
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Escape Game with Augmented Reality

Peter Vataščin

Supervisor: prof. Ing. Jiří Žára, CSc.
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507285 Personal ID number: Vataščin Peter Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Games and Graphics Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Escape Game with Augmented Reality

Bachelor’s thesis title in Czech:

Úniková hra s rozšířenou realitou

Guidelines:

1) Make research on existing augmented reality systems in escape rooms/games. Describe their main features, specify
a list of requirements, and compare the systems accordingly.
2) Based on the output of the previous item, choose suitable tools/libraries and verify the correctness of your choice on
partial tasks (augmented reality, network communication).
3) Design at least 3 scenarios that require the cooperation of several players, e.g., one of them uses mobile as a virtual
light source or pointer, and the other sees on his mobile only those virtual objects that are "illuminated" by the first mobile.
4) After agreement with the supervisor, implement the selected scenarios into a simple but complete game. Concentrate
on robustness and user-friendliness. Compare your solution with systems from item 1). Test the final application with at
least five users.
5) Create clear instructions and recommendations for potential escape game creators who would like to use the developed
application in practice.

Bibliography / sources:

1) Warmelink H. et al.: AMELIO: evaluating the team-building potential of a mixed reality escape room game. Extended
abstracts publication of the annual symposium on computer-human interaction in play. ACM, Amsterdam, Netherlands,
pp. 111–123, 2017.
2) Plecher D. et al.: Designing an AR-Escape-Room with Competitive and Cooperative Mode. GI VR / AR Workshop, DOI:
10.18420/vrar2020_30, pp. 24.-25, 2020.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

prof. Ing. Jiří Žára, CSc. Department of Computer Graphics and Interaction FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 24.01.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature prof. Ing. Jiří Žára, CSc.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my gratitude to
prof. Ing. Jiří Žára, CSc. for his invalu-
able guidance, insightful feedback, and
support throughout the development of
this thesis.
I am also thankful to all those who partic-
ipated in testing the game prototype de-
veloped for this research. Your thoughtful
feedback and constructive criticism have
been immensely valuable.

Declaration
I declare that this thesis is a work of my
own and that all the sources used are cited
and referenced.

Prague, 25 May 2024

v

Abstract
This bachelor’s thesis describes the pro-
cess of creating an augmented reality mul-
tiplayer escape room mobile game. First,
it compares existing AR games with sim-
ilar features. Then it analyses tools for
creating AR games and network multi-
player games. The development process
of the game is then described in detail.
The game is tested on eleven people and
the results are analysed. Finally, this the-
sis includes a manual on how to build on
top of the game in the Unity game engine.

Keywords: Augmented reality, Escape
Rooms, Escape games, AR Foundation,
Unity, Multiplayer Game, Netcode for
GameObjects

Supervisor: prof. Ing. Jiří Žára, CSc.
Department of Computer Graphics and
Interaction

Abstrakt
V této bakalářské práci je popsán postup
vytváření únikové hry pro více hráčů v
rozšířené realitě. Nejprve jsou porovnány
podobné existující hry. Dále jsou analyzo-
vány vývojářské nástroje pro tvorbu her
s rozšířenou realitou a her pro více hráčů
po síti. Dále je detailně popsán vývoj této
hry. Hra je testována na jedenácti lidech a
výsledky jsou analyzovány. Nakonec tato
práce obsahuje manuál, jak rozšířit tuto
hru v herním enginu Unity.

Klíčová slova: Rozšířená realita,
Únikové hry, AR Foundation, Unity, Hra
pro více hráčů, Netcode for GameObjects

Překlad názvu: Úniková hra s
rozšířenou realitou

vi

Contents
1 Introduction 1
2 Analysis of existing applications 3
3 Specifications of my game 7
3.1 Gameplay . 7
3.2 Technical side of the game 8
4 Development tools 9
4.1 Tools for augmented reality 9
4.2 Tools for network multiplayer . . 11
4.3 3D modelling tools 12
5 Game implementation 13
5.1 Basic AR scene 13
5.2 AR scene with ray casting 14
5.3 AR scene with multiplayer 15
5.4 Image recognition and tracking . 19
5.5 3D Modelling 24

5.5.1 Button Box 24
5.5.2 Wheel Box 24
5.5.3 Code Box 24
5.5.4 Watch Box 25
5.5.5 Puzzle Box 26
5.5.6 Plant . 26
5.5.7 Cube . 27
5.5.8 Using the models in Unity . . 27

5.6 First scenario 29
5.6.1 Hierarchy of the scripts in the

Unity project 29
5.6.2 Implementation 30

5.7 Second scenario 32
5.7.1 Implementation 33

5.8 Third scenario 34
5.8.1 Implementation 35

5.9 Final application 35
6 Testing 41
6.1 Testing process 41
6.2 Testing results 42

6.2.1 Questions on testers’
background 42

6.2.2 Questions on testers’ experience
with my game 43

6.2.3 Open-ended questions on
testers’ opinions 44

6.3 Testing conclusion 44

7 Conclusion 45
Bibliography 47
A Manual 53
A.1 Introduction 53
A.2 Common Issues 54
A.3 Basic Information about my Unity

project . 55
A.4 Adding new AR objects 57
A.5 Creating scripts and network

communication 59
A.6 Debugging 65
B Testing 69
B.1 English introduction speech 69
B.2 Czech introduction speech 69
B.3 Testing questionnaire 70
C Digital appendix 75

vii

Figures
4.1 Table of supported features from

the official AR Foundation website[9]
(January 2024). 10

4.2 A table of tools enabling network
multiplayer for Unity (2020)[19]. . . 12

5.1 A simple AR scene with a floating
cube and dots representing found flat
surfaces. 14

5.2 A part of the method that is called
when the player touches the screen
which casts a non-AR ray which
triggers the method Change if it
collides with an object with the tag
"TestCube". This is a part of the
"InputManager.cs" file. 15

5.3 Cubes being created on the
detected plane by touching the
screen. Their material changes when
touching the screen as well. 16

5.4 Flat planes detected on the ground
around me which are now barely
visible in the distance due to
desynchronisation. The scene was
originally the same as the one in
figure 5.3 except for different models
for the cubes. 16

5.5 A snippet of a code that
synchronises the material colour of a
cube that can be changed from both
the host and client side. 17

5.6 An image of a game synchronising
the colour of the cube and the
position of each capsule, which the
players can move using the joystick
on the bottom left. 18

5.7 A part of my code that loops
through game object prefabs for the
client and finds one with the same
name as the image recognised in the
scene, if the recognised image is
called "WatchBox" it also calls a
method of the
"NetworkUIManager.cs". 19

5.8 Images I first used when trying out
the image recognition technology. . 20

5.9 Images from an article about how
to choose a good image for AR
tracking displaying good and bad
qualities of an image[50]. 21

5.10 Images I first used for image
recognition after reading articles
about the topic. 22

5.11 An image of a zebra, which got
100 points in The arcoreimg tool, but
was not suitable for use in AR image
tracking[54]. 22

5.12 The images that turned out the
best when testing image recognition
and tracking. 23

5.13 An image of the button box
model created for my game. 24

5.14 The images of the wheel box. . . 25
5.15 Images of the code box. 25
5.16 Images of the watch box. 26
5.17 Images of the puzzle box model. 27
5.18 Images of the process of creating

the plant model. 28
5.19 An image of the toy cube model

taken in Blender. 28
5.20 Screenshots from the client’s

version of the game showing the
prototype of the first scenario. The
host’s version of the game is visible
on the phone held in my hand. . . . 31

5.21 A code from
"NetworkUIManager.cs" taking care
of changing a material of models
5.5.3 and 5.5.4, based on whether the
client’s game is tracking the image
called "WatchBox". 32

5.22 Images from the final version of
the game of the first scenario from
both the host’s and the client’s side. 33

5.23 Images from the final version of
the game of the second scenario from
both the host’s and the client’s side. 34

5.24 Code snippets from the
implementation of the second
scenario. 37

viii

5.25 Images from the final version of
the game of the second scenario from
both the host’s and the client’s side. 38

5.26 Code snippets from the
implementation of the third scenario
from the "PuzzleBoxScript.cs". 39

5.27 UI parts of the game. Both are
cropped from the original phone size,
and they both contain my signature
at the bottom. 39

A.1 Screenshot of all used packages
(Unity -> Window -> Package
Manager) with active versions. . . . 54

A.2 Screenshot of the hierarchy of
objects in my Unity scene. 55

A.3 Contents of the Assets folder of
my project. 57

A.4 Material settings in Unity. 58
A.5 Lists of prefabs for both players

inside the ImageRecognitionScript.cs,
as visible in the Unity editor. 58

A.6 An image of an asset I created for
the game for inputting a number
code. 59

A.7 A diagram showing how the
communication between the two
players works. 60

A.8 A public method in the “Task
synchronisation calls” section to
notify the host a certain button was
clicked. 61

A.9 A ServerRPC calls all needed
methods on the WheelBox object on
the host’s side. 61

A.10 Content of the InputManager.cs
file controlling ray casting. 62

A.11 The ImagesChanged method
inside the ImageRecognitionScript.cs,
which is called every time the “AR
Tracked Image Manager” changes the
status of tracked images. 64

A.12 A part of the Awake method of
the PuzzleBoxScript.cs, shows how it
gets the information about the game
state from NetworkUIManager
(usually abbreviated "nium" in my
code). 64

A.13 Usage of the Invoke method for
debugging in the WheelBox.cs
script. 66

ix

Tables
2.1 Comparison of the most relevant

applications using AR. * the
developers have been contacted by
e-mail for further details, but I got
no response. 5

5.1 Results of grading the images from
figure 5.9 using Google’s The
arcoreimg tool[38]. 21

6.1 Statistics of closed questions of the
questionnaire with the most
important features listed. All
numbers are rounded to two decimal
places. 42

x

Chapter 1
Introduction

Escape rooms are a very popular pastime nowadays. The demand for such
games is high and there are several dozen of them in Prague alone with various
themes. However, the physical world is limited and therefore many variations
are being created, using modern technology, to extend the experience into
the virtual world.

The most common adaptation of escape rooms is computer games, which
make this genre of entertainment accessible to audiences who cannot experi-
ence it for financial reasons or because of its unavailability in a given location.
Such games often utilize the fact that there are no physical constraints in
the virtual world giving them more creative freedom to entertain the user.
As seen in the popular game series Portal, where the players encounter all
sorts of puzzles impossible to be built in the real world, most notably hav-
ing portals connecting two places as if there was a doorway between them.
These games often have a deeper story and longer playtime, thanks to not
being time-limited by customer capacity. Despite this, a computer game feels
significantly different since the player is detached from the game world, only
following it through the computer’s monitor. What’s missing is being locked
in a room, trying to solve all sorts of puzzles with your friends, and being
under stress because the clock is ticking and you have just one try.

A way to have both the immersion of a real-life escape room, and the
freedom from physical constraints is using virtual reality, or VR for short. It
is a technology that captures the movement of a player and synchronises it
with the virtual world of a computer game. This is most often done using a
VR headset, which tracks the motion of the player’s head and projects the
image from the game onto two screens right in front of each of the player’s
eyes. This creates the illusion of the player being inside a computer game. A
VR headset is often accompanied by two controllers which the player holds
so they can interact with the virtual world as if they were using their own
hands. The players can either all be in one room or they can play, using the
network, from different places, in which case VR can make them feel as if
they were in one room. The main disadvantage of using VR is the high price.
A casual user would more likely visit a dedicated place where they can use
the headsets once, instead of having to buy one.

This can still be too pricey or unavailable in one’s location. To combat

1

1. Introduction
this while retaining some of the advantages of VR once may use AR, which
is short for augmented reality. It is a technology that seemingly connects the
real world with a virtual one. An image from a virtual scene is layered on top
of an image from a device’s camera. By tracking the position of a device in
the real world, the virtual scene can be synchronised, creating the illusion as
if the virtual objects were placed in the real world. Since this technology is
supported by most modern smartphones, it is accessible to the general public.
There are disadvantages to using AR instead of VR. The main one is that
using your phone with a tiny screen is much less immersive than using a VR
headset. AR technology is usually less stable than VR since it is not used
on a dedicated game device, but on a phone, whose main purpose is not AR.
Furthermore, it has to process each image the camera captures which can
be computationally demanding. On the other hand, by using AR, one can
utilize the surrounding area instead of having to create a whole game scene
virtually.

I like the idea of escape rooms being more accessible and creating new
kinds of interactions that aren’t possible in the real world. I also like the
idea of real-world escape rooms using AR to enhance the player experience.
Since one of the most entertaining aspects of an escape room is cooperation,
I will focus on multiplayer AR escape games in this thesis. Firstly, I will
analyse existing AR games that are relevant to this topic. Based on the
results, I will propose an AR multiplayer escape room mobile game which I
will implement for this thesis. Then, I will analyse existing tools for creating
AR, and network multiplayer applications and choose which ones to use for
my implementation. A detailed description of the development process and a
description of the final game will follow. Lastly, I will analyse the results of
the testing I have performed.

2

Chapter 2
Analysis of existing applications

In this part of my bachelor’s thesis, I compare different augmented reality
applications that have similar elements to my assignment. These are escape
room games or multiplayer augmented reality games. I am not comparing any
games that do not use augmented reality, as it is the main and most important
element of my application. The table 2.1 shows a simple comparison of my
chosen applications based on the most important attributes. First, I compare
which platform the games are designed for, then which development tool they
are made with, if they are made for multiplayer, and if there is any player
interaction via augmented reality.

Escape AR Room: Pandemic[21], Scriptum[22], ARia’s legacy[27] and
Prison Break AR[29] are functionally identical mobile games. All of them
work on the principle of scanning the floor and creating a virtual room in
AR around the player. The only interaction with the real world is the same
orientation, i.e. the movement of the mobile is reflected by the movement of
the game camera. Games therefore behave like virtual reality, only instead of
glasses use mobile phones, and do not use the physical surroundings. In these
games, one can click the screen on various in-game items, store them in an
inventory, and then use them in combination with other items to solve puzzles.
It is thus conceptually a single-player computer game escape room, augmented
by the fact that it is not controlled with a mouse, but by moving the phone
and clicking on the screen. I have personally tried playing these games on
my OnePlus Nord 2T CPH2399 5G 128GB 8GB RAM mobile phone and an
older Samsung Galaxy A7 (2018). There wasn’t much difference in how the
app ran between the mobiles although one is four years newer. Unfortunately,
with these games, it often happened that the app would lose track of the
mobile’s location and the entire room would desynchronise, which resulted in
the virtual camera appearing far away from the room and the game being
unplayable and usually having to be restarted. These games are created using
the AR Foundation and use built-in AR Plane Manager, which recognises
flat surfaces in the real world and places them in the virtual world, as the
main part of the game synchronisation. Because of these issues, I decided
not to rely on this technology in my implementation and rather focus on
image recognition and tracking. Prison Break AR also states that it includes
networked multiplayer gameplay, which would be important for the further

3

2. Analysis of existing applications.............................
progression of my thesis. Unfortunately, this mode was inaccessible, and I
did not receive a response after contacting the game’s authors for further
details. Escape The Room: AR is, according to my available sources[28], a
similar game, unfortunately, it is only available for iOS, so I was not able to
try it out. I also don’t think it would be beneficial for my further progress.
According to the description, it doesn’t contain any new or desired features.

I found Escape Team[26] while searching for AR escape games, unfortu-
nately, after testing it I concluded that the game is not using AR. The game
consists of printed puzzles that several people can work on simultaneously
and a mobile phone that narrates the story and counts down the time to find
out the numerical codes and enter them into the app. I decided that this app
would not be beneficial for my thesis.

The Walking Dead: Our World[30] is an AR game that looked the most
promising for my thesis because it features multiplayer, which isn’t very
common in AR games. The game stopped being supported at the beginning
of 2023. You could fight zombies with other players. Like previous AR games,
it scanned the floor to coordinate the physical and virtual worlds.

AR-Escape[31] is an escape AR game developed at the Technical University
of Munich. It recognizes printed images or 3D objects and creates puzzles
for the player in a virtual world. Players must solve all puzzles within a
time limit to win the game. The game features a cooperative mode, in which
a group of people solve puzzles together and their progress is synchronised
across all devices, and a competitive mode, in which two groups race against
each other to see who can complete the puzzles first; teams can sabotage each
other. I couldn’t find this app on the internet, so I contacted the authors of
the study[31]. Unfortunately, no one replied. So I can’t describe in detail
how the game works, but I think this game comes closest to the game I’m
developing for this thesis. It also lacks direct player interaction in a virtual
AR world. The game does synchronise, but as I understand, each player solves
the tasks alone. In my application, I want to implement direct interactions
in the virtual AR world for which multiple players are necessary.

Finally, I will evaluate Cluetivity. Cluetivity is a company that creates
AR-enriched escape games tailored for customers. These customers are escape
room companies. As of 2023, it offers 3 games: Operation Mindfall[23],
Blackout[24], and Magic Portal[25]. Operation Mindfall and Magic Portal
use only one AR device. Operation Mindfall is implemented in London and is
open to the public by prior reservation[32]. They are similar to the previous
games, but more incorporated into the physical world in specific locations.
Blackout is an escape game with hacker themes. It is played in two teams
that interact by trying to hack each other and slow down the other team.
Unfortunately, there are not many publicly available details about this game,
so I tried to contact Cluetivity but to no avail. All of these games have a large
portion of gameplay outside of the virtual world, i.e. with detailed physical
gadgets. I haven’t found any other company that links physical escape games
to the AR world.

4

............................. 2. Analysis of existing applications

T
it

le
of

th
e

ga
m

e
T

ar
ge

te
d

pl
at

fo
rm

D
ev

el
op

m
en

t
to

ol
s

M
ul

ti
pl

ay
er

In
te

ra
ct

io
ns

of
m

ul
ti

pl
e

pl
ay

er
s

in
A

R
Es

ca
pe

A
R

R
oo

m
:

Pa
nd

em
ic

[2
1]

A
nd

ro
id

12
+

/i
O

S
12

+
A

R
Fo

un
da

tio
n

N
o

N
o

Sc
rip

tu
m

[2
2]

A
nd

ro
id

7+
/i

O
S

11
+

A
R

Fo
un

da
tio

n
N

o
N

o
C

lu
et

iv
ity

:
O

pe
ra

tio
n

M
in

df
al

l[
23

]
iO

S
U

nk
no

w
n

O
ut

sid
e

of
A

R
N

o
C

lu
et

iv
ity

:
B

la
ck

ou
t

[2
4]

iO
S

U
nk

no
w

n
Ye

s
U

nk
no

w
n*

C
lu

et
iv

ity
:

M
ag

ic
Po

rt
al

[2
5]

iO
S

U
nk

no
w

n
O

ut
sid

e
of

A
R

N
o

Es
ca

pe
Te

am
[2

6]
A

nd
ro

id
4.

4+
/i

O
S

11
+

U
nk

no
w

n
O

ut
sid

e
of

A
R

N
o

A
R

ia
’s

Le
ga

cy
[2

7]
A

nd
ro

id
7+

/i
O

S
11

.3
+

A
R

Fo
un

da
tio

n
N

o
N

o
Es

ca
pe

th
e

R
oo

m
:

A
R

[2
8]

iO
S

11
.3

+
U

nk
no

w
n

N
o

N
o

Pr
iso

n
B

re
ak

A
R

[2
9]

A
nd

ro
id

7+
U

ni
ty

(s
pe

ci
fic

to
ol

un
kn

ow
n)

Ye
s

-u
na

va
ila

bl
e

U
nk

no
w

n*

T
he

W
al

ki
ng

D
ea

d:
O

ur
W

or
ld

[3
0]

A
nd

ro
id

7+
U

nk
no

w
n

Ye
s

K
ill

in
g

zo
m

bi
es

A
R

-E
sc

ap
e

[3
1]

A
nd

ro
id

Vu
fo

ria
Ye

s
Sy

nc
hr

on
isa

tio
n

of
pu

zz
le

s,
sa

bo
-

ta
gi

ng
th

e
en

em
y

te
am

*

Ta
bl

e
2.

1:
C

om
pa

ris
on

of
th

e
m

os
t

re
le

va
nt

ap
pl

ic
at

io
ns

us
in

g
A

R
.*

th
e

de
ve

lo
pe

rs
ha

ve
be

en
co

nt
ac

te
d

by
e-

m
ai

lf
or

fu
rt

he
r

de
ta

ils
,b

ut
I

go
t

no
re

sp
on

se
.

5

6

Chapter 3
Specifications of my game

A part of my bachelor’s thesis was to create an AR multiplayer escape room
game with at least three scenarios where the cooperation of players is required.
This game would be created for mobile phones using the Android operating
system. I decided to call my game "Escape Pierito", because it is an escape
room game and because of my online nickname. In this chapter, I will focus
on how I designed the game and what technologies I wanted to use. In chapter
4, I will talk about development tools that could be used to create such a
game and which tools I chose and why. In chapter 5, I will describe the
process of implementing the game and conclude if I chose the right tools for
the job.

3.1 Gameplay

When I was designing the three scenarios with player interactions I was
thinking of different real-life escape room puzzles that could be enhanced
by augmented reality. A common type of puzzle is figuring out a number
or letter code and then inputting it into a device to progress. So the first
scenario would be a process of figuring out the secret code. The second
scenario would be inputting the code into a machine. The last scenario would
be a stand-alone puzzle that would unlock after the correct code had been
submitted.

My supervisor, prof. Ing. Jiří Žára, CSc, suggested a scenario of one player
using their phone as a virtual light source and the second one only seeing the
"illuminated" game objects. I built on this idea and came up with a scenario
where an object shows a scrambled code for the first player if the second
player is looking at a linked game object. When the second player looks away,
the first player’s object will change and show the order of the letters in the
code. This is the first scenario.

The second scenario is a way of inputting the code from the first scenario
into a machine. I thought it would be interesting to engage both players.
One of the players would be able to click buttons that would circle letters in
the other player’s code machine but wouldn’t know what letters the other
player sees. This would force them to cooperate to input the correct code.

For the third scenario, I thought a classic puzzle that could be used was

7

3. Specifications of my game
the sliding puzzle with eight scrambled pieces of an image that need to be
placed in their correct spots by sliding them into the one empty space. I
thought it would be interesting if one of the players could see the scrambled
pieces of the image on top of the puzzle pieces and the other player could
move the pieces they see as blank. When creating this puzzle, I didn’t realise
it would be lengthy and hard for some people to solve, making it even harder
when two people need to cooperate.

3.2 Technical side of the game

When trying out the different applications in chapter 2, I noticed the plane
recognition technology was not very reliable and had no way of recovery once
it got desynchronised. For this reason, I decided to use image tracking. This
way there would be different images scattered around the room that could
be scanned by the game and the correct game object would be created on
it. If the objects got desynchronised, the images could be scanned again to
position them back in their intended place.

Since it would be unnecessarily complicated to synchronise virtual AR
scenes of multiple devices, I decided to implement multiplayer synchronisation
by a central network object that could communicate with the instance of the
object of the other player. This object would keep track of the game progress
and actions of each player, updating the scene accordingly. For instance, if
one player clicks a button, the network object would recognise it and update
itself on both players’ sides and update the code machine for the other player.

8

Chapter 4
Development tools

In this chapter, I will talk about different tools for creating augmented reality
applications, games supporting multiplayer, and 3D modelling. I will also
mention which tools I chose for the implementation of my game and justify
why I chose them.

4.1 Tools for augmented reality

First, I’ll look at tools for creating AR apps for iOS. These are developed
by Apple[1]. The most widely used framework is ARKit[2], which enables
the most important aspects of AR apps, such as object recognition, depth
perception, motion capture, background modification, face detection, and
more. RealityKit[3] is used for creating more detailed scenes, more realistic
physics simulations, and interaction with dynamic environments. Reality
Composer[4] is a tool for easier implementation of AR applications on ARKit
or Reality AR frameworks. Since I don’t own any device using iOS, I won’t
be using these tools in my implementation.

ARCore[5][6] is Google’s cross-platform AR application development kit
most commonly used on Android devices. ARCore offers more limited features
compared to ARKit, but the difference is in specific features that are not
very important for my game, such as face recognition and body positioning.
Android apps can be created in Android Studio, which is an Android de-
velopment environment, in Kotlin, Java or C. For an iOS app, the XCode
environment and Objective-C and Swift languages can be used. Browser apps
can be created using the WebXR interface. A great advantage of ARCore
is access to Google Maps, which can be used to create location-dependent
applications, such as applications with historical sights of a city, where the
current location and interaction with maps are necessary.

OpenXR[7] is Khronos’ open standard for building extended reality, a term
used for augmented and virtual reality, XR for short, applications. It is
currently used by all major companies in the development and creation of
tools for XR, such as HTC, Meta, MagicLeap, Steam, Microsoft, and more.

Unity[8] is the most widely used game engine and can be used to create
almost any type of game. There are several ways to build AR apps in Unity,
from built-in libraries to the unified framework to community plugins. I have

9

4. Development tools
experience with Unity and find it intuitive to develop games in, plus it has a
large user base, so it’s easier to find solutions to problems on the internet.

AR Foundation[9] is a framework that connects multiple platforms and
simplifies development by having unified functionalities and converting all
calls to platform specific calls in the background. If any new functionality is
added to a platform, it will be added to the AR Foundation. AR Foundation
uses ARKit for iOS, and ARCore for Android, and can be used to create apps
for Magic Leap[11] and HoloLens[10]. These two products are AR glasses, that
project AR elements directly onto the glass lenses to convey a more immersive
experience. These glasses can be used in medicine to help doctors during
surgeries. I mention them here because applications for them are programmed
in Unity. Currently supported features (as of January 2024) of each platform
are visible in figure 4.1. It also supports all the features of Unity, so it’s easy
to combine multiple different concepts into one, such as AR and networked
multiplayer in my case. The simplicity of and familiarity with Unity and
the C# programming language, and the speed of AR Foundation are the
reasons why I chose it to develop my application. Because AR Foundation
is developed by Unity itself, it is going to be supported in the future and I
expect better compatibility.

Figure 4.1: Table of supported features from the official AR Foundation
website[9] (January 2024).

Like AR Foundation, Unity MARS[12] is a built-in framework from Unity.
MARS is more focused on complex dynamic scenes, detailed object recogni-

10

............................. 4.2. Tools for network multiplayer

tion, and physically realistic, and photo-realistic scenes. Compared to AR
Foundation, it is not free to use, is more complex in approach, and needs more
detailed configurations and settings for specific applications. The advantage
is the ability to use it alongside AR Foundation to create games that require
the lightness of AR Foundation and Unity MARS advanced technology.

Unity can also be used just as an application development library[13]. This
means that the application does not need to be rebuilt in AR Foundation
in Unity, but only specific AR Foundation features can be used while the
application is developed in another environment.

The XR Interaction Tool[14] is a tool for creating applications in Unity
without code, just by using the visual environment. It offers limited interaction
options such as click events on virtual objects, dragging, adding, and removing
objects from the scene.

Vuforia[15] is a plugin suite for developing AR applications in Unity. This
means that it is not a direct part of Unity and is maintained by a third party,
so there is no guarantee of compatibility and up-to-dateness. Before the AR
Foundation, Vuforia was the most widely used way to create AR apps for
Unity and is still popular today. It adds enhanced computer vision, image
and object recognition, and more. Vuforia supports apps on Android, iOS,
Lumin, and UWP.

Unreal Engine[16][17][18] is the second most widely used game engine after
Unity. Like Unity, it includes a built-in framework for building apps that is
limited to iOS ARKit and Android ARCore. It is slower to update and does
not include as many features as Unity’s AR Foundation. This difference is
negligible in my project. Unreal Engine uses C++ and is more focused on
graphical programming using so-called blueprints. Compared to Unity, it is
significantly harder to create XR multiplayer games in Unreal Engine, there
are no built-in libraries to convey this functionality, and plugins tend to be
harder to use due to poorer documentation and less clarity. Additionally, the
Unreal Engine contains fewer plugins due to its smaller user base.

4.2 Tools for network multiplayer

Since I decided to build my application in Unity, I only considered Unity’s
networking tools. Unity used to have its framework, UNet, which was
discarded, and until recently there was nothing directly from Unity to support
network play. Unity has taken the MLAPI framework and made it into its own
framework, Netcode for GameObjects[19][20]. Today there is also Netcode
for Entities, which is a similar framework to Netcode for GameObjects but
is more oriented towards games with high quantities of players over the
internet at once, while Netcode for GameObjects is more intended for local
networked multiplayer. The table in figure 4.2 from 2020 summarizes the
capabilities of the frameworks for networked play well. Here is still MLAPI,
but the description still fits Netcode for GameObjects. I chose to develop my
application using Netcode for GameObjects because it is free, it is supported
by Unity, Unity represents it as a future standard, it will be maintained and

11

4. Development tools
improved in the future, and my game is intended to be played by two players
using a local network.

Figure 4.2: A table of tools enabling network multiplayer for Unity (2020)[19].

4.3 3D modelling tools

Since 3D modelling isn’t the main focus of my bachelor’s thesis I was deciding
whether I should create my own 3D models or use some from the internet.
I decided to create my own so I could create exactly what I needed for my
game as opposed to having pretty-looking models but having to compromise
on my game design, so the models would fit.

Because I wanted to create simple 3D models to be used in Unity, I used
the tool I’m most familiar with, Blender 3.6. I knew beforehand how to
create models in Blender and how to use them in Unity thanks to the course
Creating Graphic Content (VGO). I didn’t consider any other options, because
it would take too much time to learn how to use, and with Blender, I could
focus on augmented reality and network synchronisation instead. If I didn’t
have experience with Blender beforehand I would consider using Maya or
Cinema4D as well.

12

Chapter 5
Game implementation

In this chapter, I will focus on the implementation of the game described
in chapter 3. First, I will talk about my first simple game scenes in Unity
that showcase and test the functionality of the final game without specific
puzzles and visual design. Then, I will describe the process of creating the
3D models, implementing the puzzles, and finishing the whole game. All code
and models developed for this game are available in the digital appendix.
The digital appendix is described in the appendix C.

5.1 Basic AR scene

To start working on the app, I first had to create a new project in Unity and
prepare it for AR support. I worked in Unity 2022.3,13f1 with support for
Android and iOS, which wasn’t necessary since my app is Android-only. I
built my project on Unity’s empty template AR scene. This makes it easier to
work with, as almost everything in the template scene is pre-made for running
an AR app. The only thing that needs to be added is a specification of what
device and what work-frame the app is for. In my case, that’s ARCore for
Android. The correct packages are selected for the AR app in the Unity
template scene, namely the AR Foundation, Apple ARKit XR plugin, Google
ARCore XR plugin, Magic Leap XR plugin, Apple ARKit FaceTracking XR
plugin, and OpenXR Plugin. Since my app is Android-only, it could do
without the ARKit packages. Furthermore, the AR Session, AR Session
Origin, and AR Camera objects are already created in the scene. AR Session
handles the communication with the player, handles the input and sets what
to track, the rotation, position, both or nothing. AR Session Origin takes
care of all the necessities for the AR app to function, including specialised
technologies like finding and tracking images in the real world, finding flat
surfaces in the real world, and casting rays from the AR Camera. The AR
Camera works similarly to a normal camera in the Unity scene, only it reacts
to external inputs such as the position and rotation of the device. The game
scene and some packages are described in more detail in appendix A.

After building and running this app on a mobile device, nothing significant
happens because the scene is empty. The user will only see the image from
the camera, and gradually, places where the app thinks are flat surfaces in the

13

5. Game implementation
physical world will be highlighted. This is because of an AR Session Origin
component called AR Plane Manager, which, when a flat surface is found,
creates a virtual representation of it in its place.

I then placed a cube in the empty scene and observed how the application
would behave. Once launched, the cube was robustly positioned in the air
and responded correctly to any movements I made. In the image 5.1 you
can see the position of the cube in the air and the dotted surfaces show the
recognized flat surfaces. You can also see that the camera is angled and the
cube in the scene is still oriented correctly according to the surrounding space.

Figure 5.1: A simple AR scene with a floating cube and dots representing found
flat surfaces.

5.2 AR scene with ray casting

AR sync now works in such an application, but the user can’t interact with
anything. The main method of interaction in my app between the player and
the virtual world is ray casting. This works on the principle of sending a ray
from a specific point on the screen through the scene, which acts when it
collides with the first object. The ray would be cast by the player tapping the
screen. To test this out, I implemented it in two ways. The first one creates
an instance of an object consisting of a cube and a sphere on a recognized
surface, the second one changes the colour of the cube after touching it on
the screen.

The first interaction is inspired by the internet[41] and is implemented
using the AR Raycast Manager, which is an AR Session Origin component.
This component handles the casting of AR Rays, which can collide with
AR-specific objects such as detected surfaces. When the first collision with a
surface is found, it creates an instance of an object at the collision coordinates.
AR Rays can’t detect collisions with non-AR objects in the scene so I decided
not to use AR Plane Manager. I wanted to use non-AR Rays that are a part
of base Unity. It is also important to know that rays can only collide with
objects that have a collider component in Unity. A collider is a component
that approximates the shape of an object. All collisions are calculated on the
shape of a collider and not the 3D model itself.

14

............................... 5.3. AR scene with multiplayer

All code for input handling from this point on is made only by me refer-
encing official Unity manuals. AR Camera has a "public Ray ScreenPoint-
ToRay(Vector3 pos)" method that takes a position in screen coordinates
and emits a ray from that position into the virtual scene[42]. This is how
I implemented the second interaction. The method that triggers after the
player touches the screen is visible in figure 5.2. When the ray collides with
an object with the tag "TestCube" it will trigger a method of that object
called "Change" with no parameters. This method changes the material of
the object.

So my script would cast two beams of different types when touching the
screen, both interactions can always happen at the same time. This can be
seen in the image 5.3, where one cube changed colour from red to green, but
at the same time a new cube was created near it. The recognized flat planes
are shown in yellow and bordered in black. Also, notice the cubes are halfway
inside the plane. This is because the prefab for the cubes has their origin in
the centre. To make them appear on the surface, rather than inside it, the
prefab’s local position needs to be changed.

During the testing I encountered numerous issues with AR Plane Manager,
confirming I had chosen well to not use it for the sake of stability. In the
figure 5.4, you can see that during testing of the input system, the scene got
so desynchronised, that flat surfaces that used to be around me were barely
visible in the distance (the image is zoomed in).

Figure 5.2: A part of the method that is called when the player touches the
screen which casts a non-AR ray which triggers the method Change if it collides
with an object with the tag "TestCube". This is a part of the "InputManager.cs"
file.

5.3 AR scene with multiplayer

I focused on synchronizing the multiplayer scene using Netcode for GameOb-
jects next. I added the necessary package to my project and created a
NetworkManager object with Network Manager and Unity Transport compo-
nents which take care of the communication over the network. Netcode for

15

5. Game implementation

Figure 5.3: Cubes being created on the detected plane by touching the screen.
Their material changes when touching the screen as well.

Figure 5.4: Flat planes detected on the ground around me which are now barely
visible in the distance due to desynchronisation. The scene was originally the
same as the one in figure 5.3 except for different models for the cubes.

GameObjects recognizes three kinds of users: server, host and client. The
server has the most privileges and takes care of running the network elements
but does not participate in the game. The client is always connected to the
server and can’t directly change network variables. The host is both the
client and the server. I created a simple GUI that allowed the user to connect
as a host or a client and specify what local IP address to try to connect
to. Every Script in Unity inherits from the MonoBehaviour class. For an
object to be shared or communicate over the internet, it must implement the
NetworkBehaviour specified in Unity.Netcode. This abstract class makes it
easy to manipulate network data, for example, it is easy to see if the owner
of a script is a host or a client and what its user ID is. To test network
communication without building an Android app, I used the ParrelSync
package[33]. This creates an exact copy of the current project and opens it in
a new editor. It is then possible to test the communication on one machine

16

............................... 5.3. AR scene with multiplayer

and only in the editor. This way I could first test if the communication works
on the computer and only then try it out on phones.

For the first test, I used one cube in the scene that changed colour when
you touched it on the screen. The screen touch is not sensed on my computer,
so I had to create a simple keyboard control. If there is no support for AR,
the camera is static in the position it is initially placed in the scene, which
solves the problems of long testing on mobile devices. If the colour of the
cube is changed by the host, the change is sent to the client as well. For
the client to do the same, a call to ServerRPC[44], which is a request for
a method to be called on the server side, must be used. Next, I needed to
think about who owns the object. For example, I didn’t want one player to
control other players’ characters when trying to move their own. I solved
this with a simple condition on the owner of the object instance. At this
stage, all changes were reflected on both devices. I created a simple script
that includes a network variable which is a construct that lets one variable
be shared and changed by instances of the same object on different devices.
This script asks in the "FixedUpdate" function what the value is and changes
the material of the cube based on that. This is rather inefficient because it
keeps asking for a value of the network variable. It would be more efficient
if each instance notified all others if the value changed in its instance, but
the main purpose of this was to try out how network variables, and other
kinds of network synchronisation work. In figure 5.5, you can see the code
for declaring a network variable and the content of the FixedUpdate method.
The network variable is just a container and to access its stored value one
needs to access the "value" attribute. As visible in the code snippet, only the
owner can change the network variable value.

Figure 5.5: A snippet of a code that synchronises the material colour of a cube
that can be changed from both the host and client side.

The next step was a more complex synchronization. I created a simple
capsule-shaped object representing the player character and created a simple
control script[45] using the Joystick from the Joystick Pack from Fenerax
Studios on the Unity Asset Store[34]. The NetworkManager in Netcode for
GameObjects is made for games, so it can be used to set up a prefab for the
player character. It also takes care of making sure each player has their own
and synchronizes their movement. Using this, you can move the character
in 3D space in an AR application. Each player could now control their own
character with the joystick and for the other player, the position of both
characters synced correctly. This can be seen in figure 5.6. A script taking
care of the player movement and cube material synchronisation is called

17

5. Game implementation
"PlayerScript.cs" and is available in the digital appendix. I used this part of
the game throughout all of the development to be able to quickly tell whether
the network synchronisation works as intended or if there is an issue.

Figure 5.6: An image of a game synchronising the colour of the cube and the
position of each capsule, which the players can move using the joystick on the
bottom left.

I also created a network script "NetworkUIManager.cs" that synchronises
the progress of the game and takes care of UI elements. Each player owns an
instance of an object containing this script so these instances can communicate
and synchronise game progress. It takes care of creating a host and connecting
the client to the given IP address.

In the implementation of my game, one player is always going to be a host
and the other is always going to be a client. The game is intended for two
players, so instead of calling them, for example, player one and player two,
one is always going to be referenced as the host and the other as the client.
It only reflects the network state of the game of each player, but I believe it
is more convenient and clear to call the players this way.

Working with Netocode for GameObjects seemed intuitive and smooth for
local multiplayer. There were no functions I missed and I believe it has been
the right choice. I wouldn’t have achieved better results if I had chosen a
different tool. It also made network communication easier, taking care of all
low-level communication. This saved me a lot of time. The disadvantage of
this is that it takes away the freedom in taking care of the communication in
the exact way one wants. This was not an issue for me since I could focus
more on implementing the rest of my game. It is also good for debugging.
When I built the game and played it on my phones, one of them would always
connect to the Unity editor and print out all debugging logs.

The most significant issue I had with Netcode for GameObjects, which is
still a mystery to me, is that sometimes the network synchronisation stopped

18

.............................5.4. Image recognition and tracking

working on certain networks (three different ones) for no apparent reason. It
stopped working on all already built versions, that used to work before. This
could’ve changed from day to day. One day it was working and the other it
would not. There were no error messages. The client was not able to connect
to the host as if they were connected to different networks. I tried debugging
and changing related settings in Unity but I did not figure out the reason for
this issue. I spent a few weeks trying to solve it, but I have not encountered
this issue again since the beginning of April 2024.

5.4 Image recognition and tracking

In Unity, I needed to add an AR Session Origin component called AR Tracked
Image Manager, which accepts a "Reference Image Library" containing images
that it looks for in the real world through the device’s camera. In Unity,
one can subscribe to the "trackedImageChanged" event of the component,
which means that every time the tracked images change, a function will
be called. An object of type "ARTrackedImageChangedEventArgs" is sent
to the function, which contains the new, changed, and lost images. My
implementation of a function called when this event is triggered builds on
the implementation from the internet[53], which loops through all recognised,
tracked, and lost images and creates or destroys a game object with the same
name as the image. In my script (the part that is fully created by me), this
function creates an object on the image depending on whether the user is
a host or client. Also, for the functionality of the first scenario, it notifies
the local "NetworkUIManager.cs", which notifies over the network when an
image named "WatchBox" is being watched (figure 5.7) and when it is lost.
The name of an image is set inside the "Reference Image Library" so it’s
easy to change tracked images when needed, but there should always be one
called "WatchBox" for the first scenario to work correctly. When the figure is
lost, the object is not destroyed, which adds to robustness because the object
remains in place in the scene at all times and only updates its location when
the figure is found again.

Figure 5.7: A part of my code that loops through game object prefabs for
the client and finds one with the same name as the image recognised in the
scene, if the recognised image is called "WatchBox" it also calls a method of the
"NetworkUIManager.cs".

In the beginning, I had problems with choosing an image that would be

19

5. Game implementation
recognised and tracked well. I first tried the images in figure 5.8, thinking it
would work well, not knowing how the image recognition technology works.
After reading several articles[35][36][50] on the topic of choosing the right
image, I found that the quality of the image mainly depends on the image
having a wide spectrum of brightness, that it is not repetitive, that it is
complex, and that it is well spread out. For example, image 5.8a is too
repetitive, and image 5.8b is simple with just a few narrow lines. It also
depends on the shape. Square images are the easiest to recognize, and an
odd number of pixels in one of the dimensions can detract from the quality
of recognition. All images are converted to black and white, so it’s the
brightness that matters, not the colours. Later on, I tried printing the final
chosen images for my game in black and white and there was no difference
in recognition quality compared to originals. Furthermore, the app finds the
most notable features and remembers their position in the image. Then, it
searches for these features in the pictures from the device’s camera[49].

(a) : A colour pattern I initially
thought would be good for image
recognition[46].

(b) : A drawing of a glass made by my
mum.

Figure 5.8: Images I first used when trying out the image recognition technology.

Google also has an application called The arcoreimg tool[38] to rate the
quality of an image for recognition, which gives images a score of 0 to 100,
where 100 is the maximum. On the official site, Google recommends using
images with a score of at least 75. I used this tool to grade images representing
the good and bad qualities of an image for tracking from one of the articles[50].
These images are seen in figure 5.9 and the results given to them by The
arcoreimg tool are seen in table 5.1. The good qualities always got a better
grade than the bad ones, one of them even got a perfect score. The grade
also depends on how the image is cropped. So I tried running The arcoreimg
tool on the same image with a different resolution. The values in the table
5.1 are a mean of those results. I then chose three images seen in figure 5.10.
I expected the images 5.10a and 5.10b to perform poorly and the image of a
concert 5.10c, although not square-shaped, to do well. The King of Hearts
got 60 points, which surprised me because it’s repetitive and has few details.
The image from a concert got 0 points, which also surprised me because it’s

20

.............................5.4. Image recognition and tracking

detailed. Perhaps it got no points because of the panoramic resolution and
small changes in brightness. The album cover art image in the top right got
90 points. It has notable changes in brightness, some details and a square
shape. Because of this, I chose to use this image in my final game.

Figure 5.9: Images from an article about how to choose a good image for AR
tracking displaying good and bad qualities of an image[50].

Bad quality Score Good quality Score
Simple 10 Complex 85
Repeat and symmetrical 80 Not repeat and symmetrical 100
Poorly distributed 65 Well distributed 95
Low contrast 15 High contrast 95

Table 5.1: Results of grading the images from figure 5.9 using Google’s The
arcoreimg tool[38].

The arcoreimg tool is a good approximate metric when choosing an image.
One should always try out the images in practice to see how good they
are since The arcoreimg tool only uses simplified metrics and doesn’t take
everything into account. For example, an image of a zebra seen in figure
5.11 got the maximum points in The arcoreimg tool, but when used in Unity,
it was recognised much worse than other images, for instance, the King of
Hearts image from figure 5.10, which only got 60 points. Textures that don’t
belong in images, such as watermarks, also add contrast and orientation to
images. After testing with The arcoreimg and basic image recognition in
Unity, the images in figure 5.12 performed the best. I used these images in
my game.

The most unstable part of image recognition is the initial image recognition
which can take up to a few seconds based on the lighting, angle between the
camera and the image, and size of the image. After the image is found, it is
usually steadily being tracked until the image leaves the field of view of the

21

5. Game implementation

(a) : A cover art for Judas
Priest’s album Screaming for
Vengeance[51]. (b) : An image of the King of Hearts card.

(c) : An image of a concert[52].

Figure 5.10: Images I first used for image recognition after reading articles
about the topic.

Figure 5.11: An image of a zebra, which got 100 points in The arcoreimg tool,
but was not suitable for use in AR image tracking[54].

camera, or becomes too far to be tracked.
I also tested images 5.10a, 5.12a, and 5.12b used in my app and the zebra

image from figure 5.11 in different light conditions, by having four simple
objects placed in the image’s position. This testing was done using the
OnePlus Nord 2T CPH2399 5G 128GB 8GB RAM mobile phone. In daylight
and in ordinary room light, the image recognition worked perfectly, the images
were usually found within a second, except for the zebra which took longer.

22

.............................5.4. Image recognition and tracking

(a) : An image of a concert[37]. (b) : An image of a coast with birds[36].

(c) : An image of a cave[47]. (d) : A poster for Metal Fest in Pilsen[48].

Figure 5.12: The images that turned out the best when testing image recognition
and tracking.

The recognition time can be significantly longer if there is a shadow partially
covering the image. When moving the images, the zebra kept getting lost,
while the other three were being tracked all the time and updated according to
the movement. When moving away from the light source, the 5.12a and 5.12b
images kept tracking to almost complete darkness, with only faint light from
another room, where it started having troubles. If I used the phone’s torch
as a light source, there was barely any difference from tracking in daylight.
The three images used in the game were able to recognise an image even in
the faint light of another phone’s screen. I expected the game to be played in
a lit room, so these tests seemed promising for the stability of my game.

All parts of the image recognition seemed to work reliably and fast. Working
with image recognition was intuitive with the help of Unity manuals, which
were well-documented and clear. If I encountered any issues I could search
online for solutions and usually at least some came up, which I believe
wouldn’t be the case if I used a different tool. I am content with the choice
of Unity and AR Foundation for my game.

23

5. Game implementation
5.5 3D Modelling

In this section, I will describe the process of creating each of the models used
in my game. All 3D models were made in Blender 3.6.

For most of my 3D models, I first created a 3D mesh representing the shape
of the object. Then I created materials for different parts of the objects and
baked albedo, roughness and metallic textures for the 3D model. I used Gimp
2.10.36 to create details in the textures because it’s free, I had experience
working in it, and it’s easy to perform the tasks I needed in it.

All images of models in this section are taken in Blender, except for the
puzzle box in subsection 5.5.5, because it uses transparency in albedo texture
to create a see-through window. This means it renders transparent in Unity,
so the images are taken in Unity.

5.5.1 Button Box

The first model I created for my game was a box with three buttons labelled
from one to three, as seen in figure 5.13. Buttons themselves are separate
child objects of the box so they can move when clicked on.

Figure 5.13: An image of the button box model created for my game.

5.5.2 Wheel Box

I called the machine for inputting a code, seen in figure 5.14, the wheel box
because it uses letter wheels to show the code, so as not to be confused with
the code box, which displays letter and their order in the code.

In this case, I spent more time trying to make the model look appealing
compared to the previous one. The details of the letters on the letter wheels
and the hint from the back of the machine were made in GIMP. It also has
two albedo textures, one for when the code is not correct (image 5.14a) and
one for where it is (image 5.14b).

5.5.3 Code Box

The code box displays the scrambled code and the order of the given letters
in the correct code. For this, I have created two textures for a box with three

24

.................................... 5.5. 3D Modelling

(a) : Wheel box from the
front with red, unsolved
texture.

(b) : Wheel box from the
front with green, solved
texture.

(c) : Wheel box from the
back shows a hint for the
players.

Figure 5.14: The images of the wheel box.

spaces to display characters. Both of these options are visible in the figure
5.15.

(a) : Code box showing numbers, displaying the correct
order of the letters.

(b) : Code box showing the letters of a scrambled code.

Figure 5.15: Images of the code box.

5.5.4 Watch Box

The watch box, seen in figure 5.16, is an object which one of the players needs
to observe for the other one to see the letters on the code box instead of the

25

5. Game implementation
numbers. To notify the first player of this change, the watch box is red when
not observed and green when it is observed. To indicate that it should be
observed, there are simplistic images of eyes on each side.

(a) : Watch box with the red texture. (b) : Watch box with the green texture.

Figure 5.16: Images of the watch box.

5.5.5 Puzzle Box

The puzzle box is the most complex 3D model. The cover of the box can be
solid or see-through with an ornament[39] in the middle. It contains eight
pieces of a sliding puzzle, each displaying a piece of an image[40] that is also
shown on the bottom of the puzzle box. In the figure 5.17, you can see the
closed box from the front (image 5.17a) and back (image 5.17b), and on the
bottom how each of the players see the box after all previous tasks have been
completed (images 5.17c and 5.17d).

5.5.6 Plant

After creating all the models for the game, I decided to create two dummy
models. These models would appear in the game but just as decoration and
the players won’t interact with them. The first of these models is a model
of a plant in a pot. The process of creating the plant model is depicted in
figure 5.18.

For this model, I decided to take a bit of a different approach and use a
normal map. Plants are naturally detailed and wouldn’t look good using
simple shapes. First, I created a simple model of the plant without details
as seen in image 5.18a. Then, I used the Subdivision Surface modifier in
Blender to create a high-poly model. Using the sculpting tools I created the
details of the crown, trunk, and dirt. The details are seen in the image 5.18b.
Afterwards, I tried to bake the normal map using Blender’s built-in tools. This
turned out poorly without using a cage. I copied the simple model and scaled
it down so the normal vectors don’t map on the opposite side of the model.
This solved the issue and the normal map worked as intended. The bake
settings inside Blender are shown in image 5.18d. Lastly, I created materials

26

.................................... 5.5. 3D Modelling

(a) : Closed puzzle box from the front. (b) : Closed puzzle box from the back.

(c) : Open puzzle box with blank pieces.

(d) : Puzzle box with a transparent cover
and puzzle pieces displaying a scrambled
image[40].

Figure 5.17: Images of the puzzle box model.

for each part of the model and created albedo and roughness textures (not
metallic this time, since the value is always zero). The simple model with all
textures and the normal map applied is visible in image 5.18c.

5.5.7 Cube

The second dummy model and the last model that I created is a model of
a toy cube as seen in figure 5.19. The cube has a logo with my initials and
is completely realistic, meaning a real cube could be scrambled into this
position. Originally, the cube was intended to be fully functional, but since it
is just a dummy object, I didn’t want to confuse the players.

5.5.8 Using the models in Unity

To use the Blender models in my Unity project, I first exported each model
as a .fbx file and placed it in the project’s folder containing all my 3D models
(Assets -> BlenderMeshes). Next, I needed to create a Material for the model.
For this purpose I needed to create a metallic-smoothness texture from the
metallic and roughness textures, applying inverted roughness as the alpha
channel of the metallic texture. I did this in GIMP. Then, I created new
materials in Unity and set the correct textures for albedo, metallic-smoothness,

27

5. Game implementation

(a) : The simple
low-poly mesh of
the plant model.

(b) : The detailed
high-poly mesh of
the plant model.

(c) : The low-
poly model with
applied normal
map and albedo
and roughness
textures.

(d) : The settings
inside Blender I
used to bake a nor-
mal map from the
high-poly model
to the low-poly
one.

Figure 5.18: Images of the process of creating the plant model.

Figure 5.19: An image of the toy cube model taken in Blender.

and normal maps, if needed.
Afterwards, I created prefabs using the models imported to Unity. I added

the needed components to the models, so the game works from a technical
standpoint. The "ImageRecognitionScript.cs", which I talked about in section
5.4, contains two arrays of game object prefabs. One array is for the host’s,
and the other is for the client’s prefabs. I also needed to make sure that in
the Reference Image Library, there is always an image with the same name
as each given prefab. A host’s and client’s prefabs that are supposed to be
created on the same tracked image needed to be called the same as well.
When this is done, the script takes care of creating the correct prefabs on the
correct images in-game. This process is described in more detail in appendix
A.

28

.................................... 5.6. First scenario

5.6 First scenario

The first scenario, as described in chapter 3, is supposed to be a riddle for the
players to find the correct secret code for scenario two. From the gameplay
perspective, it should work as follows. If one of the players looks directly at
an object with eyes on it (watch box from subsection 5.5.4), it would change
from red, as seen in image 5.22c, to green, image 5.22a. Simultaneously,
when the first player’s object (code box from subsection 5.5.3) turns from
red to green, the second player’s object in the same place would change from
displaying numbers, visible in image 5.22d, to displaying letters, seen in image
5.22b. This might not be obvious at first to the players. The letters show
the letters used in the secret code but in the wrong order. The numbers tell
the players the correct order of the letters. Specifically, the scrambled code
shows the letters "F", "I", and "C", and the letters show numbers 3, 1, and 2.
This means that the letter "F" comes in the third position in the code, the
letter "I" is the first letter of the code, and the letter "C" is in the middle.
The secret code then is "ICF".

5.6.1 Hierarchy of the scripts in the Unity project

I will now mention all eleven C# scripts I developed for this game and
summarise their use.

The "NetworkUIManager.cs" is a component of the AR Session Origin
(mentioned in section 5.1) that takes care of all the network communication
between the host and the client. It also takes care of the UI functionalities,
which connect the two players.

The "ImageRecognitionScript.cs", mentioned in section 5.4, is a component
of the AR Session Origin, which uses another component of the AR Session
Origin called "AR Tracked Image Manager". The "ImageRecognitionScript.cs"
responds to images from a Reference Image Library being found and lost in
the scene. It keeps an array of game objects for both the host and the client
to instantiate on a corresponding image. As I mentioned earlier, the base of
the script is inspired by the internet[53], but it is heavily modified by me to
fit the needs of my game.

The "InputManager", talked about in section 5.2, is also a component of
the AR Session Origin. It subscribes to the "onFingerDown" event which is
triggered when the player touches the screen. After that, a method of the
AR camera is called which casts a ray (Unity’s base ray, not AR Ray) in the
game scene, and, if the ray collides with an object, calls appropriate methods.
The part of the script subscribing to the event is inspired by the internet[41]
but the method called and the ray casting is all done by me.

The "PlayerScript.cs", described in section 5.3, is used to control each user’s
player object and spawn a cube which would change colour and be synchro-
nised between players. This was done to test the network communication
during development and is not a part of the final game. The player movement
part of the script is based on a video from the internet[45].

29

5. Game implementation
The "WatchBoxScript.cs" takes care of changing the material of an object

when a method is called. It is used for the implementation of the first scenario.
The "ChangeMaterial.cs" and "seenCubeScript.cs" are both prototypes of

the "WatchBoxScript.cs" and aren’t used in the game. They both used the
"FixedUpdate" method to continually ask "NetworkUIManager.cs" for a value
of a variable. The first script would change material based on the value, and
the second one would change which child of the object is active.

The "ButtonBehavior.cs" script takes care of the button clicks and button
animations in the second scenario. It is a component of all three buttons of
the button box from subsection 5.5.1.

The "WheelBox.cs" is a component of the wheel box from subsection 5.5.2.
It takes care of turning the letter wheels one step each time a button is clicked,
and of checking, whether a code entered is the correct one.

The "PuzzleBoxScript.cs" is a component of the puzzle box from subsection
5.5.5. It takes care of coordinating the movement of the puzzle pieces and
checking whether the puzzle is solved.

The "PuzzlePieceScript.cs" is a component of each of the puzzle box’s pieces.
It moves the piece and notifies the puzzle box which piece has been clicked
on.

All of these scripts in the C# programming language are available in
the digital appendix. The contents of the digital appendix are described in
appendix C. These eleven files span around 1300 lines including numerous
comments explaining what the codes do for clarity.

5.6.2 Implementation

In section 5.4, I mentioned that the "ImageRecognition.cs" script calls a
method of "NetworkUIManager.cs" to notify whether the specific image called
"WatchBox" is being tracked by the client. This is the main part of the first
scenario’s technical side and the "NetworkUIManager.cs" takes care of any
specific network communication for the scenario to work.

Originally, I implemented a simple representation of this scenario in which
I used different objects for the host to represent whether the client’s game
is tracking the specific image as seen in figure 5.20. Here, the host sees
a red cube if the image is being tracked (image 5.20a) and a blue ball if
it isn’t (image 5.20b). This was originally implemented using a boolean
network variable inside the "NetworkUIManager.cs", which would be updated
every time the image is recognised or lost. This is implemented in the
"seenCubeChanger.cs" script. Then, the specific object on the host’s side
would ask the "NetworkUIManager.cs" in the "FixedUpdate" method, what
the value is.

This approach is inefficient because it keeps continually asking for a value
inside a network variable, which can be demanding and slow down the game.
My game is quite small so it wouldn’t have had a big impact but I didn’t like
this approach. So I reworked the script inside the "NetworkUIManager.cs"
into a simpler form as seen in figure 5.21. In the code snippet, there is a
public method called "SeenChanger" that accepts one boolean parameter

30

.................................... 5.6. First scenario

(a) : The client is tracking the image on the com-
puter screen so the host (the phone held) sees a
red cube on the tracked image.

(b) : The client is not track-
ing the image on the computer
screen so the host (the phone
held) sees a blue ball on the
tracked image.

Figure 5.20: Screenshots from the client’s version of the game showing the
prototype of the first scenario. The host’s version of the game is visible on the
phone held in my hand.

called "isSeen". This method is always called from the client’s side of the
game when the image called "WatchBox" is recognised or lost in the scene.
This method runs locally, always on the client’s side. The "isSeen" parameter
contains a value of whether the image is being tracked or not. First, it
updates its local variable "seen" to the value of "isSeen". This is so that
when a new object with the component "WatchBoxScript.cs" is instantiated,
it can ask for the variable’s value to know which material it should use to
render. Next, the method finds the first instance of a "WatchBoxScript.cs"
in the game scene, and if one exists, it calls the method "ChangeSeen" with
the boolean parameter. The "ChangeSeen" method changes the material
of the object based on the boolean variable. The "WatchBoxScript.cs" is
a component of objects using the models 5.5.3 and 5.5.4. If the boolean
parameter of the "ChangeSeen" method is true, it changes the material to the
green version, otherwise, it changes to the red version. If the method in figure
5.21 is analysed further, it calls a method called "ChangeSeenServerRpc".
It is a remote procedure call, meaning it is a request for a method to be
performed on an instance of the given script owned by a (usually) different
user. In this case, it is a server RPC, which means it requests that the method
called "ChangeSeenServerRpc" be run on the server side. As I mentioned
earlier, the host counts as being both the server and the client, so if a client
calls a server RPC, it is performed on the host’s instance of the script. The
"ChangeSeenServerRpc" method contains an almost identical body to the
"ChangeSeen" method.

In the final version of the game, I chose the image from 5.12 on the top
right to be the image called "WatchBox", because it performed better than
the others during testing. When running the game now, the first scenario

31

5. Game implementation

Figure 5.21: A code from "NetworkUIManager.cs" taking care of changing a
material of models 5.5.3 and 5.5.4, based on whether the client’s game is tracking
the image called "WatchBox".

works exactly as it should. If the client’s game is tracking the image, the
objects, which are created in the place, where the image is tracked, change
their material. This means that when the image is being tracked by the client,
the client sees the green version of the watch box model (image 5.22a) and
the host sees the scrambled code on the code box model (image 5.22b). If
the image is not tracked by the client, the client sees the red version of the
watch box model (image 5.22c) and the host sees the numbers on the code
box model (image 5.22d). This also means that if the client is not tracking
the image and sees the red model 5.5.4 and the image moves, the model will
stay in place. On the other hand, if the image is tracked, the model would
move with the image, as if it was physically placed on it. This is because,
when a game object is created when an image is recognised, the object’s
transformation is parented to the image’s position. So as long as the image is
actively tracked, the object will stay on top of it.

5.7 Second scenario

The second scenario revolves around the players entering the secret code to
a code machine seen in image 5.23b. Only the host can see this machine.
The client’s game displays a machine with buttons numbered from one to
three, visible in image 5.23a. The numbers under the buttons show the order
of which letter wheel on the code machine they turn. It also references the
numbers from the first scenario in image 5.22d. The numbers are needed
because the model for the button box is symmetrical so if it was turned
around, the players wouldn’t notice and would be confused as to why the
"left" button turns the "right" letter wheel. When the players enter the right
code, the red bar on the bottom of the code machine will turn green as in
image 5.23c and the players will not be able to interact with the object from
this scenario anymore. There is also a hint for the first scenario on the back
of the code machine, as seen in image 5.23d.

32

................................... 5.7. Second scenario

(a) : Client’s game when the image called
"WatchBox" is being tracked.

(b) : Host’s game when the image
called "WatchBox" is being tracked by
the client.

(c) : Client’s game when the image called
"WatchBox" is not being tracked.

(d) : Host’s game when the image called
"WatchBox" is not being tracked by the
client.

Figure 5.22: Images from the final version of the game of the first scenario
from both the host’s and the client’s side.

5.7.1 Implementation

Because in this scenario, one of the players needs to push buttons, I used an
implementation from 5.2. There, I explained how I created a way to trigger a
specific method of a game object the player touched on the screen. This is
implemented in "InputManager.cs". In summary, every time a player touches
the screen, the script runs a method which captures the point on the screen
the player touched and calculates the coordinates in the game space of that
touch. Then, based on the camera rotation, casts a ray from that point.
Afterwards, it returns the first game object with the collider component hit.

In this scenario, the game needs to recognise when the ray collides with a
button. For this purpose, I added the Box Collider component to all three
buttons and created a tag called "Button". Inside the "ButtonBehaviour.cs"
script I created a public method called "ButtonClick" (image 5.24b), which is
called from "InputManager.cs" script when a ray collides with a button (image
5.24a). This method starts a button click animation and calls a method of
the "NetworkUIManager.cs" called "ButtonClick" passing it the button’s ID.
Since the buttons are always on the client’s side, the "NetworkUIManager.cs"
calls a server RPC called "ButtonClickServerRpc" (image 5.24c) which then
finds the code machine’s component "WheelBox.cs" in the game scene and

33

5. Game implementation

(a) : Client’s game showing the button box.
(b) : Host’s game showing the un-
solved code machine.

(c) : Host’s game showing the solved code
machine.

(d) : Host’s game showing the back of
the code machine with a hint.

Figure 5.23: Images from the final version of the game of the second scenario
from both the host’s and the client’s side.

calls the "RotateWheel" function (image 5.24d).
The "RotateWheel" function takes one argument saying which letter wheel

should be turned. It starts an animation of rotating the wheel one letter and
checks if the correct code has been entered. If yes, it changes the rendered
material, notifies the "NetworkUIManager.cs", and sets a local boolean variable
which prevents any further wheel rotations.

5.8 Third scenario

In this scenario, both players see the same 3D object. It is the puzzle box
seen in figure 5.25. At first, this box is closed for both players as in image
5.25a. After the second scenario is finished and the correct code is entered
into the code machine, the third scenario will become available. For the host,
the box will open and they will see eight blank pieces inside, as seen in image
5.25c. If the host clicks on a puzzle piece next to an empty spot, the piece
will move to that spot. The client’s box won’t open but the cover of the box
will become transparent, like a window. The pieces inside the box will be

34

................................... 5.9. Final application

visible and each will display a piece of an image, as seen in image 5.25b. The
players need to cooperate to put the pieces in the right spots to form the
image. When they are done, the game finishes.

5.8.1 Implementation

The player interaction with the puzzle pieces works similarly to the buttons
in scenario two in section 5.7. The "InputManager.cs" will check for the
tag "PuzzlePiece". All puzzle pieces have this tag and they all contain the
"PuzzlePieceScript.cs". They also all have a Cube Collider component. When
a ray collides with a puzzle piece, its method called "Clicked" is called, which
calls the method "PieceClicked" of the "PuzzleBoxScript.cs", passing it the
ID of the piece. The puzzle box object contains the "PuzzleBoxScript.cs".
The "PuzzleBoxScript.cs" keeps track of the state of the game using an array
keeping track of each piece’s position as seen in image 5.26a. The body
of the "PieceClicked" method is visible and described in image 5.26b. In
summary, it uses the "IsAdjacent" method, seen in image 5.26c, to find out
whether the piece that was clicked by the player is adjacent to an empty
spot. If yes, it moves the piece, notifies the "NetworkUIManager.cs", updates
the puzzle state, and checks if the puzzle was solved. If yes, it notifies the
"NetworkUIManager.cs". All of this only happens on the host’s side of the
game, because the client can’t click the puzzle pieces. When the host’s side
notifies the "NetworkUIManager.cs" of puzzle piece movement, it then calls
the client’s side of the "PuzzleBoxScript.cs" to just move a piece. The client’s
side is not keeping track of the puzzle.

5.9 Final application

My game is designed as a mobile game anyone can play if they print out
the correct images. It is easy to start playing but also contains all the
needed parts for it to be implemented into a real-world escape room. For
example, in appendix A, I explain how an overseer could be implemented,
which would track the game’s progress. This overseer could communicate
with the real-world escape room and trigger real-life events in reaction to
in-game events.

When the game is started, the player will see a main menu (image 5.27a).
It describes how to connect both players to play the same game. I believe it
is fairly intuitive, but it is not foolproof. It was originally not intended to be
used by a casual user, but rather to be set up by someone with experience
and handed to the players. In future, I would focus on either making the
game only for real-life escape rooms and creating a manual for the operators,
or on making it easy to play by casual players who download the game and
the images from the internet.

When the players finish the sliding puzzle, an ending screen will fade
in thanking them for playing the game, as seen in image 5.27b. The full
play-through video of the final version of the game called Escape Pierito is

35

5. Game implementation
available in the digital appendix. The contents of the digital appendix are
described in appendix C.

There was a slight issue with the image 5.12a, which sometimes kept being
recognised in a different angle, making it twitch between the correct position
and one leaning forward. In the future, I would change the image to a different
one.

If I compare my game to the ones described in chapter 2, the most similar
one would be AR-Escape[31]. It contains puzzles the players need to solve in
AR. It uses image recognition, similar to my game, to create game objects
the players can interact with. AR-Escape features a timer which counts down
the time players have to solve all puzzles. My game isn’t large enough to
need a timer. My game is only cooperative but contains puzzles that always
need both players to be solved. Unfortunately, I didn’t have a chance to try
the game out, so I can’t compare the two games in more detail.

Escape AR Room: Pandemic[21], Scriptum[22], ARia’s legacy[27], Prison
Break AR[29] and Escape the Room: AR[28] are all AR escape room games
developed in Unity. But they are all single-player only and depend on the
AR Plane Manager to find the floor. The games then create the escape room
on the floor. This approach is different from my game.

I can’t compare my game to any Cluetivity[23][24][25] games because I
didn’t have access to them and I couldn’t tell exactly how the games work
from the available sources on the internet.

36

................................... 5.9. Final application

(a) : A part of the code from the "InputManager.cs" which calls the "But-
tonClicked" method if a ray collides with an object with the tag "Button".

(b) : The body of the "ButtonClicked" method inside the "ButtonBehaviour.cs"
script.

(c) : A server RPC inside the "NetworkUIManager.cs" called after a button
was clicked.

(d) : The body of the "RotateWheel" method inside the "WheelBox.cs" rotating
one letter wheel one step.

Figure 5.24: Code snippets from the implementation of the second scenario.

37

5. Game implementation

(a) : Both players’ game showing the
closed puzzle box.

(b) : Client’s game showing the puzzle box with a
transparent cover.

(c) : Host’s game showing the
open puzzle box.

Figure 5.25: Images from the final version of the game of the second scenario
from both the host’s and the client’s side.

38

................................... 5.9. Final application

(a) : An array representing the puzzle state.

(b) : The body of the "PieceClicked" method.

(c) : A method determining the adjacency of two puzzle pieces.

Figure 5.26: Code snippets from the implementation of the third scenario from
the "PuzzleBoxScript.cs".

(a) : An image of the main menu of the
game, explaining how to connect.

(b) : The end screen thanking the players
for playing.

Figure 5.27: UI parts of the game. Both are cropped from the original phone
size, and they both contain my signature at the bottom.

39

40

Chapter 6
Testing

Testing an application on users is always an important part of the development
process. Not only to understand if there would be demand for such a product
but also to reveal any missing functionalities or details that would improve
the user experience. During development, I regularly consulted my supervisor
prof. Ing. Jiří Žára CSc., but even then I missed a few essential details that
came to light during the testing.

6.1 Testing process

The testing was conducted in separate pairs of testers, except for one person
who tested the game alone with me replacing the second player. Eleven
people participated overall in the course of one week.

Before the testing started I placed images from section 5.4, specifically
images 5.12 and 5.10a, on a table and prepared both devices for testing,
starting the app, connecting the devices and making sure everything works
as it should. When the pair of testers came, I gave an introduction speech.
Afterwards, the testers were supposed to play until they solved the first two
tasks, ending when they put the correct code in the code machine, which then
changed its material to notify the testers. During this time, I only watched
them and was taking notes on how they were doing and understanding the
game. Occasionally, I would try to push the testers in the correct direction
without revealing too much. After finishing the task, I asked the testers to fill
out a questionnaire I prepared and printed beforehand. Both the introduction
speech and the exact form of the questionnaire are available in the appendix
B.

The game was not tested in its final state. It included some of the debugging
elements to know as soon as possible, whether the game is running as intended,
to not waste time. There were no technical issues with my game during the
testing.

41

6. Testing
6.2 Testing results

All pairs have successfully finished the part of the game, except for one,
because the network stopped working during the testing and it would be
too lengthy to start over again. Luckily they were close to finishing so they
figured out the solution afterwards on their own. It usually took the testers
to finish this part of the game around 10 minutes.

Most people first tried clicking the buttons on the button box in the order
given by the numbers on the code box (the box displaying numbers when
the watch box is not observed and letters of the code otherwise). Afterwards,
they tried to input the scrambled code. At this point, some testers thought
they solved the puzzle. Not long after, they figured out that the code was
scrambled and the numbers showed the correct order of the letters. This is
exactly how I intended the players to think when solving the puzzle.

I created a table 6.1 showing the statistics of answers to all closed questions.
The answers have been changed to numbers from 1. This means that in the
first part the answer “Not familiar” equals 1 and the answer “Expert” equals
4. Similarly, in the second part the answer “Definitely agree” equals 1 and the
answer “Definitely disagree” equals 5. All numbers in the table are rounded
to two decimal places. There are four possible answers in the first part and
five in the second.

Question number Mean Mean answer Variance Median Range of answers
1.1 2.09 Somewhat familiar 0.69 Somewhat familiar 1-3
1.2 2.64 Decently familiar 1.25 Decently familiar 1-4
1.3 2.73 Decently familiar 1.22 Somewhat familiar 1-4
1.4 1.91 Somewhat familiar 1.09 Somewhat familiar 1-4
1.5 1.64 Somewhat familiar 0.85 Not familiar 1-4
2.1 2.18 Slightly agree 1.36 Slightly agree 1-4
2.2 1.18 Definitely agree 0.16 Definitely agree 1-2
2.3 1.73 Slightly agree 1.02 Definitely agree 1-4
2.4 1.45 Definitely agree 0.27 Definitely agree 1-2
2.5 4.18 Slightly disagree 0.97 Slightly disagree 2-5
2.6 1.18 Definitely agree 0.16 Definitely agree 1-2

Table 6.1: Statistics of closed questions of the questionnaire with the most
important features listed. All numbers are rounded to two decimal places.

This helped immensely when interpreting the answers later on. I could
not only tell what the average answer was but also how much they were
influenced by outliers and how unanimous the answers were.

6.2.1 Questions on testers’ background

The first question of the first part enquires about the tester’s familiarity
with real-life escape rooms. The question is included because people more
familiar with this topic might have more constructive and relevant answers
for open questions relating to escape room tasks and puzzles. There was no
one identifying as an expert in my group of testers, the group was evenly
distributed between the other three answers. This means there are answers

42

.................................... 6.2. Testing results

from all kinds of users.
The second question is about familiarity with video games. It would be

preferable to have people of all levels of familiarity with video games since my
game blends the genre of escape rooms and video games. This was achieved,
there were four testers in all categories, except the “Not familiar” which had
three.

The next three questions focus on whether the tester is familiar with topics
relating to the development of my game. This means that, for example, if
a person considering themselves an expert in Augmented Reality and Unity
Game Engine answered that there is an implementation issue resulting in
unexpected behaviour, I would give more value to that answer, than to
that of a person not familiar with the topics. Answers to these questions
were polarised, people usually stating they are an “Expert” or “Not/Slightly
Familiar”. This splits my testing group into casual users and people with a
deeper understanding of the topic.

There were a considerable number of experts in programming. There were
only a few people familiar with Augmented reality and only one tester who
was an expert in Unity Game Engine, while everyone else answered that they
are “Not/Somewhat familiar”. The same person is also an expert in all other
questions of part one, except the real-life escape rooms.

6.2.2 Questions on testers’ experience with my game

The second part of the questionnaire starts by asking about the stability of
the game. Most people answered they “Definitely agree” or “Slightly agree”
that the experience felt stable. The only exceptions were people more familiar
with Augmented reality and the Unity Game Engine. This means that the
casual players don’t mind some level of lability considering the game scene
synchronisation with the camera image. While watching the testers play the
game I noticed that about half of the time during testing the game worked
perfectly fine and the other half it had some issues with stability. In my
opinion, this is due to the different lighting. In one case the testing was cut
short because one of the phones disconnected from the wireless network.

The answers for whether AR can enrich the escape room experience, whether
the task presented was enjoyable, and whether they would like to visit
an escape room utilizing augmented reality unanimously agreed with the
statements.

Most people disagreed that the AR can make the experience less enjoyable
because of its constraints, except for two people. One person stated that
there are scenarios which will always be better with physical objects. I agree
that sometimes we might create extra steps for the sake of those steps and
that one should think about what to use AR for and when it is excessive and
might ruin the enjoyment.

Similarly, everyone except two people agreed that the task presented was
intuitive. I can confirm that all testers finished the task within a reasonable
time and no one got stuck. One person stated that it is similar to real-life

43

6. Testing
escape rooms with the difference that the two people interacting would usually
be standing further away from each other so they have to cooperate.

6.2.3 Open-ended questions on testers’ opinions

The most common answer in the third part was that there was no sound in
the game. Adding sounds would give players more than just visual feedback.
This would help the players orient themselves in the game much better. One
respondent stated that they would like to have "some music" in the game.
I don’t think background music would add much to the game experience
and it would add the need to synchronise the music from both devices so it
doesn’t become an uncomfortable mesh of sounds because of music duplicity.
It would make more sense to add background music using another device
inside the physical escape room.

Another important answer was about localisation. The tracked images
should relate to the theme of the game. I agree with the statement and I
would add that the style should be similar inside the game as well, which I
didn’t manage to do when creating the 3D models. This can be even further
emphasised when creating a real-world escape room using AR. The tracked
images can be scattered around the room having the same theme as the room
itself. In the manual (appendix A), I explain how to change which images
the app tracks and how to exchange the 3D models.

Another tester wrote that they would appreciate a hint button. I tried
to incorporate hints inside the 3D models, for example at the back of the
code machine. I think it is more engaging this way, but some players might
appreciate a hint button more. Since only one person pointed this out I don’t
think it is necessary, but it is a good point to consider.

One person pointed out that the game might need a tutorial for the controls.
I didn’t notice anyone having any issues with the controls, except one person
who tried controlling the game using hand gestures instead of tapping the
screen. I would say that tapping the screen is more natural for a casual user,
but I agree it is not obvious for everyone and a tutorial is a thing I would
consider adding to the game in the future.

6.3 Testing conclusion

In conclusion, the game isn’t as stable as I would like it to be, but most
people didn’t mind and stated it didn’t impact their enjoyment. This can be
enhanced in a few ways. The first way is to have the tracked images solidly
set in the physical room and not move them. Then, it would help to have
really good lighting in the room, and a good local network, so the game
doesn’t desynchronise. The most important thing to add in the future is
sounds to make the player more immersed and to indicate to them when the
scene changes, since visually it might not be apparent. People liked the idea
of the task presented to them and enjoyed the experience using AR. It seems
people would like to see AR incorporated more into real-world escape rooms.

44

Chapter 7
Conclusion

The goal of this bachelor’s thesis was to create an AR escape room for multiple
players who need to interact in AR to solve puzzles.

For this purpose, I analysed existing AR escape rooms, especially multi-
player ones, and the tools for creating AR games, and games using network
communication. Based on this analysis, I chose development tools and created
a game design featuring three scenarios in which the players need to cooperate
using AR.

I then described the process of developing the game and commented on
the choice of development tools. During development, I realised my choice of
the third scenario wasn’t good from the gameplay and fun perspectives. It
is too hard and lengthy and the players will likely lose interest in trying to
solve the puzzle as did one pair of testers who wished to play the rest of the
game as well.

I have been very satisfied with the choice of Unity’s AR Foundation. I
ran into problems using Unity’s Netcode for GameObjects, but ultimately I
was satisfied with the choice as it wasn’t hard to create functioning network
communication. These tools are the most important for my game as the
game’s aim is to connect augmented reality and network multiplayer.

When the game was complete, I tested it using eleven people split into
pairs. Only the first two scenarios were tested and I got valuable feedback.
The most important complaint was that the game is missing sound effects,
for example, when the player clicks a button or when a scenario is finished.
The image recognition wasn’t as stable as I hoped it to be but most people
stated it didn’t impact their enjoyment of the game. The images used for the
image recognition are not related at all to the theme of the game because
I focused on choosing good, stable images. In the future, I would focus on
fixing these issues.

In the appendix A, I created a manual on how to extend my game in detail.
It describes the Unity project in more detail and explains how to progress
when implementing new tasks.

Overall, I believe my game showcases how to connect AR and multiplayer
escape room games well. It creates unique scenarios which wouldn’t be
possible in real-life escape rooms. It demonstrates how to create a game
anyone can play and how to incorporate AR into real-world escape rooms.

45

46

Bibliography

[1] Apple.com (2024). Dive into the world of augmented reality https:
//developer.apple.com/augmented-reality/ ([online] Accessed: 19.
1. 2024)

[2] Apple.com (2024). More to explore with ARKit 6 https://developer.
apple.com/augmented-reality/arkit/ ([online] Accessed: 19. 1. 2024)

[3] Apple.com (2024). RealityKit https://developer.apple.com/augmen
ted-reality/realitykit/ ([online] Accessed: 19. 1. 2024)

[4] Apple.com (2024). Creation tools for spatial apps https://developer.
apple.com/augmented-reality/tools/ ([online] Accessed: 19. 1. 2024)

[5] Google.com (2024). Make the world your canvas https://developers.g
oogle.com/ar ([online] Accessed: 19. 1. 2024)

[6] Google.com (2024). Overview of ARCore and supported development
environments https://developers.google.com/ar/develop ([online]
Accessed: 19. 1. 2024)

[7] Khronos.org (2024). OpenXR https://www.khronos.org/openxr/
([online] Accessed: 19. 1. 2024)

[8] Unity.com (2024). Augmented Reality https://unity.com/unity/feat
ures/ar ([online] Accessed: 19. 1. 2024)

[9] Unity.com (2024). AR Foundation https://unity.com/unity/featur
es/arfoundation ([online] Accessed: 19. 1. 2024)

[10] Microsoft.com (2024). Microsoft HoloLens 2 https://www.microsoft.
com/en-us/hololens ([online] Accessed: 19. 1. 2024)

[11] Magicleap.com (2024). The most immersive enterprise AR device https:
//www.magicleap.com/en-us/ ([online] Accessed: 19. 1. 2024)

[12] Unity.com (2024). Unity MARS https://unity.com/products/unity
-mars ([online] Accessed: 19. 1. 2024)

47

https://developer.apple.com/augmented-reality/
https://developer.apple.com/augmented-reality/
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/realitykit/
https://developer.apple.com/augmented-reality/realitykit/
https://developer.apple.com/augmented-reality/tools/
https://developer.apple.com/augmented-reality/tools/
https://developers.google.com/ar
https://developers.google.com/ar
https://developers.google.com/ar/develop
https://www.khronos.org/openxr/
https://unity.com/unity/features/ar
https://unity.com/unity/features/ar
https://unity.com/unity/features/arfoundation
https://unity.com/unity/features/arfoundation
https://www.microsoft.com/en-us/hololens
https://www.microsoft.com/en-us/hololens
https://www.magicleap.com/en-us/
https://www.magicleap.com/en-us/
https://unity.com/products/unity-mars
https://unity.com/products/unity-mars

7. Conclusion......................................
[13] Unity.com (2024). Unity as a Library https://unity.com/features/u

nity-as-a-library ([online] Accessed: 19. 1. 2024)

[14] Unity3D.com (2024). XR Interaction Tool https://docs.unity3d.com
/Packages/com.unity.xr.interaction.toolkit@2.5/manual/index.
html ([online] Accessed: 19. 1. 2024)

[15] Vuforia.com (2024). Vuforia Engine https://developer.vuforia.co
m/library/getting-started/getting-started-vuforia-engine-u
nity ([online] Accessed: 19. 1. 2024)

[16] XRBootCamp.com (2024). Comparing Unity vs Unreal for VR, MR or
AR Development Projects https://xrbootcamp.com/unity-vs-unrea
l-engine-for-xr-development/ ([online] Accessed: 19. 1. 2024)

[17] VentionTeams.com (2024). How to choose an engine for VR: Unity vs
Unreal https://ventionteams.com/blog/unity-vs-unreal-virtual
-reality ([online] Accessed: 19. 1. 2024)

[18] UnrealEngine.com (2024). Augmented reality overview https://docs
.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopm
ent/AR/HandheldAR/AROverview/ ([online] Accessed: 19. 1. 2024)

[19] Unity.com (2024). How to choose the right netcode for your game https:
//blog.unity.com/games/how-to-choose-the-right-netcode-for
-your-game ([online] Accessed: 19. 1. 2024)

[20] Unity3D.com (2024). About Netcode for GameObjects https://docs-m
ultiplayer.unity3d.com/netcode/current/about/ ([online] Accessed:
19. 1. 2024)

[21] Emergereality.com (2024). Escape Room AR http://www.emergereal
ity.com/escaperoom.html ([online] Accessed: 19. 1. 2024)

[22] Brandon Chow (2023, 8. června). Adver2Play - Scriptum AR Escape
Room Adventures https://www.escapetheroomers.com/post/adver2
play-scriptum-ar-escape-room-adventures ([online] Accessed: 19. 1.
2024)

[23] Cluetivity.com (2024). Become a Secret Agent! https://www.cluetivi
ty.com/operation-mindfall-outdoor-game/ ([online] Accessed: 19. 1.
2024)

[24] Cluetivity.com (2024). Blackout: New Outdoor Game https://www.cl
uetivity.com/blackout/ ([online] Accessed: 19. 1. 2024)

[25] Cluetivity.com (2024). The Fantasy Epos https://www.cluetivity.c
om/magic-portal-outdoor-game/ ([online] Accessed: 19. 1. 2024)

[26] Escape-Team.com (2024). Escape Team https://www.escape-team.com
([online] Accessed: 19. 1. 2024)

48

https://unity.com/features/unity-as-a-library
https://unity.com/features/unity-as-a-library
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.5/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.5/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.5/manual/index.html
https://developer.vuforia.com/library/getting-started/getting-started-vuforia-engine-unity
https://developer.vuforia.com/library/getting-started/getting-started-vuforia-engine-unity
https://developer.vuforia.com/library/getting-started/getting-started-vuforia-engine-unity
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/
https://ventionteams.com/blog/unity-vs-unreal-virtual-reality
https://ventionteams.com/blog/unity-vs-unreal-virtual-reality
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/AR/HandheldAR/AROverview/
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/AR/HandheldAR/AROverview/
https://docs.unrealengine.com/4.26/en-US/SharingAndReleasing/XRDevelopment/AR/HandheldAR/AROverview/
https://blog.unity.com/games/how-to-choose-the-right-netcode-for-your-game
https://blog.unity.com/games/how-to-choose-the-right-netcode-for-your-game
https://blog.unity.com/games/how-to-choose-the-right-netcode-for-your-game
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/about/
http://www.emergereality.com/escaperoom.html
http://www.emergereality.com/escaperoom.html
https://www.escapetheroomers.com/post/adver2play-scriptum-ar-escape-room-adventures
https://www.escapetheroomers.com/post/adver2play-scriptum-ar-escape-room-adventures
https://www.cluetivity.com/operation-mindfall-outdoor-game/
https://www.cluetivity.com/operation-mindfall-outdoor-game/
https://www.cluetivity.com/blackout/
https://www.cluetivity.com/blackout/
https://www.cluetivity.com/magic-portal-outdoor-game/
https://www.cluetivity.com/magic-portal-outdoor-game/
https://www.escape-team.com

...................................... 7. Conclusion

[27] AriasLegacy.com (2024). Aria’s Legacy https://www.ariaslegacy.com
([online] Accessed: 19. 1. 2024)

[28] Apple.com (2024). Escape The Room: AR https://apps.apple.com
/us/app/escape-the-room-ar/id1329567068 ([online] Accessed: 19. 1.
2024)

[29] Google.com (2024). Prison Break AR Escape Room https://play.goo
gle.com/store/apps/details?id=com.RiddleGames.PrisonBreak&hl
=en&gl=US&pli=1 ([online] Accessed: 19. 1. 2024)

[30] Fandom.com (2024). The Walking Dead: Our World https://walk
ingdead.fandom.com/wiki/The_Walking_Dead:_Our_World ([online]
Accessed: 19. 1. 2024)

[31] Plecher, D., Ludl, M., & Klinker, G. (2020). Designing an AR-escape-
room with competitive and cooperative mode. In GI VR/AR Workshop.
Gesellschaft für Informatik eV.

[32] AIMEscape.com (2024). Augmented Reality Outdoor City Experience
https://aimescape.com/ar?gad_source=1&gclid=Cj0KCQiAnrOtBhDI
ARIsAFsSe509WXUWUjjuT59cjQhm-y-lcO876uEsSYXiKnNxtCex5VcL-W
kyjFIaAvehEALw_wcB ([online] Accessed: 19. 1. 2024)

[33] Unity3D.com (2024). Testing multiplayer games locally https://docs
-multiplayer.unity3d.com/netcode/current/tutorials/testing/t
esting_locally/ ([online] Accessed: 19. 1. 2024)

[34] Unity.com (2024). Joystick Pack https://assetstore.unity.com/p
ackages/tools/input-management/joystick-pack-107631 ([online]
Accessed: 19. 1. 2024)

[35] Onirix.com (2024). Image Tracking https://docs.onirix.com/onirix
-studio/projects/image ([online] Accessed: 19. 1. 2024)

[36] Zap.Works (2024). What makes a good tracking image? https://do
cs.zap.works/general/design/what-makes-good-tracking-image/
([online] Accessed: 19. 1. 2024)

[37] Alamy.com (2024). Judas Priest performs in concert at the Seminole
Hard Rock Hotel and Casino in Hollywood, Florida on August 17, 2009.
https://www.alamy.com/judas-priest-performs-in-concert-at-t
he-seminole-hard-rock-hotel-and-casino-in-hollywood-florida
-on-august-17-2009-image220283219.html ([online] Accessed: 19. 1.
2024)

[38] Google.com (2024). The arcoreimg tool https://developers.googl
e.com/ar/develop/augmented-images/arcoreimg#windows ([online]
Accessed: 19. 1. 2024)

49

https://www.ariaslegacy.com
https://apps.apple.com/us/app/escape-the-room-ar/id1329567068
https://apps.apple.com/us/app/escape-the-room-ar/id1329567068
https://play.google.com/store/apps/details?id=com.RiddleGames.PrisonBreak&hl=en&gl=US&pli=1
https://play.google.com/store/apps/details?id=com.RiddleGames.PrisonBreak&hl=en&gl=US&pli=1
https://play.google.com/store/apps/details?id=com.RiddleGames.PrisonBreak&hl=en&gl=US&pli=1
https://walkingdead.fandom.com/wiki/The_Walking_Dead:_Our_World
https://walkingdead.fandom.com/wiki/The_Walking_Dead:_Our_World
https://aimescape.com/ar?gad_source=1&gclid=Cj0KCQiAnrOtBhDIARIsAFsSe509WXUWUjjuT59cjQhm-y-lcO876uEsSYXiKnNxtCex5VcL-WkyjFIaAvehEALw_wcB
https://aimescape.com/ar?gad_source=1&gclid=Cj0KCQiAnrOtBhDIARIsAFsSe509WXUWUjjuT59cjQhm-y-lcO876uEsSYXiKnNxtCex5VcL-WkyjFIaAvehEALw_wcB
https://aimescape.com/ar?gad_source=1&gclid=Cj0KCQiAnrOtBhDIARIsAFsSe509WXUWUjjuT59cjQhm-y-lcO876uEsSYXiKnNxtCex5VcL-WkyjFIaAvehEALw_wcB
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_locally/
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_locally/
https://docs-multiplayer.unity3d.com/netcode/current/tutorials/testing/testing_locally/
https://assetstore.unity.com/packages/tools/input-management/joystick-pack-107631
https://assetstore.unity.com/packages/tools/input-management/joystick-pack-107631
https://docs.onirix.com/onirix-studio/projects/image
https://docs.onirix.com/onirix-studio/projects/image
https://docs.zap.works/general/design/what-makes-good-tracking-image/
https://docs.zap.works/general/design/what-makes-good-tracking-image/
https://www.alamy.com/judas-priest-performs-in-concert-at-the-seminole-hard-rock-hotel-and-casino-in-hollywood-florida-on-august-17-2009-image220283219.html
https://www.alamy.com/judas-priest-performs-in-concert-at-the-seminole-hard-rock-hotel-and-casino-in-hollywood-florida-on-august-17-2009-image220283219.html
https://www.alamy.com/judas-priest-performs-in-concert-at-the-seminole-hard-rock-hotel-and-casino-in-hollywood-florida-on-august-17-2009-image220283219.html
https://developers.google.com/ar/develop/augmented-images/arcoreimg#windows
https://developers.google.com/ar/develop/augmented-images/arcoreimg#windows

7. Conclusion......................................
[39] pngtree.com (2024). Single Color Islamic Ornaments Round Vector PNG

Images https://pngtree.com/freepng/single-color-islamic-orn
aments-round_5582082.html ([online] Accessed: 19. 5. 2024)

[40] x.com (2024). musical lion, france, 14th century https://x.com/Weir
dMedieval/status/1713262385534845384?t=Zw67jC56MYcp7KvQ-GSp
jw&s=19 ([online] Accessed: 19. 5. 2024)

[41] YouTube.com (2024). Tap to Place Objects in Unity’s AR Foundation -
Tutorial 2023 https://www.youtube.com/watch?v=lYDfV-GaKQA&t=3s
([online] Accessed: 19. 5. 2024)

[42] Unity Documentation, Unity3d.com (2024). Camera.ScreenPointToRay
https://docs.unity3d.com/ScriptReference/Camera.ScreenPointT
oRay.html ([online] Accessed: 19. 5. 2024)

[43] Unity3D.com (2024). About Netcode for GameObjects https://docs-m
ultiplayer.unity3d.com/netcode/current/about/ ([online] Accessed:
19. 5. 2024)

[44] Unity3D.com (2024). ServerRPC https://docs-multiplayer.unity
3d.com/netcode/current/advanced-topics/message-system/serv
errpc/ ([online] Accessed: 19. 5. 2024)

[45] YouTube.com (2024). Let’s Make an AR App in 15 MINUTES!! (Begin-
ner Friendly) https://www.youtube.com/watch?v=GfS72wqKQ_g&t=13s
([online] Accessed: 19. 5. 2024)

[46] Vecteezy.com (2024). abstract organic pattern design background https:
//www.vecteezy.com/vector-art/8599403-abstract-organic-pat
tern-design-background ([online] Accessed: 19. 5. 2024)

[47] Craiyon.com (2024). View from inside a cave looking out into a sunny
valley with a wooden cross on a mountain https://www.craiyon.com/
image/GadKGSufRXOf5Q_enUs_FQ ([online] Accessed: 19. 5. 2024)

[48] Denik.cz (2024). Z Moravy na Metalfest v Plzni https://prostejovs
ky.denik.cz/volny-cas/z-moravy-na-metalfest-v-plzni-2018052
9.html ([online] Accessed: 19. 5. 2024)

[49] Nanonets.com (2024). What is image recognition https://nanonets.c
om/blog/image-recognition/#:~:text=Image%20recognition%20alg
orithms%20use%20deep,and%20features%20of%20different%20objec
ts. ([online] Accessed: 19. 5. 2024)

[50] Mindar.org (2024). How to Choose a Good Target Image for Tracking
in AR - Part 3 https://www.mindar.org/how-to-choose-a-good-t
arget-image-for-tracking-in-ar-part-3/ ([online] Accessed: 19. 5.
2024)

50

https://pngtree.com/freepng/single-color-islamic-ornaments-round_5582082.html
https://pngtree.com/freepng/single-color-islamic-ornaments-round_5582082.html
https://x.com/WeirdMedieval/status/1713262385534845384?t=Zw67jC56MYcp7KvQ-GSpjw&s=19
https://x.com/WeirdMedieval/status/1713262385534845384?t=Zw67jC56MYcp7KvQ-GSpjw&s=19
https://x.com/WeirdMedieval/status/1713262385534845384?t=Zw67jC56MYcp7KvQ-GSpjw&s=19
https://www.youtube.com/watch?v=lYDfV-GaKQA&t=3s
https://docs.unity3d.com/ScriptReference/Camera.ScreenPointToRay.html
https://docs.unity3d.com/ScriptReference/Camera.ScreenPointToRay.html
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/about/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/serverrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/serverrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/serverrpc/
https://www.youtube.com/watch?v=GfS72wqKQ_g&t=13s
https://www.vecteezy.com/vector-art/8599403-abstract-organic-pattern-design-background
https://www.vecteezy.com/vector-art/8599403-abstract-organic-pattern-design-background
https://www.vecteezy.com/vector-art/8599403-abstract-organic-pattern-design-background
https://www.craiyon.com/image/GadKGSufRXOf5Q_enUs_FQ
https://www.craiyon.com/image/GadKGSufRXOf5Q_enUs_FQ
https://prostejovsky.denik.cz/volny-cas/z-moravy-na-metalfest-v-plzni-20180529.html
https://prostejovsky.denik.cz/volny-cas/z-moravy-na-metalfest-v-plzni-20180529.html
https://prostejovsky.denik.cz/volny-cas/z-moravy-na-metalfest-v-plzni-20180529.html
https://nanonets.com/blog/image-recognition/#:~:text=Image%20recognition%20algorithms%20use%20deep,and%20features%20of%20different%20objects.
https://nanonets.com/blog/image-recognition/#:~:text=Image%20recognition%20algorithms%20use%20deep,and%20features%20of%20different%20objects.
https://nanonets.com/blog/image-recognition/#:~:text=Image%20recognition%20algorithms%20use%20deep,and%20features%20of%20different%20objects.
https://nanonets.com/blog/image-recognition/#:~:text=Image%20recognition%20algorithms%20use%20deep,and%20features%20of%20different%20objects.
https://www.mindar.org/how-to-choose-a-good-target-image-for-tracking-in-ar-part-3/
https://www.mindar.org/how-to-choose-a-good-target-image-for-tracking-in-ar-part-3/

...................................... 7. Conclusion

[51] Johnson, Doug (1982). Judas Pries, Screaming for Vengeance [album
cover art].

[52] Wikipedia.com (2024). File:Avatar - Rock am Ring 2018-5719.jpg https:
//en.m.wikipedia.org/wiki/File:Avatar_-_Rock_am_Ring_2018-5
719.jpg ([online] Accessed: 19. 5. 2024)

[53] YouTube.com (2024). Augmented Reality (AR) tutorial for beginners
using Unity 2022 https://www.youtube.com/watch?v=gpaq5bAjya8&
t=1356s ([online] Accessed: 19. 5. 2024)

[54] VanSwearingenPhotography.com (2024) Zebra 2014 https://www.va
nswearingenphotography.com/large-multi-view/Animalia/25226
88-3-198475/Photography/zebras-i.html ([online] Accessed: 19. 5.
2024)

51

https://en.m.wikipedia.org/wiki/File:Avatar_-_Rock_am_Ring_2018-5719.jpg
https://en.m.wikipedia.org/wiki/File:Avatar_-_Rock_am_Ring_2018-5719.jpg
https://en.m.wikipedia.org/wiki/File:Avatar_-_Rock_am_Ring_2018-5719.jpg
https://www.youtube.com/watch?v=gpaq5bAjya8&t=1356s
https://www.youtube.com/watch?v=gpaq5bAjya8&t=1356s
https://www.vanswearingenphotography.com/large-multi-view/Animalia/2522688-3-198475/Photography/zebras-i.html
https://www.vanswearingenphotography.com/large-multi-view/Animalia/2522688-3-198475/Photography/zebras-i.html
https://www.vanswearingenphotography.com/large-multi-view/Animalia/2522688-3-198475/Photography/zebras-i.html

52

Appendix A
Manual

A.1 Introduction

This manual explains how to build on my implementation of an Augmented
Reality (AR) multiplayer escape room game called Escape Pierito and how to
add more features. It may also act as a demonstration of how to create your
own game. A general knowledge of Unity and C# programming language
is expected. My implementation is built on image recognition and sharing
important information between multiple instances of the game; thus, each
player may see a bit of a different environment and need to cooperate to
achieve progress. This manual shows a project made in Unity 2022.3.13f1,
using packages supporting AR and Netcode for GameObjects, which is Unity’s
framework for network communication. The full list of packages used is visible
in figure A.1.

These are the most important packages. ParrelSync lets you create identical
clones of your project that are always synchronised. This is very helpful for
running two instances of your game on your local computer for fast debugging.
Android Logcat shows console messages from any Android phone connected to
your computer by a USB cable. AR Foundation is Unity’s unified framework
for creating AR apps, thanks to which one can create games for Android using
Google’s ARCore and Apple using ARKit in one project using the same code.
Netcode for GameObjects is Unity’s framework for network communication.
Other packages are either required for already mentioned ones or are not
necessary for understanding this manual.

The project creates one executable file that can be run on Android 7.0
‘Nougat’ and newer. The game is currently intended for two players, but in
later stages, I explain how this can be changed to accommodate any number
of players, if needed. After starting the application, each player has to choose
whether they are the host or the client. The host always has to connect
first, and the client has to fill in the host’s local IP address before continuing.
Note that both players have to be connected to the same network. In theory,
multiple clients can connect to the same host, but their game experience is
not going to be unique.

The game is based on image recognition. It is essential, before playing the
game, to print out all the images used. In the current stage of the game, only

53

A. Manual

Figure A.1: Screenshot of all used packages (Unity -> Window -> Package
Manager) with active versions.

five images are used, so it can be played in a fairly small room. For the best
experience, play the game in a well-lit environment, using large static images
printed on paper.

A.2 Common Issues

As of the 10th of April 2024, these aren’t the most up-to-date versions of
the packages, and they may include bugs or deprecated practices. I will try
to mention deprecated practices when this manual encounters them. I will
list certain bugs I’ve run into while developing this app. The first issue is
in Multiplayer tools. When building the app, some parts of this package
may be stripped and cause network multiplayer to not work, throwing the
following error, “Error Unity Failed to load type initialization for assembly
Unity.Netcode.Runtime”. This is fixed in version 2.0.0 and can also be
fixed in lower versions when unchecking “Strip Engine Code” and setting
“Managed Stripping Level” to “Minimal” in File -> Build Settings. . . -
> Player Settings. . . -> Settings for Android -> Other Settings. More
information about this issue can be found here, https://forum.unity.com/
threads/netcode-error-unity-failed-to-load-type-initializatio
n-for-assemby.1375914/. The second bug is produced on certain versions of

54

https://forum.unity.com/threads/netcode-error-unity-failed-to-load-type-initialization-for-assemby.1375914/
https://forum.unity.com/threads/netcode-error-unity-failed-to-load-type-initialization-for-assemby.1375914/
https://forum.unity.com/threads/netcode-error-unity-failed-to-load-type-initialization-for-assemby.1375914/

........................ A.3. Basic Information about my Unity project

Android. After starting the app, the screen turns black, and an error occurs on
the console stating: “Skipped rendering frame because GfxDevice is in invalid
state (device lost)”. If the user turns off the screen and locks the phone (pushes
the power button) and then turns the screen back on and unlocks the phone
(pushes the power button again), the issue is solved after a few seconds. This
can be annoying while debugging, but it is resolved in newer versions of Unity.
You can read more about this issue here, https://forum.unity.com/thread
s/issue-with-android-skipped-rendering-frame-because-gfxdevice
-is-in-invalid-state-device-lost.1449145/#post-9136096 and here,
https://issuetracker.unity3d.com/issues/android-black-screen-w
ith-skipped-rendering-frame-and-error-gfxdevice-is-in-invalid
-state-device-lost-when-player-is-built-with-google-arcore.

A.3 Basic Information about my Unity project

In figure A.2, there is the hierarchy of my AR scene in Unity. AR Session,
AR Session Origin and AR Camera are responsible for the correct functioning
of AR in an application.

Figure A.2: Screenshot of the hierarchy of objects in my Unity scene.

The AR Session controls all the main AR synchronisation parts and con-
trols the lifecycle of an AR app. More about the AR Session in the Unity
documentation, https://docs.unity3d.com/Packages/com.unity.xr.a
rfoundation@5.1/manual/features/session.html.

The AR Session Origin manages all the smaller and not vital parts of AR,
such as plane recognition, AR raycasting, anchoring, image recognition and
more. It is also a parent of the AR Camera, creating an origin of AR Session
space in Unity 3D space. The AR Session Origin is currently deprecated and
is replaced by XR Origin, which serves the same purpose, and since AR and
VR have many common features, Unity has decided to merge AR and VR
Origins. More on the AR Session Origin, https://docs.unity3d.com/P
ackages/com.unity.xr.arfoundation@5.0/api/UnityEngine.XR.ARFou
ndation.ARSessionOrigin.html#:~:text=An%20ARSessionOrigin%20is
%20the%20parent,as%20planes%20or%20point%20clouds and on the XR
origin, https://docs.unity3d.com/Manual/xr-origin.html.

55

https://forum.unity.com/threads/issue-with-android-skipped-rendering-frame-because-gfxdevice-is-in-invalid-state-device-lost.1449145/#post-9136096
https://forum.unity.com/threads/issue-with-android-skipped-rendering-frame-because-gfxdevice-is-in-invalid-state-device-lost.1449145/#post-9136096
https://forum.unity.com/threads/issue-with-android-skipped-rendering-frame-because-gfxdevice-is-in-invalid-state-device-lost.1449145/#post-9136096
https://issuetracker.unity3d.com/issues/android-black-screen-with-skipped-rendering-frame-and-error-gfxdevice-is-in-invalid-state-device-lost-when-player-is-built-with-google-arcore
https://issuetracker.unity3d.com/issues/android-black-screen-with-skipped-rendering-frame-and-error-gfxdevice-is-in-invalid-state-device-lost-when-player-is-built-with-google-arcore
https://issuetracker.unity3d.com/issues/android-black-screen-with-skipped-rendering-frame-and-error-gfxdevice-is-in-invalid-state-device-lost-when-player-is-built-with-google-arcore
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/features/session.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/features/session.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/api/UnityEngine.XR.ARFoundation.ARSessionOrigin.html#:~:text=An%20ARSessionOrigin%20is%20the%20parent,as%20planes%20or%20point%20clouds
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/api/UnityEngine.XR.ARFoundation.ARSessionOrigin.html#:~:text=An%20ARSessionOrigin%20is%20the%20parent,as%20planes%20or%20point%20clouds
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/api/UnityEngine.XR.ARFoundation.ARSessionOrigin.html#:~:text=An%20ARSessionOrigin%20is%20the%20parent,as%20planes%20or%20point%20clouds
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/api/UnityEngine.XR.ARFoundation.ARSessionOrigin.html#:~:text=An%20ARSessionOrigin%20is%20the%20parent,as%20planes%20or%20point%20clouds
https://docs.unity3d.com/Manual/xr-origin.html

A. Manual
Network Manager includes “Network Manager” and “Unity Transport”

components, which establish communication between multiple instances of
an application, determine who is a server or host and which clients connect
where, how they communicate and more. As Unity is a game engine, the
user can specify a prefab for a player object, which will be instantiated for
each client connected to a server or host. More on the Network Manager
component, https://docs-multiplayer.unity3d.com/netcode/curre
nt/components/networkmanager/ and the Unity Transport component,
https://docs.unity3d.com/Packages/com.unity.transport@2.0/manu
al/index.html.

Under regular Unity Canvas there is NetworkManagerUI. This is an empty
object originally intended to only manage UI elements related to networking,
for example, connect and disconnect buttons. NetworkManagerUI is a net-
work object and contains my custom component called NetworkUIManager,
which inherits NetworkBehavior. This means it is a component that can
communicate with equivalent components from other users connected to the
same server or host. This can be done using ServerRPCs, requests from clients
to run a function on the server or host version of the game, ClientRPCs,
requests to run a function on all client instances (be careful, a host is a server
and a client in one, so ClientRPCs will also run on the host’s side), and
Network Variables, which can only be written into and read from by specified
users. I am not using Network Variables in my application, but if you want
to know how they work, you can read about them here, https://docs-mul
tiplayer.unity3d.com/netcode/current/basics/networkvariable/.

ServerRPCs and ClientRPCs are deprecated and are replaced simply by
RPCs, in which a user can specify the same attributes as before and needs
to specify who the RPC is for. For instance, instead of declaring SeverRPC
by writing [ServerRPC] followed by a definition of a function whose name
ends in ServerRPC, you would use [RPC(SendTo.Server)] followed by a
definition which ends in RPC (if it ended in ServerRPC, it might use the
legacy version of ServerRPC). Here you can read more about the ServerRPC,
https://docs-multiplayer.unity3d.com/netcode/current/advance
d-topics/message-system/serverrpc/, about the ClientRPC, https:
//docs-multiplayer.unity3d.com/netcode/current/advanced-topics/
message-system/clientrpc/, and the new RPCs, https://docs-multipl
ayer.unity3d.com/netcode/current/advanced-topics/message-syste
m/rpc/.

Next, I will focus on the structure of the Assets folder in my project as
seen in figure A.3. I will only mention the parts that are specific to my game,
otherwise it is a pretty standard hierarchy of folders. The BlenderMeshes
folder contains a folder for each blender mesh I have created and exported
into a .fbx file. The References folder contains images for image recognition
and the Reference Image Library object, which is required for the AR Tracked
Image Manager component in AR Session Origin. ClientPrefabs, HostPrefabs
and SharedPrefabs contain prefabs for objects to be generated when a specific
image is recognised. Since clients and the host can see different objects, I

56

https://docs-multiplayer.unity3d.com/netcode/current/components/networkmanager/
https://docs-multiplayer.unity3d.com/netcode/current/components/networkmanager/
https://docs.unity3d.com/Packages/com.unity.transport@2.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.transport@2.0/manual/index.html
https://docs-multiplayer.unity3d.com/netcode/current/basics/networkvariable/
https://docs-multiplayer.unity3d.com/netcode/current/basics/networkvariable/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/serverrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/serverrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/clientrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/clientrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/clientrpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/rpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/rpc/
https://docs-multiplayer.unity3d.com/netcode/current/advanced-topics/message-system/rpc/

................................A.4. Adding new AR objects

divided all prefabs into these three folders.

Figure A.3: Contents of the Assets folder of my project.

A.4 Adding new AR objects

There are many ways to add more complex 3D models to Unity. I used the
3D modelling tool Blender and will describe briefly how to use meshes from
Blender. If you prefer another way of importing 3D models into Unity, you
may skip this paragraph. After creating a model for the game in Blender,
you need to export it as a .fbx file (in Blender 3.6 File -> Export -> FBX
(.fbx)). It is advised to also bake the albedo, metallic and roughness textures
of each model to create a material in Unity closer to the one in Blender. Unity
uses albedo and metallic-smoothness for textures. Therefore, you need to
first transform metallic and roughness textures into one where the roughness’
texture’s colours are inverted and applied as an alpha mask to the metallic
texture. You can then move these two textures into the “Material” folder in
the Assets of my Unity project and preferably create a new folder inside for
each model you want to import to Unity. Then you can create a new material,
in Unity you will see settings as in figure A.4, and by clicking the dots next
to “Albedo” and “Metallic” settings, you can select the newly added textures.
If needed, you can also set other properties, for example, a normal map. If
you want to create a partly transparent object in Unity, you need to create a
texture using the alpha channel for the needed transparency and then set the
“Rendering mode” of the material to “Transparent”. Then you should create
a folder for your 3D model in the “BlenderMeshes” folder and put your .fbx
file there.

After that, create a prefab using your imported model with the correct
materials applied and paste it into the “ClientPrefabs”, “HostPrefabs” or
“SharedPrefabs” folder, depending on whom the model is intended for. Then
paste the prefab into a component of AR Session Origin called Image Recog-
nition Script under the "Host Prefabs" or "Client Prefabs" as seen in the

57

A. Manual

Figure A.4: Material settings in Unity.

figure A.5. This will enable these prefabs to be created when the image
linked to the prefab is recognised in the 3D world. Make sure your prefabs
are positioned in the centre of the local coordinate system, as it may lead to
unwanted positioning of the object in the scene relating to the position of
the recognised image. The prefabs which share the same recognition image
must be named the same. Paste the image you want to be recognised by the
programme in the “References” folder. In the “Reference Image Library” in
the same folder, click on “Add Image” (on the bottom) and select your new
image. Change the name of that image inside the “Reference Image Library”
to the same name as the prefabs that are to be created when this image is
recognised.

Figure A.5: Lists of prefabs for both players inside the ImageRecognition-
Script.cs, as visible in the Unity editor.

For image recognition to work well, you should keep in mind a few rules
when choosing an image. First, it is always better to have an image with
the same number of pixels in width and height and preferably both the
numbers to be even. The more complex the image, the better. Real-life
photographs work well because they are imperfect. Make sure that the image
stays complex after the colours are changed to brightness. The more the

58

.......................A.5. Creating scripts and network communication

brightness changes, the better. Try to have the complexity evenly distributed
throughout the image, the quality of the image is much lower when one part
of the image recognition is complex, but the rest is plain. It is beneficial
if the image is in no way symmetrical since the image recognition might
decide that the image is in a different place or orientation than it is. This
could create a lot of inconsistencies when game objects are created linked
to these images. For general orientation, whether your image is good for
image recognition, you may use a tool created by Google called The arcoreimg
tool, which can grade your image on a scale from 0 to 100. Be careful
though, if an image gets a grade of 100, it doesn’t mean it will perform
well under all circumstances. In my experience, some images with lower
grades perform better in praxis. If you want to find out more about this tool,
check out this site, https://developers.google.com/ar/develop/augmented-
images/arcoreimg#windows. If you want to use your models for my already
implemented parts of the game, first make sure the new model is compatible
with all that my current model does. For example, my current model for
the Code Machine, as visible in the figure A.6, includes three wheels with
10 letters. If you don’t want to change my scripts and make sure every
detail works, your new model should have the same. Always check the
scripts connected to the prefabs, because sometimes there are constraints.
For example, the three wheels that are parented to the main object have to
be called “Wheel1”, “Wheel2” and “Wheel3” for the WheelBox.cs script to
work correctly.

Figure A.6: An image of an asset I created for the game for inputting a number
code.

A.5 Creating scripts and network communication

Now, when the application recognises your image, it should create the ap-
propriate object in the 3D game space. But so far, these prefabs don’t
communicate with the rest of the app. You can treat the object prefabs
exactly as any other Unity objects, for example, if you want your button to
do a button animation, it is no different from in a non-AR game. One of the

59

https://developers.google.com/ar/develop/augmented-images/arcoreimg#windows
https://developers.google.com/ar/develop/augmented-images/arcoreimg#windows

A. Manual
tasks in my game is for the two players to fill in the right code in a machine.
The catch is that one of the players controls the buttons and the other one sees
the code machine. I will demonstrate some of the implementation techniques
in this puzzle.

As seen in A.7, all communication between the two instances of my game
goes through the Network UI Manager. Network UI Manager inherits the
NetworkBehaviour class, letting the script communicate with its counterpart
on the other device. One of the players is a host and the other is a client.
This script is separated into different parts for clarity. The “UI declarations”
part is for everything related to the UI, mainly UI buttons and text fields.
Followed by the “Logic Declarations” part where we declare all our variables
needed for the script, for example, a boolean variable “isHost”, which tells
the script whether the owner is a host or not. Then there is the “Awake”
method that performs all tasks needed to be performed when the script is first
created. “UI methods” contain all the methods for the UI logic. The “Task
synchronisation calls” contain all public methods called from local scripts
to communicate with the other player’s scripts. Lastly, the “ServerRPCs”
and “ClientRPCs”. An RPC is a request for a specific method to perform
on another instance of the script. In my project, I use a ClientRPC for a
method to be performed on the client’s side and ServerRPC to be performed
on the host’s side. It is important to remember that a host is a server and
a client at the same time, so we need to make sure that when a host calls
ClientRPC, it will not be performed on the host too.

Figure A.7: A diagram showing how the communication between the two players
works.

In figures A.8 and A.9, you can see an example of communication where
the client’s part is informing the host about a button being pressed. If you
work on another project in the future that uses the most up-to-date version
of Unity’s Netcode for GameObjects, this syntax for RPCs is going to be
deprecated. Newly, you need to declare that a function whose name ends in
“RPC” is an RPC and state who it is for in the arguments. For example, if
you wanted to create a ServerRPC, you would write, “[RPC(SendTo.Server)]”,

60

.......................A.5. Creating scripts and network communication

instead of “[ServerRPC]”. Furthermore, it is advised not to use functions
ending in “ServerRPC” or “ClientRPC” for legacy reasons. As you can see,
scripts on either side first call public methods of the Network UI Manager
class which then call the RPCs, instead of calling the RPCs directly from
other scripts. This is done for safety reasons and because often you would
want something else to be done first on one side before sending it to the
other, for example, updating local variables. In the figure A.9 you can see the
correct syntax for declaring a Server RPC. The argument “RequireOwnership
= false” lets any client invoke the method. The ButtonClickServerRPC is
called on the client’s side but performed on the host’s side. First, it finds
the correct gameObject. In this case, it is a WheelBox, which is the machine
displaying the code as visible in the figure A.6. After checking if such an
image was found in the game scene, it calls a “RotateWheel” method, passing
it one argument. This method rotates the wheel of the given “buttonNumber”
to the next letter.

Figure A.8: A public method in the “Task synchronisation calls” section to
notify the host a certain button was clicked.

Figure A.9: A ServerRPC calls all needed methods on the WheelBox object on
the host’s side.

To ensure communication between the player and the game, you can either
create UI elements, for example, buttons, the same way as in any other Unity
game, or you can use Ray Casting. The InputManager.cs script I created
contains a method that is called every time a player touches the screen. In
the figure A.10 you can see the content of the file. OnEnable and OnDisable
subscribe and unsubscribe the method FingerDown to the event of a player
touching their screen. A single argument containing information about the
touch is passed to the method. The first line checks if there are multiple
touches at the same time and returns if there are, not letting the player
click with multiple fingers at one time. Then it creates a Ray object passing
through the point on screen transformed to the game coordinates and going
in the direction the camera is facing. Next, the ray is cast, returning true

61

A. Manual
if it collides with any object and returning info about the closest object hit.
After that, it tries to match the tag of the object hit and call a method meant
to be called when clicked on, for example, if the ray hits an object with a
“Button” tag, it calls the object’s method that notifies the button box, which
button the player clicked on. You can use any way of checking what kind
of object was hit, but I prefer comparing the Tags. You then add lines to
call the right method implemented in the given object’s script. Make sure
you add a collider to the objects you want the player to be able to click on,
otherwise, the rays won’t detect the object.

Figure A.10: Content of the InputManager.cs file controlling ray casting.

If you want to programme an interaction that interacts with image recog-
nition, you will have to adapt the ImageRecognitionScript.cs. One part of

62

.......................A.5. Creating scripts and network communication

my game is when an image is being recognised by one player, it changes the
material of an object for the other player. In the figure A.11, you can see
my implementation of a function that is called every time the “AR Tracked
Image Manager” component of AR Session Origin changes the status of the
images being tracked. The method is passed a single argument of struct
ARTrackedImagesChangedEventArgs, which contains three lists of type AR-
TrackedImage. The “added” list contains images that weren’t being tracked
before, but now they are. When an image is being tracked but disappears (or
is too far from the camera to be actively recognised), it is not yet removed
from the tracked images, only its status changes. These images, together
with the ones that reappeared in the scene, are in the “updated” list. Lastly,
the images that are removed from being actively tracked are in the “removed”
list. For this reason, the method contains three loops, each looping through
one of the lists. In the loop which loops through the “added” list, there is
another loop that loops through all the client or host prefabs given to the
script. Their names are compared and if they match the prefab is instantiated,
their position being parented to the tracked image’s position in the scene.
Inside this method, you can perform any kind of task you need for your new
implementation. For example, one part of my game requires the client to look
closely at one of the images, which then leads to changing the material of an
object for both the host and the client. This reveals the code for solving one
of the tasks. You can see that when looping the “added” list, if the script’s
owner is the client and if the name of the tracked image matches “WatchBox”,
it changes a local boolean variable and calls a method of NetworkUIManager,
which performs the material changes. A similar idea is in the other two loops
when the image is not visible or becomes visible again.

A good practice is to store the progress of the game locally in both instances
of NetworkUIManager. The players may finish a part of the game before
the next part is instantiated. Then the players would be stuck. To fix this,
each script can call a public method of the NetworkUIManager to acquire the
needed information. In the figure A.12, you can see the PuzzleBoxScript.cs
script. Specifically, a part of the Awake method that calls NetworkUIMan-
ager’s (in this script called “nium”) public method that returns a boolean
value indicating whether the players have finished all previous parts of the
game and whether the methods to enable them to start solving this one
should be called. In practice, when the players solve the previous task, the
puzzle box (object with the PuzzleBoxScript component) should open for one
player and make a window in the lid for the other. If the object is not yet
instantiated, this ensures that the box behaves as if the previous task was
just solved when instantiated.

There is usually a supervisor in real-life escape rooms. If you would like to
implement a way for a third party to monitor the progress of the game, the
easiest way would be to create another UI button in the main menu, which
would connect the user to the host as a client and also set internal variables
to notify the app, that the user is just a supervisor and not a player. Then
you would create a UI for supervising, showing which tasks have been solved.

63

A. Manual

Figure A.11: The ImagesChanged method inside the ImageRecognitionScript.cs,
which is called every time the “AR Tracked Image Manager” changes the status
of tracked images.

Figure A.12: A part of the Awake method of the PuzzleBoxScript.cs, shows how
it gets the information about the game state from NetworkUIManager (usually
abbreviated "nium" in my code).

To get the information, simply access the NetworkUIManagers local variables
recording the game state.

64

..................................... A.6. Debugging

To add a third unique player to the game, you can follow similar steps
as when creating a supervisor. In the game logic, the players will not be
differentiated only by one being the host and another being the client. Now
there will be a host and two clients. You will have to update all methods
in the NetworkUIManager to always call the correct RPCs, so it is called
on the correct instances of the game. For example, it is no longer sufficient
for one client to send just one ServerRPC, it will need to send a ClientRPC
which excludes itself as well. Furthermore, in the ImageRecognitionScript.cs,
you will have to create a new list of prefabs containing prefabs for the third
player. You will have to add a third loop inside the ImagesChanged method’s
loop of added AR Images. This new loop will try to match the image’s name
to the prefab name if the third player is the owner of this script. Similarly,
you can add any number of new players.

Currently, the PuzzleBoxScript.cs calls the NetworkUIManager’s method
GameWon, which shows the ending screen of the game. When you add new
tasks, change the script, so it calls a different method of the NetworkUIMan-
ager to progress the game to the next task. Similarly, call the GameWon
method from the script of the final task to conclude the game.

A.6 Debugging

If the game doesn’t work as intended, I take a few general steps to locate the
issue. Firstly, if I build the app and run it on my phone and the network
communication does not work, I always check the console of the Unity project.
Since currently the Log Level in Network Manager is set to Developer, it
detects the phone, if it’s in the same network, and prints all logs in the
editor. Alternatively, there are other ways to connect directly to the phone’s
console. To build on that, you can create your debugging logs inside the
scripts. If that doesn’t help, I check if any part of the game is working, or if
the whole network synchronisation is down. For example, if all the tasks in
the game work and one has some issues, there is probably going to be some
little mistake in the script. On the other hand, if suddenly nothing works,
there might be a bigger problem.

Let’s say I have created a script with local methods, for example, the code
machine. It can rotate each wheel to the next letter, it can change material
when the correct code is put in, notify the players, and more. It would take a
lot of time to keep building the application and testing what doesn’t work on
my phone, so instead I can use the Invoke or InvokeRepeating methods in
the Awake method. These methods call other methods without arguments
in a given time, plus InvokeRepeating calls it repeatedly every number of
seconds. After that, I can create a prefab in the scene and position it so
that the default camera in the editor version of the game can see it. After
starting the game in the editor, I can see if all the methods behave the way
they should. In the figure A.13, you can see how I tested the WheelBox.cs
script. In the Awake method, I call InvokeRepeating, which calls the method
given in the first argument from repeatedly after several seconds given by

65

A. Manual
the second argument every number of seconds given by the third argument.
For example, the first call “InvokeRepeating(“Inc1”, 0, 1);” calls the function
Inc1() every second starting at 0 seconds from when the Awake method is
called. Below the Awake method, I’ve implemented methods that call another
method with specific arguments, since Invoke does not pass any arguments
to the methods called.

Figure A.13: Usage of the Invoke method for debugging in the WheelBox.cs
script.

I can also test if there is an issue with the network communication on the
computer. ParrelSync lets me create an exact copy of a project so that it
can be run in two separate editors. This lets me test if the communication
works or if it’s broken. I could put some simple object in the scene that is
changed in each instance of the editor and the change should be reflected in
the other one as well. Alternatively, I can create a simple player prefab that
can be controlled, put it in the network manager and see if the two editors
synchronise correctly.

The same thing can then be done after building the game for the phone. If

66

..................................... A.6. Debugging

it worked on the computer but not on the phone, there could be some issue
with the phones, the way they treat the network, or the network treats them.
There could also be an issue with the build. As I mentioned earlier, it is
necessary to set stripping to minimal in the player settings, because otherwise,
the engine will strip important parts of the Multiplayer Tools package and
the app won’t work on a phone.

67

68

Appendix B
Testing

I included the transcriptions of my introductions speech and for the testing
below, followed by the questionnaire for the testers made in Google Forms.
The speech is in English and Czech, because not all of the testers knew English
enough to understand the speech properly. The questionnaire contains simpler
English, so it was not translated.

B.1 English introduction speech

Thank you for participating in the testing of a cooperative Augmented Reality
escape room game I developed for my bachelor’s thesis.

Augmented Reality, AR for short, is a technology using a device’s camera
to synchronise the image from it and the game world making it seem virtual
game objects are a part of the real world. Furthermore, my game uses Image
recognition to place the game objects in the right place.

The game is intended for two players and each player may see different
objects than their partner.

You will try to solve a part of this game with your partner. You will need
to cooperate. It is apparent when the part of the game is finished and I will
also be watching you as you play and intervene if something goes wrong or if
you need help. The only game objects you have to interact with are the two
in the place of these two images (I show the two images). Any other objects,
as well as the joystick on the bottom left, are not a part of the testing and
are only a debugging tool for convenience. (I give each test subject one phone
with the game prepared beforehand and let them play).

B.2 Czech introduction speech

Děkuji, že se účastníte testování mé kooperativní únikové hry využívající
rozšířenou realitu, kterou jsem vyvinul pro mou bakalářskou práci.

Rozšířená realita, krátce AR z anglického Augmented Reality, je technologie
užívající kameru herního zařízení pro synchronizaci jejího obrazu a herního
světa, díky čemuž vytváří iluzi propojení virtuálního a reálného světa. Dále má

69

B. Testing
hra využívá technologie rozpoznávání obrázků ve scéně (image recognition),
díky které jsou herní objekty ukotveny na správném místě.

Hra je zamýšlena pro dva hráče a každý z nich může na své obrazovce vidět
něco jiného.

Vy se s Vaším partnerem pokusíte vyřešit část této hry. Je nutné spolu
kooperovat. Je evidentní, když je tato část hry vyřešena, a já budu na průběh
dohlížet v případě problémů nebo když budete potřebovat pomoc. Jediné
objekty, se kterými musíte interagovat, jsou ty dva, které jsou umístěny
na místě těchto dvou obrázků (ukážu dva obrázky). Jakékoliv jiné objekty,
jakožto i Joystick v levém dolním rohu, nejsou součástí testování a jsou jen
pro zjednodušení testování. (Každému hráči předám jeden mobil s před-
připravenou hrou a nechám je hrát).

B.3 Testing questionnaire

The testing questionnaire was created in Google Forms. Then, I made it into
a PDF seen below and printed it out to hand out to the testers. Unfortunately,
although everything on my computer is set to English, I didn’t manage to
change the automatically generated text from Czech to English, but I don’t
think it is an issue since it only notifies the person how to fill out a form and
all the testers knew Czech.

70

23/04/2024, 15:02 Testing - Escape Pierito

https://docs.google.com/forms/d/1p3cjzVk5yX3HmJTqeufAXE8Tp4W2-2Cn1XJ9PEQZJmM/edit 1/3

1.

Označte jen jednu elipsu na každém řádku.

Testing - Escape Pierito

Please state how familiar you are with the following topics.

Not
familiar

Somewhat
familiar

Decently
familiar

Expert

Real life
Escape
Rooms

Video Games

Programming

Augmented
Reality

Unity Game
Engine

Real life
Escape
Rooms

Video Games

Programming

Augmented
Reality

Unity Game
Engine

23/04/2024, 15:02 Testing - Escape Pierito

https://docs.google.com/forms/d/1p3cjzVk5yX3HmJTqeufAXE8Tp4W2-2Cn1XJ9PEQZJmM/edit 2/3

2.

Označte jen jednu elipsu na každém řádku.

Please state how much you agree with the following statements.

De�nitely
agree

Slithly
agree

Neutral
Slightly

disagree
De�nitely
disagree

The game
experience
felt stable.

Using AR in
Escape
Rooms can
enrich the
experience.

The task
was
intuitive.

The task
presented a
unique and
enjoyable
kind of
interaction
between
players.

AR makes
the
experience
less
enjoyable
(having to
play on a
device...).

I would
want to visit
a full-scale
Escape
Room using
similar AR
interactions.

The game
experience
felt stable.

Using AR in
Escape
Rooms can
enrich the
experience.

The task
was
intuitive.

The task
presented a
unique and
enjoyable
kind of
interaction
between
players.

AR makes
the
experience
less
enjoyable
(having to
play on a
device...).

I would
want to visit
a full-scale
Escape
Room using
similar AR
interactions.

23/04/2024, 15:02 Testing - Escape Pierito

https://docs.google.com/forms/d/1p3cjzVk5yX3HmJTqeufAXE8Tp4W2-2Cn1XJ9PEQZJmM/edit 3/3

3.

4.

5.

Obsah není vytvořen ani schválen Googlem.

Is there anything you would like to add about using AR in Escape Rooms?

Is there anything you would like to add about the demo you've been presented?

Can you think of any specific Escape Room task that would only be possible using
AR? (optional)

 Formuláře

74

Appendix C
Digital appendix

Contents of the online and DVD appendix (all file names start with "F3-BP-
Vatascin-Peter-priloha-"):. drive.txt (online only) — a link for a Google Drive containing the same

files as the DVD.. game_build.zip (online split into two parts) — the final build of my
game called "Escape Pierito.. codes.zip — separate folder containing all the C# scripts I created for
this thesis..models.zip — contains folders of each 3D model I created and their
textures.. images_for_recognition.pdf — a PDF with the images needed to play
my game.. game_video.mp4 (online split into four parts) — a video of a full
playthrough.. game_source.zip (DVD only) — the complete Unity project I created
for this thesis.

75

	Introduction
	Analysis of existing applications
	Specifications of my game
	Gameplay
	Technical side of the game

	Development tools
	Tools for augmented reality
	Tools for network multiplayer
	3D modelling tools

	Game implementation
	Basic AR scene
	AR scene with ray casting
	AR scene with multiplayer
	Image recognition and tracking
	3D Modelling
	Button Box
	Wheel Box
	Code Box
	Watch Box
	Puzzle Box
	Plant
	Cube
	Using the models in Unity

	First scenario
	Hierarchy of the scripts in the Unity project
	Implementation

	Second scenario
	Implementation

	Third scenario
	Implementation

	Final application

	Testing
	Testing process
	Testing results
	Questions on testers' background
	Questions on testers' experience with my game
	Open-ended questions on testers' opinions

	Testing conclusion

	Conclusion
	Bibliography
	Manual
	Introduction
	Common Issues
	Basic Information about my Unity project
	Adding new AR objects
	Creating scripts and network communication
	Debugging

	Testing
	English introduction speech
	Czech introduction speech
	Testing questionnaire

	Digital appendix

