw(KaitaiStruct.ValidationLessThanError(...))

end
if !(bounded_value <= 200)

throw(KaitaiStruct.ValidationGreaterThanError(...))
end

any-of: defines a list of acceptable values, one of which the attribute must
match [12]:

# Value must be one of 3, 5, or 7
valid:

any-of: [3, 5, 7]
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if !((enum_constraint_value == 3)
|| (enum_constraint_value == 5)
|| (enum_constraint_value == 7))
throw(KaitaiStruct.ValidationNotAnyOfError(...))

end

expr: an expression that evaluates to true for the attribute to be considered
valid [12]:

# Value must be even
valid:

expr: _ % 2 == 0

if !(expr_constraint_value % 2 == 0)
throw(KaitaiStruct.ValidationExprError(...))

end

When a value does not meet the specified criteria, the Kaitai Struct throws
a validation error, halting further parsing. This preemptive measure ensures
the data being parsed is within the expected domain, providing a first layer of
error handling [12].
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Testing

The primary goal of testing Julia as a target language in the Kaitai CI system
is to make sure that the generated Julia parsers correctly parse binary data
according to the specified KSY specifications. Kaitai Struct standardizes test-
ing using 233 tests. Each test consist of three parts: the KSY specification, a
binary file, and the expected parsed values. The expected parsed values are
stored in KST files.

The testing process starts with the generating parsers from KSY specifica-
tions. After that, the binary file associated with each test is parsed with the
generated parser. The parsing output is then compared against the expected
results.

Julia Runtime library is additionally tested on every push through CI sys-
tem in KaitaiStruct.jl repository.

5.1 Unit testing in Julia

Simple unit testing in Julia can be performed using Test package. It provides
the @test and @test_throws macros:

@test ex

Tests that the expression ex evaluates to true. It allows to call functions in
a slightly more readable approach. The @test f(args...) key=val...
form is equivalent to writing @test f(args..., key=val...) which can
be useful when the expression is a call using infix syntax such as approxi-
mate comparisons.

@test_throws exception expr

37
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Tests that the expression expr throws an exception. The exception may
specify either a type, a string, a regular expression, or a list of strings
occurring in the displayed error message, a matching function, or a value.

Typically, many tests are used to ensure functions work correctly over a
range of inputs. If a test fails, the default behavior is to throw an exception
immediately. However, it is normally preferable to run the rest of the tests
first to get a better picture of how many errors there are in the code being
tested.

The @testset macro can group tests into sets. All the tests in a test set
will be run, and a summary will be printed at the end of the test set. If any
of the tests failed, or could not be evaluated due to an error, the test set will
throw a TestSetException [27].

5.2 KST Translator

In the testing process, various KST specifications are used to define the ex-
pected behavior of Julia parsers for different scenarios. This Section shows
three examples of these specifications and corresponding tests in Julia.

Some of Kaitai Struct CI’s KST specifications are designed to test that
a parser throws an exception when parsing wrong data. Consider this KSY
specification:

meta:
id: valid_fail_range_float

seq:
- id: foo

type: f4le
valid:

min: 0.2
max: 0.4

It checks that the read Float32 is less than 2 and greater than 4. If the
check fails, ValidationGreaterThanError should be thrown. The correspond-
ing KST specification feeds the binary file with a value greater than 0.4 and
asserts that the exception is thrown.

id: valid_fail_range_float
data: floating_points.bin
exception: ValidationGreaterThanError<f4>

KST translator translates .kst specifications to unit tests in the specified
target language. Here is how the specification above might look in Julia:
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using Test
using TestReports
using ValidFailRangeFloat

@testset "ValidFailRangeFloat test" begin
@test_throws KaitaiStruct.ValidationGreaterThanError

ValidFailRangeFloat.from_file("floating_points.bin")
end

Most asserts are directly translated using the == operator. For example,
consider these assertions:

asserts:
- actual: s1

expected: '"foo"'
- actual: s2

expected: '"bar"'
- actual: s3

expected: '"|baz@"'

The resulting Julia code will look like this:

@test r.s1 == "foo"
@test r.s2 == "bar"
@test r.s3 == "|baz@"

Notice that comparisons with nothing should use ===, and comparisons
with floating-point values should use the ≈ operator to account for floating-
point imprecision. The KST Translator has the functionality to handle these
comparisons correctly, ensuring accurate validation in Julia tests.

5.2.1 Testing the Julia Runtime library
The Julia Runtime library uses GitHub Actions for automated testing on mul-
tiple platforms. The CI configuration ci.yml1 is designed to run tests on
supported versions of Julia, on multiple operating systems and architectures.

The CI setup tests the library with Julia 1.8, the latest stable Julia 1.x re-
lease, and the nightly build. These tests run on Ubuntu, macOS, and Windows
operating systems, each with a 64-bit architecture. The workflow is triggered
on pushes to the main branch, pull requests to main, and any new tags. This
ensures that changes are tested in various scenarios.

This setup provides flexibility to test with additional Julia versions or op-
erating systems as needed:

1https://github.com/rystidia/KaitaiStruct.jl

https://github.com/rystidia/KaitaiStruct.jl
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matrix:
version:

- '1.8'
- '1'
- 'nightly'

os:
- ubuntu-latest
- macOS-latest
- windows-latest

arch:
- x64

To manage versions and releases, the package uses a tagging system. The
CI workflow includes a TagBot configuration to automate the tagging process.
TagBot is a GitHub application used in the Julia ecosystem to automate the
process of tagging new releases of Julia packages and updating their registry
entries. This tool creates a new tag in the Git repository and ensures that the
Julia package registry is updated accordingly.

5.3 Evaluation

The KST Translator was extended to generate unit tests in Julia. Out of 233
tests in the Kaitai Struct CI test suite, 232 pass successfully. The exception
is related to circular imports, which are atypical for Julia code. This presents
only a minor complication as it can be resolved by making small changes
to the .ksy format specification. The generated tests in Julia, along with
scripts for running them (run-julia) and extracting the test results into the
Kaitai Struct CI system (ci-julia), are available in my fork of the KS testing
repository. A pull request2 was submitted for these changes.

Kaitai Struct CI uses Docker images to test generated parsers. A script
for building a Docker image with the required Julia version and all testing
dependencies was implemented and merged into the KS repository for testing
images3.

The KS compiler was extended to generate Julia modules from the .ksy de-
scriptions. The pull request for this change was submitted to the KS compiler
repository4.

The Julia runtime library was tested with different Julia versions, and a
continuous integration system was set up for it.

Overall, the successful execution of the majority of tests, combined with
automated testing across multiple Julia versions, validates the robustness and
reliability of the generated parsing modules in Julia.

2https://github.com/kaitai-io/kaitai_struct_tests/pull/126
3https://github.com/kaitai-io/kaitai_struct_docker_images/pull/1
4https://github.com/kaitai-io/kaitai_struct_compiler/pull/305

https://github.com/kaitai-io/kaitai_struct_tests/pull/126
https://github.com/kaitai-io/kaitai_struct_docker_images/pull/1
https://github.com/kaitai-io/kaitai_struct_compiler/pull/305
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Conclusion

This project successfully added the Julia programming language to the Kaitai
Struct as a target language. The biggest challenge was creating a parsing mod-
ule design in Julia that would be consistent with other supported languages
and respect Julia’s unique style guide. It was achieved and Kaitai Struct com-
piler was extended to generate Julia modules from binary format descriptions
in the .ksy format. The pull request for this change was submitted to the
KS compiler repository1 and is now under review. The project administrator
provided positive feedback.

Implementing the language-specific runtime library was an important part
of the work. The Julia runtime library was implemented and published under
KaitaiStruct.jl name. A continuous integration system was set up for the Julia
runtime library, ensuring that it is tested automatically with several supported
Julia releases.

The solution was integrated into the Kaitai Struct CI pipeline. Out of 233
tests from the Kaitai Struct CI test suite, 232 passed, demonstrating the ro-
bustness and reliability of the generated parsing modules in Julia. The one ex-
ception is related to circular imports, which are atypical for Julia code. Kaitai
Struct CI uses Docker images to test generated parsers. A script for building a
Docker image with the required Julia version and all testing dependencies was
implemented and merged into the KS repository for testing images2. The KST
Translator was extended to generate unit tests in Julia. Scripts for running
tests in Julia and extracting the test results into the Kaitai Struct CI system
were created. A pull request3 was submitted to the KS testing repository for
these changes.

Overall, the project accomplished its goal of adding Julia to Kaitai Struct
as a target language, establishing a solid foundation for future support.

1https://github.com/kaitai-io/kaitai_struct_compiler/pull/305
2https://github.com/kaitai-io/kaitai_struct_docker_images/pull/1
3https://github.com/kaitai-io/kaitai_struct_tests/pull/126
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Source code

All code is available in public repositories on GitHub.

Kaitai Struct runtime library for Julia:
https://github.com/rystidia/KaitaiStruct.jl/commit/fe9e99677
04d91b6ee3144eaf31368e4bc191060

Kaitai Struct compiler with Julia support:
https://github.com/kaitai-io/kaitai_struct_compiler/commit/23
54168f88c9c50ead7bb1f68cb38cbb59c5232f

Kaitai Struct tests:
https://github.com/kaitai-io/kaitai_struct_tests/commit/6879a
2f846833835a99133910fdd65dbcfe4c5f0

KS repository for testing images:
https://github.com/kaitai-io/kaitai_struct_docker_images/comm
it/cc990ebc99e7e197856ec2511b9c986071bc4798

As a backup, in case the GitHub repositories listed above are unavailable
for any reason, an archive with clones of these GitHub repositories is submitted
along with the thesis.

The clone-github.sh shell script records the commands that were used to
create the compiler/, julia_runtime/, tests/, and docker_images/ folders.
The commit hashes checked out in each repository are the same as those used
in https://github.com.

Project-related commits can be identified by inspecting the commit graph
to see which commits were authored by me. I use the name “Dias Rystin” for
all commits made using the local Git client, or “rystidia” for commits made
via the GitHub web interface.

Project-related commits, excluding those for Kaitai Struct runtime library,
also can be viewed in the following pull requests:
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https://github.com
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KS repository for testing images:
https://github.com/kaitai-io/kaitai_struct_docker_images/pull
/1

Kaitai Struct tests:
https://github.com/kaitai-io/kaitai_struct_tests/pull/126

Kaitai Struct compiler with Julia support:
https://github.com/kaitai-io/kaitai_struct_compiler/pull/305

https://github.com/kaitai-io/kaitai_struct_docker_images/pull/1
https://github.com/kaitai-io/kaitai_struct_docker_images/pull/1
https://github.com/kaitai-io/kaitai_struct_tests/pull/126
https://github.com/kaitai-io/kaitai_struct_compiler/pull/305
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