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Abstract

The Compressed Sensing method is a relatively new mathematical method that allows for signal reconstruction
from a relatively small number of samples. Among other applications, it is also used in Magnetic Resonance
Imaging (MRI). Compressed Sensing can reduce MR examination time, which is advantageous for patients be-
cause the examination is very uncomfortable for most of them. In this thesis we will delve into the mathematics
of Compressed Sensing. Since this topic is very complex, emphasis will be put only on certain aspects. We will
mainly address the problem of an ℓ0 minimisation and its transformation into an ℓ1 minimisation, the Restricted
Isometry Property and the Null Space Property of matrices. Finally, we will discuss random matrices having
Restricted Isometry Property.

keywords: compressed sensing, basis pursuit, null space property, restricted isometry property

Abstrakt

Metoda komprimovaného sńımáńı je relativně nová matematická metoda, která umožňuje rekonstrukci signálu
z poměrně malého množstv́ı vzork̊u. Mimo jiné se využ́ıvá také při zobrazováńı pomoćı magnetické rezonance.
Komprimované sńımáńı umožňuje sńıžeńı času potřebného na vyšetřeńı magnetickou rezonanćı, což je výhodné
pro pacienty, protože pro většinu je vyšetřováńı velmi nepř́ıjemné. V této práci se budeme věnovat matematice
komprimovaného sńımáńı. Protože je toto téma velmi obsáhlé, budeme klást d̊uraz pouze na několik aspekt̊u.
Budeme se zabývat problémem ℓ0 minimalizace a jeho převedeńım na ℓ1 minimalizaci, vlastnost́ı zeslabené
izometrie a vlastnost́ı nulového prostoru matic. Na závěr pojednáme o skutečnosti, že náhodné matice maj́ı
vlastnost zeslabené izometrie.

kĺıčová slova: komprimované sńımáńı, lineárńı program, vlastnost zeslabené izometrie, vlastnost nulového
prostoru

3



Declaration

I declare that I elaborated this thesis on my own and that I mentioned all the information sources that have
been used in accordance with the Guideline for adhering to ethical principles in the course of elaborating an
academic final thesis.

In Prague, 23 May 2024 Lenka Jacková
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Introduction

This paper explores the mathematics of Compressed Sensing. Compressed Sensing is a relatively new method
(introduced in 2006), and its applications in signal processing is extensive. One of them is in medicine, namely in
Magnetic Resonance Imaging (MRI). MRI is an impressive method that allows the detection of various illnesses,
thus preventing their spread in time. While not inherently dangerous for patients, the method confines patients
to a narrow tunnel and exposes them to loud noises, which may prove to be extremely uncomfortable for some
of them. However, thanks to the Compressed Sensing technique, the time required for an examination can be
significantly reduced, which improves the patient’s experience and, also, reduces the operational costs.

(1) In Chapter 1, we briefly examine the purpose of magnetic resonance (MR) and its associated risks.
Additionally, we give insights into the history of MR and a short overview of how MR works from the
physics perspective.

(2) Chapter 2 focuses on signal reconstruction, specifically image reconstruction. In the first part we talk
about the classical (lossy) compression. We also mention sampling, introducing the famous Nyquist-
Shannon Sampling Theorem. The last part explains the fundamental concept of Compressed Sensing and
formulates the problem we will focus on in the rest of the thesis.

(3) The following Chapter 3 delves into algorithm theory. The first section provides a brief historical back-
ground, followed by, in the second section, an introduction of the basic complexity classes, including the
necessary definitions.

(4) The introduction of Chapter 4 presents the so-called ℓp norms. In the following sections, we centre our
attention on the ℓ2 and ℓ0 norms. The ℓ2 norm is the well-known Euclidean norm, and we demonstrate
that minimisation of the ℓ2 norm is an easy problem. On the other hand, the ℓ0 norm is not an honest
norm, and we illustrate that its minimisation is inherently a hard problem. Unfortunately, ℓ0 optimisation
is an issue we need to solve in the concept of Compressed Sensing.

(5) The hard problem of ℓ0 optimisation can be solved in several ways, and this thesis, namely Chapter 5,
presents one of the methods: we transform the problem into an ℓ1 optimisation problem and moreover, we
show that ℓ1 minimisation problem can be written as a linear program. We closely examine the conditions
under which this transformation from ℓ0 to ℓ1 is possible in next chapters.

(6) Chapter 6 deals with a property of matrices called the Null Space Property. When it is satisfied it means
that the transformation into the ℓ1 optimisation problem is possible. This may sound promising but,
unfortunately, verifying whether a matrix has the Null Space Property is hard.

(7) In Chapter 7 we introduce different solution which is the Restricted Isometry Property, another property
of matrices. We show that having the Restricted Isometry Property can imply, under some conditions,
having the Null Space Property.

(8) Finally, matrices that have the Restricted Isometry Property are discussed in Chapter 8, where we take
a brief look into the problematics of random matrices.

All of the above results are well-known and references to the existing literature are provided. The import of
the thesis is to give a readable text devoted only to some aspects of the theory of Compressed Sensing.
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Chapter 1

A very brief introduction to magnetic
resonance (MR)

Examination by means of a magnetic resonance scanner is a modern medical imaging technique offering an
alternative to taking, say, X-ray images. The magnetic resonance scanner uses the impact of varying magnetic
fields to the spin of hydrogen atoms in the human body. Since hydrogen atoms form around 10 % of a human
body and since in important parts of a human body hydrogen is abundant (e.g., water itself, proteins, DNA),
scanning hydrogen in a human body makes magnetic resonance a very versatile diagnostic technique.

Although magnetic resonance scanners do not use any ionising radiation, their use can have a negative effect
on a patient. Perhaps the most visible effect is the fact that the patient is essentially put into a narrow tunnel,
left alone in quite a noisy environment and, last but not least, is exposed to quite a strong magnetic field. While
the examination may not be explicitly dangerous for humans, it may pose a significant problem for patients
using devices such as cardiac pacemakers. More health risks are discussed in Section 1.3.

Figure 1.1: The MRI device, picture taken from [21].

In this brief chapter we discuss the above aspects of magnetic resonance and we argue why it is rather
desirable to minimise the duration of the examination by a magnetic resonance scanner. We also indicate the
problem of Magnetic Resonance Imaging (MRI), i.e., the reconstruction of measured data into the picture of
examined tissue.

8



1.1. The history of MR 9

1.1 The history of MR

The history of magnetic resonance imaging dates back to the early 20th century and includes many significant
scientists who contributed to the development of this important technology. One of the key figures was Isidor
Isaac Rabi, who dedicated his research to the magnetic properties of atoms and was awarded the Nobel Prize for
his work in 1944. Felix Bloch and Edward Purcell received Nobel Prize in 1952 for their advancements in nuclear
magnetism and new methods of precision measurement. Raymon Vahan Damadian pioneered the application
of MR for disease diagnosis, especially cancer, and his work in 1971 laid the groundwork for the medical use of
this technology. Paul Lauterbur and Peter Mansfield, also prominent scientists, made key innovations in MR
imaging in 1973 and 1977. Their work led to the modern MR as we know it today, and both were awarded the
Nobel Prize in Physiology or Medicine for their significant contributions in medical imaging.

Figure 1.2: Isidor Isaac Rabi
(1898 – 1988), picture taken
from [37]

Figure 1.3: Felix Bloch (1905 –
1983), picture taken from [38]

Figure 1.4: Edward Mills Pur-
cell (1912 – 1997), picture taken
from [39]

Figure 1.5: Raymond Vahan
Damadian (1936 – 2022), picture
taken from [25]

Figure 1.6: Paul Christian
Lauterbur (1929 – 2007), picture
taken from [40]

Figure 1.7: Peter Mansfield (1933
– 2017), picture taken from [41]

1.2 Elementary physical principles of MR

Now, let us briefly examine how MR works from a physics perspective. To begin with, let us state several
fundamental facts. The human body is formed of atoms, which contain a nucleus with protons and neutrons.
A proton has a positive electric charge and a spin. The flow of electric charge is an electrical current, and
wherever there is an electric current, a magnetic field is generated. When protons are placed to an external
magnetic field, they may align themselves either in parallel or anti-parallel to the field, and each alignment

9



10 Chapter 1. A very brief introduction to magnetic resonance (MR)

requires a different amount of energy. In the context of MR, we prefer a lower energy level, which corresponds
to the parallel alignment and is more frequent among protons.

When protons align in parallel and anti-parallel configurations, their magnetic forces cancel each other out.
However, due to the prevalence of the parallel alignment, there are non-cancelled magnetic forces in the direction
of the external magnetic field. That is known as longitudinal magnetisation. It is important to note that protons
within the external magnetic field are not at rest, they are moving around; this movement is called precession.
The velocity of this movement depends on the strength of the magnetic field and it is measured as the precession
frequency.

When a patient (composed of an enormous amount of protons) is placed in an MR machine, due to a larger
number of parallely-alligned protons, we can say that a patient becomes a magnet with his own magnetic field
with direction the same as external field. Then a radio electromagnetic wave, in MR named a radio frequency
(RF) pulse, is sent. This pulse is designed to disturb the alignment of protons and exchange energy with them.
To achieve this state, the frequency of the pulse must match the precession frequency of the protons which is
called resonance. Resonance results in absorbing energy from the radio wave by some protons, leading to a
decrease in longitudinal magnetisation and to the establishment of transverse magnetisation. The transverse
magnetic vector is moving with the precessing protons and induces an electric current, resulting in a measurable
signal.

Once the RF pulse is switched off, a gradual return to the initial state occurs. The longitudinal magneti-
sation amplifies back to its original value and the transversal magnetisation completely vanishes in the end.
These processes are happening independently. The increase in longitudinal magnetisation takes about 300 to
2000 ms, which is expressed by the constant called T1. The decrease in transversal magnetisation is 2–10 times
shorter, lasting 30 to 150 ms, and it is expressed by the constant T2. The times T1 and T2 depend on the tissue
structure and the intensity of the external magnetic field. In different tissues these processes are of varying du-
rations. For example, T1 in water is much larger than T1 in fat. If we plot magnetisation against time after the
RF pulse is switched off, we obtain curves called T1 curve and T2 curve, which can be seen in the images below.

Time

Longitudal magnetisation

Figure 1.8: T1 curve

Time

Transversal magnetisation

Figure 1.9: T2 curve

This is used in the so-called “pulse sequence”, where multiple RF pulses are sequentially sent and individual
tissues can be distinguished. Time between the transmitted pulses TR (time to repeat) is fundamental in shap-
ing the resulting image. The direction of the RF pulse also has an impact, it is frequently utilising 90-degree
RF pulses (those that deflect the magnetisation vector by 90 degrees) and 180-degree RF pulses.

Further information on the physics of MR
This paper is not concerned with the actual physics of MR nor with the medical technicalities of MR. We
concentrate our efforts upon the mathematical problem of processing the scanned information. For the physics
involved in MR we refer the reader to [36]. For the medical practicalities of MR we refer to [21].

1.3 Health risks of MR

So far, no negative side-effects of MR scans on the human body are known; however, there are some disadvantages
of using it. MR has high acquisition and operational costs, and compared to other diagnostic procedures, it
requires a longer examination time (30–60 minutes). The confined space of the MR scanner can be problematic
for patients suffering from claustrophobia. Additionally, MR produces loud noise, so it is very important to use
hearing protection. For patients with cardiac pacemakers, cochlear implants or other internal electrical devices,
there is a potential risk, and consultation with doctors is necessary. The presence of metallic objects, such as
artificial valves, and pregnancy also requires consideration of whether MR is safe to use.

10



1.4. Reconstructing the measured data 11

1.4 Reconstructing the measured data

The measured data (and their subsequent recording) obtained during magnetic resonance examination are not
designed to produce images directly. This places the reconstruction and/or imaging problem within the realm
of various reconstruction problems known from Signal Theory.

To simplify, we may distinguish between two approaches to signal reconstruction.

(1) Classical data compression. The measured data are usually quite massive, and for successful recon-
struction only a small part of these data is essential. Thus, one can compress the measured data and use
the compressed data for reconstruction.

(2) Compressed Sensing. Since it is typically the case that lots of measured data can be “thrown away”,
one might ask whether a substantially smaller number of measurements for a successful reconstruction
would be sufficient. Thus, one would compress the measurements themselves.

The approach (2) is quite recent and promising. In fact, this approach — when applied to magnetic resonance
— would address the health risks described in Section 1.3 above.

We compare approaches (1) and (2) in the next chapter of this thesis and we will focus on some aspects
of (2) in the rest of this text.
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Chapter 2

The problem of magnetic resonance
image (MRI) reconstruction

The role of image reconstruction in medicine is to collect the signals from a medical device and produce an
image meaningful to medical experts so that they can analyse it and suggest a diagnosis and/or therapy.

Thus, we obtain the following scheme:

Scanning Device

Image Reconstruction

Image Display

Although the method of Compressed Sensing that we focus on in this text is particularly suitable for MRI,
in the current chapter we treat the scanning device as unspecified. Moreover, we intentionally speak rather
informally in this chapter: we only indicate how lossy compression works, how signals are digitised and we
sketch the basic idea of Compressed Sensing.

2.1 The general idea of a very basic lossy compression

A continuous signal from the scanning device is usually transformed into a different basis. For example, when
using the Fourier transform,1 we can convert the signal into a linear combination of sine and cosine functions.
In this way we create a series that typically contains an infinite number of terms.

The transformation that decomposes the continuous signal in this way is bijective. Therefore, once we have
this decomposition into sine and cosine functions available, we can use the inverse Fourier transform to precisely
reconstruct the measured signal.

Thus, we have obtained a bijection

Measured Signal Transformed Signal

1Other types of transforms can be used, we stick with the Fourier transform just for simplicity.

12



2.2. Sampling: Making the continuous signal discrete 13

stating that we can talk either about the measured signal or of its transform.
However, the measured data are usually unnecessarily large and they contain some information that may be

irrelevant to us. This is due to the limitations of human perception, such as the human ear not hearing very
high frequencies, which are not needed in a file for everyday music listening. Similarly, in images, the human
eye is unable to recognise subtle transitions between colours or intensities. And now comes the turn of lossy
compression. After applying the Fourier transform to the measured signal, we choose only certain terms that
interest us. The resulting series is usually no longer infinite. Thus, we are dealing with finite sums, entering
therefore the realm of finite dimensional problems. Although we lose some of the original data, this difference
is often not noticeable to human senses.

If we choose our transformation cleverly (the choice is usually very case-specific, i.e., having knowledge of
the physiology of a human ear, etc.), then which piece of the information we can safely “throw away” can be
read from the transformed signal.

Therefore we obtain the following picture

Measured Signal Transformed Signal

Measured signal with Loss Transformed Signal with Loss

and in the problem of lossy compression, the goal is not to distort the measured signal “too much”.

2.2 Sampling: Making the continuous signal discrete

Another approach to lossy compression is to replace the continuous signal by a discrete signal at the very outset.
This is usually done by some Analog-Digital Converter . To illustrate roughly how this works, we may imagine
a sound wave as the input signal. By recording the sound only at certain times, we obtain a discrete signal that
is usually modelled as a vector (with very many components).

But how do we know which samples are important and which ones we do not need? The Nyquist–Shannon
Sampling Theorem [24], [29] provides an answer:

The reconstruction of a continuous, frequency-limited signal from its samples is possible if the sampling
frequency is higher than twice the highest harmonic component of the sampled signal.

For example, human hearing processes the range form 20 Hz to 20,000 Hz, thus, the sampling frequency for
sound is usually 44,100 Hz.

2.3 Compressed Sensing: A very sketchy overview

As shown in the early 21st century, the sampling condition of the Nyquist-Shannon Sampling Theorem can be
“bypassed”, provided the signal is “very sparse”. This reconstruction method is called Compressed Sensing .

The idea of Compressed Sensing is as follows: why do we need so many measurements when, in the end,
we will not use a large amount of the data? In our specific case, this raises the question of why a patient has
to be under an MR machine for such a long time. Would it not be possible to reconstruct the result from
a smaller number of measurements? Emmanuel Candés, Justin Romberg, Terence Tao, and David Donoho
demonstrated that it is possible in a series of papers around 2006. This process is not data compression but
rather measurement compression.

To hint at how this works, we will now (informally) introduce the notation that we use throughout the text.
Compressed Sensing in comprehensive form can be found in, e.g., [15], [27].

(1) We start with a measured signal x (represented as a vector with n components) and we choose a regular
n× n matrix Ψ.

Moreover, we denote by s the vector satisfying

x = Ψs

13



14 Chapter 2. The problem of magnetic resonance image (MRI) reconstruction

Thus, in the language of Section 2.1, the matrix Ψ represents the discrete version of the (inverse Fourier)
transform and the vector s represents the transformed signal.

(2) Observe that the vectors x and s are in bijective correspondence, since the matrix Ψ is assumed to be
regular.

However, the nature of many processes (including MRI) is such that the vector s is very sparse (i.e., it
contains mainly zeroes).

This indicates that one could design a wide matrix C (i.e., such that C has as many columns as x has
components but C has considerably fewer rows than columns). By defining the vector y by the equality

y = Cx

we could try to solve the equation
y = CΨ︸︷︷︸

=Θ

s

for s with the additional requirement that s is as sparse as possible.

What the equations look like and what dimensions the matrices have can be clearly seen in the following
image.

Figure 2.1: Scheme of measurements in the Compressed Sensing, picture taken from [5]

(3) Once an s as in (2) above is found, we can obtain the resulting x through (inverse Fourier) transform Ψ.

Thus, the whole problem of Compressed Sensing can be formulated as an optimisation problem:

Given a “wide” matrix Θ and a vector y, we solve the equation y = Θs under the condition that s is as
sparse as possible (i.e., the so-called ℓ0 norm ∥s∥0 of s is minimal).

As we will show in Section 4.4, this problem is NP -hard (the meaning of NP -hard will be explained in Chapter 3
that follows). Since we do not want to give up on the above idea of Compressed Sensing, we need to develop
certain notions and techniques that will allow to trade the above inherently hard problem for a tractable one.

14



Chapter 3

The complexity classes of algorithms

Algorithms have existed in our world for a long time, we find them for example as cooking recipes or instruc-
tions for children’s building blocks. But the question is how to formalise the concept of an algorithm. In a
mathematical context, we can define an algorithm as follows:

An algorithm is a process or a set of rules to be followed in calculations or other problem-solving operations,
particularly by a computer.

However, what precisely should be envisioned under this definition, and how can the concept of an algorithm
be delineated? Turing and Church provided answers to these questions in the 1930s.

In 1936, Alonzo Church introduced lambda calculus in his article [9], laying the foundation for functional
programming. Lambda calculus can be understood as a universal programming language with simple rules.
Church further delved into the problems that could be solved using this language and the essence of the term
“problem”. Following him, Alan Turing presented the theoretical model of a computer known as the Turing
machine (1936) in [34]. It is not a computer as we know it today but a simple model with computational power
equivalent to our real computer. It can be described as an infinite tape with a control unit. The head of the
control unit reads symbols on the tape and, based on a finite set of predetermined rules, decides whether to
overwrite the symbol and whether to stay put or to move to the left or to the right.

Church in [9] proved that lambda calculus has the same computational power as functions computable by
an algorithm. On the other hand, Turing in [35] proved that Turing Machines have the same computational
power as lambda calculus. This leads to the so-called Church-Turing Thesis: any formal model of an algorithm
will be equivalent to one of the approaches of either Church or Turing. For an overview of the complex history
of computability we refer to [31].

Thanks to the introduction of the Turing machine, we can distinguish problems of two types. There are
problems that a Turing machine can solve, and there are problems that, no matter how hard we try, it cannot
solve. Therefore, it is not fundamentally possible to find an algorithm to solve such problems. This implies that
even more powerful computers in the future will not make these problems solvable, unless the formal definition
of an algorithm changes significantly.

The first group is of interest to us: the problems that we can solve. This means they are computable — it
might take a long time, but given a potentially infinite amount of time and memory, we can solve them. Merely
being able to solve a problem may not always be sufficient, because it is also important to us to know how long
it will take. To avoid incorrect results due to computer speed, memory size, etc., we will relate everything back
to one standard: the Turing machine.

Stephen Cook delved deeper into these issues, classifying problems in the early 1970s into problems which we
can solve quickly in principle (P problems) and problems which we can solve slowly in principle (NP problems).
In this chapter, we will look closer at the division of solvable problems based on complexity and introduce the
three basic complexity classes. For more details we refer to [16].
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16 Chapter 3. The complexity classes of algorithms

Figure 3.1: Alan Mathison Turing (1912
– 1954), picture taken from [42]

Figure 3.2: Stephen Arthur Cook
(*1939), picture taken from [43]

3.1 Basic complexity classes: P , NP and NP-hard problems

Let us first informally examine groups of problems, known as the complexity classes. The “easiest” problems
are P problems (polynomial), which we can solve in polynomial time. Examples include well-known algorithms
like bubble sort or matrix multiplication, for more information we refer to [13]. Another group consists of NP
problems (non-deterministic polynomial), such as the optimisation problem of the travelling salesman. More
about this problem is in [18]. The next group comprises NP -hard problems, which are “at least as hard as the
hardest problems in NP .” Here, we find problems like ℓ0 optimisation, which we will address in Section 4.4.
The final group consists of problems that are both in NP and NP -hard, and we refer to them as NP -complete.

Now, we will formally define all these important terms. In order to be able to have a common appearance
of problems, we focus on decision problems.

3.1.1 Definition A set X of strings in a fixed alphabet is called a decision problem, and s ∈ X is called an
instance of X.

We say that an algorithm A with outputs ’yes’ and ’no’ (i.e., a “program” A) solves X, whenever

A(s) =

{
’yes’, if s ∈ X,

’no’, if s /∈ X.

Definition 3.1.1 is rather abstract. In the following example we indicate how the usual problem of multiplying
two square matrices can be seen as a decision problem.

3.1.2 Example (Matrix multiplication as a decision problem) Given two matrices A, B, both with n
columns and n rows. There is a standard linear algebra algorithm of computing the product B ·A. In order to
see the above algorithm as a decision problem, we need a slight reformulation:

Three n× n matrices A,B,C are given. Decide whether the equality B ·A = C holds.

Of course, in order that the decision-problem reformulation of matrix multiplication fully conforms with Def-
inition 3.1.1, we would have to formally introduce the alphabet and the corresponding set X. We will not go
into these details, as the relevant procedure is self evident.

3.1.3 Definition An algorithm A runs in polynomial time if, for every string s, A(s) terminates in at most
p(length(s)) steps, where p is some polynomial function.

3.1.4 Definition Define P to be the set of all decision problems X for which there exists an algorithm that
solves X in polynomial time.

16



3.1. Basic complexity classes: P , NP and NP -hard problems 17

3.1.5 Example (Matrix multiplication as a problem in P ) An example of a problem in P is matrix mul-
tiplication (in its decision-problem reformulation, see Example 3.1.2). For example, given matrices

A =

[
2 2
3 5

]
B =

[
−1 3
2 0

]
C =

[
7 12
4 8

]
we need to decide whether C = B ·A. This is done in two steps:

(1) One computes

BA =

[
−1 3
2 0

]
·
[
2 2
3 5

]
=

[
(−1) · 2 + 3 · 3 (−1) · 4 + 3 · 5

2 · 2 + 0 · 3 2 · 4 + 0 · 5

]
=

[
7 11
4 8

]
using the standard algorithm of linear algebra.

(2) Decide whether the matrix C is equal to

[
7 11
4 8

]
obtained in step (1). One does that by comparing the individual components of C and

[
7 11
4 8

]
.

In our example, the answer is ’no’.

Clearly, given general matrices A, B, C, all with n rows and n columns, the number of steps in (1) and (2)
required to finish them is bounded by a polynomial in n. More in detail:

(1) To multiply A and B, we first take the 1st row of the matrix and systematically multiply each of its
elements with the elements in the 1st column of the second matrix. Then we proceed to the next row of
the matrix and repeat the process. This involves nested cycles. In general, if we have two matrices and one
of them has dimensions m× n and the other n× l, the computational complexity of their multiplication
would be m × n × l. In our example, the matrices are square of size n so the computational complexity
of multiplying these matrices would be n3.

(2) To decide whether B · A = C holds, we have to make n2 comparisons to go through all components of
BA and C.

Thus, the decision-problem reformulation of matrix multiplication is a P -problem. Its computational complexity
is n3 + n2, which is asymptotically n3.

3.1.6 Definition An algorithm C is a certifier for a problem X if, for every string s, it holds: s ∈ X if and
only if there exists a string t (called certificate) such that C(s, t) = ’yes’.

An example of a certifier is point (2) of the decision-problem reformulation of matrix reformulation in
Example 3.1.5. In fact, it is a polynomial certifier, since point (2) requires a polynomial number of steps to
finish.

3.1.7 Definition Define NP to be the class of all decision problems X for which there exists a certifier C such
that the following two conditions hold:

(1) C is a polynomial algorithm.

(2) Every certificate t of X is of polynomial size, i.e., length(t) ≤ p(length(s)) for some polynomial function
p.

3.1.8 Definition We say that a problem X polynomially transforms to a problem Y (notation: X ≤P Y ) if
given an instance x of X, we can construct an instance y of Y such that the following two conditions hold:

(1) x is a ’yes’-instance of X if and only if y is a ’yes’-instance of Y .

(2) Every certificate t of X is of polynomial size, i.e., length(t) ≤ p(length(s)) for some polynomial function
p.

17



18 Chapter 3. The complexity classes of algorithms

3.1.9 Definition We say that a problem Y is

(1) NP-hard , if for every X in NP we have X ≤P Y .

(2) NP-complete, if Y is in NP and it is NP -hard.

3.1.10 Remark We will not give an instance of an NP -complete problem with a full proof in this text. However,
in Section 4.4 below, we rely on the fact that The Exact 3-Cover Problem 4.4.2 is NP -complete. In fact, there
exist quite a few NP -complete problems. For an overview of NP -complete problems we refer to [16].

3.1.11 Remark The P versus NP problem is a big unsolved problem in theoretical computer science that was
posed in 1971 by Stephen Cook in his paper [12]. In computational complexity theory, it holds that P is a
subset of NP . However, the question remains whether P equals NP . Generally, it is assumed that this is not
true, but as of now, there is no proof for this assumption. For P = NP to be true, it would be necessary to find
such an NP problem that could be solved in polynomial time, which has not been achieved yet. Below, there
is an Euler diagram depicting the sets of problems for two cases: P = NP and P ̸= NP .

C
om
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x
it

y

NP-hard

P=NP=

NP-complete

P=NP

NP-hard
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NP-complete

P

P̸=NP

3.2 The complexity of optimisation problems

In Section 3.1 we have formulated complexity notions for decision problems, see Definition 3.1.1. However, the
problems we will be addressing in the following text will be mainly optimisation problems. A typical optimisation
problem has the form, see, e.g., [4].

3.2.1 Typical Optimisation Problem (TOP)

Find x such that condition C(x) holds and w(x) is minimal.

18



3.2. The complexity of optimisation problems 19

Above, w(x) is a (typically nonnegative) real number measuring “optimality” of x and C is a condition that
x has to satisfy. It will often be convenient to consider a “decision-variant” of (TOP), namely, to consider the
following problem:

3.2.2 (TOP-decision)

Given C and w. Decide, whether there exists x such that C(x) holds and w(x) is minimal.

It is clear that (TOP-decision) is a decision problem and therefore the theory of Section 3.1 applies to it.
The following two observations are now clear:

(1) Suppose we have a “fast” algorithm that solves (TOP). More in detail, suppose that we have a “fast” way
of finding x that solves (TOP) or of knowing that (TOP) has no solution at all. Then we have obtained
a “fast” algorithm solving (TOP-decision).

(2) Suppose that we know that (TOP-decision) is a “hard” problem. That is, suppose that (TOP-decision) is
either NP -complete or NP -hard. Then the problem (TOP) is also a “hard” problem. Were it otherwise,
we could have employed the reasoning of item (1) above to conclude that (TOP-decision) admits a “fast”
algorithm.

The above two observations are deliberately written informally. We will see their formal instances in the
following text. For example, in Theorem 4.4.6 we will claim that a certain optimisation problem (SAS) 4.4.1 is
NP -hard. By that we mean that the decision variant of this optimisation problem is NP -hard. By the above
observation this means that there is no hope for a “fast” solution of (SAS).
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Chapter 4

An introduction to ℓp norms
optimisation

In Chapter 3, we demonstrated the existence of problems classified as P and NP -hard. P problems are easy to
solve, we can solve them in polynomial time, while NP -hard problems are difficult to solve. In Section 2.3, we
formulated an optimisation problem that will be the focus of interest in this thesis. To delve deeper into this,
it is necessary to define some terms.

The first part of this chapter explores what an ℓp norm is and its relationship to the Euclidean norm ℓ2 we
are familiar with. We then examine the problem of minimising the ℓ2 norm, a relatively common problem. We
show that it can be solved in polynomial time. However, as mentioned in Section 2.3, the primary focus for
us is on the ℓ0 norm. Its minimisation is discussed in the end of this chapter, and we demonstrate that this
problem, unfortunately, is NP -hard and, therefore, difficult to solve.

4.1 ℓp norm

In this section, we delve into the so-called ℓp norms. To understand the concept of ℓp norms better, let us recall
what a norm is. Recall that a vector space is just a set of vectors equipped with operations (vector addition and
multiplication by a scalar) that satisfy rather straightforward axioms (we will not present the formal definition,
we refer to [33]). However, to speak about a “size” of a vector, one has to endow our vector space with an extra
structure, called a norm of a vector .

4.1.1 Definition Let V be a vector space over R. The function ∥ − ∥ : V → R satisfying the following three
conditions:

(1) ∥v∥ ≥ 0 for any vector v, equality holds only if v = o

(2) ∥av∥ = |a| · ∥v∥ for any scalar a and any vector v

(3) ∥v + w∥ ≤ ∥v∥ + ∥w∥ for any vectors v and w

is called a norm.

An important group of norms are ℓp norms, see the definition below.

4.1.2 Definition Let Rn be the usual vector space over R and let p ≥ 1 be fixed. The ℓp norm ∥x∥p of a vector

x =


x1

x2

...
xn

 in Rn is defined as

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.
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4.1. ℓp norm 21

We should prove that Definition 4.1.2 is correct, i.e., that the assignment x 7→ (
∑n

i=1 |xi|p)
1/p

satisfies the
axioms of Definition 4.1.1. We do not give such a proof, we refer, e.g., to [30].

4.1.3 Examples ℓp norms for p ∈ {1, 2}:

(1) The ℓ2 norm is a norm, also known as the Euclidean norm, representing the magnitude of a vector, is
defined as follows

∥x∥2 =
√

x2
1 + x2

2 + . . . + x2
n.

It is induced by the standard scalar product

∥x∥2 =
√
⟨x,x⟩ , where ⟨x,y⟩ =

n∑
i=1

xiyi.

(2) The ℓ1 norm is a norm, also known as the Manhattan norm. It is computed as follows

∥x∥1 = |x1| + |x2| + . . . + |xn|.

4.1.4 Remark Another example on Rn norm is the so-called ℓ∞ norm, also known as the max-norm. It is
computed as follows

∥x∥∞ = max{|x1|, |x2|, . . . , |xn|}.

In the definition of the ℓp norm, we have the condition p ≥ 1. However, such ℓp norm will not be of much
interest in this paper. But what if we tried to apply the same formula as in Definition 4.1.2 but for 0 < p < 1?
Let us choose for example p = 1

2 . At first sight, it may seem that the formula “worked well”, but upon closer
look, we find that the result does not satisfy the conditions of the norm definition, see the following example.
Thus, “ℓp norms for p < 1” are not honest norms.

4.1.5 Example

For example, the “ℓ0.5 norm” on Rn defined by the formula

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

p= 1
2= ∥x∥1/2 =

(
n∑

i=1

|xi|1/2
)2

is not a norm on Rn in the sense of Definition 4.1.1. Indeed, condition (3) of Definition 4.1.1 is not satisfied.
For example, take vectors u1,v2 ∈ R2

u =

[
1
0

]
, v =

[
0
1

]
.

Then ∥u+v∥1/2 = 4, while ∥u∥1/2 = ∥v∥1/2 = 1. Hence, the inequality ∥u+v∥1/2 ≤ ∥u∥1/2 + ∥v∥1/2 does not
hold.

A similar reasoning can be used to show that the formula

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

for 0 < p < 1 does not satisfy condition (3) of Definition 4.1.1, for any n ≥ 2.

Although (as the previous example shows) “ℓp norms” are not honest norms on Rn for 0 < p < 1, we will
stick to the usual abuse of language and speak about ℓp norms even for 0 < p < 1. Moreover, we will now
introduce yet another formula that does not give a norm on Rn and call it the ℓ0 norm.

4.1.6 Definition Let Rn be the usual vector space over R. For a vector x in Rn we define

supp(x) = {i | xi ̸= 0}

and call it a support of x. The ℓ0 norm ∥x∥0 of a vector x is defined by

∥x∥0 = card(supp(x)).
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22 Chapter 4. An introduction to ℓp norms optimisation

4.1.7 Remark The assignment x 7→ ∥x∥0 is not a norm in the sense of Definition 4.1.1. For example, in R2

we have 2 = ∥
[
3
3

]
∥0 ̸= 3 · ∥

[
1
1

]
∥0 = 6. Analogous reasoning works for any Rn, where n ≥ 1.

4.1.8 Definition The vector x in Rn is called s-sparse if at most s of its entries are non-zero, i.e., whenever

∥x∥0 ≤ s.

4.1.9 Examples In the context of vector norms, we are often interested in unit balls. In our case, we will
illustrate the 2-dimensional unit balls of ℓp norms. Our set will be {x ∈ R2 | ∥x∥p ≤ 1}.

x

y

−1 1
−1

1

∥
[
x1

x2

]
∥1 = |x1| + |x2|

x

y

−1 1

−1

1

∥
[
x1

x2

]
∥2 =

√
(x1)2 + (x2)2

x

y

−1 1

−1

1

∥
[
x1

x2

]
∥∞ = max{|x1|, |x2|}

x

y

−1 1

−1

1

∥
[
x1

x2

]
∥0.8 = (|x1|0.8 + |x2|0.8)1/0.8

x

y

−1 1

−1

1

∥
[
x1

x2

]
∥0.5 = (|x1|0.5 + |x2|0.5)1/0.5

x

y

−1 1

−1

1

∥
[
x1

x2

]
∥0 = card(supp(

[
x1

x2

]
))

4.2 The matrix calculus

In Section 4.3 below we will address a minimisation problem for ℓ2 norm, We choose to demonstrate this problem
for two reasons:

(1) The minimisation problem for ℓ2 norm is similar in phrasing to our main goal: the study of minimisation
problems for the ℓ0 norm.

(2) The minimisation problem for ℓ2 norm — as opposed to that for ℓ0 norm — has a neat algebraic solution.

In preparation for ℓ2 norm minimisation we need to recall various concepts from the matrix calculus. The topic
of matrix calculus is extensive; only a small portion relevant to our needs will be covered in this thesis. Since
it is not the main focus of this work, precise definitions will not be provided. For these, other sources may be
useful, such as [1] or [7]. We assume that a derivative of a function of single variable is a concept that does not
require an explanation in this paper, let us explore how to handle situations where vectors and matrices are
involved in derivatives.

Partial derivative
Partial derivative of a function f : Rn → R with respect to the i-th variable at the point x = (x1, . . . , xn) is
computed by considering all variables xj , j ̸= i, as constants and differentiating the function with respect to

one variable xi. We denote the partial derivative of f(x) with respect to xi by ∂f(x)
∂xi

.
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4.2. The matrix calculus 23

For example, given the function f(x, y) = cos(x2 + y), then

∂f

∂x
= − sin(x2 + y) · 2x

∂f

∂y
= − sin(x2 + y).

More generally, for vector spaces U, V of dimension n and a function f : U × V → R, (u,v) 7→ f(u,v), we
define

∂f

∂u
=
[

∂f
∂u1

∂f
∂u2

· · · ∂f
∂un

]
∂f

∂v
=
[

∂f
∂v1

∂f
∂v2

· · · ∂f
∂vn

]
.

It may be noted that, e.g., ∂f
∂u is a linear map from U to R. Given a point (u0, v0) in U × V , we have

∂f

∂u
(u0, v0) =

[
∂f
∂u1

(u0, v0) · · · ∂f
∂un

(u0, v0)
]
·

(u0)1
...

(u0)n

 .

Total derivative
Now we will generalise the concept of derivatives for the map f : Rn → Rm. As mentioned before, we will
not delve into the precise definition of a differentiable function using limits, or conditions under which is the
function differentiable. We will focus on the form of the derivative (in this case, it will be a matrix) and on
some examples that we will use later.

The Jacobian matrix,1 also the total derivative of the map f at a point x, is a matrix containing partial
derivatives of all components of the map f with respect to all variables:

df(x)

dx
=


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn

 .

Special cases of the Jacobian matrix are as follows:

(1) For f : R → R, the Jacobian matrix is a 1 × 1 matrix. Its unique component is the scalar which is the
derivative f ′(x) of function of one variable, as we know it.

(2) For f : R → Rm, the Jacobian matrix is the column vector f ′(x) =

 f
′
1(x)
...

f ′
m(x)

.

(3) For f : Rn → R, the Jacobian matrix is the row vector f ′(x) =
[
∂f(x)
∂x1

· · · ∂f(x)
∂xn

]
.

Chain Rule (Composite Function Rule)
The vector form of the chain rule is analogous to the rule we know from the derivative of a function of single
variable. Let f : Rn → Rm and g : Rm → Rk. Then the derivative of the composite function is the matrix
product of the individual matrices, i.e.,

dg(f(x))

dx
= g′(f(x)) · f ′(x).

Product Rule The vector form of the product rule is also analogous to the rule we know from the derivative
of a function of single variable, however, it is necessary to pay attention to dimensions of matrices (in our case
we will have vectors) to ensure that the product of vectors is defined.

In what follows, we will need only one instance of the product rule. Namely, for g,h : Rn → Rm, the
derivative of f : x 7→ g(x)Th(x) is given by the formula f ′(x) = g(x)Th′(x) + h(x)Tg′(x).

1In some literature, the Jacobian matrix is called the Jacobian, but the term “Jacobian” in mathematical analysis is often used
for the determinant of the Jacobian matrix, so one has to be careful with the terminology.
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24 Chapter 4. An introduction to ℓp norms optimisation

4.2.1 Examples We will use the following examples in our optimisation task.

(1) For f(x) = x, the derivative f ′(x) is the identity matrix E.

(2) More generally, for f(x) = Ax + b, the derivative f ′(x) is A.

(3) For the squared ℓ2 norm f(x) = xTx, the derivative f ′(x) is 2xT .

4.3 ℓ2 norm optimisation

As mentioned in the introduction to this chapter, the way to solve the ℓ2 minimisation problem will now be
demonstrated. Let us recall that this problem is relatively common and we can show that it is a P problem.
Hence, we can solve it in polynomial time. First, we introduce one useful definition that we will utilise through
the entire thesis.

4.3.1 Definition For a matrix A we will always denote by n its number of columns and by m its number of
rows. We say that A is wide of full rank , if m ≤ n and rank(A) = m holds.

The task of the ℓ2 minimisation problem is to minimise ∥x∥2 subject to Ax = b, where A is wide of full rank.
We will minimise the squared norm because it will be simpler for us, and the solution set will not change.

The problem task will therefore be: We are looking for x such that its squared ℓ2 norm is minimal under the
condition Ax = b. Therefore, we aim to minimise ∥x∥22 under the given constraint and find the argument of
this minimum (while the minimum value would provide us with the minimal norm, our interest lies in finding
the corresponding x). We can express this as follows:

4.3.2 ℓ2 optimisation problem (L2O)

Given wide matrix A of full rank and vector b. Find arg min{∥x∥22 | Ax = b, x ∈ Rn}.

4.3.3 Theorem The solution to (L2O) is given by x = AT (AAT )−1b, hence (L2O) is a P problem.

Proof. The square of the norm can be calculated as ∥x∥22 = xTx, and we can rewrite the condition as
b−Ax = o. Thus, the problem (L2O) is a constrained extremum problem

Minimise xTx subject to b−Ax = o.

We use the standard approach: we construct the Lagrange function

L (x,λ) = xTx + λT (b−Ax),

where λ is a vector of Lagrange multipliers.
To find stationary points, we set the partial derivatives with respect to x and λ equal to o.

∂L

∂x
= 2xT − λTA

!
= o (4.1)

∂L

∂λ
= bT − xTAT !

= o (4.2)

From (4.1) we express x:

xT =
1

2
λTA

or, equivalently,

x =
1

2
ATλ. (4.3)

We modify the equation (4.2)
bT − xTAT = o
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4.3. ℓ2 norm optimisation 25

or, equivalently,

b−Ax = o

b = Ax.

Now we substitute the expression (4.3) for x, thus obtaining

b =
1

2
AATλ.

From this, we express λ. The next step would be

λ = 2(AAT )−1b, (4.4)

but we have to prove (AAT )−1 exists. We use the following two standard results.

(1) For every matrix A, the equality rank(A) = rank(AT ) holds.

(2) For every matrix A with n columns and m rows, the equality rng(ATA) = rng(AT ) holds, where rng(A)
is the range of matrix A defined as rng(A) = {Ax | x ∈ Rn}.

For the proofs of the above two statements we refer to, for example, the book [33].

By combining these two statements, we obtain rank(AAT ) = rank(A) = rank(AT ) = rank(ATA). Since
we assumed at the beginning that A has full rank, the matrix AAT has m columns and m rows and has also
full rank m. This implies that AAT has linearly independent rows, is regular, and thus, there exists an inverse
(AAT )−1.

Combination of (4.3) and (4.4) will give us the stationary point

x = AT (AAT )−1b, λ = 2(AAT )−1b (4.5)

of the Lagrange function.

By Section 20.6 and Theorem 22.8 of [8], the above stationary point in fact yields the global minimum of
x 7→ xTx under the constraint Ax = b. In other words,

AT (AAT )−1b = arg min{∥x∥22 | Ax = b}.

The expression AT (AAT )−1b can be computed in polynomial time (use, e.g., standard algorithms from linear
algebra). Thus, the problem (L2O) is a P problem.2 ■

4.3.4 Remark The expression AT (AAT )−1 from Theorem 4.3.3 is related to the concept of the pseudoinverse
of a matrix.

More in detail, there exists a concept of a Moore-Penrose pseudoinverse A+ of a matrix A, see, for exam-
ple, [3] for the theory.

In case of a wide matrix A with full rank, we have

A+ = AT (AAT )−1.

Thus, the problem of minimising the ℓ2 norm of x under the constraint Ax = b can be expressed as x = A+b.

A similar formula, namely A+ = (ATA)−1AT , holds for tall matrices A. Here, A is a tall matrix, if it has
n columns, m rows, m ≥ n and rank(A) = n.

For a general matrix A no neat formula for A+ exists; one has to use, for example, the Singular Value
Decomposition of a matrix.

2Strictly speaking, one has to reformulate (L2O) as a decision problem. In fact, the decision variant of (L2O) is straightforward
to formulate: Given A,b, decide whether there exists x such that ∥x∥22 is minimal subject to Ax = b. See Section 3.2.
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26 Chapter 4. An introduction to ℓp norms optimisation

4.4 ℓ0 norm optimisation

As demonstrated in Section 4.3, the minimisation of the ℓ2 norm is a P problem. Now, we will turn our attention
to the ℓ0 norm. In 1995, it was shown that the minimisation of the ℓ0 norm is NP -hard [23] (the concept of
NP -hard problems is explained in Definition 3.1.9), and we will now examine this proof. The formulation of
such a problem looks like as follows:

Find x subject to ∥x∥0 is minimal and Ax = b.

In fact, we consider a more general problem:

4.4.1 Sparse Approximate Solutions (SAS)

Given 0 ≤ η < 1, matrix A and vector b. Find x subject to ∥x∥0 is minimal and ∥Ax− b∥2 ≤ η.

First, let us examine the Exact 3-Cover Problem. Its relevance will be demonstrated shortly.

4.4.2 Exact 3-Cover Problem (X3C)

Given set X with card(X) = 3q, where q ∈ N (i.e., the number of elements in X is divisible by 3). Let C
be a system of 3-element subsets of X. The problem is stated as follows:

Does there exist C′ ⊆ C such that C′ is an exact cover of X? This means that we need C′ to cover X, and,
each x ∈ X is exactly in one element of C′.

The following statement is provided without proof; for a proof, we refer to [16].

4.4.3 Proposition The (X3C) problem is NP -complete.

Our strategy is as follows: we will demonstrate that the (X3C) problem can be polynomially reduced to the
(SAS) problem. Thanks to Proposition 4.4.3, we know that every NP problem can be polynomially reduced
to (X3C). Therefore, every NP problem can be reduced to (X3C) in polynomial time, and (X3C) can be
polynomially reduced to (SAS). This implies that every NP problem can be polynomially reduced to (SAS),
making (SAS), according to the Definition 3.1.9, NP -hard. Observe that we have not formulated (SAS) as
a decision problem. Therefore, strictly speaking, we need to work with its decision-problem reformulation in
Theorem 4.4.6 below.

4.4.4 (SAS-decision)

Given 0 ≤ η < 1, matrix A and vector b. Decide, whether there exists x such that ∥Ax− b∥2 ≤ η holds
and ∥x∥0 is minimal.

Before we start proving our main result of this section, we need the following easy lemma.

4.4.5 Lemma Suppose C′ = {Ci | i ∈ I ′} is an exact cover of the set X with card(X) = 3q. Then C′ contains
precisely q elements; i.e., card(I ′) = q.

Proof. The equalities

3q = card(X) =
∑
i∈I′

card(Ci) = card(I ′) · 3

hold. Thus, card(I ′) = 3q
3 = q. ■

Now we formulate the following theorem we will aim to prove.

4.4.6 Theorem The (X3C) problem can be polynomially reduced to the problem (SAS-decision). Therefore,
the (SAS-decision) problem is NP -hard.
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Proof. Let us begin by making preliminaries for the proof; we will find it useful shortly.

(1) Suppose a set X is given, with card(X) = 3q. Denote 3q = m. Suppose further that

C = {Ci | i = 1, 2, . . . , n}

is a system of 3-element subsets of X.We have given the input data of the problem (X3C).

(2) Let 0 ≤ η < 1 be given.

(3) Now, define the matrix A with n columns and m rows

A =
[
a1 a2 · · · an

]
,

where vectors ai, i = {1, 2, . . . , n}, are defined as follows:

(ai)j =

{
1, if j ∈ Ci,

0, otherwise.

This means that each vector ai contains exactly three ones, and the rest of the entries are zeroes.

(4) Create the column vector b =

1
...
1

 with m components.

Notice that matrix A and vector b can be constructed in polynomial time.

(5) Let ∥Az−b∥2 ≤ η with η given as above. Then ∥z∥0 ≥ m/3. To prove this, we need to do the following:

(i) Let ∥Az− b∥2 ≤ η. Then ∥Az∥0 = m.

Define the column vector z =

z1...
zn

. For easier computation, square both sides of the inequality and

expand the expression ∥Az− b∥22 component-wise.

∥Az− b∥22 =

 m∑
j=1

(
n∑

i=1

zi(ai)j − 1

)2

.

Suppose that ∥Az∥0 < m. Thus, Az has at least one zero component. For example, if the first
component of Az is zero, then the above equality takes the form

∥Az− b∥22 = (0 − 1)2 +

 m∑
j=2

(
n∑

i=1

zi(ai)j − 1

)2

.

The value of (0 − 1)2 is 1, and adding non-negative numbers to this means that a total value is
greater or equal to 1, contradicting the inequality ∥Az− b∥2 ≤ η. Thus, ∥Az∥0 = m as desired.

(ii) The inequality ∥Az∥0 ≤ 3∥z∥0 holds.

Indeed, each ai contains exactly 3 ones; thus,

Az =

n∑
j=1

(zjaj) =
∑
j

zj ̸=0

(zjaj)

has at most 3 ∥z∥0 non-zero components.

(iii) If ∥Az− b∥2 ≤ η, then ∥z∥0 ≥ m/3.

This follows by combination of (5i) and (5ii).
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28 Chapter 4. An introduction to ℓp norms optimisation

(6) Choose η = 1
2 . By combining (3) and (4), we obtain: from an instance X, C of (X3C), we can construct

the instance A, b, 1
2 of (SAS-decision) in polynomial time. We write it as follows: (X, C)⇝ (A,b, 1

2 )

Now we have prepared everything we need and will move on to the core of the proof. We will show that the
problem (X3C) can be reduced to the problem (SAS-decision) in polynomial time. Review Definitions 3.1.8
and 3.1.6 because we will build on them.
As mentioned above in part (6) of the proof, the process (X, C)⇝ (A,b, 1

2 ) runs in polynomial time. Therefore,
according to the mentioned Definition 3.1.8, we have to prove the following:

(X, C) is a ‘yes’-instance of (X3C) if and only if (A,b, 1
2 ) is a ‘yes’-instance of (SAS-decision).

It is a sentence in the form of equivalence, so to prove it, we must prove these two implications:

(a) If (X, C) is a ‘yes’-instance of (X3C), then (A,b, 1
2 ) is a ‘yes’-instance of (SAS-decision).

(b) If (A,b, 1
2 ) is a ‘yes’-instance of (SAS-decision), then (X, C) is a ‘yes’-instance of (X3C).

Follow the steps below:

(a) Suppose (X, C) is a ’yes’-instance of (X3C), it means there is J ′ ⊆ J such that C′ = {Ci | i ∈ I ′} is an
exact cover of X. Define a vector x0 with n components where (x0)i = 1 if the i-th set in C is included in
the “solution” of the (X3C) instance and (x0)i = 0 otherwise. We can write:

(x0)i =

{
1, when i ∈ I ′,

0, when i /∈ I ′.

Then the following hold:

(i) The equalities ∥x0∥0 = m
3 = q hold because card(I ′) = q (by Lemma 4.4.5).

(ii) Each element of X lies precisely in one element of C′, so Ax0 = b and therefore the inequality
∥Ax0 − b∥2 ≤ 1

2 holds.

(iii) We have q ≤ ∥z∥0 for any z with ∥Az− b∥2 ≤ 1
2 , we know that from part (5) of this proof. Therefore

x0 minimises the ℓ0 norm.
To conclude: we showed that (A,b, 1

2 ) is a ‘yes’-instance of (SAS-decision).

(b) Suppose that (A,b, 1
2 ) is a ’yes’-instance of (SAS-decision). Denote the ℓ0-minimal vector by x0. Using

part (5) of this proof and since A has only three non-zero entries in each of its columns, the equality
∥x0∥0 = q must hold. Denote by I ′ ⊆ I the indices i, such that the i-th component xi of x0 is non-zero.
Thus C′ = {Ci | i ∈ I ′} is an exact cover of X. To conclude: (X, C) is a ‘yes’-instance of (X3C).

By this, our proof comes to an end; we have shown that the (SAS-decision) problem 4.4.4 is NP -hard.
■

Thus, we have shown that the (SAS) problem 4.4.1 is inherently a “hard” problem. See Section 3.2 for the
reasoning. Since we do not want to give up on (SAS), we will seek a suitable replacement for (SAS) that is
computationally more tractable. As it turns out a suitable replacement exists. We devote the next chapter to
this problem.
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Chapter 5

Basis Pursuit

So far, we have discussed ℓp norm optimisation only in general. Now, we consider it more in the context of
Compressed Sensing. Therefore, we will use the notation Θ for our ambient matrix (that we denoted by A in
Chapter 4), which is a typical notation often used in the Compressed Sensing theory.

In Section 2.3, we formulated the problem we are facing as follows: we have a wide matrix Θ and a vector
y containing the measured data. We are looking for the sparsest vector s solving the equation Θs = y. The
precise formulation of that problem is as follows:

Given wide matrix Θ of a full rank and vector y. Find arg min{∥s∥0 | Θs = y, s ∈ Rn}.

In Chapter 4, we showed that the above problem is NP -hard, since it is just an instance of the (SAS)
problem 4.4.1 with η = 0. There are several strategies to deal with it, and this thesis is focused on one specific
strategy: we will transform the ℓ0 minimisation problem to an ℓ1 minimisation problem. The conditions under
which we can do this will be shown in the next chapters; now, we will demonstrate why ℓ1 minimisation is
suitable for our problem.

Note In some literature, this conversion into an ℓ1 minimisation is called a convex relaxation. However, this
term is often used only for relaxation of the constraining conditions, such as replacing x ∈ {0, 1} by x ∈ [0, 1],
for example.

5.1 ℓ1 norm optimisation

The ℓ1 minimisation problem (often called Basis Pursuit) is formulated as follows:

5.1.1 ℓ1 optimisation problem (L1O)

Given wide matrix Θ of a full rank and vector y. Find arg min{∥s∥1 | Θs = y, s ∈ Rn}.

The reason why ℓ1 minimisation is convenient is that it leads to a sparse solution. Let us look at it
geometrically:

Below there are illustrated the 2-dimensional unit spheres of (from the left) ℓ0, ℓ1 and ℓ2 norms, which we
introduced in Chapter 4, and a line y = ax + b. The optimal solution minimising the ℓp norm and satisfying
the given condition is found by “inflating” the respective unit spheres.

x

y

x

y

x

y
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30 Chapter 5. Basis Pursuit

For both the ℓ0 and ℓ1 norms, the solution lies on the coordinate axis, thus we obtain a sparse solution (one
component of the vector will be zero). However, for the ℓ2 norm, we see that the optimal solution does not
typically lie on any of the coordinate axes; none of the vector components will be zero, and thus the solution
is not sparse. We have shown in Theorem 4.3.3 that the ℓ2 minimisation is easy (in fact, it runs in polynomial
time). However, as the pictures above indicate, the ℓ2 minimisation is not suitable for us. It seems that ℓ1
minimisation is a good candidate as the replacement of ℓ0 minimisation.

Of course, we could also use ℓp norm minimisation for 0 < p < 1. As one can see in the figure below, we
get a sparse solution too. Unfortunately, the corresponding ℓp norms are not honest norms either and their
minimisation is not a convex problem.

x

y

x

y

To conclude, ℓ1 minimisation is a suitable replacement for the NP -hard ℓ0 minimisation problem because it
is a convex problem and it provides sparse solutions. So far, we have only indicated this geometrically. Now we
will prove it.

5.1.2 Theorem Suppose Θ =
[
θ1 · · · θn

]
is a wide matrix of a full rank. Assume that the problem (L1O)

has a unique solution s∗, i.e., assume that

min{∥s∥1 | y = Θs}

is attained at the unique vector s∗. Then the set {θj | j ∈ supp(s∗)} is linearly independent and ∥s∗∥0 ≤ m
holds.

Proof. We prove this theorem by contradiction. Let us denote supp(s∗) by the letter S. Assume that the set
{θj | j ∈ S}, i.e., the set of columns of Θ corresponding to the non-zero entries of s∗, is linearly dependent.
Thus, there exists a non-zero vector v with supp(v) = supp(s∗), such that Θv = o.

Now consider the vector s∗ + εv, where ε ̸= 0. First, we verify that it is a solution to our problem: the
equalities

Θ(s∗ + εv) = Θs∗ + εΘv = y

hold. Since s∗ is the assumed unique optimal solution, i.e., the solution with the smallest ℓ1 norm, the inequality

∥s∗∥1 < ∥s∗ + εv∥1.

holds. Expanding the expression on the right-hand side from the definition of the ℓ1 norm, we obtain

∥s∗ + εv∥1 =
∑
j∈S

|s∗j + εvj | =
∑
j∈S

(s∗j + εvj) · sign(s∗j + εvj).

If |ε| is sufficiently small, the expression εvj will not affect the sign of s∗j + εvj . Specifically, it must hold

|ε| <
|s∗j |
|vj |

for all j, hence |ε| < min
|s∗j |
|vj |

.

For such a non-zero ε, we can write

∥s∗∥1 <
∑
j∈S

(s∗j + εvj) · sign(s∗j ) =
∑
j∈S

s∗j · sign(s∗j ) +
∑
j∈S

εvj · sign(s∗j ).

We can further modify the expression to get

∥s∗∥1 < ∥s∗∥1 + ε
∑
j∈S

vj · sign(s∗j ).
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5.2. Basis Pursuit as a linear program 31

If sign(s∗j ) is negative, we can choose a positive ε, and the entire expression

ε
∑
j∈S

vj · sign(s∗j )

will be negative. Similarly, we can choose a negative ε in the opposite case. Thus, the right-hand side of the
inequality will be less than the left-hand side, which contradicts the original statement. Therefore, we have
proven that the set {θj | j ∈ supp(s∗)} is linearly independent.

Recall that the matrix Θ has n columns and m rows. Because {θj | j ∈ supp(s∗)} is linearly independent
and the vector y has m elements, the number of non-zero entries in s∗ cannot be bigger than m. This means
∥s∗∥0 ≤ m. ■

5.2 Basis Pursuit as a linear program

The (L1O) problem 5.1.1 can be written as a linear program. This is very important because linear programming
is a discipline of mathematical programming and there are several well-known and reliable algorithms for solving
linear programs, for example the simplex method.1 For more information on solving linear programs, we refer
to [17].

In general, the linear program is formulated as the minimisation or maximisation of a linear function subject
to linear constraints. Here we will use a special form, called the canonical form. It is often utilised in matrix
representation:

5.2.1 A Linear Program (LP)

Given matrix A with n columns and m rows, vectors c in Rn, b in Rm. Find
arg min{cTx | Ax = b,x ∈ Rn,x ≥ o, (i.e., every component of x is non-negative)}.

The above is a minimisation of a linear function subject to linear equality constraints and non-negative
variables.

We now show how to convert (L1O) 5.1.1 into (LP) 5.2.1. First, we convert the minimised function ∥s∥1 into
the form of the linear function cTx. Let us introduce the so-called slack variables: we divide the unbounded
variable s into two non-negative variables s+ and s− such that s = s+ − s−. We put all positive entries of s
into the vector s+ and all negative entries into the vector s− but with the positive signs, and fill the rest with
zeroes. Both vectors will thus contain only non-negative entries. Let us provide an example:

s =



4
2
0
−3
−2
0
2


=



4
2
0
0
0
0
2


−



0
0
0
3
2
0
2


.

Thus, we get

∥s∥1 =

n∑
i=1

|si| =

n∑
i=1

s+i +

n∑
i=1

s−i =
[
1T 1T

] [s+
s−

]
,

where 1 is the matrix with one column containing 1′s. Now we modify the linear constraints:

y = Θs = Θ(s+ − s−) =
[
Θ −Θ

] [s+
s−

]
.

The final formulation of ℓ1 minimisation in the form of a linear program looks like as follows:

1Although the simplex method — in its worst-case scenario — has exponential complexity, it was proved in [32] that it “usually”
runs in polynomial time.
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32 Chapter 5. Basis Pursuit

5.2.2 ℓ1 optimisation as a linear program (L1LP)

Given matrix Θ with n columns and m rows and vector y in Rm. Find

arg min

{[
1T 1T

] [s+
s−

] ∣∣∣ [Θ −Θ
] [s+

s−

]
= y,

[
s+

s−

]
≥ o

}
.

Hence we have made first steps in tackling the Compressed Sensing problem: we replaced the ℓ0 minimisation
with ℓ1 minimisation, and, ultimately, with a problem of a linear programming. Our replacement hinges upon
Theorem 5.1.2. That is, we need to assume that the solution of (L1O) 5.1.1 is unique, which is not the case in
general.

5.2.3 Example If we want to minimise ∥
[
s1
s2

]
∥1 subject to

[
1 1

]
·
[
s1
s2

]
=
[
1
]
, it is clear from the following

picture

s1

s2

s1 + s2 = 1

that this problem has at least three solutions, namely

[
1
0

]
,

[
0
1

]
,

[
1/2
1/2

]
.

In the following chapters we will concentrate on conditions that ensure Theorem 5.1.2 is applicable.
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Chapter 6

The Null Space Property

In Chapter 5, we discussed that the NP -hard problem of ℓ0 optimisation can be, under certain conditions on
the ambient matrix, transformed into the ℓ1 optimisation problem. In this chapter, we will introduce one of
these conditions called the Null Space Property (NSP).1 As the name says, NSP is a property of a matrix that
speaks about the structure of its kernel. In fact, we show in Theorem 6.2.6 below that NSP is equivalent to
the existence of a unique “sufficiently sparse” solution of (L1O) 5.1.1. Hence, for NSP matrices we can use the
theory given in Chapter 5: the ℓ0 minimisation can be replaced with ℓ1 minimisation.

6.1 Nullifying components of a vector

Before we delve into the Null Space Property of a matrix, we introduce a useful technique of nullifying chosen

components of a vector. For example, given a vector


−3
2
1
4

, we want to produce


0
2
0
0

 that has components with

indices in the set {1, 3, 4} nullified. Clearly, such a construction can be described by applying a certain linear
map that we now define in full generality.

6.1.1 Definition Suppose S ⊆ {1, 2, . . . , n}. We denote by NS the n× n square matrix such that its i-th row
ri has the following form

ri =

{
eTi , i ∈ S,

o, i ∈ Sc = {1, 2, . . . , n} \ S

where, above, ei denotes the i-th vector of the canonical basis of Rn. We call NS the S-nullifying matrix .

Thus, for example, for S = {2} ⊆ {1, 2, 3, 4} we have Sc = {1, 2, 3, 4} \ {2} = {1, 3, 4} and

NS =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

The equality 
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ·


−3
2
1
4

 =


0
2
0
0


holds, as expected.

It will be convenient to refer to the following trivial result.

1The Null Space Property was introduced in [10], the textbook account is given in [15].
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34 Chapter 6. The Null Space Property

6.1.2 Lemma Let S ⊆ {1, 2, . . . , n} and put Sc = {1, 2, . . . , n} \ S. Then the following equalities

NS + NSc = En ∥v∥1 = ∥NSv∥1 + ∥NScv∥1

hold. Above, En is the n× n identity matrix and v is any vector in Rn.

Proof. This first equality follows immediately from the definitions of NS and NSc . For the second equality,
consider that equalities

∥v∥1 =

n∑
i=1

|vi| =
∑
i∈S

|vi| +
∑
j∈Sc

|vj | = ∥NSv∥1 + ∥NScv∥1

hold for any vector v in Rn. ■
The impact of Lemma 6.1.2 can be seen in the following example.

6.1.3 Example Consider a vector v =



1
2
−3
0
3
4
7


and a set S = {1, 3, 5, 6}. In this case, vectors NS ·v and NSc ·v

will look like

NS · v =



1
0
−3
0
3
4
0


, NSc · v =



0
2
0
0
0
0
7


Clearly, the equalities v = E7 · v = (NS + NSc) · v = NSv + NScv hold. Analogously, the equalities ∥v∥1 =
20 = 11 + 9 = ∥NSv∥1 + ∥NScv∥1 hold.

6.2 The Null Space Property and sparse recovery

Now, let us give the formal definition of the Null Space Property.

6.2.1 Definition Suppose Θ is a wide matrix of a full rank.

(1) We say that Θ has the Null Space Property relative to a set S ⊆ {1, 2, . . . , n} if

∥NSv∥1 < ∥NScv∥1 for all v ∈ ker(Θ) \ {o}.

(2) We say that Θ has the Null Space Property of order s if it has NSP relative to any set S ⊆ {1, 2, . . . , n}
with card(S) ≤ s.

6.2.2 Example We provide an example of a matrix having NSP and of a matrix not having NSP.

(1) Consider the matrix A =

1 0 1 0
0 1 1 0
0 0 −1 1

. Its kernel is the span of the vector


−1
−1
1
1

. Then every vector

v ∈ ker(A) \ {o} has the form v =


−a
−a
a
a

 for a ̸= 0. Since, for every one-element set S ⊆ {1, 2, 3, 4} the

equalities ∥NSv∥1 = |a| and ∥NScv∥1 = 3|a| hold for all a ̸= 0, the matrix A has NSP of order 1.
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(2) Consider the matrix A =

[
2 1 0
2 0 1

]
. Its kernel is the span of the vector

−1
2
2

 and we denote this

vector by v. We are interested in whether the matrix A has NSP of order s = 2. Look at the sets
S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}, S4 = {1}, S5 = {2}, and S6 = {3}. For all these sets, the inequality
∥NSv∥1 < ∥NScv∥1 must hold.

For S1 we have

NS1
v =

−1
2
0

 , ∥NS1
v∥1 = 1 + 2 = 3,

NSc
1
v =

0
0
2

 , ∥NSc
1
v∥1 = 2.

The inequality ∥NS1
v∥1 < ∥NSc

1
v∥1 does not hold, which indicates that the matrix A does not have NSP

of order 2.

6.2.3 Remark Notice that, in Definition 6.2.1 (2) above we can restrict ourselves to sets S with card(S) = s.
More in detail, for Θ the following are equivalent:

(a) Θ has NSP of order s in the sense of Definition 6.2.1 (2).

(b) Θ has NSP relative to any set S ⊆ {1, 2, . . . , n} with card(S) = s.

(c) Given v ∈ ker(Θ \ {o}), arrange its components such that |vi1 | ≥ |vi2 | ≥ . . . ≥ |vin | holds. Put S∗ =
{i1, i2, . . . , is}. Then ∥NS∗v∥1 < ∥NS∗cv∥1 holds.

Clearly, (a) implies (b) and (b) implies (c). To prove that (c) implies (a), fix a vector v ∈ ker(Θ) \ {o} and a
set S ⊆ {1, 2, . . . , n} with card(S) ≤ s. We want to prove that ∥NSv∥1 < ∥NScv∥1 holds.

Using the set S∗ of s indices where |vi| are the largest, we obtain the inequality

∥NSv∥1 =
∑
i∈S

|vi| ≤
∑
i∈S∗

|vi| = ∥NS∗v∥1

and, therefore, also the inequality

∥NS∗cv∥1 =
∑
i∈S∗c

|vi| = ∥v∥1 −
∑
i∈S∗

|vi| ≤ ∥v∥1 −
∑
i∈S

|vi| =
∑
i∈Sc

|vi| = ∥NScv∥1.

Since, by assumption, the inequality
∥NS∗v∥1 < ∥NS∗cv∥1

holds, by putting all of the above inequalities together, we obtain

∥NSv∥1 ≤ ∥NS∗v∥1 < ∥NS∗cv∥1 ≤ ∥NScv∥1

establishing the desired inequality.

Now, we will look at an equivalent formulation of the NSP definition.

6.2.4 Proposition Suppose Θ is a wide matrix of a full rank, let S ⊆ {1, 2, . . . , n}. The following are equiva-
lent:

(1) Θ has the NSP relative to S.

(2) The inequality 2∥NSv∥1 < ∥v∥1 holds for all v ∈ ker(Θ) \ {o}.

Proof. Look at the Definition 6.2.1 (1) of NSP relative to S. We will add ∥NSv∥1 to both sides of the inequality
and using the Lemma 6.1.2, we obtain the formulation (2) in Proposition 6.2.4. ■
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36 Chapter 6. The Null Space Property

6.2.5 Remark Suppose v =


v1
v2
...
vn

 ∈ Rn and suppose the inequality 2∥NSv∥1 < ∥v∥1 holds for every set

S ⊆ {1, 2, . . . , n} such that card(S) = s = 1. Then it must hold that

2|vk| <
n∑

i=1

|vi| for all k.

Hence we have

2

n∑
k=1

|vk| < n ·
n∑

i=1

|vi|

or, equivalently,
2∥v∥1 < n · ∥v∥1

Therefore n > 2 holds, i.e., a vector v satisfying the above must be at least from R3. Let us show an example
of such a vector.

Given a vector v =

 1
1.5
1

. See that inequality 2∥NSv∥1 < ∥v∥1 holds for any set S with card(S) = s = 1,

because

2 · 1 < 1 + 1.5 + 1 = 3.5

2 · 1.5 < 3.5

2 · 1 < 3.5

Now we come to an important theorem that gives us the connection between NSP and the exact recovery
of sparse vectors via (L1O) 5.1.1.

6.2.6 Theorem Let Θ be a wide matrix of a full rank. Let S ⊆ {1, 2, . . . , n}. Then the following are equivalent

(1) If x is a vector with supp(x) = S, then x is the unique solution of the problem arg min{∥s∥1 | Θs = Θx}.

(2) The matrix Θ has NSP relative to S.

Proof. To prove that (1) implies (2), assume that every vector x ∈ Rn with supp(x) = S is the unique solution
of arg min{∥s∥1 | Θs = Θx}.

Let v be a vector ∈ ker(Θ) \ {o}. Then, NSv is the unique solution of arg min{∥s∥1 | Θs = Θ ·NSv}. We
have v = NScv + NSv by Lemma 6.1.2. So it holds

Θ(−NScv) = Θ(NSv − v) = ΘNSv −Θv.

Since v ∈ ker(Θ), the equality Θv = o holds. We have Θ(−NScv) = ΘNSv, using Lemma 6.1.2. Moreover,
NSv ̸= −NScv holds because v ̸= o. Since we assumed NSv was the unique solution, we obtain the inequality
∥NSv∥1 < ∥ −NScv∥1 = ∥NScv∥1 that was desired.

To prove that (2) implies (1), assume that Θ has NSP relative to S and choose a vector x ∈ Rn with
supp(x) = S. We want to show that x is the unique solution of arg min{∥s∥1 | Θs = Θx}. Thus, choose any
vector z with Θx = Θz and z ̸= x. We want to prove that ∥x∥1 < ∥z∥1 holds.

Let v = x − z. Because Θv = Θ(x − z) = Θx − Θz and Θx = Θz, we obtain Θv = o, implying
v ∈ ker(Θ) \ {o}. Using the triangle inequality, we have

∥x∥1 = ∥x−NSz + NSz∥1 ≤ ∥x−NSz∥1 + ∥NSz∥1.

Due to the NSP, the inequality ∥x−NSz∥1 < ∥NSc(x− z)∥1 holds, where we have used that x is supported on
S. Thus, we get

∥x∥1 < ∥NSc(x− z)∥1 + ∥NSz∥1 = ∥ −NScz∥1 + ∥NSz∥1 = ∥NScz∥1 + ∥NSz∥1 = ∥z∥1,
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6.2. The Null Space Property and sparse recovery 37

where the last equality holds by Lemma 6.1.2. This completes the proof. ■

The above theorem clearly implies the following corollary, when we consider subsets S ⊆ {1, 2, . . . , n} with
card(S) ≤ s.

6.2.7 Corollary Let Θ be a wide matrix of a full rank and given a set S ⊆ {1, 2, . . . , n}. Then the following
are equivalent

(1) If x is s-sparse, then x is the unique solution of the problem arg min{∥s∥1 | Θs = Θx}.

(2) The matrix Θ has NSP of order s.
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Chapter 7

The Restricted Isometry Property

We have discussed that we can transform our ℓ0 optimisation problem into the (L1O) problem 5.1.1, which we
know how to solve (more about this in Section 5.2). Of course, certain conditions must be satisfied for this
transformation to be feasible, and in the previous Chapter 6, we introduced one such condition — the Null
Space Property (NSP) of the ambient matrix Θ. Unfortunately, verifying whether a matrix satisfies NSP is not
easy. Therefore, we will now introduce another property of matrices called the Restricted Isometry Property
(RIP).1 This property is also more robust against noise and it is popular in Compressed Sensing.

An isometry is a mapping that preserves distances. For RIP, we will not require strict isometry, but rather
“almost isometry”. We do not demand “almost isometry” for the entire matrix Θ but only for individual
submatrices and, moreover, we allow a certain deviation from the isometry requirement.

In order to be able to introduce the Restricted Isometry Property, we need to cover two auxiliary topics:
in Section 7.1 we introduce shrinking of vectors and matrices and in Section 7.2 we provide certain additional
facts about norms in Rn and we also introduce the operator norm. Finally, in Section 7.3 we prove the main
result of this chapter: a matrix having RIP also has NSP, under certain conditions.

7.1 Shrinking vectors and matrices

Analogously to Section 6.1 we need a certain procedure pertaining to vectors before we will be able to delve
into RIP. This time we want to “shrink” a vector v to a given prescribed non-empty set S of indices.

For example, given a vector


−3
2
1
4

 and a set S = {1, 3, 4}, we want to produce the vector

−3
1
4

 that has

card(S) components which are copied from the original vector and which are prescribed by the set S.
Again, the above procedure is given by applying a certain linear map that we define now in full generality.

7.1.1 Definition Suppose ∅ ≠ S = {i1, i2, . . . , icard(S)} ⊆ {1, 2, . . . , n} is given, where i1 < i2 . . . < icard(S). We
denote by PS the matrix with n columns and card(S) rows such that its k-th row is eTik for k = 1, 2, . . . , card(S).

Thus, for example, for S = {1, 3, 4} ⊆ {1, 2, 3, 4} we have

PS =

1 0 0 0
0 0 1 0
0 0 0 1


and the equality 1 0 0 0

0 0 1 0
0 0 0 1

 ·


−3
2
1
4

 =

−3
1
4


holds, as expected.

1The Restricted Isometry Property was introduced in [6], the textbook account is given in [15].
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7.2 Additional facts about norms

In this section we gather further facts about ℓp norms on Rn that will be useful later. We also introduce the
concept of an operator norm and we state (without proof) various equivalent ways how to express this norm.

7.2.1 Lemma Given vector x ∈ Rn. Then the following inequalities

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2,

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞,

∥x∥∞ ≤ ∥x∥1 ≤ n∥x∥∞.

hold. In particular, we have the following chain of inequalities

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2 ≤ n∥x∥∞.

Proof. For the proof, we will use definitions of ℓp norms and we separate individual inequalities. Below, the
index i ranges from 1 to n.

(1) ∥x∥22 =
∑

i |xi|2 ≤
∑

i |xi|2 +
∑

i̸=j |xi||xj | = (
∑

i |xi|)2 = ∥x∥21

(2) ∥x∥2∞ = (maxi |xi|)2 ≤
∑

i x
2
i = ∥x∥22

(3) ∥x∥∞ = maxi |xi| ≤
∑

i |xi| = ∥x∥1

(4) ∥x∥1 =
∑

i |xi| ≤ n · maxi |xi| = n · ∥x∥∞

(5) ∥x∥22 =
∑

i x
2
i ≤ n · (max |xi|)2 = n · ∥x∥2∞

(6) Using the Cauchy-Bunyakovsky-Schwarz inequality for the standard scalar product, we obtain

∥x∥1 =
∑

i |xi| · 1
C.S.B.
≤

(∑
i |xi|2

) 1
2 ·
(∑

i 12
) 1

2 = ∥x∥2 ·
√
n

■

7.2.2 Remark In case x is an s-sparse vector in Rn, the inequality ∥x∥1 ≤
√
n∥x∥2 can be sharpened to

∥x∥1 ≤
√
s∥x∥2.

The reasoning is analogous to that in the proof of Lemma 7.2.1.

7.2.3 Lemma If vectors u ∈ Rn and v ∈ Rn satisfy

max
i

|ui| ≤ min
j

|vj | for all i, j = 1, 2, . . . , n, (7.1)

then

∥u∥2 ≤ 1√
n
∥v∥1.

Proof. From Lemma 7.2.1 and the definition of ℓp norms we have

∥u∥2 ≤
√
n∥u∥∞ =

√
n · max |ui|,

thus
∥u∥2√

n
≤ max |ui| for all i = 1, 2, . . . , n.
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40 Chapter 7. The Restricted Isometry Property

Then it obviously holds

∥v∥1 =
∑
j

|vj | ≥ n · min |vj |,

thus
∥v∥1
n

≥ min |vj | for all j = 1, 2, . . . , n.

Using the initial assumption (7.1), we have

∥v∥1
n

≥ min |vj | ≥ max |ui| ≥
∥u∥2√

n
.

Then we obtain the final inequality

∥u∥2 ≤ 1√
n
∥v∥1.

■

Any norm on Rn induces a norm on the vector space Lin(Rn,Rn) of all linear maps from Rn to Rn (that can
be identified with n× n matrices). This is the so-called operator norm that we define now.

7.2.4 Definition Let T be an n× n real matrix, let z be a vector in Rn and let ∥ − ∥ be any norm on Rn. We
define the operator norm of T to be the number

∥T∥ = sup
z̸=0

∥Tz∥
∥z∥

.

7.2.5 Remark Of course, we should prove that Definition 7.2.4 is correct, that is: we should prove that

(a) the supremum supz̸=0
∥Tz∥
∥z∥ exists

and

(b) the assignment T 7→ supz ̸=0
∥Tz∥
∥z∥ indeed defines a norm in the sense of Definition 4.1.1.

We refer to [22] for the proof. In fact, we provide the following facts about the operator norms without proofs
(which can be found in Appendix A of [15]).

(1) The following equalities

∥T∥ = sup
z̸=0

∥Tz∥
∥z∥

= sup
∥y∥=1

∥Ty∥ = sup
∥x∥≤1

∥Tx∥.

hold. Thus, the norm ∥T∥ of T can be expressed by any of the three expressions above.

(2) If we start with the ℓ2 norm ∥ − ∥2 on Rn (i.e., the norm that is induced by the standard scalar product
⟨−,−⟩ on Rn), then the induced operator norm is denoted by ∥ − ∥2→2 and the equality

∥T∥2→2 = sup
∥x∥≤1
∥y∥≤1

|⟨Tx,y⟩|

holds for any n× n matrix T.

(3) If the matrix T is symmetric, then we have the equality

∥T∥2→2 = sup
∥x∦=0

|⟨Tx,x⟩|
⟨x,x⟩

.
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7.3. The Restricted Isometry Property 41

7.3 The Restricted Isometry Property

We formulate now the Restricted Isometry Property for matrices and we show that RIP implies NSP (under
some additional conditions).

7.3.1 Definition Let Θ be a wide matrix of a full rank.

(1) The s-th restricted isometry constant δs(Θ) of Θ is the smallest δ ≥ 0 such that

(1 − δ)∥x∥2 ≤ ∥Θx∥22 ≤ (1 + δ)∥x∥2 (7.2)

for all s-sparse vectors x ∈ Rn, where s ∈ {1, 2, . . . , n}.

(2) We say that Θ has RIP of order s if δs(Θ) < 1.

We now show that the restricted isometry constant of a matrix can be expressed using the operator norm.

For the sake of readability, we write
vS

for the “shrunk” vector PS · v, and
ΘS

for the “shrunk” submatrix PS ·Θ (see Definition 7.1.1).

7.3.2 Proposition The s-th restricted isometry constant δs(Θ) of a wide matrix Θ of a full rank is given by

δs(Θ) = max
S⊆{1,2,...,n},
card(S)≤s

∥ΘT
SΘS −Ecard(S)∥2→2.

Proof. In the proof, for the sake of readability, we write

∥v∥ ∥M∥ E

for the ℓ2 norm of a vector v, for the induced operator norm of a matrix M, and for the appropriate identity
matrix, respectively.

For the proof, we will take the inequality (7.2) from Definition 7.3.1 (1) and rewrite it using ⟨x,x⟩ =
xTx = ∥x∥2 and using the fact that the vector x is s-sparse. We will thus focus only on vectors of the form
xS ∈ Rcard(S) and the submatrix ΘS , where S ⊆ {1, 2, ..., n} and card(S) ≤ s. We obtain following equivalent
chains of inequalities:

(1 − δ)⟨xS ,xS⟩ ≤ ⟨ΘSxS ,ΘSxS⟩ ≤ (1 + δ)⟨xS ,xS⟩
(1 − δ)xT

SxS ≤ xT
SΘ

T
SΘSxS ≤ (1 + δ)xT

SxS

−δxT
SxS ≤ xT

S (ΘT
SΘS −E)xS ≤ δxT

SxS

−δ⟨xS ,xS⟩ ≤ ⟨xS , (Θ
T
SΘS −E)xS⟩ ≤ δ⟨xS ,xS⟩

|⟨xS |(ΘT
SΘS −E)xS⟩|
⟨xS |xS⟩

≤ δ, xS ̸= o (7.3)

Observe that from this it follows

max
S⊆{1,2,...,n},
card(S)≤s

max
xS ̸=o

|⟨xS |(ΘT
SΘS −E)xS⟩|
⟨xS |xS⟩

≤ δ (7.4)

and also that (7.4) implies (7.3) so these expressions are equivalent.
Now we will use the result 7.2.5 (3) and rewrite (7.4) using the operator norm:
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42 Chapter 7. The Restricted Isometry Property

max
S⊆{1,2,...,n},
card(S)≤s

∥ΘT
SΘS −E∥ ≤ δ.

Since δS(Θ) is defined as the smallest such δ, we obtain the desired formula. ■

For proving our main result (Theorem 7.3.7 below), we need the following auxiliary result.

7.3.3 Lemma Let x,y ∈ Rn be s-sparse vectors with disjoint supports, i.e., supp(x) ∩ supp(y) = ∅. Let Θ be
a wide matrix of a full rank. Then the inequality

|⟨Θx,Θy⟩| ≤ δ2s(Θ) · ∥x∥2 · ∥y∥2.

holds.

Proof. We will use the same relaxation of notation as in the proof of Proposition 7.3.2.

Put S = supp(x) ∪ supp(y). Since supp(x) ∩ supp(y) = ∅, the equalities ⟨x,y⟩ = ⟨xS ,yS⟩ = 0 hold.
Therefore we can write

|⟨Θx,Θy⟩| = |⟨ΘSxS ,ΘSyS⟩−⟨xS ,yS⟩| = |xT
SΘ

T
SΘSyS−xT

SyS | = |xT
S (ΘT

SΘS−E)yS | = |⟨xS , (Θ
T
SΘS−E)yS⟩|.

Using the Cauchy–Bunyakovsky–Schwarz inequality, we have

|⟨xS , (Θ
T
SΘS −E)yS⟩| ≤ ∥xS∥ · ∥(ΘT

SΘS −E)yS∥.

And from properties of the operator norm, we obtain

∥xS∥ · ∥(ΘT
SΘS −E)yS∥ ≤ ∥xS∥ · ∥ΘT

SΘS −E∥ · ∥yS∥.

Here is the final result:

|⟨Θx,Θy⟩| ≤ ∥ΘT
SΘS −E∥ · ∥xS∥ = δ2s(Θ) · ∥x∥ · ∥y∥.

■

Finally, we come to the statement that will give us an interesting result: RIP implies NSP, of course under
some conditions on the ambient matrix. And as we already know from the previous chapter (specifically the
Theorem 6.2.6), if a matrix has NSP it means we can transform our hard problem of ℓ0 optimisation into the
(L1O) problem 5.1.1 that we can solve.

For the proof of Theorem 7.3.7 it will be convenient to introduce the following notation.

7.3.4 Notation Let v be a vector in Rn and let s be a natural number with 0 < s ≤ n. Let n = q · s + r be
the division of n by s with the remainder 0 ≤ r < s. We denote by

S0, S1, . . . , Sq−1, Sq

the following sequence of subsets of {1, 2, . . . , n}:

(1) S0 is the set of those s indices in {1, 2, . . . , n} where the moduli of entries of v are the largest

(2) for any 0 < k ≤ q − 1

Sk is the set of those s indices in (S0 ∪ . . . ∪ Sk−1)c where the moduli of entries of v are the largest

(3) Sq = (S0 ∪ . . . ∪ Sq−1)c

To illustrate how Notation 7.3.4 works, let us show the following example.
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7.3.5 Example Let v



12
9
8
11
7
6
5
4
10
3
2


be a vector in R11 and let s = 3. Then S0 = {1, 4, 9}, S1 = {2, 3, 5}, S2 = {6, 7, 8},

S3 = {10, 11}.

Recall now Definition 6.1.1 of the S-nullifying matrix NS . For a vector v ∈ Rn and 0 < s ≤ n, the following
analogue of Lemma 6.1.2 holds.

7.3.6 Lemma Let v be a vector in Rn and let 0 < s ≤ n. For the sequence S0, S1, . . . , Sq of sets defined in
Notation 7.3.4 the following equality

v = NS0v + NS1v + . . . + NSqv

holds.

Proof. Use the fact that S0, S1, . . ., Sq is a partition of the set {1, 2, . . . , n} and then use Lemma 6.1.2. ■

7.3.7 Theorem Let Θ be a wide matrix of a full rank, let 0 < s ≤ n
2 . If δ2s(Θ) < 1

3 , then Θ has NSP of order
s.

Proof. For any vector v ∈ ker(Θ) \ {o} and the given s, construct the sequence S0, S1, . . . , Sq of subsets of
{1, 2, . . . , n} as in Notation 7.3.4. We claim that it is sufficient to prove that the inequality

∥NS0
v∥2 ≤ δ2s(Θ)

1 − δ2s(Θ)
· 1√

s
∥v∥1 (7.5)

holds. The reason for this claim is divided into several steps:

(1) We claim that (7.5) implies the inequality

2∥NS0v∥1 < ∥v∥1.

For δ2s(Θ) < 1
3 the inequality

δ2s(Θ)

1 − δ2s(Θ)
<

1

2

must hold. Hence, (7.5) implies the inequality

∥NS0v∥2 ≤ 1

2
· 1√

s
∥v∥1

or, equivalently,
2 ·

√
s∥NS0

v∥2 ≤ ∥v∥1. (7.6)

By Remark 7.2.2 the inequality
∥NS0

v∥1 ≤
√
s · ∥NS0

v∥2
holds. Combine that with (7.6) and obtain the desired inequality

2∥NS0v∥1 < ∥v∥1. (7.7)

(2) Inequality 7.7 says that Θ has NSP relative to set S0. In fact, this is the statement of Proposition 6.2.4.
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44 Chapter 7. The Restricted Isometry Property

(3) Item (2) of this proof, the construction of S0 from Notation 7.3.4 and Remark 6.2.3 (c) yields that Θ has
NSP of order s, as desired.

Thus, it remains to prove inequality (7.5).

Use Lemma 7.3.6 and the fact that v ∈ ker(Θ) to conclude that

o = Θv = Θ(NS0
v + NS1

v + . . .NSq
v)

or, equivalently, that the equality

ΘNS0v = Θ(−NS1v − . . .−NSqv) (7.8)

holds.

By assumption that matrix Θ has RIP, the inequality

(1 − δ2s(Θ)) · ∥NS0v∥22 ≤ ∥ΘNS0v∥22

or, equivalently, the inequality

∥NS0
v∥22 ≤ 1

1 − δ2s(Θ)
· ∥ΘNS0

v∥22 (7.9)

must hold.

Now use (7.8) plus the fact that ℓ2 norm is induced by the standard scalar product to rewrite the right-hand
side of (7.9) as

1

1 − δ2s(Θ)
· ⟨ΘNS0

v,Θ(−
q∑

k=1

NSk
v)⟩ =

1

1 − δ2s(Θ)
·

q∑
k=1

⟨ΘNS0
v,Θ(−NSk

v)⟩. (7.10)

Since ⟨ΘNS0
v,Θ(−NSk

v)⟩ ≤ |⟨ΘNS0
v,ΘNSk

v⟩| holds for every k ∈ {1, 2, . . . , q}, one can rewrite (7.9)
using (7.10) to the inequality

∥NS0
v∥22 ≤ 1

1 − δ2s(Θ)
·

q∑
k=1

|⟨ΘNS0v,ΘNSk
v⟩| (7.11)

Observe that the pair NS0v and NSk
v satisfy the assumptions of Lemma 7.3.3, for every k ∈ {1, 2, . . . , q}.

Hence, by this lemma, inequality (7.11) yields

∥NS0v∥22 ≤ δ2s(Θ)

1 − δ2s(Θ)
·

q∑
k=1

∥NS0
v∥2 · ∥NSk

v∥2.

The above inequality can be divided by ∥NS0
v∥2 (which is non-zero, since v ̸= o). We obtain

∥NS0v∥2 ≤ δ2s(Θ)

1 − δ2s(Θ)
·

q∑
k=1

∥NSk
v∥2. (7.12)

Due to the construction of the sequence S0, S1, . . . , Sq in Notation 7.3.4, we have

max
i

|(NSk
v)i| ≤ min

j
|(NSk−1

v)j |

for every k ∈ {1, 2, . . . , q}. Thus, Lemma 7.2.3 applies and we obtain the inequality

∥NSk
v∥2 ≤ 1√

s
∥NSk−1

v∥1 (7.13)
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for every k ∈ {1, 2, . . . , q}. Using (7.13) we can rewrite (7.12) and we obtain

∥NS0
v∥2 ≤ δ2s(Θ)

1 − δ2sΘ
· 1√

s

q∑
k=1

∥NSk−1
v∥1. (7.14)

Since
∑q

k=1 ∥NSk−1
v∥1 ≤

∑q+1
k=1 ∥NSk−1

v∥1 =
∑q

k=0 ∥NSk
v∥1 = ∥v∥1 holds (the last equality holds by

Lemma 7.3.6), the expression (7.14) implies that

∥NS0
v∥2 ≤ δ2s(Θ)

1 − δ2s(Θ)
· 1√

s
∥v∥1

holds, which is the desired inequality (7.5). ■

Let us now summarise what we have achieved in this chapter: we have demonstrated that matrices Θ having
RIP also have NSP (under the additional condition that the RIP-constant of Θ is “sufficiently small”). This
implies that our hard problem of the ℓ0 minimisation can be transformed into a solvable problem of the ℓ1
minimisation, as discussed in Chapter 5. Now, let us consider in some detail which matrices have RIP. That is
the focus of the next chapter.
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Chapter 8

The Restricted Isometry Property for
random matrices

We have seen in Chapter 7 that any matrix Θ having RIP with small restricted isometry constant has NSP.
Consequently, as explained in Chapter 5, such a matrix Θ will be a suitable matrix for the method of Compressed
Sensing. A natural question now arises: do we have sufficiently many examples of matrices that satisfy RIP?
The answer is quite peculiar:

There are plenty of RIP matrices but it is rather difficult to produce an explicit example of such a matrix.

The above statement is no paradox: most known constructions of RIP matrices make use of rather involved
techniques of probability theory.

In this chapter we only indicate that matrices having a certain random pattern do indeed satisfy RIP. The
full proofs of relevant results are out of the scope of this text. Thus, in Section 8.1 we collect the basic notions
of Probability Theory and in Section 8.2 we briefly recall the Fourier transform. These steps are needed to
formulate Theorem 8.3.4 below in Section 8.3.

8.1 A quick overview of probability theory

Probability theory is a large branch of mathematics with applications in many fields. In this thesis, we will
only sketch some key concepts required for our purposes. We will not provide formal definitions, everything
will be said only informally, so for example we will not delve into defining the probability, probability space etc.
Details can be found, e.g., in [14].

As we have said, we will focus on randomness in the concept of RIP. Here are the informal definitions of the
crucial concepts:

(1) A probability space is a set of events that we want to study. In formal probability theory this is a so-called
measurable space i.e., a set M (of events) together with specified subsets of M (the “allowed” sets of
events) that have to satisfy further axioms.

(2) A random variable is (usually) a “well-behaved” function X from a probability space to (a subset of) real
numbers. The random variable X can either be continuous or discrete. Continuous random variables
take values in a certain interval of the reals, whereas the discrete random variables take values in a
(finite) discrete set of real numbers. A good example of a continuous random variable can be measured
temperatures, of a discrete variable when you roll a dice.

(3) A cumulative distribution function F of a random variable X evaluated at x is the probability that X will
take a value less than or equal to x. It is the function F : R → [0, 1] defined by

F (x) = P (X ≤ x) for −∞ < x < ∞

(4) For a continuous random variable X, we introduce a probability density function f , which represents “a
relative likelihood that the value of X will be equal to x”. The density function f of X is any function
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such that f(x) ≥ 0 for all x,
∫∞
−∞ f(x) dx = 1 and such that the equality

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx

holds for any a, b with a ≤ b.

(5) An expected value of a random variable X, denoted by EX, generalises the weighted average. For a
discrete random variable X taking values x1, x2, . . . with probabilities P (X = xi) = pi, the expected value
is defined by

EX =
∑
i

xi · pi,

if this series converges.

For a continuous random variable X with probability density function f(x), the expected value is defined
by

EX =

∫ ∞

−∞
x · f(x) dx,

if this integral exists.

(6) A variance of a random variable X is the expected value of the squared deviation from the mean of X.
It is defined by

var X = E(X − EX)2.

There are usually some “rules” telling us how the events are likely to behave. Thus, several fundamental
models of probability distributions exist, and we now list some of them. We indicate special forms for the
expected value, variance, cumulative distribution function and probability density function.

(1) Bernoulli distribution Ber(p) is an example for a discrete random variable which takes the value 1 with
probability p and the value 0 with probability 1−p. The example of the random variable with the Bernoulli
distribution is the number of ones that come up when rolling a dice.

F (x) =


0 for x < 0

1 − p for 0 ≤ x < 1

1 for x ≥ 1

EX = p, var X = p(1 − p)

(2) Gaussian (Normal) distribution N(µ, σ2) is a type of continuous probability distribution. This distribution
is very important because a lot of random variables has it (it is a good model for example for the height
of individuals in the population).

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , −∞ < x < ∞

F (x) =
1√

2πσ2

∫ x

−∞
e−

(t−µ)2

2σ2 dt, −∞ < x < ∞

EX = µ, var X = σ2

Below you can see a graph illustrating the probability density function of a Gaussian distribution.
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0 x

f(x)

8.2 A brief insight into the Fourier transform

In this section we very informally discuss the Fourier transform. The Fourier transform is a powerful tool used
almost everywhere; we have already mentioned it shortly in Section 2.1. It decomposes a function into sines
and cosines and it is used for converting signals from the time domain to the frequency domain (thus we obtain
the so-called spectrum of the signal). To convert spectrum back to the time domain we use the inverse Fourier
transform.

First, let us consider periodic signals. A “well-behaved” periodic function s with period T > 0 can be
decomposed into a sum of sines and cosines1 as follows:, we use the so-called Fourier series (FS) defined by

s(t) =

∞∑
n=−∞

cne
2πint

T ,

where cn are the Fourier coefficients given by

cn =
1

T

∫ a+T

a

s(t)e−
2πint

T dt, a ∈ R.

Thus, from a periodic continuous signal, we obtain its spectrum which will be discrete and non-periodic.
In the case of a discrete periodic signal, we would proceed very similarly, with the integral replaced by a sum,
and now we would use the so-called Discrete Fourier series (DFS). In this case, the spectrum would also be
discrete, but periodic.

Now, we would like to generalise the Fourier series for non-periodic signals. The idea is as follows: we
extend the period of the periodic signal to infinity in the limit. Here, the information about certain frequencies
will no longer suffice, we will need information about all frequencies, and the obtained spectrum in the case of
non-periodic signals will thus no longer be discrete but continuous.

The Fourier transform (FT) of a “well-behaved” function s is defined by

S(ω) =

∫ ∞

−∞
s(t)e−iωtdt, ω ∈ R, ω = 2πf,

and the inverse Fourier transform is defined by

s(t) =
1

2π

∫ ∞

−∞
S(ω)eiωtdω.

Thus, from a non-periodic continuous signal, we obtain its spectrum which will be continuous and non-
periodic. Again, there is also a tool for discrete non-periodic signals, the so-called Discrete-time Fourier trans-
form. Their spectrum would be continuous and periodic.

Moreover, there is the so-called Discrete Fourier transform, which complements the above four tools (FS,
DFS, FT, DtFT) for computing the spectrum. It allows for the numerical computation of the spectrum from
a sample of the signal, thus, we do not need to know the signal on the entire domain, however, we can obtain
only an approximate result. DFT is a part of almost all computer algebra programs and it is most commonly

1The formulas are simpler to write down if one uses the complex exponential eit = cos t + i sin t. The passage to sines and
cosines can be done by taking the imaginary and the real part, respectively.
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implemented as the so-called Fast Fourier transform (FFT), which is an efficient numerical algorithm for
computing DFT.

The Discrete Fourier transform transforms a finite sequence of complex numbers {xn} = (x0, x1, ..., xN−1)
into another finite sequence of complex numbers {Xk} = (X0, X1, ..., XN−1), where

Xk =

N−1∑
n=0

xn · e
−2iπkn

N , k = 0, 1, ..., N − 1.

Above, we would not delve into technicalities of Fourier transform and Fourier series. For details, we refer,
e.g., to [19].

8.3 The Restricted Isometry Property theorem for random matrices

We will formulate a theorem stating that random matrices have RIP with high probability .

8.3.1 Definition We say that matrix is a random matrix if it has random variables as its entries.

8.3.2 Example A random matrix Θ with independent and identically distributed standard Gaussian random
variables as its entries is called Gaussian random matrix . The following matrix is Gaussian [20].

G =


1.2448 0.0561 −0.8778 1.1058 1.1759 0.7339

−0.1854 0.7819 −1.3124 0.8786 0.3965 −0.3138
−0.4925 −0.6234 0.0307 0.8448 −0.2629 0.7013

0.1933 −1.5660 2.3387 0.4320 −0.0535 0.2294
−1.0143 −0.7578 0.3923 0.3935 −0.4883 −2.7609
−1.8839 0.4546 −0.4495 0.0972 −2.6562 1.3405


8.3.3 Example Here is the example of the Fourier matrix.

F =


1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i 1.0000 + 0.0000i
1.0000 + 0.0000i 0.3090 − 0.9511i −0.8090 − 0.5878i −0.8090 + 0.5878i 0.3090 + 0.9511i
1.0000 + 0.0000i −0.8090 − 0.5878i 0.3090 + 0.9511i 0.3090 − 0.9511i −0.8090 + 0.5878i
1.0000 + 0.0000i −0.8090 + 0.5878i 0.3090 − 0.9511i 0.3090 + 0.9511i −0.8090 − 0.5878i
1.0000 + 0.0000i 0.3090 + 0.9511i −0.8090 + 0.5878i −0.8090 − 0.5878i 0.3090 − 0.9511i


We now state the result saying that for any wide random matrix Θ one can claim with high probability that

Θ satisfies RIP of order s, provided that Θ has “sufficiently many” rows. More in detail, the following holds.2

8.3.4 Theorem Let m < n be positive integers, let δ > 0 and let s = O( m
log4 n

).3 Let Θ be the random matrix

with n columns and m rows defined by one of the following methods.

(1) (Normal entries) Let the entries ofΘ be independent and identically distributed with a normal distribution
N(0, 1/m).

(2) (Bernoulli entries) Let the entries of Θ be independent and identically distributed with a Bernoulli dis-
tribution taking the values ±1/

√
m, each with 50% probability.

(3) (Random rows of the Discrete Fourier transform) Let A ⊆ {0, . . . , n − 1} be a random subset of size
m. Let Θ be the matrix obtained from the Discrete Fourier transform matrix (i.e. the matrix F with
entries F [ℓ, j] = e−2πiℓj/n/

√
n for ℓ, j ∈ {0, . . . , n− 1}) by selecting the rows indexed by A, where i is the

imaginary unit.

Then Θ has RIP of order s with δs(Θ) = δ with probability p ≈ 1 − e−n.

2In item (3) of Theorem 8.3.4, we consider matrices with complex entries. Although we have not developed the theory of
Compressed Sensing for complex matrices in this text, such a theory, of course, exists. See, for example, [15].

3We use the “Big O” notation from Computer Science. The equality s = O( m
log4 n

) means that, roughly, s is “asymptotically

equal” to m
log4 n

.
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The proof is beyond the scope of this work, we will not provide it here, we refer to [2], [28]. The theory
behind random matrices having RIP is very complex and would require an entire separate work; we have
only outlined that matrices having RIP exist and what such matrices look like. Now, we should have all the
necessary information to understand some basic aspects of Compressed Sensing. Since important facts have
been mentioned throughout all chapters, the final summary that follows offers an overview of our key findings,
as far as Compressed Sensing in MRI is concerned.
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Summary

In this thesis, we introduced the concept of Compressed Sensing, a relatively new method from 2006 that
significantly improves many aspects of our lives. One example of its application is magnetic resonance imaging.
Magnetic resonance scan could be very discomforting for patients. But thanks to Compressed Sensing, the
examination can last for a shorter duration of time. Let us now recapitulate the problem we formulated in this
work and how we dealt with its solution.

We have a vector of measured data y and a matrix Θ and we are looking for s that is as sparse as possible
while satisfying the equation Θs = y, i.e.,

Given wide matrix Θ with full rank and vector y. Find arg min{∥s∥0 | Θs = y, s ∈ Rn},

which was formulated in Chapter 5 as an instance of the (SAS) problem 4.4.1. We showed that this ℓ0 min-
imisation problem is NP -hard and we cannot, therefore, solve it efficiently. However, under certain conditions,
we can replace (SAS) with the ℓ1 minimisation problem 5.1.1, which can be written as a linear program and
efficiently solved. To be able to do that, our matrix Θ must be special. Namely, in Chapter 6, we introduced
the Null Space Property (NSP) that enables this transformation. Unfortunately, it is not easy to verify whether
Θ has NSP. Therefore, we introduced the Restricted Isometry Property (RIP) in Chapter 7, which implies
NSP under certain conditions. Constructing a matrix having RIP is difficult, but thankfully, with the use of
randomness, we can obtain such matrices.

Now let us recapitulate it all once more, this time in reverse. It will be stated very informally; for all the
implications mentioned, certain conditions, which were discussed in previous chapters, are necessary .

We have a good random matrix Θ. It has RIP, which means it also has NSP. Because it has NSP, we can
transform the ℓ0 minimisation problem into the ℓ1 minimisation problem. That we write as a linear program
and solve it.

good random
matrix Θ

RIP NSP

ℓ0 minimisation
problem

ℓ1 minimisation
problem

linear program

solved

The Compressed Sensing method is indeed used in magnetic resonance imaging, the software enabling
Compressed Sensing is provided to MR devices, for example, by companies such as Philips [26] and Siemens [11].
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