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Abstract

This bachelor’s thesis deals with the resonance and transmission properties of a periodic binary
acoustic waveguide characterized by step changes of its cross section. The investigation is carried
out using two analytical methods: the Transfer Matrix Method (TMM) and the Su-Schrieffer-
Heeger (SSH) Model. The study focuses on both bulk and edge modes, with particular emphasis
on the conditions under which the edge modes can be observed. This includes an analysis of the
effect of different terminations of the finite waveguide and different aspect ratios of the cross-
sectional areas of its individual elements. The thesis compares the advantages and disadvantages
of the TMM and the SSH model in order to determine which of the methods provides more telling
results about the properties of the waveguide. Selected calculations and symbolic derivations are
performed using Maple software and are attached to this thesis.

Keywords:
Su-Schrieffer-Heeger Model; Transfer Matrix Method; Locally Periodic Structures;

Bulk Modes; Edge Modes; Band Gap; Bloch-Floquet Theorem

Abstrakt

Tato bakalářská práce se zabývá rezonančńımi a přenosovými vlastnostmi periodického binárńıho
akustického vlnovodu charakterizovaného skokovými změnami jeho pr̊uřezu. Vyšetřováńı vlast-
nost́ı je prováděno pomoćı dvou analytických metod: metody matice přechodu (TMM) a Su-
Schrieffer-Heegerova (SSH) modelu. Rozbor se zaměřuje na objemové i okrajové módy, přičemž
zvláštńı d̊uraz je kladen na podmı́nky, za kterých mohou být okrajové módy pozorovány. To
zahrnuje analýzu vlivu r̊uzných zakončeńı konečného vlnovodu a r̊uzných poměr̊u ploch pr̊uřez̊u
jeho jednotlivých část́ı. Práce porovnává výhody a nevýhody TMM a SSH modelu s ćılem určit,
která z metod poskytuje v́ıce vypov́ıdaj́ıćı výsledky o vlastnostech vlnovodu. Vybrané výpočty
a symbolická odvozeńı se prováděj́ı pomoćı softwaru Maple a jsou přiloženy k této práci.

Kĺıčová slova:
Su-Schrieffer-Heeger̊uv model; metoda matice přechodu; lokálně periodické struktury;

objemové módy; okrajové módy; zakázaný pás; Bloch-Floquet̊uv teorém
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Chapter 1

Introduction

Sonic crystals and phononic crystals are specifically designed to manipulate acoustic or elastic
waves. They use periodic arrangements to create frequency band gaps that block certain frequen-
cies. Their finite-length versions, which are locally periodic structures, function as topological
metamaterials. In these materials, edge conditions alter dispersion, making them effective as
topological insulators or wave filters. The bulk-edge correspondence links the bulk characteris-
tics (bulk bound states, bulk modes) of these materials to the existence of edge bound states (edge
modes) at the boundaries of the structure [1, 2]. This relationship can be predicted through the
winding number [3] or the Zak phase [4, 5]. The edge modes, which are localized at the bound-
aries within the band gap, are robust against disorder due to topological protection [6], and
remain unaffected by defects or irregularities. Notably, the shift from trivial phases, which do
not have protected edge modes, to nontrivial phases, which are marked by the presence of such
states, is contingent on altering coupling (hopping) coefficients [7]. This highlights the intricate
relationship between topology and material design in controlling wave transmission.

In the study of transmission and scattering in locally periodic structures, the transmission
matrix method (TMM) is often used [8]. The Su-Schrieffer-Heeger (SSH) 1D model, originally
developed for conjugated polymers such as polyacetylene [6], has found wide applications in
various fields, including contrast acoustic and elastic media (e.g., [9, 10, 11, 12]), optics (e.g., [13]),
vibrational mechanics (e.g., [3, 14]), and electrical circuit systems (e.g., [15]), due to its simple
but powerful approach to emulate tight-binding systems via coupling coefficients. The versatility
of this model and its predictive capability make it an effective tool for the investigation of
one-dimensional topological systems. Locally periodic structures for acoustic fields have been
implemented by methods such as binary waveguides with different cross sections [11], alternating
resonators [1, 2, 10], periodic deployment of identical scatterers [16], or the construction of duct
segments with equally spaced electroacoustic resonators tuned by active feedback [17].

The SSH model provides a solid foundation for exploring key concepts of locally periodic
structures such as the Bloch theorem, chiral symmetries and topological invariants. While the
TMM and SSH-based methods can benefit from the insights of the Bloch-Floquet theory [18],
the TMM stands out primarily for its versatility, while lagging behind in the study of topological
phase transitions. The SSH model is easily applicable to binary structures, but the Bloch-Floquet
theory is not as effective for binary acoustic waveguides with the same characteristic impedance.
Selecting the most suitable method or a combination thereof is crucial for the thorough analysis
of specific locally periodic structures.

This thesis is structured as follows. Chapter 2 focuses on the application of the Transfer
Matrix Method (TMM) to locally periodic binary acoustic structures. This analysis enables us to
establish the relationships necessary for applying the discrete Su-Schrieffer-Heeger (SSH) model
to both infinite and finite structures in Chapter 3. These methodologies allow us to concentrate
on analysing the frequency and transmission properties of the structures under consideration
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and to investigate how they change under different boundary conditions. In Chapter 4, we
perform numerical calculations and comparative analyses, and Chapter 5 provides a review and
assessment of the effectiveness and suitability of each method. The conclusion is presented in
Chapter 6. In addition, Appendix A contains a list of scripts in Maple software that were used
in this thesis for selected symbolic and numerical results.
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Chapter 2

Transfer Matrix Method (TMM)

2.1 Periodic Binary Acoustic Waveguide

Consider a binary acoustic waveguide filled with air (assumed to be an ideal gas), where elements
with cross-sectional areas SA and SB alternate periodically as displayed in Fig. 2.1.

x

SB

SA

ℓ

ℓ

xm−2 xm−1 xm xm+1 xm+2 xm+3

︸ ︷︷ ︸
one cell (period)

︸ ︷︷ ︸
one element

Fig. 2.1: The considered periodic binary acoustic waveguide with cross-sectional areas SA and
SB and element length ℓ.

Considering a waveguide with a rectangular cross-section, its cutoff frequency is

f c =
c0
2h

, (2.1)

where c0 is the speed of acoustic wave propagation in the fluid filling the waveguide, and h is
the longer side of the rectangle [19].
For a waveguide with a circular cross-section of radius r, the cutoff frequency is determined as
follows [19]:

f c =
1.84c0
2πr

. (2.2)

For frequencies below the cutoff frequency corresponding to the given waveguide element, this
element supports plane harmonic acoustic waves along the x-axis which are the solution to the
following one-dimensional wave equation:

∂2p(x, t)

∂x2
=

1

c20

∂2p(x, t)

∂t2
, (2.3)

where p(x, t) is the acoustic pressure and t is time. Considering plane harmonic waves, we can
write:

p′(x, t) = Re[P (x)ejψe−jωt] = Re[P̃ (x)e−jωt], (2.4)
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2.1. PERIODIC BINARY ACOUSTIC WAVEGUIDE

and the wave equation is then transformed to the following one-dimensional Helmholtz equation:

d2P (x)

dx2
+ k2P (x) = 0, (2.5)

where P (x) represents the real amplitude of the acoustic pressure, ω = 2πf is the angular
frequency, f is the frequency and k = ω/c0 is the wave number.
Between individual elements of the waveguide, the following continuity conditions must be met at
locations where there is a step change in the cross-sectional area between the adjacent elements
of the waveguide [11]:

[P (xm)] = 0, (2.6)
[
S (xm)

(
dP (x)

dx

)

x=xm

]
= 0, (2.7)

where S(xm) is a binary function of the cross-sectional area and for [X(xm)], it holds that

[X(xm)] = lim
ϵ→0

[X (xm + ϵ)−X (xm − ϵ)] ≡ X
(
x+m
)
−X

(
x−m
)
. (2.8)

In this case, xm denotes the location of the step change in the cross-sectional area. In the fol-
lowing text, these step changes are referred to as edges.

Since we assume plane acoustic waves, we consider a linearized one-dimensional Euler equation:

ρ0
∂u(x, t)

∂t
= −∂p′(x, t)

∂x
, (2.9)

where u(x,t) represents the harmonic acoustic velocity and ρ0 is the rest density of the considered
fluid (an ideal gas in our case). For plane harmonic waves, p′(x, t) is given by Eq. (2.4) and we
can write that

u(x, t) = Re
[
U(x)ejψe−jωt

]
= Re

[
Ũ(x)e−jωt

]
, (2.10)

where U(x) is the real amplitude of the acoustic velocity.

We introduce positive coupling coefficients v and w as follows:

v =
SA

SA + SB
, w =

SB
SA + SB

=⇒ v + w = 1. (2.11)

The plane harmonic acoustic wave approximation is valid for cross-sectional scales that are con-
siderably smaller than the wavelength of the acoustic wave. The values of SA and SB are chosen so
that the propagating waves can be considered as plane harmonic waves and thus satisfy Eq. (2.4).
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CHAPTER 2. TRANSFER MATRIX METHOD (TMM)

2.2 Transfer Matrix

To describe the acoustic field in a locally periodic structure, the analysis begins with wave
propagation through a basic cell, the fundamental component of these structures. Different
boundary conditions are applied to study the acoustic field in various types of binary acoustic
waveguides, with a focus on examining their transmission properties.
Within this thesis, boundary conditions are categorized into Dirichlet conditions (in our case,
Dirichlet condition means that at the corresponding boundary point, P = 0) and Neumann
conditions (at the corresponding point, dP (x)/dx = 0).

2.2.1 Single-cell Structure

The basic unit of the periodic structure is a cell depicted in Fig. 2.2. This cell is composed of
two elements with respective cross-sectional areas SA and SB, and each element has length ℓ.
The acoustic field within each region is characterized by the solutions to the Helmholtz equation,
as shown in Eq. (2.5):

Region I
For Region I, the solution P (I)(x) can be expressed as stated below.

P (I)(x) = P
(I)
+ (x) + P

(I)
− (x) = Aejkx +Be−jkx, x ≤ x0. (2.12)

Constants A and B are complex amplitudes determined by boundary conditions. The indi-
vidual terms of the solution can be conveniently rewritten into the following column vector
form:

Ψ(I)(x) =

(
P

(I)
+ (x)

P
(I)
− (x)

)
=

(
Aejkx

Be−jkx

)
. (2.13)

Analogously, we can write solutions for Regions II and III:

Region II

P (II)(x) = P
(II)
+ (x) + P

(II)
− (x) = Fejkx +Ge−jkx, x0 ≤ x ≤ x0 + ℓ, (2.14)

Ψ(II)(x) =

(
P

(II)
+ (x)

P
(II)
− (x)

)
=

(
Fejkx

Ge−jkx

)
. (2.15)

Region III

P (III)(x) = P
(III)
+ (x) + P

(III)
− (x) = Cejkx +De−jkx, x0 + ℓ ≤ x ≤ x0 + 2ℓ, (2.16)

Ψ(III)(x) =

(
P

(III)
+ (x)

P
(III)
− (x)

)
=

(
Cejkx

De−jkx

)
. (2.17)
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2.2. TRANSFER MATRIX

x

SB
SA

x0 x0 + ℓ x0 + 2ℓ

Region I Region II Region III

Fig. 2.2: A diagram of the considered cell with designated Regions I, II and III. The cell bound-
aries are marked in red.

For the considered cell of the periodic structure, we can now derive its transfer matrix. First,
we focus on Region II, for which the following relationship between column vectors can be written:

(
P

(II)
+ (x0 + ℓ)

P
(II)
− (x0 + ℓ)

)
=




P
(II)
+ (x0+ℓ)

P
(II)
+ (x0)

0

0
P

(II)
− (x0+ℓ)

P
(II)
− (x0)




(
P

(II)
+ (x0)

P
(II)
− (x0)

)
= M(→)

(
P

(II)
+ (x0)

P
(II)
− (x0)

)
, (2.18)

that is

Ψ(II) (x0 + ℓ) =

(
ejkℓ 0
0 e−jkℓ

)
Ψ(II)(x0) = M(→)Ψ(II)(x0). (2.19)

Employing Eqs. (2.6) and (2.7), the following continuity conditions must be met between the
solutions for Region I (with the cross-section SA) and for Region II (with the cross-section SB):

P (I)(x0) = P (II)(x0), (2.20)

SA

(
dP (I)(x)

dx

)

x0−

= SB

(
dP (II)(x)

dx

)

x0+

× 1
SA+SB−−−−−−→ v

(
dP (I)(x)

dx

)

x0−

= w

(
dP (II)(x)

dx

)

x0+

,

(2.21)
where v and w denote the coupling coefficients introduced in Eq. (2.11). If we expand these
continuity conditions, we obtain the following system of two equations:

Aejkx0 +Be−jkx0 = Fejkx0 +Ge−jkx0 , (2.22)

jkv
(
Aejkx0 −Be−jkx0

)
= jkw

(
Fejkx0 −Ge−jkx0

)
, (2.23)

or equivalently:

P
(I)
+ (x0) + P

(I)
− (x0) = P

(II)
+ (x0) + P

(II)
− (x0), (2.24)

v
[
P

(I)
+ (x0)− P

(I)
− (x0)

]
= w

[
P

(II)
+ (x0)− P

(II)
− (x0)

]
. (2.25)

Eqs. (2.24) and (2.25) can be rewritten in matrix form as follows:

(
1 1
v −v

)(
P

(I)
+ (x0)

P
(I)
− (x0)

)
=

(
1 1
w −w

)(
P

(II)
+ (x0)

P
(II)
− (x0)

)
. (2.26)

6



CHAPTER 2. TRANSFER MATRIX METHOD (TMM)

From this, we obtain:

(
P

(II)
+ (x0)

P
(II)
− (x0)

)
=

(
1 1
w −w

)−1(
1 1
v −v

)(
P

(I)
+ (x0)

P
(I)
− (x0)

)
=

1

2w

(
w + v w − v
w − v w + v

)(
P

(I)
+ (x0)

P
(I)
− (x0)

)
= M(↑)

(
P

(I)
+ (x0)

P
(I)
− (x0)

)
. (2.27)

Similarly, between the solutions for Region II with the cross-section SB and for Region III with
the cross-section SA, the following continuity conditions must be met:

P (II)(x0 + ℓ) = P (III)(x0 + ℓ), (2.28)

w

(
dP (II)(x)

dx

)

(x0+ℓ)−

= v

(
dP (III)(x)

dx

)

(x0+ℓ)+

. (2.29)

We now expand these continuity conditions as follows:

P
(II)
+ (x0 + ℓ) + P

(II)
− (x0 + ℓ) = P

(III)
+ (x0 + ℓ) + P

(III)
− (x0 + ℓ), (2.30)

w
[
P

(II)
+ (x0 + ℓ)− P

(II)
− (x0 + ℓ)

]
= v

[
P

(III)
+ (x0 + ℓ)− P

(III)
− (x0 + ℓ)

]
. (2.31)

Again, we rewrite the system of Eqs. (2.30) and (2.31) in matrix form:

(
1 1
w −w

)(
P

(II)
+ (x0 + ℓ)

P
(II)
− (x0 + ℓ)

)
=

(
1 1
v −v

)(
P

(III)
+ (x0 + ℓ)

P
(III)
− (x0 + ℓ)

)
. (2.32)

From this, we obtain:

(
P

(III)
+ (x0 + ℓ)

P
(III)
− (x0 + ℓ)

)
=

(
1 1
v −v

)−1(
1 1
w −w

)(
P

(II)
+ (x0 + ℓ)

P
(II)
− (x0 + ℓ)

)
=

1

2v

(
w + v v − w
v − w w + v

)(
P

(II)
+ (x0 + ℓ)

P
(II)
− (x0 + ℓ)

)
= M(↓)

(
P

(II)
+ (x0 + ℓ)

P
(II)
− (x0 + ℓ)

)
. (2.33)

Based on Eqs. (2.18), (2.27), and (2.33), we can write:

Ψ(III)(x0 + ℓ) = M(↓)M(→)M(↑)Ψ(I)(x0) = M(II)Ψ(I)(x0), (2.34)

where M(II) is the transfer matrix of the element with the cross-section SB, which can be ex-
pressed as follows:

M(II) = M(↓)M(→)M(↑) =

1

2vw

(
2vw cos(kℓ) + j

(
v2 + w2

)
sin(kℓ) −j

(
v2 − w2

)
sin(kℓ)

j
(
v2 − w2

)
sin(kℓ) 2vw cos (kℓ)− j

(
v2 + w2

)
sin(kℓ)

)
. (2.35)
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2.2. TRANSFER MATRIX

Similarly, for Region III, the relationship between column vectors can be written as:

(
P

(III)
+ (x0 + 2ℓ)

P
(III)
− (x0 + 2ℓ)

)
=




P
(III)
+ (x0+2ℓ)

P
(III)
+ (x0+ℓ)

0

0
P

(III)
− (x0+2ℓ)

P
(III)
− (x0+ℓ)




(
P

(III)
+ (x0 + ℓ)

P
(III)
− (x0 + ℓ)

)
= M(→)

(
P

(III)
+ (x0 + ℓ)

P
(III)
− (x0 + ℓ)

)
,

(2.36)
that is

Ψ(III)(x0 + 2ℓ) =

(
ejkℓ 0
0 e−jkℓ

)
Ψ(III)(x0 + ℓ) = M(→)Ψ(III)(x0 + ℓ). (2.37)

Comparing Eqs. (2.18) and (2.36), we see that the transfer matrix M(→) takes the same form
in both cases as we consider elements of the structure where there is no edge. However, this is
only true if the individual edges in the considered structure are equidistant, i.e., if the length ℓ
is the distance between all the adjacent edges.
Using Eqs. (2.34) and (2.37), it can be stated that

Ψ(III)(x0 + 2ℓ) = M(→)M(II)Ψ(I)(x0) = M(→)M(↓)M(→)M(↑)Ψ(I)(x0) = MΨ(I)(x0), (2.38)

where M is the desired transfer matrix of the entire cell and it is given as follows:

M =

1

2vw

(
ejkℓ

[
2vw cos (kℓ) + j

(
v2 + w2

)
sin (kℓ)

]
−ejkℓj

(
v2 − w2

)
sin (kℓ)

e−jkℓj
(
v2 − w2

)
sin (kℓ) e−jkℓ

[
2vw cos (kℓ)− j

(
v2 + w2

)
sin (kℓ)

]
)
.

(2.39)

Employing Eq. (2.39), we introduce the following notation for components of the transfer matrix:

M =

(
M11 M12

M21 M22

)
=

(
M11 M12

M∗
12 M∗

11

)
=

(
a b
b∗ a∗

)
. (2.40)

Additionaly, it holds that det(M) = 1 and thus M is a unimodular matrix.

2.2.2 Multi-cell Structure

The eigenvalues ε of the transfer matrixM represent solutions of the following quadratic equation:

det (M− εI) = ε2 − (a+ a∗)︸ ︷︷ ︸
TrM

ε+ aa∗ − bb∗︸ ︷︷ ︸
det(M)=1

= 0. (2.41)

By substituting ε = ejq, we obtain:

e2jq − ejq TrM+ 1 = 0. (2.42)

When multiplied by e−jq, the result is as follows:

ejq − TrM+ e−jq = 0. (2.43)

8



CHAPTER 2. TRANSFER MATRIX METHOD (TMM)

After adjustments, we can write that

cos q =
1

2
TrM = ξ. (2.44)

In the Bloch theory concerning periodic 1D systems, ξ is called the Bloch phase and q represents
the dimensionless Bloch wave number [20]. More details are provided in Section 3.2.
We can determine the solutions of Eq. (2.41) (i.e., the eigenvalues ε±) as:

ε± =
TrM±

√
(TrM)2 − 4

2
= cos(q)± j sin(q) = e±jq. (2.45)

If we consider an infinite periodic structure comprised of identical cells (each with the transfer
matrix M), then ξ is given by the following relation:

ξ =
1

2
TrM =

1

2
(a+ a∗) =

(v + w)2 cos(2kℓ)− (v − w)2

4vw
=

cos(2kℓ)− (v − w)2

4vw
. (2.46)

Using the identity

cos(2kℓ) = 2 cos2(kℓ)− 1,

we can modify this result for the Bloch phase in the form:

ξ =
(v + w)2

[
2 cos2(kℓ)− 1

]
− (v − w)2

4vw
=

2(v + w)2 cos2(kℓ)− (v + w)2 − (v − w)2

4vw
=

(v + w)2 cos2(kℓ)− (v2 + w2)

2vw
. (2.47)

From this, we obtain:

(v + w)2 cos2(kℓ) = v2 + w2 + 2vwξ. (2.48)

Considering that v+w = 1 and employing the notation from Eq. (2.44), the following relationship
can be written:

cos(kℓ) = ±
√

v2 + w2 + 2vw cos(q). (2.49)

We consider a locally periodic structure consisting of N cells (see Fig. 2.3), for which, without
loss of generality, we choose x0 = 0. Since the length of one cell is equal to 2ℓ, we can write that

Ψ(x = 2Nℓ) = MNΨ(x = 0), (2.50)

where

Ψ(x = 2Nℓ) =

(
P+(x = 2Nℓ)
P−(x = 2Nℓ)

)
=

(
ANe

j2kNℓ

BNe
j2kNℓ

)
, (2.51)

and

Ψ(x = 0) =

(
P+(x = 0)
P−(x = 0)

)
=

(
A0

B0

)
. (2.52)

9
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x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 2)ℓ (2N − 1)ℓ x = 2Nℓ
︸ ︷︷ ︸

N cells with 2N edges

Fig. 2.3: A diagram of the finite locally periodic structure composed of multiple cells.

The Nth power of the matrix M can be calculated using the Cayley-Hamilton theorem. This
theorem states that every matrix satisfies its own characteristic equation [21]. For the Nth power
of any unimodular matrix M, we can write the following closed-form expression [20]:

MN = MUN−1(ξ)− IUN−2(ξ), (2.53)

where UN (ξ) is the Chebyshev polynomial of the second kind, of degree N , evaluated at ξ, and
I is the identity matrix. Employing the notation from Eq. (2.40), we can write:

MN =

(
a b
b∗ a∗

)N
=

(
aN bN
b∗N a∗N

)
=

(
aUN−1(ξ)− UN−2(ξ) bUN−1(ξ)

b∗UN−1(ξ) a∗UN−1(ξ)− UN−2(ξ)

)
. (2.54)

The Chebyshev polynomial UN (ξ) can be expressed using the sine function as follows [22]:

UN (ξ) =
sin [(N + 1)q]

sin(q)
, (2.55)

where q = arccos(ξ).
Using Eq. (2.55), we can express MN as:

MN =
1

sin(q)

(
a sin(Nq)− sin[(N − 1)q] b sin(Nq)

b∗ sin(Nq) a∗ sin(Nq)− sin[(N − 1)q]

)
. (2.56)

From the Bloch theory, it follows that waves with frequencies for which the relation |ξ| > 1
holds cannot propagate through a periodic structure. The frequency interval with this property
represents the so-called band gap (forbidden band).
By differentiating the Bloch phase (2.46) with respect to the wave number k, we find that it
attains extreme values for 2kℓ = nπ, where n is an integer. From the second derivative of the
Bloch phase, we determine that it reaches a local maximum for even n and a local minimum for
odd n. Substituting the stationary points corresponding to the local maximum into Eq. (2.46),
we find that for these, the Bloch phase attains a value of one, hence only local minima are found
in the band gaps.
The Bloch phase ξ for a particular waveguide is shown in Fig. 2.4.
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0 3,430 6,860

−1

0

1

band gap band gap

f (Hz)

ξ(
f
)

Fig. 2.4: The Bloch phase ξ of a particular waveguide. Values of chosen parameters:
c0 = 343 ms−1, ℓ = 0.05 m, f ∈ [0; 6,860] Hz, and the coupling coefficient v = 0.3.
Frequencies on which ξ = −1 delimit the band gaps.

In the case of an open finite structure, we consider that the acoustic field does not extend
beyond the boundaries of the waveguide, meaning it is not radiated beyond the open edges into
the surroundings. Assuming finite periodic structure as a resonator with open ends, then it must
hold that the pressure is zero at both its ends, i.e., P (x = 0) = 0 and P (x = 2Nℓ) = 0. This
means that P−(x = 0) = −P+(x = 0) and P−(x = 2Nℓ) = −P+(x = 2Nℓ). Including these
boundary conditions in Eq. (2.50), we obtain the following equation:

P+(x = 2Nℓ)

(
1
−1

)
= P+(x = 0) MN

(
1
−1

)
=

P+(x = 0)

sin(q)

(
a sin(Nq)− sin[(N − 1)q] b sin(Nq)

b∗ sin(Nq) a∗ sin(Nq)− sin[(N − 1)q]

)(
1
−1

)
=

P+(x = 0)

sin(q)

(
(a− b) sin(Nq)− sin[(N − 1)q]
(b∗ − a∗) sin(Nq) + sin[(N − 1)q]

)
. (2.57)

Now, we multiply this equation from the left by the row vector
(
1 1

)
, thereby obtaining:

P+(x = 2Nℓ)
(
1 1

)( 1
−1

)
=

P+(x = 0)

sin(q)

(
1 1

)( (a− b) sin(Nq)− sin[(N − 1)q]
(b∗ − a∗) sin(Nq) + sin[(N − 1)q]

)
. (2.58)

Since it holds that
(
1 1

)( 1
−1

)
= (0), (2.59)

then after rearranging Eq. (2.58), we obtain:

0 = (a− a∗ + b∗ − b)
sin(Nq)

sin(q)
. (2.60)

11
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This equation can only be satisfied for certain frequencies, known as resonance frequencies
(eigenfrequencies) or eigenmodes. By substituting the matrix components from Eq. (2.40) into
Eq. (2.60), after simplifications, we can write:

0 =
j(v + w) sin(2kℓ) sin(Nq)

w sin(q)
=

j sin(2kℓ) sin(Nq)

w sin(q)
. (2.61)

We introduce the following notation for the expression in Eq. (2.61):

sin(2kℓ) sin(Nq)

sin(q)
= η(f), (2.62)

and we can write that
η(f) = 0. (2.63)

For frequencies that satisfy Eq. (2.63), the boundary conditions for the considered locally periodic
structure are satisfied. If we assume the case where ξ < −1, then for the dimensionless Bloch
wave number, we can write:

q = arccos(ξ) = π − j ln
(
|ξ|+

√
ξ2 − 1

)
for ξ < −1. (2.64)

Since the identity sin(jα) = j sinh(α) holds, where α is a real number, then for the case ξ < −1
(i.e., for the band gap), it is possible to solve Eq. (2.63) as

sin(2kℓ) sinh
[
N ln

(
|ξ|+

√
ξ2 − 1

)]
= 0. (2.65)

Given that the above-mentioned function sinh
[
N ln

(
|ξ|+

√
ξ2 − 1

)]
does not pass through zero

in the band gap, this equation can only be satisfied for sin(2kℓ) = 0 in the band gap:

2kℓ = nπ =⇒ f =
nc0
4ℓ

, n = 1, 2, . . . (considering positive frequencies solely). (2.66)

Eq. (2.62) must be solved in its full form, not just for a zero numerator, because in the band
gap where ξ < −1, the dimensionless Bloch wave number q takes complex values, as follows from
Eq. (2.64).

If we consider only the first band gap, where n = 1, which corresponds to the first local minimum
of the Bloch phase, this minimum coincides with the frequency for which Eq. (2.65) is satisfied,
thus finding the frequency for the edge mode.
The resonance frequencies for particular waveguides are shown in Fig. 2.5. It can be seen that
the closer the value of the coupling coefficient v is to the value of w, the smaller is the width of
the band gap. For the extreme case v = w, the band gap disappears. Within the band gap, the
edge modes are determined by Eq. (2.66).

In the next part of this chapter, we introduce and discuss four specific cases of locally periodic
structures (see Fig. 2.6). We focus on the properties of wave propagation given by the boundary
conditions for each waveguide.
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0

−1

0

1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

(a)

f

ξ(f)

ηnorm(f)

0

−1

0

1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

(b)

f

ξ(f)

ηnorm(f)

Fig. 2.5: Determination of eigenmodes according to ξ(f) and normalized η(f) (denoted as
ηnorm(f)). For (a) v = 0.3, and for (b) v = 0.45. Values of chosen parameters:
N = 5, c0 = 343 ms−1, ℓ = 0.05 m, f ∈ [0; f10 = 3,430] Hz. The gray region indicates
the frequency range falling within the band gaps.
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(A)

x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 1)ℓ 2Nℓ x = (2N + 1)ℓ
︸ ︷︷ ︸

Open boundary conditions and an even number of edges 2N .

(B)

x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 1)ℓ 2Nℓ x = (2N + 1)ℓ
︸ ︷︷ ︸

Closed boundary conditions and an even number of edges 2N .

(C)

x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 2)ℓ (2N − 1)ℓ x = 2Nℓ
︸ ︷︷ ︸

Open boundary conditions and an odd number of edges 2N − 1.

(D)

x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 2)ℓ (2N − 1)ℓ x = 2Nℓ
︸ ︷︷ ︸

Closed boundary conditions and an odd number of edges 2N − 1.

Fig. 2.6: Diagrams of the locally periodic structures composed of multiple cells. The correspond-
ing transfer matrices are MA for Cases (A) and (B) and MC for Cases (C) and (D).
In Cases (B) and (D), both ends of the waveguide are closed by a perfectly rigid wall.
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(A) Finite locally periodic symmetric structure with open ends
We consider the case where the finite locally periodic structure comprised of N + 1 cells
does not begin with a step change from the cross-section SA to SB, see Fig. 2.6(A). In
addition, we eliminate the propagation in the element with cross section SA at the end of
this structure, thus obtaining:

MA =
(
M(→)M(↓)

)−1
MN+1

(
M(↑)

)−1
. (2.67)

Considering the Dirichlet boundary conditions for the open ends of the locally periodic
structure where P (x = 0) = 0 and P [x = (2N + 1)ℓ] = 0, we obtain:

(0) =
(
1 1

)
MA

(
1
−1

)
. (2.68)

From this, we get that

2j sin(kℓ){w sin(Nq) + v sin[(N + 1)q]}
v sin(q)

= 0. (2.69)

In order to find the eigenmodes, this can be rewritten into the form:

sin(kℓ) sin(Nq)(w + vξ)

v sin(q)
+ sin(kℓ) cos(Nq) = ν(f) = 0, (2.70)

where it was used that ξ = cos(q).
This condition is satisfied for two frequencies falling within the band gap, i.e., there are
two edge modes (namely f5 and f6), as shown in Fig. 2.7(A).
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

(A)

f

ξ(f)

νnorm(f)

0

−1

0

1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

(A)

f

ξ(f)

νnorm(f)

0

−1

0

1

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

(B)

f

ξ(f)

φnorm(f)

Fig. 2.7: Determination of eigenmodes according to ξ(f) and normalized ν(f) (denoted as
νnorm(f)) in (A), normalized φ(f) (denoted as φnorm(f)) in (B). Values of chosen
parameters: N = 5, c0 = 343ms−1, ℓ = 0.05m, f ∈ [0; f11 = 3,430]Hz, and the cou-
pling coefficient v = 0.3. The gray region indicates the frequency range falling within
the band gap.
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(B) Finite locally periodic symmetric structure with closed ends
We now consider the case for the structure corresponding to the transfer matrix MA (for-
mulated in Eq. (2.67)), but its both ends are closed by a perfectly rigid wall, see Fig. 2.6(B).
Thus, it differs in the boundary conditions and it must hold that the acoustic velocities at
these points are zero (resulting in the derivatives of the acoustic pressure with respect to
x being zero at these points). Since it holds that

dP (x)

dx
= jk [P+(x)− P−(x)] , (2.71)

then a zero derivative of the acoustic pressure at the points x = 0 and x = (2N + 1)ℓ is
ensured by setting

P−(0) = P+(0), (2.72)

P−[(2N + 1)ℓ] = P+[(2N + 1)ℓ], (2.73)

at these points, so we can write that

P+[x = (2N + 1)ℓ]

(
1
1

)
= MAP+(0)

(
1
1

)
. (2.74)

It also holds that

dP (x)

dx
= jk [P+(x)− P−(x)] = jk

(
1 −1

)(P+(x)
P−(x)

)
. (2.75)

From this, it is evident that when we multiply Eq. (2.74) from the left by the row vector(
1 −1

)
, we get the zero derivative of the pressure (the Neumann boundary condition) at

the required points:

P+[x = (2N + 1)ℓ]
(
1 −1

)(1
1

)
= P+(0)

(
1 −1

)
MA

(
1
1

)
, (2.76)

and so we obtain:

(0) =
(
1 −1

)
MA

(
1
1

)
. (2.77)

After rearranging, we obtain that

2j sin(kℓ){v sin(Nq) + w sin[(N + 1)q]}
w sin(q)

= 0. (2.78)

In order to find the eigenmodes, this can be rewritten into the form:

sin(kℓ) sin(Nq)(v + wξ)

w sin(q)
+ sin(kℓ) cos(Nq) = φ(f) = 0, (2.79)

where it was used that ξ = cos(q).
This condition is not satisfied for any frequencies falling within the band gap, i.e., there
are no edge modes, as shown in Fig. 2.7(B).
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(C) Finite locally periodic antisymmetric structure with open ends
The case under consideration is the finite locally periodic structure comprised of N cells
with no step change from the cross-section SA to SB at the beginning, as shown in
Fig. 2.6(C). The transfer matrix MC of such a structure then takes the form using the
MN matrix of Eq. (2.56) as follows:

MC = MN
(
M(↑)

)−1
, (2.80)

thereby eliminating the transition between cross-sections at the first cell.

Considering the Dirichlet boundary conditions for open ends (i.e., P (x = 0) = 0 and
P (x = 2Nℓ) = 0), analogically to Eq. (2.68), we obtain:

(0) =
(
1 1

)
MC

(
1
−1

)
. (2.81)

From this, we get that

0 = (a− a∗ + b∗ − b)
w sin(Nq)

v sin(q)
=

j(v + w) sin(2kℓ) sin(Nq)

v sin(q)
. (2.82)

Solving this equation leads to the same form as in Eq. (2.63), or finding the roots of η(f).

(D) Finite locally periodic antisymmetric structure with closed ends
Finally, we consider the case for the structure corresponding to the transfer matrix MC

(formulated in Eq. (2.80)), but its both ends are closed by a perfectly rigid wall, see
Fig. 2.6(D). Thus, it differs in the boundary conditions and we proceed analogously to
Case (B). The Neumann boundary conditions at the points x = 0 and x = 2Nℓ are
satisfied by solving the following equation:

(0) =
(
1 −1

)
MC

(
1
1

)
. (2.83)

After rearranging, we obtain that

0 =
sin(Nq)(a− a∗ + b− b∗)

sin(q)
=

j(v + w) sin(2kℓ) sin(Nq)

v sin(q)
. (2.84)

Employing the notation from Eq. (2.62), we obtain as follows:

sin(2kℓ) sin(Nq)

sin(q)
= η(f) = 0. (2.85)

Using the resulting equation, we find the eigenmodes for the considered case. We see that
this problem is a direct analogue of Eq. (2.62). The desired eigenmodes are shown in
Fig. 2.5.
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By using the derived relationships, we can also examine the transmission properties of a multi-
cell structure (see Fig. 2.8). We apply the Chebyshev identity to derive a general expression for
the amplitude transmission coefficient TN of the multi-cell structure employing the notation for
MN introduced in Eq. (2.54) in the following form [8]:

TN =

(
P+(x = 2Nℓ)

P+(x = 0)

)

P−(x=2Nℓ)=0

=
1

a∗N
. (2.86)

The reflection coefficient is equal to:

RN =

(
P−(x = 0)

P+(x = 0)

)

P−(x=2Nℓ)=0

= − b∗N
a∗N

. (2.87)

xx = 0 x = 2Nℓ
︸ ︷︷ ︸

N cells

P+(x = 0)
P−(x = 0)

P+(x = 2Nℓ)

Fig. 2.8: A diagram of wave propagation through a multi-cell structure of length 2Nℓ (marked
in red).

Based on the law of conservation of energy, the following must be satisfied:

|TN |2 + |RN |2 = 1 =⇒ 1

|aN |2
+

|bN |2

|aN |2
= 1. (2.88)

It follows from the above:
1 + |bN |2 = |aN |2. (2.89)

Thus it holds that

|TN |2 =
1

|aN |2
=

1

1 + |bN |2
. (2.90)

Substituting into Eq. (2.88) then gives the resulting form:

|TN |2 =
1

1 + |b|2
(
sin(Nq)
sin(q)

)2 =
1

1 + (v2−w2)2 sin2(kℓ)
4v2w2

(
sin(Nq)
sin(q)

)2 . (2.91)

The transmission of the propagating waves for particular waveguides is shown in Fig. 2.9.
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0 1,715 3,430 5,145 6,860

−1

0

1

(a)

f (Hz)

ξ(f)

|TN (f)|2

0 1,715 3,430 5,145 6,860

−1

0

1

(b)

f (Hz)

ξ(f)

|TN (f)|2

Fig. 2.9: The square of the modulus of the transmission coefficient TN for particular locally
periodic structures composed of N identical cells: (a) N = 5, (b) N = 20. Values of
chosen parameters: c0 = 343 ms−1, ℓ = 0.05 m, f ∈ [0; 6,860] Hz, and v = 0.3. The
gray region indicates the frequency range falling within the band gaps.
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The TMM can also be expressed using the modified volume acoustic velocity and total pres-
sure, which can be advantageous for the application of the Dirichlet and Neumann boundary
conditions. We now show how this can be achieved.
After substituting u(x, t) and p′(x, t) into the Euler equation (2.9), we obtain the following form:

−jρ0ωU(x) = −dP (x)

dx
. (2.92)

We modify this equation as follows:

jρ0ωWv(x) = v
dP (x)

dx
, (2.93)

and

jρ0ωWw(x) = w
dP (x)

dx
, (2.94)

employing the coupling coefficients v and w, where

Wv(x) = vU(x), (2.95)

and
Ww(x) = wU(x), (2.96)

are the modified volume acoustic velocities.

Given the solution of the Helmholtz equation and its derivative (expressed in Eq. (2.71)), the
following relations valid for the individual cross sections from Eqs. (2.93) and (2.94) hold:

Wv(x) = − jv

ρ0ω

dP (x)

dx
=

v

Z
[P+(x)− P−(x)] , (2.97)

Ww(x) = − jw

ρ0ω

dP (x)

dx
=

w

Z
[P+(x)− P−(x)] , (2.98)

where Z = ρ0c0 is the acoustic impedance.
The relationships in Eqs. (2.97) and (2.98) can be expressed in matrix form as follows:

(
P (x)
Wv(x)

)
=

(
1 1
v
Z − v

Z

)(
P+(x)
P−(x)

)
= M(+)

v Ψ(x), (2.99)

(
P (x)
Ww(x)

)
=

(
1 1
w
Z −w

Z

)(
P+(x)
P−(x)

)
= M(+)

w Ψ(x). (2.100)

Similarly, the following relations for a wave propagating in the opposite direction can be written:
(

P (x)
Wv(x)

)
=

(
1 1

− v
Z

v
Z

)(
P+(x)
P−(x)

)
= M(−)

v Ψ(x), (2.101)

(
P (x)
Ww(x)

)
=

(
1 1

−w
Z

w
Z

)(
P+(x)
P−(x)

)
= M(−)

w Ψ(x). (2.102)

The various types of finite locally periodic structure from Fig. 2.6 can also be solved in a way
that expresses the total acoustic pressure and the total modified volume acoustic velocity.
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(A) Finite locally periodic symmetric structure with open ends
Considering the structure previously analysed in Case (A), we employ the transfer matrix
MA from Eq. (2.67) as follows:

(
P [(2N + 1)ℓ]
Ww [(2N + 1)ℓ]

)
= M(+)

w MA

(
M(+)

w

)−1
(

P (0)
Ww(0)

)
= M̂(W )

(
P (0)
Ww(0)

)
. (2.103)

The following boundary conditions for the considered structure with open ends must be
met: P [(2N + 1)ℓ] = P (0) = 0, and the following equality holds:

(
0

Ww [(2N + 1)ℓ]

)
= M̂(W )

(
0

Ww(0)

)
. (2.104)

We thus obtain that
M̂

(W )
12 = 0, (2.105)

and that can be expressed as:

jZ sin(kℓ){w sin(Nq) + v sin[(N + 1)q]}
vw sin(q)

= 0 =⇒ ν(f) = 0, (2.106)

where ν(f) was introduced in Eq. (2.70). We thus obtain the same results also by employing
the volume acoustic velocity for Case (A).

(B) Finite locally periodic symmetric structure with closed ends
We start from Eq. (2.103), but apply different boundary conditions. The ends of the locally
periodic structure are closed by a perfectly rigid wall, thus the condition must hold that
Wv[(2N + 1)ℓ] = Ww(0) = 0. Applying this, we obtain:

(
P [(2N + 1)ℓ]

0

)
= M̂(W )

(
P (0)
0

)
. (2.107)

From here, it is evident that the following equation must hold:

M̂
(W )
21 = 0. (2.108)

And we can write that

j sin(kℓ){v sin(Nq) + w sin[(N + 1)q]}
Z sin(q)

= 0 =⇒ φ(f) = 0, (2.109)

where φ(f) was introduced in Eq. (2.79). Also this result is identical to the form derived
in the previous text.
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(C) Finite locally periodic antisymmetric structure with open ends
For Case (C), we proceed similarly as in the previous text employing the total transfer
matrix MC formulated in Eq. (2.80) as:

(
P (2Nℓ)
Wv(2Nℓ)

)
= M(+)

v MC

(
M(+)

w

)−1
(

P (0)
Ww(0)

)
= M(W )

(
P (0)
Ww(0)

)
. (2.110)

Also here, it must hold that the ends of the locally periodic structure are open, we can
write that P (2Nℓ) = P (0) = 0, thus

(
0

Wv(2Nℓ)

)
= M(W )

(
0

Ww(0)

)
. (2.111)

From this, we obtain:

M
(W )
12 = 0. (2.112)

This can be formulated as:

Z sin(Nq)(a− a∗ − b+ b∗)

2v sin(q)
= 0 =⇒ sin(2kℓ) sin(Nq)

sin(q)
= η(f) = 0. (2.113)

It can be seen that finding bulk and edge modes (roots of η(f)) in Eq. (2.113) corresponds
to the result already derived in this section. This is shown in Fig. 2.5.

(D) Finite locally periodic antisymmetric structure with closed ends
Finally, we start from Eq. (2.110), but apply different boundary conditions. The ends of
the locally periodic structure are closed by a perfectly rigid wall, thus the condition must
hold that Wv(2Nℓ) = Ww(0) = 0. Applying this, we obtain:

(
P (2Nℓ)

0

)
= M(W )

(
P (0)
0

)
. (2.114)

From here, it is evident that the following equation must hold:

M
(W )
21 = 0. (2.115)

And we can write that

v sin(Nq)(a− a∗ + b− b∗)

2Z sin(q)
= 0 =⇒ sin(2kℓ) sin(Nq)

sin(q)
= η(f) = 0. (2.116)

This yields the same results as in Case (D) analysed previously in this section.
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Chapter 3

One-dimensional Su-Schrieffer-Heeger (SSH) model

The one-dimensional version of the Su-Schrieffer-Heeger (SSH) model constitutes the most ele-
mentary instance of a nontrivial topological system.
This model consists of a one-dimensional chain of two different “atoms” (A and B) with period-
ically alternating coupling coefficients v and w between the nearest neighbors. A cell of width a
in the 1D chain is chosen so that v is an intrinsic parameter and the cell has inversion symmetry
with respect to its center, see Fig. 3.1(b). The circles represent two different atoms arranged in
alternating order.

(a)

x

SB

SA

ℓ

ℓ

xB
n−1 xA

n xB
n xA

n+1 xB
n+1 xA

n+2

a = 2ℓ

(b)

Bn−1 An

cell of width a

Bn

v

An+1

w

Bn+1 An+2

Fig. 3.1: (a) A diagram of a 2D acoustic waveguide as an infinite periodic structure with edges
from the area SA to SB and vice versa. (b) The explicit mapping to the SSH discrete
model is depicted.

The corresponding Hamiltonian matrix [7] can be written as:

H =

(
0 ĥ(q)

ĥ∗(q) 0

)
, (3.1)

where

ĥ(q) = v + wejq, (3.2)

and the dimensionless Bloch wave number q = µa. To denote the Bloch wave number we use µ
and a is the spatial period.
The ratio v/w determines whether the system will have an open or closed band gap. If v/w ̸= 1,
then the system has an open band gap, and if v/w = 1, then the system has a closed band gap
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at the edges of the Brillouin zone1. We discuss this further in Section 3.2.

3.1 Derivation of SSH Model Using TMM

The solution to the corresponding Helmholtz equation (2.5) can be written for the designated
regions of the waveguide shown in Fig. 3.2 as follows:

Region I

P (I)(x) = P
(I)
+ (x) + P

(I)
− (x) = Aejkx +Be−jkx, xBn−1 ≤ x ≤ xAn . (3.3)

Ψ(I)(x) =

(
P

(I)
+ (x)

P
(I)
− (x)

)
=

(
Aejkx

Be−jkx

)
. (3.4)

Region II

P (II)(x) = P
(II)
+ (x) + P

(II)
− (x) = Fejkx +Ge−jkx, xAn ≤ x ≤ xBn . (3.5)

Ψ(II)(x) =

(
P

(II)
+ (x)

P
(II)
− (x)

)
=

(
Fejkx

Ge−jkx

)
. (3.6)

Region III

P (III)(x) = P
(III)
+ (x) + P

(III)
− (x) = Cejkx +De−jkx, xBn ≤ x ≤ xAn+1. (3.7)

Ψ(III)(x) =

(
P

(III)
+ (x)

P
(III)
− (x)

)
=

(
Cejkx

De−jkx

)
. (3.8)

x

ℓℓ

SB
SA

xBn−1 xAn xBn xAn+1

Region I Region II Region III

Fig. 3.2: A diagram of the considered cell with designated Regions I, II and III.

1The Brillouin zone is a fundamental concept in the theory of the electronic band structure in solids and is used
to describe permissible states of electrons in a crystal lattice. Simply put, it is a geometric way of understanding
how electrons can move in a solid. Analogously, it can be applied to other systems where the role of electron wave
functions is played by, for instance, acoustic or elastic waves.
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We introduce the notation of points on the x-axis (xA and xB) to emulate a diatomic system
with tight binding. Employing the already introduced matrices (Eqs. (2.19), (2.27) and (2.33)),
we express the transfer matrix from the point xBn−1 to the point xAn as

Ψ(II)
(
xAn
)
= M(↓)M(→)Ψ(I)

(
xBn−1

)
. (3.9)

Considering the equality (2.100), we get that

(
P (II)

(
xAn
)

W
(II)
v

(
xAn
)
)

= M(+)
v M(↓)M(→)

(
M(+)

w

)−1
(
P (I)

(
xBn−1

)

W
(I)
w

(
xBn−1

)
)

=

(
cos(kℓ) jZ sin(kℓ)

w
jw sin(kℓ)

Z cos(kℓ)

)(
P (I)

(
xBn−1

)

W
(I)
w

(
xBn−1

)
)

=

(
a
(+)
w b

(+)
w

c
(+)
w d

(+)
w

)(
P (I)

(
xBn−1

)

W
(I)
w

(
xBn−1

)
)
. (3.10)

Assuming a wave propagating from the point xBn to the point xAn , we can write that

Ψ(I)
(
xAn
)
= M(↑)M(→)Ψ(II)

(
xBn
)
, (3.11)

and the corresponding transfer matrix can be expressed as follows:

(
P (I)

(
xAn
)

W
(I)
w

(
xAn
)
)

= M(−)
w M(↑)M(→)

(
M(−)

v

)−1
(
P (II)

(
xBn
)

W
(II)
v

(
xBn
)
)

=

(
cos(kℓ) − jZ sin(kℓ)

v

− jv sin(kℓ)
Z cos(kℓ)

)(
P (II)

(
xBn
)

W
(II)
v

(
xBn
)
)

=

(
a
(−)
v b

(−)
v

c
(−)
v d

(−)
v

)(
P (II)

(
xBn
)

W
(II)
v

(
xBn
)
)
. (3.12)

From Eqs. (3.10) and (3.12), we express that

W (II)
v

(
xAn
)
=

d
(+)
w

b
(+)
w

P (II)
(
xAn
)
+

(
c(+)
w − a

(+)
w d

(+)
w

b
(+)
w

)
P (I)

(
xBn−1

)
=

a
(+)
w

b
(+)
w

P (II)
(
xAn
)
− 1

b
(+)
w

P (I)
(
xBn−1

)
, (3.13)

W (I)
w

(
xAn
)
=

d
(−)
v

b
(−)
v

P (I)
(
xAn
)
+

(
c(−)
v − a

(−)
v d

(−)
v

b
(−)
v

)
P (II)

(
xBn
)
=

a
(−)
v

b
(−)
v

P (I)
(
xAn
)
− 1

b
(−)
v

P (II)
(
xBn
)
, (3.14)

where we used that a
(+)
w = d

(+)
w and a

(−)
v = d

(−)
v .

At the point xAn , the following equality between the volume velocities holds:

W (II)
v

(
xAn
)
= W (I)

w

(
xAn
)
, (3.15)

and we also note that
P (I)

(
xAn
)
= P (II)

(
xAn
)
= P

(
xAn
)
. (3.16)
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By substituting Eqs. (3.13) and (3.14) into Eq. (3.15), we obtain:

−w
[
cos(kℓ)P

(
xAn
)
− P

(
xBn−1

)]
= v

[
cos(kℓ)P

(
xAn
)
− P

(
xBn
)]

. (3.17)

This can be simplified to the following equation:

vP
(
xBn
)
+ wP

(
xBn−1

)
= (v + w) cos(kℓ)P

(
xAn
)
= cos(kℓ)P

(
xAn
)
. (3.18)

In an analogous way (actually the inverse procedure) we find the transfer matrix for a wave
propagating from the point xAn to the point xBn :

Ψ(III)
(
xBn
)
= M(↑)M(→)Ψ(II)

(
xAn
)
, (3.19)

and we can write that

(
P (III)

(
xBn
)

W
(III)
w

(
xBn
)
)

= M(+)
w M(↑)M(→)

(
M(+)

v

)−1
(
P (II)

(
xAn
)

W
(II)
v

(
xAn
)
)

=

(
cos(kℓ) jZ sin(kℓ)

v
jv sin(kℓ)

Z cos(kℓ)

)(
P (II)

(
xAn
)

W
(II)
v

(
xAn
)
)

=

(
a
(+)
v b

(+)
v

c
(+)
v d

(+)
v

)(
P (II)

(
xAn
)

W
(II)
v

(
xAn
)
)
. (3.20)

Similarly, we can find the transfer matrix for a wave propagating from the point xAn+1 to the
point xBn :

Ψ(II)
(
xBn
)
= M(↓)M(→)Ψ(III)

(
xAn+1

)
, (3.21)

and in matrix form, we express this as:

(
P (II)

(
xBn
)

W
(II)
v

(
xBn
)
)

= M(−)
v M(↓)M(→)

(
M(−)

w

)−1
(
P (III)

(
xAn+1

)

W
(III)
w

(
xAn+1

)
)

=

(
cos(kℓ) − jZ sin(kℓ)

w

− jw sin(kℓ)
Z cos(kℓ)

)(
P (III)

(
xAn+1

)

W
(III)
w

(
xAn+1

)
)

=

(
a
(−)
w b

(−)
w

c
(−)
w d

(−)
w

)(
P (III)

(
xAn+1

)

W
(III)
w

(
xAn+1

)
)
. (3.22)

From Eqs. (3.20) and (3.22), we can write that

W (III)
w

(
xBn
)
=

d
(+)
v

b
(+)
v

P (III)
(
xBn
)
+

(
c(+)
v − a

(+)
v d

(+)
v

b
(+)
v

)
P (II)

(
xAn
)
=

a
(+)
v

b
(+)
v

P (III)
(
xBn
)
− 1

b
(+)
v

P (II)
(
xAn
)
, (3.23)

W (II)
v

(
xBn
)
=

d
(−)
w

b
(−)
w

P (II)
(
xBn
)
+

(
c(−)
w − a

(−)
w d

(−)
w

b
(−)
w

)
P (III)

(
xAn+1

)
=

a
(−)
w

b
(−)
w

P (II)
(
xBn
)
− 1

b
(−)
w

P (III)
(
xAn+1

)
. (3.24)
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At the point xBn , the following equality between the volume velocities holds:

W (III)
w

(
xBn
)
= W (II)

v

(
xBn
)
, (3.25)

and we also note that
P (II)

(
xBn
)
= P (III)

(
xBn
)
= P

(
xBn
)
. (3.26)

By substituting Eqs. (3.23) and (3.24) into Eq. (3.25), we obtain:

v
[
P
(
xAn
)
− cos(kℓ)P

(
xBn
)]

= w
[
cos(kℓ)P

(
xBn
)
− P

(
xAn+1

)]
, (3.27)

We simplify this equation as follows:

wP
(
xAn+1

)
+ vP

(
xAn
)
= (v + w) cos(kℓ)P

(
xBn
)
= cos(kℓ)P

(
xBn
)
. (3.28)

We now restate Eqs. (3.18) and (3.28), and introduce a new notation for clarity:

vBn + wBn−1 = E(k)An, (3.29)

wAn+1 + vAn = E(k)Bn, (3.30)

where E(k) = cos(kℓ), An = P
(
xAn
)
, and Bn = P

(
xBn
)
.

The SSH model [11] corresponding to the formulation of the time-independent Schrödinger equa-
tion for stationary states and for the diatomic system with tight binding is thus expressed in
Eqs. (3.29) and (3.30). The originally continuous system is thereby transformed into a dis-
crete one.
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3.2 Infinite Structure

Considering an infinite waveguide, we can express the eigenvalue problem based on Eqs. (3.29)
and (3.30) (the SSH model) as follows:

HX = E(k)X, (3.31)

where

H =




. . .
. . .

. . . 0 v
v 0 w

w 0 v

v 0
. . .

. . .
. . .




, (3.32)

and
X = (. . . , An, Bn, . . . )

⊺ . (3.33)

From here, it can be observed that E(k) can be regarded as a kind of “acoustic eigenenergy”. The
eigen-wave numbers k can be found directly from the obtained eigenvalues E(k) of the Hermitian
matrix H. That means, H is a transposed complex conjugate matrix to itself, also denoted as
H† = H.

Taking into account that the analysed waveguide represents an infinite periodic structure, it
is advantageous to employ the Bloch-Floquet theorem.
Based on this theorem, it holds that the amplitude of the acoustic pressure (Bloch function or
Bloch wave) at the position x of the infinite periodic structure (waveguide) can be expressed
as [20]:

P±(x) = e±jµxP±(x) = e±j q
a
xP±(x), (3.34)

where µ is the Bloch wave number, q = µa is the dimensionless Bloch wave number and P±(x)
is a periodic function with the spatial period a of the given structure, i.e.,

P±(x+ a) = P±(x). (3.35)

P± represents two linearly independent solutions (Bloch waves). P+ is associated with the
positive sign of the Bloch wave number, while P− is associated with the negative sign of the
Bloch wave number. In the next part of the text, both lower and upper indices are employed for
the used symbols implying this convention.
Consequently, we can express the solutions for the infinite waveguide under consideration as a
linear combination of these Bloch functions as follows:

P (x) = αP+(x) + βP−(x), (3.36)

where α, β are integration constants that we determine from boundary conditions.
Using Eq. (3.34), it holds that

P±(x+ a) = e±j q
a
(x+a)P±(x+ a). (3.37)
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Employing Eqs. (3.34) and (3.35), we obtain:

P±(x+ a) = e±j q
a
(x+a)P±(x+ a) = e±j q

a
(x+a)P±(x) = e±jq e±j q

a
xP±(x)︸ ︷︷ ︸

=P±(x)

. (3.38)

From here, we can write that
P±(x+ a) = e±jqP±(x). (3.39)

The relation expressed in Eq. (3.39) is referred to as the Bloch condition.
Without loss of generality, the Bloch condition can be represented in the following form:

P±
(
x− xA0 + a

)
= e±jqP±

(
x− xA0

)
. (3.40)

For x = xA0 , we obtain using the Bloch condition (3.39):

A
(±)
1 = P±(a) = e±jqP±(0) ≡ A(±)e±jq, (3.41)

where xA0 corresponds to the location of an edge of the considered waveguide (from a larger area
to a smaller one, i.e., SB → SA).
Again, employing the Bloch condition and Eq. (3.41), we can write that

A
(±)
2 = P±(2a) = e±jqP±(a) = e±jqA(±)e±jq = A(±)e±j2q. (3.42)

From here, it holds that

A(±)
n = A(±)e±jnq. (3.43)

Similarly, for the Bloch condition, we can express that

P±
(
x− xB0 + a

)
= ejqP±

(
x− xB0

)
. (3.44)

Analogically, for x = xB0 , where xB0 corresponds to the location of an edge (from a smaller area
to a larger one, i.e., SA → SB) we obtain:

B
(±)
1 = P±(a) = e±jqP±(0) ≡ B(±)e±jq. (3.45)

Following the same procedure, we can write as follows:

B(±)
n = B(±)e±jnq. (3.46)

Using Eq. (3.36), we can write that

P (xAn ) ≡ An = αA(+)
n + βA(−)

n , (3.47)

and
P (xBn ) ≡ Bn = αB(+)

n + βB(−)
n . (3.48)

Substituting Eq. (3.47) and (3.48) into the SSH model (expressed in Eqs. (3.29) and (3.30)), we
obtain:

v
(
αB(+)

n + βB(−)
n

)
+ w

(
αB

(+)
n−1 + βB

(−)
n−1

)
= E(k)

(
αA(+)

n + βA(−)
n

)
, (3.49)

31
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w
(
αA

(+)
n+1 + βA

(−)
n+1

)
+ v

(
αA(+)

n + βA(−)
n

)
= E(k)

(
αB(+)

n + βB(−)
n

)
. (3.50)

Employing Eqs. (3.49) and (3.50), the following equations hold:

vB(+)
n + wB

(+)
n−1 = E(k)A(+)

n , (3.51)

wA
(+)
n+1 + vA(+)

n = E(k)B(+)
n , (3.52)

vB(−)
n + wB

(−)
n−1 = E(k)A(−)

n , (3.53)

wA
(−)
n+1 + vA(−)

n = E(k)B(−)
n . (3.54)

After substituting Eqs. (3.43) and (3.46) into Eqs. (3.51)–(3.54) and algebraic manipulation, we
arrive at the following matrix representations of the eigenvalue problem:

(
0 v + we−jq

v + wejq 0

)

︸ ︷︷ ︸
=H(+)

(
A(+)

B(+)

)
= E(k)

(
A(+)

B(+)

)
, (3.55)

(
0 v + wejq

v + we−jq 0

)

︸ ︷︷ ︸
=H(−)

(
A(−)

B(−)

)
= E(k)

(
A(−)

B(−)

)
, (3.56)

where H(+) and H(−) are Hermitian matrices (Bloch Hamiltonians).
The eigenvalues for H(+) can be obtained by solving the following equation:

det(H(+) − EI) = 0, (3.57)

where I is the identity matrix. Describing Eq. (3.57) in matrix form, we obtain:

∣∣∣∣
−E v + we−jq

v + wejq −E

∣∣∣∣ = 0, (3.58)

which is equal to solving the following equation:

E2 −
(
v + wejq

) (
v + we−jq

)
= 0. (3.59)

The solution of Eq. (3.59) yields two eigenvalues:

E(k) = cos(kℓ) = ±
√
v2 + w2 + 2vw cos(q) = ±

∣∣v + wejq
∣∣ = E±(q), (3.60)

and that coincides with the relationship formulated in Eq. (2.49).
We note that Eq. (3.60) represents a dispersion relation, see Fig. 3.3. The crossing of two bands
of the SSH model at v = w occurs precisely in the case of a trivial waveguide with constant cross
section, as shown in Fig. 3.3(b).
Following the same procedure for H(−), it is obvious that solving det(H(−) − EI) = 0 leads to
Eq. (3.59) and thus yields the same eigenvalues.
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Fig. 3.3: The dispersion relation of the acoustic SSH model for three different values of the
coupling coefficient v: (a) v = 0.3, (b) v = 0.5, and in (c) and (d), v = 0.7. Note that
(d) also corresponds with v = 0.3. The gray region indicates the band gaps.
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For the eigenvalue E+(q) =
∣∣v + wejq

∣∣, we find the eigenvector by solving the following system
of two equations:

(
0 v + we−jq

v + wejq 0

)(
A(+)

B(+)

)
=
∣∣v + wejq

∣∣
(
A(+)

B(+)

)
, (3.61)

which can be rewritten as:

(
v + we−jq

)
B(+) =

∣∣v + wejq
∣∣A(+), (3.62)

(
v + wejq

)
A(+) =

∣∣v + wejq
∣∣B(+). (3.63)

From here, using e.g. Eq. (3.62), we can write:

B(+) = γ

∣∣v + wejq
∣∣

v + we−jq
= γ

∣∣v + wejq
∣∣

|v + we−jq| ejϕ(q) = γe−jϕ(q), (3.64)

A(+) = γ, (3.65)

where ϕ(q) = arg
(
v + we−jq

)
and γ is an unknown constant.

By introducing θ(q) = arg
(
v + wejq

)
= −ϕ(q), the eigenvector can be expressed in the following

form:

X
(+)
+ =

(
A(+)

B(+)

)
= γ

(
1

ejθ(q)

)
. (3.66)

Consequently, it holds that

H(+)X
(+)
+ = E+X

(+)
+ . (3.67)

Analogically, we repeat the described procedure and determine the eigenvector of the eigenvalue
E−(q) = −

∣∣v + wejq
∣∣:

X
(+)
− =

(
A(+)

B(+)

)
= γ

(
1

−ejθ(q)

)
. (3.68)

It can be easily verified that the eigenvectors (3.66) and (3.68) are mutually orthogonal:

(
X

(+)
+

)†
X

(+)
− = 0. (3.69)

Note that we could have equally expressed A(+) from Eq. (3.62) and thus obtaining A(+) =
γe−jθ(q) and B(+) = γ. We would have expressed the found eigenvector as:

X̃
(+)
+ =

(
A(+)

B(+)

)
= γ

(
e−jθ(q)

1

)
, (3.70)

where the following relation holds for the eigenvectors:

X̃
(+)
+ = e−jθ(q)X

(+)
+ . (3.71)

We say that the eigenvector X̃
(+)
+ is obtained through the gauge transformation of the eigenvector

X
(+)
+ . Both of these eigenvectors are of equal quality; in other words, they are interchangeable.
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Analogically, applying the gauge transformation on X
(+)
− yields the eigenvector X̃

(+)
− .

Furthermore, it can be easily verified for the matrix operator H(−) (which is the complex
conjugate to the matrix operator H(+)) that the corresponding eigenvectors are also complex
conjugates of eigenvectors (3.66) and (3.68):

X
(−)
+ =

(
A(−)

B(−)

)
= δ

(
1

e−jθ(q)

)
, (3.72)

X
(−)
− =

(
A(−)

B(−)

)
= δ

(
1

−e−jθ(q)

)
, (3.73)

where δ is an unknown constant. Employing the gauge transformation, we obtain another rep-
resentation of these eigenvectors as follows:

X̃
(−)
± = ejθ(q)X

(−)
± . (3.74)

Assume that E(k) = E+ > 0. Based on Eqs. (3.43), (3.46)-(3.48), (3.66), and (3.72), we can
write:

(
An
Bn

)
=

(
αA

(+)
n + βA

(−)
n

αB
(+)
n + βB

(−)
n

)
= α

(
A

(+)
n

B
(+)
n

)
+ β

(
A

(−)
n

B
(−)
n

)
=

αejnq
(
A(+)

B(+)

)
+ βe−jnq

(
A(−)

B(−)

)
= αγejnq

(
1

ejθ(q)

)
+ βδe−jnq

(
1

e−jθ(q)

)
. (3.75)

Incorporating the constants γ and δ into α and β, we obtain the final desired relation:

(
An
Bn

)
= αejnq

(
1

ejθ(q)

)
+ βe−jnq

(
1

e−jθ(q)

)
, (3.76)

where α and β are complex constants that need to be determined. Additionally, we recall that
θ(q) = arg

(
v + wejq

)
.

Considering a system of semi-infinite length, also the Hermitian matrix (3.32) is semi-infinite.
In order to express it, it is necessary to specify the boundary conditions (Dirichlet and Neumann),
which then determine the behavior of such a system.
The use of semi-infinite systems leads us to consider so-called edge effects, which result in the
formation of edge modes (bound states, localized states). These are also essential in the analysis
of finite systems in Section 3.3.
First, we analyse the situation where E = 0. Consequently, Eqs. (3.29) and (3.30) take the
following form:

vBn + wBn−1 = 0, (3.77)

wAn+1 + vAn = 0. (3.78)

The solution of Eqs. (3.77) and (3.78) can be written as:

Bn = b
(
−w

v

)n
, (3.79)
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An = a
(
− v

w

)n
, (3.80)

where a and b are constants.
In the case of a semi-infinite waveguide we choose the boundary condition such that B0 = 0,
then also Bn = 0. In this case, we consider a solution for An given by Eq. (3.80).
If v < w, then it holds that

lim
n→∞

An = 0, n ≥ 1. (3.81)

From here, we see that there is a localized state located in the left part of the waveguide, where
it gradually attenuates.
For the case where w < v, as n → ∞, we would arrive at a non-physical conclusion (unbounded
solution), hence there is no localized state for the relation w < v.

3.3 Finite Structure

We now consider a finite system with a finite Hermitian matrix (derived from Eq. (3.32)). Also
for the finite case it is necessary to specify the boundary conditions of such a system, because
finite systems (as well as semi-infinite ones) lead to the consideration of boundary effects and
consequently to the existence of edge modes.
We terminate the semi-infinite waveguide from Eqs. (3.79) and (3.80), for instance, at the location
x = xAN+1, where the boundary condition AN+1 = 0 holds. For E = 0, we can also write the
solution to Eq. (3.77) in the following way:

Bn = b
(
− v

w

)N−n
, n ≤ N, (3.82)

while An = 0. The state is now localized in the right part of the waveguide.
Thus, for a finite waveguide, one can express, for E = 0 (more precisely, E ≈ 0 since it repre-
sents the only option to satisfy the finite waveguide conditions), the normalized solution for the
aforementioned two boundary conditions as a linear combination:

P b
n =

1√
2
(An ±Bn) =

√
1−

(
v
w

)2

2

[(
− v

w

)n
±
(
− v

w

)N−n
]
, v < w, (3.83)

where the constants a and b were determined so that the following relation (normalization con-
dition) holds:

∑

n

[(
An√
2

)2

+

(
Bn√
2

)2
]
≈ 1. (3.84)

Note that if n → ∞, then Eq. (3.84) is equal to one.
Edge modes are topologically protected (see e.g. [6, 11]) because they persist under continuous
deformations of the system until the closure of the band gap occurs.

We now express the matrix H+ from Eq. (3.55) in a more compact form. For this purpose,
we rewrite this matrix in the following form:

H+ =

(
0 v + we−jq

v + wejq 0

)
=

(
0 v + w cos(q)− jw sin(q)

v + w cos(q) + jw sin(q) 0

)
. (3.85)
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Utilizing the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −j
j 0

)
, σz =

(
1 0
0 −1

)
, (3.86)

the compact form can be expressed as follows:

H+(q) = h(q) · σ =
(
hx(q), hy(q), hz(q)

)
·
(
σx, σy, σz

)⊺
, (3.87)

where
h(q) =

(
hx(q), hy(q), hz(q)

)
=
(
v + w cos(q), w sin(q), 0

)
. (3.88)

We introduce a complex function:

ĥ(q) = hx(q) + jhy(q) = v + wejq =
∣∣∣ĥ(q)

∣∣∣ ejθ(q) = |h(q)| ejθ(q) =
∣∣v + wejq

∣∣ ejθ(q), (3.89)

where

θ(q) = arg
(
v + wejq

)
= arctan

(
hy(q)

hx(q)

)
. (3.90)

Employing ĥ(q), the matrix H+ can be expressed as:

H+ =

(
0 ĥ∗(q)

ĥ(q) 0

)
. (3.91)

Additionally, it holds that

H− =

(
0 ĥ(q)

ĥ∗(q) 0

)
. (3.92)

The trajectories (circles) of the terminal point of vector h(q) are depicted in Fig. 3.4. Cases
v > w and v < w are not topologically equivalent because it is not possible to transition smoothly
from one case to another, as it would require crossing the state v = w. We refer to the case
v > w as topologically trivial and to the case v < w as topologically non-trivial.

Definition. Let ζ be a closed piecewise smooth curve, and let a point z0 not lie on it:

ζ : [a; b] → C \ z0.

We then define the winding number (winding index) of ζ around z0 as:

N (ζ, z0) =
1

2πj

∫

ζ

dz

z − z0
. (3.93)

The winding number N (ζ, z0) is always a non-negative integer and from a geometric perspective,
it indicates how many times the curve ζ encircles a point z0. For a point lying outside the curve,
the winding number of the point is always equal to zero.
Expressing the curve ζ in polar coordinates, i.e.,

ζ(q) = z0 + r(q)ejθ(q), (3.94)
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wv wv wv

(a) (b) (c)

x xx

y yy

00 0

h(q) h(q)
h(q)θ(q) θ(q) θ(q)

Fig. 3.4: The endpoint trajectory of the vector h(q) located at the origin. Coordinates for dif-
ferent values of v and w (q ∈ [−π;π]): (a) v < w, (b) v = w, (c) v > w.

and utilizing the fact that ζ is a closed curve, i.e., r(a) = r(b), based on the definition, we can
calculate the winding number N (ζ, z0) on the curve ζ around a point z0 as:

N (ζ, z0) =
1

2πj

∫

ζ

dz

z − z0
=

1

2πj

∫ b

a

ζ ′(q)

ζ(q)− z0
dq =

1

2πj

∫ b

a

jr(q)θ′(q)ejθ(q) + r′(q)ejθ(q)

r(q)ejθ(q)
dq =

1

2πj

∫ b

a

[
jθ′(q) +

r′(q)

r(q)

]
dq =

1

2πj

∫ b

a
ln′ [ζ(q)] dq, (3.95)

where the prime denotes the first derivative of a function with respect to q. In the considered
case (see Fig. 3.4), the point z0 is located at the origin of coordinates (z0 = 0), a = −π, b = π,

and ζ ≡ ĥ(q) =
∣∣∣ĥ(q)

∣∣∣ ejq, and thus

N
[
ĥ(q), 0

]
=

1

2πj

∫ π

−π
ln′
[
ĥ(q)

]
dq =

{
1 if v < w,

0 if v > w.
(3.96)

For the case v < w, it always holds that N
(
ĥ, 0
)
= 1, and for the case v > w, it always holds

that N
(
ĥ, 0
)

= 0, see Fig. 3.4. If we have two distinct winding numbers N
(
ĥ, 0
)

for cases

v < w and v > w, it implies the existence of a topological transition for v = w, i.e., there is a
closure of the band gap. Note that the winding number as a criterion for the existence of edge
modes has its limits, as shown in Case (A) later in this section.

As in Chapter 2, we now focus on the analysis of four specific finite acoustic waveguides. Using
the relations derived in this section within the SSH model, we can determine their properties
based on boundary conditions.
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(A) Finite locally periodic symmetric structure with open ends
We consider an open finite acoustic waveguide containing 2N+1 elements, thus resulting in
2N edges, as illustrated in Fig. 3.5. The waveguide begins and ends with an open element
having the cross-section SB. The number of cells (N) affects the density of states; the
larger the value of N , the higher the density of states becomes. Given that the waveguide
is open, the Dirichlet boundary conditions are considered at both ends. Radiative losses
can be neglected, except when dealing with small cross-sectional areas SB.

x

SB

SA

x = 0 ℓ 2ℓ 3ℓ (2N − 1)ℓ 2Nℓ x = (2N + 1)ℓ

B0 = 0 A1 B1 A2 BNAN AN+1 = 0

Fig. 3.5: Open boundary conditions and an even number of edges 2N .

Assuming the boundary conditions, it must hold that

B0 = AN+1 = 0. (3.97)

For the case under consideration, we now compute the eigenmodes of such a waveguide.
Considering specifically the case where N = 5, we utilize the boundary conditions expressed
by Eq. (3.97), then from Eqs. (3.29) and (3.30), we obtain:

vB1 = EA1,

wA2 + vA1 = EB1,

vB2 + wB1 = EA2,

wA3 + vA2 = EB2, (3.98)

...

vA5 = EB5.
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This leads us to the following Hermitian matrix (2N × 2N , that is 10× 10 for N = 5):

HA =




0 v 0 0 0 0 0 0 0 0
v 0 w 0 0 0 0 0 0 0
0 w 0 v 0 0 0 0 0 0
0 0 v 0 w 0 0 0 0 0
0 0 0 w 0 v 0 0 0 0
0 0 0 0 v 0 w 0 0 0
0 0 0 0 0 w 0 v 0 0
0 0 0 0 0 0 v 0 w 0
0 0 0 0 0 0 0 w 0 v
0 0 0 0 0 0 0 0 v 0




, (3.99)

which allows us to formulate the eigenvalue problem as follows:

HAXA = EXA, (3.100)

where

XA = (A1, B1, . . . , A5, B5)
⊺ . (3.101)

The eigenvalues Ei = cos(kiℓ), where ki are the eigen-wave numbers and i = 1, . . . , 2N , are
found as the roots of the following polynomial equation:

det(HA − EI) = 0. (3.102)

The frequency width of the band gap is calculated for q = −π or q = π (the first Brillouin
zone) from Eq. (3.60), we thus obtain:

cos(kℓ) = ±(v − w). (3.103)

Given this, we calculate the lower frequency flb (lower boundary) and the upper frequency
fub (upper boundary) of the band gap as:

flb =
c0 arccos[−(v − w)]

2πℓ
, (3.104)

fub =
c0 arccos[+(v − w)]

2πℓ
. (3.105)

For the width of the band gap, we can write as follows:

∆f = fub − flb. (3.106)

For v = w, it holds that flb = fub, thus ∆f = 0 (resulting in the closure of the band gap).
Using the obtained eigenvalues Ei = cos(kiℓ), the eigenfrequencies fi can also be determined
as:

fi =
c0 arccos(Ei)

2πℓ
. (3.107)
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We assume that E = E+ > 0. We determine the eigenmodes using Eq. (3.76), which we
now restate: (

An
Bn

)
= αejnq

(
1

ejθ(q)

)
+ βe−jnq

(
1

e−jθ(q)

)
, (3.108)

where α and β are complex integration constants that need to be determined. Additionally,
we recall that θ(q) = arg

(
v + wejq

)
. Furthermore, it is also possible to express Eq. (3.108)

using the eigenvectors obtained through the gauge transformation:

(
An
Bn

)
= αejnq

(
e−jθ(q)

1

)
+ βe−jnq

(
ejθ(q)

1

)
. (3.109)

In order to satisfy the boundary condition such that B0 = 0, Eq. (3.109) implies that
α = −β. Following equations can be written:

An = α̃
ej[nq−θ(q)] − e−j[nq−θ(q)]

2j
= α̃ sin [nq − θ(q)] , (3.110)

Bn = α̃
ejnq − e−jnq

2j
= α̃ sin(nq), (3.111)

where α̃ = 2jα.
In order to satisfy the boundary condition such that AN+1 ≡ A6 = 0, we use Eq. (3.110)
and obtain as follows:

sin [(N + 1)q − θ(q)] = 0 =⇒ sin
[
6q − arg

(
v + wejq

)]
= 0. (3.112)

This equation is satisfied only for certain values of q from the interval (−π;π). Since it is an
odd function, it is sufficient to calculate the roots from the interval (0;π), while the roots
in the interval (−π; 0) are negative. The point q = 0 is always a root of the equation. It is
also important to note that the roots of this equation depend on the coupling coefficients
v and w. Furthermore, this method can find only the eigenfrequencies for bulk modes,
whereas by solving Eq. (3.102), we also obtain the eigenfrequencies for edge modes.
For Eq. (3.112) to be satisfied, it must hold that

(N + 1)q − θ(q) = mπ, (3.113)

where m is an integer. Graphically, the solution of Eq. (3.113) for q ∈ (0;π) can be found
by looking for the intersections of the function θ(q) with the following function:

gm(q) = (N + 1)q −mπ. (3.114)

This is shown in Fig. 3.6 for N = 5. From this figure, it is evident that the winding num-
ber determines the existence of bulk (non-localized) modes, and thus the existence of edge
(localized) modes.
It can also be seen that for v > w, θ(π) = 0 and Eq. (3.113) has N solutions, whereas for
v < w, θ(π) = π and this equation has N or N −1 solutions depending on the ratio of v/w.
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0
0

π
2

π

π

m
=
1

m
=
2

m
=
3

m
=
4

m
=
N
=
5

q

gm(q) θ(q), v = 0.3 θ(q), v = 0.49 θ(q), v = 0.7

Fig. 3.6: Determination of the number of bulk modes depending on the value of v.

By comparing the slope of the curves θ(q) and gN (q), we can determine the number of bulk
modes with respect to the critical ratio rc = (v/w)c, which we formulate using Eq. (3.90)
as follows:
(
dθ(q)

dq

)

q=π

=

[
d

dq
arctan

(
hy
hx

)]

q=π

=

[
d

dq
arctan

(
sin(q)/rc

1 + cos(q)/rc

)]

q=π

=
1

1− rc
. (3.115)

This result must be equal to the slope of the line gN (q), i.e.,

1

1− rc
= N + 1. (3.116)

From this, it holds that

rc =
( v
w

)
c
=

N

N + 1
= 1− 1

N + 1
. (3.117)

From Fig. 3.6, we see that for rc < v/w < 1, there exists one more bulk mode for q ∈ (0;π)
than in the case v/w < rc. If we also consider negative values of q, then we must multiply
the number of bulk modes by a factor of two, thus the total number of bulk modes Mt is:

Mt = 2N, for
v

w
> rc, (3.118)

and
Mt = 2(N − 1), for

v

w
< rc. (3.119)
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From this, we can conclude that for N finite, there exist coupling coefficients v and w
such that for rc < v/w < 1 there are no edge modes, even though the winding number is
equal to 1 (in this case, two bulk modes replace two edge modes). With increasing N , the
interval rc < v/w < 1, for which no edge modes exist under the condition v < w, decreases.

Specifically for N = 5, the critical ratio rc = (v/w)c formulated in Eq. (3.117) is given as
follows:

rc =
5

6
= 0.83. (3.120)

Since the coupling coefficient v = 0.3, it holds that v/w = 3
7 and therefore v/w < rc < 1.

From Fig. 3.6, we see that for v = 0.3, there exists no more bulk mode for q ∈ (0;π). We
thus obtain Mt = 2(N − 1) = 8 as stated in Eq. (3.119).
Considering N = 5 and v = 0.49, we find that rc < v/w = 49

51
.
= 0.96 < 1, leading us to the

other case where Mt = 2N = 10 expressed in Eq. (3.118). This results in all eigenmodes
lying outside of the band gap, which in turn yields two additional bulk modes and no edge
modes.

43



3.3. FINITE STRUCTURE

(B) Finite locally periodic symmetric structure with closed ends
We now assume the same finite locally periodic structure as in Case (A). This time, it is
terminated on both ends with a perfectly rigid wall, see Fig. 3.7. This results in the acoustic
velocity being zero at the location of the perfectly rigid wall, or as derived from the Euler’s

equation, P ′
(
xB

+

0

)
= 0 and P ′

(
xA

−
N+1

)
= 0 (the Neumann boundary conditions).

x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 1)ℓ 2Nℓ x = (2N + 1)ℓ

P ′
(
xB

+

0

)
= 0

A1 B1 A2 BNAN
P ′
(
xA

−
N+1

)
= 0

Fig. 3.7: Closed boundary conditions and an even number of edges 2N .

For an element with the cross-sectional area SB located in the interval x ∈
(
xBn−1;x

A
n

)
, we

can express the solution of the Helmholtz equation (2.5) as:

P (x) = C1 sin
[
k
(
x− xAn

)]
+ C2 cos

[
k
(
x− xAn

)]
, (3.121)

where C1 and C2 are integration constants that we need to determine.
The derivative of this solution with respect to the variable x is obtained as:

dP (x)

dx
≡ P ′ (x) = C1k cos

[
k
(
x− xAn

)]
− C2k sin

[
k
(
x− xAn

)]
. (3.122)

The integration constant C2 is determined from Eq. (3.121) as follows:

P
(
xAn
)
= C2, (3.123)

and the integration constant C1 is determined from Eq. (3.122):

P ′
(
xA

−
n

)
= C1k =⇒ C1 =

P ′
(
xA

−
n

)

k
. (3.124)

Substituting for the integration constants C1 and C2 in Eq. (3.121), we obtain:

P (x) =
P ′
(
xA

−
n

)

k
sin
[
k
(
x− xAn

)]
+ P

(
xAn
)
cos
[
k
(
x− xAn

)]
. (3.125)

44



CHAPTER 3. ONE-DIMENSIONAL SU-SCHRIEFFER-HEEGER (SSH) MODEL

Solving Eq. (3.125) at x = xBn−1, we thus obtain as follows:

P
(
xBn−1

)
=

P ′
(
xA

−
n

)

k
sin
[
k
(
xBn−1 − xAn

)]
+ P

(
xAn
)
cos
[
k
(
xBn−1 − xAn

)]
. (3.126)

Since xBn−1 − xAn = −ℓ, we rewrite Eq. (3.126) in the following form:

P
(
xBn−1

)
=

P ′
(
xA

−
n

)

k
sin (−kℓ) + P

(
xAn
)
cos (−kℓ) . (3.127)

Because the sine function is an odd function and the cosine function is an even function,
Eq. (3.127) can be rewritten in its final form as:

P
(
xBn−1

)
= −

P ′
(
xA

−
n

)

k
sin (kℓ) + P

(
xAn
)
cos (kℓ) . (3.128)

In a similar manner, we extend the procedure to the subsequent element concerning the
cross-sectional area SB where x ∈

(
xBn ;x

A
n+1

)
:

P (x) = C3 sin
[
k
(
x− xBn

)]
+ C4 cos

[
k
(
x− xBn

)]
, (3.129)

where C3 and C4 are integration constants.
Taking the derivative of Eq. (3.129) with respect to the variable x, we obtain:

P ′(x) = C3k cos
[
k
(
x− xBn

)]
− C4k sin

[
k
(
x− xBn

)]
. (3.130)

The integration constant C4 is determined from Eq. (3.129):

P
(
xBn
)
= C4, (3.131)

and the integration constant C3 is determined from Eq. (3.130) as follows:

P ′
(
xB

+

n

)
= C3k =⇒ C3 =

P ′
(
xB

+

n

)

k
. (3.132)

Substituting for C3 and C4 in Eq. (3.129), we obtain the solution for the corresponding
element:

P (x) =
P ′
(
xB

+

n

)

k
sin
[
k
(
x− xBn

)]
+ P

(
xBn
)
cos
[
k
(
x− xBn

)]
. (3.133)

Solving Eq. (3.133) at x = xAn+1, we obtain as follows:

P
(
xAn+1

)
=

P ′
(
xB

+

n

)

k
sin
[
k
(
xAn+1 − xBn

)]
+ P

(
xAn
)
cos
[
k
(
xAn+1 − xBn

)]
. (3.134)

Since xAn+1 − xBn = ℓ, we rewrite Eq. (3.134) in the following form:

P (xAn+1) =
P ′(xB

+

n )

k
sin(kℓ) + P (xBn ) cos(kℓ). (3.135)
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Based on Eq. (3.135), we can write that

A1 = cos(kℓ)B0 ≡ E(k)B0, (3.136)

and based on Eq. (3.128), we get that

BN = cos(kℓ)AN+1 ≡ E(k)AN+1. (3.137)

Using Eqs. (3.136) and (3.137) and the SSH model expressed by Eqs. (3.29) and (3.30),
we can write for N = 5:

A1 = EB0,

wB0 + vB1 = EA1,

wA2 + vA1 = EB1,

vB2 + wB1 = EA2,

vA2 + wA3 = EB2, (3.138)

...

vA5 + wA6 = EB5,

B5 = EA6.

This leads us to the following matrix ((2N + 2)× (2N + 2), that is 12× 12 for N = 5):

HB =




0 1 0 0 0 0 0 0 0 0 0 0
w 0 v 0 0 0 0 0 0 0 0 0
0 v 0 w 0 0 0 0 0 0 0 0
0 0 w 0 v 0 0 0 0 0 0 0
0 0 0 v 0 w 0 0 0 0 0 0
0 0 0 0 w 0 v 0 0 0 0 0
0 0 0 0 0 v 0 w 0 0 0 0
0 0 0 0 0 0 w 0 v 0 0 0
0 0 0 0 0 0 0 v 0 w 0 0
0 0 0 0 0 0 0 0 w 0 v 0
0 0 0 0 0 0 0 0 0 v 0 w
0 0 0 0 0 0 0 0 0 0 1 0




. (3.139)

Given that matrix HB is not symmetric (HB ̸= H⊺
B), this case does not constitute a

Hermitian matrix. The eigenvalue problem is then formulated as follows:

HBXB = EXB, (3.140)

where
XB = (B0, A1, B1, . . . , A5, B5, A6)

⊺. (3.141)

The eigenvalues Ei = cos(kiℓ) (there is a total of 2N+2) are found as roots of the following
polynomial equation:

det(HB − EI) = 0. (3.142)
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Then the eigenmodes are calculated according to Eq. (3.107).
Also for this case, we can find the eigenmodes using the approach that in Case (A) is based
on Eq. (3.109), but now we consider the Neumann boundary conditions (more is solved in
this way for the antisymmetric closed structure later in this section in Case (D)). It turns
out that for this finite locally periodic structure with closed ends, the determination of the
eigenmodes is analogous to Case (A), but with a substitution of v ↔ w. This is evident
from the results presented in Chapter 4, which are consistent with the TMM approach (see
e.g. Figs. 4.1(A) and (B)).
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(C) Finite locally periodic antisymmetric structure with open ends
Next, we consider an open finite acoustic waveguide, containing 2N elements and thus
2N − 1 edges, see Fig. 3.8. In contrast to the previous type discussed in Cases (A) and
(B), it starts with an open element of the cross-section SB and ends with an open element
of SA. Since the waveguide is open, we consider the Dirichlet boundary conditions at both
ends (radiative losses can be neglected unless we consider small cross-sectional areas SB).

x

SB

SA

x = 0 ℓ 2ℓ 3ℓ (2N − 2)ℓ (2N − 1)ℓ x = 2Nℓ

B0 = 0 A1 B1 A2 ANBN−1 BN = 0

Fig. 3.8: Open boundary conditions and an odd number of edges 2N − 1.

Assuming the aforementioned boundary conditions, then it must hold that

B0 = BN = 0. (3.143)

For the case under consideration, we compute the eigenmodes of such a waveguide.
Considering specifically the case where N = 5, we utilize the conditions expressed in
Eq. (3.143). From Eqs. (3.29) and (3.30), we then obtain:

vB1 = EA1,

wA2 + vA1 = EB1,

vB2 + wB1 = EA2,

wA3 + vA2 = EB2, (3.144)

...

wB4 = EA5.

This leads us to the following Hermitian matrix ((2N − 1) × (2N − 1), that is 9 × 9 for
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N = 5):

HC =




0 v 0 0 0 0 0 0 0
v 0 w 0 0 0 0 0 0
0 w 0 v 0 0 0 0 0
0 0 v 0 w 0 0 0 0
0 0 0 w 0 v 0 0 0
0 0 0 0 v 0 w 0 0
0 0 0 0 0 w 0 v 0
0 0 0 0 0 0 v 0 w
0 0 0 0 0 0 0 w 0




, (3.145)

which allows us to formulate the eigenvalue problem as follows:

HCXC = EXC, (3.146)

where
XC = (A1, B1, . . . , A5)

⊺ . (3.147)

The eigenvalues Ei = cos(kiℓ) (i = 1, . . . , 2N − 1) are found as the roots of the following
polynomial equation:

det(HC − EI) = 0. (3.148)

We assume that E = E+ > 0. We determine the eigenmodes analogously to Case (A)
using Eqs. (3.108) and (3.109).
In order to satisfy the boundary condition such that B0 = 0, Eq. (3.109) implies that
α = −β. From Eq. (3.109), we thus obtain Eqs. (3.110) and (3.111).
In order to satisfy the boundary condition such that BN ≡ B5 = 0, from Eq. (3.111), we
then obtain the following equation:

sin (Nq) = 0 =⇒ sin (5q) = 0. (3.149)

This equation is satisfied only for certain values of q from the interval (−π;π). The point
q = 0 is always a root of the equation. In this case, the roots do not depend on the coupling
coefficients v or w. Again, this method can find only the eigenfrequencies for bulk modes,
whereas by solving Eq. (3.148), we also obtain the eigenfrequencies for edge modes.
For Eq. (3.149) to be satisfied, it must hold that

Nq = mπ, (3.150)

where m is an integer.
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(D) Finite locally periodic antisymmetric structure with closed ends
We now assume the acoustic waveguide (finite locally periodic structure) as in Case (C),
but on both ends there is a perfectly rigid wall terminating the structure (see Fig. 3.9),

resulting in the Neumann boundary conditions: P ′
(
xB

+

0

)
= 0 and P ′

(
xB

−
N

)
= 0.

x

SB
SA

x = 0 ℓ 2ℓ 3ℓ (2N − 2)ℓ (2N − 1)ℓ x = 2Nℓ

P ′
(
xB

+

0

)
= 0

A1 B1 A2 ANBN−1
P ′
(
xB

−
N

)
= 0

Fig. 3.9: Closed boundary conditions and an odd number of edges 2N − 1.

For an element with the cross-sectional area SA lying in the interval of x ∈
(
xAn ;x

B
n

)
(as

depicted in Fig. 3.2), we can express the solution of the Helmholtz equation (2.5) as:

P (x) = C5 sin
[
k
(
x− xBn

)]
+ C6 cos

[
k
(
x− xBn

)]
, (3.151)

where C5 and C6 are integration constants.
Taking the derivative of Eq. (3.151) with respect to the variable x, we obtain:

P ′(x) = C5k cos
[
k
(
x− xBn

)]
− C6k sin

[
k
(
x− xBn

)]
. (3.152)

The integration constant C6 is determined from Eq. (3.151) as follows:

P
(
xBn
)
= C6, (3.153)

and C5 is determined from Eq. (3.152):

P ′
(
xB

−
n

)
= C5k =⇒ C5 =

P ′
(
xB

−
n

)

k
. (3.154)

Substituting for C5 and C6 in Eq. (3.151), we obtain:

P (x) =
P ′
(
xB

−
n

)

k
sin
[
k
(
x− xBn

)]
+ P

(
xBn
)
cos
[
k
(
x− xBn

)]
. (3.155)

We note that solutions (3.155) and (3.133) are identical at x = xBn .
Solving Eq. (3.155) at x = xAn , we thus obtain as follows:

P
(
xAn
)
=

P ′
(
xB

−
n

)

k
sin
[
k
(
xAn − xBn

)]
+ P

(
xAn
)
cos
[
k
(
xAn − xBn

)]
. (3.156)
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Since xAn − xBn = −ℓ, we rewrite Eq. (3.156) in the following form:

P
(
xAn
)
= −

P ′
(
xB

−
n

)

k
sin(kℓ) + P

(
xBn
)
cos(kℓ). (3.157)

Based on Eq. (3.135), we can write that

A1 = cos(kℓ)B0 ≡ E(k)B0, (3.158)

and based on Eq. (3.157), we get that

AN = cos(kℓ)BN ≡ E(k)BN . (3.159)

Using Eqs. (3.158) and (3.159) and the SSH model expressed by Eqs. (3.29) and (3.30),
we can write for N = 5:

A1 = EB0,

wB0 + vB1 = EA1,

wA2 + vA1 = EB1,

vB2 + wB1 = EA2,

vA2 + wA3 = EB2, (3.160)

...

wB4 + vB5 = EA5,

A5 = EB5.

This leads us to the following matrix ((2N + 1)× (2N + 1), that is 11× 11 for N = 5):

HD =




0 1 0 0 0 0 0 0 0 0 0
w 0 v 0 0 0 0 0 0 0 0
0 v 0 w 0 0 0 0 0 0 0
0 0 w 0 v 0 0 0 0 0 0
0 0 0 v 0 w 0 0 0 0 0
0 0 0 0 w 0 v 0 0 0 0
0 0 0 0 0 v 0 w 0 0 0
0 0 0 0 0 0 w 0 v 0 0
0 0 0 0 0 0 0 v 0 w 0
0 0 0 0 0 0 0 0 w 0 v
0 0 0 0 0 0 0 0 0 1 0




. (3.161)

Given that matrix HD is not symmetric (HD ̸= H⊺
D), this case does not constitute a

Hermitian matrix. The eigenvalue problem can again be written as:

HDXD = EXD, (3.162)

where
XD = (B0, A1, B1, . . . , A5, B5)

⊺. (3.163)
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The eigenvalues Ei = cos(kiℓ) (there is a total of 2N+1) are found as roots of the following
polynomial equation:

det(HD − EI) = 0. (3.164)

Then the eigenfrequencies (including edge modes) are calculated according to Eq. (3.107).
One of the eigenvalues of this structure is equal to zero, i.e., cos(kℓ) = 0. From here we
get the eigenfrequency fe corresponding to the edge mode:

fe =
c0 arccos(0)

2πℓ
=

c0
4ℓ

, (3.165)

which is equal to the first resonance frequency of a quarter-wave resonator of length ℓ.
It holds that E = 0 for fe, so the solutions of Eqs. (3.77) and (3.78) can be written (see
Eq. (3.80)) as: (

An
Bn

)
= b

(
0
1

)(
−w

v

)n
, w > v, n = 0, 1, . . . , N, (3.166)

where b is a normalization constant. Since A0 = 0, then An = 0 as well.
The eigenfrequencies of the bulk modes can also be obtained from Eq. (3.109), if we consider
that at the point x = xB0 the acoustic pressure is non-zero (B0 ̸= 0), in contrast to the
acoustic velocity, and represents an antinode at this point. Then Eq. (3.109) for n = 0
shows that

α+ β = B0 =⇒ β = B0 − α. (3.167)

Similarly, for x = xBN , where the acoustic velocity is also zero, the acoustic pressure must
be BN ̸= 0 and is represented by an antinode. Thus, from Eq. (3.109), given Eq. (3.167),
we get for n = N that

BN = αejNq + (B0 − α)e−jNq. (3.168)

We modify this equation into the following form:

BN = α̃ sin(Nq) +B0 cos(Nq)− jB0 sin(Nq), (3.169)

where α̃ = j2α.
Since the acoustic pressures B0 and BN represent real values, Eq. (3.169) can be satisfied
if the following condition is satisfied:

sin(Nq) = 0 or cos(Nq) = ±1. (3.170)

By substituting this condition into Eq. (3.169), we obtain:

BN = B0 cos(Nq). (3.171)

Considering the condition (3.170), it follows that BN = ±B0 and bulk modes are either
symmetric or antisymmetric. The value of N , which refers to the number of edges in the
waveguide, i.e., 2N +1, and the value of the dimensionless Bloch wave number q ∈ (−π;π)
decide which sign to use. That means, it must hold that

Nq = mπ, (3.172)
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where m is an integer.
The condition that the acoustic pressures B0 and BN must be real can also be satisfied
when

jB0 = α̃ = j2α =⇒ B0 = 2α, (3.173)

see Eq. (3.169). From this result, and considering Eq. (3.167), it follows that in this case
α = β, where these are real values. If we substitute jB0 = α̃ into Eq. (3.169), then we
obtain as follows:

BN = 2α cos(Nq) = B0 cos(Nq). (3.174)

We note that the results expressed in Eqs. (3.171) and (3.174) are identical.
For BN to represent an antinode, it must hold that cos(Nq) = ±1, so we arrive at the same
result as when applying the condition (3.170).
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Chapter 4

Calculation of Eigenmodes of Specific Acoustic Waveg-

uides

In Chapters 2 and 3, we delved into the analysis of resonant and transmission properties of
locally periodic binary structures, employing the Transfer Matrix Method (TMM) and the
one-dimensional Su-Schrieffer-Heeger (SSH) model, respectively. We illustrated these meth-
ods through specific acoustic waveguides, showcasing functional dependencies and relationships.
While both the TMM and the SSH model approaches helped us express the eigenmodes, they
represent fundamentally different analytical methods. In this chapter, we focus on the calculation
of the numerical values of the bulk and edge modes. We use the TMM as a reference to validate
the frequency property calculations derived from the SSH model, offering a deeper comparative
analysis and insights into their respective utilities and limitations (more details in Chapter 5).

We categorize our calculations into four distinct special cases, similar to the approach in the
previous text (as demonstrated in Fig. 2.6). Each case represents a unique structure, defined
by its specific boundary conditions. Obtained relationships enable us to determine the eigen-
frequencies, their number, and the characteristics of the band gaps. For illustration, we choose
the previously used acoustic waveguide parameters in all four cases, see Tab. 4.1. All numerical
values for the calculated eigenfrequencies presented in the tables below are rounded to two deci-
mal places. However, more accurate values can be obtained by using the scripts attached to this
thesis. A list of these is provided in Appendix A.
Using Eqs. (3.104) and (3.105), we calculate the frequency boundaries of the band gap, from
which we can easily obtain its width by substituting the values of the considered structure into
Eq. (3.106). The results are presented in Tab. 4.2. The eigenmodes falling within the band gap
frequency interval are then recognised as edge modes and are marked as such in the tables of
results.

Parameter Symbol Value

Number of cells N 5

Coupling coefficient v 0.3

Coupling coefficient w 0.7

Element length ℓ 0.05 m

Speed of acoustic wave propagation c0 343 ms−1

Frequency range f [0; 3,430] Hz

Tab. 4.1: Parameters for the analysed locally periodic structures.
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Lower band gap frequency flb

flb = 1,265.70 Hz

Upper band gap frequency fub

fub = 2,164.30 Hz

Band gap width ∆f

∆f = 898.59 Hz

Tab. 4.2: Calculation of the band gap frequency properties for v = 0.3.

(A) Finite locally periodic symmetric structure with open ends
We start with the case of the symmetric structure shown in Fig. 2.6(A). Using Eq. (3.107),
eigenmodes of the considered waveguide can be calculated. The values found correspond
to the roots of the function ν(f) as expressed in Eq. (2.70) using the TMM. We note that
in this case, f11 = 3,430 Hz (as shown in Fig. 2.7(A)) cannot be obtained using the SSH
approach introduced in Chapter 3.

(B) Finite locally periodic symmetric structure with closed ends
Considering the symmetric structure with closed ends as shown in Fig. 2.6(B), we use
Eq. (3.107) again to calculate the eigenmodes. Also in this case, the values found correspond
to the result obtained from the TMM, e.g. roots of the function φ(f) from Eq. (2.79). We
note that in this case, fB

12 = 3,430 Hz and also fB
1 = 0 Hz are both obtained using the SSH

approach introduced in Chapter 3.

Eigenmode frequency fA
i Mode type

fA
1 = 296.14 Hz Bulk

fA
2 = 589.28 Hz Bulk

fA
3 = 873.61 Hz Bulk

fA
4 = 1,130.11 Hz Bulk

fA
5 = 1,705.97 Hz Edge

fA
6 = 1,724.03 Hz Edge

fA
7 = 2,299.89 Hz Bulk

fA
8 = 2,556.39 Hz Bulk

fA
9 = 2,840.72 Hz Bulk

fA
10 = 3,133.86 Hz Bulk

Tab. 4.3: The eigenmodes for Case (A).

Eigenmode frequency fB
i Mode type

fB
1 = 0.00 Hz Bulk

fB
2 = 275.00 Hz Bulk

fB
3 = 544.82 Hz Bulk

fB
4 = 801.75 Hz Bulk

fB
5 = 1,030.60 Hz Bulk

fB
6 = 1,200.58 Hz Bulk

fB
7 = 2,229.42 Hz Bulk

fB
8 = 2,399.40 Hz Bulk

fB
9 = 2,628.25 Hz Bulk

fB
10 = 2,885.18 Hz Bulk

fB
11 = 3,155.02 Hz Bulk

fB
12 = 3,430.00 Hz Bulk

Tab. 4.4: The eigenmodes for Case (B).
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(C) Finite locally periodic antisymmetric structure with open ends
For Case (C), the waveguide is shown in Fig. 2.6(C). The eigenmodes are calculated using
Eq. (3.148) and Eq. (3.107), and presented in Tab. 4.5. Compared to the results calculated
as the roots of η(f) from Eq. (2.62) (see also Fig. 2.5(a)), even in Case (C), the SSH model
does not yield the value of f10 = 3,430 Hz.

(D) Finite locally periodic antisymmetric structure with closed ends
The waveguide corresponding to Case (D) is shown in Fig. 2.6(D). The eigenmodes are
calculated using Eq. (3.164) and Eq. (3.107), and listed in Tab. 4.6. Compared to the
results calculated in Case (C), the SSH approach now yields two more values: fD

1 = 0 Hz
and fD

11 = 3,430 Hz. Note that fD
11 corresponds to f10 obtained as a root of η(f) from

Eq. (2.62).

Eigenmode frequency fC
i Mode type

fC
1 = 313.51 Hz Bulk

fC
2 = 621.14 Hz Bulk

fC
3 = 911.95 Hz Bulk

fC
4 = 1,155.75 Hz Bulk

fC
5 = 1,715.00 Hz Edge

fC
6 = 2,274.24 Hz Bulk

fC
7 = 2,518.05 Hz Bulk

fC
8 = 2,808.86 Hz Bulk

fC
9 = 3,116.49 Hz Bulk

Tab. 4.5: The eigenmodes for Case (C).

Eigenmode frequency fD
i Mode type

fD
1 = 0.00 Hz Bulk

fD
2 = 313.51 Hz Bulk

fD
3 = 621.14 Hz Bulk

fD
4 = 911.95 Hz Bulk

fD
5 = 1,155.75 Hz Bulk

fD
6 = 1,715.00 Hz Edge

fD
7 = 2,274.24 Hz Bulk

fD
8 = 2,518.05 Hz Bulk

fD
9 = 2,808.86 Hz Bulk

fD
10 = 3,116.49 Hz Bulk

fD
11 = 3,430.00 Hz Bulk

Tab. 4.6: The eigenmodes for Case (D).

The existence of eigenmodes for all four cases is shown in Fig. 4.1. Note that as the value of the
coupling coefficient v varies, the number of edge modes changes in addition to the value of the
eigenenergies, for Cases (A) and (B). Here, there is a transition between bulk and edge modes
(and this is where the colour changes). In Cases (C) and (D), the eigenmode marked in red
represents an edge mode for all values of v. It is also worth noting that the number of eigenmodes
is different in each case, which is related to the number of solutions shown in Tabs. 4.3-4.6. In
Fig. 4.1, these solutions are represented by cross marks. The band gap boundaries (dashed lines)
from Eq. (3.103) delimit the band gap and thus the eigenenergy region of the edge modes.
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Fig. 4.1: Representation of the existence of eigenmodes through the eigenenergies depending on
the value of the coefficient v ∈ [0; 1]. Each curve corresponds to one eigenmode. The
edge modes are marked in red. The cross marks correspond to the values calculated in
Tabs. 4.3-4.6 and the gray region indicates eigenenergies falling within the band gap.
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With the help of the SSH model, we can also easily determine the acoustic pressure amplitudes
at discrete positions (in our case, at the edges) of the locally periodic structures. Fig. 4.2 shows
the results for the edge mode pressures for Cases (A), (C), and (D) according to Eqs. (3.98),
(3.144), and (3.160). In Fig. 4.2(Aa), the first edge mode for Case (A) is plotted (with antisym-
metric amplitudes of pressure) and in (Ab), the second edge mode is plotted (with symmetric
amplitudes of pressure). Fig. 4.2(C) and (D) show the results for a single edge mode.
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Fig. 4.2: Amplitudes of normalized acoustic pressure for the edge modes at discrete positions
of the considered acoustic waveguides are shown. Two edge modes from Case (A)
correspond to (Aa) and (Ab), and Cases (C) and (D) to (C) and (D), respectively.
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Chapter 5

Discussion

In the context of the thesis, the impact of boundary conditions on the existence of edge modes
was clearly demonstrated. We have shown the application of the one-dimensional discrete SSH
model to locally periodic structures with different terminations and also depending on the vari-
able ratio of the cross-sectional areas of alternating elements.
The TMM, a traditionally used approach, helped us verify the frequency and transmission prop-
erties of acoustic waveguides obtained in the SSH analysis. However, using the transfer matrix
for more complex systems requires a more complex adaptation, both for assembling the matrix
itself and for calculating the roots of functional expressions that arise from the boundary condi-
tions.
The SSH model, a more versatile approach not widely used in acoustics, remains unchanged
with different waveguide structures, allowing edge modes to be predicted in this manner. An
advantage of the SSH model is also its easier scalability to 2D cases [23]. It turns out that the
approach using the SSH model is much easier for calculating eigenfrequencies and also ampli-
tudes of acoustic pressure at discrete positions of the considered waveguides based on boundary
conditions, unlike the TMM. The SSH model also provides more information about whether edge
modes can occur in the given structure.
The existence of edge modes was experimentally confirmed (as presented in [11]), with analytical
calculations, experiments, and simulations showing good agreement. The article further demon-
strated the topological robustness against disorders, also verified experimentally. According to
the authors, these findings apply to the 2D case as well [23].
With increasing frequency within the plane wave approximation, discrepancies arise in locations
with step changes in cross-section (again, see [11]), leading to deviations where the approxima-
tion no longer holds, and the waves are not plane. This primarily concerns higher frequencies
(from half of the interval f ∈ (0; fc)). For lower frequencies (from the first half of the mentioned
interval), the approximation is satisfactory. However, in cases where v ≈ 0.5 (near the point
where the bandgap closes), the approximation is very suitable, and for v = w, it aligns with
theory.

As demonstrated in the previous chapters, edge modes appear in finite (locally periodic)
structures; however, their existence also depends on the ratio of the coupling coefficients v and w
in some cases (this is clearly illustrated in Fig. 4.1). In the previous chapters, we focused exclu-
sively on waveguides with symmetric boundary conditions, meaning that both ends were either
open or closed (always starting with a cross-sectional area denoted by SB). It is also possible
to analyse antisymmetric terminations of structures (i.e., partially open waveguides), but these
cases are not detailed in this thesis because of its required extent. However, in Tab. 5.1, we show
how the symmetry of the structure itself and the symmetry of the boundary conditions relate to
the existence of eigenmodes, depending on the ratio of the coupling coefficients. Note that even
within the interval v < w or v > w, the number of edge modes can vary. This is demonstrated,

61



for instance, in Case (A) in Section 3.3 and also in Figs. 4.1(A) and (B).
The values in Tab. 5.1 are based on the calculations from Chapter 4, using the same waveguide
parameters as those listed in Tab. 4.1.

Waveguide Waveguide Boundary Conditions Edge Modes Number

Case Symmetry (Left End, Right End) for v < w for v > w

(A) Symmetric Open, Open 2 or 0 0

(B) Symmetric Closed, Closed 0 0 or 2

(C) Antisymmetric Open, Open 1 1

(D) Antisymmetric Closed, Closed 1 1

- Symmetric Open, Closed 1 1

- Symmetric Closed, Open 1 1

- Antisymmetric Open, Closed 2 or 0 0

- Antisymmetric Closed, Open 0 0 or 2

Tab. 5.1: The relationship between symmetric and antisymmetric configurations of the boundary
conditions and the existence of eigenmodes based on the ratio of the coupling coeffi-
cients v and w for specific acoustic waveguides.
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Chapter 6

Conclusion

In this thesis, we focused on investigating the resonant, dispersive, and transmission properties
of selected locally periodic binary acoustic waveguides. We also discussed the significance of
the Bloch-Floquet theory and selected concepts from topological acoustics. The analysis was
conducted using the TMM and the one-dimensional SSH model, which became an alternative
approach not typically used in acoustics. Comparing both methods allowed us to evaluate the
results for the studied finite locally periodic structures with specific boundary conditions crucial
for the existence of edge modes. In several cases, we performed an analysis of eigenmodes and
then calculated numerical values for the waveguides with selected parameters. In Discussion,
we commented on the contributions and shortcomings of each method as well as placing the
issues studied in a broader context with reference to further scientific work. Selected symbolic
derivations and numerical calculations using Maple software were also included as an attachment
to this thesis.
All the requirements of the bachelor’s thesis have been met.
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[6] J. K. Asbóth, L. Oroszlány, and A. Pályi. A Short Course on Topological Insulators:
Band-structure topology and edge states in one and two dimensions. arXiv, 2015. ISBN
9783319256054.

[7] G. Ma, M. Xiao, and C. T. Chan. Topological phases in acoustic and mechanical
systems. Nature Reviews Physics, 1(4):281–294, March 2019. ISSN 2522-5820. doi:
10.1038/s42254-019-0030-x.

[8] P. Markos and C. M. Soukoulis. Wave Propagation: From Electrons to Photonic Crystals
and Left-Handed Materials. Princeton University Press, 2008. ISBN 9780691130033.

[9] Z. Fu, N. Fu, H. Zhang, Z. Wang, D. Zhao, and S. Ke. Extended SSH Model in Non-
Hermitian Waveguides with Alternating Real and Imaginary Couplings. Applied Sciences,
10(10):3425, May 2020. ISSN 2076-3417. doi: 10.3390/app10103425.

[10] Y.-X. Shen, L.-S. Zeng, Z.-G. Geng, D.-G. Zhao, Y.-G. Peng, and X.-F. Zhu. Acoustic Adi-
abatic Propagation Based on Topological Pumping in a Coupled Multicavity Chain Lattice.
Physical Review Applied, 14(1), July 2020. ISSN 2331-7019. doi: 10.1103/physrevapplied.
14.014043.

[11] A. Coutant, A. Sivadon, L. Zheng, V. Achilleos, O. Richoux, G. Theocharis, and V. Pagneux.
Acoustic Su-Schrieffer-Heeger lattice: Direct mapping of acoustic waveguides to the Su-
Schrieffer-Heeger model. Physical Review B, 103(22), June 2021. ISSN 2469-9969. doi:
10.1103/physrevb.103.224309.

65



BIBLIOGRAPHY

[12] X. Huang, J. Lu, W. Deng, and Z. Liu. Topological materials for elastic wave in con-
tinuum. Acta Mechanica Sinica, 39(7), June 2023. ISSN 1614-3116. doi: 10.1007/
s10409-023-23041-x.

[13] H. Jiang, W. Liu, J. Xu, B. Gao, C. Zhu, S. Xie, and Y. Yang. Topological edge modes in
one-dimensional photonic crystals containing metal. OSA Continuum, 4(5):1626, May 2021.
ISSN 2578-7519. doi: 10.1364/osac.416906.

[14] L. Thatcher, P. Fairfield, L. Merlo-Ramı́rez, and J. M. Merlo. Experimental observation of
topological phase transitions in a mechanical 1D-SSH model. Physica Scripta, 97(3):035702,
February 2022. ISSN 1402-4896. doi: 10.1088/1402-4896/ac4ed2.

[15] K. Yatsugi, T. Yoshida, T. Mizoguchi, Y. Kuno, H. Iizuka, Y. Tadokoro, and Y. Hat-
sugai. Observation of bulk-edge correspondence in topological pumping based on a tun-
able electric circuit. Communications Physics, 5(1), July 2022. ISSN 2399-3650. doi:
10.1038/s42005-022-00957-5.

[16] S. M. Kuznetsova, J.-P. Groby, L. M. Garćıa-Raffi, and V. Romero-Garćıa. Localized in-
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Appendix A

Attached CD Contents

The following scripts contain selected symbolic derivations of the theoretical relationships pre-
sented in this thesis, as well as some of the numerical calculations. These files can be used for
verification or subsequent related work:

� tmm_derivations.mw for Chapter 2,

� tmm_calculations.mw for Chapters 2 and 4,

� ssh_derivations.mw for Chapter 3,

� ssh_calculations.mw for Chapters 3 and 4.

An electronic version of this bachelor’s thesis is also attached:

� thesis_body.pdf.
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