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Abstract

This work presents a novel method for
measuring properties of periodic phenom-
ena (e.g., rotation, flicker and vibration)
using an event camera, a device asyn-
chronously reporting brightness changes
at independently operating pixels with
high temporal resolution.

Our approach assumes that for a fast
periodic phenomenon, a highly similar set
of events is generated within a specific
spatio-temporal window at a time differ-
ence corresponding to the phenomenon’s
period. The sets of similar events are de-
tected by 3D spatio-temporal correlation
in the event stream space.

The proposed method is evaluated on
12 sequences of periodic phenomena (i.e.
flashing light and vibration) and periodic
motion (e.g., rotation) ranging from 3.2Hz
(equivalent to 192 RPM) up to 2000Hz
(equivalent to 120000 RPM). The pro-
posed method sets the new state-of-the-
art in the measurement of periodic phe-
nomena by achieving a mean relative er-
ror of 0.172%, which is significantly lower
than the mean relative error of 32.252%
achieved by the baseline method.

Keywords: Event camera, Frequency
estimation, Periodic phenomena,
Properties of periodic phenomena
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Karlovo namésti 13 - building G
Prague 2, 121 35
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Abstrakt

Tato prace predstavuje novou metodu mé-
feni vlastnosti periodickych jevu (napft.
rotace, blikdni a vibraci) pomoci event
kamery, coz je zafizeni asynchronné za-
znamenavajici zmény jasu (eventy) na ne-
zavisle pracujicich pixelech s vysokym ca-
sovym rozlisenim.

N4&s pristup predpoklada, ze pro rychly
periodicky jev je v urc¢itém casoprostoro-
vém okné generovan velmi podobny sou-
bor eventu s ¢asovym rozdilem odpovida-
jicim periodé jevu. Soubory podobnych
eventli jsou detekovany pomoci 3D caso-
prostorové korelace v prostoru eventu.

Navrzend metoda je testovana na 12
sekvencich periodickych jevu (tj. blikajici
svétlo a vibrace) a periodickych pohybu
(napf. rotace) v rozsahu 3, 2 — 2000Hz (coz
odpovida 192 az 120000 ot/min). Nase
metoda dosahuje vyrazné nizsi prumérné
relativni chyby 0,172%, oproti 32, 252%
chybé jediné dostupné metody.

Klicova slova: Event kamera, Odhad
frekvence, Periodické jevy, Vlastnosti
periodickych jevu

Pteklad nazvu: Detekce a analyza
periodickych pohybi s vyuzitim event
kamery
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Chapter 1

Introduction

Accurate measurement of periodic phenomena is crucial in diverse scientific and
industrial fields. Precise quantification of rotational speed, for instance, finds
applications in:

(i) monitoring of rotating components in machinery, e.g., motor speed for per-
formance evaluation and quality control [1],

(ii) aviation as drones require precise rotational speed monitoring for flight
stability and maneuverability [2],

(iii) sports analysis, e.g., ball tracking [3],

(iv) energy production as wind turbines rely on accurate rotational speed mea-
surements to optimize energy production [4].

Traditional methods for measuring periodic phenomena often involve contact-
based devices such as tachometers and rotary encoders. These approaches, while
established, have inherent limitations: (i) physical contact with the target object
can influence its movement and introduce measurement inaccuracies, (ii) contact
methods may not be feasible in scenarios with delicate objects, confined spaces,
or situations where interfering with the target significantly affects its movement.

Compared to contact measurement devices, laser tachometers offer highly
accurate [5], less invasive measurements. However, reflective material (e.g., a
sticker) must be placed on the target to reflect the laser into the sensor while
measuring. Under certain conditions, this limits the application of laser devices
since it might not be convenient or even feasible to attach labels to particular
surfaces or in confined spaces of the observed machinery. Another disadvantage is
that the device operator must aim the laser precisely at the target, as missing the
reflective material pass-through results in an inaccurate measurement.

Another crucial application of periodic phenomenon measurement lies in vi-
bration monitoring. This technique, widely used in industrial settings, is vital
in identifying imminent equipment failures [6]. By analyzing vibration patterns,
engineers can assess the health of machinery and assets, preventing critical break-
downs and costly downtime. Predictive maintenance strategies leverage vibration
data and analytics to detect anomalies before they escalate, enabling proactive
repairs and minimizing production disruptions. However, conventional vibration
monitoring technologies often rely on expensive equipment and require direct



1. Introduction

contact with the target object [6], posing limitations similar to contact-based
methods.

We propose a non-contact method that measures the properties of any periodic
phenomena using an event camera. Our approach assumes that similar sets of pixel
activations (events) will occur at periodic time intervals during the capture of the
phenomenon and that these intervals correspond to the target frequency period.
Put simply, we analyze 3D correlation responses to detect periodic similarities
within the event data along the time axis. We evaluated our method on twelve
sequences of four types of periodic phenomena: light flickering, object vibration,
rotational speed, and periodic movement.

. Used abbreviations

® GT - Ground-truth
® HD resolution — High-definition resolution (1280 x 720px)

®# HDR - High Dynamic Range

ROI - Region of Interest

RPM - Revolutions per Minute



Chapter 2

Event camera & Event-based vision

In recent years, event cameras and event-based vision have gained significant
traction in machine vision for industrial automation, robotics, automotive, and
other applications [7] as the ever-growing complexity of industrial environments
demands innovative approaches to machine vision [8].

. 2.1 Differences between Frame-based and
Event-based vision

The conventional approach, frame-based vision, is increasingly falling short in
certain use cases [9], [10] and struggles with key challenges in industrial settings [11],
such as capturing high-speed motion in dynamic scenes and handling scenes with
extreme lighting variations.

An additional limitation of frame-based cameras is in their inherent nature: they
capture entire images at fixed intervals (frame rate). Although this sufficiently
replicates real-world action for human viewing, as individual frames at a frame rate
higher than 24 frames per second appear to human eyes as continuous motion, the
sensor constantly captures the whole scene, including static background elements,
which generates a substantial amount of redundant data, while the information
about the scene in between the frames is lost.

Event-based vision offers a compelling alternative. The asynchronous pixels of
the sensor of an event camera continuously report changes in the scene brightness
levels with microsecond temporal precision instead of colour information at regular
intervals like a conventional camera. A comparison of frame-based and event-based
camera outputs can be seen in Figure 2.1.

B 22 Prophesee EVK4 event camera & IMX636 sensor

We used the Prophesee EVK4 HD event camera in our experiments. The output
resolution is 1280 x 720 pixels. The camera can capture up to 1066 million events
per second [12] under light conditions ranging from 0.08 up to 100000 lux [13]
with microsecond time resolution (equivalent to 10000 frames per second).

The behaviour of the IMX636 camera sensor is adjustable with five biases [14],
namely with two contrast sensitivity threshold biases (bias_diff_on, bias_diff_off),

3



2. Event camera & Event-based vision

two bandwidth biases (bias_fo, bias_hpf), and the dead time bias (bias_refr).
The contrast sensitivity threshold biases regulate the contrast threshold, influenc-
ing the sensitivity of the sensor to changes in illumination. The bias_diff_on
adjusts the ON contrast threshold, which is the factor by which the pixel must get
brighter before a positive event is reported at that pixel, while the bias_diff_off
determines the OFF contrast threshold, which is the factor by which the pixel must
get darker before a negative event is reported at that pixel. Bandwidth biases
control low-pass and high-pass filters, with bias_fo adjusting a low-pass filter to
filter rapidly fluctuating light and bias_hpf adjusting the high-pass filter to filter
slow illumination changes. Dead-time bias (bias_refr) regulates the refractory
period of the pixel, determining the duration of non-responsiveness for each pixel
after reporting an event.

In our experiments, we set the bias_diff_on contrast sensitivity threshold
bias to 50 and the bias_diff_off bias to 30 due to a higher noise of events with
positive polarities. Other biases remained at their default values.

The data acquired from the event camera are represented as a list of tuples
(x,y,p,t), where z and y denote the spatial coordinates of the pixel that generated
the event, ¢ the timestamp in microseconds of event creation, and p is the polarity
of the brightness change. A value of 0 indicates a decrease in brightness (negative
event), while a value of 1 indicates an increase in brightness (positive event).

A fairly complicated readout process limits the accuracy of assigning a timestamp
to an event in event cameras. When a pixel detects a contrast change, a readout
request is emitted. The hardware identifies the row of the activated pixel, which
is then scanned as a whole. Once the row is scanned, the hardware assigns a
timestamp and polarity to each pixel, forming an event. The time between a
real-world light change and the generation of an event is pixel latency, which is
around 220 ps at 1000 lux and 310 ps at 10 lux [13].

Tfmc
) T
Output ‘
== | e—
Frame-based
camera
%
Output iy
_ T
Event-based

camera
Rotating disc
with a white mark

Figure 2.1: Rotating disc captured by frame-based (top) and event-based (bottom)
cameras. In the same time span, a frame-based camera captures 4 RGB frames (top,
time resolution 1/25 s), an event-based camera records ~ 5+ 10° events (bottom, time
resolution = 220 ps). Based on a figure in [15].



Chapter 3

Related work

. 3.1 Related work

In this section, we discuss existing approaches and technologies, mainly in the
domain of rotation speed measurement, as periodic motion is arguably the most
common periodic phenomenon. We categorise them into three groups: com-
mercially available devices, camera-based methods using RGB cameras, and
event-based methods utilising event cameras.

B 3.1.1 Commercially Available Rotation Speed Measuring Devices

Commercially available solutions for rotation speed measurement include contact
and contactless methods. Contact-based devices include traditional mechanical
tachometers that connect directly to the rotating shaft. These can introduce
potential inaccuracies due to added mass and friction.

Electrostatic sensors achieve contactless measurement by detecting changes in
the electromagnetic field generated by a rotating object equipped with a bearing
and estimating the speed based on the frequency of these changes [16].

Optical encoder tachometers use a photoelectric sensor to detect light passing
through a disc with alternating opaque and transparent segments, enabling speed
estimation using the frequency of detected light changes [17].

Laser tachometers emit light that bounces off reflective stickers attached to
the rotating target and measure the frequency of light detections back at the
sensor [18].

Il 3.1.2 Camera-based Rotation Speed Measurement Methods

Wang et al. [19] proposed a method using a low-cost camera and a simple marker
on the target. Their method involves pre-processing sequential images, followed by
similarity assessment and the application of the Chirp-Z transform to restructured
signals. This approach achieves a relative error of + 1% in the speed range of 300
to 900 revolutions per minute (RPM).

An alternative approach presented in [20] involves calculating structural simi-
larity and two-dimensional correlation between consecutive frames. The derived

5
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parameters are used to reconstruct a continuous time-series signal, and the subse-
quent application of the Fast Fourier Transform allows for speed estimation with
a maximum relative error of + 1% up to 700 RPM.

To increase accuracy and broaden applicability, Natali et al. [21] utilised a
sequence of coefficients derived from the correlation between a reference frame and
subsequent frames. The short-time Fourier transform is then applied to compute
the rotation speed. The algorithm was able to follow the measured speed up to
the order of 1500 RPM with low error. As claimed by the authors, the major
limiting factor is the frame rate of the acquisition rather than the data analysis
method.

While offering the advantage of non-contact measurement, camera-based meth-
ods are often limited by the low frame rate of standard cameras. This can com-
promise accuracy, particularly for high-speed rotations, and limit the measurable
rotation speed range. Additionally, in some cases, the requirement for observable
landmarks or markers on the rotating object can restrict their applicability in
specific scenarios where adding these is not feasible.

Bl 3.1.3 Event-based Rotation Speed Measurement Methods

Event cameras offer high temporal resolution, making them suitable for precise
tracking of rapid rotational motion. Hylton et al. [22] introduced a method com-
puting the optical flow of a moving object within an event stream, demonstrating
its application in estimating the rotational speed of a disc with a black-and-white
pattern. However, their algorithm lacked the sophistication for accurate high-speed
rotation measurements.

Azevado et al. [23] introduced a simple method that allows for rotation speed
measurements with a relative error lower than 0.2%, covering a speed range of
up to 8500 revolutions per minute (RPM). The rotational speed is obtained by
computing the elapsed time between spikes of distinct polarity events in a selected
region caused by rotating patterns. However, the method struggles with targets
that do not regularly produce an increased number of events with specific polarity
(lacking high-contrast features) and is susceptible to noise.

The EV-Tach [24] method first eliminates events not produced by the rotating
object by estimating the median distance from events to their centroid, eliminating
events that exceed a specific threshold. Subsequently, it identifies rotating objects
with centrosymmetric shapes and proceeds to track specific features, such as
propeller blades. This method allows for speed measurements of up to 6000 RPM
with a relative mean error as low as 0.3%o.

Chenyang et al. [25] proposed using laser-assisted illumination to help measure
vibration frequencies to address the shortcomings of other vibration measurement
event-based methods under unstable lighting conditions. At the same time, a
mixture Gaussian distribution is proposed to fit the frequency distribution. Their
method achieved successful vibration frequency measurement within a range of 20
to 300 Hz with minimal error (under 6.23%o) under ambient lighting of 0.01 up to
3800 lux.

Although event-based methods offer a temporal resolution for precise high-speed
rotation tracking, their applicability can be limited in scenarios where the rotating

6
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target lacks clear observable visual features or markers.

Given the lack of publicly available implementations for existing event-based
methods for estimating the frequency of periodic phenomena, this work proposes
two additional methods that serve as benchmarks for evaluating the performance of
our proposed method. Those two methods are inspired by the concepts presented
in the works mentioned above. Additionally, a closed-source method developed
by the manufacturer of the utilised event camera is used as a third benchmark
method. A detailed description of all methods is provided in the following chapter.

In conclusion, this section has explored various existing approaches for measuring
rotation speed. While commercially available devices offer established solutions,
camera-based and event-based methods provide non-contact alternatives with
varying advantages and limitations depending on the specific application and
target characteristics.






Chapter 4
Methods

When developing our method, we hypothesized that to accurately and reliably
estimate the frequency of periodic phenomena, it is necessary to take into account
not only the period of event generation in individual pixels but also the spatial
pattern that the events create, which we explored in our previous work [26], on
which we now follow up with an examination of spatio-temporal patterns in the
event stream to improve the accuracy and range of applications further.

For the baseline method and our proposed method that uses 3D correlation,
the spatial domain of captured event data is segmented into squares of equal size,
referred to as kernels. We then analyse the event stream for each of these kernels
separately. This allows us to present the most common or median result of per-
kernel analysis to the user, resulting in a more robust approach. For computational
efficiency, the user can define a two-dimensional area, region of interest (ROI),
and analyse the event stream of only events with spatial coordinates within the
kernels fully contained in ROI. Selecting a ROI results in reduced processing time,
mainly when the periodic phenomenon of interest occupies a limited spatial area
within the overall event stream.

. 4.1 Baseline method

To test our hypothesis that a method using individual pixels cannot accurately
estimate the frequency of periodic phenomena, we developed a baseline method.
As detailed in Section 2.2, event cameras produce a sequence of tuples (x,y, p,t),
where x and y denote spatial coordinates, p represents the event polarity (positive —
1 or negative — 0), and ¢ is the timestamp in microseconds.

To facilitate efficient event data storage, we used a four-dimensional sparse
array, each dimension corresponding to a value in the tuples, to hold the event
stream data. This enables data retrieval based on defined criteria, such as a
specific spatial region, a particular polarity, or a selected time interval.

The sparse array is then used to extract all timestamps of events generated
by a specific pixel and with a defined polarity. We refer to these timestamps as
PixPol-timestamps.
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The baseline method proceeds in three steps:

1. Temporal analysis — the delta times (A;) between all consecutive PixPol-
timestamps are calculated. Subsequently, the median or mode of these delta
times is computed. We refer to the result as a temporal analysis result since
it originates from data analysis along the temporal axis of the sparse array
for a single pixel and polarity. The parameter of the method determines the
choice between median and mode. This step generates two temporal analysis
results per pixel (one for each polarity), resulting in 2 * kernelsize? results
per kernel.

2. Spatial analysis — temporal analysis results obtained in the previous step
are aggregated. The median or mode of all the results within each kernel is
computed. The second parameter of the method defines the function used.
This step produces a single spatial analysis result per kernel, which estimates
the period of the observed phenomenon in microseconds.

3. Frequency prediction — the final predicted frequency for each kernel is
derived from the estimated period 7' in microseconds using the following
equation:

106

ST

where v(T) returns frequency in Hertz (Hz).

v(T) (4.1)

For plausible outcomes, the method assumes that most events are generated
with the same periodicity as the period of the observed phenomenon.
The baseline method requires three parameters:

1. Kernel size defines the size of spatial areas where the frequency is estimated
separately,

2. temporal analysis function (median or mode) is the method for sum-
marising the delta times within a pixel and

3. spatial analysis function (median or mode) combines the temporal
analysis results across all pixels in the kernel.

The evaluation of this method, including the exploration of various kernel sizes
and combinations of analysis functions, is presented in Sec. 5.2.

. 4.2 Fast Fourier Transform method

This section introduces a more robust baseline method for frequency analysis,
using one-dimensional n-point Discrete Fourier Transform (DFT) with the efficient
Fast Fourier Transform (FFT) algorithm [27].

To prepare the data for this analysis, we construct a binary time series based
on PixPol-timestamps. In this series, a value of 1 is assigned to each position
corresponding to a PixPol-timestamp, while all other positions remain at 0.

10



4.3. The Proposed method

Put simply, this time series represents a sequence of spikes that occur at
timestamps of event generation for a specific pixel and polarity. We refer to it as
event spike series. To smooth out the spikes before applying the Fourier transform,
we use the Hanning window. The Hanning window is defined as

2
w(n):0.5—0.5cos(M7r ”1), 0<n<M-1 (4.2)

where w(n) is the value of the window at the n-th sample, and M is the length of
the window, in our case equal to 10°.

Our objective is to estimate the frequency of event spikes within the time series,
even when the events may not exhibit perfect periodicity. We do so by calculating
the amplitude of the FFT frequency components and selecting the highest. In
this way, we obtain the frequency at which events occur most frequently.

After calculating a 2D array of dominant frequencies for all pixels, we propose an
optional post-processing step to eliminate potential outliers: applying a 2D median
filter using a local window size of 3. Finally, we compute the most frequently
estimated frequency.

This method, therefore, requires two parameters:

1. Polarity specifies events of which polarity to use in the creation of the event
spike series and

2. median filtering defines whether median filtering should be applied.

The section 5.3 presents the quantitative results of this method with various
configurations of parameters.

B 43 The Proposed method

This section introduces our proposed method, which extends beyond analysing the
periodicity of events produced by individual pixels. The objective is to determine
the period in which the events create a distinctive spatio-temporal pattern within
the event data stream. We propose to compute a three-dimensional correlation of
the event stream along the time axis with a selected subset of the event stream
that we call a template.

By correlating the template (a chosen subset of the event stream) with the
event stream, patterns occurring at different time offsets are found. For periodic
phenomena, peaks in correlation responses are often found at regular intervals, as
seen in Fig. 4.1. The time difference between these peaks represents the completion
time of one period of the phenomenon. This analysis is performed for each kernel
separately.

Given the inherent sparsity of the event data (for some experiments, events
cover only 0.004%o of the event stream space), we first transform it into a denser
format. This is achieved by aggregating events with spatial coordinates within
the kernel into a 3D spatio-temporal array in which events are aggregated along
the time axis within non-overlapping time windows of 100 microseconds. Each
event is mapped to this array, with its value being 1 (positive polarity) or -1

11
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Figure 4.1: Normalized correlation responses of a selected 3D template with 500 ms
of spatio-temporal event stream. Periodic peaks are highly distinctive, highly regular
and indicate periodic phenomenon.

Figure 4.2: Dense 3D spatio-temporal array with positive events as white cubes,
negative events as black cubes and no events as grey cubes (left), selected segment
(middle) referred to as template is, put simply, used to compute 3D correlation with
other same-sized segments (right) along the time axis of the 3D array.

(negative polarity). Other values in the array are set to 0. When multiple events
occur within the same time window and pixel, only the polarity of the most recent
event (with the highest timestamp) is retained. A visualisation of an example 3D
spatio-temporal array is presented in Figure 4.2 (left).

The next step involves selecting a correlation template, a segment of the 3D
array that will be used to compute the correlation over the entire array. The
spatial size of the template is identical to the spatial size of the defined kernel. Its
size along the time axis is a parameter that is adjustable for each kernel separately.
An example of a template is illustrated in Fig. 4.2 (middle).

First, we experimented with a uniform template depth across all kernels. How-
ever, this method yielded inconsistent results, with the frequency being successfully
measured in some kernels and failing in others. We hypothesize that this incon-
sistency is attributed to the inherent variability in event density across different
regions of the event data stream.

To address this limitation, we adopted a more robust approach that adjusts the
template depth within each kernel based on the event stream density. Specifically,
we define a new parameter, template event count, which specifies the minimum

12
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Figure 4.3: The proposed method: (i) data captured from an event camera is
aggregated into a 3D array, (ii) a kernel size and a template depth are selected,
(iii) 3D correlation of the template with the event stream is computed, (iv) a frequency
is calculated from the average of time deltas measured between correlation peaks for
each kernel, (v) the output frequency is computed as a median of measurements from
all kernels.

number of events a template must contain. The template depth for each kernel
is adjusted to ensure that it contains at least the minimum count of template
events. This way, the template captures a sufficient representation of the local
spatio-temporal pattern within each kernel.

The three-dimensional correlation between the template and the 3D array is
then computed (see Fig. 4.2). The correlation responses exhibit periodic peaks, as
expected, corresponding to the period of the observed phenomenon. The frequency
is calculated by (4.1). An overview of the method is shown in Fig. 4.3.

To sum up, our proposed method requires two parameters:

1. Kernel size defines the size of square spatial areas where the frequency is
estimated independently and

2. template event count specifies the minimum number of events a template
must contain. The template depth for each kernel is dynamically adjusted to
satisfy this requirement.

13



4. Methods

Figure 4.4-4.5 provides more insight in results of experiments 5.5.3 and 5.5.6.

They contain:

B A visualisation of the event data over % of one period of the phenomenon,
B a colour-coded grid of frequency estimations across all kernels and
B a sorted histogram of measured frequencies.

For all other experiments, see Fig. B.4-B.26.
For comparison with the results of other methods, a single numerical output is

desired. By default, the method computes the median of estimated frequencies

across all kernels.
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Figure 4.4: Fronto-parallel velcro disc: (a) captured event data (positive events —
white, negative events — blue), (b) grid of measured frequencies (blue — underestimated,
green — correct, black — not enough events), (c¢) histogram of frequencies.
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Figure 4.5: Whirling Pholcus phalangioides: (a) captured event data (positive events

— white, negative events — blue), (b) grid of measured frequencies (green — correct,
orange — overestimated, black — not enough events), (c) histogram of frequencies.
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Chapter 5

Experiments

In this chapter, we discuss the selection of parameters for methods presented in
the previous chapter, followed by experiments measuring rotation speed, frequency
of periodic light flashes, vibrations, and moving objects.

Due to the non-constant rotational speed of some targets, we restricted our
analysis to one-second segments of the event stream. This selection was based on
the assumption that the change in rotation speed within such a time frame would
be negligible and not significantly impact the accuracy of our measurements.

To objectively compare the results of our proposed methods, we additionally
use the publicly available closed-source vibration estimation method developed by
Prophesee [28], manufacturer of the used event camera. This method provides a
baseline comparison for our work, allowing us to assess the relative performance
of our proposed approach.

When evaluating the accuracy of measurements, relative error and percent error
are often used. The relative error quantifies the proportional discrepancy between
the measured and actual values. It is calculated by dividing the absolute error
by the actual value. This provides a dimensionless quantity independent of the
units used in the measurement itself. The percent error expresses the relative
error as a percentage. It is obtained by multiplying the relative error by 100%.
When we refer to the "relative error" in our work, particularly when expressed as
a percentage, we implicitly discuss the percent error.

. 5.1 Dataset

We used the Uni-Trend UT372 laser tachometer [5] to capture ground truth (GT)
rotation speed data. However, acquiring GT data this way was not feasible in
all scenarios. In such cases, our EE3P method [26] was run multiple times with
varying parameter configurations. This iterative approach aimed to filter potential
measurement outliers and obtain a GT frequency estimate as close as possible to
the actual value. The frequency was then verified by manually examining the event
data stream. For each experiment, the method used to obtain the GT frequency,
whether the laser tachometer or the EE3P method, will be explicitly stated.
Event data for three experiments in this work originate from the public
dataset [29] created by Prophesee. For these experiments, we used the Event-
to-Video method [30] developed by Prophesee to generate a reference photo of
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Figure 5.1: Ground-truth frequencies of experiments in order of appearance in this
work.

the observed target, and the EE3P method [26] to estimate the GT frequency.
We recorded all other sequences. The dataset contains experiments ranging from
3.2 Hz (equivalent to 192 RPM) up to 2000 Hz (equivalent to 120 000 RPM), see
Fig. 5.1.

B 5.2 Selection of Baseline method parameters

To assess the impact of different parameter configurations on the performance of
the baseline method (described in Sec. 4.1), we conducted an evaluation exploring
all possible combinations of the following parameters:

1. Kernel size defines the size of the spatial areas where the frequency is
estimated independently. The evaluated kernel sizes were 30 x 30px, 45 x 45px,
60 x 60px, and 75 X 75px, as we have not noticed significant improvements in
further expanding or shrinking them,

2. temporal analysis function (median or mode) is the method for sum-
marizing the delta times of events generation within a pixel and

3. spatial analysis function (median or mode) combines all temporal
analysis results in the kernel.

The configuration achieving the best mean relative error (844%) across all
experiments is the kernel size set to 75 X 75px and the median as both spatial and
temporal analysis function. However, the applicability of this configuration was
limited due to the size of one sequence (measuring phone screen refresh rate at an
area of size 50 x 50px, see Sec. 5.6.2) being smaller than the proposed kernel size.
Consequently, we opted to prioritise a kernel size applicable to all experiments.

Taking into account this constraint, the configuration that resulted in the
third-best mean relative error (889%) while ensuring applicability to all data from
our dataset was the kernel size of 45 x 45px, and both the spatial and temporal
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5.3. Selection of Fast Fourier Transform Analysis method parameters

analysis functions were the median. This configuration successfully measured
the dominant frequency in 4 of 12 experiments with a relative error below 5%.

The results for all parameter configurations of the method can be found in
Table B.3.

B 5.3 Selection of Fast Fourier Transform Analysis
method parameters

This section describes the selection of optimal parameters for the Fast Fourier
Transform (FFT) analysis method (described in Sec. 4.2). We systematically
evaluated all combinations of parameters of the method fixed across our dataset.
These parameters are as follows.

1. Polarity specifies whether to analyze events with positive polarity or negative
polarity when constructing the event spike series,

2. median filtering determines whether to apply a median filter to suppress
outliers and improve the robustness of the method.

The configuration that used negative events and that incorporated median
filtering produced superior results (mean relative error 60%) compared to other
parameter configurations and the baseline method. This configuration successfully
measured the dominant frequency in 6 of 12 experiments with a relative error
below 0.5%. Refer to Tab. B.2 for the results for all combinations of parameters.

. 5.4 Selection of Three-Dimensional Correlation
method parameters

This section discusses the selection of optimal parameters for our proposed method
(described in Sec. 4.3). The parameters are:

1. Kernel size defines the size of the spatial area where the frequency is
estimated independently. A larger kernel size can capture broader spatial
patterns but might increase the computation time. The evaluated kernel sizes
were 30 x 30px, 45 x 45px, 60 x 60px, and 75 x 7H5px, and

2. template event count specifies the minimum number of events a template
must contain. A shallow template (low event count) might not capture
the complete unique pattern of interest, leading to inaccurate frequency
estimation. In contrast, a deep template (high event count) prolongs the
computation time of 3D correlation.

To achieve a balance between capturing the relevant pattern and computational
efficiency, we performed an analysis across all sequences in our dataset where we
varied the minimum template event count and kernel sizes while measuring the
following:
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5. Experiments

1. Symmetric Mean Absolute Percentage Error (SMAPE): This metric
measures the percentage difference between the observed and predicted values.
SMAPE is calculated by finding the absolute difference between the actual
and forecasted values and dividing it by the average of the absolute values of
the actual and forecasted values:

1 ly—3l ; -
a2 iz i i+ 19> 0

SMAPE(y,9) =
(. 9) 1 otherwise

(5.1)

where y represents the observed frequency, § represents the correct frequency
and n represents the number of measurements we compare.

2. Computation Time (At): The time required to compute 3D correlation
in all kernels using a specific parameter configuration. All calculations were
performed on the same laptop using Intel Core i7-9750H CPU and NVIDIA
GeForce GTX 1660 Ti GPU.

To evaluate the overall effectiveness of a parameter configuration, we introduce
the Performance-cost measure

n(SMAPE, At; \) = SMAPE - At (5.2)

A lower value indicates better efficiency. We experimentally found that the
ideal parameter A is % to prioritise configurations with lower SMAPE values at
the cost of slightly longer computation times.

Figure B.1 illustrates the calculated SMAPE, the computation time, and the
Performance-cost for various combinations of parameters for a single experiment.

We prioritise parameter configurations that perform well on computationally
demanding experiments (those requiring more than 10 seconds to compute results
for all kernels with a single-parameter configuration). For these experiments (5.5.1,
5.5.2, 5.5.3, 5.7.1), we calculated the sum of their Performance-cost values for
each combination of parameters. The configuration with the overall minimum
sum is considered the optimal choice. Figure B.2 presents the results. The best-
performing parameters found are kernel size 45 x 45px and minimal template
event count of 1500 events.

In the following sections (5.5-5.8), we will discuss experiments measuring rotation
speed, frequency of periodic light flashes, vibrations, and moving objects.
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5.5. Measuring rotation speed

B 55 Measuring rotation speed

This section presents six experiments that showcase the versatility of our method
for measuring the rotation speed of various objects under different conditions.

To capture ground truth (GT) rotation speed data, the Uni-Trend UT372 laser
tachometer [5] was used. The tachometer range is 10 to 99 999 RPM with a relative
error of +0.04%. It is worth mentioning that the optical tachometer outputs only
3 to 5 samples per second, while our method produces a measurement for each
detected period of the observed periodic phenomenon. We calculated the mean
average of all the tachometer outputs captured in one second to obtain a single
reference value for comparison with the results of all methods. However, in cases
where acquiring GT data was not feasible, the EE3P method [26] to estimate the
GT frequency, as described in Sec. 5.1.

B 5.5.1 Felt disc with a high-contrast line

This experiment investigated the performance of our proposed frequency estimation
methods in an environment with minimal noise. A power drill secured to a flat
surface spun a white felt disc marked with a black line at a rotational speed of
1200 RPM, as shown in Figure 5.2a. The event data was captured simultaneously
with readings from an optical tachometer, both positioned directly in front of the
disc (fronto-parallel configuration).

Due to the nature of the experiment, characterised by minimal noise and
near-accurate periodicity in event generation across pixels, we anticipated ac-
curate frequency estimation from all methods used. The results confirmed this
expectation.

The FFT analysis method produced accurate frequency estimates by analyzing
event spike series of 98.6% pixels as shown in Figure B.3. Similarly, our method
provided accurate results for all but one kernel, with only a minor deviation of
0.1 Hz observed in that specific case (see Figure B.4).

All four methods achieved relative errors below 0.05%, demonstrating their
effectiveness in this controlled scenario. Prophesee’s and our proposed method
slightly outperformed baseline and FFT analysis methods in accuracy.

Baseline FFT Prophesee 3D

Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 19.99 20.007 20 20
Relative Error (%) 0.05 0.034 0 0

Table 5.1: Measured frequency and relative error for the baseline, FF'T, Prophesse
Vibr Est and 3D correlation methods for experiment with a felt disc containing a
high-contrast line (see Sec. 5.5.1).
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Figure 5.2: Felt disc with a high-contrast line (see Sec. 5.5.1): (a) physical setup for
shooting the experiment; (b) events from a 250-millisecond window visualised in spatio-
temporal space; (c¢) aggregated events captured by the entire sensor (1280 x 720px)
within a time window almost equal to the period of the observed phenomenon and
highlighted Region of Interest (655 x 655px) shown in (d). Positive events are
represented by white, and negative events are bright blue.

B 5.5.2 Fronto-parallel velcro disc

This experiment evaluated the performance of frequency estimation methods on
a more challenging scenario involving a disc covered in uniform velcro material,
where pattern recognition is difficult even for the human eye.

The disc was rotated by a power drill at a speed of 1266 RPM with the event
camera positioned directly in front of it and a laser tachometer measuring the
rotation speed from one side of the disc using a reflective sticker attached to the
edge of the disc (see Figure 5.3a).

This scenario demonstrates one of the advantages of event-based vision methods,
as three of the four methods could detect and estimate the rotation frequency
accurately. The inherent lack of periodic event generation across most pixels
presented a challenge for the baseline method, as reflected in Table 5.2, which
overestimated the frequency (by 14.576%). The FFT analysis method achieved
the best estimate by analyzing event spike series generated by 6.1% of pixels that
capture the edge of the disc (see Figure B.5).

Once again, both Prophesee’s method and our proposed method successfully
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5.5. Measuring rotation speed

estimated the frequency of the spinning velcro disc with 0% relative error, demon-
strating their robustness in handling scenarios with minimal visual features (see
Figure B.6).

Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 24.176 21.005 21.1 21.1
Relative Error (%) | 14.576 0.451 0 0

Table 5.2: Measured frequency and relative error for each method for experiment
with fronto-parallel velcro disc (see Sec. 5.5.2).

(a)

XYTime visualisation.

(c) Full resolution event stream. (d) Rol.

Figure 5.3: Fronto-parallel velcro disc (see Sec. 5.5.2): (a) physical setup for shooting
the experiment; (b) events from a 250-millisecond window visualised in spatio-temporal
space; (c) aggregated events captured by the entire sensor (1280 x 720px) within a
time window equal to the period of the observed phenomenon with highlighted Region
of Interest (713 x 713px) shown in (d). Positive events are represented by white, and
negative events are bright blue.
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B 5.5.3 Velcro disc with a non-frontal camera behind a glass sheet

This subsection describes an experiment designed to further evaluate the robustness
of frequency estimation methods under even more challenging conditions. A power
drill rotated the velcro disc used in the previous experiment at a speed of 1578 RPM.
The event camera captured data with a 45-degree camera angle through a sheet of
glass (see Fig. 5.4a), simulating a possible industry application when the observed
object is a rotating machine part and a transparent visor protects the camera and
machine operators. The position of the laser tachometer remained the same. This
experiment introduced additional complexity compared to the previous experiment
due to the increased rotation speed, non-frontal camera position, and a transparent
barrier between the camera and the target.

Interestingly, the baseline method estimated the frequency very well with only
0.39% relative error. The FFT analysis method achieved a relatively accurate
frequency estimation with a 1.2% relative error. However, this frequency was
only detected at 2% of all pixels, those that captured the edge of the disc (see
Figure B.7). This led the method to output a frequency that was more commonly
detected (by 11.9% pixels), this frequency being twice the actual frequency, likely
due to the presence of centrosymmetric patterns on the velcro disc.

As in previous experiments, both Prophesee’s method and our proposed method
successfully estimated the frequency of the spinning velcro disc with 0% relative
error, as shown in Table 5.3.

This experiment further highlights the robustness of our proposed method.
Even with the non-aligned camera axis resulting in elliptical object trajectories
on the image plane, the method produced accurate frequency measurements.
Furthermore, the experiment confirms that capturing data through transparent
materials does not compromise accuracy, as shown in Fig. B.8.

Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 26.403 52.993 26.3 26.3
Relative Error (%) 0.39 101.495 0 0

Table 5.3: Measured frequency and relative error for each method for experiment
with a velcro disc with a non-frontal camera behind a glass sheet (see Sec. 5.5.3).
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(b) XYTime visualisation.
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Figure 5.4: Velcro disc with a non-frontal camera behind a glass sheet (see Sec. 5.5.3):
(a) physical setup for shooting the experiment; (b) events from a 250-millisecond
window visualised in spatio-temporal space; (c) a close-up photo of the target and
reflective sticker on the edge of the disc; (d) aggregated events captured by the entire
sensor (1280 x 720px) within a time window equal to the period of the observed
phenomenon with highlighted Region of Interest (691 x 691px) shown in (e). Positive
events are represented by white, and negative events are represented by bright blue.

B 5.5.4 High-contrast dot

This experiment evaluated the performance of frequency estimation methods
on event data from Prophesee’s public dataset [29]. The sequence captures an
orbiting dot with a brightness lower than its surroundings. It was captured by
an older model of their event camera with a lower resolution and an older sensor
generation.

Since we did not acquire the event data ourselves, we lacked a photograph of
the physical experimental setup. Therefore, the ground truth (GT) frequency was
estimated using the EE3P method [26] and a reference photo was generated using
the Prophesee Event to Video method [30] (see Figure 5.5a).

The baseline method did not produce any meaningful results, and the FFT
analysis method estimated a frequency approximately three times higher than the
GT frequency (see Figure B.9).

As in previous experiments, both Prophesee’s and our proposed method (see
Figure B.10) provided accurate estimates of the frequency of the observed periodic
phenomenon, as shown in Table 5.4.
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Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 7462.687 | 58.984 19.5 19.5
Relative Error (%) | 38170.188 | 202.484 0 0

Table 5.4: Measured frequency and relative error for each method for experiment
with a high-contrast dot (see Sec. 5.5.4).

(a) Target visualisation. XYTime visualisation.

(c) Full resolution event stream. (d) Region of Interest.

Figure 5.5: High-contrast dot (see Sec. 5.5.4): (a) observed object visualised using
the Prophesee’s Event to Video method; (b) events from a 250-millisecond window
visualised in spatio-temporal space; (c) aggregated events captured by the entire
sensor (640 x 480px) within a time window almost equal to the period of the observed
phenomenon with highlighted Region of Interest (263 x 263px) as shown in (d).
Positive events are represented by white, and negative events are represented by

bright blue.
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B 5.5.5 Hand fidget spinner

This experiment also utilized event data from Prophesee’s public dataset [29],
featuring a rotating three-blade hand fidget spinner. Similarly to the previous
experiment, we used Prophesee’s Event to Video method to generate a grayscale
image of the target for reference (see Figure 5.6a). The ground truth (GT)
frequency was estimated using the EE3P method [26]. The baseline method was
unable to provide any meaningful results in this scenario. Despite the object being
centrosymmetric, our proposed method and the FFT analysis method achieved
good performance, as shown in Table 5.5.

The FFT analysis method successfully detected the correct frequency by ana-
lyzing event spike series generated primarily by pixels that capture the shadow
of the fidget spinner (see Figure B.11). This observation highlights the method’s
potential to exploit even indirect event patterns for frequency estimation.

Interestingly, Prophesee’s method produced a frequency approximately four
times higher than the GT frequency. This discrepancy is particularly intriguing
considering the three-blade design of the fidget spinner.

Our proposed method achieved the best overall performance, correctly estimating
the frequency in 8 out of 10 valid kernels and exhibiting a deviation of only 0.1 Hz
in the remaining two (see Figure B.12). This outcome emphasizes the robustness
of our method in handling scenarios with centrosymmetric targets.

Baseline FFT Prophesee 3D

Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 451.162 5 19.1 4.7
Relative Error (%) | 9499.186 | 6.377 306.383 0

Table 5.5: Measured frequency and relative error for each method for experiment
with a hand fidget spinner (see Sec. 5.5.5).
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<

(a) Target visualisation. (b) XYTime visualisation.

(c) Full resolution event stream. (d) gion of Interest.

Figure 5.6: Hand fidget spinner (see Sec. 5.5.5): (a) observed object visualised using
the Prophesee’s Event to Video method; (b) events from a 250-millisecond window
visualised in spatio-temporal space; (c) aggregated events captured by the entire sensor
(640 x 480px) within a time window equal to the period of the observed phenomenon
with highlighted Region of Interest (239 x 239px) as shown in (d). Positive events are
represented by white, and negative events are bright blue.

B 5.5.6 Whirling Pholcus phalangioides

This experiment investigated the whirling behaviour for evading predators used
by the Pholcus phalangioides spider. This unique defense mechanism involves
the spider rapidly rotating its body while its legs remain at the silk, creating a
challenging yet intriguing scenario for measuring the rotation speed of the body
of the spider. Additional details on this behaviour can be found in the work of
R. R. Jackson et al. [31].

This experiment was characterized by significant noise, dim lighting conditions,
and an unstable camera (see Figure 5.7a). Due to the light source being positioned
on one side of the target, a second rotating pattern appeared, caused by the
shadow of the spider (see Figure 5.7d,e).

While the baseline method failed to provide accurate results, the FFT Analysis
method identified the correct frequency as the second most common. However,
the frequency most frequently detected across all event spike series was four times
higher than the reference frequency estimated using the EE3P method, leading to
an inaccurate overall output (see Figure B.13).

Prophesee’s method produced an estimate that deviated by 1 Hz from the GT
frequency. Finally, our proposed method was the only one to achieve an accurate
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result with 0% relative error, as shown in Figure B.14. This outcome highlights
the effectiveness of our method in handling event streams with substantial noise.

w -

(d) Full resolution event stream. (e) XYTime visualisation.

Figure 5.7: Whirling Pholcus phalangioides (see Sec. 5.5.6): (a) physical setup for
shooting the experiment; (b) a close-up photo of the target; (d) aggregated events
captured by the entire sensor (1280 x 720px) within a time window equal to the period
of the observed phenomenon with highlighted Region of Interest (221 x 221px) as
shown in (c); (e) events from a 250-millisecond window visualised in spatio-temporal
space. Positive events are represented by white, and negative events are represented
by bright blue.

Baseline FFT Prophesee 3D

Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 35.135 12.993 4.2 3.2
Relative Error (%) | 997.955 | 306.031 31.25 0

Table 5.6: Measured frequency and relative error for each method for experiment
with a whirling Pholcus phalangioides (see Sec. 5.5.6).
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B 56 Measuring frequency of periodic light flashes

This section presents the performance of frequency estimation methods in esti-
mating high-frequency periodic light flashes.

B 5.6.1 Flashing LED

This experiment utilized a simple circuit with a light-emitting diode (see Fig-
ure 5.8a). A software oscilloscope on the Raspberry Pi Pico controller [32] allowed
for precise control of the flashing frequency and duty cycle. The LED was set to
flash at exactly 2000 Hz with a 50% duty cycle, challenging all methods to estimate
a frequency substantially higher than those encountered in other experiments in
this work or related publications.

The simplicity of this experiment lies in the near-synchronous event generation
across almost all pixels. This scenario represents the only other experiment (after
the fronto-parallel felt disc with a high-contrast line in Section 5.5.1) in which all
methods achieved near-accurate results, as summarised in Table 5.7.

The FFT analysis method successfully estimated the frequency by analysing
event spike series generated by 77.9% of all pixels. An additional 20% of pixels
reported frequencies that were multiples of the ground truth (GT) frequency,
further supporting the accuracy of the overall estimation (see Figure B.15).

The Prophesee’s method produced a slight overestimation of 0.1 Hz, while our
proposed method achieved a perfect estimate of the frequency of LED flashing, as
shown in Figure B.16. This outcome further demonstrates the effectiveness of our
method in handling scenarios with high-frequency periodic events.

Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 1996.008 | 1999.412 2000.1 2000
Relative Error (%) 0.2 0.029 0.005 0

Table 5.7: Measured frequency and relative error for each method for experiment
with a flashing LED (see Sec. 5.6.1).
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Physical setup. (b) XYTime visualisation.

()

(c) Full resolution event stream. (d) Region of Interest.

Figure 5.8: Flashing LED (see Sec. 5.6.1): (a) physical setup for shooting the
experiment; (b) events from a 250-millisecond window visualised in spatio-temporal
space; (c) aggregated events captured by the entire sensor (1280 x 720px) within a
time window equal to the period of the observed phenomenon with highlighted Region
of Interest (126 x 126px) as shown in (d). Positive events are represented by white,
and negative events are represented by bright blue.

Bl 5.6.2 Refreshing mobile phone screen

This experiment investigated the ability of frequency estimation methods to
measure the flicker frequency of a mobile phone screen that displays a white colour
at maximum brightness. Analysis of the event stream revealed periodic flashing
patterns starting at the top and progressing towards the bottom of the screen
(see Figure 5.9b). This behaviour is attributable to the Pulse Width Modulation
(PWM) technique commonly used in displays to control backlight brightness.
PWM involves rapid switching of the backlight on and off at a specific frequency.
The flicker frequency was estimated using the EE3P method and confirmed by
independent research on the display of this phone [33]. When capturing this
experiment, we had to set a hardware-level region of interest to limit the observed
area to avoid sensor saturation (see Figure 5.9c), hence the small Rol.

Although the baseline method failed to produce meaningful results, the FFT
analysis method successfully accurately estimated the flicker frequency across all
pixels (see Figure B.17).
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The primary limitation of our proposed method lies in the process of aggregation
of events within 100-microsecond time windows to generate the dense event array
used by our method (as described in Sec. 4.3). This restricts the ability of our
method to accurately measure periodic phenomena with periods not divisible
by 100 microseconds. In this experiment, the exact period is % = 4166, 6
microseconds. Therefore, the closest estimate is 4200 microseconds, resulting in
an estimated frequency of 238.1 Hz by our method, which translates to a relative

error of 0.792% (see Figure B.18 and Table 5.8).

(a) Physical setup. (b) XYTime visualisation.

(c) Full resolution event stream. (d) Region of Interest.

Figure 5.9: Refreshing mobile phone screen (see Sec. 5.6.2): (a) physical setup for
shooting the experiment; (b) events from a 250-millisecond window visualised in spatio-
temporal space; (c) aggregated events captured by the entire sensor (1280 x 720px)
within a time window almost equal to the period of the observed phenomenon with
highlighted Region of Interest (54 x 54px) as shown in (d). Positive events are
represented by white, and negative events are represented by bright blue.
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Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 2770.083 | 240.02 240 238.1
Relative Error (%) | 1054.201 | 0.008 0 0.792

Table 5.8: Measured frequency and relative error for each method for experiment
with a refreshing mobile phone screen (see Sec. 5.6.2).

B 57 Measuring vibration frequency

This section presents the application of frequency estimation methods for measuring
the vibrations of a speaker diaphragm and a vibrating motor. These scenarios
show the potential of our proposed method for real-world industrial applications
in vibration monitoring.

B 5.7.1 Speaker diaphragm

This experiment evaluated the performance of frequency estimation methods on the
vibrating diaphragm of a speaker equipped with two large low-frequency drivers.
To precisely control the emitted sound, we used an Android application [34] that
allowed us to select and play a specific frequency.

We chose 98 Hz, corresponding to the musical note Go within the standard
tuning system (meaning note Ay is considered to be 440 Hz). The event camera
captured the vibrating diaphragm of a speaker at approximately 30° angle. The
most prominent features in the event stream originate from the vibrating edges of
the diaphragm and the manufacturer’s logo located in its centre (see Fig. 5.10).

The baseline method exhibited the most significant deviation from the reference
frequency. The FFT analysis method achieved a relative error of 0.077% (see
Figure B.19), and our proposed method achieved perfect accuracy (see Figure B.20).
The Prophesee’s method was the third most accurate, with a deviation of 0.2 Hz
(see Table 5.9).

Baseline FFT Prophesee 3D

Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 21.037 98.075 97.8 98
Relative Error (%) | 78.534 0.077 0.204 0

Table 5.9: Measured frequency and relative error for each method for experiment
with a speaker diaphragm (see Sec. 5.7.1).
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5. Experiments

(a)

(b) XYTime visualisation.

(c) Full resolution event stream. (d) Region of Interest.

Figure 5.10: Speaker diaphragm (see Sec. 5.7.1): (a) physical setup for shooting the
experiment; (b) events from a 250-millisecond window visualised in spatio-temporal
space; (c) aggregated events captured by the entire sensor (1280 x 720px) within a
time window equal to the period of the observed phenomenon with highlighted Region
of Interest (631 x 631px) as shown in (d). Positive events are represented by white,
and negative events are represented by bright blue.

B 5.7.2 Vibrating motor

This experiment used event data from the public dataset [29] by Prophesee, where
a motor vibrating at a constant frequency was captured. We used Prophesee’s
Event-to-Video method to generate a grayscale image of the target for visual
reference (see Figure 5.11). The ground truth frequency was measured using the
EE3P method [26].

The baseline method exhibited a significant deviation of 20% from the GT
frequency. When evaluated across various event spike series, the FFT analysis
method yielded accurate results in more than half of the cases, with the correct
frequency identified. Furthermore, approximately 11% of the spike series led to
the estimation of multiples (double and triple) of the GT frequency. The most
reliable visual features this method used were the horizontal cooling fins of the
motor, which vibrated periodically in a vertical direction (see Figure B.21).

Prophesee’s and our proposed method (see Figure B.22) achieved perfect accu-
racy in estimating the vibration frequency. These findings highlight the ability
of both methods to achieve accurate vibration frequency estimations even when
the camera is positioned at different angles relative to the vibrating object, as
demonstrated in previous and current experiments.
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5.8. Measuring movement frequency

Baseline FFT Prophesee 3D

Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 52.181 40.03 40 40
Relative Error (%) | 30.453 0.075 0 0

Table 5.10: Measured frequency and relative error for each method for experiment
with a vibrating motor (see Sec. 5.7.2).

(a)

Physical setup.

(c) Full resolution event stream. (d) Region of Interest.

Figure 5.11: Vibrating motor (see Sec. 5.7.2): (a) observed object visualised using
the Prophesee’s Event to Video method; (b) events from a 250-millisecond window
visualised in spatio-temporal space; (c) aggregated events captured by the entire sensor
(640 x 480px) within a time window equal to the period of the observed phenomenon
with highlighted Region of Interest (148 x 148px) as shown in (d). Positive events are
represented by white, and negative events are represented by bright blue.

B 58 Measuring movement frequency

This section presents the application of frequency estimation methods to measure
the speed of moving objects passing by. We present two experiments with a
moving bicycle chain observed from two distinct camera angles and estimate the
frequency at which individual chain links pass by.
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5. Experiments

The experimental setup involved placing the bicycle wheels upright and spinning
the pedals counterclockwise. The freewheel mechanism kept the wheels stationary
while only the chain rotated, aiming to isolate the chain’s movement for analysis.

Il 5.8.1 Bike chain from side view

This experiment captured a close-up view of the bicycle chain from a side angle,
allowing for clear observation of individual chain links (see Figure 5.12). Due to
technical difficulties, we had to set a sensor’s hardware-level region of interest to
lower the transfer speed required during the capture of this experiment.

Examining the results of the FFT Analysis method revealed that the areas
reporting the correct frequency were mainly concentrated around the locations
where the upper and lower portions of the chain links passed (see Figure B.23).
This observation aligns with the expectation that event generation in these areas
occurs almost exclusively once during individual chain link passages. However,
these areas (32.5% of all pixels) constituted a minority compared to regions
covering the middle sections of the chain links (53.7%), which produced incorrect
frequency estimations of 1 Hz.

The Prophesee’s method exhibited a deviation of approximately 18% from the
GT frequency, marking the third experiment where this method failed to produce
reliable results. The method did not identify a single dominant frequency, as
analysis of each kernel yielded different frequency estimations. However, that
does not necessarily compromise the accuracy of the method since the method, by
default, outputs the median of all measured frequencies across kernels. As can be
seen in Figure B.24, five out of 12 kernels reported frequencies ranging from 27.9
to 28.7 Hz, which falls within proximity of the reference frequency. As a result,
our proposed method achieved the best performance among the four methods (see
Table 5.11).

Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 123.77 1.001 33.9 28.7
Relative Error (%) | 331.254 | 96.513 18.118 0

Table 5.11: Measured frequency and relative error for each method for experiment
with a bike chain from side view (see Sec. 5.8.1).
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5.8. Measuring movement frequency

(b) XYTime visualisation.

(d) Region of Interest.

(c) Full resolution event stream.

Figure 5.12: Bike chain from side view (see Sec. 5.8.1): (a) physical setup for shooting
the experiment; (b) events from a 250-millisecond window visualised in spatio-temporal
space; (c) aggregated events captured by the entire sensor (1280 x 720px) within a
time window equal to the period of the observed phenomenon with highlighted Region
of Interest (204 x 204px) as shown in (d). Positive events are represented by white,
and negative events are represented by bright blue.

B 5.8.2 Bike chain from top view

The final experiment involved observing the bicycle chain from a top-down per-
spective (see Figure 5.13a), with the reference frequency estimated as 22 Hz using
the EE3P method. Both rotating pedals were also captured but not analyzed and
are visible in the event stream on the left and right side of the spatio-temporal
visualisation in Figure 5.12b.

The FFT analysis method was the second most successful method in this exper-
iment, reaching 6.4% relative error when analyzing event spike series generated
by pixels capturing the components of the inner chain known as rollers (see
Figure B.25).

Our method produced near-correct results between 22.8 Hz and 24.6 Hz in six out
of nine valid kernels. However, their median produces the most significant deviation
observed for this method in all experiments, with a relative error of approximately
1.3% (see Figure B.26 and Table 5.12). The baseline and Prophesee’s methods
exhibited significant deviations from the reference frequency.
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5. Experiments

Baseline FFT Prophesee 3D
Analysis | Vibr. Est. | Correlation
Measured Frequency (Hz) | 51.645 21.993 30.8 23.8
Relative Error (%) | 119.765 6.412 31.064 1.277

Table 5.12: Measured frequency and relative error for each method for experiment
with a bike chain from top view (see Sec. 5.8.2).

() Phycal setup. A (b) XYTime visualisation.

(c) Full resolution event stream. d) Re|gi(;n of Interest.

Figure 5.13: Bike chain from a top view (see Sec. 5.8.2): (a) physical setup for shooting
the experiment; (b) events from a 250-millisecond window visualised in spatio-temporal
space; (c) aggregated events captured by the entire sensor (1280 x 720px) within a
time window equal to the period of the observed phenomenon with highlighted Region
of Interest (180 x 180px) as shown in (d). Positive events are represented by white,
and negative events are represented by bright blue.
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Chapter 6

Conclusion

In this thesis, we proposed a novel method of contactless measurement of periodic
phenomena. The method performs a 3D correlation to detect periodic similarities
within the event data stream of an event camera. Only a single assumption is
made; the observed object periodically produces a similar set of events by returning
to a known state or position.

We evaluated the performance of our method in twelve experiments involving
objects that rotate, flash, vibrate, and move around, achieving a mean relative
error of 0.172% across a wide range of frequencies (3.2 to 2000 Hz). We showed
that our proposed method is suitable for measurement:

(i) in scenarios where objects lack prominent features, such as the rotating velcro
disc experiment (see sections 5.5.2 and 5.5.3),

(ii) through transparent materials like glass or plastic as demonstrated in experi-
ment 5.5.3,

(iii) of centrosymmetric objects (as shown in experiment 5.5.5), which can be
challenging for some methods and leads them to detect a multiple of the
ground truth frequency instead,

(iv) with non-frontal camera placement, offering flexibility in experimental setups,
as demonstrated in experiments 5.5.3, 5.7.1, 5.5.5 and 5.8.2,

(v) regardless of the sensor or camera model used, including older models with
lower resolutions (see experiments 5.5.4, 5.5.5 and 5.7.2),

(vi) from event stream with a significant amount of noise and slight camera
instability as seen in experiment 5.5.6,

(vii) of frequences as high as 2000 Hz in experiment 5.6.1 (equivalent to 120000
RPM).
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Appendix A
Used Al tools

Following Methodical guideline No. 5/2023 !, the following tools were used during
the development of this thesis:

® Writefull? for spelling checking.
® Grammarly? for spelling and grammar checking.
® Amazon CodeWhisperer® for improved single-line code completion.

® DeepL?® for occasional translations of English phrases into the Czech language
and, in case of more complex English sentences, for creating draft phrasing
proposals.

"https://www.cvut.cz/en/legislation-and-study-regulations#
artificial-intelligence

*https://www.writefull.com

3https://www.grammarly.com

“https://aws.amazon.com/codewhisperer

Shttps://www.deepl.com/translator
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Supplementary Materials

Med1an&1\é[l?;1‘1‘z;1;_ 19.990 24176 26.403 [EIPRIFA 451.162 35.135 |llo00PREONERE 21.037  52.181 123.770  51.645 7000
6000
_ FET | 20007 21.005 52.993 58984  5.000  12.993 |llliibl 240.020 98.075  40.030  1.001  21.993 5000
(pol=0, med_fl)
4000
Metavision Vibration Est - 20.000 21.100 26.300 19.500  19.100 4200 AL 240.000 97.800  40.000  33.900  30.800 3000
2000
3Dcorr | 20.000 21.100 26300 19.500 4700  3.200 0N 238.100 98.000  40.000 28.700  23.800 - 1000
(k=45, ev_n=1500)
1 1 1 1 1 1 1 1 1 1 1 '0
$D D D D S
W EP @/@w& & Mw S5 w @ ¥ &Z@@w@
o » e,\c' Q & e}‘@ S &({:}
¢Uos N o o N

(a) Measured frequencies (Hz).

Median & Median k=45 20%
(mean err 4191.396% 4.5 38170.188 9499.186 997.955 1054.201 78 30.453  331.254 119.765
median err 99.150%) 18%
FFT pol=0,med_fl 15%
(mean err 59.999% 101.495 202.484 306.031 o
median err 3.414%) 12%
- S - 10%
Metavision Vibration Est
(mean err 32.252% 306383 31.250 18.118  31.064 8%
median err 0.002%) °
5%
3Dcorr k=45,ev_n=1500
(mean err 0.172% 2%
median err 0.000%)
0%
¢ o o & & ¥ R
S S » & $b0@°®$\e\¢ D o oD
\\Q,QQ‘ A\\® &S /Q@ ¥ 932‘ QQ(!) %9 Q\' Q‘b gb‘Q‘z' %Qz'o’cgz& $ \b\é‘z’ &@0{\«2{"%}\1&
S S ¢ o T

(b) Relative errors (%).

Table B.1: Measured frequencies in hertz (a) and relative errors (b) achieved by the
four methods (described in chapter 4) and twelve experiments (described in chapter 5).
Optimal parameters for each method were found (see Sec. 5.2-5.4) and fixed across
all experiments.
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. B.1 Parameter selection related materials
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(b) Relative errors (%).

Table B.2: Measured frequencies in hertz (a) and relative errors (b) achieved by FFT
analysis method (described in section 4.2) with different parameter configurations
fixed across all experiments (described in chapter 5). The best results were achieved by
analyzing negative events (pol=0) and applying median filtering (med_pl) — bottom
row of (a) and (b). With this configuration, the method successfully measured the
frequency in 6 out of 12 experiments with a relative error under 0.5%.
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(d) Kernel size 75 x 75px.

Table B.3: Measured frequencies (left, Hz) and relative errors (right, %) of the
baseline method (described in section 4.1) for four kernel sizes 30 x 30px (a), 45 x 45px
(b), 60 x 60px (c), 75 x 75px (d). For each kernel size, all combinations of two
temporal (median and mode) and two spatial analysis functions (median and mode)
were examined and fixed in all experiments (described in chapter 5).
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Figure B.1: The side-view velcro disc experiment (see Sec. 5.5.3), SMAPE (5.1)
values and computation time (left), and Performance-cost measure (right, see (5.2))
as a function of template event count for four kernel sizes 30 x 30px (a), 45 x 45px
(b), 60 x 60px (c), 75 x 75px (d), see Sec. 5.4.
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(¢) Kernel size 60 x 60px.
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Figure B.2: Performance-cost measure (5.2) of the 3D correlation method as a
function of the template event count for four kernel sizes (30 x 30px (a), 45 x 45px
(b), 60 x 60px (c), 75 x 75px (d)). The vertical orange lines indicate the best template
event count for a specific kernel size. The best overall configuration is kernel size
45 x 45px with template count 1500, described in Sec. 5.4.
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B B.2 Individual experiments related materials

B B.2.1 Felt disc with a high-contrast line

Frequency R:
_—200-200(00%

0.00%
21 421 521 621 721 01 921 21 421

(a) Frequency relative (b) FFT amplitude map. (¢) Dominant
frequencies.

521 621 71 821 921

error map.

Figure B.3: FFT analysis method (see Sec. 4.2), experiment "Felt disc with a high-
contrast line" (see Sec. 5.5.1): (a) per-pixel relative error in frequency estimation,
(b) FFT amplitude map (higher values indicate a stronger presence of the specific
frequency within the original signal), (c) pixel-wise classification based on the most
frequent estimated frequencies.

19.9 Hz

344 436 528 620 713 805 0 50 100 150
Count

421 521 621 721 821 921

(a) Event data. (b) Measured frequencies (Hz). (c) Histogram
of frequencies.

Figure B.4: 3D correlation method (see Sec. 4.3), experiment "Felt disc with a high-
contrast line" experiment (see Sec. 5.5.1): (a) captured event data (white: positive
event, blue: negative event), (b) frequency measurements across all 45 x 45px kernels
(blue: underestimation, red: overestimation, grey: accurate/near-accurate estimation,
black: insufficient events for analysis), (c) sorted histogram of measured frequencies.
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Fronto-parallel velcro disc
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30 40 slo 6o 70 810 90 1010

(a) Frequency relative (b) FFT amplitude map. (¢) Dominant

error map. frequencies.

Figure B.5: FFT analysis method (see Sec. 4.2), experiment "Fronto-parallel velcro
disc" (see Sec. 5.5.2): (a) per-pixel relative error in frequency estimation, (b) FFT
amplitude map (higher values indicate a stronger presence of the specific frequency
within the original signal), (c) pixel-wise classification based on the most frequent

estimated frequencies.
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(a) Event data. (b) Measured frequencies (Hz). (c) Histogram
of frequencies.

Figure B.6: 3D correlation method (see Sec. 4.3), experiment "Fronto-parallel velcro
disc" (see Sec. 5.5.2): (a) captured event data (white: positive event, blue: negative
event), (b) frequency measurements across all 45 x 45px kernels (blue: underestimation,
red: overestimation, grey: accurate/near-accurate estimation, black: insufficient events

for analysis), (c) sorted histogram of measured frequencies.
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B B.2.3 Velcro disc with a non-frontal camera behind a glass sheet
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Figure B.7: FFT analysis method (see Sec. 4.2), experiment "Velcro disc with a
non-frontal camera behind a glass sheet" (see Sec. 5.5.3): (a) per-pixel relative error
in frequency estimation, (b) FFT amplitude map (higher values indicate a stronger
presence of the specific frequency within the original signal), (c) pixel-wise classification

based on the most frequent estimated frequencies.
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Figure B.8: 3D correlation method (see Sec. 4.3), experiment "Velcro disc with a
non-frontal camera behind a glass sheet" (see Sec. 5.5.3): (a) captured event data
(white: positive event, blue: negative event), (b) frequency measurements across all
45 x 45px kernels (blue: underestimation, red: overestimation, grey: accurate/near-
accurate estimation, black: insufficient events for analysis), (c) sorted histogram of

measured frequencies.
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Bl B.2.4 High-contrast dot
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(a) Frequency relative (b) FFT amplitude map. (¢) Dominant
error map. frequencies.

Figure B.9: FFT analysis method (see Sec. 4.2), experiment "High-contrast dot" (see
Sec. 5.5.4): (a) per-pixel relative error in frequency estimation, (b) FFT amplitude
map (higher values indicate a stronger presence of the specific frequency within the
original signal), (c) pixel-wise classification based on the most frequent estimated
frequencies.
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Figure B.10: 3D correlation method (see Sec. 4.3), experiment "High-contrast dot"
(see Sec. 5.5.4): (a) captured event data (white: positive event, blue: negative event),
(b) frequency measurements across all 45 x 45px kernels (blue: underestimation, red:
overestimation, grey: accurate/near-accurate estimation, black: insufficient events for
analysis), (c) sorted histogram of measured frequencies.
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B B.2.5 Hand fidget spinner
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Figure B.11: FFT analysis method (see Sec. 4.2), experiment "Hand fidget spinner"
(see Sec. 5.5.5): (a) per-pixel relative error in frequency estimation, (b) FFT amplitude
map (higher values indicate a stronger presence of the specific frequency within the
original signal), (c) pixel-wise classification based on the most frequent estimated
frequencies.
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Figure B.12: 3D correlation method (see Sec. 4.3), experiment "Hand fidget spinner"
(see Sec. 5.5.5): (a) captured event data (white: positive event, blue: negative event),
(b) frequency measurements across all 45 x 45px kernels (blue: underestimation, red:
overestimation, grey: accurate/near-accurate estimation, black: insufficient events for
analysis), (c) sorted histogram of measured frequencies.
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B B.2.6 Whirling Pholcus phalangioides
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Figure B.13: FFT analysis method (see Sec. 4.2), experiment "Whirling Pholcus
phalangioides" (see Sec. 5.5.6): (a) per-pixel relative error in frequency estimation,
(b) FFT amplitude map (higher values indicate a stronger presence of the specific
frequency within the original signal), (c) pixel-wise classification based on the most
frequent estimated frequencies.
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(a) Event data. (b) Measured frequencies (Hz). (c) Histogram
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Figure B.14: 3D correlation method (see Sec. 4.3), experiment "Whirling Pholcus
phalangioides" (see Sec.5.5.6): (a) captured event data (white: positive event, blue:
negative event), (b) frequency measurements across all 45 x 45px kernels (blue:
underestimation, red: overestimation, grey: accurate/near-accurate estimation, black:
insufficient events for analysis), (c) sorted histogram of measured frequencies.
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B B.2.7 Flashing LED
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Figure B.15: FFT analysis method (see Sec. 4.2), experiment "Flashing LED" (see
Sec. 5.6.1): (a) per-pixel relative error in frequency estimation, (b) FFT amplitude
map (higher values indicate a stronger presence of the specific frequency within the
original signal), (c) pixel-wise classification based on the most frequent estimated
frequencies.
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Figure B.16: 3D correlation method (see Sec. 4.3), experiment "Flashing LED" (see
Sec. 5.6.1): (a) captured event data (white: positive event, blue: negative event),
(b) frequency measurements across all 45 x 45px kernels (blue: underestimation, red:
overestimation, grey: accurate/near-accurate estimation, black: insufficient events for
analysis), (c) sorted histogram of measured frequencies.
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B B.2.8 Refreshing mobile phone screen
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Figure B.17: FFT analysis method (see Sec. 4.2), experiment "Refreshing mobile
phone screen" (see Sec. 5.6.2): (a) per-pixel relative error in frequency estimation,
(b) FFT amplitude map (higher values indicate a stronger presence of the specific
frequency within the original signal), (c) pixel-wise classification based on the most
frequent estimated frequencies.
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Figure B.18: 3D correlation method (see Sec. 4.3), experiment "Refreshing mobile
phone screen" (see Sec. 5.6.2): (a) captured event data (white: positive event, blue:
negative event), (b) frequency measurements across all 45 x 45px kernels (blue:
underestimation, red: overestimation, grey: accurate/near-accurate estimation, black:
insufficient events for analysis), (c) sorted histogram of measured frequencies.
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B B.2.9 Speaker diaphragm
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Figure B.19: FFT analysis method (see Sec. 4.2), experiment "Speaker diaphragm"
(see Sec. 5.7.1): (a) per-pixel relative error in frequency estimation, (b) FFT amplitude
map (higher values indicate a stronger presence of the specific frequency within the
original signal), (c) pixel-wise classification based on the most frequent estimated

frequencies.
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(a) Event data. (b) Measured frequencies (Hz). (c) Histogram
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Figure B.20: 3D correlation method (see Sec. 4.3), experiment "Speaker diaphragm"
(see Sec. 5.7.1): (a) captured event data (white: positive event, blue: negative event),
(b) frequency measurements across all 45 x 45px kernels (blue: underestimation, red:
overestimation, grey: accurate/near-accurate estimation, black: insufficient events for
analysis), (c) sorted histogram of measured frequencies.
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Bl B.2.10 Vibrating motor
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Figure B.21: FFT analysis method (see Sec. 4.2), experiment "Vibrating motor" (see
Sec. 5.7.2): (a) per-pixel relative error in frequency estimation, (b) FFT amplitude
map (higher values indicate a stronger presence of the specific frequency within the
original signal), (c) pixel-wise classification based on the most frequent estimated

frequencies.
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(a) Event data. (b) Measured frequencies (Hz). (c) Histogram
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Figure B.22: 3D correlation method (see Sec. 4.3), experiment "Vibrating motor"
(see Sec. 5.7.2): (a) captured event data (white: positive event, blue: negative event),
(b) frequency measurements across all 45 x 45px kernels (blue: underestimation, red:
overestimation, grey: accurate/near-accurate estimation, black: insufficient events for
analysis), (c) sorted histogram of measured frequencies.
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B B.2.11 Bike chain from side view
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Figure B.23: FFT analysis method (see Sec. 4.2), experiment "Bike chain from side
view" (see Sec. 5.8.1): (a) per-pixel relative error in frequency estimation, (b) FFT
amplitude map (higher values indicate a stronger presence of the specific frequency
within the original signal), (c) pixel-wise classification based on the most frequent

estimated frequencies.
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Figure B.24: 3D correlation method (see Sec. 4.3), experiment "Bike chain from
side view" (see Sec. 5.8.1): (a) captured event data (white: positive event, blue:
negative event), (b) frequency measurements across all 45 x 45px kernels (blue:
underestimation, red: overestimation, grey: accurate/near-accurate estimation, black:
insufficient events for analysis), (c) sorted histogram of measured frequencies.
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B B.2.12 Bike chain from top view
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Figure B.25: FFT analysis method (see Sec.4.2), experiment "Bike chain from top
view" (see Sec.5.8.2): (a) per-pixel relative error in frequency estimation, (b) FFT
amplitude map (higher values indicate a stronger presence of the specific frequency
within the original signal), (c) pixel-wise classification based on the most frequent

estimated frequencies.
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(a) Event data. (b) Measured frequencies (Hz). (c) Histogram
of frequencies.

Figure B.26: 3D correlation method (see Sec. 4.3), experiment "Bike chain from
top view" (see Sec. 5.8.2): (a) captured event data (white: positive event, blue:
negative event), (b) frequency measurements across all 45 x 45px kernels (blue:
underestimation, red: overestimation, grey: accurate/near-accurate estimation, black:
insufficient events for analysis), (c) sorted histogram of measured frequencies.
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