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Abstract
Automated estimation of infant pose and
subsequent analysis of infant motion car-
ries great potential for early diagnostics
of developmental disorders like cerebral
palsy. This thesis compares six state-
of-the-art methods to 3D pose estima-
tion from videos (ROMP, BEV, TRACE,
4D Humans, and SMPLify-X with Open-
Pose and ViTPose) on sequences of images
of infants, with adaptations of standard
metrics—mean per joint position error,
bone length standard deviation, and the
number of missed detections. Surprisingly,
the SMPLify-X model, which, in our case,
fits an infant body (SMIL) to the images,
is outperformed by 4D Humans, which
uses an adult model (SMPL). The compar-
ison confirms that methods tracking peo-
ple across multiple video frames output
bodies with better bone length stability.
We retrain the best-performing method,
4D Humans, with a model that fits infant
bodies (SMIL) on infant data. We show
that the use of infant bodies improves the
estimation of depth. We provide an out-
line of possible future improvements to
the training process.

Keywords: Pose estimation, 3D body
models, infants, RGB videos, machine
learning.

Supervisor: doc. Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt
Automatizovaný odhad polohy kojence a
následná analýza jeho pohybu má velký
potenciál pro včasnou diagnostiku vývo-
jových poruch, jako je dětská mozková
obrna. Tato práce porovnává šest moder-
ních metod odhadu 3D polohy z videozá-
znamů (ROMP, BEV, TRACE, 4D Hu-
mans a SMPLify-X s OpenPose a ViT-
Pose) na sekvencích snímků kojenců s
úpravami standardních metrik – střední
chyba polohy na kloub, směrodatná od-
chylka délky kosti a počet chybných de-
tekcí. Překvapivě model SMPLify, který
v našem případě používá model s tělem
kojence (SMIL), je překonán modelem
4D Humans, který používá model dospě-
lého člověka (SMPL). Srovnání potvrzuje,
že metody sledující osoby na více videos-
nímcích produkují odhady tvaru a polohy
těla s lepší stabilitou délky kostí. Nejú-
spěšnější metodu 4D Humans jsme pře-
trénovali na datech kojenců, aby použí-
vala model, který odpovídá tělům kojenců
(SMIL). Ukazujeme, že použití dětských
těl zlepšuje odhad hloubky. Uvádíme ná-
stin možných budoucích vylepšení procesu
trénování metody 4D Humans.

Klíčová slova: Odhad polohy těla, 3D
modely těla, kojenci, RGB videa,
strojové učení.

Překlad názvu: 3D odhad polohy těla
kojenců z RGB obrázků a videí
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Chapter 1

Introduction

Infant motion analysis is essential for understanding infant development over the course
of time. Various research fields take an interest in infants’ movements. For instance, in
developmental psychology, it was found that during the first weeks of life, infants develop the
ability to identify distinct entities in their environment. One example is that self-produced
leg movements contribute to the development of infants’ ability to be aware of their bodies [1].
In healthcare, infant motion analysis can serve to identify deviations from the infants’ typical
development. Trained professionals can assess the risk of early developmental disorders,
such as cerebral palsy, using validated examinations like General Movement Assessment
(GMA) [2] that evaluates spontaneous infantile movements or through Hammersmith Infant
Neurological Examination (HINE) [3] that is based on tracking infants’ movement, posture,
and reflexes. However, the need for a trained expert for the evaluation creates a notable
hurdle toward accessible early detection of developmental disorders.

Automated assessment of movement patterns is crucial for making these examinations
accessible at a large scale with a minor cost. The data intended for the assessment can
be obtained by various approaches. The gold standard in terms of accuracy is the use of
motion capture systems. It has, however, severe drawbacks for employment on a larger
scale. Recording with motion capture is limited to in-laboratory use, which excludes a lot
of possible scenarios for infant observation. Another inconvenience is the need to place
physical markers on the bodies of infants, which may affect the infants’ behavior. Motion
capture systems also require substantial initial financial investment. RGB-D cameras or
multi-camera setups are another option for capturing the needed data. Contrary to the
motion capture systems, they are cheaper and not reliant on in-laboratory use.

This thesis dips into the analysis of infant data acquired from single RGB videos. These
videos can be recorded with everyday devices like smartphones. Therefore, this approach
is available at a much lower cost than the aforementioned ones and can be used in any
environment. The needed information could be either extracted by manually labeling it
in each frame (which is time-consuming and expensive) or with machine learning-based
methods. The literature indicates that spontaneous movements can be quantitatively
analyzed from videos using deep learning-based methods [4].

One way that enables automatic motion analysis from videos is through human pose
estimation. Its methods increased under rapid development their performance over the last
years, and while being originally developed for adults, our interest lies in the analysis of
infants. However, the unique morphology of infants poses challenges due to the different
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1. Introduction ..........................................
body proportions from those of an adult. The goal of this thesis is, therefore, to compare
state-of-the-art 3D pose estimation methods from RGB videos on recordings of infants,
indicate their shortcomings and propose and implement modifications to the most promising
method. This includes retraining the model on infant data.

1.1 Structure of the Thesis
First, in Chapter 2, we list an overview of pose estimation methods from single videos. We
start with two 2D pose estimation methods. Then we describe two currently used skinned
models for fitting 3D bodies (of adults and infants) in images. The 3D pose estimation
methods (models) to predict the needed parameters for the skinned models are discussed
afterward.

In Chapter 3, we first describe datasets for the latter comparison of methods introduced
previously in Chapter 2. This chapter also includes sections that include specifics of running
the introduced models and retraining the best-performing one. We introduce this thesis’s
adaptation of multiple comparison metrics for the models.

Chapter 4 includes results of two experiments. The first compares the 3D pose estimation
methods on image sequences of infants and determines which method to explore further,
i.e., retrain it on infant data. The second evaluates newly trained models.

We conclude the experiments in Chapter 5. We discuss the results and outline possible
future paths to follow.

2



Chapter 2

Related Work

2.1 2D Pose Estimation
Keypoints in this work designate significant joints or spots that represent body parts
(further discussed in Section 3.4), and their combination carries information about the pose.
Estimating the position of keypoints in 2D is an essential step for some 3D pose estimation
methods.

2.1.1 OpenPose
OpenPose [5] uses a bottom-up approach to estimate 2D keypoints. This approach deter-
mines each keypoint (or a group of keypoints) independently on the whole image before
joining them to form each individual. In this way, the estimator does not rely on person
detectors. OpenPose is based on convolutional neural network architecture (CNN). It was
trained on COCO [6] and MPII [7] datasets.

2.1.2 ViTPose
The current state-of-the-art method, ViTPose [8], uses a top-down approach (although it is
possible for ViTPose to adopt the bottom-up approach): it first uses a person detector and
then estimates the poses of the individuals independently on the surroundings. Instead of
CNNs, ViTPose employs vision transformers. It was trained on COCO [6], AIC [9] and
MPII [7] datasets. A novel model, ViTPose++ [10], was recently introduced to extend
ViTPose’s capability to deal with heterogenous body keypoints.

2.2 3D Skinned Linear Models
2.2.1 Skinned Multi-Person Linear Model (SMPL)

Skinned Multi-Person Linear Model (SMPL) [11] is a skinned vertex-based model used to
create 3D adult body models in various postures. The SMPL template consists of 6890
vertices and 23 body joints. SMPL represents shape deformations as a combination of
a pose-dependent shape (pose blend shape) and an identity-specific shape (shape blend
shape). The SMPL shape space is defined by a mean template shape and principal shape
directions that are computed by principal component analysis (PCA) on pose-normalized
meshes. The shape is then described by a vector of linear coefficients β that modify the

3



2. Related Work..........................................
template shape in the principal directions. Each body joint has 3 degrees of freedom (DOF),
resulting in 69 parameters + 3 parameters for global rotation, i.e., 72 pose parameters θ.

SMPL model parameters were trained to minimize the vertex reconstruction error. The
pose blend shapes were learned from multi-pose dataset with 1786 registered meshes of 40
individuals in predefined positions, and shape blend shapes were learned on multi-shape
dataset with 1700 male and 2100 female meshes from the CEASAR dataset [12].

SMPL-X [13] further extends the capabilities of SMPL with articulated hands and facial
expressions.

2.2.2 Skinned Multi-Infant Linear Model (SMIL)
The body proportions of an adult are distinctively different from the ones of an infant.
Therefore, using the SMPL model to estimate an infant’s shape is insufficient (see Fig. 2.1).
Hesse et al. proposed Skinned Multi-Infant Linear Model (SMIL) [14] to modify SMPL to
fit the needs of infant pose estimation. SMIL was created by adapting SMPL as SMPLB
and then registering it to preprocessed data consisting of many low-quality RGB-D images.
From these registrations, a new infant-specific shape space and a new pose prior were
learned to form the final SMIL.

2.3 3D Pose Estimation Methods
There are two main approaches to developing models to estimate the 3D pose of humans
from a single RGB video (see Fig. 2.2). The first generally consists of two stages—2D
keypoints estimation and 3D lifting. 2D keypoints estimation is usually performed by an
independently developed model, such as ViTPose [8], OpenPose [5], etc. Lifting from 2D to
3D is then performed by an optimization process specified by the model in question, in our
case SMPLify-X [13] and HMR2.0 [16], that predicts input parameters to either SMPL [11]
or SMIL [14] model.

The second approach skips the first stage of estimating keypoints in 2D and directly
estimates the SMPL or SMIL parameters from various feature maps. For this category
VIBE [17], ROMP [18], BEV [19], and TRACE [20] are considered in this work. An overview
of all the methods used is in Table 2.1.

one/two-stage approach 3D model tracking
ROMP one SMPL no
BEV one SMPL+A no
TRACE one SMPL yes
4D Humans two SMPL yes
SMPLify-X two SMIL (SMPL) no

Table 2.1: Overview of the used models. SMPLify-X was originally introduced with SMPL; in
this work, we utilized its version with SMIL.

Some of the methods from both approaches can track multiple people across multiple
frames. This tracking feature comes into use within our purpose mainly on two occasions.

4



.................................. 2.3. 3D Pose Estimation Methods

Figure 2.1: (a) Scaling the SMPL adult body model and fitting it to an infant does not work
as body proportions significantly differ. (b) The proposed SMIL model properly captures the
infants’ shape and pose. Both the figure and caption taken from [15].

First, when an adult person would be present in the frame to manipulate or interact with
the infant, the tracking helps maintain the identities of the two. Second, to ensure better
temporal consistency of the estimations, for example, by reducing the need to reestimate
the shape and camera translation parameters or increasing the coherence of the position
estimation between two continuous frames.

2.3.1 SMPLify-X
SMPLify-X relies on an optimization process to predict SMPL-X parameters that minimizes
an objective function that consists of these terms: priors for body pose, facial pose, facial
expressions, and hand pose to penalize deviation from the neutral state, prior to penalizing
extreme bending of elbows and knees, interpenetration penalty, variational-autoencoder-
based body pose prior, and the data term. The data term relies on detecting 2D keypoints
from OpenPose by default, although using different models for 2D keypoint estimation is
possible. When using SMIL for this method instead of SMPL-X, the extra hands and face
keypoints are not provided as SMIL does not support them. In this work, we used SMPLify-
X with SMIL model in two configurations—with OpenPose and ViTPose. SMPLify-X was
trained on the following datasets: Human3.6M [21], CMU [22], and PosePrior [23].

5



2. Related Work..........................................
Two-stage estimation

One-stage estimation

Input
2D video

2D key-
points

estimation

Pose, shape
and camera
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3D body
mesh

w/o tracking (Simplify)

w/o tracking (ROMP, BEV)

with tracking (4D Humans)

with tracking (TRACE)

Figure 2.2: Schematic of the two approaches to estimating the 3D body mesh from RGB videos.
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Figure 2.3: Overview of the 4D Humans framework, figure taken from [16].

2.3.2 4D Humans & HMR 2.0 Network

4D Humans [16] is the state-of-the-art approach for reconstructing and tracking humans in
4D, with fourth dimension being the time. It employs ViTPose as the backbone for 2D
keypoint estimation. The network HMR 2.0 for human mesh recovery is then introduced
to estimate SMPL shape and pose parameters along with global orientation. The body
mesh reconstructions then serve as an input to the tracking system. For an overview of the
4D Humans approach, see Fig. 2.3.

4D Humans was trained on the following datasets: Human3.6M [21], MPI-INF-3DHP [24],
COCO [6], MPII [7], and to generate extra pseudo-ground-truth fits: InstaVariety [25],
AVA [26], and AIC [9].
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.................................. 2.3. 3D Pose Estimation Methods

Figure 2.4: Overview of the ROMP model, figure taken from [18].

Figure 2.5: Overview of the BEV model, figure taken from [19].

2.3.3 ROMP
ROMP [18] uses three head networks. These output Body Center heatmap, Camera map,
and SMPL map. By combining the camera map and the SMPL map and sampling them at
the 2D body center locations, the SMPL parameters are extracted. For an overview of the
ROMP model, see Fig. 2.4. ROMP was trained on the following datasets: Human3.6M [21],
MPI-INF-3DHP [24], UP [27], COCO [6], MPII [7], LSP [28], and AIC [9].

2.3.4 BEV
BEV [19] builds on top of ROMP’s heatmaps. It adds a heatmap representing an unseen
bird’s-eye-view. This aims to achieve a better estimation of the depth of corresponding
subjects. Further, BEV detects if a target is an adult or an infant. For that purpose, BEV
introduces SMPL+A. As SMPL and SMIL models parameterize body meshes of adults
and infants, respectively, SMPL+A was introduced [29] to linearly blend SMPL and SMIL
template shape, with age offset α ∈ [0, 1]. For an overview of the BEV model, see Fig. 2.5.
BEV was trained on the following datasets: Human3.6M [21], MuCo-3DHP [30], COCO [6],
MPII [7], LSP [28], and CrowdPose [31].

2.3.5 TRACE
TRACE [20] uses an image and motion backbone to extract temporal feature and optical
flow maps. These serve as an input to a four-head network that performs detection, tracking,

7



2. Related Work..........................................

Figure 2.6: Overview of the TRACE model, figure taken from [20].

mesh parameter estimation, and global coordinates estimation. For an overview of the
TRACE model, see Fig. 2.6. TRACE was trained on the following datasets: Human3.6M [21],
MPI-INF-3DHP [24], 3DWP [32], PennAction [33], CrowdPose [31], and DynaCam [20].

2.4 Thesis Contribution
In most cases, the current models use the adult model, SMPL, and are trained on datasets
focused on adults. In this work, we compare a selection of 3D pose estimation methods on
infant videos, i.e., ROMP, BEV, TRACE, 4D Humans, and SMPLify-X with OpenPose and
ViTPose. Based on the comparison results, we identify the methods’ current limitations
and retrain the best-performing method—4D Humans—on infant data. We evaluate our
retrained models and propose paths for future improvements.

8



Chapter 3

Materials and Methods

3.1 Datasets
There are very few publicly available datasets of infant recordings with 2D and 3D annotation,
i.e., with 2D and 3D keypoints for evaluation and SMIL parameters for training. Therefore,
we use datasets with images of synthetic infants MINI-RGBD [34] and SyRIP [35]. SyRIP
also provides some images of real infants. Then, we use one In-Lab recording of an infant.

3.1.1 MINI-RGBD
The MINI-RGBD [34] dataset consists of 12 artificially generated sequences. Each sequence
represents a different synthetic infant with 1000 images. The pose and shape of each infant
were extracted by registering SMIL to RGB-D recordings of real infants. The authors
proposed that the sequences can be sorted into three groups according to difficulty: a)
easy: simple movements of limbs, lying in a supine position (sequences 1-4); b) medium:
more complex movements of limbs—self touches and legs crossings (sequences 5-9); and c)
hard: limbs pointing towards the camera, grabbing legs with hands, infant turning to sides
(sequences 10-12). The infants’ movement should correspond to the development of motor
skills in the first seven months of life.

The dataset’s annotations that we use as the ground truth for this project are RGB
images, pose and shape parameters, and 2D and 3D keypoints. Keypoints for ears and eyes,
which are essential for head orientation, are missing in this dataset (see Fig. 3.3d).

3.1.2 SyRIP
SyRIP [35] dataset provides two sets of images—one for training and the second for
validation. The training dataset consists of 1000 images of synthetic infants on a natural
background and 200 images of real infants collected from Google Images and YouTube.
The validation dataset contains 500 images of real infants collected from Google Images
and YouTube.

The dataset presents the annotated information in JSON files, following the COCO
format1. The dataset’s information that we can use as the ground truth for this project are
RGB images and the 2D keypoints.

1https://cocodataset.org/#format-data
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3.1.3 In-Lab Recorded Infant Data

Our team recorded a video of a 36-week-old infant from different angles using two RealSense
D435 cameras and one Miqus-RGB camera (the setup comes from [36]). The frames needed
to be manually synchronized, as the Miqus camera uses a regular 25 Hz frame rate, and
the RealSense cameras give temporal stamps to each frame. The cameras were calibrated
to determine extrinsic parameters by taking nine images of a known pattern from all three
cameras in different configurations. These extrinsic parameters hold information about
camera translation and rotation in the world. Intrinsic parameters are then the focal lengths
of the lenses and sizes of the pixels’ sensors. Taking inspiration from the training datasets
of 4D Humans [16], pseudo-ground-truth fits were generated for our data: The first step
in 3D keypoint estimation was to estimate 2D keypoints with ViTPose from each camera.
To find the 3D position of the keypoints, triangulation methods were used with known
extrinsic and intrinsic parameters from calibration [37].

The video of the infant in a supine position consists of 3418 RGB images. All of those
are annotated with VitPose. However, only 1285 are annotated in 3D due to the lower
frame rate of the other cameras.

Experiments with the infant recordings and the disclosure of the images were approved
by the Committee for Research Ethics at the Czech Technical University in Prague under
the reference number 0000-02/23/51902/EKČVUT on March 14, 2023.

3.2 Setting Up the Models for Comparison
We created Docker images with the ROMP, BEV, and TRACE installations. ROMP and
BEV share a simplified implementation that enables running both models after its setup.
This particular implementation is distributed under version 2.0 on the models’ GitHub2,
including the model data and the source code. TRACE shares the same GitHub page with
ROMP and BEV but is distributed under version 3.0. These three models need the SMPL
1.1.0 for Python 2.7, and BEV further needs the SMIL model. Those can be downloaded
from the official SMPL and SMIL websites34. The installation guide with the needed
dockerfiles is available on our project’s GitLab5. Built docker images are accessible at the
Humanoid and Cognitive Robotics Group’s Docker Hub6.

4D Humans was installed in a conda environment after the commit 124e8b2 on the
project’s GitHub7. For the 4D Humans, we have modified the inference script. That, along
with the specifics of the installation, is also accessible on our project’s GitLab5.

Our team conducted experiments with SMPLify-X in the past [38], and all the data
2https://github.com/Arthur151/ROMP
3https://smpl.is.tue.mpg.de/
4https://www.iosb.fraunhofer.de/en/competences/image-exploitation/object-recognition/

sensor-networks/motion-analysis.html
5https://gitlab.fel.cvut.cz/body-schema/baby-keypoint-extraction/

code-3d-keypoints-and-models
6https://hub.docker.com/u/humanoidsctu
7https://github.com/shubham-goel/4D-Humans
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needed for our comparison was already extracted before starting this thesis, along with
creating its Docker. Therefore, this process was not in the scope of this thesis. The
SMPLify-X Docker is currently not publicly available.

3.3 Retraining HMR 2.0 to estimate SMIL parameters
We retrained HMR 2.0 from scratch. SMIL is implemented in the same way as SMPL.
Therefore, we just replaced the SMPL model .pkl file with the one of SMIL. However, the
original implementation of SMPL (or 4D Humans) uses only the first 10 shape parameters
from the PCA space. Because the data used for training includes 20 shape parameters, we
extended the number of shape parameters to 20. That led to a few changes in the overall
implementation code, listed on our project’s GitLab8.

3.3.1 Loss Functions
By default, 4D Humans employs four different loss functions in training the predictor,
which outputs SMIL parameters Θ = [θ, β, π] [16]. First is the parameter loss, which is
computed as MSE loss, using ground-truth SMIL parameters—shape β∗ and pose θ∗:

Lsmil = ∥θ − θ∗∥2
2 + ∥β − β∗∥2

2. (3.1)

Second, 4D Humans uses a 3D keypoints loss, which is obtained by L1 (Manhattan) norm
for predicted keypoints X and the annotation X∗ in the 3D space:

L3D = ∥X − X∗∥1. (3.2)

During our experiment, the L3D is left out from training as the training data either did
not have 3D annotations or it did have them, but we did not manage within the project’s
timeframe to properly convert the 3D keypoints to the reference frame corresponding to
the one needed by HMR 2.0. Consequences of using L3D with incorrectly aligned reference
frames can be seen in Fig. 3.1.

The third loss is computed using the L1 norm between the 2D annotated keypoints x∗

and the projections of predicted 3D keypoints π(X):

L2D = ∥π(X) − x∗∥1. (3.3)

The last loss is the generator loss. Using the adversarial prior, the discriminator Dk is trained
to ensure realistic 3D poses for each part of the infant model. The SMIL parameters are
split into shape parameters β, body pose parameters θb, and per-part relative rotations θi.

Ladv =
∑

k

(Dk(θb, β) − 1)2. (3.4)

8https://gitlab.fel.cvut.cz/body-schema/baby-keypoint-extraction/
code-3d-keypoints-and-models
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Figure 3.1: When training with the L3D, estimated infants’ pose was extremely bent. The most
likely cause is incorrect alignment of the 3D ground-truth annotation reference frame and the
4D Humans’s internal reference frame.

3.3.2 SMIL Mean Parameters for Initialization

SMPL used in 4D Humans needs to have the parameters for SMPL decoder head initialized.
The mean SMPL parameters are loaded from an .npz file for that purpose. To accommodate
SMIL, it is needed to change those values to ones compatible with the SMIL shape space.
We averaged the shape parameters from the 12 MINI-RGB sequences to form a new mean
shape parameter vector. These new shape parameters should represent the average synthetic
infant and are used as the initial parameters for the SMPL decoder head.

The mean pose parameters were not changed as their meaning is the same for both
SMPL and SMIL (although the mean pose of an adult varies from the one of an infant, it
should not influence the results by a large margin after the inference).

3.3.3 Replacing CMU Mocap Dataset for Training

The discriminator in the training of HMR 2.0 uses the CMU Mocap dataset [22] to estimate
the adversarial loss Eq. (3.4). CMU Mocap provides approximately 300,000 SMPL body
shape parameters β and corresponding pose parameters θ. However, the poses of an infant
differ from those of an adult. Furthermore, the shape parameters are also different for
SMIL. Therefore, we substituted the dataset with the shape and pose parameters from the
MINI-RGBD dataset consisting of 12 different shapes, with 1000 poses each.

3.3.4 Training Parameters

We trained with learning rate 10−5 and weight decay of 10−4. The weights assigned to
each loss are described in Table 3.1. Due to the issue with the 3D error loss (Fig. 3.1), we
decided to test training the model in different situations by disabling or enabling losses
to confirm that 3D error loss was the cause of the issue and that the other losses led to
improving the model.
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without Ladv with Ladv
KEYPOINTS_2D 0.01 0.01
GLOBAL_ORIENT 0.001 0.001
BODY_POSE 0.001 0.001
BETAS 0.0005 0.0005
ADVERSARIAL 0.0 0.0005

Table 3.1: Configuration of weights for losses. GLOBAL_ORIENT denotes the first three
parameters from body pose parameters.

3.4 Preparation of Data for Training and Evaluation

Each dataset provides information about keypoints in different ways. That is the same for
the used models. All keypoint formats are listed in Table 3.2 and visualized in Fig. 3.3.
Generally, the OpenPose 25 keypoints were used as the common format throughout this
work due to the original use of this format in our group from SMPLify-X + OpenPose pose
estimation [38]. Other formats often do not offer the same keypoints, reducing the final
number of usable keypoints for each method. Occasionally, the names of the keypoints
do not indicate the same position in different formats—what corresponds to shoulders in
COCO17/OP18/OP25 is called UpperArm in MINI-RGBD. Shoulders in MINI-RGBD lie
more inside the torso, closer towards the neck.

The keypoints, which are supposed to be the same, are sometimes placed in slightly
different positions by the different methods (both for 2D and 3D), as in example Fig. 3.2.
That might be caused by them having been trained on data annotated in different formats
with different keypoint positioning guidelines. We can see in Fig. 3.3 that, e.g., in MINI-RGB
and OP25, the hips and the mid-hip keypoints are located in different places (MINI-RGBD
format does not specifically have MidHip keypoints, although the global keypoint seems
to be located in its position). SMPLify-X, for that reason, ignores the hip keypoints to
calculate the loss when estimating the 3D pose.

3.4.1 WebDataset Format

To retrain HMR 2.0, we needed to set up the dataset in a structure compatible with the
one used in the authors’ original training scripts (accessible at the 4D Humans Github
repo [16]), administered in WebDataset implementation of PyTorch Dataset. WebDataset
stores the data in POSIX tar archives and uses sequential data access.

The tar archives contain training samples following the convention that the files belonging
together have the same basename. The images are saved either with the .jpg or .png
extension. The annotations are in .data.pyd files and hold the following mandatory
information in a Python dictionary: 3D keypoints, 2D keypoints, betas (identity-dependent
shape parameters), pose parameters, scale (dimensions of the infants’ bounding box), and
center (center of the bounding box).

13



3. Materials and Methods .....................................
kp ID \ format COCO 17 OP 18 OP 25 MINI-RGBD

0 nose nose Nose global
1 left_eye neck Neck leftThigh
2 right_eye right_shoulder RShoulder rightThigh
3 left_ear right_elbow RElbow spine
4 right_ear right_wrist RWrist leftCalf
5 left_shoulder left_shoulder LShoulder rightCalf
6 right_shoulder left_elbow LElbow spine1
7 left_elbow left_wrist LWrist leftFoot
8 right_elbow right_hip MidHip rightFoot
9 left_wrist right_knee RHip spine2

10 right_wrist right_ankle RKnee leftToes
11 left_hip left_hip RAnkle rightToes
12 right_hip left_knee LHip neck
13 left_knee left_ankle LKnee leftShoulder
14 right_knee right_eye LAnkle rightShoulder
15 left_ankle left_eye REye head
16 right_ankle right_ear LEye leftUpperArm
17 left_ear REar rightUpperArm
18 LEar leftForeArm
19 LBigToe rightForeArm
20 LSmallToe leftHand
21 LHeel rightHand
22 RBigToe leftFingers
23 RSmallToe rightFingers
24 RHeel noseVertex

Table 3.2: Several formats are used by the aforementioned models listed in the table. To use
data from different formats, it must be rearranged to align the keypoint correctly. That is, e.g.,
right shoulder is designated by ’6’ in COCO 17, ’3’ in OpenPose 18 (OP 18) and OpenPose 25
(OpenPose 25), and ’17’ in MINI-RGBD format.

3.4.2 Configuration of Datasets For Training and Evaluation
We split the data into three categories: training, validation, and testing (as shown in
Table 3.3). The training dataset is the largest and should consist of precisely annotated
data. Therefore, we choose nine sequences from MINI-RGBD (1–5, 7–10) and the training
subset of SyRIP.

For validation, we selected sequences 11 and 12 from MINI-RGBD, as they contain more
complex poses. We also used SyRIP validation data, although its informative value is
slightly diminished, as it lacks annotation for SMIL parameters,

The In-Lab data was set for testing. Considering the data is not manually coded, and the
annotation is approximate given the way of getting the information (its accuracy depends
on the precision of ViTPose), we deemed it not suitable for training at the moment as the
learning and the final model would then be influenced by the data’s inaccuracies. However,
the data could still be used for testing as long as it is reflected on the impact of the data’s
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Figure 3.2: Processed image with ViTPose + SMPLify-X with SMIL model. It can be seen
that ViTPose (blue dots) placed hips in a line. That is contrary to where the 3D keypoints
from SMPLify-X (red dots) are projected—triangle.

reservations.

training validation testing
MINI-RGBD sequences 1–5, 7–10 sequences 11, 12 sequence 6
SyRIP 1000 synthetic + 200 real 500 real N/A
In-Lab N/A N/A ~3400 images

Table 3.3: Configuration of datasets subsets for training, evaluating and testing HMR 2.0.

3.5 Comparison Metrics
Some of the commonly used metrics for 3D pose estimation in the literature include
Mean per Joint Position Error (MPJPE) [39], Percentage of Correcly Estimated Parts
(PCP) [40,41], Percentage of Correct Keypoints (PCK) [42], Mean per Bone Position Error
(Bone Error), Bones Standard Deviation (Bone Std) [43], Illegal Angle [23], and Mean of
the Root Position Error (MRPE) [44]. For our work, we employ various implementations
of MPJPE, Bone Std, and the Number of Missed Detections. Bone Std and the Number of
Missed Detections do not need corresponding ground-truth data.

3.5.1 Mean per Joint Position Error (MPJPE)

MPJPE averages the absolute error between estimated joints and the ground truth. Joints
are here interchangeable with keypoints (it will be referred to keypoints when talking about
joints/keypoints further on in this work). MPJPE for one frame can be obtained (in any
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dimension and space) by averaging the Euclidean distances of the keypoints:

EMPJPE(f) = 1
N

∑
j

∥X
(f)
gt (j) − X(f)

e (j)∥, (3.5)

where N is the number of keypoints, X
(f)
gt (j) denotes the ground truth position of keypoint

j in frame f and X
(f)
e (j) denotes the estimated position of keypoint j in frame f . The final

MPJPE is then computed as the average of the l individual frames errors [39] as

EMPJPE = 1
l

∑
f

EMPJPE(f). (3.6)

MPJPE in 3D
All the methods process the videos frame-by-frame; consequently, the estimated camera
settings and shape parameters vary across each video and sometimes even between two
subsequent frames. Each method has possibly a different reference frame. That leads to
changes in absolute 3D keypoints coordinates; hence, we need to establish a routine that
helps us synchronize the coordinate systems of estimated 3D keypoints and the ground
truth.

The keypoints in each frame were canonicalized according to a four-step process proposed
by Khoury et al. [38]. Firstly, all the keypoints are translated, so the neck keypoint lies in
(0, 0, 0). The 3D coordinates are then scaled so that the distance between the Neck and
MidHip keypoints is 1. Another step is to align the Neck-MidHip link with the y-axis to
place the MidHip coordinate to (0, −1, 0). Lastly, the 3D keypoints are rotated around the
y-axis so that the z-axis is orthogonal to the segment between the left and the right hip.

MPJPE in 2D
For comparison in 2D, the estimated 3D keypoints must be projected to the common
plane with the ground truth. We evaluated MPJPE in 2D in two ways as each gives us
different kinds of information. First, MPJPE in 2D (Type I) was measured in the plane
determined by the neck and hip keypoints after canonicalization. This information, together
with MPJPE in 3D, can reveal the proportion of error in different axes, e.g., whether the
majority of the MPJPE comes from the depth estimation.

Second, MPJPE in 2D (Type II) was measured using the plane of the original image.
The units of the error are, therefore, pixels. This metric shows the degree of consensus
between what we can visually see in the image and what the model estimates. If we wanted
to use it across multiple videos, the videos would need to be of a specific infant’s age and
session condition. The resolution and camera parameters could also differ, which would
change the meaning of what an absolute error of a fixed number of pixels actually describes,
e.g., an estimation with a 40-pixel error in a first video can actually be more accurate than
a 10-pixel error in a second video with much lower resolution. Therefore, we normalize the
computed distances in pixels to the median Neck-MidHip distance, which we obtain from
the ground truth for each video separately.
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3.5.2 Bone Length Standard Deviation
Bone length standard deviation (Bone Std) measures the stability of estimated bone length
across video frames [43]. In reality, the bone lengths of a subject are constant, so any
change in bone length is a sign of inaccuracy. In practice, with regards to evaluating
pose estimation methods, the keypoints estimations do not locate the extremities of bones,
so some variability is expected, and only some pairs of keypoints that are close enough
to bone extremities positions can be used to estimate a bone length. Furthermore, this
can only done in 3D because 2D locations would be too often subject to distortions from
camera angles, e.g., an arm stretched perpendicular to the camera could end up with close
to-aligned estimations of the elbow and wrist keypoints that will have close to no error in
the 2D space and as such end up with a very short bone length, leading to high variability
from factors unrelated to the pose estimation itself.

The standard deviation for separate bone lengths can be calculated as

σ(b) =
√
E [(l(b) − µ(b))2], (3.7)

where b ∈ B is the bone, µ is the mean bone length across a video and l is the bone length
in each frame. We can then average the standard deviation for different bones to get the
mean Bone Std. Bone lengths in this work are calculated from the keypoints after the
aforementioned skeleton alignment.

For this metric, the following body segments were considered: ankles-knees (tibia),
knees-hips (femur), elbows-shoulders (humerus), and wrist-elbows (radius).

3.5.3 Missed Detections
Each 3D pose estimation usually uses some detector for the initial location of the person of
interest (except the bottom-up approaches, such as SMPLify-X + OpenPose). High amounts
of missed detections cause breaks in continuity for motion analysis. It also complicates any
possible filtering of the data. Although the number of missed detections does not specifically
describe the quality of the pose estimation itself, it is a relevant piece of information for
the sake of possible improvements to the model, e.g., replacing the detector with another.

It is also possible for the methods to miss keypoints. That sometimes occurs with
the two-stage approaches when the 2D pose estimation fails to produce all the keypoints.
Therefore, in our case, OpenPose goes through an interpolation step to fill in the missing
keypoints. We do not monitor missed keypoints further.

3.6 Computing Hardware Specification
We trained using a workstation with the following specifications: CPU: Intel(R) Xeon(R)
W-2295 (18C / 36T, 3.0 / 4.8GHz, 24.75MB), GPU: Two NVIDIA TU104GL Quadro RTX
5000 16 GB, RAM: 251 GB DDR4, OS: Ubuntu 20.04.5 LTS. Only one of the GPUs was
used, and its memory limits the batch size to 6. The number of workers for the dataloader
is set consequently to 6.
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Figure 3.3: Keypoints sets—overview of different formats. Out of the used formats, only the
MINI-RGBD does not include eyes and ears keypoints. A few of the keypoints in Fig. 3.3d
need to be more specified: (3) is placed around the belly button, (6) is located at the
xiphisternum, (9) is between the nipples, and (15) is at the imagined center of the head.
Background infant schematic taken from https://www.formsbank.com/template/30358/
baby-body-chart-medical-assessment-victorian-forensic-paediatric-medical-service.
html
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Chapter 4

Experiments and Results

This chapter consists of two sections. The first aims at a comparison of 3D pose estimation
methods introduced in Section 2.3 on infant videos. Based on the results of the comparison,
the second section then focuses on retraining the most promising method with the SMIL
model on infant data. At the start of the project, only the MINI-RGBD dataset was
available to us. Therefore, the comparison was made only on the synthetic infants.

4.1 Comparison of 3D Pose Estimation Models
We used the methods for comparison as we set them up in Section 3.2, i.e., in their ‘vanilla’
versions developed for adults, except for SMPLify-X. ROMP, TRACE, and 4D Humans use
SMPL, BEV uses SMPL+A, and SMPLify employs SMIL in our comparison (see Fig. 4.1).
Therefore, we visually separate SMPLify with vertical lines from the other methods in the
following tables (BEV should be able to estimate infant shapes; however, in our comparison,
it generally failed to recognize infants and treated them as adults). Each considered 3D
pose estimation model was tested on five synthetic sequences of infants (1, 2, 6, 10, 12)
from the MINI-RGBD dataset.

4.1.1 Results

The results comparing the aforementioned models are shown for each metric described
in Section 3.5. When comparing models using MPJPE, it must be noted that because the
MINI-RGBD dataset lacks eyes and ears notation, we cannot judge the extent of SMPL’s
influence on the estimation of infants’ heads (as visualized in Fig. 2.1).

MPJPE in 3D

The best-performing method in MPJPE in 3D, shown in Table 4.1, is 4D Humans. It
accomplished the lowest mean error of 22.2 % of the Neck-MidHip distance. SMPLify-X
with ViTPose comes close to 4D Humans, being noticeably worse only on wrists and ankles
but better on the nose, elbows, or knees. ROMP shows the best results on wrists. TRACE
estimates the elbows the most correctly. We observe the tendency for the leg keypoints to
have the highest errors.
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(a) Infant image (b) ROMP (c) BEV (d) TRACE

(e) 4D Humans (f) SMPLify-X+OP (g) SMPLify-X+ViT

Figure 4.1: Qualitative comparison of the models on a synthetic infant image. ROMP (b),
TRACE (d), and 4D Humans (e) fit an adult model. BEV (c) has the potential to recognize
the adult or infant, but in this case, BEV failed to recognize the infant and fitted an adult body
to the infant instead. SMPLify-X both use the SMIL model.

MPJPE in 2D (Type I)

The MPJPE in 2D (Type I) are shown in Table 4.2. 4D Humans absolutely outperformed
other methods using this metric. Considering the MPJPE in 2D of 4D Humans is approxi-
mately two times smaller than for MPJPE in 3D, we can estimate that the error originates
~
√

3 times more in the z-axis than in the xy-plane. 4D Humans is followed by SMPLify-X
+ ViTPose and ROMP. The SMPLify-X + OpenPose behaved the worst. It can be noted
from experience that OpenPose more often produces completely displaced keypoints than
ViTPose, such as in Fig. 4.2, which results in larger error after SMPLify-X processing.
It is surprising to see TRACE, which is one of the newest 3D pose estimation methods
with 4D Humans and should improve on BEV and ROMP, perform at a similar level as
SMPLify-X + Openpose.

MPJPE in 2D (Type II)

The MPJPEs in 2D (Type II) are shown in Table 4.3. It is also visualized in Fig. 4.3.
4D Humans scored the lowest normalized error of 8.7 % of the Neck-MidHip distance.
SMPLify-X + ViTPose came a close second, although it performed noticeably better only
on the shoulders and the nose.

Bone Length Standard Deviation
We investigate values of Bone Length Std in Table 4.4. The methods using tracking—
4D Humans and TRACE—perform noticeably better than the rest. Generally, the Bone
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ROMP BEV TRACE 4D Humans SMPLify-X
+ OP

SMPLify-X
+ ViT

Nose 20.5 21.8 21.3 20.1 17.9 17.7
Neck 0 0 0 0 0 0
RShoulder 6.0 6.2 7.3 7.4 8.6 9.7
RElbow 21.0 19.2 19.1 23.4 19.2 21.5
RWrist 25.6 23.5 24.5 20.4 29.6 28.1
LShoulder 4.4 4.9 5.9 6.3 12.0 13.8
LElbow 20.8 18.9 18.5 27.0 22.4 25.8
LWrist 23.9 25.2 27.2 25.9 33.3 37.1
MidHip 16.8 18.2 17.4 17.2 23.0 23.0
RHip 0.9 1.5 1.2 0.9 1.4 1.3
RKnee 43.3 36.5 41.8 37.1 23.2 22.1
RAnkle 44.2 42.7 43.5 30.0 39.2 38.6
LHip 0.9 1.5 1.2 0.9 1.4 1.3
LKnee 41.0 35.2 42.4 35.0 24.5 21.1
LAnkle 45.3 43.1 43.2 30.4 43.5 41.0
LBigToe 64.0 59.1 62.0 48.1 52.8 46.0
RBigToe 62.8 58.1 61.0 46.7 47.0 44.0
x̄ 26.0 24.5 25.7 22.2 23.5 23.1

Table 4.1: MPJPE in 3D in the percentage of the Neck-MidHip distance averaged across all
samples.

Length Std is lower on upper limbs as their length is shorter. SMPLify-X, regardless of the
2D pose estimation method, scores the worst. It is surprising that the Bone Length Stds
are quite low in contrast to much higher individual keypoint errors for all the methods.

Missed Detections

The percentages of missed detection are shown in Table 4.5. 4D Humans has the largest
number of missed detections, contrary to its previous good results in other metrics. This
high number of misses means that 4D Humans could ignore a lot of difficult poses, which
might be the reason for better performance in other metrics (whereas other methods may
achieve high errors on those particular images). Both ROMP and BEV have a relatively
small percentage of missed detections compared to 4D Humans and TRACE. SMPLify-X
did not miss once. Although SMPLify-X with OpenPose had no missing detections after the
2D step, it had missing keypoints. Therefore, the 2D step for the data that went through
SMPLify and OpenPose had been through an interpolation step.

To ensure 4D Humans did not have an unfair advantage in the comparison due to the
large number of missed detections on sequence 10, we have further compared the methods
with sequence 10 left out (see Fig. 4.6). These results are very similar to the ones with
sequence. The only notable improvement can be seen for SMPLify-X + OpenPose on
all metrics, and TRACE improved its Bone Length Std. Otherwise, the differences are
negligible, and the results do not indicate 4D Humans gaining an unfair advantage regarding
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4. Experiments and Results.....................................
ROMP BEV TRACE 4D Humans SMPLify-X

+ OP
SMPLify-X

+ ViT
Nose 17.3 18.0 17.2 14.4 16.8 16.8
Neck 0 0 0 0 0 0
RShoulder 4.7 4.3 6.3 5.2 4.4 4.0
RElbow 15.3 13.1 13.9 10.9 12.1 11.3
RWrist 19.1 15.9 17.8 9.2 18.6 15.4
LShoulder 2.8 2.7 4.5 3.3 7.6 7.5
LElbow 14.9 13.5 12.8 10.3 13.4 13.9
LWrist 14.9 14.8 15.6 10.6 18.9 18.2
MidHip 12.5 13.5 12.7 12.7 15.1 15.0
RHip 0.9 1.5 1.2 0.9 1.4 1.3
RKnee 12.6 13.3 14.9 10.8 17.2 15.0
RAnkle 28.9 32.6 33.0 19.3 30.5 27.1
LHip 0.9 1.5 1.2 0.9 1.4 1.3
LKnee 12.8 15.7 18.9 9.1 19.7 16.6
LAnkle 34.2 34.3 34.4 19.7 34.3 29.1
LBigToe 41.1 40.6 42.9 28.7 41.8 34.5
RBigToe 32.8 36.5 38.0 26.2 35.8 30.8
x̄ 15.6 16.0 16.8 11.3 17.0 15.6

Table 4.2: MPJPE in 2D (Type I) in the percentage of the Neck-MidHip distance averaged
across all samples.

its larger number of missed detections.

Given that the 4D Humans approach performed the best in most considered metrics
(even outperformed SMPLify-X with ViTPose and SMIL) and includes tracking as a feature,
we considered it the most promising method to incorporate SMIL to its pipeline and retrain
the HMR 2.0 model.

4.2 Retraining the HMR 2.0 with Infant Data
We retrained HMR 2.0 from scratch in four configurations:

. only on the MINI-RGBD synthetic infants (MR),. on MINI-RGBD with SyRIP (MR + S),. on MINI-RGBD with adversarial loss (MR + Ladv),. on MINI-RGBD with SyRIP with adversarial loss (MR + S + Ladv).

When training with SyRIP, the weights of datasets are 0.15 for SyRIP and 0.85 for
MINI-RGBD. The weights were chosen so because of the unequal dataset sizes, with the
MINI-RGBD being 7.5 times larger than the SyRIP. We then slightly emphasized the

22



.............................4.2. Retraining the HMR 2.0 with Infant Data

Figure 4.2: OpenPose sometimes places the 2D keypoints in entirely wrong positions, causing
SMPLify-X to fail. Black points are the ground truth, blue ones denote the OpenPose placement,
and red points are the 3D keypoints estimated by SMPLify-X reprojected to the plane of the
image.

ROMP

TRACE

BEV

4D Humans

SMPLify-X+ViT

SMPLify-X+OP

Figure 4.3: Visualization of MPJPE in 2D (Type II). The error measured in the MidHip-Neck
distance is scaled to the image so that the number of pixels between the Neck and MidHip
corresponds to 1 distance unit.
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4. Experiments and Results.....................................
ROMP BEV TRACE 4D Humans SMPLify-X

+ OP
SMPLify-X

+ ViT
Nose 17.1 16.6 16.6 4.7 3.5 3.5
Neck 5.8 5.0 7.5 6.0 5.9 8.0
RShoulder 10.3 8.9 16.7 5.7 8.0 4.8
RElbow 14.5 12.1 18.7 4.2 11.0 4.6
RWrist 20.7 17.0 20.5 4.3 14.2 5.5
LShoulder 13.0 10.2 9.6 8.0 6.3 6.6
LElbow 17.3 12.5 16.8 4.6 5.8 4.8
LWrist 20.8 16.5 21.2 5.1 7.0 5.6
MidHip 8.5 7.4 10.0 6.6 11.8 11.0
RHip 21.5 20.6 18.4 17.9 19.9 17.8
RKnee 19.6 16.9 19.7 6.6 15.5 9.1
RAnkle 22.1 23.3 26.7 8.4 11.0 10.5
LHip 20.0 18.6 14.5 16.6 20.0 18.6
LKnee 22.1 20.9 22.8 7.6 17.2 9.5
LAnkle 26.3 25.1 29.1 7.5 14.5 9.6
LBigToe 34.7 36.8 45.5 18.3 20.6 21.6
RBigToe 25.4 34.4 39.0 16.4 14.1 25.0
x̄ 18.8 17.8 20.8 8.7 12.1 10.4

Table 4.3: MPJPE in 2D (Type II) in the percentage of the Neck-MidHip distance averaged
across all samples.

ROMP BEV TRACE 4D Humans SMPLify-X
+ OP

SMPLify-X
+ ViT

R–Rad 1.8 1.9 1.1 1.1 2.2 2.0
L–Rad 1.7 1.7 1.1 1.1 2.0 1.8
R–Hum 1.7 1.9 1.1 1.2 2.3 2.1
L–Hum 1.8 2.1 1.1 1.2 2.4 2.2
R–Fem 2.6 3.5 1.7 1.7 3.5 3.3
L–Fem 2.6 3.3 1.7 1.7 3.4 3.3
R–Tib 2.7 3.1 1.7 1.8 4.3 3.7
L–Tib 2.7 3.1 1.7 1.8 4.4 3.8
x̄ 2.2 2.6 1.4 1.5 3.1 2.8

Table 4.4: Bone length standard deviations measured in the percentage of the Neck-MidHip
distance, averaged across all samples. R/L denotes the right or the left side of the body, the
Rad is the radius, Hum is the humerus, Fem is the femur, and Tib is the tibia.

SyRIP weight to raise its influence even more. We trained for 400,000 iterations and created
model checkpoints after every 10,000 training iterations. We then chose the checkpoint with
the overall lowest validation loss. If the training loss for that specific checkpoint had been
considerably higher compared to the course of the training, we moved on to the checkpoint
with the second lowest validation loss. The checkpoints that were used for the performance
comparison were created after a) 310,000, b) 360,000, c) 370,000, and d) 360,000 iterations
for each configuration, respectively.
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ROMP BEV TRACE 4DHumans SMPLify-X
+ OP

SMPLify-X
+ ViT

Sq 1 0 0 0 0 0 0
Sq 2 0 0 0 10 0 0
Sq 6 0 0 0 0 0 0
Sq 10 3 1 36 662 0 0
Sq 12 0 4 262 1 0 0∑

3 5 298 673 0 0
% 0.06 0.10 5.96 13.46 0.00 0.00

Table 4.5: Missed detections. Each sequence consists of 1000 consecutive images.

ROMP BEV TRACE 4D Humans SMPLify-X
+ OP

SMPLify-X
+ ViT

MPJPE 3D 26.3 25.0 26.3 22.2 22.1 23.1
MPJPE 2D (I) 15.9 16.6 16.8 11.3 15.9 14.6
MPJPE 2D (II) 19.5 17.9 20.3 8.7 12.0 10.1
Bone Std 2.1 2.2 0.9 1.5 2.3 2.6

Table 4.6: Overview of results with sequence 10 left out of comparison. All the metrics are
measured in percentage of the Neck-MidHip distance.

4.2.1 Results

MPJPE in 3D

We tested the behavior of models on synthetic and real datasets separately. On the synthetic
dataset (sequence 6) using MPJPE in 3D (Table 4.7), our trained models performed better
than the original model, in particular improving on the keypoints estimation of the legs.
However, on our In-Lab dataset with a real infant, the original model is better by 3 % of
the Neck-MidHip error on average than our best model, and our trained models’ errors are
notably higher, as shown in Table 4.8. The trained models with adversarial loss produce
slightly lower errors. Models trained on both datasets also have better results in MPJPE
in 3D. The visualized 3D meshes for all the models are shown in Fig. 4.5 on five samples.

MPJPE in 2D (Type I)

MPJPE in 2D (Type I) is presented for synthetic data in Fig. 4.9 and for real data
in Fig. 4.10. It shows similar results as the MPJPE in 3D, although the original model does
not fall behind the trained models on the synthetic data. We can also see that the trained
models do not have substantially lower errors in 2D on the real data. We can estimate
that the error in the z-axis is ~2/3 of the error in the xy-plane, which is contrary to what
we have observed in Section 4.1.1. One drawback of this observation is that the initial
comparison also included MINI-RGBD sequences 10 and 12, which include a lot of complex
leg postures in the air that sequence 6 lacks.
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4. Experiments and Results.....................................
MR MR + Ladv MR + S MR + S + Ladv original

Nose 26.6 23.9 20.5 19.8 21.5
Neck 0 0 0 0 0
RShoulder 7.7 7.6 6.1 8.4 6.7
RElbow 16.5 17.5 15.4 17.6 20.5
RWrist 29.3 29.6 26.3 28.1 18.0
LShoulder 7.0 4.9 7.2 4.6 6.3
LElbow 15.8 12.1 16.2 10.9 24.4
LWrist 24.2 20.0 26.1 20.1 20.2
MidHip 24.5 24.4 24.8 24.6 19.0
RHip 2.5 2.4 2.4 2.3 1.0
RKnee 10.2 10.5 9.4 13.3 34.6
RAnkle 26.1 22.6 24.8 25.8 26.3
LHip 2.5 2.4 2.4 2.3 1.0
LKnee 12.3 14.0 13.3 14.0 34.6
LAnkle 19.2 20.8 19.1 18.7 28.7
LBigToe 28.3 31.3 28.1 29.5 53.1
RBigToe 34.4 34.1 33.7 34.2 47.4
x̄ 16.9 16.4 16.2 16.1 21.4

Table 4.7: MPJPE in 3D in the percentage of the Neck-MidHip distance from MINI-RGBD
sequence 6.

MPJPE in 2D (Type II)

The values for MPJPE in 2D (Type II) are shown in Table 4.11 for synthetic infants and
in Table 4.12 for the real infants. The original model achieves at least twice as low an
error as our trained models on both the synthetic and the real data. The models trained
with adversarial loss produce lower errors than when trained without it. The models also
trained on SyRIP, which contains a few examples of real infants, perform better on the
real infant than their counterparts trained strictly on the MINI-RGBD synthetic data. The
visualized keypoints reprojected from 3D to the plane of the image for all the models are
shown in Fig. 4.6 on five samples. The visualized error for each keypoint is in Fig. 4.4.
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MR MR + Ladv MR + S MR + S + Ladv original
Neck 0 0 0 0 0
RShoulder 14.1 12.7 14.5 11.1 14.6
RElbow 19.7 16.4 19.8 16.3 20.5
RWrist 26.9 25.0 21.2 22.8 20.6
LShoulder 7.3 13.0 12.0 11.8 13.9
LElbow 21.7 15.1 13.6 13.2 17.1
LWrist 45.9 30.4 33.6 27.3 20.0
RHip 13.9 13.9 13.8 13.8 11.9
RKnee 25.9 24.1 26.9 26.1 20.2
RAnkle 29.5 27.4 35.2 31.7 17.9
LHip 13.9 13.9 13.8 13.8 11.9
LKnee 24.9 26.5 25.6 24.5 17.1
LAnkle 44.9 35.1 49.2 38.1 20.0
REye 17.6 16.6 17.7 16.7 18.7
LEye 19.6 16.8 17.0 17.9 15.1
x̄ 21.7 19.1 20.9 19.0 16.0

Table 4.8: MPJPE in 3D in % of the Neck-MidHip distance from In-Lab data.

original

MR + S + LadvMR + Ladv

MR MR + S

Figure 4.4: Visualization of MPJPE in 2D (Type II). The error measured in the MidHip-Neck
distance is scaled to the image so that the number of pixels between the Neck and MidHip
corresponds to 1 distance unit. When looking back to Fig. 4.3, we can see that our best model
(MR + S + Ladv) performed in a similar manner as ROMP, BEV, and TRACE. 4D Humans
and the methods using SMIL (SMPLify-X) still produce more visually correct bodies.
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MR MR + Ladv MR + S MR + S + Ladv original
Nose 25.6 23 19.9 19.1 16.4
Neck 0 0 0 0 0
RShoulder 5.4 5.9 4.1 6.9 5.7
RElbow 10.4 11.9 8.2 11.4 9.7
RWrist 20.7 21.3 16.7 20.5 9.3
LShoulder 6.1 3.7 5.5 3.7 3.9
LElbow 11.5 6.8 8.7 7.5 10.0
LWrist 15.5 12.8 11.0 14.4 8.1
MidHip 17.2 17.1 17.2 17.1 13.9
RHip 2.5 2.4 2.4 2.3 1.0
RKnee 6.6 8.0 6.8 7.8 10
RAnkle 20.3 14.8 17.6 18.3 19.9
LHip 2.5 2.4 2.4 2.3 1.0
LKnee 8.7 10.9 9.6 10.7 9.3
LAnkle 16.3 17.1 17.0 12.5 19.4
LBigToe 21.1 23.7 23.4 17.0 29.1
RBigToe 26.0 18.8 22.1 25.8 27.4
x̄ 12.7 11.8 11.3 11.6 11.4

Table 4.9: MPJPE in 2D (Type I) in the percentage of the Neck-MidHip distance from MINI-
RGBD sequence 6.

MR MR + Ladv MR + S MR + S + Ladv original
Neck 0 0 0 0 0
RShoulder 11 12.1 13.5 10.6 13.3
RElbow 11.4 12 16.5 11.5 12.7
RWrist 19.5 21 17.3 19.5 8.9
LShoulder 6.1 10.6 10.7 10.3 13.4
LElbow 19.7 8.8 11.1 9.6 13.2
LWrist 42.2 21.7 28.8 21 9.8
RHip 13.9 13.9 13.8 13.8 11.9
RKnee 21.4 20.1 24.9 22 6.8
RAnkle 23.3 20.6 22.1 25.6 6.9
LHip 13.9 13.9 13.8 13.8 11.9
LKnee 18.9 15.1 19 15.3 7.9
LAnkle 40.9 30.4 45.5 30.6 14.1
REye 14.9 13.6 15.1 14.3 16.5
LEye 16.7 13.6 13.9 14.8 12.6
x̄ 18.2 15.2 17.7 15.5 10.7

Table 4.10: MPJPE in 2D (Type I) in the percentage of the Neck-MidHip distance from In-Lab
data.
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MR MR + Ladv MR + S MR + S + Ladv original
Nose 50.2 27.2 18.5 14.7 5.3
Neck 21.4 22.2 23.9 17.3 6.4
RShoulder 29.4 18.8 18.6 10.5 4.5
RElbow 31.1 12.9 14.2 17.4 4.6
RWrist 27.6 21.0 22.2 24.6 4.1
LShoulder 29.7 22.2 21.5 15.7 9.8
LElbow 37.6 21.9 21.2 21.2 5.3
LWrist 38.7 29.7 28.2 24.5 5.9
MidHip 11.6 29.9 34.8 26.7 6.9
RHip 35.4 17.8 10.7 8.8 19.0
RKnee 38.6 20.5 12.6 9.7 6.5
RAnkle 28.9 22.9 24.8 19.1 8.6
LHip 32.5 10.0 11.8 14.6 17.1
LKnee 43.7 22.0 16.6 19.3 8.0
LAnkle 25.8 24.3 30.2 15.2 4.2
LBigToe 21.7 30.6 36.9 15.3 18.0
RBigToe 27.6 23.2 27.5 25.3 15.6
x̄ 21.3 22.1 22.0 17.6 8.8

Table 4.11: MPJPE in 2D (Type II) in the percentage of the Neck-MidHip distance from
MINI-RGBD sequence 6.

MR MR + Ladv MR + S MR + S + Ladv original
Nose 51.2 26.1 14.8 17.5 2.9
Neck 33.2 19.5 4.4 17.4 14.1
RShoulder 21.7 8.9 17.6 20.3 2.1
RElbow 22.0 13.4 22.7 20.8 3.6
RWrist 47.7 34.9 18.8 37.2 2.8
LShoulder 41.6 23.9 20.1 9.5 1.7
LElbow 64.0 34.6 21.2 21.3 2.4
LWrist 87.3 47.2 36.3 26.0 3.1
MidHip 24.8 21.8 8.0 19.3 22
RHip 29.2 27.5 24.0 14.8 14.1
RKnee 17.0 23.2 15.2 25.1 2.4
RAnkle 25.8 17.4 17.7 22.5 2.4
LHip 11.6 9.5 18.4 14.9 9.1
LKnee 25.4 20.6 21.1 22.6 1.9
LAnkle 27.3 17.7 42.3 17.6 2.5
REye 44.6 21.5 11.9 19.6 6.0
LEye 53.3 28.6 15.1 19.4 4.0
REar 25.2 12.2 20.3 24.8 15.8
LEar 44.6 28.6 11.4 22.6 14.6
x̄ 36.7 23.0 19.0 20.7 6.7

Table 4.12: MPJPE in 2D (Type II) in the percentage of the Neck-MidHip distance from
In-Lab data.
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(a) MR

(b) MR + Ladv

(c) MR + S

(d) MR + S + Ladv

(e) Original 4D Humans

Figure 4.5: Comparison of estimated body meshes on differently trained models.
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(a) MR

(b) MR + Ladv

(c) MR + S

(d) MR + S + Ladv

(e) Original 4D Humans

Figure 4.6: Comparison of projected 3D keypoints to the image plane on differently trained
models.
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(a) MR

(b) MR + Ladv

(c) MR + S

(d) MR + S + Ladv

(e) Original 4D Humans

Figure 4.7: Comparison of estimated body meshes on differently trained models.
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(a) MR

(b) MR + Ladv

(c) MR + S

(d) MR + S + Ladv

(e) Original 4D Humans

Figure 4.8: Comparison of projected 3D keypoints to the image plane on differently trained
models.
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Chapter 5

Conclusion, Discussion, and Future Work

This work presents a review of several current state-of-the-art methods for 3D pose estimation
from RGB videos. We used the methods for comparison in their ‘vanilla’ versions developed
for adults, except for SMPLify-X, which was modified in our team’s previous work. ROMP,
TRACE, and 4D Humans use SMPL, BEV uses SMPL+A, and SMPLify employs SMIL.
The methods were compared on five synthetic sequences of infants from the MINI-RGBD
dataset, using the following metrics: Mean Per Joint Position Error (MPJPE) in three
forms, bone length standard deviation, and missed detections. The most promising method
was then retrained in several configurations to explore the possible areas of its improvement.

In the initial comparison, the best-performing method overall was 4D Humans. However,
4D Humans had the substantially largest number of missed detections. That could have
resulted in 4D Humans ignoring some of the difficult poses, on which it would have otherwise
achieved higher errors, although further testing did not indicate 4D Humans gaining an
advantage over other methods because of that (see Table 4.6). The problem of the high
number of misses could be solved by using an alternative detector. We could also observe
that methods having tracking (listed in Table 2.1) produced body skeletons with better
stability of bone lengths across full videos. Concluding that 4D Humans performed the
best in most considered metrics and included tracking, we found it the most promising
method to incorporate the SMIL (infant) model into its pipeline and retrain the HMR 2.0
network on infant data.

We used three datasets for the training, validation, and evaluation: the MINI-RGBD
dataset with synthetic infants, SyRIP with a mix of real and synthetic infants, and an
In-Lab created data with generated pseudo-ground truth. Before retraining the HMR 2.0
network to output SMIL parameters instead of SMPL, we could observe several things:
a large portion of the error emerged in the z-axis after the skeleton alignment, i.e., in
the depth counting only the estimated skeleton itself. The trained models improved the
estimation of depth, likely because the SMIL model better takes account of the infants’
features that are different from those of an adult. We could also see that training with
the adversarial loss generally improved the final models. Therefore, we deem the proposed
substitution of CMU Mocap data with MINI-RGBD SMIL parameters for training the
discriminator justifiable.

Our models are predominantly trained on synthetic data. Our results showed that the
trained models improved on the original model after skeleton alignment on the synthetic
infants but fell behind on the real infant. The configuration of datasets proposed in
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5. Conclusion, Discussion, and Future Work..............................
Section 3.4.2 assigned two out of three of the most complex sequences from the MINI-
RGBD dataset for validation, leaving those from the training. It might be the reason why
our models do not perform well on real infants—they lack the ‘hard’ synthetic infants (with
higher complexity of leg and arm movements) in training, and the In-Lab data that we used
for testing consisted of an infant that would be considered ‘hard’ regarding its movements
and poses. Moreover, the models could be overfitted on some properties characterizing
images with synthetic infants, such as skin texture and contrast between the infant and
background.

We suggest multiple areas of improvement in retraining and fine-tuning the HMR 2.0
network: The first is to convert all the ground truth pose parameters that are in the Euler
angle representation to a 6D rotation matrix representation. Euler angle representation
suffers from gimbal lock, in which the system loses one degree of freedom, and consequently,
e.g., there are infinitive rotation parameterizations for the same head pose. The literature
indicates that 6D matrix representation positively impacts neural networks’ learning of the
accurate head pose [45].

Secondly, two options exist to solve the lack of 3D loss during training. One is to properly
align the internal reference frame of HMR 2.0 and the ground truth’s own reference frame.
If unsuccessful, the second is to compute the 3D loss after minimizing Procrustes distance
between the ground truth and 4D Humans’s estimation.

To create a more robust and overall better estimating model, it needs to be trained on a
much larger dataset, preferably consisting of real infants—the bias towards the synthetic
data could be solved this way. To obtain more data, pseudo-ground-truth fits (like those
from our In-Lab recorded data that we used for testing) can be used, taking inspiration
from the training of the original HMR 2.0 [16]. Another possible approach to achieve a more
robust model would be to fine-tune the original HMR 2.0 network instead of completely
retraining it from scratch.

One possible area of future pursuit is the improvement of the estimation of poses that
are close to self-contact and further detection of self-touches. Self-touches are an important
behavioral pattern in early infancy, and their successful automatic monitoring carries
great research potential. Current 3D pose estimation methods typically fail to detect self-
contacts—due to commonly used repulsion mechanisms to avoid collisions, the estimations
usually end up farther from real positions when there is self-touch or in configurations close
to self-touch. Müller et al. [46] propose a new method, TUCH, to improve pose estimation
with self-contact. Another possible direction of research, taking inspiration from BEV and
its use of SMPL+A, is to explore further age-based model fitting to achieve better pose
estimations on infant-parent interaction videos.
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