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Abstract
For most tasks, humanoid robots use the
view of cameras to orient themselves in
space, visually control activities, track
objects, or interact with humans. For
these purposes, active gaze control and
gaze stabilization are required. This work
proposes a solution for gaze control and
stabilization of the iCub humanoid robot
using algebraic inverse kinematics. The
strength of this work is that it uses only
the robot’s neck joints to accomplish these
tasks, leaving space to use eye movements
for secondary tasks like communicative
gaze to be perceived human-like by people.
The solution to gaze control and stabiliza-
tion does not require all three available
degrees of freedom of the neck. There-
fore, we also explored the possibility of
using redundancy to accomplish two sec-
ondary tasks, i.e., keep two targets in the
field of view and maintain a horizontal
orientation of the robot head.

Keywords: humanoid robots, iCub,
gaze control, gaze stabilization,
redundancy, optical flow

Supervisor: doc. Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt
Při většinu úkolů využívají humanoidní ro-
boti pohled kamer k orientaci v prostoru,
vizuální kontrole nad činností, sledování
objektů nebo interakci s člověkem. Pro
tyto účely je nutné aktivní řízení a stabili-
zace pohledu. Tato práce navrhuje řešení
pro řízení a stabilizaci pohledu humano-
idního robota iCub pomocí algebraické
inverzní kinematiky. Výhodou této práce
je, že využívá pouze krční klouby robota
a ponechává tak prostor pro využití oč-
ních pohybů pro sekundární úkoly, jako
je oční mimika, aby robot působil přiro-
zeně. Řešení řízení a stabilizace pohledu
nevyžaduje všechny tři dostupné stupně
volnosti krku. Proto jsme také zkoumali
možnost využití redundance pro splnění
dvou sekundárních úkolů: udržení dvou
cílů v zorném poli a zajištění horizontální
orientace hlavy robota.

Klíčová slova: humanoidní roboti,
iCub, řízení pohledu, stabilizace pohledu,
redundance, optický tok

Překlad názvu: Řízení a stabilizace
pohledu humanoidního robota pomocí
krčních kloubů
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Chapter 1

Introduction

1.1 Motivation

Nowadays, vision is one of the most important senses for humanoid robots. The ability to
“see” allows robots to orient themselves in the space in which they work and to move safely
within it. Therefore, humanoid robots are usually equipped with cameras in the eyes and
possibly even other external cameras attached to the robot’s body. By analyzing images,
they can also recognize objects and people, allowing them to respond to visual stimuli and
interact with their environment. Humanoid robots are therefore able to perform a variety
of tasks, most often replicating common human activities.

Active gaze control allows the robot to look where the activity or situation requires it.
The robot is then able to track moving targets or switch view between selected locations.
However, the robot does not usually use only gaze to accomplish the task; for example,
gazing and grasping often take place simultaneously. The grasping movements lead in most
cases to a change in the robot’s gaze, i.e., the robot’s field of view, which can cause a loss of
visual control over the activity or the robot’s disorientation. Therefore, gaze stabilization is
necessary to keep the robot’s view focused on locations or objects relevant to the activity
and not affected by the robot’s movements.

1.2 Goals

The goal of this thesis is to implement a gaze controller including solutions for gaze control
and gaze stabilization tasks for the humanoid robot iCub using its neck joints. Specifically,
to ensure that the robot can look at a desired position and compensate for the robot’s
self-motion. At the same time, an algebraic solution of the inverse kinematics is preferred
over a numerical one. Also, for solving gaze control and stabilization tasks, it should be
sufficient to use only two degrees of freedom of the neck out of the three available, so we
will also explore the possible use of this redundancy in the neck plane and incorporate it
into the gaze controller. Then we will compare the gaze stabilization from our proposed
gaze controller with a naive gaze stabilization method using an optical flow algorithm. We
will also evaluate the gaze controller in a human-robot interaction scenario.
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1. Introduction ..........................................
1.3 Contributions

The main contribution of this work is a neck controller for the humanoid robot iCub that
allows both gaze control and gaze stabilization. The advantage of this controller is that it is
completely algebraic and does not use any optimization. With this controller, the robot is
able to focus its gaze on a specified location and compensate for self-induced motions using
the neck joints. It also provides the use of neck redundancy for two different secondary
tasks. The first of the secondary tasks allows for two gaze targets to be specified instead of
one, whereby while the gaze is shifted to the first target, the redundant neck joint ensures
the visibility of the second target. The other secondary task is to compensate for the
rotation of the field of view and to ensure that the gaze is always parallel to the horizon
of the environment. The functionality of the gaze controller was tested in simulation and
on the humanoid robot iCub. The source code of the controller is available in a GitLab
repository [1].

1.4 Structure of the thesis
The structure of this thesis is as follows. First, we present an overview of current state-
of-the-art solutions to gaze control and gaze stabilization tasks, the possibilities of using
robot redundancy in these tasks, and how gaze stabilization can be evaluated in Chapter 2.
Chapter 3 introduces the humanoid robot iCub, on which this thesis was focused, along with
an introduction to a naive approach for gaze stabilization and the optical flow algorithm
for its evaluation. The algebraic solution to gaze control and gaze stabilization is described
in Chapter 4. Additionally, this chapter discusses the use of redundancy for the two
secondary tasks and presents a description of the gaze controller strategy that combines
all the components in this chapter. Chapter 5 contains the results and presentation of
experiments performed in simulation and on the real robot. Finally, Chapter 6 provides a
discussion, a conclusion, and suggestions for future work.
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Chapter 2

Related Work

The robot’s view is dynamic and its change depends on the robot’s motion and its interactions
with the environment. Furthermore, the view is constrained by the specifications of the
camera utilized, which requires the development of algorithms to actively control the robot’s
gaze so that it is able to shift its gaze to specific points in the environment or to scan the
environment. Cuevas et al. [2] divide this process into three parts. First, the algorithm
identifies the object, i.e., it takes an image of the environment as the input, processes it,
and returns the coordinates of the object of interest as the output. In the next part, the
controller computes the necessary joint coordinates to keep the object in the visual field.
The third part is the execution of the actual motion by the respective mechanisms that
receive signals from the controller and directly manipulate the camera view.

Target position estimation. For image processing, trained neural networks are usually
used, which are able to find objects of interest in the image [3, 4]. For transformations
between object’s pixel coordinates and 3D position in the camera frame or robot frame,
we need to know the intrinsic parameters of the camera used, such as its focal length and
resolution [5], and optionally extrinsic parameters such as the position and orientation
of the camera relative to the robot. For tasks requiring physical interaction with the
environment, depth plays an important role. The depth is most easily obtained from depth
camera data [6, 7]. If the robot does not have a depth camera or its use is unsuitable [8],
this information needs to be obtained in other ways. Vargas-Signoret et al. [9] describe
how to obtain depth information using two stereo camera images of the robot’s eyes.

Gaze control and stabilization methods. Most related to this work is the second
part of the gaze control process, calculating the necessary neck joint coordinates to keep
the object in the visual field. When working with the gaze of humanoid robots, attention
is also paid to make their movements as natural as possible and to make them pleasant
for the human interacting with the robot [10]. Many works have investigated both human
and animal gaze work for natural movements and attempted to apply these findings to
humanoid robots specifically [11]. According to Habra et al. [12] implementation of gaze
stabilization and gaze control for robots can be classified into two approaches, (i) bio-inspired
approaches based on reflexes [13, 14] and (ii) classical robotic approaches exploiting inverse
kinematics [5, 15, 16]. Habra et al. [12] combine the bio-inspired and inverse kinematics
approaches and show that each of these approaches is suitable for a different type of
perturbation. The combination produces a fast and versatile method for gaze stabilization.

Reflexes used by bio-inspired aproaches. In humans, eye muscles are mainly
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2. Related Work..........................................
responsible for gaze control and the field of view can be controlled as needed by moving
them. The most notable eye reflexes are the vestibulo-ocular reflex (VOR) and the
optokinetic reflex (OKR) [17, 18]. The VOR is responsible for stabilizing gaze during
body movement, using information from the vestibular system of the inner ear about head
movements, which are then compensated with countermovements of the eyes [14]. The
OKR is activated when tracking a moving target to keep it in the field of view [19]. Both
of these reflexes ensure full gaze control and smooth gaze change.

Eye movements and reflexes can be exploited for a human-like gaze when a robot has
eye-like cameras, e.g., as shown by Roncone et al. [20] in their work, where they implemented
the VOR reflex. However, when robots do not have or use these cameras, e.g., an external
camera is attached to the head, the neck is responsible for the gaze control and it is not
possible to implement these reflexes.

Gaze inverse kinematics For the inverse kinematics of gaze control and stabilization,
both numerical [20,21] and algebraic solutions exist. Numerical solutions tend to be simple
to implement and many solutions exist for them. Moreover, it is easy to incorporate other
input data, such as measurements from an inertial measurement unit (IMU), as shown
in Roncone et al. [20] for gaze stabalization. However, the main drawbacks of numerical
methods include their computational requirements, uncertain number of iterations, and
the risk of numerical instability [22]. On the other hand, the algebraic approach requires
finding equations that correctly describe and solve the given problem [16,22,23], which can
be difficult, for example because of the complexity of the robot’s kinematic chain. However,
if we find these equations, it is straightforward to solve them (if the problem is feasible).
Another advantage of this approach is that we can find all existing solutions in a very short
time. Algebraic solutions are usually based on knowledge of the robot kinematic chain [22].

The gaze control and stabilization problem can be reformulated using additional con-
straints and relations to simplify the solution of the problem. Omrčen et al. [5] for example
introduced a virtual mechanism that extends the head with a virtual link. This is essentially
a prismatic joint leading from the robot’s eyes that adds an additional degree of freedom to
the system. The task of gaze control is thus reformulated to trying to make the end of the
virtual link touch the point of interest by adjusting the link length. A similar approach was
applied by Habra et al. [15] where by introducing a link between the eye and the target
they transformed the task into a classical serial manipulator control. Milighetti et al. [16]
computed the inverse kinematics, i.e., the joint coordinates of the neck, required to view
the selected object with known 3D coordinates using trigonometric functions. In our work,
a similar computational procedure is used.

Gaze task redundancy. Active gaze control of the robot does not usually require all
available degrees of freedom (DoF) of the neck to accomplish the gaze task (looking at a
point requires 2 DoF). The remaining DoF becomes redundant [24] and can be used to
solve another separate task simultaneously with the main one [5,20,21]. The most common
additional task related to gaze control is avoiding occlusions. In robotic manipulators,
occlusions are most often addressed when the target is overlaid by another object [25–27]
or the target object overlaps an important part of itself [28]. Occlusions that can often
occur in humanoid robots are self-occlusions, i.e., the target is obscured by some part of

4



.......................................... 2. Related Work

the robot itself. Sugiura et al. [29] solve the self-occlusion of the humanoid robot ASIMO
by adding a link between the camera and the target, changing the problem of self-occlusion
avoidance to the problem of avoiding self-collision avoidance instead.

Gaze stabilization as the same task as gaze control. Gaze control and gaze
stabilization can be thought of as similar tasks that aim to keep the point of interest
in the center of the field of view. Therefore, often the solution of these tasks allows to
simultaneously track a moving object (gaze control) and at the same time compensate for
the movements induced by the robot (gaze stabilization) [20]. Gaze stabilization can be
solved without using visual perception by purely compensating for the robot’s movements.
Grotz et al. [30] used a stabilization solution that uses information on the induced velocities
in the robot joints. Marchand et al. [26] also use additional means such as a 2D laser
scanner for self-localization, so that all robot motion in space is compensated.
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Chapter 3

Materials and Methods

In this chapter, we first describe our experimental setup consisting of the humanoid robot
iCub and the externally mounted RGB-D camera in Sec. 3.1.1. Then, we describe in more
detail the joints of the torso and neck that are most relevant for this work and introduce
the coordinate systems at important points of the robot in Sec. 3.1.2. In Sec. 3.2, we
explain gaze stabilization and provide a simple approach to stabilizing the gaze of this
robot using knowledge of the joint coordinates. Finally, in Sec. 3.3 we describe the optical
flow algorithm that we employ to evaluate the quality of the gaze stabilization.

3.1 Experimental setup
For our experiments, we use the humanoid robot iCub [31]. iCub is an advanced platform
developed for research in robotics and artificial intelligence. Its design and equipment
enable complex interaction with the environment.

3.1.1 Hardware configuration
iCub has a humanoid anatomy with proportions comparable to the body of the human
child. iCub has complex limbs, including hands with fingers, allowing it to perform object
manipulations. The robot’s head contains a central control unit that coordinates movements
and processes inputs from various sensors to adapt to the environment.

Two stereo RGB cameras are placed in the robot’s eyes for visual perception. However,
the resolution of these eye cameras and the accuracy of the depth obtained from stereo are
not always sufficient for the activities performed by the robot. For this reason, our robot
was retrofitted with an RGB-D camera externally attached to its head, see Fig. 3.1, which
provides significantly higher resolution and more accurate depth information.

3.1.2 Coordinate systems and robot joints
The knowledge of the transformations between the different parts of the robot is fundamental
for the control of the robot. The origin of the reference coordinate system, base, is placed
under the joints of the robot’s torso. The x-axis of this system points behind the robot, the
y-axis points perpendicular to it towards the robot’s right arm, and the z-axis is parallel to
gravity but with the opposite orientation, see Fig. 3.2a. This figure also shows the other
important coordinate systems for this work, which are located in the neck, the eyes, and

7



3. Materials and Methods .....................................

Figure 3.1: RGB-D camera mounted on the iCub’s head.

the RGB-D camera attached to the robot’s head. Other parts of the robot are not used in
this work.

The neck coordinate system, unlike the base frame, is located above the joints of the
neck, thus there are six joints between these frames—three neck and three torso joints (see
Fig. 3.2a). Each of these joints allows for a specific type of rotation—yaw, roll, or pitch.

The fundamental difference between the structure of the human neck and the structure
of the iCub neck lies in the relative position of the three joints. While the joints in the
human neck are localized in one place, so that one joint provides all three types of rotation
(pitch, roll, yaw), the robot has one of the joints that is offset by a certain distance from
the other two joints (see Fig. 3.2b). The joint with pitch rotation is the lowest of the neck
joints and is therefore not affected by the rotation of the other two joints. The rotation
of the pitch joint will always be in the same direction, directly toward the center of the
chest and to the center of the back on the opposite side regardless yaw and roll joints. On
the other hand, the yaw joint, which is above the pitch joint, is affected by its rotation,
and the direction of the head when performing the yaw rotation varies according to the
actual pitch joint inclination. The rotation of the individual joints is therefore not around
the axes of the neck frame, but around the z-axes of the coordinate systems of the joints
themselves, which differ from each other and influence each other (see Fig. 3.3a). It can
lead to complications when working with the joints and may cause minor inaccuracies.

The neck and torso rotations differ in their order and directions. Table 3.1 shows the
order of the joints for the kinematic chains of the torso and neck. Figure 3.3b shows the
signs for the corresponding movements of the neck and torso joints in the three rotations.

8



....................................... 3.2. Gaze stabilization

Chain Joint index Joint name

Neck
0 pitch
1 roll
2 yaw

Torso
0 yaw
1 roll
2 pitch

Table 3.1: Numbers of Robot Joints.

An important parameter of these revolute joints is their range of rotation, i.e., their
minimum and maximum safe angular rotation. Movement beyond these limits would cause
damage to the robot. Table 3.2 shows the limits for both the real robot and its model in
simulation.

Hardware limit
Chain Joint name robot simulation

Neck
pitch <-30◦, 22◦> <-30◦, 17◦>
roll <-20◦, 20◦> <-20◦, 20◦>
yaw <-45◦, 45◦> <-45◦, 45◦>

Torso
yaw <-50◦, 50◦> <-50◦, 50◦>
roll <-30◦, 30◦> <-30◦, 30◦>

pitch <-20◦, 70◦> <-19.8◦, 69.3◦>

Table 3.2: Hardware Limits of Robot Joints.

3.1.3 Robot programming
The robot programs for the iCub are usually written in C++ programming language.
Yet Another Robot Platform (YARP) serves as a middleware that allows communication
between different parts of the robot and external devices. Thus, it is possible to obtain
real-time information about the robot’s state, such as the current angular coordinates of
the joints, which are important for real-time robot controllers.

3.2 Gaze stabilization
Gaze stabilization ensures that the movements of other parts of the robot do not result
in any change in the field of view (FoV). This is particularly important with regard to
the visual control of the robot’s activity and camera image analysis. In the absence of
gaze stabilization, the head is compelled to move in synchronization with the torso, as the
head is connected to the torso. These movements have the potential to cause a loss of
crucial points within the FoV for a given activity. Furthermore, the analysis of the FoV
is complicated by the presence of large pixel movements, which also impede the robot’s
ability to orient itself within its environment.

A simple approach to addressing gaze stabilization is to purely compensate for the

9



3. Materials and Methods .....................................

base

neck

eye

RGB-D camera

(a) Coordinate systems in base-, neck-, eye-
and RGB-D camera frame.

(b) Scheme of kinematic chain of the iCub
robot from [32].

Figure 3.2: Signs of rotation of the joints of the torso and neck.

movement of the individual rotational joints of the torso with the corresponding neck joints.
This approach uses knowledge of the robot structure and measurable joint coordinates of
the torso.

Each torso joint is compensated individually by its corresponding neck joint (see Tab. 3.1).
For example, movements of the torso joint allowing lateral bends are compensated by the
neck joint providing lateral bends of the head. Since the rotations of the corresponding
neck and torso joints have opposite signs of rotation (see Fig. 3.3), the desired values of the
neck joints (qdnpitch, qdnroll, qdnyaw) to provide stabilization are equal to the actual values
of the torso joints (qtpitch, qtroll, qtyaw).

Since the neck joints compensate for the motion of the torso joints only after they have
been made, the stabilization is delayed by one time step. However, it can be assumed
that the robot will not perform abrupt movements due to safety and the desire to appear
calm and friendly. This assumption can be used to slightly improve the stabilization. For
example, if the robot starts rotating its torso to the right, it will probably perform the
motion for a longer period of time than a single loop. Thus, it is possible to predict the
joint coordinates that the torso joints will reach in the next time step and improve gaze
stabilization by setting more distant targets for the neck joints. For this purpose, we store
the previous joint coordinates of the torso joints. We can calculate how many degrees each
joint has moved between two consecutive updates (from the difference between the current
and the previous joint position) and thus in which direction the robot is most likely to

10



..........................................3.3. Optical flow

roll
pitch

yaw

roll

pitch

yaw

(a) Different types of rotation marked in base
frame and neck frame. The individual joints
perform rotation about their own z-axis as
indicated for the neck joints. The dashed axis
indicates a negative axis orientation.

(b) Signs of rotation of individual joints of
the torso and neck.

Figure 3.3: Signs of rotation of the joints of the torso and neck.

continue moving. We then use the α parameter to determine how far ahead we want to
predict the movement.

qdnpitch = qtpitch − α · (qtpitch − qtprev, pitch) (3.1)
qdnroll = qtroll − α · (qtroll − qtprev, roll) (3.2)
qdnyaw = qtyaw − α · (qtyaw − qtprev, yaw) (3.3)

3.3 Optical flow
Optical flow is a technique used to describe the motion in an image. This two-dimensional
image motion is the projection of the three-dimensional motion of objects, relative to a
camera, onto its image plane [33]. Optical flow algorithm can be used to evaluate the
quality of gaze stabilization [15, 34]. It is applied to videos or a series of image frames
with a high frame rate and its output is a motion vector in Cartesian coordinates that
represents the motion of pixels between two consecutive images. The technique uses two
basic assumptions, namely that the pixel intensity of an object does not change between
successive frames, and that neighboring pixels have similar direction and speed of motion.
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There are two basic approaches to compute the optical flow depending on the volume

of data they handle—sparse and dense. Sparse optical flow methods compute the motion
vector only for defined parts of the image, for example, the corners of objects, i.e., for a
sparse data set. Thus, it does not detect background motion without distinct curves and
displacement of round objects. It is therefore unsuitable for stabilization evaluation in
simulation environment. The most well-known algorithm for computing sparse optical flow
is the Sparse Lucas-Kanade [35] algorithm.

In contrast, the dense approach works with all pixels in the image. This slows down the
computation, but also makes the results more accurate. For each point in the image, the
change in position is calculated, and then the motion vector is determined. Algorithms
for dense optical flow calculation are, for example, Farneback [36] and RLOF [37]. The
difference between these methods lies mainly in the approach to optical flow calculation
and their characteristics. The main idea of the Farnebeck algorithm is to approximate the
motion in each pixel using second-degree polynomials and produce an estimate of the local
derivatives from which the total motion can then be determined. RLOF (Robust Local
Optical Flow) uses more robust estimation methods that are less prone to outliers, noise,
and inhomogeneous background.

To illustrate the output of the algorithms, either arrows representing the motion vector
of each pixel are drawn in the video, or each pixel is assigned a BGR color corresponding
to the angles and magnitudes of the optical flow, see Fig. 3.4. In this work we use the
OpenCV library and optical flow calculation demo from [38].

(a) Representation by BGR colors. (b) Representation by arrows.

Figure 3.4: Optical flow represent by BGR colors and arrows.
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Chapter 4

Gaze Controller

This chapter introduces the proposed 3-DOF algebraic gaze controller. First, the preliminar-
ies and assumptions are mentioned in Sec. 4.1. Then, the algebraic solution for gaze control
is presented in Sec. 4.2, followed by its use for gaze stabilization in Sec. 4.3. Examples of
redundancy exploitation tasks are described in Sec. 4.4 and finally, the gaze control strategy
is presented in Sec. 4.5.

4.1 Preliminaries
For our method, we assume that the arrangement of the neck joints is as described in
Sec. 3.1.2, specifically that the neck joint pitch is the first of the neck chain joints and is
not located at the same point as the other two. However, our method is applicable to a
configuration in which all neck joints are located at a single point.

The algebraic control solution is based on knowledge of the transformation matrices
between the robot’s frames and the gaze target. In Sec. 3.1.2 we have introduced coordinate
systems in the base, neck, eye, and rgb-d camera. For transformation matrices the notation
T is used with two indices to denote the frames to which the transformation is applied, all
of them are shown in Fig. 4.1.

The transformations Tbn and Tbe can be obtained from the current robot configuration.
The RGB-D camera is attached to the robot’s head, so its position and rotation relative to
the neck are fixed. The transformation of the RGB-D camera Tnr is solved by calibrating
it with respect to a fixed coordinate system, in our case the neck frame. This can be done
using the iCub realsense-holder-calibration module1.

The remaining transforms are obtained by the following calculations:

Tbr = Tbn · Tnr (4.1)
Tne = Tnb · Tbe. (4.2)

Vectors used for calculations have a subscript indicating in which frame the vector is
located. For example, on represents the coordinates of the object in the neck frame. We
will also use the superscript H to denote vectors in homogeneous form, i.e., a four-element
vector with the value one as the last element. In this form, vectors can be multiplied by
transformation matrices.

1https://github.com/robotology/realsense-holder-calibration
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Tbr

Tbe

Tbn

Tne

Tnr

Figure 4.1: Transformations between robot torso, neck, eye, and realsense frame.

4.2 Gaze control
As looking at a point in the scene requires only two degrees of freedom (DOF), it is possible
to view almost any point in the space in front of the robot with only two joints (pitch and
yaw neck joints in our case). The only limitation is their joint limits (shown in Tab. 3.2).

Figure 4.2 shows the robot in simulation along with the views through the RGB-D camera
in the left window and the camera in the left eye of the robot in the right window. The
visualization shows that in the robot’s base position, the external camera is pointed slightly
downward to obtain a better view of the manipulation area.

The following calculations do not depend on the type of camera used (one of the eyes or
RGB-D), so we use general camera transformations such as Tbc. This matrix can then be
equal to, e.g., Tbe or Tbr.

If the robot is to maintain a view on a particular point, we need to know the 3D
coordinates of that point relative to the robot. For the following calculation, we use its
position in the neck coordinate system on. Usually, this information is not available, but
can be obtained by additional calculations.

In simulation, the position of objects in the global coordinates of simulation og is usually
known. The transformation from these global coordinates to the robot torso in our case
requires a rotation by the unit rotation matrix and a shift only in the z-axis by the height
of the torso, i.e., 0.63 m. Therefore, it is sufficient to subtract this displacement to locate
the target in the torso coordinates. Then the already mentioned Tbn transformation is used.
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RGB-D camera

eye

Figure 4.2: The robot in simulation and the view of the RGB-D camera mounted on its head
(right) and the view of the camera in the robot’s left eye (left). The figure shows the difference
in orientation of these two cameras.

oH
b = oH

g − [0, 0, 0.63, 0]T (4.3)
oH

n = Tnb · oH
b (4.4)

(4.5)

For gaze computation, the current rotation of the camera and the line-of-sight (LoS), i.e.,
the line between the camera and the object must also be taken into account. We define a
point on the LoS vH

c = [0, 0, d, 1], where d = ||oc||, i.e., is the distance between the camera
and the target object. In the coordinates of the camera used, this is its z-axis. In the neck
frame, we then compute the point on the LoS as follows:

vH
n = Tnc · vH

c (4.6)

As mentioned in Sec. 3.1.2, the neck joints are not located at one point, but the pitch
joint is located below the roll and yaw joints. This means that the rotation of the pitch
joint is not around the x-axis of the neck coordinate system, but around one of its own axes.
Thus, the angles related to the pitch joint need to be calculated in a coordinate system that
is not affected by the tilt of the other two neck joints. Therefore, to calculate the pitch
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joint values, we use the Tpt transformation from the simulated neck coordinate system to
the torso coordinate system created for the simulated zero value of the roll and yaw joints.

oH
p = Tpt · oH

b (4.7)
vH

p = Tpt · Tbc · vH
c (4.8)

where op is the coordinates of the target and vp is the point on the LoS vector for the
simulated neck frame. The components (xo, yo, zo) of the vector op and components (xv,
yv, zv) of vp are used to calculate the angles αpitch and βpitch between neck and the object
or the point on the LoS vector. Figure 4.3a shows the situation for the calculations with
the object and Figure 4.3b for calculations with the point on the LoS vector. The angles
are then converted from radians to degrees.

αyawαpitch

yo

zo

xo

on

(a) Angles αpitch and αyaw between the robot
neck and the object of interest. The compo-
nents (xo, yo, zo) of the vector on are its
coordinates in the neck frame.

βyaw

βpitch

xv

zv

vn

yv

(b) Angles βpitch and βyaw between the robot
neck and the point on the line-of-sight vector
(dot-and-dash blue line) in neck frame. The
components (xv, yv, zv) of the vector vn are
its coordinates in the neck frame.

Figure 4.3: Important angles for calculating the target joint coordinates of the pitch and yaw
joints.

αpitch = tan
(

−yo√
(xo)2 + (zo)2

)
· 180/π (4.9)

βpitch = tan
(

−yv√
(xv)2 + (zv)2

)
· 180/π (4.10)

(4.11)

The resulting joint value for the pitch joint is obtained from the angles calculated above
and the current rotation of this joint qpitch using the following equation:
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qnpitch = αpitch − βpitch + qpitch (4.12)

To calculate the angles related to the yaw joint, we create a transformation T s
bn from the

torso coordinate system to the simulated neck coordinate system, which already includes
the current rotation of the roll and yaw joints, but instead of the current pitch joint setting,
it simulates the calculated value of qnpitch.

oH
n = T s

nb · oH
b (4.13)

vH
n = T s

nc · vH
c (4.14)

The angles αyaw and βyaw (the calculation shown in Fig. 4.3) and the resulting value of
the yaw joint qnyaw are calculated as follows:

αyaw = tan
(

xo

zo

)
· 180/π (4.15)

βyaw = tan
(

xv

zv

)
· 180/π (4.16)

qnyaw = −(αyaw − βyaw) + qyaw (4.17)

where xo, yo and zo are components of the vector on and xv, yv and zv are components of
the view vector vn. The value of qyaw is the current joint coordinate of the yaw joint.

Since the new target may be several tens of centimeters away from the original target,
it is not possible to perform the entire movement at once. This would cause sudden and
too fast movement of the neck, which could cause a technical malfunction of the robot.
Therefore, we use the minjerk2 function, which generates an output trajectory for the
computed joint coordinates that has the properties of a quasi-minimal jerk, thus resembling
human-like motions as described in [39], and also sampling the motion so that it is not too
large in one step. We assume that in such small motions, the error due to rotation of the
neck joints is not so noticeable at once.

It may happen that the robot receives a point of interest that it cannot look at. This
means that calculating the coordinates of the neck joints needed to reach that point will
produce values that are outside of their limits. In this case, it is necessary to ensure that
the joints do not exceed their limits while the robot looks as close to the target as possible.
Therefore, the resulting joint coordinate qi for i-th joint is clipped as:

qi = max(ql
i + 2.1◦, min(qi, qu

i − 2.1◦)) (4.18)
2https://robotology.github.io/robotology-documentation/doc/html/group__minJerkCtrl.html
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4. Gaze Controller.........................................
where ql

i and qu
i are lower and upper safety joint limit, respectively.

The procedure shows that it can be used for any camera located on the robot head, as
long as the transformation matrix from the robot neck to it is known. At the same time,
matrix multiplication and computation of goniometric functions are not computationally
intensive operations. Therefore, it is a fast and robust approach.

4.2.1 2D target in camera image
In practice, information about the surrounding environment is most often obtained from
camera images. We can obtain the position of the object in the image plane in pixels using
standard image processing methods or manually.

Without explicit knowledge of the distance of the target from the camera, we cannot
accurately calculate the 3D position. However, for tracking purposes, the LoS vector is
more important than the accurate 3D position. Therefore, we can assume that the distance
from the camera is 1 m to estimate the 3D position approximately. For the computation,
we need to know a camera calibration matrix K which contains the camera focal lengths
fx and fy and the optical centers cx and cy.

K =

fx 0 cx

0 fy cy

0 0 1

 (4.19)

To convert between the pixels of a camera image point and the coordinates of that point
in the camera coordinate system, the following equation applies:

x
y
z

 = K−1 ·

u
v
w

 (4.20)

where oc = [x, y, z] is the point in the camera frame, u and v are the pixel values, and w
is the depth of the point in space fixed to the value 1 m. For control purposes, the resulting
point oc is transformed to the neck frame:

oH
n = Tnc ·


x
y
z
1

 (4.21)
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4.3 Gaze stabilization
The gaze control principles described above can also be applied to gaze stabilization.
Stabilization can basically be thought of as gaze control since due to the disturbing
movements of the torso and other parts of the robot, the position of the target relative to
its camera is constantly changing, and so the gaze needs to be controlled even though the
position of the target in the environment remains the same.

Due to the nature of the gaze stabilization, we assume that the calculated joint angles
will differ only slightly from the actual ones. Therefore, the calculated angles are directly
applied to the joints.

4.4 Redundant joint
As mentioned and shown above, it is not necessary to use the neck joint roll to focus the
gaze on the target. To exploit this redundancy, we have implemented two secondary tasks
that complement the primary task (i.e., target gazing). The first of these tasks focuses on
keeping a second target visible in the field of view (FoV) while the neck moves due to the
primary target’s shift. The second task aims to keep the gaze parallel to the environmental
horizon both during gaze shifts between targets and during stabilization.

4.4.1 Second target
When the target is changed, the robot immediately begins to direct its gaze to the new
coordinates. Depending on the distance between the original and the new target, the visible
scene, i.e., the part of the environment that is captured in the field of view, may also change
significantly. Thus, the robot may lose visibility of most of the objects that were previously
in the field of view. This loss can be avoided in some cases using lateral neck tilts.

Since the field of view is rectangular, the best way to maintain visibility of the second
target is to point that target toward the diagonals of the field of view. Thus, we try to
minimize the angle β that the object forms with the diagonal with respect to the quadrant
of the FoV in which the object is situated. In Fig. 4.4 on the left, we can see that ball 1 is
located in the fourth quadrant, so we try to minimize the angle β1 between that object and
the green part of the diagonal.

quadrant =


I if u > w/2 ∧ v < h/2
II if u < w/2 ∧ v < h/2
III if u < w/2 ∧ v > h/2
IV if u > w/2 ∧ v > h/2

(4.22)

The range of motion of the roll joint is only 20◦ to each side, so it does not give much
space for maneuver. Figure 4.4 on the right shows the situation specifically for the zero
value of the roll joint. If the head has not yet rotated in this rotation direction, then the
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red space indicates where the robot is unable to direct the appropriate diagonal by tilting
the head.

1

2

β1

β2
d2

d1

II

III IV

I

α2

α1

γ

(a) FoV with important angles for calculating
the joint coordinate of the joint roll.

2

1

20°

20°

(b) FoV with constraints and possible loca-
tion of second target plotted.

Figure 4.4: The field of view for tracking the second target. The blue hatched circle indicates
the area where if the second target is located inside we do not use the rotation of the roll joint.
The red sections show where the FoV diagonals cannot be pointed by rotating the neck roll
joint due to the limitations of this joint in the robot’s default position.

All calculations are performed in the camera image plane, so the position of the second
target sec_target = [u, v] must be in pixels. We show the calculations for the general
camera resolution w × h. Next, we introduce a vector a that will be directed from the
center of the field of view to the second target.

a =
[
u− w/2, v − h/2

]
(4.23)

If the following two conditions are fulfilled, the angle for the roll joint is calculated as
described below:..1. the visibility of the second target can be ensured, i.e., it is located in a circle circum-

scribed around the field of view:

∥a∥ <
√

(w/2)2 + (h/2)2 (4.24)..2. the second target is not closer to the center of the field of view than a radius r:

∥a∥ > r (4.25)

If the second condition is not satisfied, then the second target is near the center of the
field of view. In that case, it is not advisable to change the roll rotation in any way because
the quadrant in which it lies, and thus the sign of the rotation may often change, which
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would lead to an oscillating movement of the head from side to side. In addition, the target
at that moment is in a clearly visible part of the field of view, so no roll movement is
needed. In Fig. 4.4 on the right, this area is marked with a blue hatch.

We use the pixel values of the second target to determine in which quadrant it is located
and compute the angle α, the angle between the vector a and the vector s, which lies on
the horizontal axis of the field of view with the origin at its center and the orientation
dependent on the quadrant.

s =
{

[w/2, 0] if quadrant = I ∨ quadrant = IV

[−w/2, 0] if quadrant = II ∨ quadrant = III
(4.26)

α = arccos a · s
∥a∥ · ∥s∥

· 180/π (4.27)

The horizontal axis of the field of view and its diagonal meet at the angle γ, its value
depends on the resolution of the particular camera and is computed as follows:

γ = arccos [w/2, h/2] · s
∥[w/2, h/2]∥ · ∥s∥ · 180/π (4.28)

The angle β is equal to the absolute value of the difference of the angles α and γ:

β = |α− γ| (4.29)

Since the orientation of the head is constantly changing as the pitch and yaw joints
control gaze toward the primary target, the position of the second target in FoV is also
constantly changing. Therefore, the roll joint is moved only by an angle k of at most one
tenth of a degree at each step.

k =
{

0.1 if β ≥ 0.1
β if β < 0.1

(4.30)

To find out whether the rotation by the obtained angle β should be made in the positive
or negative direction, i.e.whether this angle should be added or subtracted from the current
roll joint coordinate qroll, we use the magnitude of the angle α and the quadrant number
as follows:
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roll =


qroll + k if (quadrant = I ∨ quadrant = III) ∧ α < γ

qroll + k if (quadrant = II ∨ quadrant = IV ) ∧ α ≥ γ

qroll − k if (quadrant = I ∨ quadrant = III) ∧ α > γ

qroll − k if (quadrant = II ∨ quadrant = IV ) ∧ α ≤ γ

(4.31)

4.4.2 Horizontal view
If the robot uses only neck joints pitch and yaw for stabilization, the field of view rotates
around the center while the robot’s torso is laterally inclined. This causes a large pixel
movement and can lead to blurring, thus a more difficult image analysis. Therefore, for
some tasks, it may be advantageous to compensate for this rotation with the redundant
neck joint to keep the view parallel to the environmental horizon.

The following procedure describes how to find the angle ϕ, the angle between the
horizontal axis of the view and the horizon. Figure 4.5 shows this procedure schematically.

pixelToVector()

2D

base
base

T'nb

nn 

φ 
bn 

cn 

mn 

mb 

neck
FoV

neck

yaw = 0

base

φ 
bn 

cn 

bb 

nb 

cb 

mb 

bb 
nb 

cb 

mb 
cb nb

[w,h] 

np = [3w/4,h/2] 

mp npcp

mp = [w/4,h/2]
cp = [w/2,h/2]

[0,0] 

case 1 case 2

Figure 4.5: The diagram shows the process of calculating the angle ϕ by which the robot’s FoV
is rotated relative to the environment horizon.

We select three important points in the field of view that lie on its horizontal axis. The
point cp is the center of the image, and the points mp and np are on the right and left
halves of the axis, to be able to tell to which side the view is tilted. In our case, we have
determined their positions at a quarter and three-quarters of the width w.
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mp = [w/4, h/2] (4.32)
cp = [w/2, h/2] (4.33)
np = [3w/4, h/2] (4.34)

These three points are converted into the torso frame using the camera matrix (the
detailed procedure is described in Sec. 4.2.1). The dashed red arrow of the torso frame in
the diagram indicates the negative x-axis.

To find out how the view is rotated, we only need to use a 2D space projection, since
the distance of the points from the robot is not relevant. The projection is done in the
torso and neck frames. Figure 4.5 shows that the distribution of points in a 2D space can
take two forms. If the robot’s field of view is tilted to the left, the points corresponding to
the right half of the horizontal axis of the field of view are higher in the torso frame than
those from the left half, so their z coordinate has a larger value. In the diagram, this case
is denoted by the number one. Otherwise, the view is tilted to the right side, denoted by
number two. In both cases, we create a new point bb, which has the same values of the x
and y coordinates as the nb and mb points above and is shifted to the level of the point cb

on the z-axis. The line between points cb and bb marks the horizon and therefore where the
horizontal axis of the field of view should ideally be projected if the view were horizontal
with the environment.

bb =
{

[nb[0], nb[1], cb[2]] if mb[2] ≤ nb[2]
[mb[0], mb[1], cb[2]] if mb[2] > nb[2]

(4.35)

The goal is therefore to minimize the angle between the points bb, cb, and the higher point
from the points mb and nb. To calculate the appropriate angle more accurately, we convert
these points to the neck frame, specifically the roll joint frame. This joint is placed below
the yaw joint in the robot structure as the second neck joint in the sequence. To transform
the points, we use the matrix T s

nb with the simulated zero value of the yaw joint.

cn =T s
nb · cb (4.36)

bn =T s
nb · bb (4.37)

mn =T s
nb ·mb (4.38)

cn =T s
nb · cb (4.39)

ϕ =

arccos (nn−cn)·(bn−cn)
∥nn−cn∥·∥bn−cn∥ · 180/π if mb[2] ≤ nb[2]

arccos (mn−cn)·(bn−cn)
∥mn−cn∥·∥bn−cn∥ · 180/π if mb[2] > nb[2]

(4.40)
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As in the calculation for the second target, we do not want the robot to rotate the roll

joint by a large angle in one step. Therefore, the roll joint moves straight to the desired
joint coordinate roll (see Eq. (4.41)) only in the stabilization loop, where we assume that
the angle ϕ will not reach large values. In gaze control, the actual joint displacement in the
current step is computed by the minjerk function, which tries to approximate roll by a
small step.

roll =
{

qroll + ϕ if mb[2] ≤ nb[2]
qroll − ϕ if mb[2] > nb[2]

(4.41)

4.5 Gaze control strategy
The gaze controller uses the proposed methods for gaze control and stabilization described
above and connects them to a fully functional unit. Thus, it is possible to control the
robot’s gaze on the selected target, stabilize its gaze, and use redundancy in an adjustable
way.

CONTROL STABILIZATION

IDLE

sta
b

stab

sto
pstop

new target

new target

control done

Figure 4.6: Gaze controller as state machine with tree states—IDLE, CONTROL and STABI-
LIZATION. Switch between states by using the STAB and STOP commands or by specifying a
gaze control target.

The Gaze controller works on the principle of a state machine with a total of three
states—CONTROL, STABILIZATION and IDLE. Figure 4.6 shows schematically how
these states are connected and what events trigger a switch between them. All activation
commands are entered externally via a YARP port. The initialization state of the gaze
controller is the IDLE state, in which the robot’s neck is not controlled in any way; a return
to this state can be invoked later with the STOP command. In the following subsections,
we describe the two other states—CONTROL and STABILIZATION—in more detail. The
pseudocode of the controller is presented in Algorithm 1 and the detailed scheme is shown
in Fig. 4.7.

4.5.1 CONTROL state
Entering a new target puts the gaze controller into the CONTROL state and starts a loop
of the gaze controller, which starts to smoothly change the orientation of the head, and
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Algorithm 1 Gaze controller
while True do

state← IDLE
if command entered then

if command ∈ STOP then
5: state← IDLE

else if command ∈ STAB then
target← LineOfSight
state← STABILIZATION

else if command ∈ NewTarget then
10: target← NewTarget

state← CONTROL
if command ∈ NewSecondTarget then

secondTarget← NewSecondTarget
end if

15: end if
end if
switch state do

case IDLE
wait()

20: case CONTROL
qdNeckgoal[0]← computeP itch()
qdNeckgoal[2]← computeY aw()
if horizontal view then

qdNeckgoal[1]← computeHorizontalWiew()
25: else if not second target then

qdNeckgoal[1]← 0
end if
checkLimits()
qdNeck ← minjerk(qdNeckgoal)

30: if secondTarget then
qdNeck[1]← computeSecondTarget()

end if
move(qdNeck)
if abs(qdNeckgoal - qdNeck) < thresholds then

35: state← STABILIZATION
end if

case STABILIZATION
if unsuccessful control then /* Only once */

target← LineOfSightV ector
40: end if

if invisible secondTarget then
qdNeck[1] step to zero

end if
qdNeckgoal[0]← computeP itch()

45: qdNeckgoal[2]← computeY aw()
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if horizontal view then

qdNeckgoal[1]← computeHorizontalWiew()
end if
checkLimits()

50: qdNeck ← qdNeckgoal

move(qdNeck)
end while

thus controls the gaze. The new target can be sent from an external script as a pixel
position in the image plane, i.e., two values input, or as a 3D point in the torso frame or
world frame for simulation, i.e., three values input. To keep the target format uniform, we
always convert it to the torso frame, from the world coordinates using the Eq. (4.3) and
from the pixels according to the procedure described in Sec. 4.2.1. A second target can
also be specified, in case we want to take advantage of the robot’s redundancy and keep
the second target in the field of view while shifting the view to the first target. The second
target should have the same format as the first one.

The control loop calculates the target joint coordinates qdNeckgoal for the pitch and yaw
joints as detailed in Sec. 4.2. If we want to use redundancy to provide horizontal view, the
roll joint value is calculated, see Sec. 4.4.2. However, if we do not want to use redundancy
at all, the target roll joint value is set to zero. The computed joint values qdNeckgoal are
bounded into the joint ranges. We then pass them to the minjerk function, which returns
the new qdNeck values. Once we know exactly what motion the robot will perform in this
step, we calculate the value of the joint roll qdNeck if a secondary goal was also specified.
The exact procedure is described in Sec. 4.4.1.

Finally, the robot moves the neck joints to the computed coordinates qdNeck. We check
if the movement to the new target has been successfully completed. We consider the
movement completed successfully if the difference between the values of qdNeckgoal and
qdNeck is less than the set threshold of 0.1◦. If a second target has been entered, the
threshold for the pitch and yaw joints is 0.5◦ and the roll joint is not checked. Once the
movement is completed, the robot is ready to stabilize its gaze on the newly focused target,
and the stabilization loop is activated.

Currently, the controller and the inverse kinematics (IK) computation are closely con-
nected. If the original gaze target is not reachable due to neck joint limits, the controller
moves the gaze as close to it as possible. If the torso during the gaze control moves in a
way that makes the target reachable, the gaze controller moves the gaze to the target pose.
As the reachability of the target can change during the motion, it is currently not possible
to retrieve the output of the IK solution itself without performing the movement.

4.5.2 STABILIZATION state
When the gaze control is complete, the gaze controller is automatically switched to the
STABILIZATION state and stabilizes the gaze on the specified target. If the robot was
unable to get the gaze on the target during the control loop due to joint limits or if
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......................................4.5. Gaze control strategy

stabilization was externally induced by the STAB command, a new virtual gaze target is
created. The virtual target is defined as the point on the LoS that is 1 m away from the
camera converted to the torso frame. The view thus remains stable and within the range
of the neck joints until a new target is specified. This recalculation is done at most once,
when the stabilization loop starts.

oH
c =

[
0 0 1 1

]T
(4.42)

target = Tbc · oH
c (4.43)

As we described in Sec. 4.3, gaze stabilization uses principles similar to gaze control;
therefore, the following steps of the stabilization loop are similar to the control loop. The
target value of the pitch and yaw joints is calculated, and in the case of using the horizontal
view, the value of the roll joint is also calculated. The only difference occurs if a second
target was also set for the control, but it could not be kept in the field of view; in this case
we do not want to leave the robot head tilted unnecessarily and we set the roll joint value
by 0.1◦ closer to zero, so it slowly returns to the default state.

After checking the limits of the robot, the movement of the joints to the gdNeck values
is executed again. Here, the minjerk function is no longer used, as the stabilization loop is
fast enough to compensate for the small target motion with small neck movements that are
not dangerous to execute directly without any sampling.
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4. Gaze Controller.........................................

Figure 4.7: Gaze controller diagram.
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Chapter 5

Experiments and Results

In this section, we describe the experiments performed to demonstrate the functionality of
the proposed gaze controller described in Chapter 4. First, the results of the gaze control
experiment are shown in Sec. 5.2. The evaluation of the gaze stabilization is described in
Sec. 5.3. Next, the redundant joint is exploited in two experiments presented in Sec. 5.4.
Finally, the gaze controller is used during a children’s game against a human opponent.
This experiment is described in Sec. 5.5.

5.1 Setup for experiments
Experiments were performed in both simulation and on the real iCub robot. An Intel
RealSense D435 RGB-D camera mounted on the head of iCub was used to acquire visual
data. Table 5.1 shows the resolution, optical center values (cx, cx) and focal lengths (fx,
fy) for the RGB-D camera on the real robot and for its model in simulation.

Parameters Real robot Simulation
resolution 1280 × 720 320 × 240

cx 639.18 160
cy 342.85 120
fx 918.48 343.12
fy 916.39 343.12

Table 5.1: Parameters of the RGB-D camera on the real robot and in simulation.

As described in Sec. 3.1.2, the transformation matrix from the RGB-D camera to the
neck Tnr is obtained by calibration using a calibration checkerboard. For the real robot, it
has the following values:

Tnr =


0.9987059879 −0.04040485152 0.03088361407 −0.03887093391

0.004155840177 0.6700826921 0.7422748243 −0.02957368113
−0.05068607932 −0.7411859644 0.6693835131 0.03798804518

0 0 0 1

 (5.1)

The pose of the RGB-D camera model on the iCub in simulation does not match its
position on the real robot due to different kinematic chain representation (iCub kinematics
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5. Experiments and Results.....................................
vs. URDF model). Since camera calibration cannot be performed in simulation, this
transformation matrix Tnr is approximated as:

T s
nr =


0.9926778672 −0.08964789262 0.08095620594 −0.0372932849
0.01472872958 0.7550455074 0.6555069384 −0.09669132672
−0.1198904352 −0.6495148475 0.7508373635 0.09589647841

0 0 0 1

 (5.2)

5.2 Gaze control
In this experiment, we focused on demonstrating the functionality of the gaze control
described in Sec. 4.2. The experiment was carried out in both simulation (see Sec. 5.2.1),
and on the real robot (see Sec. 5.2.2). In both cases, targets were defined by pixel coordinates.
These targets were sent to the gaze controller and the task was to move the head to have
the target in the center of the FoV. This starting position of the target in the image is not
relative to the FoV in the robot’s default configuration, but is determined from the camera
image taken after reaching the previous target.

5.2.1 Gaze control in simulation
The robot was given 12 gaze targets in the simulation experiment. If we had specified the
location of the target in global or torso coordinates, the robot would not move to have the
target in the center of FoV due to the inaccurate transformation matrix T s

nr (see Sec. 5.1).
Therefore, we always specified the position of the targets in pixels.
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Figure 5.1: Gaze control experiment in simulation. Trajectories of individual targets in FoV as
the gaze is moving towards the target. The black point on each trajectory shows the starting
position of a target.

30



......................................... 5.2. Gaze control

The trajectories of all specified gaze targets in the FoV during gaze control are marked
in Fig. 5.1. The black point on each trajectory shows the starting position of a target. It
can be seen that all targets, except Target 4 and Target 10, ended up in the center of the
field of view [160, 120].

In Fig. 5.2, we can see the profile of the joint coordinates of the neck joints pitch (blue
curve) and yaw (green curve) during the experiment while moving the gaze to the new
target. The data between moving gaze to targets are not shown, as they are not relevant
for this experiment. It can be seen that the pitch joint reached its safety limit (dashed
blue line) during the gaze control on Target 4 and therefore the gaze controller was not
able to align the gaze center exactly on Target 4. In the case of Target 10, both joints
reached their safety limits (dashed blue and green line).
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Figure 5.2: Gaze control experiment in simulation. Joint coordinates of neck joints pitch (blue
curve) and yaw (green curve) and distance of gaze targets from FoV center (red curve). The
vertical dashed lines indicate when the new target was entered and the horizontal lines with the
corresponding colors mark the hardware limits (solid line) and the safety limits (dashed line) of
pitch and yaw joints.

Figure 5.3 shows the view of the RGB-D camera when Target 1 was entered (on the left)
and when the control was completed (on the right). In this case, the target is in the center
of the FoV. On the other hand, Figure 5.4 shows the same situation for Target 10, which
was not reached by gaze due to the limits of the neck joints.
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target 1

target 1

Figure 5.3: Gaze control experiment in simulation. Position of Target 1 before (left) and after
(right) gaze control. The dashed lines indicate the centre of the FoV.

target 10

target 10

Figure 5.4: Gaze control experiment in simulation. Position of Target 10 before (left) and after
(right) gaze control. The dashed lines indicate the centre of the FoV.

5.2.2 Gaze control on the real robot

For the experiment with the real robot, we placed 12 items (gaze targets) on the table in
front of the robot, as seen in Fig. 5.5. Figure 5.6 shows the trajectories of 12 specified
targets. The black point on each trajectory shows the starting position of a target. The
trajectory of target 6 marked in black and the trajectory of target 8 marked in brown
do not end in the center of the field of view (point [640, 360]). For the other targets, the
trajectories end at the point center of FoV. The trajectories of the targets in this experiment
are more jerky than the trajectories of the targets in a similar experiment in simulation
(see Fig. 5.2) because here the head motion is affected by the real robot parameters.

The movement of gaze towards the target is provided by the pitch and yaw joints. The
value of their joint coordinates during the experiment is shown in Fig. 5.7. The figure shows
how the distance of the current gaze target from the center of the FoV (red curve) decreased
with changing joint coordinates of the pitch (blue curve) and yaw joints (green curve). The
plot also explains why the gaze control was not completed successfully for Target 4 and
Target 8; in the case of Target 4, the pitch joint reached its safety limit (dashed blue line).
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Figure 5.5: Gaze control experiment on the real robot. Scene during the experiment.

In gaze control on Target 8, neck joint yaw reached its safety limit (dashed green line).

Figure 5.8 shows the FoV of the robot before (left) and after (right) gaze control on
Target 4. The image shows that the gaze control was successful as the target is located in
the center of the FoV. On the other hand, Figure 5.9 shows the FoV before (left) and after
(right) gaze control for Target 8, where the robot failed to get the target to the center of
the FoV due to the limits of the neck joints.
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Figure 5.6: Gaze control experiment on the real robot. Trajectories of individual targets in
FoV. The black point on each trajectory shows the starting position of a target.
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Gaze control on the real robot

Figure 5.7: Gaze control experiment on the real robot. Joint coordinates of joints pitch (blue
curve) and yaw (green curve) and distance of gaze targets from FoV center (red curve). The
vertical dashed lines indicate when the new target was entered and the horizontal lines with the
corresponding colors mark the hardware limits (solid line) and the safety limits (dashed line) of
pitch and yaw joints.
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target 4

target 4

Figure 5.8: Gaze control experiment on the real robot. Position of Target 4 before (left) and
after (right) gaze control. The dashed lines indicate the centre of the FoV.

target 8 target 8

Figure 5.9: Gaze control experiment on the real robot. Position of Target 8 before (left) and
after (right) gaze control. The dashed lines indicate the centre of the FoV.
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5. Experiments and Results.....................................
5.3 Gaze stabilization

In this section we present experiments evaluating the quality of gaze stabilization in
simulation (see Sec. 5.3.1) and on the real robot (see Sec. 5.3.2).

The evaluation of the gaze stabilization quality was performed using the optical flow
algorithm RLOF [37] described in Sec. 3.3. The output of this algorithm is the Cartesian
motion vectors of individual pixels between two consecutive images. For comparison of the
approaches, we calculated the average amplitude of the motion vectors per pixel per image.

The robot’s surroundings were fixed during the experiment and the robot’s arms were
moved to a position such that they did not interfere with the realsense field of view (FoV).
Thus, any pixel movements in the camera image during gaze stabilization were induced
only by the torso motions.

5.3.1 Gaze stabilization in simulation
The aim of the experiment in simulation was to evaluate and compare the quality of the
algebraic solution for gaze stabilization (see Sec. 4.3) and naive gaze stabilization (see
Sec. 3.2). The torso performed a total of seven different movements during the experiment,
first moving each of the torso joints individually, then combining the joint movements in
pairs, and finally moving all the torso joints simultaneously. Table 5.2 shows the results for
each type of gaze stabilization and for all combinations of torso joint movements.

Torso motion 1. Stab. 2. Stab. + horiz. 3. N. stab. (α=0) 4. N. stab. (α=1)
pitch 0.05 px 0.04 px 0.22 px 0.11 px
roll 0.33 px 0.04 px 0.71 px 0.23 px
yaw 0.05 px 0.05 px 0.10 px 0.06 px

pitch, roll 0.94 px 0.05 px 0.37 px 0.50 px
pitch, yaw 0.23 px 0.16 px 0.36 px 0.28 px
roll, yaw 0.66 px 0.10 px 0.59 px 0.54 px

pitch, roll, yaw 1.46 px 0.11 px 0.44 px 0.80 px

Table 5.2: Gaze stabilization experiment in simulation. Average amplitude of motion vector of
one pixel in one frame for four type of gaze stabilization (1. gaze stabilization, 2. gaze stabiliza-
tion with horizontal view, 3. naive gaze stabilization with α=0, 4. naive gaze stabilization with
α=1) and seven types of torso motion. Lower values are better.

For algebraic gaze stabilization (1.), it is noticeable that it is the worst at stabilizing torso
motions with roll rotation. This problem is due to the fact that the goal of algebraic gaze
stabilization is to keep the target at the center of the FoV using the pitch and yaw neck
joints, not to ensure minimal pixel motion, and thus the view rotates around the center.
On the other hand, naive gaze stabilization (3.) uses all three neck joints and compensates
for the roll joint of the torso, which gives better results than algebraic gaze stabilization
(1.) in this case. However, the results show that by using the redundant neck joint roll
in the algebraic stabilization (2.), these rotations can also be compensated. Therefore,
algebraic stabilization with horizontal view is the best type of stabilization if we want to
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keep the target in the center of the FoV and minimize the movement around the target. As
mentioned in Sec. 3.2, the results of naive gaze stabilization can be improved by changing
the parameter α. The results for α = 1 (4.), are better than for α = 0 (3.) in most cases.

5.3.2 Gaze stabilization on the real robot

The task of this experiment was to evaluate the gaze stabilization on the real robot while its
torso was moving in random directions with the three joints simultaneously. The movement
of the torso was provided by the iCubBreather module 1, which generates small random
body movements as a baseline naturalistic behavior for social human-robot interaction.
The speed of the torso joints is adjustable and is given in degrees. We evaluated the quality
of stabilization using the optical flow algorithm for speeds of 5.0 ◦ s−1 and 10.0 ◦ s−1.

Figure 5.10 shows average amplitude of motion vectors in each frame. The torso
movements during the experiment were random and therefore the curves in the graph
should not be compared. As in simulation experiment, we computed the average motion
vector amplitudes of one pixel in one frame, for torso speed 5 ◦ s−1 it was 3.95 px and for
torso speed 10 ◦ s−1 5.49 px. Videos from the experiment for both torso speeds can be
found in the folder [40].
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Figure 5.10: The graph shows the average amplitude of motion vectors in each frame at torso
velocities of 5 ◦ s−1 (orange curve) and 10 ◦ s−1 (blue curve). Note that the torso movements
during the experiment were random and therefore the curves should not be compared.

1https://robotology.github.io/funny-things/module/iCubBreather.html
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5. Experiments and Results.....................................
5.4 Secondary task experiments

This section presents experiments that illustrate the utilization of the redundant roll joint in
the two secondary tasks defined in Sec. 4.4. In Section 5.4.1, the experiments demonstrated
the behavior of the redundant roll joint with a second view target also specified. An
experiment to illustrate the use of redundancy for the horizontal view is described in
Sec. 5.4.2.

5.4.1 Second target
This experiment is intended to illustrate how the redundant joint roll behaves when a
second view target is also specified in simulation environment. When two gaze targets are
specified, the gaze controller controls the neck joints so that the main target is located at
the center of the FoV after the gaze movement, while the second target remains visible
during the movement. The visibility of the second target is provided by the redundant
neck joint roll. This is done by tilting the FoV so that the second target approaches its
diagonals; a more detailed explanation can be found in Sec. 4.4.1.

We performed five runs for different main targets, and in the first, second, and fourth runs,
we also specified a second target, see Tab. 5.3. The position of the targets is determined
from the camera image taken after reaching the previous target. Figure 5.11 shows the
camera image before the control started (on the left) and after the control finished (on
the right) for Run 2. The main target is marked with a red point and the second with an
orange point. The image shows that after the end of the control loop, the second target
was on the FoV diagonal.

Run Position of main target [px] Position of sec. target [px] loss of visibility
Run 1 [253, 75] [175, 7] no
Run 2 [117, 226] [302, 169] partly
Run 3 [89, 223] - -
Run 4 [250, 23] [187, 147] no
Run 5 [140, 172] - -

Table 5.3: Second target experiment. Position of the main and second targets in FoV and
whether visibility of the second target was lost during gaze control.

Figure 5.12 shows the trajectories of the movements in the FoV of all three second targets.
The area marked in blue shows the central circle with radius 100 px. If the second target is
in this space, the value of qdNeck for the roll joint is not changed; see Sec. 4.4.1 for an
explanation. This figure also shows that the second target from Run 3 was outside the FoV
for a while. The roll joint was unable to rotate the view to ensure uninterrupted visibility
due to its limits. The other two targets remained fully visible during the individual gaze
movements.

Figure 5.13 shows how the value of the roll joint coordinate changed depending on the
position of the second targets in FoV if they were specified. The data between moving gaze
to targets are not shown, as they are not relevant for this experiment.
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Second target

Second target

Main target

Main target

Figure 5.11: Second target experiment. Position of main and second targets in Run 2 before
(left) and after (right) gaze control. The dashed lines indicate the centre of the FoV, in the right
picture, in addition, a diagonal is marked.

Since the second target specified in Run 1 was initially located in quadrant I, the roll joint
began to rotate in the negative direction, to point the diagonal passing through quadrant
I towards this target. However, due to the rotation of the pitch and yaw joints, which
were simultaneously trying to control the view to the main target, the second target moved
to the center circle, as indicated by the blue curve that changed to False (also visible in
Fig. 5.12). Thus, it can be seen that the angle β between the second target and the nearest
diagonal increased before it reached the vertical axis of FoV. Then β decreased as the object
moved to another quadrant, and hence the nearest diagonal was different. The value of β
becomes constant when the second target hit the central circle and its position ceased to
play a role. The gaze was focused only on the main target before the second target left the
center circle.

The second target entered in Run 2 was successfully controlled to the diagonal by the
roll joint, so the angle value β fell to zero. The second target did not deviate from the
diagonal until the end of the gaze-stabilization loop. In Run 3, the second target was not
specified, so the roll joint returned to its starting position during the view shift to the main
target, so that the head did not rotate unnecessarily. The second target in Run 4 could not
be brought close enough to the diagonal due to joint limits, and therefore its visibility was
partially lost during gaze movement. Run 5, like Run 3, did not contain a second target
and the roll joint gradually returned to the zero position.

5.4.2 Horizontal view
The purpose of this experiment was to show how the rotation of the neck joint roll depends
on the rotation of the torso joint roll and how the ϕ representing the angle of rotation of
the FoV relative to the environmental horizon changes during motion. This angle should
ideally be zero, which would mean that the view is horizontal. To eliminate this rotation,
redundancy can be exploited, and the roll neck joint can compensate for the movement
of the roll torso joint to provide a horizontal view. The experiment was carried out in
simulation, the robot was in STABILIZATION state and the joint roll of the torso performed
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Figure 5.12: Second target experiment. Position of individual second targets in FoV with 320
pixels wide and 240 pixels high. The black points mark the beginnings of the trajectories of the
movements of the second targets. The dashed lines mark the centre and diagonals of the FoV.

the motion.

The values of the joint coordinates and the angle ϕ during the experiment are visualized
in Fig. 5.14. The neck roll joint has the opposite sign of rotation to the torso roll joint, so
if the joints take the same values, the ϕ angle is zero and the view is horizontal. In cases
where the neck joint roll reached its limit (marked by the dashed brown line in the figure)
and was thus unable to compensate for the torso movement, the angle ϕ increased and the
view was no longer horizontal.

40



................................... 5.4. Secondary task experiments

0 10 20 30 40

Time [s]

30

20

10

0

10

20

30

40

50

60

A
n
g

le
 [

°]

Current joint coordinate of joint roll

Angle 

Angle 

Compute qdNeck for roll joint

Second target set

False
True

Tr
u
e
/F

a
ls

e

Gaze control for second target

Figure 5.13: Second target experiment. Joint coordinates of the joint roll (brown curve) and
his hardware limit (solid brown line) and safety limit (dashed brown line). The vertical dashed
lines indicate when the new target was entered, and the red curve becomes True if a second
target has been entered. The blue curve takes on the True value when the qdNeck value for the
roll joint is updated, so that the second target is not in the center circle and is reachable by
gaze. The value of the angle γ, which aligns the second target with the diagonal FoV, is plotted
in olive color.

0 25 50 75 100 125 150 175 200

Time [s]

20

10

0

10

20

30

A
n
g

le
 [

°]

Gaze stabilization with horizontal view

Current joint coordinate of neck joint roll

Current joint coordinate of torso joint pitch

Angle 
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5.5 Bubbles game

FInal experiment demonstrates the use of the Gaze Controller described in Sec. 4.5 in
a human-robot interaction scenario. In particular, the gaze controller is used during a
children’s game called Bubbles against a human opponent. Bubbles is a children’s game
by Piatnik 2 that requires a smart eye and a quick reaction. The game contains 4 colored
dice (red, blue, green, and yellow) with numbers 1-24, so each dice has different numbers.
The game also contains cards with pictures of four differently sized bubbles whose colors
correspond to the colors of the dice. There are 24 cards in total, one for each combination
of sizes and colors. The goal of the game is to evaluate as quickly as possible after the dice
are rolled which card matches the order of the sizes of the colored bubbles with the order
of the sizes of the numbers on the colored dice and to mark that card.

For our experiment, we used only six cards (those where the yellow bubble is always the
smallest one), so that there are not too many cards on the table and the robot is able to
reach all of them. The game is therefore simplified to only three dice (red, blue, and green).
Figure 5.15 shows what the game scene looked like and Fig. 5.16 shows the cards and dice.

The Gaze controller is employed for visual control of the game. When the robot reaches
over a card to mark it, the RGB-D camera view is controlled to look at the center of that
card (see Fig. 5.18). On the other hand, when the robot returns to the starting position
and prepares for the next round of play, the camera view is directed to the table so that
all cards are in FoV and the robot can again detect and distinguish individual cards (see
Fig. 5.17). This allows the robot to see most of the cards throughout the game, allowing
it to be more robust and responsive to any changes in card positions. For arm and torso
movement during the game we employed HARMONIOUS controller [41]. A video from
experiment can be found in [40].

Figure 5.15: Bubbles game experiment. Scene of experiment.

2https://www.piatnik.com/en/games/board-games/children-games/bubbles.html
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......................................... 5.5. Bubbles game

Figure 5.16: Bubbles game experiment. The subset of cards and dice that were used for the
experiment.

Figure 5.17: Bubbles game experiment. Camera view (left) and scene (right) before target entry.

Figure 5.18: Bubbles game experiment. Camera view (left) and scene (right) when marking
the card.
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Chapter 6

Discussion, Conclusion and Future Work

6.1 Conclusion
In this thesis, we presented a gaze controller for the humanoid robot iCub, which allows
to control and stabilize the gaze using the neck joints. The controller allows for focusing
the robot’s gaze on a given target and maintaining the gaze even when the robot’s torso
starts to move. The gaze target can be specified as a 3D point in the robot’s torso frame
or as a point in its FoV. The neck joints pitch and yaw are used to focus the view on the
specified target. The computation of the desired joint coordinates of these joints is based
on algebraic inverse kinematics and knowledge of the robot structure. The source code of
the controller is available in a GitLab repository [1].

We showed how the redundant neck joint roll can be exploited for other tasks by
implementing two secondary tasks—tracking two targets and maintaining a horizontal view.
When the robot is given two gaze targets, the gaze controller controls all three neck joints
to point the first target to the center of the FoV while not losing visibility of the second
target. The visibility of the second target during motion is maintained (if feasible) by
rotating the head with the joint roll. Maintaining a horizontal gaze helps to minimize pixel
movement in the robot’s FoV during stabilization, since the movement of the torso joint
roll is compensated by the neck joint roll. This can be useful if the image is being processed
for other tasks and a large motion would make analysis impossible. The functionality of all
the implemented methods—gaze control, gaze stabilization, and use of redundancy—has
been experimentally tested in simulation and some of them on the real robot.

An experiment demonstrating the functionality of gaze control showed that the gaze
controller successfully focuses the camera’s gaze so that the target is at its center in all
cases where the limits of the neck joints allow it to do so. As seen in Fig. 5.2 for the
simulation experiment and in Fig. 5.7 for the real robot experiment. Then we evaluated
our gaze stabilization using an optical flow metric and compared it to a baseline naive gaze
stabilization method. The comparison of the results in Tab. 5.2 shows that our algebraic
stabilization with the horizontal view minimizes the pixel motion in the image best.

The movement of the second targets during gaze control can be seen in the Fig. 5.12, the
data plotted in Fig. 5.13 and Tab. 5.3 show that the gaze controller will maintain visibility
of the second target if the limits of the roll joint allow it. Similarly, within its limits, the
neck roll joint compensates for the movement of the torso roll joint to provide a horizontal
camera view as seen in Fig. 5.14.
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6.2 Discussion

The gaze controller presented in this thesis is designed for the iCub robot and robots with
the same neck joint arrangement. Thus, the controller cannot be used for an arbitrary
robot without additional modifications.

The evaluation of the stabilization quality using optical flow was affected by the fact that
the iCub robot used for the experiments does not have a perfectly working PID controller
for the yaw joint. This problem causes an occasional oscillating motion of this joint, causing
the image to move, but not because of the inaccuracy of the stabilization. This oscillating
motion was also observed in the experiment for gaze control in Fig. 5.7.

Another factor that can affect the gaze stabilization evaluation is the number of camera
frames from which the quality is evaluated. With fewer images, there is more pixel movement
between two consecutive images than when the same length of movement is recorded in
more images. It was not possible to ensure exactly the same number of images during
the experiment, but the time differences between the images were similar enough; thus it
should not have a significant effect on the results.

The joint coordinate profiles from the real robot during reaching experiment (see Fig. 5.7)
are much more jerky than those of simulation (see Fig. 5.2). This behavior is caused not
only by the problematic PID controller of the neck yaw joint, but also, in general, by the
parameters and properties of the real robot, which are not ideal and affected, for example,
by friction. Therefore, the simultaneous movement of two neck joints causes jerky motion.
The motion is smooth when only one joint is moving, as can be seen in Fig. 5.7.

6.3 Future work
The solution for gaze control and stabilization proposed in this thesis depends on the
arrangement of the neck joints of the humanoid robot iCub, which is described in Sec. 3.1.2.
A straightforward extension of the controller is to generalize the calculations to other
robots that have a different arrangement of at least two independently controllable neck
joints. Thus, it would be necessary to modify the computation of the joint coordinates
so that either they are applicable to all types of neck structures or their computation is
able to adapt to a specific joint arrangement. Moreover, we could implement functions for
retrieving the inverse kinematics solutions to test the feasibility of the problem without
performing the actual movements.

In addition to the already implemented secondary tasks, others could be added, such as
self-occlusion avoidance. Roll neck joint rotation could ensure that the object of interest is
not only in the center of the FoV but it is visible as well, i.e., not covered by, for example,
the robot’s hands. For this purpose, it would be necessary to determine where the robot’s
body is to evaluate whether self-occlusion has occurred or not and find joint coordinates of
the redundant joint to ensure the visibility of the target. This algorithm would increase
the level of robustness of our solution. Finally, the iCub robot has an inertial measurement
unit (IMU) placed in its head. We could take inspiration from [34] and explore whether
the IMU data could be used in our gaze stabilization solution.
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