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Abstract

Path planning in robotics plays a criti-
cal role in enabling autonomous systems
to navigate in complex environments ef-
ficiently. This project focuses on enhanc-
ing traditional sampling-based path plan-
ning methods, such as Rapidly-exploring
Random Trees (RRT) and RRT*, by inte-
grating machine learning techniques. The
objective is to improve the efficiency and
adaptability of path planning algorithms
through the utilization of learned infor-
mation about the environment.

To validate the efficacy of the proposed
approach, comparisons were conducted
against existing methods. Through exper-
imentation and analysis, the performance
and adaptability of the developed algo-
rithms were assessed, highlighting their
potential to outperform traditional tech-
niques and contribute to the field of path
planning.
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Abstrakt

Planovani cest v robotice hraje kritic-
kou roli pfi umoznovani autonomnim
systémum efektivné navigovat slozitymi
prostfedimi. Tento projekt se zaméruje
na zlepseni tradi¢nich metod pldnovani
cest zalozenych na vzorkovani, jako jsou
Rapidly-exploring Random Trees (RRT)
a RRT*, prostfednictvim integrovani tech-
nik strojového uceni. Cilem je zlepsit efek-
tivitu a prizpusobivost algoritmu plano-
vani cest vyuzitim informaci o prostredi
ziskanych ze strojového uceni.

Pro ovéreni uc¢innosti navrzeného pri-
stupu byly provedeny srovnani s existuji-
cimi metodami. Skrz experimentovani a
analyzu byly zhodnoceny vykonnost a pfi-
zpusobivost vyvinutych algoritmi, které
zduaraznily jejich potencidl prekonat tra-
di¢ni techniky a prispét k oblasti plano-
vani cest.

Klicova slova: Optimalizace planovani
cest, Zlepseni metod zalozenych na
vzorkovani, Algoritmy RRT a RRT*,
Adaptace na prostiedi, Planovani
zalozené na uceni, Strojové uceni

Pteklad nazvu: Vyuziti strojového
ucéeni v tloze planovani pohybu
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Chapter 1

Introduction

Path planning is a fundamental challenge in the field of robotics, essential
for enabling autonomous systems to navigate through complex environments
efficiently. It allows vehicles or robots to find the shortest, obstacle-free route
from their starting point to their destination. This route, often represented as
a series of states comprising position and orientation or as waypoints, guides
the vehicle or robot towards its goal effectively. One of the famous examples
is the Piano Movers Problem. Path planning involves determining the optimal
route or path for transporting a piano from one location to another while
navigating through various obstacles and constraints. In Figure [1.1a) the
illustration of the Piano Movers Problem is depicted.

Traditional path planning methods, such as Rapidly-exploring Random Trees
(RRT) [I5] and its enhanced variant RRT* [12], have been widely used due
to their effectiveness in handling high-dimensional configuration spaces. The
configuration space, often denoted as C-space, is a fundamental concept in
robotics and motion planning. It represents all possible configurations or
states that a robot or system can occupy within its environment.

(a) : The Piano Movers Problem. (b) : Rapidly-exploring Ran-
Image courtesy of [18]. dom Trees examples.

Figure 1.1: Figure illustrates an example of a path planning problem, along
with a representation of the Rapidly-exploring Random Trees (RRT) algorithm

in Figure [1.1b]



1. Introduction

To enhance clarity within the text, it is crucial to briefly explain how RRT
works: The algorithm incrementally builds a tree structure from an initial
configuration towards randomly sampled configurations in the configuration
space. At each iteration, a new configuration, known as a random sample,
is generated within the configuration space. The algorithm then extends
the existing tree towards this random sample by selecting the nearest node
(configuration) in the tree to the sample and moving towards it in small incre-
ments. The key idea behind RRT is to rapidly explore the configuration space
by growing the tree towards unexplored regions. This exploration strategy
ensures that the algorithm efficiently covers the space while avoiding costly
computation. RRT continues this process iteratively, gradually expanding
the tree towards the goal configuration. As the algorithm progresses, the tree
becomes denser in regions that are closer to the goal, eventually converging
to a path from the start to the goal configuration. In Figure |1.1bl simple
examples of how RRT looks can be seen.

Figure 1.2: Illustration of the narrow passage where the aim is to maneuver a
purple object through the limited space between black obstacles to reach the red
goal configuration.

However, with the increasing complexity of real-world environments, such as
systems with many obstacles or narrow passages, as illustrated in Figure |1.2}
there is a growing need to enhance these methods to improve their efficiency
and adaptability. Efficiency in path planning denotes the capability of the
algorithms to generate feasible paths within a reasonable timeframe, while
adaptability refers to its ability to dynamically adjust strategies in response
to changes in environmental conditions or task requirements.

B 1.1 Machine Learning

Understanding the concept of machine learning is pivotal for comprehending
its utilization within this thesis. Therefore, this section will offer a brief ex-
planation of machine learning without delving into mathematical definitions
and complex explanations. Main idea and inspiration for this section is drawn

4



1.1. Machine Learning

from [7].

Machine learning is a field of artificial intelligence that focuses on developing
algorithms capable of learning patterns and making predictions from data
without being explicitly programmed. It enables computers to learn from
past experiences and improve their performance over time.

Most machine learning algorithms can be categorized into supervised learning
and unsupervised learning. In supervised learning, the algorithm receives
guidance from an instructor or teacher, who provides the target output for
each input example. Conversely, unsupervised learning involves no external
guidance, requiring the algorithm to derive insights from the data indepen-
dently.

) |

- . Folks
lding | :f&s

Bui

"

Figure 1.3: An example of an object classification problem, where the program
classifies objects in the photo into their respective classes. Image courtesy of [9].

Supervised learning tasks typically include classification, regression, and den-
sity estimation or probability mass function estimation. In classification tasks,
the algorithm classifies input data into predefined categories or classes. For
instance, object recognition can be considered a classification task, where the
computer program identifies objects in images and assigns them to specific
categories. In Figure [1.3, an example of object recognition is depicted.

In regression tasks, the algorithm predicts a numerical value based on input
data. For example, predicting house prices based on features like location,
size, and amenities is a regression task.

Density estimation involves learning a function ppoder : R™ — R, where
Pmodel(Z) represents a probability density function for continuous data or a
probability mass function for discrete data. The algorithm learns the under-
lying data structure, identifying regions where examples are densely clustered
and areas where they are less likely to occur. This understanding is crucial
for effectively modeling the data distribution.



1. Introduction

This thesis aims to improve path planning algorithms by using machine
learning, including classification and density estimation techniques.

. 1.2 Thesis structure

Chapter [1] introduces the concepts of path planning and machine learning. It
outlines the central objectives of this thesis, focusing on the integration of
machine learning techniques to enhance path planning algorithms. Addition-
ally, Chapter [1| provides a concise overview of the thesis structure.

Chapter 2| will delve deeper into the path planning problem, offering an
understanding of essential terms and notations. Building on this foundation,
the Chapter [2| will formulate the challenge of this thesis.

In Chapter 3, familiarity with related works, including RRT and RRT*, will
be gained, which also contributes to better understanding the text.

Chapter 4| will be pivotal, as it will explain the machine learning methods
employed in this study. Additionally, it will detail the integration of these
methods into the sampling-based algorithm RRT* in 2D C-space and its
extension to 3D C-space and 6D C-space.

The effectiveness of the developed methods will be evaluated in Chapter |5
through comparisons with existing algorithms using the Open Motion Plan-
ning Library (OMPL) [20].

In Chapter (6, the thesis will be concluded by summarizing all results and
findings.



Chapter 2

Task formulation

This chapter lays the foundation for better understanding the research objec-
tives and motivations. Firstly, it will explain the path planning problem and
provide a brief introduction to sampling-based path planning, including an
overview of its definition, advantages, and disadvantages. Based on this, the
main objective of the thesis is formulated. Subsequently, key terms related to
path planning are elucidated to ensure clarity and comprehension. Finally,
the chapter concludes by formulating the primary challenge addressed in the
thesis.

B 21 Path planning problem

The path planning problem, also known as motion planning or the navigation
problem, is a fundamental challenge in robotics. It involves finding a path
that connects a start configuration to a goal configuration while satisfying
specified constraints, such as avoiding collisions.

The path planning problem and relevant terms will be explained using the
Piano Movers Problem. An illustration of this problem can be seen in Figure
1.1a. In this scenario, the task is to move a piano from one room to another
trying not to collide with any objects.

The piano has six degrees of freedom (DoF), meaning its position in space can
be described using six coordinates: three for position (x,y, z) and three for
rotation (yaw, roll, pitch). The position most often represents the coordinates
of its center of mass or as a reference point of the robot. It can be stated that
there a 6D C-space because to describe the configuration of the piano, we
need six coordinates. These coordinates define configurations of the piano.

Our objective is to find a sequence of configurations that safely moves the
piano (our robot) from its starting position to its destination without colliding
with any objects in the room. Objects like tables, closets, walls represent
obstacles, and the door represents narrow passage. These obstacles must
be avoided. To avoid these obstacles, a sequence of configurations is sought.
This sequence is referred to as a path. The problem of path planning can be

7



2. Task formulation

stated as finding a collision-free path from the initial point to the goal point.

. 2.2 Sampling-based path planning

Sampling-based path planning [I4] is a computational approach utilized in
robotics to generate feasible paths for autonomous agents navigating through
complex environments. One of the sampling-based algorithms is the Rapidly-
exploring Random Tree (RRT) [15].

Unlike traditional grid-based methods such as A* [10], which discretize the
environment into a grid and search for paths within this grid, as illustrated in
Figure [2.1a), sampling-based methods operate by randomly sampling points in
the configuration space. In the case of the Piano Movers Problem, a random
sample represents random values for (x,y, z, yaw, roll, pitch). Subsequently,
these sampled points are used to construct a graph. This probabilistic
approach allows for efficient exploration of high-dimensional spaces and is
particularly well-suited for environments with complex obstacles.

The main goal of sampling-based algorithms in path planning is to efficiently
explore the configuration space to find feasible paths from a start configuration
to a goal configuration, while avoiding obstacles.

B 2.3 Research Objectives

Sampling-based algorithms offer several advantages. They are flexible and
can handle high-dimensional configuration spaces, making them suitable for
complex environments with obstacles and constraints. Additionally, they are
computationally efficient, focusing on sampling feasible configurations rather
than exhaustive exploration.

However, sampling-based methods also have their disadvantages. Random
sampling can create biases in certain areas of the configuration space, re-
sulting in less-than-optimal paths or missing potential solutions. In highly
cluttered environments or spaces with narrow passages, these algorithms may
struggle to adequately explore the configuration space, resulting in incomplete
coverage and suboptimal path generation. It can be seen in Figure 2.1bl The
performance of sampling-based algorithms can be sensitive to various param-
eters, such as sampling density and collision checking threshold. Additionally,
while they offer computational efficiency, they may not always generate the
highest quality paths compared to other methods, especially in scenarios
where path smoothness or optimality is crucial.

The research objectives of this thesis will concentrate on enhancing sampling-
based algorithms by addressing their limitations in scenarios characterized
by numerous obstacles or narrow passages. The primary goal is to enhance

8



2.4. Components of the Path Planning Problem

(a) : A* algorithm. Image cour- (b) : Narrow passage in the 2D
tesy of [21]. workspace with a 3D C-space.

Figure 2.1: llustration of the A* algorithm realizes path-finding on grid map in
Figure [2.1a] and illustration of the narrow passage in Figure [2.1b, where the blue
lines represent RRT* exploration in the workspace. It can be seen in Figure 2.1b
that numerous samples were generated on the left side, resulting in incomplete
coverage of the space. In summary, a large number of samples were generated in
inappropriate locations.

sampling-based algorithms through the integration of machine learning tech-
niques to more effectively generate points. The proposed approach will im-
prove random sampling by selectively sampling points only from obstacle-free
spaces, thereby enhancing the efficiency and adaptability of the algorithms.

B 24 Components of the Path Planning Problem

Let us begin by defining the configuration space, denoted as C. It serves as
a critical component of motion planning, representing all possible states of
system. This space is a subset of R, where d > 2 and d € N. Within C, there
are three primary regions:

® Obstacle Space (Cobs): This region encompasses areas occupied by
obstacles, constraining the motion of our system.

® Obstacle-Free Space (Cgee): Defined as the complement of Cyps within
C, this space allows unrestricted movement for our system.

® Goal Region (Cgoa1)= Representing the destination our system aims
to reach. This region must be within the free space Cgoal C Chree, as
the system cannot reach regions outside of the free space. Within this
region, there must exist a goal configuration, denoted as ggoa1 € Cgoal,
which represents the optimal configuration. However, it is notable that
in certain cases, the goal region may be represented just by ggoal.

Path planning aim to find a feasible path from the initial configuration
Gstart € Ciree to a goal configuration ggoal € Cgoal, ensuring avoidance of

9



2. Task formulation

Cobs
Cgoal

CfrCC
path

Gstart

ot (1

(goal

Figure 2.2: 2D workspace with a 2D C-space.

regions occupied by obstacles (Cops)-

To represent the connectivity between configurations within Cgee, a graph
G = (V,E) is utilized. Here, V denotes the finite set of vertices, each
corresponding to a configuration point, and £ C V x V denotes the set of
edges, signifying connections between configurations.

In Figure [2.2, a simple 2D workspace is depicted, wherein the robot is
represented by a point. A workspace is the area within which a robot
operates, and in this context, the configuration of the robot can be described
by two coordinates, such as ¢ = (x,y). Therefore, it has a 2D C-space. The
start configuration, denoted by ¢gart, i marked in green, while the goal
configuration, denoted by ggoa1, is marked in red. The black circle at the
center of the space represents the Cops. The red ring represents the boundary
of the C-space, with points inside it corresponding to the Cgoa. The blue
trajectory, comprising vertices and edges, illustrates the path through the
configuration space. These vertices, represented as blue circles, illustrates
configurations or nodes along the path.

B 25 The Challenge

The challenge of this thesis is to reduce the number of sampling points, or
iterations, required to converge on the optimal path. This will be achieved
by learning the configuration space and generating points within Cg.ee and
enhance the overall efficiency of the motion planning algorithm. Further
information is provided in Chapter |4}

10



Chapter 3

Related works

In this chapter, an overview of various path planning methods will be pre-
sented. This exploration is crucial for gaining a deeper understanding of
how sampling algorithms function and how they can be enhanced. Building
upon this understanding, the main idea of improvement was implemented,
and the foundation for this implementation was laid upon the knowledge of
sampling-based algorithms. These methods will be described and analyzed
to provide insights into their effectiveness and limitations.

B 3.1 Rapidly-exploring Random Tree (RRT)

The Rapidly-exploring Random Tree (RRT) [15] algorithm is a versatile
and widely used sampling-based motion planning algorithm in robotics. A
pseudocode is shown in Algorithm|[I. Its appeal lies in its efficiency in exploring
high-dimensional configuration spaces, making it suitable for various robotic
applications. RRT excels in systems with non-holonomic constraints, which
limit a robot’s movement beyond just its position and orientation. These
constraints often involve restrictions on how the robot can change its velocity
or direction. In the Fig. the progressive expansion in 2D C-space of the
RRT can be seen.

f L, .
N > h 7 X ‘ G
< Q
L A &)
% e NN
S Ty
o X 7 ”rf ) AR
R 9]
(a) : 100 iterations (b) : 1000 iterations (c) : 2000 iterations

Figure 3.1: Example of RRT expansion in 2D C-space.

Simplicity and effectiveness of the RRT algorithm have made it a popular
choice among researchers and practitioners in the field. This highlights the
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importance of explainig its operational phases.

In the initialization phase, the algorithm begins by establishing a tree structure
with only the initial state, which represents the root node. This initial state
represents the starting configuration of the robot or system.

During the expansion phase, the algorithm iteratively executes the following
steps until a predetermined number of iterations or the goal state is reached:
generating a random state within the configuration space, identifying the
nearest node in the existing tree to the randomly generated state, extending
the tree towards the random state by incrementally advancing in its direction
and creating a new node, and subsequently verifying whether the new node
collides with any obstacles. If no collision occurs, the new node is added to
the tree, thereby expanding the coverage of the configuration space.

After completion of each iteration, the algorithm conducts goal checking to
determine if the goal state has been reached. Upon reaching the goal state,
the algorithm terminates, and the path to the goal is extracted from the tree
structure.

To extract a path to the goal, a hierarchical structure within the tree must be
established. For every configuration added into the tree, a parent configuration
is assigned, typically being the nearest configuration in the tree. This parent
configuration acts as the reference point from which the new configuration
is generated or “steered” towards. Consequently, each configuration has
only one parent but can have many children, thereby forming a hierarchical
relationship within the tree.

Gstart
qgoal

Figure 3.2: An illustration of a hierarchical structure, where black arrows
indicate the parent-child relationships, with the origin of the arrow representing
a parent node and its destination denoting a child node. Additionally, red
arrows illustrate a retracing process, indicating the movement from the goal
configuration back to the start configuration by moving through parent nodes.

Upon reaching the goal configuration, the path to the start configuration
is retraced by traversing from the goal configuration to its parent and then
recursively traversing through each parent until the start configuration is
reached. In Figure 3.2, an illustration of this process is presented. This
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3.2. Rapidly-exploring Random Tree star (RRT*)

process capitalizes on the parent-child relationships established during the tree
construction phase, enabling systematic navigation from the goal configuration
back to the start configuration, and thereby facilitating path extraction.

The RRT algorithm is known for its relatively straightforward implementation,
yet it effectively explores the configuration space. This efficiency refers to its
ability to rapidly expand the search space, thereby quickly accessing various
regions of the configuration space. However, despite these advantages, RRTs
are not without their limitations. One notable drawback is their tendency
towards suboptimality. Unlike certain other algorithms, basic RRTs do not
guarantee the discovery of the optimal path to the goal. Consequently, the
path found may not be the shortest or most efficient route. Furthermore,
RRTs often necessitate frequent collision checks, particularly in environments
characterized by clutter, leading to a notable increase in computational time.

Algorithm 1: Rapidly-exploring Random Tree (RRT)

Data: Start configuration gstart, Number of iterations K
Result: RRT tree T

1 Initialize tree T" with root gstart;
for k < 1 to K do
Generate random configuration ¢rang € C;
Find nearest node guear in 1" t0 Grand;
Steer towards ¢yang to get new node gnew;
if ObstacleFree(qnears Gnew) then

Add gpew to T with an edge from gnear;

if GoalFound(qney) then

L break;

© W N O Uk W N

10 return T

B 3.2 Rapidly-exploring Random Tree star (RRT*)

The Rapidly-exploring Random Tree Star (RRT*) [12] also known as Optimal
RRT is an extension of the original RRT algorithm designed to enhance the
efficiency and optimality of path planning in robotics. A pseudocode is shown
in Algorithm |2. RRT* incorporates a rewiring step that allows the algorithm
to dynamically adjust the tree structure, thereby promoting the discovery of
more optimal paths. In the Fig. 3.3, the progressive expansion in 2D C-space
of the RRT* can be seen.

Similar to RRT, RRT* begins with an initialization phase and continues with
an expansion phase. However, the key enhancement in RRT* lies in the
Rewiring phase, aimed at improving the optimality of paths discovered.
This phase can be divided into three parts: Finding Nearest Nodes, Choosing
Parent Node and Rewiring |3.4.

13



3. Related works

(a) : 100 iterations (b) : 1000 iterations (c) : 2000 iterations

Figure 3.3: Example of RRT* expansion in 2D C-space.

i Qnear "+ .. il Qnear "+

Gstart (IIBW g start

(a) : Finding Nearest Nodes.

Astart

(c) : Rewiring. (d) : Result.

Figure 3.4: Illustration of the Rewiring phase: The green circle denotes the
initial configuration (gstart), while the yellow circle represents the new node to be
added (gnew), along with its transparent yellow circular area with certain radius
(Q@near)- Figure displays the nodes within this circular area. A parent node
for the new node, identified by the red circle (¢min), can be seen in Figure
Figure |3.4c| exemplifies the rewiring step, with numerical values indicating the
lengths of respective paths from the new node to nearby nodes. Finally, Figure
3.4d| shows the final appearance of the rewired tree.

Finding Nearest Nodes step involves identifying nearby nodes within a certain
radius from the new node. After identifying nearby nodes, the algorithm
proceeds to the Choosing Parent Node step. Here, it calculates cost for each
node relative to the new node and selects the one with the lowest cost. This
cost evaluation considers both the path from the root to the current node and
the path from the current node to the nearby node. It typically reflects the
path length or other user-defined metrics. This step is crucial because, unlike
in RRT where the algorithm simply identifies the nearest node, the goal is
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3.2. Rapidly-exploring Random Tree star (RRT¥*)

to find the most optimal node, which may not always be the nearest one.
After adding a new node to our hierarchical tree structure, the Rewiring step
initiates. Similar to the Choosing Parent Node step, the algorithm evaluates
the costs of all possible paths from our new node to all nearest nodes. If a
new path reduces the cost of the node, the algorithm removes the old path to
the node and adds the new path. During this process, the rewired node gets
a new parent, and the old parent, from which the old path originated, may
no longer have a child.

Through these iterative phases, RRT* continuously improves the tree struc-
ture, resulting in progressively optimal and efficient paths. By strategically
rewiring the tree, RRT* effectively converges towards an optimal solution
while efficiently exploring the configuration space.

The RRT* algorithm offers improved optimality over the original RRT, making
it particularly useful when precision and efficiency are crucial considerations in
robotic path planning. As illustrated in Figure [3.5) RRT* typically generates
more direct paths with fewer unnecessary zigzags compared to RRT, thereby
enhancing path quality. However, RRT* is more computationally complex,
especially compared to RRT, which can lead to increased time consumption.

Algorithm 2: Rapidly-exploring Random Tree Star (RRT*)

Data: Start configuration gstart, Number of iterations K, Radius r
Result: RRT* tree T

1 T <« InitializeTree(gstart);

for k< 1to K do
Grand < RandomConfiguration();
(near < NearestNode(T, ¢rand);

2
3
4
5 Qnew < Steer(QHeara Qrand);

6 if ObstacleFree(qnear; Gnew) then
7

8

9

Qnear <+ NearNodes(T, gnew, ');
Gmin < ChooseParent(Qnear, Gnew);
T + AddNode(gnew, Gmin);

10 T+ Rewire(T, Qnearv QHeW);

11 return T;

15



3. Related works

(e) : RRT. () : RRT*.

Figure 3.5: Comparison in 2D C-space without obstacles in and with

obstacles in and Comparison in a 3D workspace with a 6D C-space,
with the robot represented as a purple cube and the obstacle represented as a

green tree in and
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B 3.3 Probabilistic RoadMaps (PRM)

The Probabilistic Roadmap (PRM) [I3] algorithm is a popular motion plan-
ning technique used in robotics to find feasible paths for robots operating in
complex, high-dimensional spaces. Unlike traditional grid-based approaches,
PRM operates by constructing a roadmap of the configuration space, which
is then used to efficiently search for valid paths. The roadmap generated
by PRM can be likened to a street network in a city. Just as roads connect
various locations in a city, edges in the PRM roadmap connect different
configurations in the configuration space. This analogy helps to conceptualize
how the PRM algorithm constructs a network of feasible paths for the robot
to navigate through the environment.

The PRM algorithm consists of the following main steps: Roadmap Con-
struction, Neighborhood Search, Edge Connection, and Path Planning. A
pseudocode of construction step is shown in Algorithm [3|

9ooal 9goal
[ ° [
8] o] ¢
° o o o °
‘ ° o ° ‘ °
] Y [ J
([ [ [ J
dstart Ystart ¢ ®
(a) : 2D C-space. (b) : Roadmap Construction.

dstart ‘ Astart ‘

(c) : Edge Conecting. (d) : Path Planning.

Figure 3.6: In the 2D workspace depicted in Figure [3.6a, with a corresponding
2D C-space, obstacles are represented in black. The initial configuration (gstart)
is indicated by a green circle, while the goal configuration (ggoa1) is marked with
a red circle. Additionally, randomly sampled valid configurations appear as
blue circles |3.6bl The connections between these configurations can be seen in
Figure 3.6c. The path discovered between the start and goal configurations is
highlighted in red |3.6d|

Roadmap Construction involves randomly sampling configurations from the
configuration space and checking each sampled configuration for collision
with obstacles. Valid configurations are added to the roadmap. In the Neigh-
borhood Search step, for each sampled configuration, a set of neighboring
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configurations is identified. These neighbors serve as potential candidates
for connecting edges in the roadmap. In the Edge Connection step, pairs
of neighboring configurations are evaluated to determine if an edge should
be added between them in the roadmap. This evaluation typically involves
checking for collision-free paths between the configurations. Finally, in the
Path Planning step, once the roadmap is constructed, path planning becomes
a graph search problem. Algorithm such as A* [10] is commonly used to find
the shortest path between the start and goal configurations in the roadmap.
These steps can be seen in Figure |3.6L

PRM can handle complex, high-dimensional configuration spaces and en-
vironments with obstacles of varying shapes and sizes. Its straightforward
implementation ensures efficient and fast solution finding. However, the
quality of the roadmap depends heavily on the sampling strategy and collision
checking accuracy. Poorly constructed roadmaps may lead to suboptimal
or infeasible paths. Moreover, PRM encounters challenges when navigating
through narrow passages, as the likelihood of sampling configurations capable
of traversing tight gaps diminishes with the decreasing gap.

Despite its drawbacks, PRM remains a widely used and effective approach
for motion planning in robotics, F particularly in scenarios with complex
environments and obstacles.

Algorithm 3: Probabilistic Roadmap (PRM) construction step

Data: Start configuration ggtart, Number of iterations K
Result: PRM graph G

1 Initialize graph G with vertices V and edges F;
2 fori+ 1to K do
Grand < a randomly choosen free configuration;
Qnear < a set of candidate neighbors of ¢ang chosen from V;
V«Vu {Qrand};
for g € Qnear do
if not SameConnectedComponent(qrand, q) then

E+ FEU {(qranda Q)},
update connected components in G;

© o N O AW

10 return G;

B 3.4 Informed RRT*

Informed RRT* [6] extends the capabilities of the RRT* algorithm by address-
ing the challenges inherent in exploring high-dimensional configuration spaces
with greater efficiency. It achieves this by integrating heuristic guidance,
typically through cost-to-go estimates or other informed sampling strategies,
to direct exploration towards regions more likely to yield the optimal solution.

18



3.5. RRT sharp (RRT")

The cost-to-go refers to the estimated cost or distance from a given configu-
ration to reach a goal configuration in a path planning problem. Building
upon the fundamental principles of RRT*, Informed RRT* retains its core
mechanics of incremental tree growth and probabilistic sampling. However,
unlike traditional RRT*, which uniformly samples configurations at random,
Informed RRT* employs informed sampling techniques to prioritize sample
points in areas with lower estimated costs or higher likelihood of containing
the optimal solution.

In Informed RRT*, hyperspheroid are often utilized as a representation of
the cost-to-go heuristic. These hyperspheroids encapsulate regions of the con-
figuration space that are likely to contain the optimal solution. By leveraging
these hyperspheroids, This utilization of hyperspheroids enables Informed
RRT* to efficiently explore high-dimensional spaces and converge towards
the optimal solution more effectively than traditional RRT* algorithms.

c2 — 2 o Xstart

Cq

Figure 3.7: An example of a two-dimensional prolate hyperspheroid. Image
courtesy of [6].

The prolate hyperspheroid (3.7) is defined by its focal points at start config-
uration Xgtart and goal configuration Xgea1, a transverse diameter of current

2 2

solution cost ¢;, and conjugate diameters of \/(c; — ¢, ), where

Cmin ‘= ||Xg0al - Xstart||2

is the theoretical minimum cost. Figure |3.8a| presents an illustrative example
of Informed RRT*.

B 3.5 RRT sharp (RRT¥)

RRT sharp (RRT#) [1] is a sampling-based motion planning algorithm, which
is based on Rapidly Exploring Random Graphs (RRG) [II]. The RRT#
algorithm utilizes informed sampling techniques to bias the selection of
sample points towards relevant regions with lower estimated costs or higher
likelihoods of containing the optimal solution. This information enhances the
convergence speed of the algorithm and enables more efficient exploration
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of the obstacle-free space. Figure [3.8b| presents an illustrative example of
RRT#.

To find the relevant region, the following formula is used:
Xrel = {IE € Xfree : g*(x) + h(x) < 9*(37205»1)}

where xgoal is the point in the goal region with the lowest optimal cost-to-come
value, ¢g*(z) is the optimal cost-to-come value of point z, and h(x) is the
estimate of the optimal cost moving from z to the goal region Xgua. If a
point x is within the region Xgoa1, () is equal to zero.

B 3.6 RRTY static

RRTX [16] is an algorithm primarily engineered to navigate dynamic envi-
ronments, where configurations of obstacles are unpredictable, demanding
real-time adaptability. In this study, the focus is on delving into the static
adaptation of RRT¥X, named RRTX static. Tailored for scenarios where
environmental dynamics are stable.

The implementation of the RRTX static algorithm closely resembles that of
RRT#, with the addition of a single parameter, €, representing the minimum
threshold for cost improvement required to rewire the tree. In simpler terms,
€ specifies the minimum amount by which a new path must improve over the
existing path for the algorithm to justify rewiring the tree.

>~

r\
AL RN
| )

(a) : Informed RRT*. (b) : RRT#.

Figure 3.8: An example of Informed RRT* and RRT# Images courtesy
of [6] and [I] respectively.
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B 3.7 Motion Planning Networks (MPNet)

Motion Planning Networks (MPNet) [17] is an innovative learning-based
neural planner. MPNet leverage neural networks to learn optimal path
planning strategies, making them highly efficient in navigating complex
environments. One of the primary reasons for using MPNets is their ability
to significantly reduce computation time compared to traditional methods
like RRT*. This speed advantage makes MPNets particularly suitable for
real-time applications where rapid decision-making is essential.

According to the documentation [I7], MPNet comprises two key components:
the Planner Network (Pnet) and the Encoder Network (Enet). Enet processes
information about the surrounding environment of the robot, including a
raw point cloud. A raw point cloud refers to a collection of data points in
a 3D space that represents the surface of an object or scene. The output of
Enet is a latent space embedding of this raw point cloud information. Pnet
utilizes the encoding of the environment, along with information about the
current state and goal state of the robot, to generate samples for path or tree
generation.

Let the environment surrounding the robot, referred to as the workspace, be
denoted as X C R™, where m is the workspace dimension. This workspace
encompasses both obstacle regions &j,s and obstacle-free regions Xy, =
X\ Xops. MPNet plans feasible, near-optimal paths using raw point-cloud
of obstacles xops C Xpps. Similar to other planning algorithms, there is
an assumed availability of a collision-checker that verifies the feasibility of
MPNet-generated paths based on X,,s. Precisely, Enet, parameterized by
0¢, processes the raw point cloud information z.,s and compresses it into a
latent space Z.
Z < Enet(zgps; 0°)

Pnet, parameterized by 6P, utilizes this latent space encoding Z, as well as the
current or initial configuration ¢; € Cgee and the goal configuration cgeq C
Ctree Of the robot, to produce a trajectory through incremental generation of
states Ci41.

Cey1 < Pnet(Z, ¢t cgoar; 07)

Together, these neural networks enable MPNet to plan paths efficiently in
complex environments.

One notable feature of MPNet is its integration of classical sample-based plan-
ners in a hybrid approach, which allows for worst-case theoretical guarantees
while retaining computational efficiency and optimality improvements. Addi-
tionally, an active continual learning approach is presented to train MPNet
models, enabling learning from streaming data and expert demonstrations as
needed, thus reducing training data significantly.

Despite their numerous advantages, MPNets also have some limitations. The
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quality of the path generated by MPNets heavily depends on the training
data and the accuracy of the learned heuristic. Poorly trained MPNets may
produce suboptimal or infeasible paths.

In the context of this thesis, MPNets provide valuable insights into the diver-
sity of path planning methodologies. Moreover, through the integration of
neural networks, which is a fundamental machine learning technique, MPNets
aim to enhance sampling-based methods. Consequently, they are particularly
relevant for understanding the existing methods and their advancements in
the area of sampling-based approaches.

. 3.8 Summarize

In the Related Works chapter, various approaches relevant to this thesis were
explored, including Motion Planning Networks (MPNet). MPNet serves as a
notable example, indicating the potential for improvement in sampling-based
planners. Sampling-based methods such as RRT, RRT*, and PRM are widely
used in path planning. However, they all exhibit limitations when navigating
through narrow passages and environments dense with obstacles. These
limitations stem from their random sampling strategy, which often results
in scenarios with narrow passages and dense obstacle spaces, leading to the
generation of configurations within obstacle space. Consequently, this leads
to unnecessary collision checking for inappropriate configurations. As a result,
there is an increase in computational time and a decrease in the probability
of sampling configurations capable of traversing tight gaps as the gap size
decreases. To address these challenges and achieve improvements in the
performance of sampling-based methods, akin to those seen in MPNet, the
proposed solution to the problem will be provided in the subsequent Chapter
4. This method will be compared to its performance with RRT*, RRT¥X
static, RRT# and Informed RRT*.
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Chapter 4

Improving RRT* algorithm using machine
learning method

In this chapter, the proposed solution to the challenge formulated in Chapter
will be explained. As previously mentioned, the focus on generating samples
within the Cgee ensures that configurations within the Cops space are not
sampled. This strategic approach minimizes the number of iterations required,
as samples within the Cops space invariably result in collisions, thus slowing
down the process of achieving the optimal solution. To solve this challenge,
the chapter will delve into the process of learning the configuration space,
elucidating the proposed sample strategy and its integration into the RRT*
algorithm. Furthermore, the extension of this approach to the 3D C-space
will be discussed.

The main idea and implementation of the approach presented in this chapter
are inspired by the work of [2]. Consequently, many of the terminologies and
concepts will closely resemble those expounded upon in the referenced work.

B a1 Approach

To provide further clarity, it is imperative to introduce some new terminology.
Let X and Y denote the spaces of inputs and outputs, respectively. In this
context, each z; € X represents a sampled point or configuration within the
configuration space, while each y; € ) signifies its label, indicating whether
the point is in Cops or Cree. In this context, the label y; = 1 corresponds to
points within Cops, while y; = 0 denotes points within Cgee. A pair (x;,y;) is
called a training example. D = {(z1,y1),.- -, (Tm,Yym)} is called a training
set consisting of m training examples.

The objective is to solve the classification problem by finding a function
f: X — {0,1} that provides prediction of the label for a given point. Thus, if
a point is generated within the obstacle space, collision checking is unnecessary
as the point is within the obstacle and an object representing a robot will
definitely collide. Collision checking is only performed for points predicted by
the program to be in Cgee space. To accomplish this, learning the configuration
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space become important.

B a2 Learning the Configuration Space

Function f : X — {0,1} makes predictions based on available data about
the configuration space at each program iteration. Due to this, there is
a significant need to learn the configuration space, which underscores the
importance of understanding how this available data is obtained.

This data, represented as a training set D = {(z;,v;) : ¢ = 1,...,m} with
points and their labels, initially consists of randomly generated points along
with their labels, determined through collision checking. During each program
iteration, the function f predicts labels for randomly sampled points based
on this available data in the training set.

However, at the beginning, our training set may not be sufficiently large for
accurate predictions. Therefore, if the program predicts that a point lies
within the Cpee sSpace, it must verify this prediction through collision checking.
If the point is indeed within Cgee, the program selects this point for sampling
and adds it to the trainning set D with its corresponding label. Conversely, if
the point is predicted incorrectly and lies within Cypg, the program continues
searching for a point within Cq.ee. Every point identified within Cqpg is also
added to the trainning set D. Through this trainning set D, which increases
after each iteration, the algorithm learns the configuration space. With each
iteration, it improves its predictions and increasingly identifies points within
Cree- Consequently, the generation of points within Copg decreases, thereby
reducing the need for collision checking on unsuitable points.

The key question now arises: how does the program make predictions? To
address this, a Bayesian classifier [3] is utilized in conjunction with a kernel
density estimator to determine the function f: X — {0, 1}.

B a3 Proposed Solution

Now that the method for learning the configuration space and the significance
of the training set are clear, let us delve deeper. The training set can be
divided into two datasets: Xjee comprising points in Cgee and Xyps containing
points within C,ps. Based on these datasets, probability density functions will
be computed to approximate the locations of obstacle and obstacle-free spaces.
Using a Bayesian classifier, predictions can then determine whether a given
point belongs to Cgee 0Or Cobs. For clarity in the text, the probability density
function that will be utilized in the proposed solution will be described.

When the data fit well, it means that the data points closely match the ex-
pected distribution or pattern |4.1al In such cases, commonly used probability
density functions include the Normal, Poisson, and Geometric distributions,
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among others. However, in the case of our problem, the data consists of
randomly sampled points, resulting in an irregular data distribution [4.1b.
In such cases, Kernel Density Estimator is employed to approximate the
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Figure 4.1: One-dimensional example of regular 4.1al and irregular 4.1b| data

distribution. Images courtesy of [4].

underlying distribution of the data. The Kernel Density Estimator fy (z) for
the estimation of the density value at point z is defined as:

where m is a number of points x; in respective dataset Xpee Or Xops and K (x)
is the Gaussian Kernel function [5], represented as follows:

_d
2

K(z) = (2n)"% - det(H) 2 . ¢ 2% H 'z,

where z represents the input vector, with a dimension of the input space

u

d, H denotes the bandwidth matrix, (27)~2 is a normalization constant.
Matrix H serves as a covariance matrix and acts as a user-defined parameter
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influencing the kernel function. When d = 2, it corresponds to a bivariate
case. For instance, in a 2D C-space, as depicted in Figure 4.2, the input vector
x comprises two coordinates of the point: = = [z1, 23], and the bandwidth
hi1 hi2
ha1  hao
to the variances of x1 and x9 respectively, while h1o = ho1 represents the
covariance between x1 and zo. Because of this, the matrix H is symmetric.
An illustrative example of kernel estimation in the C-space depicted in Figure
4.2 can be observed in Figure |4.3.

matrix takes the form H = Here, hi1 and hos correspond

Algorithm 4: Sample Density
Data: Xob57 Xfree
Result: Predicted sampled point x

1 Yfree < 0;

2 Yobs 1;

3 while Vree < Yobs do

4 Zrand < RandomConfiguration();

5| Pree i

6 Pobs<_1_Pfree§

7 biree < DensityEstimator(zand, Xree);
8 bobs < DensityEstimator(zand, Xobs);
9 Viree < bree * Phrec;

10 | 7Yobs < bobs * Pobs;

11 T < Trand;
12 return z;

Now, leveraging our density estimator, let us proceed to Bayesian classifier.
Firstly, it is necessary to introduce Bayes’ theorem, which is formulated as
follows:

P(A|B) =

In this context, the aim is to determine the probability of a point z belonging
to a particular space, denoted by P(y|z). Our Kernel Density Estimator, on
the other hand, represents P(z|y), which is the probability distribution of
points x given a specific space y. As previously mentioned, the training set
was divided into two datasets: Xpee and Xops. These datasets were utilized
to determine P(y) for each respective space. So now our Bayesian theorem
looks like this:

P(z]y) - P(y)
P(yla) = =S,
where
’ 1
P($|y:1):fxobs($)zm Y. K(z—a);
obs IIGXobs
X 1
P(x‘y = 0) = foree<x) = ‘Xf ‘ Z K (w - x/) )
ree xIEXfree
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|XObS | | KXree |
(y ) ‘Xobs‘ + ’Xfree’ (y ) |X0bs‘ + ‘Xfree‘

| Xobs| denotes the number of points contained within the X,y dataset;
| Xfree| denotes the number of points contained within the X, dataset;

Regarding P(x), further discussion will follow.

Now, the Bayesian decision rule can be formulated. This rule will be repre-
sented as a function f: X + {0,1}, which will predict the label of the given
point:

fz) = {0 if Yeree (T) > Yobs(7),

1 otherwise,

where
Vfree(x) - P(y = O‘ﬂj), ’Yobs(x) = P(y = 1|SU)

In this decision rule, where Ygee() > Yobs(), it’s evident that the compu-
tation of P(x) is not necessarily required.

The proposed solution is outlined in Algorithm 4: Sample Density. Default
parameters for Ygee and ~ops are defined at Line 1 and Line 2, where vgee
should be less than ~,ps. The main process occurs within a while loop at
Line 3-10. The condition in this loop is inverted compare to our decision rule
because the goal is to exit the loop when this condition is met. Inside this
loop, a random point is generated at each iteration.

For each random point, the probability of belonging to each space is computed
as explained in this section. Subsequently, the point predicted to be in the
Chree space is returned. Now, let us explore how this method can be integrated
with sampled-based methods.

O,

Figure 4.2: An example of the 2D workspace with a 2D C-space.
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(b) : Obstacle-free density.

Figure 4.3: An example of density estimation with Gaussian Kernel function of
the C-space in Figure Circles represent randomly generated points in the
C-space. In Figure the density estimation of the obstacle space can be seen.
Figure [4.3D] illustrates the density estimation of the free space. The higher the
graph, the higher the density, indicating a higher probability for points to be in
respective space.

B a4 Integration to the RRT* algorithm

The proposed solution is designed to be compatible with any sampling-
based method that employs single configuration generation to explore the
configuration space in a single iteration. In this implementation, RRT* was
specifically chosen for its ability to converge efficiently towards an optimal
solution while effectively exploring the configuration space.
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(a) : RRT*.

(b) : Improved RRT*.

Figure 4.4: Both algorithms, RRT* and the improved RRT* using machine
learning methods, are presented, each consisting of 1000 iterations. It is
evident that the improved RRT* efficiently explores the configuration space
and eventually finds a path to the goal with the lowest cost of 206 u.d.(units of
dimension), compared to RRT*, which finds a path to the goal with a cost of 216
u.d.. Additionally, despite both algorithms having the same number of iterations,
the improved RRT* exhibits a higher number of collision-free paths found. This
difference arises from the strategy of sampling points in the C-space, which
increases the probability of finding a collision-free path after each iteration.

(a) : Learning the C-space.

(b) : Improved RRT*.

Figure 4.5: In Figure the information about the C-space can be seen. The
purple color represents the X,s dataset, while the green color represents the
Xree dataset. Utilizing these datasets, the algorithm learns the C-space.

The integration approach relies on a specific function for sampling predicted
points, rather than utilizing random sampling. This function is outlined in
Algorithm [5. Within the while loop, point predicted by the function f to be
in the Cpee are generated. After each iteration, the algorithm verifies if this
point indeed lies inside Cgee, and upon finding such a point, it is returned. If
a point lies within the Cops space, it is added to the X, dataset. Otherwise,
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4. Improving RRT* algorithm using machine learning method

it is added to the Xj.q dataset. This function effectively replaces the random
configuration generation step in Algorithm [2, Line 3, thus demonstrating
integration with the RRT* algorithm.

Algorithm 5: Sample
Data: XObS? Xfree
Result: Sampled point x

x < Sample Density(Xobs, Xfree); // Algorithm /4;
while OnObstacle(x) do

L Xobs — XobsU {X};

B W N =

x < Sample Density(Xobs, Xfree); // Algorithm 4;

Xiree ¢ XpreeU {X};
return z;

(= I

To demonstrate how this enhancement works, in Figure |4.4 can be seen
the expansion of RRT* with enhanced RRT* using machine learning, which
explores C-space. Figure [4.5|illustrates the learning process of the C-space by
our enhanced RRT* algorithm.

After explaining how the proposed solution was integrated into the RRT*, it
is crucial to evaluate its effectiveness compared to other planners. Chapter |5
provides further insights into this comparative analysis.

B 45 Extension of the machine learning method to
3D and 6D configuration spaces

In this problem, the robot is represented as a polygon. To describe the position
of the robot in space, three coordinates are utilized: two for its position in
C-space and a third one for its rotation angle, denoted as ¢ = (x,y,«). The
position of the robot is defined as its center of mass. The main difference
from the implementation in 2D C-space is that the procedure for checking
whether a point is inside the Cops, as shown in Algorithm [5| Line 2, is replaced
by a function that checks if at least one point of robot lies inside the Cqpys.
Also, verifying whether the path is obstacle-free, it is essential to ensure that
the robot does not collide with obstacles while moving along the path. To
address this, linear interpolation between two points is utilized to detect
potential collisions between the robot and obstacles along the path. The
linear interpolation formula

Q(S) = (1 - 3) ‘Qnear + S * Qnew, S € [O’ l]a

defines the points along the line segment connecting ¢near and gnew. Con-
sequently, the X, space is not always represented just by the area of the
obstacle, but also includes points where the robot intersects with the obstacle.
An example can be seen in Figure 4.6,
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4.5. Extension of the machine learning method to 3D and 6D configuration spaces

Similarly as in 2D C-space, the improved version of RRT* demonstrates better
performance in finding optimal paths

(a) : Learning the C-space. (b) : Improved RRT*.

Figure 4.6: In Figure it can be seen that the X, dataset contains more
data points. This is because the purple area contains not only points inside the
Cobs, but also points where robot, represented as a polygon in the shape of a
star, collides with obstacles.

(a) : RRT*. (b) : Improved RRT*.

Figure 4.7: Both algorithms, RRT* and the improved RRT* using machine
learning methods, are presented, each consisting of 1000 iterations. The
improved RRT* finds a path to the goal with the lowest cost of 237.2 u.d. (units
of dimension), compared to RRT*, which finds a path to the goal with a cost of
241.4 u.d..

To extend the improved RRT* algorithm to a 6D C-space, such as in the Piano
Movers Problem, similar procedures to those in 3D C-space need to be followed.
However, now six coordinates are required to describe the configuration of the
robot, denoted as q = (x,y, z, yaw, roll, pitch). Additionally, the robot will
be represented by a 3D triangle mesh. With the adoption of a 3D triangle
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4. Improving RRT* algorithm using machine learning method

mesh representation, collision detection becomes more complex. To address
this challenge, the RAPID library [8] can be utilized. RAPID (Robust and
Accurate Polygon Interference Detection), implemented in C++, is a robust
tool for collision detection in 3D environments. It provides a narrow and
user-friendly API (Application Programming Interface) for programmers, sim-
plifying the detection of intersections between objects in various applications
such as physically based modeling, virtual prototyping, and CAD. In Python
3.7 and later, the Trimesh library can be utilized for collision detection. This
library is well-tested for handling triangle mesh objects. Figure shows an
example of a 3D workspace with a corresponding 6D C-space.

(a) : RRT* front view. (b) : RRT* left view.

(c) : Improved RRT* front view. (d) : Improved RRT* left view.

Figure 4.8: An example of path planning in the 3D workspace with the 6D
C-space. The green color represents obstacle object. The purple color indicates
object representing our robot. The red line shows the found solution path,
and the blue lines illustrate the paths explored in the C-space. It can be seen
that improved RRT* demonstrates better performance than RRT* by finding a
shorter path to the goal from the same number of iterations.

32



Chapter 5

Results and discussion

Throughout this chapter, the performance of the implemented RRT* with
machine learning methods, denoted as RRT*_ ML in the rest of the text, will
be presented and discussed alongside other planners across various configu-
ration spaces. In this work, the specification of units of measurement is not
necessary as the choice of units can vary depending on the preferences or
requirements. In addition to testing the runtime of the code, the experiments
were conducted on a computer with the specifications detailed in Table 5.1
This information is provided to ensure transparency of the results.

Parameter Value

OS Ubuntu 22.04.4 LTS x86_ 64
CPU 11th Gen Intel i5-11400H
GPU NVIDIA GeForce RTX 3050 Mobile
RAM 16GB

Table 5.1: Computer specifications.

B 51 20 Configuration Space

To assess the effectiveness of the implemented enhanced RRT* algorithm
across various scenarios, planners from the Open Motion Planning Library
(OMPL) [20] will serve as benchmarks. OMPL is a widely-used library that
provides an extensive collection of motion planning algorithms, making it a
valuable resource for comparing and evaluating different planning strategies.

Name Parameter | Value | - |
Goal bias Dgoal 0.05
Epsilon € 0.01
Rewire Factor k 1.1
Rewiring radius r 40
Step size S 10

Table 5.2: Planners parameters.

The primary objective of this comparison is to evaluate how integrating
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5. Results and discussion

machine learning methods enhances the performance of the RRT* algorithm.
Additionally, the implemented method will be compared against similar plan-
ners that provide information about the cost of the path, such as RRT#
(sharp) [1], RRT¥ static [16], and Informed RRT* [6]. This comparative anal-
ysis will offer insights into how our approach performs in terms of optimizing
path costs compared to these existing algorithms.

B 5.1.1 Planners parameters

All planners share a common goal bias parameter, pgoa1 = 0.05, indicating
that there is a 5% probability that a randomly sampled point will serve as
a goal point. While RRT# and RRTX static share similar implementations,
they diverge in their use of the parameter e. In the case of RRT#, € is set
to 0, whereas in RRTX static, it is initially set to 0.01. € representing the
minimum threshold for cost improvement required to rewire the tree.

400 250
RRT* ML RRT* ML
350 i RRT* RRT*
InformedRRT* 240 | InformedRRT*
3001 i RRT# RRT#
RRTXstatic RRTXstatic
250 ,y' 230
- L .
38 200 = 3
O O
150 220 k

210 =
>0 T = R —
00— y y y y y 200 — y V V y y
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Iterations Iterations
(a) : Original unscaled graph. (b) : Scaled graph.

Figure 5.1: To enhance visualization of the graphs, all will be scaled to depict
changes more clearly. Consequently, the cost axes will not necessarily start at
zZero.

Additionally, all OMPL planners start with a rewiring factor of £ = 1.1. This
factor, applied multiplicatively, determines the size of the neighbor ball or the
number of neighbors considered during tree expansion. In the implementation
of RRT* ML, the rewiring radius is set to 7 = 40 and the step size to s = 10.
The rewiring radius represents the radius within which nearest neighbor
searches are conducted, while the step size represents the maximum length of
a path segment.

The parameters for RRT* ML were manually tuned, potentially resulting
in suboptimal solutions. In certain scenarios, a larger or smaller rewiring
radius or step size might be more beneficial. As a consequence, the OMPL
implementation may outperform the custom Python implementation in terms
of speed.
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5.1. 2D Configuration Space

To determine the bandwidth matrix H for RRT* ML, Scott’s rule was utilized
[19]. Thanks to this rule, the bandwidth matrix is not searched manually, and
during program execution, Scott’s rule dynamically adjusts the bandwidth
matrix H. In the case of a 2D configuration space, the bandwidth matrix

h
H is a symmetric matrix [ 0 2 ] , where h is calculated using Scott’s rule:

1
h = n~ a+1. Here, n represents the number of data points, and d represents
the number of dimensions.

All parameters are listed in Table [5.2]

B 5.1.2 Cost convergence analysis

This subsection will present a comparative analysis of the RRT* ML method
with OMPL planners, with a focus on their convergence during iterations. To
enhance visibility and emphasize changes, the graphs will be scaled. Therefore,
the Y-axis will be adjusted to start at a value just below the convergence line
of the graph, ensuring larger and clearer graph representation (Figure |5.1)).
In all maps discussed in this subsection, the robot is represented by a point,
with its configuration denoted by two coordiniates ¢ = (x,y), indicatind a
2D C-space. A green circle indicates the gsart, a red ring signifies the Cgoal,
and a red point denotes the ggoa1. Black areas represent the Copys.
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(a) : Graph. (b) : Map.

Figure 5.2: Map |5.2b and corresponding convergence graphs |5.2af of selected
planners.

Figures 5.2} 5.3}, [5.4), |5.5| depict the maps and convergence graphs of each
planner. All tests were conducted up to a point where the graphs showed
minimal change. Path costs were computed the same way across all planners,
as the path length.

In Figure|5.2b, a simple map, previously discussed, is shown. The implemented
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5. Results and discussion

RRT*_ ML notably converges faster to the optimal solution compared to
RRT*. Other planners, while slightly slower, also find solutions. However,
the performance of the implemented machine learning method surpasses that
of the other planners in this scenario.
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(a) : Graph. (b) : Map.

Figure 5.3: Map with narrow passages [5.3bl and corresponding convergence
graphs [5.3al of selected planners.
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Figure 5.4: Cluttered map |5.4b/ and corresponding convergence graphs |5.4af of
selected planners.

Figure 5.3b| illustrates a simple example of a map with narrow passages.
The implemented method discovers a solution slightly earlier than other
planners, although its performance becomes comparable to RRT* after 2000
iterations. Figure |5.4b| presents a cluttered map where all methods exhibit
similar behavior. However, Improved RRT* initiates convergence to the first
possible solution earlier than the others and demonstrates better convergence
to the optimal solution than RRT*. In Figure [5.5b, a more challenging
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Figure 5.5: Difficult map with numerouse narrow passages and correspond-
ing convergence graphs of selected planners.

(a) : 500 iterations. (b) : 1000 iterations. (c) : 5000 iterations.

Figure 5.6: Learning C-space in the cluttered map m

scenario with numerous narrow passages is demonstrated. In this case, the
implemented enhanced RRT* once again discovers the first possible solution
earlier than RRT*. However, in terms of convergence, it behaves similarly to
RRT*.

Figure demonstrates how the RRT* ML algorithm learns and adapts to
the cluttered map. Using the example of a cluttered map in Figure the
initial solutions found by each planner are illustrated in Figure Figure
shows the final solutions provided by each planner. The final solution is
found after 5000 iterations, while the initial solution is the first found possible
solution. The cluttered map was selected for its potential to offer a greater
diversity of paths compared to other maps due to the multitude of possible
path variations.
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Figure 5.7: An example of the initial solutions found by each planner in the

cluttered map |5.5b|
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Figure 5.8: An example of the final solutions found by each planner in the
cluttered map [5.5b.
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5.1. 2D Configuration Space

B 5.1.3 Runtime

It is important to note that while the RRT* ML method was programmed
in Python, the OMPL planners were implemented in C++, contributing to
potential differences in computation time.

0.20

0.051 M i

0.00

0 1000 2000 3000 4000 5000
Iterations

Figure 5.9: Time taken to learn predicting points (Algorithm |5) in the cluttered

map to be in the Chee-

Runtime
Planner Initial solution [ s | | Final solution [ s ]
RRT*_ML 0.278594 £ 0.157754 | 289.625891 + 2.611068
RRT* 0.006518 £ 0.001462 0.321272 £ 0.014779
Informed RRT* 0.007330 £ 0.000536 0.259046 £ 0.003154
RRT7# 0.011917 £ 0.002803 0.305096 + 0.010232
RRTY static 0.011775 £ 0.002566 0.305259 +£ 0.008140

Table 5.3: Time spent to find the first and final solutions in the cluttered map.

In Table 5.3 the computational times to find the first and final solutions in
the cluttered configuration space are presented. All values were computed as
the mean of ten measurements, along with their standard deviations. The
average time spent by RRT*_ML to predict point (Algorithm 5) in the Cfere
is (0.037988 £ 0.030603) seconds (Figure [5.9). It can also be observed that as
the number of iterations increases, the computation time tends to rise. This
is because both datasets, Xpee and Xops, grow with each iteration, gradually
accumulating more data points. Consequently, the density estimation process
becomes more time-consuming. After 5000 iterations, the Xpe. dataset
contains 4816 datapoints, and the X,,s dataset contains 1954 datapoints.
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5. Results and discussion

B 52 3Dand6D Configuration Spaces

In comparing the implemented method with OMPL planners in 3D and 6D
C-spaces, it is not feasible due to the initial implementation of RRT* ML in
Python. OMPL does not directly provide the capability to represent objects
in the same manner as implemented in RRT* _ML. Additionally, OMPL does
not directly provide collision checking for 2D and 3D objects. As a result, the
RRT* ML method will be compared with RRT*, which is also implemented
in Python and into which RRT* ML was integrated.
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(a) : Workspace and robot. (b) : Solution.

Figure 5.10: In Figure|5.10a, 2D workspace and robot are depicted, while Figure
5.10b| shows the found solution. The initial configuration of our robot is denoted
in purple, and the goal configuration is shown in red.

All parameters in 3D C-space are the same as in the 2D C-space, but now the
robot is represented as an 'L’-shaped polygon, with its configuration denoted
by ¢ = (x,y, ). The cost is computed with respect to the rotation angle of
the robot, as follows:

cost = \/(a:l — xg)Q + (y1 — y2)2 + (g — 062)27

where ¢1 =(x1, y1, a1), and g2 =(z2, y2, az). This allows the algorithm to
search for not only the shortest path but also a path where the robot makes
fewer rotations.

In Figure 5.10, the selected workspace and the solution found by RRT* ML
are shown. The solutions found from both RRT*_ ML and RRT are mostly
similar, so it is unnecessary to show the solution found by RRT*.

According to the Figure |5.11a, the implemented RRT* ML algorithm finds
the first solution with fewer iterations. However, as illustrated in Figure
5.11b, the computational time for prediction ((Algorithm |5))) increases with
each iteration. As a result, RRT* is significantly faster, completing 10000
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5.2. 3D and 6D Configuration Spaces

iterations in ~30 seconds, while RRT*_ ML took ~1041 seconds for the same
number of iterations. After 10000 iterations, the Xpee dataset contains 6551
datapoints, and the X5 dataset contains 19246 datapoints.
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(a) : Convergence graph of RRT* ML (b) : Time taken to learn predict-

and RRT* in the 2D workspace with the ing points (Algorithm in the 2D

3D C-space. workspace with the 3D C-space (5.10al)
to be in the Chree.

Figure 5.11: Convergence and time graphs for the 3D C-space.

Computation in 6D C-space is significantly more complex. Therefore, tests
were conducted for 200 iterations. In Figure [5.13, the workspace is shown
with the robot represented as a purple cube and obstacles represented as green
cubes. The configuration of the robot is denoted by ¢ = (z, y, z, yaw, roll, pitch).
The cost is computed as the Euclidean distance, with the reference point of
the robot located at its center of mass. This map is 25x25x25, so the s was
changed to 3 and the 7 to 12. The pgoq remains at 0.05.

According to the graph illustrated in Figure 5.12a), the implemented RRT* ML
converges to the optimal solution faster. However, in this case, RRT* found
the first feasible solution earlier. Similar to previous tests, RRT* ML is
slower than RRT*. The runtime for RRT* ML over 200 iterations is ~504
seconds, while the runtime for RRT* is ~379 seconds. Figure shows
the time taken to predict a sample in Cp.ee, and as before, this time increases
over iterations. This increase is due to the X and X, datasets accumu-
lating more data points over time, making them larger. After 200 iterations,
the X dataset contains 440 datapoints, and the X5 dataset contains 46
datapoints.
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Figure 5.12: Convergence and time graphs for the 6D C-space.

(c) : RRT* ML front view. (d) : RRT* ML right view.

Figure 5.13: An example of a 3D workspace with a 6D C-space, showing the
found solution path. The green color represents obstacle object. The purple color
indicates object representing our robot. The red line shows the found solution
path, and the blue lines illustrate the paths explored in the C-space.
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5.3. Result

. 5.3 Result

As a result, it can be concluded that the implemented RRT* ML algorithm
utilizing machine learning methods performs better in terms of converging to
the optimal solution in certain situations. Most of the time, the enhanced
version of RRT* discovers the first possible solution earlier than other plan-
ners. However, in challenging scenarios, such as in Figure [5.5b] it behaves
similarly to RRT*. In other instances, it achieves either equivalent or superior
convergence to the optimal solution compared to RRT*. However, implemen-
tation in Python and computationally intensive function to predicting points
(Algorithm j5)), causing RRT* ML to work much slower than other planners.
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Chapter 6

Conclusion

In this study, the limitations of sampling-based algorithms were addressed.
Specifically, in scenarios characterized by numerous obstacles or narrow
passages, these challenges were tackled through the integration of machine
learning techniques. It was identified that while sampling-based methods
offer flexibility and computational efficiency, exploring cluttered configuration
spaces can be challenging, potentially resulting in suboptimal path generation.

To enhance the efficiency and adaptability of sampling-based algorithms, an
approach was proposed to selectively sample points only from obstacle-free
spaces, leveraging machine learning to learn the configuration space. Through
testing and comparison with planners from the Open Motion Planning Library
(OMPL) [20], including RRT# (sharp) [I], RRT static [16], and Informed
RRT* [6], the effectiveness of our approach was evaluated.

Our results demonstrate that the implemented enhanced RRT* algorithm,
leveraging machine learning methods, performs better in terms of converging
to optimal solutions in certain situations. The enhanced version often dis-
covers the first possible solution earlier and achieves equivalent or superior
convergence to the optimal solution compared to traditional RRT* [12].

While our approach exhibits promising results, it is essential to acknowledge
its limitations. In challenging scenarios, such as those demonstrated in Figure
5.5b}, the enhanced RRT* behaves similarly to traditional RRT*. Additionally,
the implemented algorithm runs significantly slower due to its implementation
in Python and the method used to predict points in Cgee space (Algorithm |5)).
Although this method is crucial for our implementation, it takes considerable
time to predict points, and as the C-space is learned, more data points are
needed to store. However, the main objective is to implement and assess the
performance of the method in terms of convergence to the optimal solution
through iterations and this goal is reached.

Overall, this research contributes to the advancement of sampling-based path
planning algorithms by mitigating their limitations through the integration
of machine learning techniques. One potential improvement could involve
exploring the integration of these techniques into other path planners, such
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6. Conclusion
as RRT#, to further enhance their capabilities in complex environments.

Additionally, implementing the algorithm in C++ could help reduce runtime

and improve efficiency.
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Appendix A
Attachments

The attached file code_Bc.zip contains implemented methods for 2D, 3D, and
6D configuration spaces, along with object files, graph and path visualization
codes. Additionally, it includes C++ code to run planners from the OMPL
library. The file also contains mazes for 2D workspace, represented as a set of
vertices to define polygons. Furthermore, it includes a Makefile to facilitate
running the C++4 code.

The attached file latex_Bc.zip contains LaTeX code of this thesis along
with figures that were used in this thesis.
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