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Abstract
Coherence and cross-frequency coupling
are fundamental techniques in the analy-
sis of brain activity, that allow to reveal
the synchronization of neuronal activity
in different brain regions and the interac-
tion between different brain oscillations.
Coherence and cross-frequency coupling
assessments are used to understand the
connections between brain regions and to
identify specific frequency patterns that
may be associated with particular cogni-
tive functions or pathological conditions.

The aim of this thesis is to evalu-
ate several existing methods for detec-
tion of phase-amplitude coupling on sim-
ulated data, emphasizing their sensitivity
to noise and time/frequency resolution.
Namely I chose wavelet coherence, phase-
locking value modulation index and mean
vector length modulation index.

These methods were subsequently em-
ployed for analysis of local field po-
tential recordings from parvalbumin-Cre
transgenic mice, to examine possible
changes in hippocampal theta-gamma
phase-amplitude coupling after brain-wide
chemogenetic activation of parvalbumin
interneurons. Findings are so far in-
conclusive, due to small number of sub-
jects (n = 4), but changes in hippocampal
theta-gamma coupling were present across
experimental conditions and warrant fur-
ther study.

Keywords: Coherence, Cross-Frequency
Coupling, Brain Oscillations, Animal
Models, Signal Processing

Supervisor: RNDr. David Levčík,
Ph.D.
Institute of Physiology CAS,
Vídeňská 1083,
142 00,
Praha 4

Abstrakt
Koherence a mezifrekvenční vazba před-
stavují základní techniky v analýze
mozkové aktivity, umožňující odhalit syn-
chronizaci neuronální aktivity v různých
oblastech mozku a vzájemnou interakci
mezi různými mozkovými oscilacemi. Hod-
nocení koherence a mezifrekvenční vazby
jsou využívány k porozumění propojení
mezi mozkovými oblastmi a identifikaci
specifických frekvenčních vzorů, jež mo-
hou být spojeny s konkrétními kognitiv-
ními funkcemi či patologickými stavy.

Cílem této práce je zhodnotit něko-
lik stávajících metod pro detekci fázově-
amplitudové vazby na simulovaných da-
tech, se zaměřením na jejich citlivost na
šum a časové/frekvenční rozlišení. Kon-
krétně jsem zvolil vlnkovou koherenci,
phase-locking value modulation index a
mean vector length modulation index.

Tyto metody byly následně použity pro
analýzu elektrofyziologických záznamů z
parvalbumin-Cre transgenních myší, a
nalezení změn ve theta-gamma fázově-
amplitudové vazbě po globální chemogene-
tické aktivaci parvalbuminových interneu-
ronů. Zjištění jsou zatím neprůkazná kvůli
malému počtu zvířat (n = 4), ale změny
v hippokampální theta-gamma vazbě na-
skrz experimentálními podmínkami byly
přítomny a zaslouží si další studium.

Klíčová slova: Koherence,
Mezifrekvenční vazba, Mozkové oscilace,
Animální modely, Zpracování signálů

Překlad názvu: Srovnání metod
výpočtu koherence a mezifrekvenční
vazby mozkových oscilací u animálních
modelů
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Chapter 1
Introduction

1.1 Neural Oscillations

Neural oscillations emerge due to the activity of neurons in the brain (and
even in brain slices in vitro [1]). On long time scales, no clear spectral peaks
appear, but for short time windows (seconds), power is concentrated around
certain frequencies. Why this separation of power happens and what are
the consequences has been a matter of interest since the invention of the
electroencephalogram (EEG). Since then, measuring devices similar to EEG
have been invented, namely the electrocorticogram (ECoG) [2] and electrodes
for measuring local field potentials (LFP). Generally, oscillations appear in
recordings from any of these methods. This is not surprising, since these
record the electrical activity of the brain (extracellular voltage), but with
different spatial resolution, see Figure 1.1.

Usual ranges of neural oscillations are listed in Table 1.1, however these
are not sharply defined. Currently, since mechanisms that lead to them are
not well understood, it is possible that certain rhythms will bear different
designations across species, even if they fulfill similar roles (especially if they
fall on the border of respective ranges). There is also variability in individuals
of the same species, so labeling oscillations is done with some flexibility, see
[3], [4].

Assigning functions and behavioral correlations to individual types of brain
oscillations has proven beyond challenging and opinions are diverse. Some
researchers even propose that neural oscillations are not a feature, but only
a byproduct, which may be undesirable [5]. However, the prevailing view
suggests that brain oscillations indeed have an important role, and evidence
in support only grows each year. Examples will be presented below, with
main focus on LFP data in later parts.

1.1.1 Proposed Functions and Roles

When there is a relation to certain function, it is hardly ever exact, and many
things can only be suspected. Mentioned below are just some general findings
in a very brief manner. For a longer account, reviews on each rhythm are
cited in the beginnings of their respective paragraphs. It will be a recurring

3



1. Introduction .....................................

Figure 1.1: Recording sites for electrophysiological methods. EEG electrodes
are placed on the scalp. Typically modern EEG caps have 32, 64, 128 or more
individual electrodes. ECoG electrodes are placed either outside dura mater
(not shown), or subdurally, directly on the exposed cortex. LFP electrodes are
inserted into the tissue. Adapted from [6].

theme, that all neural oscillations are linked to a variety of processes. This
is to be expected, since they appear throughout the entire brain, and thus
likely contribute to many aspects of cognition.

Delta rhythm [7], [8], appears during sleep stages, particularly during
deep sleep (slow-wave sleep). While it plays a crucial role in regulating sleep
architecture and promoting restorative sleep patterns, its involvement in
other cognitive processes is less well understood. Delta has been linked with
decision making, mental calculation [9], object/word recognition and memory
consolidation [10]. It has also been suggested as a mechanism of top-down
control, where this slow rhythm inhibits brain circuits which are not necessary
for the current task.

Theta rhythm [11], [12] has been linked to, spatial navigation, memory,
motion and attention [13]. It is particularly generated in the hippocampus.
For example, in rodents, large amplitude waves of 4-10 Hz appear when the
animal starts to run, but remain some time even afterwards, when the animal
stops. Another role also lies in sensory processing. Theta appears during
activities when an animal perceives the enviroment, such as sniffing [4]. As
for its role in memory, it is well estabilished that lesions on the hippocampus
result in impaired episodic memory [14]. Memories are thought to be encoded
and retrieved within certain phase of the hippocampal theta rhythm [15].
In support of this, Kerrén et al. report that theta phase at which memo-
ries are encoded and retrieved with highest accuracy are shifted by roughly

4



.................................. 1.1. Neural Oscillations

180 degrees [16].

Alpha [17], the first rhythm to be described, has been studied quite exten-
sively in regards to attention. Generally, increase in alpha amplitude has been
associated with decreased attention. Some researchers have also proposed it
as an attentional suppression mechanism, where the alpha rhythm inhibits
activity of neurons that would process irrelevant stimuli [18], since it is strong
in cortical neurons not activated by a stimulus [19].

Beta rhythm [20] mainly originates from the sensorimotor cortex and basal
ganglia in short bursts [21] [22]. It is uncertain whether these sources are
independent of each other. Amplitude decreases prior to and during execution
of movement and increases upon cessation. Beta activity is also enhanced
during motor imagery, or while observing motion. This suggests there might
be some functional similarities with alpha (especially on their border), since
Fries also mentions it as a mechanism of top-down control [19]. I should also
add, that what is referred to as alpha in the occipital region is sometimes
referred to as the mu rhythm (from the alpha family) in the sensorimotor
cortex, which is characteristic of an "idling" state [23].

Gamma [24], as traditionally defined, has the broadest frequency content.
As such, it is common to further subdivide it into slow and fast gamma
(30-70 Hz and 70-150 Hz respectively). Supposedly, gamma activity of neu-
ronal assemblies reflects packets of information in a temporally coordinated
fashion [23], [25]. As to how exactly information is encoded within these
"packets", remains unclear. Nevertheless, gamma rhythm is linked to practi-
cally all forms of sensory information processing in the brain and it is usually
modulated by the slower rhythms, like theta, in the process.

Frequency Band Human Rodents
Delta 0.5-4 Hz 0.5-4 Hz
Theta 4-8 Hz 4-8 Hz
Alpha 8-12 Hz 8-13 Hz
Beta 12-30 Hz 13-30 Hz
Low Gamma 30-70 Hz 30-80 Hz
High Gamma 70-150 Hz 80-150 Hz

Table 1.1: Approximate frequency ranges of neural oscillations in humans and
rodents.

1.1.2 Origin of Neural Oscillations

In short, all ionic processes across various types of excitable membranes
within the brain influence the LFP. Transmembrane current, regardless of its
origin, contributes to both intracellular and extracellular voltage fluctuations.
Synaptic activity is often the most significant source of extracellular current
flow, since it lasts long enough for activity of many cells to overlap and lead

5



1. Introduction .....................................
to measurable signals [26]. These synaptic currents involve neurotransmitters
acting on synaptic receptors, leading to inward ion flow at the synapse,
resulting in a local extracellular sink. To maintain electroneutrality, this sink
is balanced by an extracellular source, termed passive or return current.

Additionally, various non-synaptic events contribute prominently to the
extracellular field. Among these are action potentials, calcium spikes, intrinsic
currents, and many others. Geometry of neurons also plays a significant role
in their ability to generate dipoles and this determines, how strongly they
contribute to the total electric field. Neurons with axial geometry, such
as pyramidal neurons, have the ability to generate stronger dipoles [27],
compared to neurons with a more spherical shape.

Many possible models have been developed to understand how certain types
of cells (most basic distinction being inhibitory/excitatory) could be connected
in order to generate these rhythms. For example, the gamma rhythm E-I or
I-I models are mentioned in [28]. Thanks to optogenetics or pharmacological
agents, it is possible to adjust the activity of neuronal populations. Silencing
or increasing the activity of a particular type of neurons can yield further
insight to which types of cells are integral to sustain some rhythms in vivo or
in vitro.

For instance, thanks to these approaches, it is known today, that inhibitory
interneurons are needed for the emergence of gamma oscillations. Namely
parvalbumin-expressing (PV) interneurons generate these rhythms in the
hippocampus and they have the ability to fire reliably and precisely in
concert with other interneurons [25]. In another study, Amilhon et al. were
able to disrupt hippocampal 8Hz theta by optogenetically silencing PV
interneurons [29]. For longer account on hippocampal theta activity and
possible interactions with gamma, see [11].

1.2 Communication through Coherence (CTC)
Hypothesis

This hypothesis of P. Fries has garnered significant attention in neuroscience.
The name comes from the coherence metric, which is used to calculate a
degree of synchronization. For a full account, see the original paper [30]
and the updated version [19]. Most of the investigation was carried out on
the interaction of neurons from different layers of visual and motor cortex
(typically of macaque monkeys).

In short, when a group of neurons is activated, they synchronize their activ-
ity. This creates rhytmic fluctuations in voltage, which leads to time windows
of inhibition and excitation. Inputs which arrive at cycles of excitation will
have much greater chance of making the receiving neuron fire (greater chance
of the input being processed). Those that arive during inhibition will have
little to no impact. Outputs of these neurons are inputs for another group of
neurons. If these outputs arrive randomly, they are unlikely to be processed,
so the sending and receiving groups must be synchronized for communication

6



............................ 1.3. Cross-Frequency Coupling (CFC)

to occur.
Such synchronization occurs even for fast gamma oscillations of distant

connected neuronal groups. Even when the gamma frequency fluctuates, it
does so in both groups in a similar manner [31]. Much more evidence in
support is mentioned in the original papers.

1.3 Cross-Frequency Coupling (CFC)

CFC refers to the synchronization between the phases or amplitudes of neural
oscillations at distinct frequencies. This phenomenon is supposed to play
a central role in coordinating information processing across different brain
regions and communication between brain areas. Most often mentioned types
are described below and can be seen in Figure 1.2.

Figure 1.2: Illustration of CFC types. Slow wave (top) is gradually increasing
in frequency and amplitude. Fast oscillations (plots below) are coupled to the
slow oscillation in different ways.

Phase-Amplitude Coupling (PAC) has been examined extensively
(review of PAC [32]). The slower rhythm is thought to recruit distant neu-
ronal groups into assemblies and ensures they fire in a coordinated fashion.
Reasoning for this assumption is that the increase in extracellular voltage at
the peak of a slow oscillation greatly increases the spiking likelihood of all
affected neurons by bringing them closer to their threshold potential. Things
are not always so straightforward, and sometimes neurons fire at phase that
does not correspond to the peak or trough. This has been attributed to

7



1. Introduction .....................................
different conduction delays between upstream and downstream neurons, but
other factors could play a role. Also, multiple slow rhythms can modulate
high frequency power simultaneously [33]. This coupling is present in many
brain regions, but most data comes from the cortex and hippocampus during
working memory tasks and learning [34].

Phase-Frequency Coupling (PFC) is a type of coupling in which the
phase of one oscillation modulates the frequency of another, presumably by
modulating the excitability of neurons which give rise to the fast rhythm. It
is unlikely that the slow wave would be able to modulate the frequency of
the fast wave beyond certain range. This type of coupling is reported only
rarely [35].

Phase-phase coupling (PPC) describes the alignment of the phases of
two oscillatory signals over time [35]. It means that as one signal completes a
cycle, the phase of the other signal coincides with certain points in that cycle.
It is also called n:m coupling when the frequency of the faster oscillation is
an integer multiple of the slower oscillation (1:5 in Figure 1.2). Whether true
PPC occurs in the hippocampus (and other regions as well) has been called
into question. Misleading coupling levels may result from the asymmetrical
waveform or methods used for time-frequency analysis, such as filtering [36].

Amplitude-Amplitude Coupling (AAC) has been investigated and
reported little in comparison. Which function it serves, if any, is uncertain
[37]. Two fast waves can appear to have AAC when their amplitudes are
simultaneously modulated by the phase of some slow rhythm.

In a recent paper, Gonzales et al. have examined the possible connection
between CFC and the CTC hypothesis. Their findings have shown that the
phase of theta waves influences fast gamma synchronization (100-150 Hz)
across the neocortex during REM sleep. These results suggest a potential link
between the phenomena of CTC and CFC, hinting at a unified mechanism
for efficient long-range communication [38].

1.4 Neural Oscillation in Brain Disorders

One of the reasons for analyzing neural oscillations lies in understanding and
diagnosing neurological/neuropsychiatric diseases [39]. The most outwardly
obvious alterations in brain rhythms (and their couplings) arise in epilepsy.
Other conditions such as Alzheimer’s disease (AD), Parkinson’s disease (PD)
and schizophrenia are also extensively studied in this context [40].

In AD, the general trend in resting-state EEG is a decrease in power of
higher (alpha, beta, gamma) and increase in slower frequencies (theta, delta).
This change correlates with memory impairment [41]. Changes in coupling
(particularly theta-gamma) have been reported in rat and mice models of
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.......................... 1.4. Neural Oscillation in Brain Disorders

AD and that is even before noticeable memory impairments and increased
concentrations of amyloid beta, a well estabilished marker of AD [42], [43].

PD is characterized by tremors, rigidity and bradykinesia (slowness of
movement). The first two are related to changes in beta oscillations, while
the tremors are coherent with theta oscillations (in unmedicated patients)
[44], [45]. Abnormally high beta-gamma PAC appears in several brain areas
related to motor function [46] (subthalamic nucleus, primary motor cortex,
premotor cortex, primary somatosensory cortex, prefrontal cortex), and it is
high also across these regions. Gong et al. showed that only coupling between
different regions correlates with motor dysfunction [47]. Nevertheless, both
serve as good markers of PD, and the latter may be an important avenue for
further research.

In schizophrenia, EEG recordings show impaired theta-gamma PAC
during working memory task [48]. Some studies were unable to distinguish
significant differences in PAC, noting that it may be task-dependent [40]. Even
when theta-gamma PAC is preserved, patients exhibit changes in power of
most frequency bands. Most consistent among these are increased theta/delta
power. Other frequency bands show changes that vary in individuals. Compar-
ing greater number of patients is further complicated due to diverse treatment
options, which can affect certain rhythms in virtually any metric, be it power,
CFC or coherence [49].

This shows that neural oscillations can be a powerful tool. AD, PD, and
schizophrenia patients benefit greatly from early diagnosis and treatment.
In such cases, the non-invasive nature of EEG makes it especially valuable,
possibly enabling detection of subtle changes in brain activity that may
precede the onset of clinical symptoms. Understanding why these changes
ocurr in the first place provides insights into underlying mechanisms, so that
targeted therapeutic interventions can be developed.

1.4.1 Utility of Animal Models in Neuroscience

Much can be done with just scalp EEG, but at times it is necessary to pin-
point activity more closely (to get a look at a particular region, or a group of
cells). Using an ECoG or implanting electrodes into the brain is, by nature,
an invasive procedure that carries certain risks [50]. Most of intracranial
neural recordings from human subjects come from epilepsy and PD patients,
where undergoing such a procedure is necessary for treatment.

Implanting electrodes in healthy human subjects merely to study brain
function is difficult to justify. For that reason, animal models are extremely
useful. This does not eliminate the ethical problems [51], but it leaves some
room for inquiry.

The mouse and the rat are the most popular animal model in neuroscience
today [52]. Their brains share many fundamental features with human brains,
including key neurotransmitter systems and neural circuitry. Additionally,
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1. Introduction .....................................
especially rats exhibit complex behaviors which can provide insights into
higher cognitive functions such as learning, memory, emotion and social
cognition. Despite that, some researchers propose, that a greater diversity of
subject animals should be employed [52]. Through genetic manipulation, it
is possible to derive animals that exhibit some traits of neurodegenerative
or neuropsychiatric diseases and study them [53], [54], [55]. While certain
therapies effective in animals may not directly translate to humans, the
development of human treatments would simply not be possible without
animal models in our world.

1.5 Local Field Potential (LFP) Signal Processing

Activity of neurons results in sources and sinks of cellular current. When
these are separated by distance, dipoles form, resulting in field potentials
which can be measured with an electrode inserted directly into the tissue.
Despite the term "local", LFPs may not reflect local activity, since most of the
activity comes from distant regions by volume conduction [56]. This signal
is very similar to EEG and many EEG processing techniques can also be
employed for LFPs. The most obvious difference EEG measures the summed
activity of billions of neurons, with brain layers closest to the scalp electrodes
having the greatest impact.

LFPs are recorded with electrodes inserted directly into the brain. Simplest
electrodes are just thin metal wires with insulation on the surface, except
for the tip. More sophisticated types exist and are frequently used, but
metal-wire electrodes are still common, precisely because of their simplicity
and also low cost.

1.5.1 Technical Limitations of LFP Recordings

Electrodes for recording LFPs have limited spatial resolution. Also, it is not
possible to determine which neurons’ activity gave rise to the recorded LFP
without tracking the activity of all individual neurons in the brain.

Mammalian brains of common subject animals consist of billions of neurons
and we can only record the activity of a small fraction. It has been estimated,
that when recording LFPs, the signal originates from cells within 50-350µm
radius with the electrode tip at its center. This is an oversimplification, but
it makes for a simple example.

Let’s consider a 250µm radius, which is commonly used [57] (in cat V1, but
that will suffice here). The average neuronal density in the cerebral cortex of
a mouse is 9.2 × 104 neurons/mm3 [58]. Thus, the total activity of roughly
6000 neurons makes up the signal. Even considering the smallest radius of
50µm, that still leads to 50 neurons, which does not seem like much, but
separating their activity, even with multi-channel silicon probes is a discipline
with its own challenges.

Still, one electrode has a poor spatial resolution, in contrast to the excellent
temporal resolution. Straightforward solution is to increase the number of
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..................................... 1.6. Motivation

electrodes, but then there is also more signal to process. Doing so, getting
reliable long-term recordings is still a challenge. Electrodes usually cause
damage to the surrounding tissue, which gets worse over time, and the quality
of the signal deteriorates. Recent progress in electrode design could see this
problem resolved, should modern probes become widely accessible [59].

1.5.2 Difficulties of LFP Interpretation

Linking the exact purpose of neural oscillations in different behaviors is
challenging, especially since animals exhibit a wide selection of them. Also,
as mentioned previously, some rhythms arise and pass in a manner that is
quite unintuitive. Certain rhythms correlate with overall decreased activity
of neurons (alpha/beta in the cortex), but this likely does not hold for all
brain areas.

It is known that neural activity gives rise to oscillations, but the underlying
mechanisms as to how this happens for all of the rhythms are not. There
are many types of neurons all with specific properties, and new ones are still
being discovered. On top of that, only certain types of neurons can give rise
to strong LFPs. Activity of those that contribute in only a minor way is
hidden [56].

LFP is generated by current sources and sinks distributed in space. However,
most of those currents cancel each other out, and what the electrode records
is only a small fraction of total activity [56]. Volume conduction complicates
things further, since without having multiple measuring sites, it is impossible
to tell where the source of the LFP is, and it can result in misleading values
of some metrics, such as coherence [60].

1.6 Motivation

Due to PAC being proposed as an important mechanism for the coordination
of neural activity and information processing, which has been frequently
reported in literature, I chose several methods for its detection. I employed
methods which allow cross-frequency analysis on individual electrodes, though
they may as well be used for the evaluation of PAC across electrodes [61].
Under the assumption, that both low and high frequency activity originate
near the electrode, it is possible to examine PAC (or the rate of strong coupling
events) in the area across experimental conditions. Here I have analyzed four
pilot hippocampal recordings from an available dataset. The hippocampal
theta rhythm has been linked to an array of behaviors and brain states [12].
Hippocampal theta-gamma coupling has also been investigated frequently and
there are reports that even coupling of multiple theta and gamma frequencies
can exist simultaneously, presumably for the communication of different
groups of cells [62]. Since our dataset contains long recordings of background
activity under urethane anesthesia, the main interest is on a preliminary
exploratory analysis of the recordings at hand.
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Chapter 2
Data and Methods

2.1 Simulated Data

I created surrogate data with events of PAC in order to get familiar with
the methods employed. I have generated these in a very simplistic fashion.
Such a signal will likely never be found in a real recording, but it works well
enough to visually examine outputs of methods for coupling. For that I used
the following equations:

Wslow(t) = Aslow · sin(2πfslowt) ... slow oscillation component (2.1)
Wfast(t) = Afast · sin(2πffastt) ... fast oscillation component (2.2)

M(t) = 1 +m · sin(2πfslowt − ϕ)
1 +m

... modulation factor (2.3)

Wmodulated fast(t) = Wfast(t) ·M(t) ... modulated fast oscillation (2.4)
S(t) = Wslow(t) +Wmodulated fast(t) ... signal with PAC (2.5)

where t is a time vector, Aslow, fslow, Afast, ffast, are amplitudes and frequen-
cies of the respective components, m determines the modulation strength,
and ϕ is the phase offset of the modulation factor to Wslow(t).

By setting values of m in range 0 and 1, it is possible to create Wfast(t)
going from no modulation all the way to a fully modulated fast oscillation.
Amplitudes Afast, Aslowwere chosen so that they were in the same propor-
tion as in real recordings. Noise η was generated from a long segment of
recorded signal by phase-shuffling, effectively destroying any consistent phase
relationships. Now having both noise and signal components, energy can
be calculated and then the signal is multiplied by a certain constant to fit
a predefined signal-to-noise ratio (SNR). Afterwards, the signal and noise
components were summed together. I am preserving the noise energy as it
is from the shuffled recording and scaling down the energy of the generated
signal, until a desired SNR is reached.
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2. Data and Methods ..................................
Here I am referring to SNR as:

SNR = ES

Eη
,

where ES is the energy of signal with PAC and Eη is the noise energy
(calculated as sum of squares).

Setting SNR in this way may not be the best option, given that the energy
of the noise is spread over many frequencies, while energy of the signal is
concentrated in two frequencies. Another approach would be to add a more
narrowband noise for each frequency component and gradually increase that,
until energy of the noise surpasses one of the signal frequencies. I find noise
generated by phase-shuffling real recordings a preferable approach, because
it’s closest to the kind of noise one can expect in real recordings. Also, for
visual comparison of results on simulated data, the exact SNR value is not so
important, compared to showing how these methods behave under increasing
levels of noise.

Figure 2.1: Example of signals generated by Equations 2.1, 2.4, 2.5. For clarity,
both amplitudes were set to 1 with a phase offset of 0 and m = 1. (A) Low
frequency component (6Hz). (B) High frequency component (60Hz) modulated
by low frequency component. (C) Sum of A and B. (D) Magnitude scalogram of
signal from C.

Signals for analysis consist of 11 segments of coupling events (such as the
one in 2.1) with gradually increasing modulation from m = 0,0.1,0.2,...1,
starting from no amplitude modulation all the way to a fully modulated fast
wave. I set slower oscillation at 6Hz and the faster at 60Hz, roughly choosing
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................................... 2.1. Simulated Data

the middle of theta and gamma range with a phase offset of ϕ = π
2 . The phase

offset could have been set to a random number, since methods used do not rely
on it. They are however capable of detecting this phase offset. Each coupling
event lasts 20 cycles of the slower oscillation, (so about 3.3 seconds), with 80
cycles (13.3 seconds) of space or noise in between. This spacing ensures that
even with relatively long time window settings for some methods, individual
segments won’t blend into each other, which could artificially inflate the
coupling estimate.

Figure 2.2: Time-frequency representation of simulated signal with segments of
PAC (without noise). Top shows the magnitude scalogram of the whole signal.
Lower plots show zoomed-in portions thereof with PAC events for different values
of m. When m = 0, there is no modulation, hence uninterrupted line appears at
60Hz. As m increases, the 60Hz amplitude gets smaller around certain phase
values of the 6Hz component (here π

2 ). When m reaches 1, the 60Hz amplitude
is modulated all the way to zero. Since each coupling event in the chain lasts 20
cycles of 6Hz component (3.3 seconds), the scalogram should show 20 stripes at
60Hz. Edge effects add two extra at the beginning and end, since segments were
not windowed. I have chosen to ignore them, since these artifacts were more
predictable than those caused by windowing. They also get lost after adding
noise.
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2. Data and Methods ..................................

Figure 2.3: Magnitude scalograms of signals with coupling event after adding
increasing amounts of noise. Top left signal consists purely of noise. Energy of
coupling events in the bottom right are ten times greater than energy of noise.
The edge effects seen in Figure 2.2 are overshadowed by noise in most cases.
Note how the 60Hz component is more difficult to see with increasing m.

When timestamps with events of interest are available alongside record-
ings, it is possible to construct commodulograms and examine which slower
frequencies are coupled to fast frequencies. Another approach is to pick a
slow frequency (or a range of slow frequencies) and calculate the coupling
estimates for all higher frequencies and plot them in time, which is still very
time-consuming. Approach later used for analysis of real recordings, was to
pick one row of the wavelet coefficients corresponding to 60Hz and estimate
the coupling for lower frequencies of 4-8Hz, with 1Hz steps. The wavelet with
60Hz center frequency should be broad enough in the frequency domain to
capture possible coupling in about 50-70Hz.
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2.2 Animals and Surgeries

Four PV-cre transgenic mice (B6.129P2-Pvalbtm1(cre)Arbr/J;
n = 2 males + 2 females, age 12 weeks) were used to determine the effect of
brain-wide activation of PV interneurons on neuronal activity. The PV-Cre
mice were transduced with the DREADD viral vector
AAV2-hSyn-DIO-hM3(Gq)-mCherry (#50474-AAV2, Addgene) and
implanted with electrodes for electrophysiological recordings four weeks
prior to experiments. All surgical manipulations were performed under
2-4% isoflurane anesthesia. Injections of the viral vector (at a concentration
of 4 × 1010 gc/mouse) were administered into the left jugular vein through
the pectoral muscle. Recording electrodes (250µm silver wire with insulation,
A-M Systems) were implanted bilaterally during the viral transduction surgery
chronically into the dorsal hippocampus (dHPC; AP = -1.8, ML = ±1.2, DV
= -1.5) and medial prefrontal cortex (mPFC; AP = 2.4, ML = ±0.5, DV
= -1.2) measured from the bregma, with coordinates selected according to
Paxinos and Franklin [63]. Using dental acrylic, two anchoring screws were
used to attach the implant firmly to the skull. One additional anchoring screw,
placed above the cerebellum, served as a ground and reference electrode for
the recording electrodes. After surgery, animals had free access to drinking
water with antibiotics, analgesics, and anti-inflammatory drugs for five days.
Mice were housed in pairs in a temperature-controlled room (21°C) with a
12-h light-dark cycle for a recovery period of four weeks before experiments.
All animal experiments complied with a protocol approved by the IPHYS
ethical committee for animal welfare and current legislation (the Animal
Protection Code of the Czech Republic and EU Directive 2010/63/EC).

Female Male
f477 m135
f478 m484

Table 2.1: Identification codes of animals used to refer to them throughout work.

2.3 LFP Recordings in Anesthetized Mice

Mice were anesthetized with urethane (1.5 g/kg; i.p.) injected in two half-
doses (0.75 g/kg each) given 10 minutes apart. Additional doses of urethane
(0.15 g/kg) were administered if necessary. LFP activity was recorded bi-
laterally from the dHPC and mPFC. Anesthetized mice were injected with
saline (1 ml/100g body weight; i.p.) and a 50-min recording was conducted
(saline recording). Subsequently, mice were injected with C21 (Hellobio, cat
#HB4888), specific DREADD agonist (1 mg/kg dissolved in 1 ml/100g body
weight of saline; i.p.), and recorded for another 50-min period (C21 recording).
Neural data from all recording channels were amplified (1000x), and the raw
signal was limited by anti-aliasing band-pass filter at 1-475Hz and sampled at
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2. Data and Methods ..................................
fs = 2kHz with Micro 1401-3 Data Acquisition Unit (Cambridge Electronic
Design, UK).

I selected the last 10 minutes of saline and C21 recordings for analysis, since
after 40 minutes the receptors should be strongly activated by the injected
compound. Then I’ve filtered each recording with an IIR comb filter (using
iircomb function) with notches at 50Hz multiples to get rid of powerline
noise. To decrease phase distortion, I used the filtfilt function, which
performs zero-phase filtering. Each signal was wavelet transformed to get
wavelet coefficients (and from that phase and amplitude information) for
1-100Hz components. Upper limit of 100Hz was chosen per the limitations of
the recording system and lower data quality above 100Hz. Methods for PAC
estimates were set up to detect theta-gamma PAC (theta: 4-8Hz, gamma:
50-70Hz).

2.4 Discrete Hilbert Transform (DHT)

The Hilbert transform is a mathematical operation that can be applied
to a real-valued signal to obtain an analytic signal. This analytic signal
is a complex-valued function that captures both the amplitude and phase
information of the original real-valued signal.

For discrete signals, the process begins by computing the Fast Fourier
transform (FFT) of the input discrete signal, decomposing it into its frequency
components. In the frequency domain, the FFT produces a complex-valued
spectrum with positive and negative frequency components. To obtain the
analytic signal, the negative frequency components are typically discarded by
setting them to zero. Signal is then reconstructed via inverse FFT, ending
up with the analytic signal in the time domain. The DHT can be formally
written as:

ŝ[k] = DHT{s[n]} =
{ 2

π

∑
n,

s[n]
k−n , if k is even, n is odd

2
π

∑
n,

s[n]
k−n , if k is odd, n is even

(2.6)

where n ranges over the samples of the original signal and k ranges over the
samples of the transformed signal ŝ[k].

From this, the instantaneous amplitude A[n] and phase ϕ[n] of the signal
can be extracted:

A[n] = |ŝ| (2.7)

ϕ[n] = arg(ŝ) (2.8)

MATLAB allows all of these operations very conveniently within the
functions hilbert, abs, angle [64]. It should be noted, that for extracting
meaningful phase values after DHT, relatively narrowband signal is required.
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2.5 Continuous Wavelet Transform (CWT)

CWT is a powerful tool for time-frequency analysis. It decomposes a signal
into its constituent frequency components by convolution with a series of
wavelets with varying frequencies and scales, providing a detailed represen-
tation of its frequency content as it evolves over time. The CWT is defined
as:

CWTx(a, b) = 1√
|a|

∫ ∞

−∞
x(t)ψ∗

(
t− b

a

)
dt, (2.9)

where x(t) is the input signal, a is the scale parameter, b is the translation
parameter, and ψ∗(t) is the complex conjugate of the analyzing wavelet
function.

I’ve opted for, Morse wavelets [65], but the choice likely isn’t critical.
Fourier transform of Morse wavelet is:

ψP,γ(ω) = U(ω) aP,γ ω
P 2
γ e

− ω
γ , (2.10)

where U(ω) is the unit step function, aP,γ is a normalizing constant, P is
the time-bandwidth product, and γ characterizes the symmetry of the Morse
wavelet.

All instances CWT were obtained with MATLABs cwt in conjunction
with cwtfilterbank to speed up the calculations, since one needs to ob-
tain the wavelet filterbank only once at the start [66], [67]. The settings for
cwtfilterbank in all cases were: VoicesPerOctave=10, FrequencyLimits=[1
100]. Other parameters were left at default, meaning γ = 3, P 2 = 60.

Wavelet coefficients obtained in this way carry both the amplitude and
phase information which can be extracted in the same manner as with DHT.
The real part of each row of these coefficients essentially contains the original
signal, which was bandpass filtered by the corresponding wavelet. Using
this filterbank has a drawback, since wavelets with high center frequencies
tend to be quite broad in frequency domain, so there there is no clear cutoff
frequency. On the upside, designing a wavelet filterbank this way is rather
simple compared to creating a traditional FIR bandpass filterbank.

2.6 Mean Vector Length Modulation Index
(MVL MI)

This method was originally introduced by Canolty et al. [68], and subsequently
Özkurt et al. proposed a normalization factor for MVL MI which accounts
for variations in amplitude time-series of the high frequency component [69].

Here are the steps to obtain MVL MI with amplitude normalization fac-
tor: 1: Select a segment of recording. 2: Extract phase time-series of the
slow oscillation and amplitude time-series of the fast oscillation (either by
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2. Data and Methods ..................................
performing DHT on bandpass filtered signal components, or as in this work,
by CWT, results should be comparable). 3: Get a result from the equation:

MVL MI = 1√
N

∣∣∣ 1
N

∑N
n=1 af (n)ei(ϕs(n))

∣∣∣√
1
N

∑N
n=1 af (n)2

, (2.11)

where af is the amplitude time-series of the fast oscillation, ϕs is the phase
time-series of the slow oscillation, N is the number of samples in the signal
segment and n is the n-th sample point.

I chose 2000ms time windows for the analysis of LFP recordings with 200ms
steps. I have done the same for surrogate data, while also trying out 500ms
time windows with 10ms steps. The choice was made according to previous
work of Seymour et al., who’ve noted that modulation indices return inflated
coupling values for time windows shorter than 1 second [70]. The 500ms is
for comparison with the longer window choice.

Instead of taking the absolute value of the numerator from Equation 2.11,
it’s also possible to extract phase value of the complex vector. Further details
can be found within the supplementary work of [68].

2.7 Phase-Locking Value Modulation Index
(PLV MI)

This modulation index by Cohen shares some similarities with the MVL MI.
First two steps of calculations are the same (i.e. choose a segment and extract
phase and amplitude time-series of slow and fast oscillation), but then the
amplitude time-series is Hilbert transformed to obtain the phase time-series
of the envelope. Cohen notes, that it is required to normalize, de-trend or
subtract the mean from the envelope before the transform to avoid throttling
the phase values. For simplicity, I chose to remove the mean of each analyzed
segment. In contrast to the MVL MI, this method does not consider the
amplitude values of the high frequency components at all.

PLV MI =
∣∣∣∣∣ 1
N

N∑
n=1

ei(ϕs(n)−ϕaf
(n))

∣∣∣∣∣ , (2.12)

where ϕs is the phase time-series of the slow oscillation, ϕaf
is the phase

time-series of the envelope of fast frequency oscillation. N and n is the same
as in Equation 2.11.

I chose equal time windows as in the case of MVL MI for comparison
between methods. Again, the PLV MI is the absolute value of the complex
vector in Equation 2.12, but it’s possible to obtain phase information as well
with angle.
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2.8 Magnitude Squared Wavelet Coherence

Wavelet coherence provides a localized measure of correlation in both time
and frequency domains. I am using MATLABs implementation wcoherence
for all calculations [71]. It is mathematically defined by:

WCoh(a, b) =

∣∣∣Sm(Cx(a, b)C∗
y (a, b))

∣∣∣2
Sm(|Cx(a, b)|2) · Sm(|Cy(a, b)|2) , (2.13)

where Cx(a, b), Cy(a, b) are wavelet coefficients of the input signals x and y
at scales a and times b, Sm is the smoothing function (in MATLABs case a
moving average window) and ∗ is the complex conjugate operator.

The term inside the smoothing function in the numerator of Equation 2.13
is the (unsmoothed) wavelet cross-spectrum:

WCross(a, b) = Cx(a, b)C∗
y (a, b), (2.14)

The denominator of Equation 2.13 is the normalization factor which ensures
that magnitude-squared wavelet coherence returns results in range [0,1].
Wavelet coherence is typically used across electrodes, but by calculating the
wavelet coherence of the slow frequency components (4-8Hz) and the envelope
of the fast time-series a measure of PAC can be obtained. Should these two
signals have a consistent phase relationship, they will have high coherence.
In this manner it is similar to the PLV MI.

2.9 Cliff’s Delta

Cliff’s Delta, also known as Cliff’s δ (meanEffectSize function [72]), is a
non-parametric effect size measure used to quantify the difference between
two groups of data [73]. This effect size is suitable to use with Wilcoxon
rank sum test, which I’ve used to determine the significance of changes across
experimental conditions in LFP recordings (ranksum function [74]). The
formula for Cliff’s δ is given by:

δ = 2
mn

m∑
i=1

n∑
j=1

(sign(Xi − Yj)) , (2.15)

where X = {X1, X2, . . . , Xm} and Y = {Y1, Y2, . . . , Yn} are the two groups
being compared, m and n are the sample sizes of groups X and Y respectively.

Cliff’s δ ranges from -1 to 1, and the magnitude can be generally interpreted
as follows: small effect (|δ| < 0.147), medium effect (0.147 ≤ |δ| < 0.33), and
large effect (|δ| ≥ 0.33).
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Chapter 3
Results

3.1 Simulated Coupling Data

First I tested outputs of MIs on simulated signals by choosing one lower
frequency from which to extract phase values (6Hz) and calculating MIs for all
higher frequencies (Figures 3.1, 3.2). The further the low and high frequencies
are apart, the easier it is to detect PAC. In this case the ffast = 10fslow. I
haven’t been able to detect coupling with much certainty for ffast < 5fslow.
Components with center frequencies of 50-70Hz show increased coupling
estimates (almost 50-90Hz for high SNR). This is expected, due to how wide
these wavelets are in the frequency domain.

How specific these methods are for the chosen lower frequency again de-
pends on the frequency domain width of the filter that was used to obtain
it. Thankfully, wavelets with low center frequencies are quite narrow in
the frequency domain. Figures 3.3, 3.4 illustrate this for MIs and wavelet
coherence/cross-spectrum. I have been unsuccessful with getting good fre-
quency resolution from wavelet coherence between 4-8Hz components and
envelope of the 60 Hz component with low SNR. Even for cases where very
little noise was added, it seems to show high values across a range low fre-
quencies (4-10Hz). Nevertheless, it at least lines up with the actual coupling
events. The (unsmoothed) wavelet cross-spectrum on the other hand gives
visually closer results to the MIs, which show high values mostly around
6±1Hz, clearly evaluating the 6Hz to 60Hz coupling. That said, neither
wavelet coherence/cross-spectrum or the MIs are able to reliably pick up on
segments where the coupling is weak (small values of m from Equation 2.3).

3.2 Analysis of LFP Recordings

Due to achieving poor results with wavelet coherence on simulated data as
well as computational complexity, I opted to use only MVL MI and PLV MI
for the analysis of recorded LFPs. Both methods were set up with a time
window of 2000ms and time steps of 200ms and in the same manner as for
the simulated data in Figure 3.3. First and last 10 seconds were discarded
due to edge effects, but their impact would likely be minor, given the whole
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3. Results .......................................
signal is 10 minutes long. Figure 3.5 shows an example output on real data.
Having calculated these values, I used them to make the plots from Figure 3.5
more readable in hopes of identifying interesting areas in the 10 minute long
recordings. This was done by getting the median (or 75th percentile) of each
row in Figure 3.5 (from the saline recording only) and thresholding. All
coupling estimates which fell beneath the selected threshold were set to zero.
Results of this are in Figures 3.6, 3.7, 3.8, 3.9, for two different animals. Brief
periods of increased coupling are visible with more clarity. These plots look
mostly irregular, but sometimes, strong coupling occurs at a similar time in
both hemispheres, see Figure 3.9.

All coupling estimates (rows in Figure 3.5) were averaged in 2000ms non-
overlapping windows. I now had two vectors, one for saline and another for
C21 recording containing time-averaged coupling estimates for all animals in
both hippocampi. Figure 3.10 shows the medians of the two vectors for each
lower frequency. As can be seen, coupling estimates are correlated across
frequencies. For this reason, Cohen recommends averaging in time-frequency
windows [61]. Hereafter, all coupling estimates were also averaged in the
4-8Hz range.

Under the assumption that the coupling estimates come from the same
distribution in the left and right hippocampus, I joined the time-frequency
averaged values into one vector (for saline and C21 recordings respectively),
in order to examine overall changes in hippocampal theta-gamma PAC within
subjects. I utilized Wilcoxon rank sum test. MVL MI values were significantly
different for saline/C21 recordings (p < 0.05) in three animals with small
to medium effect sizes, but the change was not consistent across animals.
Animals f477 and m484 expressed increased theta-gamma PAC during C21
recording. The opposite was true for f478. Results are shown in Figure 3.11.
For PLV MI the change was significant in all animals (p < 0.05), with medium
to large effect sizes, but again the direction of change is not always the same.
Results can be seen in Figure 3.12. Possible reasons for these shifts will be
covered in Chapter 4.

Similarly to how I have combined PAC estimates from both hippocampi, I’ve
also tried doing the same for all animals, thus getting vectors for saline/C21
recordings. Differences in MVL MI values were not significant. While PLV
MI values were significantly different (p < 0.05), the effect size was small
(δ = 0.12). With a larger number of subjects, the males and females should
be compared separately, but for the purposes of the preliminary analysis, I
merged all animals into one group.

Lastly, I visually investigated whether there is any phase offset preference
by constructing phase-amplitude plots from the MI values (Figures 3.13, 3.14).
Again, mice f477 shows the most notable differences after the application of
C21. Gamma is most strongly modulated at 3π

2 , or 0 and 2π of the theta
phase. The 3π

2 corresponds to the trough of theta. The deviations are
strongest for 4-5Hz lower frequencies and look mostly uniform for 6-8Hz
frequencies.
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.............................. 3.2. Analysis of LFP Recordings

Figure 3.1: MI values calculated by extracting phase of 6Hz and envelopes
or phases of envelopes of all higher frequencies (four lowest plots). Top shows
magnitude scalogram of the input signal with added noise. Since the energy
of the signal is high in this example, wavelets with center frequencies as far as
50-90Hz capture the modulation of 60Hz component. This gets better by adding
more noise. Choosing short time windows results in inflated values of MIs in
places where no coupling is present. The 500ms and 2000ms corresponds to 3
resp. 12 cycles of the 6Hz oscillation.
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3. Results .......................................

Figure 3.2: Same as Figure 3.1 for lower SNR. With more noise added, the
spread along the frequency axis is now no more than 50-70Hz. In a way, even
PLV MI is able to capture the strength of modulation, despite not considering
amplitude values at all. That said, neither method really captures the coupling
when amplitude modulation is weak, since the envelope/envelope-phase time-
series gets overpowered by noise.
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.............................. 3.2. Analysis of LFP Recordings

Figure 3.3: MI coupling values of 4-8Hz components (frequency axis) to 60Hz for
different SNRs. MIs were calculated with 2000ms time windows and 200ms steps.
As SNR decreases, the MIs show increased values for 6±1Hz. For SNR < 0.3,
regions with and without coupling look much the same.

27



3. Results .......................................

Figure 3.4: Comparison of wavelet coherence and magnitude of wavelet cross-
spectrum for different SNRs. Input signals are 4-8Hz components and envelope
of the 60Hz component (similar to Figure 3.3). The cross-spectrum shows better
frequency resolution, but isn’t normalized (varying ranges of colorbars).
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.............................. 3.2. Analysis of LFP Recordings

Figure 3.5: Results from right hippocampal recordings of animal f477 which
presents greatest difference between coupling estimates during respective 10
minute segments. This figure is mainly for illustration. Other animals do not
exhibit such stark contrast between saline/C21 or, in this case, also across
hemispheres. As expected, there will hardly ever be regions of coupling that last
20 cycles (as in the surrogate data), and no such clear regions of high coupling
values for 6-8Hz are visible here.
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3. Results .......................................

Figure 3.6: Median-thresholded PLV MI values from animal f477. Displaying
results for both hemispheres (on the left resp. right) and experimental conditions
(top: C21, bottom: saline).

Figure 3.7: 75th percentile-thresholded PLV MI values from animal f477. Dis-
playing results for both hemispheres (on the left resp. right) and experimental
conditions (top: C21, bottom: saline).
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.............................. 3.2. Analysis of LFP Recordings

Figure 3.8: Median-thresholded PLV MI values from animal m484. Displaying
results for both hemispheres (on the left resp. right) and experimental conditions
(top: C21, bottom: saline).

Figure 3.9: 75th percentile-thresholded MVL MI values from animal m484.
Displaying results for both hemispheres (on the left resp. right) and experimental
conditions (top: C21, bottom: saline). Note the high MVL MI values for C21
recordings in both hemispheres around the 7 minute mark.
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Figure 3.10: Median values of time-averaged coupling estimates over 10 minute
recording for both experimental conditions. Results shown for each method,
animal, hippocampus and low frequency separately. Note the correlation of
coupling estimates for adjacent frequencies. This illustrates the necessity of also
averaging across the frequency range.
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Figure 3.11: Medians and histograms of time-frequency averaged MVL MI
values. Both plots were constructed by joining the PAC estimates from both
hippocampi together into one vector, thus getting the medians/histograms of
PAC estimates for the hippocampus as a whole. Cliff’s δ is displayed above each
bar plot where the difference was significant (p < 0.05).
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3. Results .......................................

Figure 3.12: Medians and histograms of time-frequency averaged PLV MI values.
Otherwise same as Figure 3.11. PLV MI PAC estimates showed significant
differences between saline/C21 recordings in all animals, but again not always in
the same direction. Effect size is displayed above each bar plot.
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Figure 3.13: MVL MI Phase-amplitude plots showing the potential phase offset
preference in theta-gamma PAC. Phase was extracted from the complex vector
in Equation 2.11, while the amplitude is the MVL MI value itself. In most cases,
the distribution looks uniform, with decreases around π. When there is a notable
increase in the MVL MI amplitude, it is usually for phases around 3π

2 . The
increases are visible mostly for lower theta frequencies.

Figure 3.14: PLV MI Phase-amplitude plots. Otherwise same as Figure 3.13.
Results from both methods are comparable.
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Chapter 4
Discussion

Cross-frequency coupling (CFC) has long been proposed as an important
mechanism for coordinated communication between neuronal groups and
across brain regions. Changes in coupling may also be used to detect early
signs of neurological or neuropsychological diseases [48], [46]. Having reliable
tools for the detection of coupling is essential for advancing our understanding
of how the brain functions. Here, I have focused on hippocampal theta-gamma
(4-8Hz to 50-70Hz) phase-amplitude coupling (PAC). This synchronization
is believed to facilitate the coordination of neuronal activity during cognitive
tasks, such as spatial navigation, memory encoding/retrieval, while disruptions
thereof can impact learning and memory processes. As an example, such
pathological changes in PAC were previously reported in rat and mice models
of Alzheimer’s disease [42], [43].

For the evaluation of PAC, I employed two modulation indices, MVL MI
and PLV MI, as well as wavelet coherence. Subsequently, I used these modu-
lation indices to detect changes in PAC in PV-Cre transgenic mice before and
after brain-wide chemogenetic activation of parvalbumin (PV) interneurons
under urethane anesthesia (injection of saline followed by injection of C21,
onwards I refer to the LFP data as saline/C21 recordings).

4.1 Method Comparison on Simulated Data

The comparison of methods on surrogate data was qualitative but clearly
displayed their behavior. For a quantitative comparison, I cited previous
works that employed more sophisticated techniques for generating surrogate
data, rather than the simple multiplication of sinusoids used here [70], [69].
The authors generally suggest, that there is no single optimal method, and
the choice should be based on experiment design and recording quality. All
three methods were able to detect simulated PAC, but wavelet coherence
achieved worse frequency resolution compared to the modulation indices
(MIs). This discrepancy is likely due to the double application of CWT
to obtain coherence values, which leads to further blurring in time and
frequency. Another factor could be the normalization in wavelet coherence
(denominator of Equation 2.13). The wavelet cross-spectrum, which does
not use this normalization, showed results more similar to the MIs. I expect
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4. Discussion ......................................
wavelet coherence to perform better when used for determining CFC across
electrodes, similar to phase-phase coupling methods, rather than for the single
electrode PAC approach demonstrated here.

The MIs were similar in terms of frequency resolution and sensitivity to
noise, and my results are comparable to those in other works [69], [70]. It’s
possible that using a traditional filter bank might yield slightly better resolu-
tion than the wavelets I used due to sharper frequency cutoffs. Consistent
with previous literature, setting the time window for MIs below 1000ms
results in inflated PAC estimates when there is no coupling present [70]. To
my knowledge, there is no standard for the optimal time window. Here, I
used a fixed window for each lower frequency, as is commonly done. This
approach grants slower oscillations better time resolution at the expense of
frequency resolution and vice versa for higher frequencies [61]. To illustrate,
the 2000ms window corresponds to (8, 10, 12, 14, 16) cycles of the respective
4-8Hz oscillations. Therefore, to reach a large MI value for 8Hz coupled
some higher frequency, there would need to be sustained coupling for close to
16 cycles of the 8Hz oscillation, which seems unlikely in real recordings. It
might be worth varying the time window based on the lower frequency exam-
ined, similar to how CWT changes scales. For example, if one chose 8 cycles,
that would result in windows of approximately (2, 1.6, 1.3, 1.14, 1) seconds
for 4-8Hz oscillations, potentially giving the MIs equal chance of detecting
events of sustained 8-cycle coupling. Even so, now the question of how to
choose the time window would change to selecting the optimal number of
cycles, and I doubt a simple answer exists.

4.2 Interpretation of Results from LFP Recordings

Hippocampal theta-gamma PAC of the respective saline/C21 recordings
showed significant differences in most animals, but not in a consistent way.
Mainly, PAC was greater after chemogenetic activation of PV interneurons,
but in some cases, saline recordings displayed stronger coupling. In case of
MVL MI, coupling was greater in C21 recordings of two animals, while the
reverse was true for one animal. For PLV MI, three animals showed increased
coupling after injection of C21 and one on saline, possibly suggesting that
PLV MI is more sensitive for our data. Activity of PV interneurons plays a
pivotal role in formation of theta and gamma oscillations in the hippocampus,
and altering their activity can lead to changes in either rhythm, as well as
coupling between them [25], [29], [75].

Here, the activation of PV interneurons likely accounts for some changes
in PAC, but it’s also necessary to consider other factors, such as the choice
of recording segment for analysis. The C21 recordings were conducted only
after the initial 50 minute saline recording, and the last 10 minutes of
these recordings were selected for analysis. Sleep-like rapid/non-rapid eye
movement (REM/nREM) patterns appear in rats anesthetized with urethane
[76]. REM stages are characterized by rhythmic theta activity, while nREM
is characterized by large amplitude slow wave activity (< 4Hz). If one state
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is prominent in the saline recording and the other in the C21 recording, it
could lead to significant differences in PAC. Urethane anesthesia itself also
leads to a decreased synchronization of activity of hippocampal neurons [77].
C21 recordings were conducted after 50 minutes of saline recordings, so it’s
possible the effects of prolonged anesthesia also influenced the results.

The observed increased modulation of hippocampal gamma amplitude near
theta troughs is consistent with previous works [29], [62], [68], [61]. The theta
trough seems to be a period heightened excitability for cells which generate
the gamma rhythm (including PV interneurons). This potentially ties in
with the work of Fries and his Communication through Coherence hypothesis.
Theta oscillations may create windows of excitation and inhibition in the
hippocampus, and gamma activity generated by cells not aligned with these
windows is silenced [30], [19].

4.3 Future Prospects and Limitations

In upcoming work, I’d ideally conduct similar analysis for a greater number
of subjects than the four animals examined here. To avoid the mentioned
ambiguities tied with selecting only the last 10 minutes of each recording, it
seems appropriate to also examine the whole 50 minute recording. This would
allow for tracking changes in PAC as the injected compound takes effect. This
is necessary for the saline recordings as well in order to distinguish effects of
urethane anesthesia from those brought on by increased interneuron activity.

Naturally, analyzing more and longer recordings increases the computational
time. Since I had a control recording for each animal, I was able to compare
the differences in distributions of MI values from saline/C21 recordings. For
experimental designs without direct control recordings, significance values for
each coupling estimate are usually calculated via bootstrapping techniques.
This involves thresholding each value by some percentage from a surrogate
distribution of PAC estimates at each time point, constructed by repeatedly
shuffling phase values of the studied segment and calculating MIs for it
(usually hundreds of iterations) [78]. This step increases computation time
several hundred-fold, which is impractical for exploratory analysis of long
signals. Therefore, it might be better to choose a threshold, such as the
median or another percentile. While this approach introduces the arbitrary
choice of a threshold, the standard approach might simply not be feasible.

Lastly, I’ve examined only PAC for a limited theta-gamma range in the
hippocampus. In the future, I’d like to exted my focus to cross-regional PAC
and phase-phase coupling to gain a more comprehensive understanding of
how CFC patterns relate to neurophysiological processes.
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Chapter 5
Conclusion

I have qualitatively examined methods for estimation of PAC, namely the
wavelet coherence, MVL MI and PLV MI on simulated data. All three
methods are capable of detecting coupling and their time resolution was
comparable. The manner in which I used wavelet coherence for the detection
of PAC showed worse frequency resolution than the modulation indices.

For the analysis of electrophysiological recordings from PV-Cre mice, I
detected increases hippocampal theta-gamma (4-8Hz to 50-70Hz) PAC after
brain-wide chemogenetic activation of PV interneurons in most animals, but
the results were not entirely consistent. To draw firm conclusions, increasing
the sample size and conducting further analyses is necessary. With this, I
believe to have fulfilled all aspects of the assigned task, but the presented
results should be considered preliminary.
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