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Nomenclature

Symbols and notations

Symbol Meaning

a,A Vector a or A respectively

ai,Ai i-th component of vector a or A respectively

@⇠ Partial derivative with respect to variable ⇠

@i Partial derivative along the xi component

r Gradient operator

� Laplace operator

i Imaginary unit

F ['(t)](!) Fourier transform of '

â Fourier transform of a

a
⇤ Complex conjugate of a

Selected physical constants and quantities1

Hartree atomic units (abbreviation a.u.) [15] are conveniently utilized in this thesis, for
which the values of me, e, ~ and 4⇡"0 have been set to 1. We bring a brief overview of
selected physical quantities and constants that are used in the following text (in SI units
and in a.u.).

Quantity Value [SI] Value [a.u.] Meaning

↵
1

137.035999
1

137.035999 Fine-structure constant
c 2.99792 · 108 m·s�1 1

↵
Speed of light in vacuum

e 1.60218 · 10�19 C 1 Elementary charge
Eh 27.21138 eV 1 Hartree energy
me 9.10938 · 10�31 kg 1 Electron mass
~ 1.05457 · 10�34 J·s 1 Reduced Planck constant
a0 5.29177 · 10�11 m 1 Bohr radius
"0 8.85419 · 10�12 F·m�1 1

4⇡ Vacuum permittivity
µ0 4⇡ · 10�7 H·m�1 1

"0c
2 Vacuum permeability

t 2.41888 · 10�17 s 1 Time
E0 5.14221 · 1011 V·m�1 1 Electric field
I0 3.50945 · 1016 W·cm�2 1 Field intensity2

1Reference: [1, 114].
2Peak intensity at E = 1 a.u. (I = 1

2"0cE
2).
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Definition of the Fourier transform
The definitions of the Fourier transform vary from author to author. In the scope of this
thesis, the following definitions of the Fourier transform will be used3

F ['(t)](!) =

Z

R
dt'(t)ei!t, (1)

F
�1['̂(!)](t) =

1

2⇡

Z

R
d! '̂(!)e�i!t. (2)

The definitions are in line with the standard electrodynamics nomenclature [2] of the for-
ward propagating harmonic wave. We can write the total real field F (t) as a superposition
of elementary harmonic fields as follows:

F (t) = Re

"
X

!

A!e
�i!t

#
,

where A! is generally complex amplitude corresponding to the particular frequency !.

We conclude this section by enlisting some of the properties of the Fourier transform,
according to the definitions (1), (2). Let '(t), (t) have finite support on R and let all of
the following Fourier integrals exist, then:

• Parseval’s identity:
R
R dt|'(t)|

2 = 1
2⇡

R
R d!|F ['(t)]|2

• Identity relation: F
�1 [F ] = Id.

• Derivative theorem: F
⇥
d

dt
'(t)

⇤
(!) = (�i!)F ['(t)] (!).

• Shift theorem: F ['(t� t0)] = e
i!t0F ['(t)].

• Convolution theorem:

F ['(t)] · F [ (t)] = F ['(t) ⇤  (t)] ,
F ['(t) ·  (t)] = F ['(t)] ⇤F [ (t)] .

3Remark that this definition is not unitary and therefore does not preserve the norm, see the Parseval’s
identity.
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Introduction

The advent of ultrashort, high-intensity laser pulses has spurred the exploitation of highly
nonlinear optical phenomena for generating secondary radiation and the advent of the
field of attoscience. The attoscience field opened the door to probing and controlling the
electron dynamics in atoms thanks to the generation of attosecond pulses [3], particu-
larly through the process of higher-order harmonic generation (HHG). Highlighting the
importance of this field of physics, the 2023 Nobel Prize in physics has been awarded
”for experimental methods that generate attosecond pulses of light for the study of electron

dynamics in matter” [115] to Anne L’Huiller, Ferenc Krausz and Pierre Agostini. The
current e↵orts drift towards the optimal generation of secondary radiation and controlling
the frequency gain in gas chambers [16, 17, 18]. The linear and nonlinear e↵ects modulat-
ing the propagating beam can have detrimental e↵ects on phase matching in long gaseous
media. Moreover, the delicate interplay between Kerr focusing and plasma di↵usion gives
rise to laser filamentation in the medium. The filamentation of femtosecond pulses is also
of particular interest due to beam self-guiding and generation of THz radiation (1011�1013
Hz) o↵ering the study of optically non-transparent samples [19].

It is of great interest to the scientific and engineering community to develop robust simula-
tion tools capable of representing all of the linear and nonlinear optical e↵ects. However, it
is di�cult to assemble individual contributions into an encompassing model. Under some
circumstances, we can develop ad-hoc models from certain assumptions and phenomeno-
logical observations. For the interaction of lasers with neutral particles, i.e. non-ionized or
slightly ionized media4, we may exploit classical models from linear and nonlinear optics
or semi-classical models of ionization to fully describe the propagation of the ultra-short
laser pulse in gas. The SFA model [20] has been the workhorse for simulating HHG in
gases for arbitrary laser fields [111]. However, by construction, the resonances, Kerr e↵ect
and other processes of interest for the propagation are not well described in the SFA.
Hence the beam propagation must be treated using a separate model. Thus we have two
options for obtaining medium response in two distinct frequency regions – perturbative
and HHG.

A more comprehensive perspective is to employ the ab-initio approach, i.e. using many
time-dependent Schrödinger equations (TDSEs) for the computation of source terms in
Maxwell’s equations. The solution of the TDSE naturally incorporates all of the linear
and nonlinear optical e↵ects that are not easily obtainable with the standard nonlinear
optics methods, including HHG. For this reason, the coupling of Maxwell’s equations with
the exact microscopic description is desired for it could unravel a path towards optimal
generation of radiation for widespread usage. However, this approach also comes with
several drawbacks. As we will show in this thesis, even the 1-dimensional TDSE (1D-
TDSE) is the serious bottleneck in the computation of the source terms. Even the most

4We are not interested in the laser-plasma interaction in the framework of this thesis.
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robust 3-dimensional TDSE solvers coupled with fully vectorial descriptions of fields are
limited to distances ranging from a few tens of microns [21] to a fraction of millimeters [22].

The motivation behind optimizing the computation of the source terms for harmonic gen-
eration in long media is evident. In this thesis, we will explore the idea of optimization
using methods of artificial neural networks. Neural networks have shown rapid develop-
ment in recent years and have been applied in numerous tasks – from text processing large
language models [23, 24, 116] or text-to-image networks [117] to physics applications for
the inertial confinement fusion optimization [25], subatomic particle discovery [26], physics
informed neural networks [27, 28] or finding solutions to the Schrödinger equation [29, 30,
31]. Thanks to the wide availability of neural network software, e.g. Tensorflow [118] or
PyTorch [32], designing a custom network is reduced to assembling o↵-the-shelf compo-
nents. The acquired datasets from the macroscopic field propagation will be preprocessed
and used for training the custom network. The neural network might be suitable for this
task due to higher computational e�ciency than the 1D-TDSE and its ability to create a
universal function approximator [33], assuming enough training data is generated.

The thesis is organized as follows. Chapter 1 provides a theoretical overview of the micro-
scopic picture including the description of atom-laser field interaction and the consequent
secondary radiation induced by the fields in the form of HHG. Chapter 2 revolves around
two major topics. First, the solution of Maxwell’s equations under the unidirectional pulse
propagation approximation, which is used for the propagation of the beam, is discussed.
Second, the technique for obtaining 1st and 3rd-order susceptibilities, �(1) and �(3) re-
spectively, from the time-dependent perturbation theory is theoretically examined and
then linked to the numerical ab-initio computation using the 1D-TDSE. Chapter 3 dives
into the numerical methods of 1D-TDSE and Maxwell solver and the ab-initio and ad-hoc
models are defined in the context of multi-scale model. The results for the beam propaga-
tion in Argon obtained using the multi-scale model are presented in Chapter 4. Chapter 5
explains the fundamental principles of neural networks and concludes with an assessment
of a custom neural network model called TDSE-NN for optimizing the computation of the
source term.

The thesis is complemented by two appendices. One revolves around ionization and gives
a brief overview of various models for its description and a method of extracting free
electron density from the 1D-TDSE is explained. The second appendix elaborates further
on some aspects of NN design, NN data preprocessing and empirical observations that
were briefly mentioned in the main text.
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Chapter 1

Microscopic picture

To assemble the multi-scale model, we must begin with the family of equations and quanti-
ties describing the microscopic frame. A significant portion of this chapter revolves around
the time-dependent Schrödinger equation (TDSE) governing the dynamics of a system in-
fluenced by an external laser field. At the end of the chapter, we take a brief look at
high-order harmonic generation (HHG) in gases.

1.1 Atom-field interaction

This section is devoted to the theoretical introduction to the quantum-mechanical descrip-
tion of single atoms under the influence of an external laser field. First, the many-electron
problem is discussed briefly and is followed by single-active electron approximation. We
then proceed with di↵erent gauge descriptions of Hamiltonians and observables under the
influence of the laser field.

1.1.1 Many-electron problem

The Hamiltonian describing a system composed of N electrons under the influence of
Coulomb potential of the core reads1 [4]

H(r1, r2, . . . , rN ) = � ~2
2me

X

i

�i+
X

i

Vnucleus-electron(ri)+
1

2

X

i

X

i 6=j

Velectron-electron(rij),

(1.1)
Where Vnucleus-electron(ri) and Velectron-electron(rij) correspond to the Coulomb interactions
of the nucleus with electrons and inter-electron interactions respectively. The solution of
the corresponding time-independent Schrödinger equation (TISE)

H(r1, r2, . . . , rN ) (r1, r2, . . . , rN ) = E (r1, r2, . . . , rN ) (1.2)

was originally proposed by Hartree [35] and improved later by Slater [36] and Fock [37].
Hartree-Fock solvers have been used for determining ground states of simple molecular
and atomic systems and have been the workhorse in quantum chemistry research [38, 39].
An alternative and popular method to solve the many-electron Schrödinger equation relies
on the density functional theory (DFT) and its time-dependent extension (TDDFT) [5].

1The Hamiltonian concerns only the electron-electron and electron-nuclei interactions. However, under
the Born-Oppenheimer approximation, also the nuclei-nuclei interactions should be included [34].
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1.1.2 Single-active electron approximation

In the framework of this thesis, we treat the individual atoms as fully uncorrelated, mean-
ing atoms are completely isolated systems, and no phenomenological damping is included,
thus the e↵ective potential Ve↵ approaches the plain Coulomb potential. Because the po-
tential varies from atom to atom, we keep the e↵ective potential nomenclature for now, Ve↵
will be specified later, see Subsection 3.1.1. For the simplest symmetrical problems such as
the simulation of rare gases, solving the many-electron problem with external fields is com-
plicated and computationally expensive. The problem is addressed by employing a method
of single-active electron (SAE) approximation. The method reduces the problem into a
single electron interaction with external fields and atomic core. Remaining averaged elec-
tron contributions introduce e↵ective shielding of the potential – this is embedded within
the e↵ective potential Ve↵. SAE approximation has its clear advantages in computational
e�ciency compared to TDDFT and provides satisfactory qualitative predictions but may
lack quantitative agreement with an exact many-electron description and the polarization
character of electromagnetic radiation may also play a role, see [40]. The corresponding
field-free Hamiltonian is expressed as follows:

H0 =
1

2me

p2 + Ve↵, (1.3)

where the momentum operator is defined as p = �i~r. The field-free Hamiltonian H0

becomes the foundation for the laser-atom interaction. Fields are implemented in the next
subsection.

1.1.3 Hamiltonian of an electron in electromagnetic field

Let (A(r, t),�(r, t)) be a pair of electromagnetic potentials fully describing the electric
and magnetic fields

E = �@tA�r�, (1.4)

B = r⇥A. (1.5)

The exact form of potentials (A,�) in electromagnetism relies on the selected gauge,
depending on the application and convenience. Given the scalar function ⇤(r, t), the
potentials are transformed according to gauge ⇤ as

A⇤ = A�r⇤, (1.6)

�
⇤ = �+ @t⇤. (1.7)

Fields E and B given by Eqs. (1.4), (1.5) remain the same regardless of gauge2.

The Hamiltonian of an electron in an e↵ective Coulomb potential of atom Ve↵ under the
influence of the external fields reads

H =
1

2me

(p+ eA)2 + Ve↵ � e�. (1.8)

The dynamic of the system with the varying fields is then governed by the TDSE

i~@t = H (1.9)
2Enforcing some approximations within the gauges can cancel the validity of Maxwell’s equations, as

discussed later in the subsection for the length gauge and dipole approximation, but still provide satisfactory
results.
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with an initial condition  (t = 0) =  0 where  0 is the ground state given by the TISE
H0 0 = E0 0.

We can apply the Lorenz gauge condition

r ·AV = 0 , �
V = 0, (1.10)

which yields the velocity gauge Hamiltonian

H
V =

1

2me

Ä
p+ eAV

ä2
+ Ve↵. (1.11)

The nomenclature stems from the description of the field interaction using purely vector
potentialA. The recipe to transform the TDSE (1.9) with Hamiltonian (1.8) into arbitrary
gauge ⇤ is performed via the following unitary operator

T⇤ = exp

Å
ie⇤

~

ã
, (1.12)

where e is the charge of the electron. We then introduce

 
⇤ = T⇤ , (1.13)

and plug  into the TDSE (1.9) to obtain the transformed TDSE with respect to a chosen
gauge ⇤ [6]:

i~@t ⇤ =

Å
1

2me

Ä
p+ eA⇤

ä2
+ Ve↵ � e�

⇤
ã
 
⇤. (1.14)

Di↵erent gauge descriptions of Hamiltonians (1.14) can be useful for particular implemen-
tations of TDSE. In the scope of the thesis, we will be using the length gauge Hamiltonian
that couples the field interaction via electric field E directly. We first define the gauge
function

⇤L = r ·AV . (1.15)

Then we employ the dipole approximation AV ⇡ AV (t). The transformed potentials,
according to Eqs. (1.6), (1.7), now read

AL = 0, (1.16)

�
L = r · @tAV = �r ·E. (1.17)

By substituting the potentials into (1.14), we get the length gauge Hamiltonian:

H
L =

1

2me

p2 + Ve↵ + er ·E. (1.18)

We can conveniently express the Hamiltonian in a separate form

H = H0 + VI(t), (1.19)

where VI(t) is a time-dependent perturbation of the Hamiltonian by the external fields.

Let us inspect the validity of the length gauge under dipole approximation. One of the
direct consequences is the complete omission of the magnetic interaction. However, the
magnetic field term can be fully neglected for nonrelativistic laser pulses if we do not
account for the spin-magnetic interaction. The dipole approximation also requires su�-
ciently large wavelengths compared to the overall size of the atom a0, i.e. �� a0. For more
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in-depth reading on non-physical aspects of length gauge within the dipole approximation
see [41].

The length gauge is also used in the SFA and agrees well with experiments3 [42]. Both
gauges yield the same results in the case of the 1D and 3D-TDSE, however, in the 3D-
TDSE, they di↵er in computational e�ciency for varying intensities [43]. It can be shown
that for certain quantities, e.g. photoelectron spectrum, the convergence of the velocity
gauge is much faster in contrast with the length gauge because the latter requires a much
larger numerical grid due to long-traveling electrons [44, 45]. In the end, the choice of a
suitable gauge often relies on a particular numerical implementation of the TDSE and the
desired input field. Since the propagated quantity in the multi-scale model is the electric
field, we stick to the length gauge 1D-TDSE.

1.1.4 Gauge invariant position and momentum

The physical observables are gauge-independent quantities. Thus, the expectation values
of the operators in length and velocity gauges must be the same. The correspondence will
be demonstrated on position and momentum operators.

The gauge invariant momentum is defined as [6]

⇧⇤ = p+ eA⇤, (1.20)

where p is the canonical momentum from the corresponding Hamiltonian, expressed as
operator �i~r. This yields ⇧V = p + eAV in the velocity gauge and ⇧L = p in the
length gauge, since AL = 0. If we use the respective wavefunctions for the computation
of the expectation values, we arrive at the same expectation values, as demonstrated in
the following series of equalities:

h⇧Li
L
= h L|p| Li = h V

T
†
⇤|p|T⇤ 

V i = h V |p+ eAV | V i = h⇧V i
V
, (1.21)

where the momentum operator was applied on |T⇤ 
V i as follows:

p |T⇤ 
V i = �i~r

Ç
exp

Ç
ier ·AV

~

å
| V i

å
= T⇤(p+ eA) | V i . (1.22)

Analogically for the position operator x in the length and velocity gauge, it can be shown
that

hxLi
L
= hxi

L
= hxi

V
= hxV i

V
. (1.23)

Expressions (1.21) and (1.23) are the essential gauge-invariant quantities for the proper
physical description of the source terms.

1.2 Microscopic fields

The electrons start to wiggle in the vicinity of the time-varying external fields. The induced
averaged electron currents hji act as source term for the wave equation

�E� 1

c2
@
2
tE =

1

"0c
2
@t hji . (1.24)

3There is no satisfactory fit for any field intensity for SFA in the velocity gauge [42].
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Focusing only on the generation of a local microscopic field by currents hji, we may neglect
the Laplacian in (1.24) and write

@
2
tEmicro = �

1

"0
@t hji . (1.25)

The gauge invariant electron current operator is defined in terms of the momentum ⇧⇤

as [6]:
j⇤(r, t) = � e

me

⇧⇤(r, t) = � e

me

Ä
p+ eA⇤

ä
, (1.26)

or in terms of the position operator:

hj⇤i = �e@t hx⇤i (1.27)

To calculate the microscopic field Emicro, one must solve Equation (1.25), or solve the
following algebraic equation in the frequency domain:

!
2Êmicro = �

i!

"0
h|̂⇤i . (1.28)

Computing directly hj⇤i requires numerical evaluation of the spatial derivative of the
wavefunction. From the numerical point of view, this approach may inherently introduce
further errors.

A more suitable approach is to combine classical Hamilton equations with the Ehrenfest
theorem and find the corresponding terms. Let us assume the length gauge Hamiltonian
(Eq. (1.18)), the classical Hamilton equations yield:

ṙ = rpH
L =

1

me

p (1.29)

ṗ = �rrH
L = �rVe↵ � eE. (1.30)

The Ehrenfest theorem states that the Hamilton equations above also hold for quantum
operators assuming the averaged observables r and p. In total, we have the following
equalities:

hr̈i = 1

me

@t hpiL =
1

me

@t hp+ eAV i
V
=

1

me

h�rVe↵ � eEi
L
= �1

e
@t hji . (1.31)

We see that we may express Equation (1.28) in 3 equivalent forms:

• Length form: Êmicro = e

"0
hr̂i.

• Velocity form: �i!Êmicro = e

me"0
hp̂i

L
= e

me"0
h◊�p+ eAi

V
.

• Acceleration form4: !2Êmicro =
e

"0
h’rVe↵iV = e

"0
h⁄�rVe↵ + eEi

L
.

Even though the 3 equivalent forms theoretically reach the same microscopic field, some
forms are preferred over others due to simpler evaluation of the expectation value. For
instance, as we will see in the chapter devoted to the numerical aspects of TDSE, the
acceleration form and the length form have a simple analytical evaluation without any
approximation involved, whereas in the case of the velocity form we need to evaluate the
derivative numerically.

Provided su�ciently strong field intensities, the computation of microscopic fields leads to
higher-order harmonic generation. The next section gives a brief overview of the process.

4The equality h’rVe↵iV = h¤�rVe↵ + eEi
L
follows directly from the Hamilton equations for the velocity

gauge Hamiltonian (1.11) and comparing the respective acceleration from the length gauge Hamiltonian.
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1.3 Higher-order harmonic generation

The process of higher-order harmonic generation (HHG) o↵ers a broadband, coherent,
tabletop, flexible source of extreme UV (XUV) radiation [46]. The radiation can be
obtained through intense IR laser beam interaction with gaseous targets5 [3], typically
rare or inert gases. The intensity is in the non-relativistic window I ⇠ 1014 W/cm2

but significant ionization occurs. The non-linear response of the media results in the
generation of a very broad spectrum of higher-order harmonic frequencies of the incident
beam [48, 49]. Due to the periodicity of the laser field and high spectral bandwidth, a
train of attosecond impulses is created, o↵ering many intriguing applications in probing
dynamics of valence electron shells in gases and molecules, in pump-probe experiments or
condensed matter spectroscopy [50, 51, 52]. The high-quality harmonic beam may also
provide interesting seeding applications for other sources of radiation such as free-electron
lasers (XFELs) to further improve the amplification and beam convergence of XFELs [53].
Due to low conversion e�ciency, many works have been devoted to the study of HHG
amplification, which is generally limited by photon reabsorption and phase matching in
media [54, 55, 56]. Some promising amplification techniques involve the use of two-color
laser fields (e.g. fundamental and second harmonic fields) for optimum phase matching
and increasing overall harmonic yield [16, 17], or the recent usage of a capillary discharge
to phase-match the harmonic generation [18].

1.3.1 Three-step model

The process of HHG in gas can be intuitively understood from a so-called three-step
model [57] which is sketched in Figure 1.1. In the first step, the atomic Coulomb barrier
is partly suppressed by the external periodic electric fields, raising the probability of the
electron tunneling through the barrier. Once freed, the electron is then accelerated by the
field away from the parent ion. The electron gains additional momentum up to the point
it comes back to the vicinity of the remaining ion and recombine, emitting the energy
excess in the form of an XUV photon. The maximum energy of the photon in the case of
a linearly polarised driving field is given by the following formula [20]:

~!max = Ip + 3.17Up , Up =
e
2
E

2
L

4me!
2
L

, (1.32)

where Ip is the ionisation potential of the atom and Up ponderomotive potential given by
the laser field intensity EL and frequency !L.

Many models explaining the nature of HHG and predicting the higher-order harmonic
spectra have been developed over the years, ranging from the simplest models combining
Newtonian mechanics with the semi-classical models of ionization [57] to more complex
ones relying on the semiclassical approach or the full quantum description using the TDSE.
The problem with the TDSE is that we cannot find a closed-form solution without approx-
imations and, in the case of 3D, non-linearly polarized fields, the exact numerical solution
is very expensive. The approximations, as explained in the next subsection, allow us to
compute the harmonic spectra more e�ciently. We briefly introduce the semiclassical
Lewenstein model [20] that qualitatively describes the harmonic generation.

5HHG can also be generated in solids or using relativistic plasma mirrors [47].
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Figure 1.1: Sketch of the three-step model. First the electron tunnels through the potential barrier
(A), next it accelerates due to the outer field (B) and finally recollides while the generation of the
XUV photon occurs (C). The image is overlayed by the driving electric field (pale red sinusoidal
curve). Available from: [58].

1.3.2 Lewenstein model – SFA

The Lewenstein model is based on several key assumptions:

• Single active electron and dipole approximation is employed.

• We assume length gauge Hamiltonian (1.18) with Coulomb potential:

H
L =

1

2me

p2 � e
2

4⇡"0r
+ er ·E. (1.33)

• Tunnelling ionization is the dominant photoionization process.

• We fully neglect all bound states except the ground state |gi and the continuum
states are not influenced by the Coulomb forces of the ion – this assumption is valid
for su�ciently strong fields, hence the term strong field approximation (SFA).

The aforementioned assumptions condense into the following ansatz for the wavefunction
| (t)i [20]

| (t)i = e
iIpt/~

Å
|gi+

Z

R3
dk b(k, t) |ki

ã
, (1.34)

where e�iIpt/~ corresponds to the evolution operator of the field-free Hamiltonian, b(k, t)
are the expansion coe�cients of the continuum states6 |ki and E = �@tA, according to
the length gauge.

The goal is to derive the dipole D(t) = h |x| i acting as a source of the microscopic field
Emicro. We plug the ansatz (1.34) into the Hamiltonian (1.33) and solve the corresponding
TDSE. The time evolution is summarized by defining the unitary operator U(t, t0) acting
on the ground state:

| (t)i = U(t, �1) |gi . (1.35)

We find b(p, t) as
b(p, t) = e

�iIpt/~ hk|U(t, �1)|gi , (1.36)

6The continuum states are e↵ectively described using plane waves in SFA.
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to obtain the following well-known dipole formula [20]:

D(t) = �i
Z

t

0
dt0 d(k0 +A(t0)) ·E(t0)| {z }

Ionization

Å�2⇡i
t� t0

ã 3
2

e
�iS(k0, t, t

0)

| {z }
Propagation

d⇤(k0 +A(t))| {z }
Recombination

+ c. c.. (1.37)

Here d(p) = hp|x|gi is the so-called transition dipole matrix element describing the
bounded electron state, S(p, t, t0) =

R
t

t0 dt
00(p + A)2/2me + Ip(t � t

0)/~ is the classical
action of the electron in an electric field and k0 is a stationary momentum given by the
saddle point condition rS(k0, t, t0) = 0. If we shine the light on the formula (1.37),
the terms provide the quantum analog to the classical three-step model presented in the
previous section, as the explanatory notes proposed.

1.3.3 TDSE perspective on HHG

We compare the HHG power spectrum obtained from the SFA model, Eq. (1.37), with the
exact ab-initio calculations from the 1D-TDSE solver in the length gauge, see Chapter 3.
The driving pulse is a 15-cycle (40fs, FWHM in field) cos2-envelope field of peak intensity
I = 1014W/cm2 with fundamental wavelength of �L = 800 nm. The target is the hydrogen
atom for simplicity. The result power spectra for harmonic orders H of the fundamental
field frequency !L are plotted in Figure 1.2.

We notice 3 distinct regions within the power spectra. The perturbation region (H < 9) is
characterized by an exponential decrease of odd harmonics that could be obtained through
perturbation expansion of polarization (Chapter 2). The 9-th harmonic corresponds to
the ionization potential energy of atomic hydrogen (Ip = 13.6 eV). Next comes the plateau
region with harmonics of comparable magnitude that spans from H = 9 � 21. The spec-
trum ends with an exponential decrease of the generated harmonic amplitudes after the
cuto↵ harmonic H = 21. The cuto↵ threshold fits with the classical model prediction in
Eq. (1.32). Due to the symmetric target and single color field, the odd harmonics are
more pronounced than even harmonics in the harmonic spectrum7. While the 1D-TDSE
spectrum comprises the three main regions, it di↵ers dramatically from the SFA spectrum
in the perturbation region. The Lewenstein model, which describes the wavefunction so-
lution of the TDSE as only composed of the gound state and the continnum states, fails
at describing the harmonic spectrum where excited states are involved. The ground state
in SFA is typically only described using a symmetric 1s hydrogen orbital with respective
ionization potential for the particular gas whereas the 1D-TDSE solution contains the
excited states8. One then needs to rely on the ab-initio description for the lower-order
harmonics or use a proper ad-hoc model. The wave packet spread in continuum is also
partly included in the SFA through the term (�2⇡i/(t� t

0))
3
2 but the TDSE wave packet

broadening inherently includes the vicinity of the potential. The main advantage of the
SFA is that it can solve a variety of problems involving complex 3D fields. For symmet-
rical targets, we can plug in an arbitrary polarization of fields and obtain the solution in
reasonable time frame compared to the 3D-TDSE.

The 1D-TDSE solution in Fig. 1.2 runs faster than the particular implementation of
SFA [111]. For this reason, the SFA model is left for comparison with 1D-TDSE.

7The length of the pulse plays a role in the broadening of the odd harmonics as well as the interferences
of harmonics generated between multiple cycles, see discussion and figure in [112], Subsection 1.1.2.

8See excited states in Figure A.2.
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Figure 1.2: Logarithmic power harmonic spectra (|Emicro(!)|2) of the microscopic response ob-
tained from the SFA (blue) and from the 1D-TDSE (orange), multiplied by factor 0.01x for cor-
respondence. The SFA data was computed using the SFA solver solving the integral in Equa-
tion (1.37) [111] and the same field was applied on the 1D-TDSE solver. The cuto↵ threshold fits
with the classical model prediction in Eq. (1.32) (red vertical dashed line).
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Chapter 2

Macroscopic picture

The temporal and spatial profile of high-power laser beams is a↵ected by linear and non-
linear phenomena occurring during the beam-media interaction over a given propagation
distance. In this chapter, a one-dimensional, unidirectional pulse propagation equation
(UPPE) in the co-moving reference frame describing the evolution of ultrashort laser
pulses in transparent media is derived from Maxwell’s equations. We introduce the cor-
responding terms responsible for the pulse modulation into the UPPE and establish the
ad-hoc and ab-initio models. To fulfill the requirement for the qualitative and quantitative
comparison of ad-hoc and ab-initio models, we will discuss the inference of susceptibilities
�
(1) and �(3) using the 1D-TDSE.

From this chapter onward, we will rely heavily on the notation to discern temporal and
spectral variables that are coupled via Fourier transform, e.g. X̂(!)

F ! X(t). For more
details, see the Nomenclature.

2.1 Propagation equation

We first recall Maxwell’s equations with sources for electric and magnetic fieldsE(r, t),B(r, t):

r ·E =
%

"0
, (2.1)

r ·B = 0, (2.2)

r⇥B = "0µ0@tE+ µ0j, (2.3)

r⇥E = �@tB, (2.4)

where %(r, t), j(r, t) are the charge and current densities respectively. Bound and free
charges and currents are embedded within % and j. Applying the operator r⇥ on Faraday
law (2.4) and using the well known identity r ⇥ r ⌘ r(r·) � � in combination with
Ampere law (2.3) yields the following wave equation for E with charges and currents
entering as source terms:

�E� 1

c2
@
2
tE =

1

"0
r%+ µ0@tj. (2.5)

We assume the volume is filled with neutral particles and no free charges are present. Thus
we can write r% ⌘ 0. The contribution to the propagating field E comes mainly from
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the macroscopic time-varying electron current and charge densities. We include them in
an encompassing term F(r, t) and substitute to the RHS of the wave equation (2.5) to
obtain:

�E� 1

c2
@
2
tE =

1

"0c
2
@
2
tF. (2.6)

The exact implementation of the source term F varies for the ad-hoc and ab-initio models.
In the case of the ad-hoc model, the response of the medium is encoded within the material
constants, e.g. susceptibilities �(n), and the material response functions – polarization
P(E) or free electron currents j(E). In isotropic media, the polarization can be expanded
in the frequency domain as the following series1

P̂(!, r) = "0

Ä
�
(1)Ê+ �

(3)cE3 + . . .

ä
(!, r) = P̂L + P̂NL, (2.7)

Remark that due to the choice of a centro-symmetric potential, the expansion (2.7) includes
only odd orders. In the scope of the thesis, the ad-hoc model is defined by setting2

F̂ad-hoc := P̂L + P̂NL = "0

Ä
�
(1)Ê+ �

(3)cE3
ä
. (2.8)

The ab-initio response is given by a complementary solver computing the source terms
using the TDSE. The averaged microscopic field response Emicro, see the di↵erent forms in
Section 1.2, is computed at every macroscopic point of the medium. The link between the
microscopic quantity (Emicro) and the source term (Fab-initio) is provided by the formula

Fab-initio := N · "0Emicro, (2.9)

where N is the number gas density.

The following derivation of the propagation equation is then common for both ad-hoc and
ab-initio models. Applying Fourier transform on (2.6) yields the Helmholtz equation for
the individual frequency components !:

�Ê+ k
2
0Ê = � !

2

"0c
2
F̂, (2.10)

where the wave number k0 = !/c. Remark that a non-relativistic beam is assumed and
any atomic or spin magnetism is neglected, hence the Helmholtz equation for the magnetic
field can be omitted.

There are many ways how to numerically integrate Maxwell’s equations and wave equa-
tion (2.5). From Fourier methods to explicit finite di↵erence methods in temporal do-
main [119] or finite-di↵erence time-domain method on the staggered grid known as the
Yee scheme [60]. Since we are only concerned with the forward propagation of the laser
pulse in 1D, we can derive a simpler, su�ciently accurate scheme under several approxi-
mations. The three-dimensional Helmholtz equation (2.10) will be the starting point for
the derivation of the propagation equation.

1The 3rd order expansion of P̂ implicitly contains third harmonic generation and Kerr e↵ect through
the process of three-wave mixing. See details of implementation in Subsection 3.2.2 in the part devoted to
ad-hoc model.

2
P
NL may include other nonlinear e↵ects such as Raman response but is omitted here. For details

see [59], Section 2.2.
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2.1.1 Unidirectional pulse propagation equation (UPPE)

Instead of directly integrating the Helmholtz equation (2.10), we further simplify the
dimensionality of the problem to 1D by neglecting the transverse e↵ects. This approach
will be su�cient for the studies presented in the thesis and it has also been tested for
HHG and compared with experiments to reasonable accuracy [54]. The motivation for
choosing the simple model is to test the concept of optimizing the computation of TDSE
source terms using neural networks. The cases when we can not neglect transverse e↵ects
are discussed thoroughly in Section 4.4.

Furthermore, this simplification can be better physically justified in certain cases. For
example for hollow-core fibers, we can assume the solution of Helmholtz equation (2.10)
in a sperated form [7]

Ê(r,!) = xS(x, y)Â(z,!)ei�0z, (2.11)

where z is the direction of propagation, x is the field polarization, S(x, y) describes the
spatial distribution of the fibre modes, Â denotes the slowly varying amplitude of the
propagating mode and �0 is the wave number corresponding to the mode. Separation of
variables (Eq. (2.11)) leads to equations for S(x, y) and Â(z,!) [7]:

@
2
xS + @

2
yS + ["(!)k20 � �̃]S = 0, (2.12)

2i�0@zÂ+ (�̃2 � �20)Â = 0. (2.13)

The wave number �̃ satisfies the eigenvalue equation (2.12) for the fiber modes, for details
see [7], and "(!) is the dielectric constant. If we assume only short propagation distances in
the order of millimetres, we can completely disregard mode coupling via the wave number
�̃. Thus in the first approximation, it is su�cient to compute only the evolution of forward
propagating amplitude in z.

Therefore we neglect the transverse component3 within the Helmholtz equation (2.10):

� ⌘ @2z , �? ⌘ 0. (2.14)

Using only linearly polarized fields, we can continue with the scalar description of the elec-
tric field Ê(z,!). With the inclusion of the simplifying conditions, the following equation
directly emerges from (2.10):

@
2
z Ê + k

2
0Ê = � !

2

"0c
2
F̂ . (2.15)

Let us define an operator
D

±(!) = @z ⌥ ik0(!) (2.16)

satisfying the relation
D

�(!)D+(!) = @
2
z + k

2
0(!) (2.17)

and assume a general solution of (2.15) as a superposition of forward (Ê+) and backward
(Ê�) moving waves, with their corresponding amplitudes Û+ and Û

+ respectively,

Ê = Û
+
e
ik0z + Û

�
e
�ik0z. (2.18)

We can neglect the backscattering component of the field Û
� if the paraxiality condition

|@2z Û+| ⌧ |k0(!)@zÛ+| applies for the forward propagating envelope Û+. The paraxial

3For the details of the transverse Laplacian implementation in free space refer to [59].
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approximation holds if Û+ varies slowly with the propagation distance on scale of one
wavelength of the laser beam. Having |Û+| � |Û�|, the backscattering operator applied
on Ê then yields D�(!)Ê ⇡ 2ik0Ê [59]. Helmholtz equation (2.15) simplifies into

2ik0D
+
Ê = � !

2

"0c
2
F̂ (2.19)

After rearranging the terms, the equation finally reduces into the unidirectional pulse
propagation equation (UPPE):

@zÊ = ik0Ê + i
!

2"0c
F̂ (2.20)

The UPPE (2.20) is the main driving equation of the beam evolution in gas for the ad-hoc
and ab-initio models. However, Eq. (2.20) contains a quickly oscillating term ik0Ê which
is unsuitable for the numerical modeling. We can get rid of it by transforming it into a
co-moving frame as demonstrated in the next subsection.

2.1.2 UPPE in co-moving frame

The UPPE, Eq. (2.20), is transformed into a co-moving frame advancing at the phase
velocity4 vp = c

n0
, where n0 is a refractive index at a fundamental laser wavelength �0.

The propagating pulse then remains anchored around the center of the computational
window, removing the necessity of modifying the numerical grid along the propagation of
the solution. We define the retarded time ⌧ = t � z/vp, referencing the time within the
pulse, and the transform of the retarded field then reads:

E(z, t)! E(z, ⌧) = E(z, t� z/vp) (2.21)

The derivatives in the co-moving frame are transformed as follows:

@z ! @z +
@⌧

@z

@

@⌧
= @z �

1

vp
@⌧ , (2.22)

@t ! @⌧ . (2.23)

In the spectral domain, the temporal derivative transforms as @⌧ ! �i!. Applying the
transform (2.21) on the UPPE (2.20) yields:

@zÊ = i

⇣
!

c
� n0!

c

⌘
Ê + i

!

2"0c
F̂ (2.24)

4The reason why we opt for phase velocity instead of group velocity vg is both practical and numerical.
The group velocity is computed as follows:

1
vg

=
dk
d!

����
!0

=
1
vp

+
!0

c

dn(!0)
d!

=
1
vp

+�
1
v
.

Hence the group velocity can be computed as

vg =
1

1
vp

+� 1
v

,

however the e↵ect of the correction term � 1
v
is small compared to 1

vp
and secondly we would need to

evaluate a derivative of refractive index that can be obtained with certain error from numerical evaluation
of �(1), see Section 2.2.3. For these reasons, we stick to a frame moving at vp.
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which can be simplified assuming5

n0 =

q
1 + �

(1)
0 ⇡ 1 +

1

2
�
(1)
0 . (2.25)

We finally define the UPPE in co-moving frame as:

@zÊ = i
!

2"0c

Ä
F̂ � "0�(1)

0 Ê

ä
. (2.26)

We should address the fact that we do not a-priori know vp, respectively �
(1)
0 during the

propagation of the pulse. However, the �(1)
0 coe�cient can be extracted directly from the

TSDE at a low-intensity field ahead of the propagation itself, as will be the subject of the
next section.

Let us discuss why the choice of UPPE is much more advantageous compared to pre-
cise Maxwell’s equations solvers. Maxwell codes are necessary primarily in cases when
the backscattering becomes significant, i.e. out of the paraxial approximation applicabil-
ity range. Algorithms based on the Yee scheme [60] for Maxwell propagation coupling
the TDSE have been developed [61, 21]. However, these schemes are limited to smaller
propagation steps and require large computational resources due to the high sampling of
the TDSE response. Whereas with UPPE with dominant z-propagation (optically thin
gas, capillaries, fibers, etc.), we can use much larger propagation steps with comparable
accuracy at a fraction of the cost [59, 62, 63]. All in all, the UPPE in the co-moving
frame, Eq. (2.26), will be the workhorse in our simulations as it is suitable for describing
high-power femtosecond pulse propagation in gas if we assume a transverse filament size
larger than the fundamental wavelength [62].

2.2 Determination of first and third order susceptibilities

To provide a quantitative and qualitative comparison of the ad-hoc and ab-initio models,
it is necessary to correctly determine the values of susceptibilities. Susceptibility �(!) sys-
tematically couples linear dispersion, linear and nonlinear refractive indices (Kerr e↵ect),
third harmonic generation (3HG) and other higher order e↵ects. The susceptibility breaks
down into linear and non-linear parts corresponding to di↵erent terms of perturbation
expansion6

�(!) = �
L(!) + �

NL(!) = �
(1)(!) + �

(3)(!)Ê2 + �
(5)(!)Ê4 + . . . . (2.27)

The subject of determining susceptibilities and related quantities such as non-linear re-
fractive index is a research task highly extending the scope of this thesis. One aspect is
the transition between the perturbative and non-perturbative descriptions of non-linear
optics. At intensities ranging from 1013 � 1014 W/cm2 we observe intense Kerr-induced
nonlinearities as well as higher-order Kerr e↵ects (HOKE) that a↵ect filamentation of
laser beams. In this range the non-perturbative HHG is present and the ionization e↵ects
also become significant, which renders the perturbative approach inapplicable. From the
ab-initio calculations, we can estimate the boundary intensity at which the standard per-
turbative approach is applicable. For hydrogen with Ip = 13.6 eV interacting with 800 nm

5Approximation is valid for �(1)
0 ⌧ 1.

6Assuming the central symmetry, the even orders vanish.
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field, the intensity threshold is 2 · 1013 W/cm2 [64]. Above this threshold, we have to
rely on more complicated HOKE descriptions which are still not well understood to this
day. The contribution of the HOKE terms and the saturation of the Kerr non-linearity is
discussed thoroughly in [65].

In this section, we will refer to the derivation of �(1) using the non-stationary perturbation
theory and we provide the link with the ab-initio approach. We will employ the 1D-TDSE
to determine the values of �(1) and �(3) numerically. To extract the susceptibilities we
follow the methods proposed in [65, 66, 67].

2.2.1 Density matrix formalism

We will loosely follow the standard nonlinear optics textbook [8] derivation of �(!). In-
stead of using the quantum mechanical formalism presented in Chapter 1, we will employ
the alternative density matrix formulation of quantum mechanics to derive the suscepti-
bilities. The density matrix formalism is particularly advantageous for the description of
mixed quantum states (e.g. atomic vapors) and phenomenological damping. The presence
of damping is reflected in the resonant behavior of susceptibility.

Let |usi be a set of eigenstates in an unperturbed system described by Hamiltonian H0.
For each state s applies

H0 |usi = Es |usi . (2.28)

Next the temporal perturbation V (t) = �µ·E(t) is introduced where µ is a dipole operator
defined via charge q and position operator as µ = qx. The wavefunction of the state s in
time t may be written as | si = Cs(t) |usi. The temporal evolution of | s(t)i is governed
by the TDSE with the perturbation V (t):

i~@t | s(t)i = (H0 + V (t)) | s(t)i . (2.29)

The whole ensemble of states can be described using a density matrix

%(t) =
X

s

w(s) | s(t)i h s(t)| , (2.30)

mn-th element
%mn(t) = hum|%(t)|uni =

X

s

w(s)Cs,⇤
m (t)Cs

n(t), (2.31)

where w(s) is a weight, or a probability of a given state7. The weights highlight the
probabilistic nature of the density matrix.

The dynamics of the density matrix is governed by quantum Liouville equation

@t%mn(t) = �
i

~ [H(t), %(t)]mn. (2.32)

From the quantum theory of damping, we assume an isolated system that exchanges energy
with a reservoir until it reaches an equilibrium state %EQmn. Since the interaction results in
non-trivial correlations of the wavefunctions that are di�cult to analyze analytically, the
standard procedure is to average the damping e↵ect by introducing a phenomenological

7Since w is a probabilistic distribution, w(s) 2 [0; 1] and
P

s
w(s) = 1.
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damping coe�cient �mn, thus allowing to study of each state n independently. We update
the Liouville equation into

@t%mn(t) = �
i

~ [H(t), %(t)]
mn
� �mn

Ä
%mn(t)� %EQmn

ä
. (2.33)

To solve (2.33) we need to employ the apparatus of time-dependent perturbation theory.
Without dwelling in to the detailed description of the method, we refer to Boyd [8],
Sections 3.3, 3.4.

2.2.2 Density matrix derivation of linear susceptibility �(1)

The link between the macroscopic susceptibility �(1) and microscopic response of the dipole
operator hµi is via the polarization

P̂(!) = N hµ̂(!)i ⇡ "0�(1)(!)Ê, (2.34)

where N is the number density.

The expectation value of the dipole operator µ is obtained in the first-order approximation
as the following trace

hµi = Tr
Ä
%
(1)(t)µ

ä
=
X

mn

%
(1)
mn(t)µmn, (2.35)

where µmn = hum|µ |uni. The explicit form of the first-order expansion term %
(1)
mn(t),

employing the Fourier expansion of E(t), reads [8]

%
(1)
mn(t) =

%
(0)
nn � %(0)mm

~
X

!

µmn ·E(!)ei!t

(!mn + !) + i�mn

, (2.36)

where !mn = (Em � En)/~ is the Bohr transition frequency.

The first order susceptibility �(1) is then inferred from the Relation (2.34), assuming the
initial population is fully in the ground state, as [8]

�
(1)(!) =

N
3"0~

X

m

|µmg|2!mg

2

!2
mg � !2 � 2i�mg!

. (2.37)

The Equation (2.37) is usually simplified by defining the quantity called oscillator strength8

fmg

fmg =
2me!mg|µmg|2

3~e2 (2.38)

and it assigns a probabilistic weight to a particular transition from state m to the ground
state g. The oscillator strengths are tabulated and, for example of argon, we can refer
to [9]. Incorporating oscillator strengths, this enables to rewrite �(1) in its most compact
form as follows:

�
(1)(!) = !

2
p

X

m

fmg

1

!2
mg � !2 � 2i�mg!

, (2.39)

where !2
p = N e

2

"0me
is the plasma frequency. If we knew precisely the oscillator strengths

and the phenomenological damping coe�cients of the system, the Expression (2.39) would
analytically describe the susceptibility in a wide frequency range – including the resonances
and their damping through the factor 2i�mn! in the denominator. However, we will further
neglect its contribution due to the constraints given by the 1D-TDSE, as will be discussed
in the following subsection.

8It satisfies the following relations:
P

m
fmg = 1, 0  fmg  1.
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2.2.3 Computation of �(1) from the 1D-TDSE

As we saw in the previous section, to derive �(1) we either have to determine the oscillator
strengths and lifetimes of the corresponding transitions, eq. (2.39), or use directly the
expectation value of the dipole. We opt for the latter since the expectation value of
the dipole operator hµi is easily obtained from the numerical 1D-TDSE. The details of
computing hµi are presented in Section 3.1.4, Equation (3.26). We will further refer to
this approach as the dipole model.

We elaborate briefly on the range of applicability of this approach. Firstly, we recall that
the implementation of the numerical 1D-TDSE concerns only the mono-atomic problem in
the SAE approximation frame. This immediately excludes any lifetimes of the states due
to the lack of any cross-correlations between the particles. As a consequence, the dipole
model is unable to correctly describe the resonant behavior of the susceptibilities. We infer
the range of applicability experimentally by computing the dipoles using the 1D-TDSE
for various frequencies of the electric field and analyzing the dispersion curves.

Taking the aforementioned assumptions into account, using �mg ⇡ 0 and ! ⌧ !mg, i.e.
the range far from the resonances, we simplify the Expression (2.39) accordingly

�
(1)(!) ⇡

X

m

fmg!
2
p

!2
mg

1

1� !2/!2
mg

. (2.40)

We apply the Taylor expansion of the expression 1/(1� x) on (2.40) and we obtain:

�
(1)(!) ⇡

X

m

fmg!
2
p

!2
mg

Ç
1 +

!
2

!2
mg

+
!
4

!4
mg

+ . . .

å
=: A+B!

2 + C!
4 + . . . , (2.41)

where the expansion coe�cients A,B,C encapsulate the oscillator strengths and transition
frequencies. Formula (2.41) resembles closely the well-known empirical Cauchy’s trans-
mission equation9. This expression is particularly useful for determining an interpolation
polynomial and for checking the validity of the numerical data.

In the simplest 1D case, we compute numerically hµi for a linearly polarised field E with
a central frequency !0 from the 1D-TDSE and we derive �(1)(!0) from formula (2.34) as
follows:

�
(1)(!0) =

N hµ(!0)i
"0E(!0)

. (2.42)

Remark that formula (2.42) is generally complex: �(1)(!) = Re[�(1)] + iIm[�(1)]. The real
part relates to the linear refractive index while the imaginary part relates to the medium
absorption.

We will proceed with the analysis of the numerical data obtained through expression (2.42)
for di↵erent cases. Because susceptibility is a density-dependent quantity, we will analyze
density-independent quantity �(!) = hµ(!)i

"0E(!) instead
10.

9Cauchy’s transmission equation relates the refractive index n with reciprocal even powers of wave-
length � and the general form is

n(�) = A+
B

�2
+

C

�4
+ . . . .

It is extended by the Sellmeier equation [68].
10Consequently the unit of � is mol�1.
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Dispersion of �(1) for varying pulse length

We start with the low-intensity regime (I = 1010 W/cm2) with 5 and 10-cycle pulses
(FWHM in intensity) and plot real and imaginary parts of �(1) for the harmonic range
H 2 (0.2, 10) of frequency !0 corresponding to �0 = 800 nm. Each simulation took a pulse
E with a central frequency ! from the harmonic range and the quantity hµ(!)i was
obtained from the 1D-TDSE. The execution time of 1D-TDSE was in order of 102 seconds
and we started with the equidistant spacing of 200 fundamental frequency samples for
both pulse lengths. The results are plotted in Figure 2.1.

The two cases di↵er significantly in the region of the first resonance11 at harmonic order
H = 5.7 (Im[�(1)] 6= 0), see Figure 2.1. We notice an increase of amplitude for the longer
pulse. This outcome is expected given the fact that the 1D-TDSE does not take into
account the lifetimes of states. With the increasing pulse lengths, the amplitude in the
resonance would e↵ectively diverge due to the absence of spontaneous damping. We also
notice a second strong resonance for H = 8.6 between the ground and 4th excited state.

We can conclude from Figure 2.1 that the applicability region of the chi formula (2.42)
should lie below H = 4 where none of the resonances in �(1) occur.

Figure 2.1: Dispersion of real and imaginary parts of �(1) for harmonic orders H of !0 (�0 = 800 nm)
in range (0.2, 10)!0, 5 cycle pulse (full line) and 10 cycle pulse (dashed line).

11This is the resonance between the ground state and the first excited state. See Figure A.2 in Ap-
pendix A with the wavefunctions and their corresponding energies.

33



Kramers-Kronig relations

In this context, it is interesting to briefly discuss the validity of the Kramers-Kronig
relations. These relations, fundamental to linear optics, state that for a real, analytical
quantity �(1) there is a direct relation between the real and imaginary part of its Fourier
transform. We should be able to extract Re[�(1)(!)] from Im[�(1)(!)] and vice versa by
evaluating the following principal value integrals [8]:

Re[�(1)(!)] =
1

⇡
P
Z +1

�1
d!0 Im[�

(1)(!0)]

!0 � ! = �H
Ä
Im[�(1)]

ä
, (2.43)

Im[�(1)(!)] = � 1

⇡
P
Z +1

�1
d!0Re[�

(1)(!0)]

!0 � ! = H

Ä
Re[�(1)]

ä
, (2.44)

where

H (u(!)) =
1

⇡
P
Z +1

�1
d!0 u(!

0)

! � !0 (2.45)

is an integral transform called Hilbert transform.

We employed the Python library SciPy [69] and its implementation of Hilbert transform
to check the validity of the Kramers-Kronig relations. The results for a 5-cycle pulse are
depicted in Figure 2.2. The trends of Re[�(1)] and (�1)H

Ä
Im[�(1)]

ä
, respectively Im[�(1)]

andH
Ä
Re[�(1)]

ä
agree reasonably well in the resonance region H 2 (5, 7). The discrepancy

between the two is attributed to the evaluation of the Hilbert transform only on a non-
negative, finite interval of frequencies. However, the rough demonstration of the Kramers-
Kronig relations indicates the validity of the proposed approach of �(1) computation.

Figure 2.2: Validity of the Kramers-Kronig relations. On display the �(1) dispersion, corresponding
to a 5 cycle pulse, for harmonic orders of !0 (�0 = 800 nm) in range (0.2, 10).
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Polynomial fit of �(1)

We will now focus on a polynomial interpolation of �(1) from the numerical 1D-TDSE
data. The number of cycles Nc was initially set to 5 cycles FWHM at low intensity
I = 1010 W/cm2. The central frequency of the pulse ranged between (0.5 , 4.5 )!0 and we
performed computation for 50 frequency samples given by the Chebyshev distribution for
optimal interpolation12. Next, we interpolated the data points by a 6th-degree polynomial
using the least squares method and plotted the result for range13 (0, 3.5 )!0 in Figure 2.3.
We restricted ourselves for an interval below 3.5!0 since we neglected any non-linear
e↵ects above the third harmonic harmonic generation.

The result of the polynomial fit for Nc = 5, rounded to the first two significant decimal
points, is as follows:

�
(1)(!) = 110.45 + 0.067

Å
!

!0

ã
+ 3.34

Å
!

!0

ã2
� 0.039

Å
!

!0

ã3
+

+ 0.055

Å
!

!0

ã4
+ 0.0039

Å
!

!0

ã5
+ 0.011

Å
!

!0

ã6
(2.46)

with coe�cient of determination R2 .
= 0.9909. Coe�cients were normalized to the fre-

quency !0 corresponding to �0 = 800 nm. While the expansion (2.46) contains also odd
frequency powers, in contrast with the expected theoretical expansion (2.41), plotting only
the even powers of the fit (2.46) overlays the full fit well.

The question remains how the fit behaves with increasing number of cycles Nc at FWHM,
i.e. pulse length, of the driving field. We assume the same frequency sampling as for the
5-cycle pulse and simulate for Nc = 10 and Nc = 20. In Figure 2.3 we notice a downward
shift of the �(1) fit, however the fits for Nc = 10 (red curve) and Nc = 20 (violet dashed
curve) sit almost on each other with almost the same R2 .

= 0.9984. It is expected14 that
with increasing number of cycles the �(1) fit coe�cients reach the value independent of
pulse length. The remaining fitting error might be caused by insu�cient sampling of the
fundamental frequency, but for Nc < 10 the coe�cients are still pulse length-dependent.

Finally, we compare the numerical results obtained from the 1D-TDSE with the analytical
fit of �(1) for argon at room pressure and temperature by Dalgarno et al. [70]. The model
is based on the non-resonant expansion of the equation for �(1) with oscillator strengths,
Eq. (2.39). It combines the expansion with constants retrieved from the experimental
measurements of argon. Because the model employs full 3D geometry, it is not directly
comparable to our usage of 1D-TDSE15, but it is left here for reference. Overall, we see
that the 1D-TDSE results have stronger dispersion compared to the Dalgarno model. If
we plug the susceptibilities into the formula for refractive index n ⇡ 1+N�

(1)
/2 assuming

atomic density at room temperature and pressure N .
= 3.6 · 10�6 a.u., for argon we obtain

at � = 800 nm the index n
.
= 1.000204 which is not far from the experimental value

n = 1.000265 [71] and the Dalgarno fit retrieved value n = 1.000257.

12The Chebyshev nodes for N data points for an arbitrary range (a, b) are given according to the
formula: xk = 1

2 (a+ b) + 1
2 (b� a) cos

�
2k�1
2n ⇡

�
, k = 1 ,..., N .

13Remark that Re[�(1)] is an odd function and thus can be applied on negative frequencies.
14The susceptibility formula for �(1), Eq. (2.39), assumes monochromatic waves, i.e. infinite pulse.

By extending the pulse length in the 1D-TDSE, we asymptotically approach closer to the exact value.
However, there is still some margin of error since we don’t account for the resonances in the 1D-TDSE.
15The 1D-TDSE populates the excited states at di↵erent rates compared to the 3D-TDSE and the

potentials are modeled di↵erently in 1D and 3D. These are some of the key factors for the discrepancy.
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Figure 2.3: Least squares fit of �(1) (orange curve) from the numerical data (blue cross) for the
harmonic range (0, 3.5) of a 5-cycle FWHM field. The fit is overlayed by polynomial fit of �(1)

keeping only the even powers (green dashed curve). Next, polynomial �(1) fits for Nc = 10 (red
curve) and Nc = 20 (violet dashed curve) are displayed. Finally, the �(1) fit computed using the
Dalgarno et al. [70] model is plotted (brown curve).

In the rest of the thesis, we will employ the fit of �(1)(!) for the 5-cycle pulse, Eq. (2.46),
because simulating for longer pulses is very time-consuming from the 1D-TDSE standpoint.
Since we want to acquire a lot of data for training the neural network in a reasonable
time frame and tailor its inputs to be as small as possible, 5-cycle pulses are su�cient.
In addition to the reasonable R2 coe�cient, we may consider the polynomial fit (2.46)
adequate for the implementation to the Maxwell solver. The 5-cycle pulses were also used
to retrieve the �(3) coe�cients from the 1D-TDSE.

2.2.4 Computation of �(3) from the 1D-TDSE

Extraction of �(3) gives us a way to quantify the Kerr e↵ect and third harmonic generation
in the ad-hoc model. We could follow a similar procedure proposed in Subsection 2.2.2 by
including higher-order terms of %(t) expansion in the evaluation of the expectation value
of hµi. However, the final expression contains a product of 4 matrix elements of µ and
summation over 3 indices and can be found for example in Boyd, Section 3.7 [8]. Instead,
we realize that we can expand susceptibility, assuming instantaneous response, as

�(!, I) = �
(1)(!) + �

(3)(!) · I. (2.47)

If we treat � as a linear function of intensity, we can extract �(3)(!) by computing the
quantity

�(!, I) =
hµi

"0E(!, I)
(2.48)

for various frequencies at di↵erent intensities until the threshold where the expansion
still makes physical sense. To draw the line for the threshold intensity, we once again
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selected a 5-cycle (FWHM) 800 nm pulse of di↵erent peak intensities ranging from 1010 -
1014 W/cm2. The intensity samples are again given by the Chebyshev nodes distribution.
We fitted the data, computed with Eq. (2.48), using a first-degree polynomial in peak
intensity I, Eq. (2.47), and the result is depicted in Figure 2.4. For better representation,
the data is plotted in a log scale on the intensity axis.

The fit and the numerical � values are plotted alongside the populations of the bound states
and continuum after the pulse propagation to determine the ionization regime threshold.
It is reasonable to draw the line for the ad-hoc regime below the intensity 1013 W/cm2

as the depopulation of the ground state and the population of the other excited states
(n > 1) rises exponentially with increasing intensity after this threshold. As seen from
Figure 2.4, the population of the continuum comes mostly at the expense of the depletion
of the ground state. We notice that around I = 3 · 1013 W/cm2 the perturbation regime
crumbles as the � curve (blue curve) is no longer linearly dependent on intensity (red
dotted curve), hinting HOKE terms involvement. This observation is in line with results
from the literature [64]. Therefore, we can set the intensity 1013 W/cm2 as the threshold
for the �(3) computation. The ionized fraction computed at the end of the pulse using
the extended ADK model [72, 73, 74], for high-intensity fields including tunneling, is
plotted for reference in Figure 2.4 (orange curve). The details of the continuum population
computation and models of ionization are discussed in Appendix A.

Ad-hoc region

Figure 2.4: On the primary axis we see a linear fit of �(!0) (red curve) as a function of intensity
(log-scale) at the fundamental frequency !0 from the numerical �(!0) data (blue curve). The
secondary axis shows the ground state depletion (n = 1 depletion curve) and population of the first
four excited states (n > 1 curves) at the end of the pulse propagation. The continuum population
draws the line of the ionization regime in which it is meaningless to assume perturbation expansion.
The region left to the red dashed vertical line denotes the region where the ad-hoc description is
still meaningful. The ADK rate is plotted for reference (orange curve).

Finally, a set of 1D-TDSEs for 30 intensity samples in range (1010, 1013) W/cm2 and 51
frequency samples in range (0.5, 4.5)!0 was computed, totalling 1530 1D-TDSE computa-
tions. For each frequency ! in the range, the value of �(3) was extracted according to the
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expected fit (2.47). We again restricted ourselves on range (0, 3.5)!0 for the interpolation.
The resulting plot is depicted in Figure 2.5 where the interpolated datapoints (blue cross)
are fitted using a 14th-degree polynomial in ! with R2 = 0.9624.

Looking closely at Figure 2.5, we notice significant oscillations centered around ! ⇡ 1.9!0

and ! ⇡ 2.9!0 (blue dashed curve) which are smeared out by the fit. We presume
these resonance-like oscillations are caused by the non-linear process of three-wave mixing.
Three waves of ! ⇡ 1.9!0 and ! ⇡ 2.9!0 sum into resonance frequencies ! ⇡ 5.7!0 and
! ⇡ 8.6!0, see Figure 2.1.

We sanity-check the results by plugging the numbers into Equation (2.5). For argon with
atomic density at room temperature and pressure (N .

= 3.6 · 10�6 a.u.), the 3rd order
susceptibility for 800 nm field is �(3) .

= 3.5812 · 10�26 m2/V2. All in all, the �(3) fit is the
final piece in the puzzle of assembling the multi-scale model. The practical implementation
of the multi-scale model incorporating the susceptibilities follows in the next chapter.

Figure 2.5: Least squares fit of �(3) (orange curve) from the numerical data (blue cross) for the
harmonic range (0, 3.5). The blue dashed line interconnects the data points for a clearer discrepancy
between the datapoints and fit.
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Chapter 3

Implementation of the multi-scale
model

We first discuss the numerical methods employed within each part of the multiscale model
separately – microscopic, governed by 1D-TDSE, and macroscopic Maxwell solver, guided
by the unidirectional pulse propagation equation (UPPE) in the co-moving frame, defined
in Subsection 2.1.2. Second, we define exactly the ad-hoc and ab-initio models source
terms that will be the subjects for further comparison.

3.1 1D-TDSE

The numerical aspects of the 1D-TDSE are discussed in detail in this section. The scope
of the problem is the following:

(i) Find a solution for the eigenproblem of an electron in an e↵ective potential, i.e.
solving the time-independent Schrödinger equation (TISE):

H0 0 = E0 0. (3.1)

(ii) Time propagation of the initial wavefunction according to an external electric field
encapsulated in the time-dependent interaction potential VI(t) using TDSE:

i@t (t) = (H0 + VI(t)) (t) (3.2)

with the initial condition  (t = 0) =  0.

(iii) Computation of expectation values of gauge-invariant observables A at each time
step:

hA(t)i = h (t)|A | (t)i (3.3)

We will examine the steps in greater detail later but it is first necessary to establish the
representation of the wavefunction and operators for the employment of numerical meth-
ods. There exist numerous ways how to solve the TDSE and represent the wavefunctions.
We can split them into two families: spectral and grid methods.

Spectral methods take a suitable basis of smooth orthonormal functions {'i}i2N 2H (R),
where H (R) is the Hilbert space, and the solution of the TDSE breaks down to finding
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time-dependent coe�cients of the corresponding basis functions [75]. The basis is usually
composed of eigenstates of the field-free Hamiltonian, Gaussian functions or any other
suitable smooth functions. It is generally challenging to evaluate the matrix elements of
Hamiltonian. However, we do not need as many eigenfunctions for the convergence using
the spectral method.

The second family is more versatile and straightforward and that is the grid method. Grid
methods heavily rely on the spatio-temporal discretization of wavefunction and operators.
The advantage is then an intuitive understanding of the numerical TDSE solution, the
disadvantage is the requirement for a higher number of discretization points for conver-
gence1.

Throughout the thesis, we use the simplest one-dimensional grid method for solving the
1D-TDSE. Concrete implementation of the method is presented in the following subsec-
tions.

3.1.1 Wavefunction and operators representation – grid method

We propose the following discretizations for the 1D-TDSE represented on the grid:

• Spatial grid:
Symmetric grid centred around 0, xi = i · dx, i 2 {�N , . . . ,N}. A symmetric grid
is important to resolve the parity of the wavefunction and hermiticity of operators.

• Dot product:
The dot product h•|•i over the bounded discretized Hilbert spaceH ((�N · dx,N · dx))
is defined for a, b 2H ((�N · dx,N · dx)) as

ha|bi = (a⇤)T · b =
X

i

a
⇤
i · bi. (3.4)

• Wavefunction:
The wavefunction  2 H ((�N · dx,N · dx)) is discretized on every point of the
spatial grid, we denote  i ⌘  (xi), i 2 {�N , . . . ,N}. We impose the Dirichlet
boundary condition2  �N =  N ⌘ 0.

• Derivatives:
The hermiticity of the momentum operator p = �i@x must be satisfied. For a
constant step size dx we can define the finite di↵erence discretization of the operator
using the central di↵erence as follows:

p i = �i
 i+1 �  i�1

2dx
+ o(dx2). (3.5)

1A notable mention is the discrete variable representation (DVR) method [76] which represents the
wavefunction on the spatial grid in terms of a set of local smooth basis functions while keeping the operators
on the grid. DVR in this sense closely resembles the finite element method [10]. The basis functions on
each subinterval of the grid are defined for easy evaluation of the grid operators. DVR requires much
less computational grid points while maintaining a high level of accuracy and the operators can still be
represented as sparse matrices.

2The requirement from quantum mechanics is that the wavefunction asymptotically  ±1��! 0. The
caveat regarding the numerical implementation is discussed in greater detail later in the subsection.
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We can rewrite the derivative operator in matrix representation as

p = � i

2dx

0

BBBBBB@

0 1 0 . . . 0
�1 0 1

0 �1 0
. . .

...
. . . . . . 1

0 �1 0

1

CCCCCCA
(3.6)

We can see that by transposing and complex conjugating the operator matrix (3.6)
the hermiticity of the derivative operator, i.e. p = p

†, is thus satisfied3. The sym-
metric second derivative operator p2 = �@2x is analogical:

p
2 =

1

dx2

0

BBBBBB@

2 �1 0 . . . 0
�1 2 �1

0 �1 2
. . .

...
. . . . . . �1

0 �1 2

1

CCCCCCA
+ o(dx2) =: �� (3.7)

• Potential:
The problem with an exact Coulomb potential for centrosymmetric atoms VC = �1

r

is the non-integrable pole in 1D for r = 0. To overcome this issue, the e↵ective soft
core potential Ve↵ is introduced as:

Ve↵ = �
1p

x2 + a2
, (3.8)

where a is an atomic parameter which sets the ionization potential of the atom4.
The values of a for various rare gases may be found in [112], Tab. 7.1. For a more
elaborate analysis of suitability and generalization of soft-core potentials refer to [77].
The potential is represented as a diagonal matrix in the grid approach:

Ve↵ = diag (V�N ,V�N+1, . . . ,VN ) , Vi ⌘ Ve↵(xi). (3.9)

The finite di↵erences are by definition 2nd order accurate, however, the accuracy of the
second derivative can be increased using the Numerov method. For an ODE

d2y
dx2

= f(x, y) =: �y (3.10)

the Numerov method gives 6th order accurate finite di↵erence discretization

yi+1 � 2yi + yi�1 =
dx

2

12
(fi+1 + 10fi + fi�1) + o(dx6). (3.11)

Analogically to the di↵erential operators, we can define the matrix representation of the
Numerov matrix

M2 =
1

12

0

BBBBBB@

10 1 0 . . . 0
1 10 1

0 1 10
. . .

...
. . . . . . 1

0 1 10

1

CCCCCCA
. (3.12)

3Remark that we need to also include the boundary condition to fulfill hermiticity for the definition of
the operator p on a finite interval, see Example 4.2.5 in [11].

4The value of a for argon is a = 1.1893, Tab. 7.1 [112].
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The accuracy of the central di↵erence second derivative �, Eq. (3.7), can be improved by
4 orders and the improved Numerov 2nd derivative �N is:

�N := M
�1
2 � (3.13)

In total, we can write TISE in discretized, 6th-order accurate matrix representation as
follows:

H0 =

Å
�1

2
M

�1
2 �+ Ve↵

ã
 = E . (3.14)

We notice that all the aforementioned matrix operators are hermitian (symmetric) and
tridiagonal5. The tridiagonal system of algebraic equations can be computed using the
Thomas algorithm and this feature is exploited throughout the computation.

Remark that the boundary  0 ⌘  N = 0. This e↵ectively implies a reflective boundary6

condition which, if the grid size is insu�cient, can disrupt the wavefunction propagation.
However, the design of the absorber for the grid method is a di�cult problem on its
own and simple exponential damping also causes reflections. One notable example is the
exterior complex scaling, see [78]. We do not use any absorber for the 1D-TDSE in the
scope of this thesis.

3.1.2 Eigenproblem

The first step is to obtain the ground state (GS) wavefunction and energy from the TISE.
An iterative method is used based on the following resolvent operator [11]:

R = (E �H0)
�1, (3.15)

We set an initial guess for energy E and wavefunction  and apply the resolvent iteratively
until the convergence criteria are met. This approach is significantly faster than doing the
full diagonalization of the Hamiltonian H0. The computation of the ground state  0 and
initial energy E0 is summarized in Algorithm 1. The initial values for GS wavefunction
are  i ⌘ 1, 8i, and E0 is set closest to the desired corresponding ground state energy,
usually7 E0 ⌘ �1 a.u. Remark that while the resolvent method converges fast towards
the eigenstate, it is only capable of finding a single GS wavefunction  0 and energy E0 at
the time. We set parameter � = 10�15 which gave reasonable convergence for our purposes.
The ground state and excited states computed using the resolvent iterative method are
depicted in Figure A.2 in Appendix A.

3.1.3 Time propagation

The time evolution of the ground state wavefunction  0 is governed by a unitary evolution
operator U(t0, t) such that  (t) = U(t0, t) 0 where  (t) is the exact solution to the TDSE.

5We can expand the system of equations (3.14) by the Numerov matrix M2 to obtain:
Å
�1
2
�+M2Ve↵

ã
 = EM2 

which becomes a tridiagonal system.
6Physically the e↵ect of a finite box translates to V (|x| > xmax) ! +1.
7The goal is to iteratively find the GS given the spatial discretization. The energy values are well

known, see Tab. 7.1 [112], and for argon, the ground state energy is E0 = �0.5792 a.u. .
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Algorithm 1 Ground state search using resolvent
E  Eguess

   guess

while |Eold � E| > � do
Eold  E

Projection:  0  R 

Normalize:    
0

|| 0||

Eigenenergy: E  h |H0| i
|| ||2

end while

A formal solution of the TDSE for the operator U(t, t0) with time-dependent Hamiltonian
H(t) is

U(t, t0) = P exp

Å
�i
Z

t

t0

H(t0)dt0
ã
= P exp

Å
�i
Z

t

t0

(H0 + VI(t
0))dt0

ã
, (3.16)

Where P refers to the path-ordering operator8. Assuming a small temporal evolution step
dt and incremental evolution U(t, t+ dt), we can approximate the formal solution by9

U(t, t+ dt) = exp

Ç
�i
Z

t+dt

t

H(t0)dt0
å
⇡ exp (�i(H0 + VI)dt) . (3.17)

The next approximation revolves around splitting the exponential operator (3.17). The
Baker-Hausdor↵ formula for exponential operators states that for operators A,B the fol-
lowing expansion applies [6]:

e
A
e
B = e

A+B+ 1
2 [A,B]+.... (3.18)

Since H0 and VI are generally non-commuting operators, applying Baker-Hausdor↵ for-
mula on (3.17) yields

U(t, t+ dt) = exp (�iH0dt) exp (�iVIdt) exp

Å
i

2
[H0,VI ]dt

2 + . . .

ã
. (3.19)

For a very small dt we neglect the commutator term exp
�
i

2 [H0,VI ]dt2 + . . .
�
⇡ 1 and

perform operator splitting

U(t, t+ dt) ⇡ exp (�iH0dt) exp (�iVIdt) =: U0(t, t+ dt) · UI(t, t+ dt). (3.20)

Operators U0(t, t+ dt) and UI(t, t+ dt) are treated separately.

8Due to non-commutativity of the time-dependent Hamiltonian, a so-called ordered exponential is
defined and can be written in terms of an infinite sum

P exp

ÇZ
t

t0

H(t0)dt0
å

=
1X

n=0

Z
t

t0

. . .

Z
t

t0

H(t01) . . . H(t0n)dt
0
1 . . . dt

0
n.

For infinitesimally small time evolution step dt the path-ordering operator is converted into the product
of individual exponential operators, as discussed further.

9We employ a composition property of the evolution operator

U(t2, t0) = U(t2, t1)U(t1, t0) , t2 > t1 > t0

so that we can simply discretize the evolution of U(t, t0).
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Operator U0(t, t+ dt) is treated using the Crank-Nicolson method. Crank-Nicolson (CN)
is an unconditionally stable, second-order numerical scheme based on averaging explicit
and implicit Euler methods for ODEs. For TDSE i ̇ = H0 the CN scheme, denoting
 (t) ⌘  n and  (t+ dt) ⌘  n+1, is the following:

i
 
n+1 �  n

dt
=

1

2

�
H0 

n+1 +H0 
n
�
. (3.21)

Rearranging scheme (3.21) by explicitly expressing  n+1 gives10

 
n+1 =

Å
1 +

i

2
H0dt

ã�1 Å
1� i

2
H0dt

ã
 
n (3.22)

where we identify unitary operator11 U0 as

U0(t, t+ dt) =

Å
1 +

i

2
H0dt

ã�1 Å
1� i

2
H0dt

ã
=: Un+1

0 . (3.23)

The discretization ofH0 within U0 is according to (3.14) and the inverse matrix
�
1 + i

2H0dt
��1

is computed using Thomas algorithm.

For the length gauge Hamiltonian the application of the interaction term UI is straight-
forward since

VI(t) = x · E(t) , UI(t, t+ dt) = exp (�iVI(t)dt) =: Un+1
I

(3.24)

which essentially results in a multiplication by the complex exponential function.

The wavefunction  in step n is propagated in time to the next step n+ 1 as

 
n+1 = U

n+1
I

· Un+1
0 ·  n. (3.25)

In total, the propagation scheme (3.25) is order o(dx6, dt2) accurate12.

3.1.4 Expectation values

We can directly compute the expectation value of operators13 x and rV using the wave-
function  at time t as

hx(t)i = h (t)|x| (t)i =
X

i

| i(t)|2xi, (3.26)

hrV (t)i = h (t)|rV | (t)i =
X

i

| i(t)|2rVi (3.27)

10Remark that we can expand the numerator and denominator of the equation by the Numerov matrix
M2 to skip the computation of inverse M�1

2 as written in the unperturbed Hamiltonian in Eq. (3.14). See
the exact implementation in [112], Eq. (7.39).
11It can be shown directly that operator U0 is indeed unitary, i.e. U†

0U0 = 1.
12We increase the temporal accuracy by an order of magnitude by using a Trotter formula

e
�(A+B) = lim

m!
(e�A/m

e
�B/m)m

to split the operator (3.17) symmetrically as

e
�iVIdt/2e

�iH0dt
e
�iVIdt/2.

During the temporal evolution, the operators e�iVIdt/2 get multiplied from the application of the split
operator in the previous step, so the Trotter formula in scheme (3.25) is hidden in the propagation of the
wavefunction.
13The dipole operator µ used in the previous chapter is defined as µ = �x so the sign is simply flipped.

44



where
rVi =

xi

(x2
i
+ a2)3/2

. (3.28)

The population of the ground state, respectively the ground state depletion, is defined,
given the initial ground state  0, as the following dot product14

|h 0| (t)i|2 =
�����
X

i

 0,i 
⇤
i (t)

�����

2

. (3.29)

For the length gauge Hamiltonian, the gauge independent source terms are:

@t hjiL = �hẍi , . . .Length form (3.30)

@t hjiL = �hṗi , . . .Velocity form (3.31)

@t hjiL = hrV i+ E , . . .Acceleration form, (3.32)

where E is the electric field. Remark that in practice we compute hxi and hrV i and the
derivatives are added in the frequency domain by multiplication of the source term with
�i!. The velocity form (3.31) is unsuitable as a source term due to the evaluation of the
momentum operator hpi = h |� ir| i numerically.

3.2 Maxwell solver – UPPE

First, we recall the UPPE in the co-moving frame to be solved for both ad-hoc and ab-initio
models (Eq. (2.26)):

@zÊ = i
!

2"0c

Ä
F̂ � "0�(1)

0 Ê

ä
, (3.33)

where Ê is the propagated electric field, �(1)
0 is linear susceptibility at � = 800nm, obtained

from the susceptibility computation discussed in Section 2.2.3, and F̂ is the source term
that di↵ers for ad-hoc and ab-initio. Remark that all the quantities used are converted to
atomic units to keep the same units across the macroscopic and microscopic solvers.

3.2.1 Propagation equations

Because the UPPE (3.33) is in the frequency domain, we e↵ectively solve the following
ODE for all frequency components ! independently as:

@zÊ(z;!) = f

Ä
z, Ê;!

ä
, (3.34)

f

Ä
z, Ê;!

ä
= i

!

2"0c

Ä
F̂

Ä
z, Ê;!

ä
� "0�(1)

0 Ê (z;!)
ä
. (3.35)

We grabbed the 4th order Runge-Kutta (RK4) to solve ODE (3.34). The explicit RK4 for
a step size dz is given by15:

Ê(z + dz) = Ê(z) +
dz

6
(k1 + 2k2 + 2k3 + k4) + o(dz5) (3.36)

14This quantity is not gauge-invariant. A proper spectral way to interpret it as the depletion of the
ground state in the length gauge is shown in [79].
15
Ê and F̂ are automatically assumed as !-dependent.
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where

k1 = f

Ä
z, Ê(z)

ä
, (3.37)

k2 = f

Å
z + dz/2, Ê(z) + dz · k1

2

ã
, (3.38)

k3 = f

Å
z + dz/2, Ê(z) + dz · k2

2

ã
, (3.39)

k4 = f

Ä
z + dz, Ê(z) + dz · k3

ä
. (3.40)

To summarize, we are solving an initial value problem of a laser pulse Ê0 = Ê(z = 0,!)
propagating through a gas to distance z = L and the goal is to obtain Ê(z = L,!) using
the RK4 scheme. At each Runge-Kutta step, the most expensive part is the evaluation
of f , respectively the source term F̂ . Once Ê is computed for every !, the field must be
first converted into the temporal domain at every intermediate step to evaluate F and
then back into the spectral domain to be used in the next step. The pseudocode scheme is
written in Algorithm 2. We notice that forward and inverse fast Fourier transform (FFT
and IFFT) is computed 8 times and source term F is computed 4 times per dz. The
Algorithm 2 was fully implemented in C programming language and FFTW3 library [80]
for computing fast Fourier transforms was used.

3.2.2 Source terms

We can finally implement the ad-hoc and ab-initio models source terms. We recall the
wave equation for electric field with sources (2.6):

�E � 1

c2
@
2
tE =

1

"0c
2
@
2
t F . (3.41)

The only di↵erence between the models is now the source term F . The source term of ad-
hoc Fad-hoc implements the medium response through material constants (susceptibilities
�
(1),�(3)) and response functions (polarisation P (t)) whereas the ab-initio source term

Fab-initio is computed via complementary 1D-TDSE solver. Remark that the spatial grid
for the 1D-TDSE, on which we compute the evolution of the wavefunction, is di↵erent
from the grid on which we propagate the electric field.

After identifying the source term F , the pivotal equation is the UPPE in co-moving
frame (2.26):

@zÊ = i
!

2"0c

Ä
F̂ � "0�(1)

0 Ê

ä
. (3.42)

Linear susceptibility has the same numerical value for both models: �(1)
0 = N�

(1)(!0)
where N is the medium density and �(1)(!0) is obtained from the polynomial fit (2.46) at
5 cycles of the field.

Ab-initio model

The ab-initio source term enters the wave equation (3.41) in terms of the averaged micro-
scopic fields in a volume (Eq. (2.9)) as

Fab-initio := N · "0Emicro (3.43)
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Algorithm 2 Maxwell solver

E  E(z = 0)
FFT: Ê  F [E]
while z  L do
/*** First step ***/

Evaluate: F (z,E)
FFT: F̂  F [F (E)]
k1  f(F̂ , Ê)
Êk1  Ê + dz · k1

2

IFFT: Ek1  F
�1
î
Êk1

ó

/*** Second step ***/

Evaluate: F (z + dz/2,Ek1)
FFT: F̂  F [F (Ek1)]
k2  f(F̂ , Êk1)
Êk2  Ê + dz · k2

2

IFFT: Ek2  F
�1
î
Êk2

ó

/*** Third step ***/

Evaluate: F (z + dz/2,Ek2)
FFT: F̂  F [F (Ek2)]
k3  f(F̂ , Êk2)
Êk3  Ê + dz · k3
IFFT: Ek3  F

�1
î
Êk3

ó

/*** Final step ***/

Evaluate: F (z + dz,Ek3)
FFT: F̂  F [F (Ek3)]
k4  f(F̂ , Êk3)
Ê  Ê + dz

6 (k1 + 2k2 + 2k3 + k4)

IFFT: E  F
�1
î
Ê

ó

Step: z = z + dz

end while

The microscopic field Emicro is expressed in terms of the averaged current hji in the
frequency domain as (recalling Eq. (1.28))

Êmicro = �
i

!"0
h|̂i . (3.44)

Combining Eqs. (3.43) and (3.44) yields the UPPE in co-moving frame (3.42) for the
ab-initio model:

@zÊ = i
!

2"0c

Å
i

!
N h|̂i � "0�(1)

0 Ê

ã
. (3.45)

We recall Êmicro can be written in 3 equivalent forms – length, velocity and acceleration,
see Section 1.2. For length and acceleration forms, the current reads:

h|̂i = i!"0Êmicro = i!”hxi| {z }
Length form

= i
1

!

¤�hrVe↵ + Ei
| {z }
Acceleration form

(3.46)
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Plugging h|̂i from (3.46) into (3.45) yields the final UPPE for the ab-initio model:

@zÊ = i
!

2"0c

Å
1

!2
N ¤�h�rVe↵ � Ei � "0�(1)

0 Ê

ã
. . .Acceleration form, (3.47)

@zÊ = i
!

2"0c

⇣
N’h�xi � "0�(1)

0 Ê

⌘
. . .Length form, (3.48)

where we identify F̂ab-initio according to the Algorithm 2 as

F̂ab-initio(E) =
1

!2
N ¤�h�rVe↵ � Ei = N’h�xi (3.49)

in the acceleration and length forms respectively where hrVe↵i and hxi are observables
computed using the 1D-TDSE for the field E.

Ad-hoc model

We start from the same point with the derivation of the ad-hoc model by identifying
F̂ad-hoc according to nonlinear optics as follows:

F̂ad-hoc(E) = P̂
L(E) + P̂

NL(E) = "0

Ä
�
(1)(!)Ê + �

(3)(!)”E3
ä

(3.50)

where we took into consideration only linear dispersion and 3rd-order nonlinearities (Kerr
and 3HG) since we assume a gas with central inner symmetry.

Let us briefly discuss the modeling of Kerr and 3rd harmonic. In the standard textbook [8]
descriptions of higher order nonlinearities, we assume real uniform waves16 with single fre-
quency component !, i.e. E(t) = Re

⇥
A!e

�i!t
⇤
, where A! is the corresponding amplitude,

generally complex. Picking the 3rd order nonlinearity, it is meaningful to include 3 waves

E(t) = Re
⇥
A!1e

�i!1t +A!2e
�i!2t +A!3e

�i!3t
⇤

(3.51)

interacting through 3-wave mixing as E3(t) yielding in total 28 nonlinear 3rd order e↵ects
such as sum-frequency generation, subharmonic generation and other frequency combina-
tions including 3HG and also Kerr e↵ect. It is impractical to analyze a combination of
more than 3 waves for 3rd-order nonlinearities. However, for numerical simulations, it is
su�cient to model them by computing the Fourier transform of the field E

3(t), giving
”E3. We then multiply by the corresponding proportionality factor in the Fourier space –
�
(3)(!), which quantifies the Kerr nonlinear refractive index

n2 =
3

8n0
�
(3)(!) (3.52)

and the magnitude of the 3HG as

|A3!| =
1

4
�
(3)(3!)|A!|3. (3.53)

In total, the �(3) factor is split for a single frequency component ! between Kerr and 3HG
schematically as follows17

Re
î
�
(3)”E3

ó
(!) ⇠ �(3)(!)Re

2

664
3

4
|A!|2A!e�i!t

| {z }
Kerr: !�!+!=!

+
1

4
A

3
!/3e

�i!t

| {z }
3HG: !/3+!/3+!/3=!

3

775 . (3.54)

16The electric field in the temporal domain is strictly real quantity.
17For simplicity, we assume only the particular solutions for Kerr and 3HG at single frequency compo-

nent !.
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The shape of Eq. (3.54) is counter-intuitive if we compare it with standard nonlinear
optics where we have a fundamental frequency component ! and observe the nonlinear
phenomena emerging from the fundamental wave (Kerr, 3HG). Here, the modeling of the
nonlinear e↵ects is approached from the other side, i.e. what e↵ects contribute to a single
frequency component ! – Kerr and subharmonic frequency.

Finally plugging the ad-hoc source term Fad-hoc (3.50) into UPPE (3.42) gives the UPPE
for the ad-hoc model

@zÊ = i
!

2c

Ä
(�(1)(!)� �(1)

0 )Ê + �
(3)(!)”E3

ä
(3.55)

It should be stressed that the ad-hoc model proposed in the scope of the thesis, Eq. (3.55),
is not universally applicable for the whole range of laser pulses, see �(1)(!) fit in Figure 2.3,
or for frequencies above H = 3.5. The harmonic threshold is given by the absence of
suitable resonance damping within the 1D-TDSE, see discussion in Subsection 2.2.3. In
the end, the pulse length was fixed in the following examples to 5 cycles FWHM due to
the computational complexity of source term evaluation via 1D-TDSE, as we wanted to
compare the two models. Hence the model will not be used for an exhaustive study of
di↵erent laser parameters but only for di↵erent intensities. The aim is to easily generate
large amounts of numerical data to feed a neural network designed in Chapter 5

3.2.3 Finite box size considerations

A few last issues regarding the finite numerical temporal grid must be addressed. The
FFT introduces several numerical artifacts which, if not treated correctly, may completely
invalidate the result. If we apply FFT on a temporal signal and then perform IFFT, the
last and first bins of the temporal signal F are equal, i.e. F0 ⌘ FN , e↵ectively introducing
the periodic boundary condition. Hence, any forward propagating frequency component
may at some point reach the start of the pulse which has a detrimental e↵ect on the whole
propagation. This is particularly harmful for the ab-initio model where the generation of
the resonant frequencies can produce a positive feedback loop and exponentially increase
the energy of the system. Because the resonant frequencies propagate slower than the
fundamental frequency, they propagate faster within the numerical temporal grid towards
the pulse tail to reappear later in the pulse front. To prevent this, a soft filter is introduced
at the edges of the numerical window, as proposed in [63]. Physically, the temporal
filter introduces a global ad-hoc lifetime of the resonances, indiscriminate of particular
frequencies.

The soft filter is an asymmetric temporal window composed of two error functions damping
the pulse front and tail in the temporal domain by 5 orders of magnitude. The filter along
with an example of a generated source term �hrV i � E for a 5-cycle (FWHM), 800 nm
Gaussian pulse of peak intensity I = 1010 W/cm2, is depicted in Figure 3.1. The filter was
fine-tuned carefully so that the spectrum is a↵ected as little as possible18. Source term
spectra are plotted in Figure 3.2. The filter e↵ectively enhances the source term spectrum
by highlighting the lower intensity features such as 5th and 7th harmonic generation and
resonances located around H ⇡ 5.7 and H ⇡ 8.6. We can notice a slight artifact of the
filter in the close-up in Figure 3.2 for H ⇡ 0.7 and H ⇡ 1.3. All in all, the soft filter
is well suited for its purpose and serves an optimal compromise between stabilizing the

18The temporal filter f interacts with spectrum as a convolution of the Fourier signal F̂ with f̂ as a
consequence of the convolution theorem, see Nomenclature.
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algorithm and retaining key spectral features. The filter was used only on the ab-initio
model because of the inherent problems with resonances.

Figure 3.1: Source term �hrV i �E for a 5-cycle (FWHM) Gaussian pulse with and without the
temporal filter. The temporal filter is plotted alongside the source terms (orange curve)
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Figure 3.2: Spectrum of the source term �hrV i � E for a 5-cycle (FWHM) Gaussian pulse with
and without the temporal filter. The frequency response of the filter is plotted alongside the source
terms (orange curve) and the filtered spectrum is essentially a convolution of the filter with the
unfiltered signal in the spectral domain. A close-up graph of the filtered and unfiltered source
terms around H = 1 is shown at the top of the figure.
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Chapter 4

Results of the multi-scale model

The results from the multi-scale model are presented in this chapter. First, we look at the
direct comparison of the ad-hoc and ab-initio models for low-intensity fields and compare
key features both qualitatively and quantitatively. Next, we discuss the beam propagation
using the ab-initio model for various orders of laser intensity and we examine the spectral
features occurring during the propagation. We conclude with the discussion regarding
performance and extension of the multi-scale model to higher dimensions.

Convergence of the multi-scale Maxwell solver has been checked for all of the following
simulations by halving the propagation step and comparing the result spectra. The spatial
grid resolution for the 1D-TDSE was set to dx = 0.4 a.u. and the size of the grid was
chosen so that the wavefunction had no reflections from the boundary and was near-zero
at the boundary. We used 512 temporal grid points per cycle (1 period ⇡ 2.68 fs) of the
800 nm fundamental wavelength and the box size was set to 10·⌧FWHM where ⌧FWHM is the
FWHM of the Gaussian pulse, w.r.t. intensity. For a 5-cycle FWHM pulse, this translates
to a 134 fs box. The number density of argon was set in all the following examples to1

0.02504 · 1027 m�3 corresponding to the ambient room pressure and temperature.

4.1 Comparison of ad-hoc and ab-initio

4.1.1 Short propagation distance

We compared ad-hoc and ab-initio models for 800 nm 5-cycle (FWHM) pulses at low
peak pulse intensity I = 1010 W/cm2. The pulse was propagated through argon for
distance L .

= 26 µm, resulting in 10 full RK4 iterations of Maxwell solver with step2 size
dz

.
= 2.6µm of distance. The result spectra for low-intensity pulse are shown in Figure 4.1.

1Numerical parameter N .
= 3.6 · 10�6 a.u. .

2Numerical parameter dz = 50000 a.u. .
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To no surprise, we immediately notice richer spectrum structure within the ab-initio model
description, including 5th and 7th harmonic generation (HG), resonances and Rydberg
states3. On the other hand, the ad-hoc model as defined in Section 3.2.2, Eq. (3.55) is
capable of properly describing only the 1st linear and 3rd order nonlinear e↵ects and upto
H = 3.5 due to the �(1) and �(3) fits. Further, the two models quantitatively fit reasonably
well around the 3rd HG (3HG). This is attributed to the fact that we assumed non-constant
susceptibility �(3), see fit in Figure 2.5. We can see the comparison of using dispersion-
less �(3), computed only for fundamental pulse frequency !0, against frequency dependent
�
(3) in Figure 4.2. As we saw in Figure 2.5, the approximate ratio �(3)(3!0) ⇡ 3�(3)(!0)
applies and the factor of 3 distinguishes the 3rd HG between orange (dispersion-free �(3))
and green (�(3)(!)) curves in Figure 4.2. This observation further justifies the usage of the
ad-hoc model and non-constant �(3)(!) interpolation (Subsection 2.2.4). Remark that we
have extrapolated �(3)(! > 3.5!0) ⌘ �(3)(3.5!0) in the ad-hoc results to avoid computing
�
(3)(!) for the resonance frequencies. Linear susceptibility �(1)(!) is extrapolated in the
same fashion.
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Figure 4.1: Comparison of ad-hoc and ab-initio models after the propagation of 800 nm, 5-cycle
(FWHM) beam of intensity I = 1010 W/cm2 in argon. The propagation distance is L .

= 26 µm,
resulting in a total of 10 iterations of the RK4 Maxwell solver. The initial field spectrum is plotted
for reference (blue curve). The dashed box roughly emphasizes the range of applicability of the
ad-hoc model. In the ab-initio spectrum, we notice 5th and 7th HG as well as resonances for the
1st excited state at H = 5.7 (transition 1! 2) and higher excited states (Rydberg states).

3We refer here to Rydberg states as the transitions from n = 1 to n � 4 and the first resonance as
the transition n = 1 and m = 2. We compute the normalized Bohr transition frequencies for the allowed
transitions as the di↵erence of energy of states n,m

H = |En � Em|/!0,

where !0 is the fundamental laser frequency. To determine the allowed transitions, we examine the sym-
metry of the transitions using the transition moment integral in 1D [9]:

Z
 

⇤
nx mdx,

where only the product of odd and even wavefunctions yields a non-zero moment. Thus we see from
Figure A.2 that for n = 1 the allowed transitions are m = 2k, k 2 N.
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Figure 4.2: Comparison of ad-hoc and ab-initio models after a single RK4 Maxwell solver iteration
for 800 nm, 5-cycle (FWHM) beam of intensity I = 1010 W/cm2 in argon. The initial field
spectrum is plotted for reference (blue curve).

4.1.2 Long propagation distance

We compared ad-hoc and ab-initio models for 800 nm 5-cycle (FWHM) pulses of various
intensities – low intensity I = 1010 W/cm2 and intensity below ionisation threshold I =
1013 W/cm2. The pulse was propagated through argon for length L

.
= 2.6 mm, resulting

in 1000 RK4 iterations of Maxwell solver with step size 2.6µm.

Low intensity field

The result electric field spectra for low-intensity pulse are shown in Figure 4.3. The first
thing to notice is the 5th HG within the ad-hoc propagation. Even though there is no
5th-order term description, under favorable phase matching conditions, the 5th harmonic
can be also generated via 3-wave mixing: 5! = ! + ! + 3!. One odd feature is the
sudden decrease of amplitude around H = 3.2, see detail in Figure 4.3. The cause of this
decrease is unknown. Artificial extrapolation of the susceptibility fit threshold to H = 4.5
has not solved the problem. We can see spatially resolved electric field spectra for the full
propagation of ad-hoc model in Figure 4.4 that clearly shows the occurrence of the spectral
dip in 3rd harmonic after 1.5 mm propagation distance. Doubling the numerical box size
to 268 fs and increasing the propagation distance to 5.2 mm still contained the drop
as depicted in Figure 4.5. Moreover, another drop reappears at a propagation distance
of 3.7 mm.

Observing the spectral colormap for the full ab-initio propagation in Figure 4.6, the 5th
harmonic in the ab-initio spectrum has been overcharged by the strong dispersion of the
resonance centered around H = 5.7 which a↵ects also the adjacent frequencies. The reso-
nance appears to spread into frequencies H = 6� 8 where it creates interference patterns.
The Rydberg frequencies disperse slightly during the propagation as seen for the frequency
H = 8.6.
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Figure 4.3: Comparison of ad-hoc and ab-initio electric fields spectra after the propagation of
800 nm, 5-cycle beam of intensity I = 1010 W/cm2 in argon. The propagation distance is L .

=
2.6 mm, resulting in a total of 1000 iterations of the RK4 Maxwell solver. The initial field spectrum
is plotted for reference (blue curve).

Figure 4.4: Resolved ad-hoc electric field spectra for propagation of 800 nm, 5-cycle (FWHM)
beam of intensity I = 1010 W/cm2 in argon. The propagation distance is L .

= 2.6 mm.

Figure 4.5: Resolved ad-hoc electric field spectra for propagation of 800 nm, 5-cycle (FWHM)
beam of intensity I = 1010 W/cm2 in argon. The propagation distance is L .

= 5.2 mm.
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One last attribute of the ab-initio spectrum is the broader fundamental field component
as opposed to ad-hoc, see detail in Figure 4.3 for H = 1.3 – 1.8. This broadening is caused
by the convolution of the temporal filter with the source term signal in the frequency
domain, see Subsection 3.2.3. Remark that the temporal filter is not applied in the ad-hoc
model. Slight modifications of the temporal filter have a significant e↵ect on the spectrum
as depicted in Figure 4.7. The comparison was made for 13 µm propagation in argon
at intensity I = 1010 W/cm2 at ambient temperature and pressure. We can see that
the hard filter with steeper damping introduces a stronger broadening of the fundamental
frequency in contrast with the smoother filter. This artificial broadening accumulates
over time, which explains the broadening visible in 4.3. At higher intensities, the artificial
broadening is overcharged by the Kerr-induced self-phase modulation, as will be discussed
further.

Figure 4.6: Resolved ab-initio electric field spectra for propagation of 800 nm, 5-cycle (FWHM)
beam of intensity I = 1010 W/cm2 in argon. The propagation distance is L .

= 2.6 mm.

Higher intensity field

The electric field spectra resulting from the propagation of the high-intensity pulse (1013W/cm2)
are shown in Figure 4.8. The validity of the ad-hoc is confirmed once again by looking
at the comparable magnitude of the 3rd HG and also the Kerr-induced e↵ect of self-
phase modulation causing the fundamental frequency broadening. In addition, the ad-
hoc model includes the 7th HG, which can be again explained through three-wave mixing
7! = !+!+5! or 7! = 3!+3!+!, and 9th HG. The increased amplitude of the 5th har-
monic in ad-hoc compared to ab-initio is caused by our modelling of �(3)(5!0) ⌘ �(3)(3.5!).
The harmonics H > 4 are damped by a smooth sigmoid filter in the frequency domain4.

4We apply the following sigmoid filter for positive frequencies (analogically for the negative frequencies
with opposite argument):

f(!) = 1� 1
1 + exp (�5(! � !0)) /!0

.
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Figure 4.7: The comparison of ”soft” and ”hard” temporal filters is depicted in the top subfigure.
The terms ”hard” and ”soft” relate to the steepness of the filter. A 5-cycle (FWHM) driving pulse
is plotted for reference (green dashed curve). The result electric field spectra for the propagation
of 800 nm 5-cycle beam of intensity I = 1010 W/cm2 in argon are plotted in the bottom subfigure.
The propagation distance is L .

= 13µm.

Figure 4.8: Comparison of ad-hoc and ab-initio electric field spectra after the propagation of
800 nm, 5-cycle (FWHM) beam of intensity I = 1013 W/cm2 through argon. The propagation
distance is L .

= 2.6 mm, resulting in a total of 1000 iterations of the RK4 Maxwell solver. The
initial field spectrum is plotted for reference (blue curve).
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We can look at the fully resolved spectra for the ab-initio model in Figure 4.9. We notice
the generation of odd harmonics up to H = 21. The resonance at H = 5.7 likely interferes
with the 5th harmonic for the first 0.5 mm of propagation distance. The narrow Rydberg
state5 located at H = 8.6 blends with the 9th harmonic but is clearly defined throughout
the propagation. The origin of the periodic interference patterns in Figure 4.9 occurring
in the spectrum for 9th harmonics up to 21st with a period of ⇡ 150µm remains unclear.
The fact that we notice similar interference patterns with the same period also in Figure 4.6
in frequency range H = 6 – 8 drives us to a suspicion that there either might be some
physical feedback loop for the harmonic generation or a numerical artifact in the Maxwell
solver at play. The location of the filaments does not change by increasing the Maxwell
solver propagation step. However, halving the gas density doubled the interference pat-
tern period. The ab-initio simulations in an article by Berti et al. [63] investigated the
harmonics generation at propagation distances up to 5 mm and their generated harmonics
exhibit similar yield variations to our simulations, but with periods exceeding a few mil-
limeters at the same pressure. Inspecting closely our results, Figure 4.9, the interference
pattern sizes are smaller for higher harmonics. This concludes that the filaments may
be caused by the harmonics interaction with each other during the propagation through
complex phase matching – a↵ected by the phase of the generated harmonic and nonlinear
index [63]. A closer inspection by computing coherence length of q-th harmonic [8]

Lcoh, q =
���
⇡

�k

��� , �k = qk!0 � kq·!0 =
q

�0
(n(!0)� n(q!0)) (4.1)

resulted for harmonic6 H = 15 to value Lcoh, 15
.
= 1 mm which is roughly 6 times higher

than the observed period 150µm. Overlaying the gaps between the interference patterns
in Figure 4.9 by function 1/q (white dashed line), where q is the harmonic order, indicates
the reciprocal relationship of the coherence length Lcoh on the harmonic order q. It
has been also demonstrated that the spot size increases with decreasing atomic density.
This indicates that the root cause of the interference patterns should be attributed to the
coherence length, yet it is unclear why the theoretical value of Lcoh does not quantitatively
agree with the simulations.

4.2 Propagation of pulse at HHG intensity

We conclude the examples with the propagation of a 5-cycle FWHM pulse of intensity
I = 1014 W/cm2 with the fundamental wavelength of 800 nm. These parameters already
correspond to the HHG regime, thus we expect the plateau above the ionization potential
of argon (H > 10) and the cut-o↵ after H = 23, see Section 1.3. Because we are out of the
applicability range for ad-hoc model, we present only the ab-initio results.

The propagation distance was set to L
.
= 1.3 mm. The electric field at the end of the

propagation is depicted in Figure 4.10 and the corresponding HHG spectrum is shown in
Figure 4.11. The attosecond pulse train generated in the process is in Figure 4.12. The
pulse energy dissipated into the HHG during the propagation as the peak intensity of the
fundamental field component dropped to I!0 = 1.539 · 1013 W/cm2. The spectrum indeed
contains harmonic plateau from H = 10.2 up to cut-o↵ frequency H = 23, as predicted
by the three-step model [57, 20]. We notice also Rydberg states peaks in Figure 4.11.
However, we see a local dip of the harmonic yield around the first resonance (H = 5.7). The

5See Fig. 4.1.
6The index n(15!0) was computed using the dipole method presented in Subsection 2.2.3.
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Figure 4.9: Resolved ab-initio electric field spectra for propagation of 800 nm, 5-cycle (FWHM)
beam of peak intensity I = 1013 W/cm2 through argon. The propagation distance is L .

= 2.6 mm.
The interference spot gaps are overlaid by the function 1/q (white dashed curve), where q is the
harmonic order.

3rd and 5th harmonics are well discernible but starting with the 5th harmonic up to H = 10,
the perturbation region is smeared out significantly due to interference. Spatially resolved
harmonic spectra for the whole propagation are shown in Figure 4.13. The interference
patterns can be spotted again in harmonics H < 11 within the resolved spectra.

The ab-initio model demonstrates the capability to generate higher-order harmonics in
macroscopic medium and retains the key features according to the theory [57, 20], Fig. 4.11.
Moreover, the creation of an attosecond pulse train has been demonstrated in Figure 4.12.
From the theory we would expect clearly defined peaks for odd harmonics but the plateau
profile in Figure 4.11 appears ”chaotic”. This is attributed to the fact that we assume
only the 1D geometry and examine the field in the near-field region, i.e. we take the field
straight at the end of the propagation cell. In order to properly model the macroscopic
HHG, we need to compute the coherent sum of individual fields from the 2D emitting
plane in free space which filters out the incoherent contributions so that we obtain a much
”cleaner” harmonics profile7 [81]. Thus the fully macroscopic, multi-scale HHG model
requires, in addition, 2D propagation in medium and resolution in the far-field region
where the individual emitters from the plane coherently interfere.

7See Fig. 1.2 in [112].
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Figure 4.10: Electric field, corresponding to peak intensity I = 1014 W/cm2, computed using ab-
initio model after the propagation of L .

= 1.3 mm in argon. The detailed view of the fields near
the pulse peak for 2 optical cycles is shown in the top left corner.
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Figure 4.11: Electric field spectra, corresponding to peak intensity I = 1014 W/cm2, computed
using ab-initio model after the propagation of L .

= 1.3 mm in argon. Red vertical dashed lines
mark the first excited state (H = 5.7) and the Rydberg states. Black and grey vertical dashed
lines distinguish the three main regions of the HHG spectrum: perturbation region, plateau (H =
10.2 – 23) and cut-o↵.
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Figure 4.12: Attosecond pulse train generated after the propagation of L .
= 1.3 mm in argon.

The averaged intensity profile was obtained using bandpass filtering of the harmonic spectrum,
Fig. 4.11, in range H = 10 – 25.

Figure 4.13: Resolved ab-initio electric field spectra for propagation of 800 nm, 5-cycle (FWHM)
beam of peak intensity I = 1014 W/cm2 through argon. The propagation distance is L .

= 1.3 mm.

4.3 Performance of the multi-scale model

We have already seen the qualitative comparison of the ab-initio and ad-hoc models results.
We will now assess their performances. Since the task of the thesis is to optimize the
computation of the source terms, the first step is to determine the bottlenecks of the
algorithm through benchmarks.

The benchmarks of the models are displayed in Table 4.1. While the performance of
the ad-hoc model remains the same for di↵erent intensities, the ab-initio performance
depends on various factors. Maintaining the same temporal sampling of the pulse in the
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time domain, the higher peak intensity of the driver field requires a larger spatial grid for
the proper convergence of the 1D-TDSE. Thus the critical bottleneck of the propagation is
the evaluation of the 1D-TDSE, especially for the high-intensity regime (HHG intensities).
We see that the ad-hoc model evaluation is almost 3 to 4 orders of magnitude faster than
the ab-initio for the same range of intensities 1010 � 1013 W/cm2.

Model / intensity TDSE resolution RK4 iterations (distance) Time per TDSE [s] Time total [h:m:s]

Ab-initio / 1010 W/cm2 2000 1000 (2.6 mm) 10 11h 4m 25s

Ad-hoc / 1010 W/cm2 - 1000 (2.6 mm) - 68s

Ab-initio/ 1013 W/cm2 25000 1000 (2.6 mm) 120 142h 57m 5s

Ad-hoc / 1013 W/cm2 - 1000 (2.6 mm) - 69s

Ab-initio / 1014 W/cm2 40000 500 (1.3 mm) 200 118h 0m 33s

Table 4.1: Multi-scale model benchmarks for di↵erent models and intensities. One iteration of
RK4 corresponds to 4 evaluations of the source term, respectively 4 1D-TDSEs. One spatial step
dz = 50000 a.u. (⇡ 2.6µm). The 1D-TDSE spatial grid resolution must be higher for high-intensity
fields due to wavefunction reflection at the boundary. The temporal window resolution was set to
25601 points in total at 512 points per optical cycle ( .= 134 fs) in all cases. The benchmarks were
obtained on an Intel Xeon Gold 5218 CPU.

Because the multi-scale model was restricted to 1D propagation and coupled with the
Maxwell solver, we can not easily parallelize the computation of the source terms. The
Maxwell solver (Algorithm 2) is serial because of the evaluation of di↵erent k-coe�cients
using the preceding field and source term. The C implementation of FFT in FFTW3 [80],
computed 8 times per RK4 iteration, is already very e�cient even for arrays other than
factor 2 sizes. Any collective multi-core operation might not provide reasonable gain due to
the communication bottleneck. The same argument applies to the 1D-TDSE. Significant
optimization of the grid 1D-TDSE might be the implementation of a suitable wavefunction
absorber, e.g. ECS [78].

In the end, the aim is to find a computationally inexpensive model that utilizes the speed
of the ad-hoc model with the accuracy of ab-initio. The model should couple the Maxwell
solver with accurate source term computation. A promising option is to approximate the
1D-TDSE source terms using an artificial neural network. We will examine the technique
in the next chapter.

4.4 Extension of the multi-scale model to higher dimensions

One-dimensional propagation code is not physically accurate in free space and in cases
of strong focusing induced by high-power laser beams. The transverse e↵ects become
significant at short distances, therefore the transverse Laplacian must be included. In
macroscopic HHG, many features are directly linked with transverse e↵ects and the prop-
erties of the driving laser beam. One example is achieving optics-less focusing of HHG
in the far-field region by adjusting the focus of the incoming beam [82]. In the far-field,
controlling the wavefront of a high-harmonic beam can result in optics-free spectral fil-
tering of individual harmonics [83]. Thus, as outlined at the end of Section 4.2, we need
to include two additional components for the truly macroscopic model: transverse e↵ects
and far-field.

Far-field contribution can be computed by evaluation of the di↵raction integral [112] or
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under the thin target approximation8 using the Hankel transform [81]. As an exam-
ple of a multi-dimensional code with transverse e↵ects, we can mention CUPRAD [113].
CUPRAD is a two-dimensional code employing the radial symmetry of the medium based
on the UPPE in the co-moving frame with a transverse field component. CUPRAD has
been successfully coupled with the 1D-TDSE code for the study of HHG in long me-
dia [112, 18]. The mechanism of coupling is di↵erent in CUPRAD since the propagated
fields are not influenced directly by the TDSE source terms during the propagation. In-
stead, an ad-hoc description was used to compute the fields. All in all, the approach with
the CUPRAD-TDSE coupling agrees well with the experimental observations [18].

In principle, there is no obstacle to coupling 1D- or 3D-TDSE with a 1D propagation
scheme. Experimentally we could send a prepulse for polarising the atoms in the medium
in conjunction with the driving pulse field polarisation. However, for advanced problems
such as the study of optical gating, a technique in HHG for the generation of attosecond
impulses [12], or exploring the contribution of individual orbitals for HHG we would benefit
from a fully vectorial 3D description of fields coupled with a 3D-TDSE solver [21, 22, 84].

8Gas cell smaller than the Rayleigh length of the driving beam.
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Chapter 5

Multi-scale model optimization
using neural networks

The usage of 1D-TDSE for the computation of the source terms has been shown in the
previous chapter as the critical bottleneck in the multi-scale model. In this thesis, we set a
goal of developing a neural network (NN) that takes numerical electric fields and outputs
the corresponding source terms mimicking the result of the exact TDSE computation.
In Section 5.1 we provide an overview of NN principles necessary for understanding the
design of a custom network for this thesis. In Section 5.2 we propose a data pre-processing
pipeline and establish the design of a proprietary NN for computing the 1D-TDSE source
terms. The results are showcased in Section 5.3 and we discuss the outlook of using NNs in
Section 5.4. Since the NN research has been rapidly evolving in recent decades, it is useful
to introduce first some historical context with examples of neural network applications.
The general overview will motivate the selection of appropriate network architecture for
this thesis.

The task of creating artificial intelligence (AI) has marveled the minds of scientists since
the conception of Turing machines. AI is a broad term for a branch of research en-
compassing the conception and design of machines and algorithms capable of mimicking
intelligent behavior. They vary from the simplest decision trees or Bayesian statistics [13]
to Boltzmann machines [85] and artificial neural networks [14]. The idea of artificial neu-
ral networks arose from the area of neuroscience. The first concept of non-learning NN
mimicking brain function was proposed in 1943 by McCulloch and Pitts [86]. Since then,
many models have advanced on the concept and the term machine learning (ML) was
established for the perceptron in 1958 [87]. ML is a class of statistical and computational
methods responsible for training NNs. Training can be supervised – the network learns the
relationships between inputs and outputs on correctly labeled data, or unsupervised – the
network is trained on unlabelled data. Notable mentions of unsupervised training are gen-
erative adversarial networks for image generation [88] or anomaly detection networks [89],
which are based on the encoder-decoder architecture [90]. Due to their variety and large
application potential, NNs have gained significant attention in recent years. With the ad-
vent of so-called large language models (LLMs) such as GPT-4 by OpenAI [23] or Google
PaLM [24] and more recent multi-modal Gemini model [116], the NN models have become
capable of interpreting human-written prompts and o↵ering solutions to abstract prob-
lems. Powered by OpenAI’s DALL-E 3 [117] image generator, GPT-4 is also capable of
image generation from a user prompt.
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In physics, NNs have been employed in numerous ways. The ability of NNs to quickly
process vast amounts of data found its use in the domain of experimental physics where
the measured data flux is overwhelming. Instead of using di�cult decision trees, where
the programmer must set the ranges manually, the ML algorithm can learn from the
curated experimental data to provide superior analysis. NNs have been successfully ap-
plied for distinguishing unusual signals hinting new particle observations in CERN ex-
periments [26]. NNs also drive the inertial confinement fusion research by exploiting its
optimization capabilities for designing optimal fusion capsules or predicting neutron flux,
both increasing the energy gain [25]. NNs have found use in atomic and molecular science
for the search of the ground state of many-electron wavefunction from the notoriously
di�cult time-independent Schrödinger equation [29, 30], opening the opportunities for
solving large-scale ab-initio problems of atoms and molecules with more e�ciency. Some
works were devoted to providing directly a numerical solution of the TDSE by propa-
gating the wavefunction for arbitrary time-dependent potential using NN [31]. Last but
not least, the physics applications were expanded by the introduction of so-called physics-
informed neural networks (PINNs) [27, 28]. The concept of PINN has been demonstrated
on various physical problems [27, 28], a notable example is the NSFnets model for solving
incompressible Navier-Stokes equations [91].

Since we hadn’t had much previous experience with NNs, we started with a simple design
to understand the limitations of employing NNs for our task. The design of our purpose-
built NN has led to many trial-and-error situations concerning data preprocessing and the
NN design architecture. Some points are discussed in greater detail in Appendix B. Multi-
ple NN architectures were assessed. The most straightforward is the multilayer perceptron
architecture (MLP), however, the feature extraction of MLP is not very sophisticated. The
ground-breaking LeNet architecture [92] established convolution neural networks (CNN)
fused with MLP network and showcased better feature extraction en par with higher
predictive accuracy. The design was later polished in AlexNet [93], one of the most influ-
ential computer vision networks. Thus, the choice of NN architecture in the thesis shifted
towards CNN architecture since we wanted to extract information from contiguous data.

5.1 Fundamentals of neural networks

The general prospect of CNN follows a straightforward pipeline. Given a set of inputs x,
also called the features, a supervised learning algorithm propagates the input through a
series of convolution filters into a network of interconnected layers of nodes, also called
artificial neurons. As the input data propagates through the network, nonlinearities are
applied and important data features are extracted similarly as organic brains process
information. The output y, also called the label, is inferred from the network after
the propagation. The accuracy of the prediction is assessed using an appropriate metric
by comparing the NN output with the correctly labeled data, i.e. the desired outcome.
Finally, the ML algorithm ensures the network iteratively adjusts its parameters to improve
the network. Let us discuss in detail the inner structure of a NN.
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5.1.1 Perceptron

The smallest unit of NN is the perceptron. Perceptron resembles a neuron cell – it takes
multiple signals, each with attributed weight w (strength of the connection) and bias1 b,
and processes all incoming signals into a single output value. A single perceptron is
sketched in Figure 5.1.
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Figure 5.1: Single perceptron with 4 inputs, each input has a weight attributed to it. Image
generated using NN-SVG tool [94], edited.

We can mathematically describe the action of perceptron as follows: for a vector of inputs
x and weights w and bias b, the perceptron applies an operation f on a weighted average
of the inputs with bias2. The output is then

y(x) = f

 
X

i

wi · xi + b

!
. (5.1)

We call the scalar function f : R ! R the activation function. Activation may be
arbitrary and should have a simple evaluation and derivative, however over the years the
selection has crystallized into a few most used activations. The most prevalent ones are3

Id(x) := x Range(Id) 2 R, (5.2)

ReLU(x) :=
ß
x . . . x > 0
0 . . . x  0

Range(ReLU) 2 R+
0 , (5.3)

sigmoid(x) :=
1

1 + e�x
Range(sigmoid) 2 (0, 1), (5.4)

tanh(x) :=
e
x � e

�x

ex + e�x
Range(tanh) 2 (�1, 1). (5.5)

The activations are depicted in Figure 5.2. If we used only an identity activation f = Id
instead of a nonlinear activation, the expression (5.1) would yield a linear regression
equation. This can be su�cient as long as the relationship between x and y is indeed
linear, but this is not generally the case. That is why we have to introduce nonlinearities in
the form of nonlinear activation functions. In statistics, this class of problems is generally
tackled using a method of least squares, we just have to assume the type of relationship
between x and y. The power of NNs is that we can actually keep the linear argument and

1The bias adjusts the output of perceptron to fit the training data accurately. In many cases, training
only on the input data would yield incorrect results. The key role of bias is to provide and adjust a starting
point, independent of the input data.

2In mathematical terms this is also called the a�ne mapping.
3ReLU stands for Rectified Linear Unit.
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opt for a nonlinear activation for nonlinear problems, thereby we can blindly retrieve the
relationship without assuming a particular function to fit our data. The downside is that
we can easily overfit the data.

Figure 5.2: Activation functions from Eqs. (5.2)-(5.5).

A single perceptron is only suitable for binary classification problems, say, for a set of
features x, the perceptron can only yield a single binary outcome. For example, true or
false classification of an object given a set of features x. That is why, in practice, many
perceptrons are stacked in a single layer and we pile many layers consecutively into a
multilayer perceptron network.

5.1.2 Multilayer perceptron network

The multilayer perceptron (MLP) network incorporates multiple layers of perceptrons to
increase the network’s predicting capabilities. Apart from the possibility of implementing
more classifiers or detailed regression analysis, the depth of the network also improves
the prediction power by identifying stronger relationships between the data fed through.
However, with the increasing size of the MLP comes the greater computational cost of
training the network. A simple MLP network is depicted in Figure 5.3.

,QSXW /D\HU Ǻ ǅై +LGGHQ /D\HU Ǻ ǅై 2XWSXW /D\HU Ǻ ǅï

Figure 5.3: MLP network composed of an input layer with 4 features, 1 hidden layer with 4 per-
ceptrons, and an output layer with a single perceptron. Image generated using NN-SVG tool [94].

We improved the perceptron architecture by adding a single hidden layer h. This hidden
layer is composed of 4 independent perceptrons. The outputs hi are then fed into the
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output layer o. Mathematically, we can describe the transfer of features as follows4

hi(x) = f

Ñ
X

j

w
hidden

ij · xj + b
hidden

i

é
, (5.6)

o(x) = (f � h)(x) = f

 
X

i

w
output

i
· hi(x) + b

output

!
, (5.7)

where f is arbitrary activation function from (5.2)-(5.5), wij 2 R4⇥4 is a matrix of weights
and b a vector of biases. There are in total Ninput ⇥ Nhidden + Nhidden ⇥ Noutput +
size(bhidden) + 1 = 16 + 4 + 4 + 1 = 25 adjustable parameters.

The output o can also have an arbitrary size. This is useful if we want to create a model
classifying more than two outcomes. Another possibility is to approximate an arbitrary
function g : Rn ! Rm. Having a set of inputs {x1,x2, . . . ,xN |xi 2 Rn} and a known
set of corresponding outputs {y1,y2, . . . ,yN |yi 2 Rm}, we can design and train a neural
network with an input layer 2 Rn, an output layer 2 Rm and an arbitrary number of
hidden layers to obtain a function g approximator. Feedforward NNs have been shown
and proven to be universal approximators of any Borel measurable function from finite-
dimensional spaces to another with arbitrary accuracy, provided the network is reasonably
designed. This is summarized as universal approximation theorem in NNs [33]. Remark
that the universal approximation theorem generally does not apply to extrapolation.

5.1.3 NN learning and evaluation

To train a NN, we generally provide training and validation sets. The NN is first
trained on the training set and the success of training is evaluated on the validation set.
In essence, the neural network needs to adjust the weights of individual connections and
biases according to the expected correct output through the process of supervised learning.

Let {x1,x2, . . . ,xN |xi 2 Rn}train be the training set of features and {y1,y2, . . . ,yN |yi 2
Rm}train be the training set of correct labels. Say the map N : (Rn|w, b)! Rm maps the
input of the MLP network into predicted labels ypred

i
, which depend on trained parameters

(w, b). We call this part the forward propagation.

To quantify the error between the predicted and correct labels ytrue
i
, we need to establish

a loss function L(x|w, b). We can evaluate the error with mean squared error (MSE) loss
function5

L(x|w, b) := MSE(x) = 1

m

mX

i=1

Ä
y
pred

i
� y

true

i

ä2
. (5.8)

The learning algorithm tries to minimize MSE (5.8) between predicted and correct labels
using the backpropagation algorithm. The backpropagation is based on the evaluation of
the derivative of MSE with respect to the network parameters (w, b):

r(w, b)L = 0. (5.9)

4Remark that for nonlinear problems we need to add nonlinear activations into the hidden layer.
Composing the layers with identity activation Id(x) results in multiple a�ne mappings which yields another
a�ne mapping.

5A list of other loss functions can be found in [14]. MSE is suitable for function approximators. The
categorical cross entropy loss function is an example of loss suitable for classification problems.
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Because the map N comprises many layers of neurons with di↵erent weights, the chain rule
for derivatives must be applied. Say for the simple example of MLP network in Figure 5.3,
the chain rule w.r.t. single weight wij and bias bi from the hidden layer looks as follows:

@wij
L(x) = (rMSE ·ro ·rh · xj) (x), (5.10)

@biL(x) = (rMSE ·ro ·rh) (x), (5.11)

where xj is the input value corresponding to the weight wij in the hidden layer. Remark
that the most numerically expensive part of the chain rule is the evaluation of derivatives
of activations. The rest of the evaluation is just plain tensor multiplication.

To obtain a solution to (5.9), we employ iterative gradient methods for finding the min-
ima of functions. The common algorithm is gradient descent (GD) for which we set an
initial w(0) (typically random) and adjust it according to the steepest descent towards the
optimum6 as:

w(1) := w(0) � � 1

N

NX

i

rwL(xi), (5.12)

where � is a parameter called the learning rate. The simplest GD has, however, a
poor performance because of the computation of the derivative for each input xi at once
before updating w. Therefore more sophisticated optimization algorithms are used. We
may instead approximate the descent rwL(x) with an average over a randomly selected
mini-batch of M (M < N) training examples (xi,yi) as:

1

M

MX

i

rwL(xi) =: g (5.13)

and then use this quantity to update the weight w for one iteration as

w(1) := w(0) � �g. (5.14)

The quantityM is called the batch size and plays a key role in the converging properties.
Typically, the batch size is set to 32, 64 or 128. We call this algorithm the mini-batch
stochastic gradient descent (SGD). The advantage of using the mini-batch SGD is that it
updates the weights after just M derivatives instead of computing the derivatives for the
whole dataset. Another advantage is that mini-batch computation can exploit CPU/GPU
vectorization, further increasing the speed.

The backpropagation algorithm hence updates the weights after selectingM random sam-
ples according to (5.14), then selects another M samples from the remaining dataset until
it sweeps through the entire dataset, this is called the epoch. The network N is trained
for multiple epochs until the desired convergence is reached.

Note that mini-batch SGD is succeeded by various more advanced optimizers employing
various techniques for reaching better convergence. Some of these techniques involve the
implementation of momentum vector [95] (or multiple vectors) slightly shifting the weight
at each update. Other optimizers also implement adaptive learning rate [96]. This can be
schematically summarized as

w(1) := w(0) + �v � �(t)g, (5.15)

6Remark that the convergence towards the global optimum is generally not assured. Reaching global
optimum requires, aside from the robust optimizer, also suitable network architecture and representative
training data with a large variety.
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where v is the momentum vector, � is the momentum vector parameter and �(t) denotes
the adaptive learning rate. Parameters � and � are set in the beginning to some default
value and v and �(t) are algorithmically estimated from the loss and the initial parame-
ters, depending on the specific implementation. Both momentum and adaptive steps are
implemented within Adam optimizer [96], currently one of the most used optimizers for
NN training.

The number of epochs, batch size and initial learning rate are one of many tuning pa-
rameters we call the hyperparameters7. The question naturally arises of how to op-
timally choose the hyperparameters and tune the network size or layers to obtain the
best fit for our input data. The task of every NN design is to minimize the test error
and also the generalization error on previously unseen data {x1,x2, . . . ,xN |xi 2 Rn}test,
{y1,y2, . . . ,yN |yi 2 Rm}test (validation dataset), chosen from the same data distribution
as the training set. During the testing of the NN, the weights are no longer updated and
we call this the inference phase. The error during the training phase and the inference
phase is quantified using the loss function and metric. For vectors of real-valued outputs
y 2 Rm, the mean absolute percentage error metric is defined as:

MAPE =
1

N

NX

i

�����
ytrue
i
� ypred

i

ytrue
i

����� . (5.16)

We will employ MAPE for the assessment of the custom NN performance.

5.1.4 NN regularization

The challenge of each NN is to find a good balance between underfitting, the model is
too weak or has bad performance, and overfitting, the model is too strong and does not
generalize. Underfitting may be fixed by increasing the number of epochs or increasing
the model capacity – what the model is able to represent at the given size and what
is it capable of learning. The capacity practically translates to the size of the network
in terms of hidden layers and the number of trainable parameters. Overfitting increases
generalization errors and is generally tackled using a process called regularization. The
dependence of the error on the model capacity is plotted in Figure 5.4.

There are various ways how to regularize NN. The easiest to implement into the model and
very robust is the usage of a dropout layer. Given a rational fraction, say p = 0.5, then
50% of connections between layers are randomly o↵ and the remaining 50% of features
actually propagate to another layer. Batch normalization is a powerful technique that
normalizes the passing batch of data by subtracting the batch mean and dividing by its
variance. The normalized output is then scaled and shifted by trainable parameters. This
significantly stabilizes the training process as it can mitigate any internal covariate shifts
within the network. Another regularization technique involves adding random gaussian
noise into the data after each pass. Early stopping the learning process after fewer
epochs may also decrease the generalization error. Artificial augmentation of the train-
ing dataset (noise addition, smarter feature extraction) or increasing the number of test
examples can improve the overall performance too.

The network predictive capacity can be further improved by the addition of skipped con-
nections. Skipped connection is a powerful tool first implemented in ResNet architec-
ture [97]. The deeper the network, the harder it is to train due to the vanishing gradient

7Not to confuse with weights and biases of the NN which are the model parameters.
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problem, i.e. the gradients become so small during the backpropagation that the perfor-
mance of the network decreases. A skipped connection is sketched in Figure 5.5. The key
component of skipped connection is the add layer that performs elementwise addition of
the first input layer with the output of the second hidden layer. The add layer does not
have any trainable parameters but the data can be fed to another hidden layer. A skipped
connection serves as a ”neural network highway” in the sense that some features propagate
faster through the network. This enables to increase dramatically the number of layers
while gaining further performance and capacity [97].

0 Optimal Capacity
Capacity

Er
ro
r

Underfitting zone Overfitting zone

Generalization gap

Training error
Generalization error

Figure 5.4: Relationship between model capacity and error. The tedious task is to obtain the
”sweet spot” between underfitting and overfitting. The generalization gap increases for models
with a higher number of parameters8. We also notice that the decreasing training error (loss error)
does not always provide the decisive measure for the performance of the model. Obtained from [14],
edited.

Input Layer Hidden Layer ² Hidden Layer Output Layer
Input layer Hidden layer

Skipped connection

+

Hidden layer Add layer

Figure 5.5: A sketch of a simple skipped connection. Image generated using NN-SVG tool [94],
edited.

5.1.5 Convolution neural network

Convolution neural network (CNN) tackles the problem of too many input parameters
by first extracting the significant features from the input data using convolution. One

8This claim does not apply generally. As we increase the model size above a certain threshold, the
performance suddenly improves, see Figure 1 from [98]. This feature is called ”double-descent” and is the
underlying reason why modern ANNs have become so large with millions of parameters. The common
knowledge within the NN community is that larger networks generally perform better [98].
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dimensional convolution of an input vector x of size N and convolution kernel K of size 3
yields9

(x ⇤K)i =
3X

j=1

Kj · xi+j�2 , i = 2, . . . ,N � 1 (5.17)

The kernel contains particular predefined weights for optimum feature extraction. More-
over, we can also set an output dimensionality in the same way as in the MLP. Hence,
for each i-th convolution we have multiple output channels c so the total output of a
single 1D convolution layer would be a matrix of size (N �2, c). Sometimes the activation
function is added just after the result of the convolution. The output matrix is the same
as if without an activation but every matrix element has been fed through the activation.
Now we need to introduce pooling layer to decrease the size of the convolution output.
For example, the maximum pooling layer sweeps through the convolution and finds the
maximum of 3 consecutive points in the output that is further propagated in the network.
The output matrix size is then ((N � 2)/3, c). We may also implement an average pooling
layer that computes the average of 3 consecutive points instead.

We usually stack many convolution and pooling layers to reduce the final output size.
Finally, the MLP is added at the end, however, the output tensor must be flattened first.
The flattening layer joins the rows of the tensor together into a single 1-dimensional vector,
that can be further processed in the MLP. The whole 1D-CNN is sketched in Figure 5.6.

Figure 5.6: One-dimensional CNN with an input layer, convolution layer with a kernel of size 3
with 5 output channels, pooling layer, and after the flattening layer comes finally MLP with a
single output. Obtained from [99].

The advantages of using CNN are namely the reduction of the input parameters (mainly for
image processing networks) and better local feature extraction due to accounting for local
interactions. It has been also shown that the CNNs can have a regularizing e↵ect [100].

9If the vector x has size N , then the output convolved vector has size N � 2.
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5.1.6 Overview of the NN design

We can now summarize the key aspects of the network and supplement them with an
example code from Tensorflow [118]. From this moment we refer to vectors, matrices and
higher-order tensors simply as tensors of particular shape.

Example NN

We start with loading the corresponding modules from Tensorflow and defining a sequential
model simply called ”model”. The sequential model builds chronologically the custom NN
as we add the layers in their respective order. We define the input layer of the model by
taking the input 1D-tensor x of shape (1, 100):

# Language : Python
from t en so r f l ow . keras . l a y e r s import ⇤
from t en so r f l ow . keras import Sequent i a l
# Define model
model = Sequent i a l ( )
# Define input l a y e r
i n pu t l a y e r = InputLayer ( ( 1 , 1 00 ) )
# Add l a y e r to model
model . add ( i npu t l a y e r )

which is followed by adding two convolution layers with kernel sizes 3 and 4, respectively
16 output channels (filters). In between we define the maximum pooling layers with the
kernel of size 3.

convo lut ion1 = Conv1D( f i l t e r s =4, k e r n e l s i z e =3)
convo lut ion2 = Conv1D( f i l t e r s =16, k e r n e l s i z e =3)
max pooling1 = MaxPooling1D ( p o o l s i z e =3)
max pooling2 = MaxPooling1D ( p o o l s i z e =3)

model . add ( convo lut ion1 )
model . add ( max pooling1 )
model . add ( convo lut ion2 )
model . add ( max pooling2 )

The Tensorflow API adjusts the kernels to fit the particular shape of the input and the
desired output. Thus the kernel of the first convolution layer is set to the tensor of shape
(3, 4). The weights of the convolution kernel are set automatically. The result of the first
convolution is a tensor of shape (98, 4) which is then reduced within the first pooling layer
to size (32, 4).

Once we reach the end of the CNN pipeline (Fig. 5.6), we implement the flattening layer
to convert the final 2D tensor into a 1D tensor to be fed into the MLP network, see
Figure 5.3. We implement two consecutive hidden dense layers with 20, respectively 40
perceptrons (Fig. 5.1).

f l a t t e n = Flatten ( )
hidden dense1 = Dense ( un i t s =20, a c t i v a t i o n=”tanh” )
hidden dense2 = Dense ( un i t s =40, a c t i v a t i o n=”tanh” )
dropout = Dropout ( ra t e =0.5)

model . add ( f l a t t e n )
model . add ( hidden dense1 )
model . add ( dropout )
model . add ( hidden dense2 )
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Each of the 40 perceptrons in the second dense layer has 20 inputs from the preceding
dense layer and 21 trainable parameters (20 weights and 1 bias), see Figure 5.3. The same
logic applies to the first dense layer. The tanh(x) activation function has been selected,
Eq (5.5). A dropout layer with a 50% dropout rate has been added between the dense
layers for regularizing the network. Alternative regularizers are Gaussian noise or batch
normalization layers.

Finally, the output layer of size 100 with identity activation is implemented

output = Dense (100)

model . add ( output )

which summarizes our simple example model. We can now configure the model for train-
ing by specifying the loss (MSE, Eq. (5.8)), metrics (MAPE, Eq. (5.16)) and optimizer
(Adam [96]) as follows10

model . compile ( opt imize r=’Adam ’ , l o s s=’MSE’ , met r i c s=’MAPE’ )

The training datasets (xtrain,ytrain) respectively validation datasets (xtest,ytest) are sup-
plied as tensors of shape (Ntrain, 100) respectively (Ntest, 100). We fit the model with batch
size equal to 64 on the training data for 20 epochs and validate afterward:

# Training the network
model . f i t ( x t ra in , y t ra in , b a t ch s i z e =64, epochs=20)
# Va l i da t in g the network
model . eva luate ( x t e s t , y t e s t )

10See the exact API documentation for properly defining the method attributes.
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5.2 NN data pipeline and design for TDSE output estima-
tion

The data pipeline for feeding the NN is presented in this section. The network is fed by
the numerical electric fields and predicts the 1D-TDSE source term h�rV i � E. The
datasets containing fields and source terms were acquired using the ab-initio multi-scale
model. During the propagation of the multi-scale code, every RK4 step was stored to
increase the dataset size by a factor of 4, since the 1D-TDSE is evaluated 4 times for
each RK4 iteration. The input data needs to be preprocessed first before it can be fed to
the network. The output of the network must be established and the nature of the input
and output data has to be reflected in the overall design of the network. We will now go
through the individual steps.

5.2.1 Data preprocessing

Data reduction – low pass filter

A single output source term from the ab-initio model comprises 25601 bins of data – given
by the temporal sampling of the 1D-TDSE solver, see Subsection 3.1.4. If we decided to
plug in all of the data points into a network with a hidden layer of size 1024, this would
yield at least 107 trainable parameters. This scale is both practically and computationally
very ine�cient. However, we can exploit the knowledge of the structure of the source term
and the driving electric field to drastically reduce the size of the input layer.

From the physics models, it is well known what range of frequencies is generated for certain
field intensities. If we are focused on HHG, for example, we can neglect the frequencies
above the cuto↵ (for argon at intensity 1014 W/cm2 Hcuto↵ ⇡ 23). For lower-intensity
fields where the ionization has not become significant, we can set the frequency range even
smaller. Hence the first component of the data preparation pipeline is a low-pass filter and
all the data points above certain harmonic are neglected. In the temporal domain, cutting
of higher frequencies results in the coarsening of the pulse. However, because the UPPE
operates in the frequency domain and we are interested mainly in the spectral properties
of the result field, reducing the size of the problem in the frequency domain does not a↵ect
the propagation of the field as long as we have adequate sampling. Using this approach
we can reduce the size of the input and output data by a factor of 10.

Feature extraction – real and imaginary components of the spectrum

Because we are mainly interested in the spectral features – which represent di↵erent orders
orders of magnitude in the frequency domain – we keep the inputs and the outputs of the
NN in the spectral domain. If we want to transform the output back into the temporal
domain, we need the full information of the spectrum, i.e. the amplitude and phase. Be-
cause the field and source term are real, the negative frequency components are redundant
(complex conjugate). For inputs and outputs, we stick to the real and imaginary parts
of the positive spectrum with lowpass filtering. Using amplitude and phase for input and
output description appeared problematic, see Appendix B, Section B.1. We still have to
account for the fact that the intensities of spectral components vary by orders of mag-
nitude. Another tried and tested approach was to compute odd roots of the individual
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components, see Appendix B, Section B.2. This idea was also eventually dropped and we
settled with the unmodified amplitudes. Last but not least, to enhance the spectral fea-
tures, the temporal error function filter presented in Subsection 3.2.3 was applied before
the spectral decomposition and before the low pass filtering.

The output and input spectrum is phase-shifted before the decomposition into real and
imaginary parts. Every component of a Fourier signal F! is multiplied by factor e�i!T/2

where T is the pulse length in time. The phase shift, according to the Fourier shift theorem,
basically pushes the field in the temporal domain by T/2. Due to the nature of FFT11,
the phase shift reduces fast oscillations within the real and imaginary parts of the spectra,
as depicted in Figure 5.7. As a result, we have nicely continuous curves better suited for
features extraction.
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Figure 5.7: The e↵ect of the phase shift e�i!T/2 on the real part of the 1D-TDSE source term,
around the fundamental field component. By application of this transform we e↵ectively get rid of
the fast oscillations (orange curve) and obtain a smooth curve with the same amplitude and phase
(blue curve).

Data normalization

Normalization is a standard data preprocessing procedure in NNs. NNs generally perform
better with normalized inputs for many reasons. Activations may saturate more easily,
implying almost zero gradients for weight computation. This results in much slower con-
vergence of the model or the model reaches only local minima. Having the input in a
predefined range, say (�1, 1), the activation behaves almost linearly in this region and has
the steepest gradient which further improves the convergence.

The input data was normalized according to the min-max normalization12 in range (�1, 1):

xnorm =
2 (x�min(x))
max(x)�min(x) � 1, (5.18)

11Many implementations of FFT [80] assume the temporal signal centered around 0. The extra phase
e
�i!T/2 e↵ectively shifts the signal around zero.
12There exist other normalization techniques such as mean normalization, z-score normalization, or

logarithmic normalization. Z-score and mean normalizations performed comparatively for our data.
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where min(x) and max(x) correspond to the minimum and the maximum of the whole
training dataset.

Summary

The data preprocessing pipeline including temporal filtering, low pass filter (downsam-
pling) and separation of the spectrum into real and imaginary parts is sketched in Fig-
ure 5.8. The custom pipeline was fully implemented in Python.

Figure 5.8: Data preparation pipeline. The electric field, Subfigure 1), is multiplied by the temporal
filter, Subfig. 2) and downsampled by cutting of higher frequencies, Subfig. 3), decreasing the
number of bins roughly 20 times. Finally, the spectrum spectrum is separated into real and
imaginary parts, Subfig. 4 (artificially enhanced features for clarity using 3rd root, see Appendix B).

5.2.2 Neural network design

A custom neural network incorporating convolution and dense layers for predicting source
terms of the 1D-TDSE, given the numerical electric field input, has been implemented.
Python library Tensorflow was used to assemble the model. The model will now be referred
to as TDSE-NN in the following text. TDSE-NN full design is depicted in Figure 5.9.
The design is a combination of CNN and MLP networks.

The input layer takes the already preprocessed and normalized data of size [N , 2], Fig. 5.8.
The size N of the input array is set fixed in the beginning according to the desired
frequency cuto↵. The data is then fed through the cascade of 1D convolution and max
pooling layers. Convolution layers have kernels of size 3 with tanh(x) activation and the
number of channels doubles each layer. The data tensors must then be flattened before
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advancing into the MLP section. A batch normalization layer is introduced here to improve
the robustness of the model along with a Gaussian noise layer, further regularizing the
network. The MLP is based on the compression-decompression scheme – the dense layers
shrink the number of nodes from 128 to 32 and then back to 128. Each dense layer is
equipped with13 tanh(x) activation and dropout layers are added in between the dense
layers for increased regularization.

A skipped connection was implemented right after the first dense layer and then added
to the decompressed data. After a final dropout layer comes an output dense layer with
identity activation outputting an array of size 2 ⇥M , where M is the length of the real
or imaginary part of the positive spectrum, i.e. the output array looks as follows:

youtput = [Re[ŷ1], Re[ŷ2], . . . , Re[ŷM ], Im[ŷ1], Im[ŷ2], . . . , Im[ŷM ]] (5.19)

which can be then reconstructed using the IFFT back into the temporal domain (the
negative frequencies are hermitian).
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Figure 5.9: TDSE-NN Neural network design.

5.3 Results

The results obtained using the TDSE-NN model are presented in this section. TDSE-NN
was trained on the data acquired from the multi-scale model. The data was preprocessed
as proposed in Subsection 5.2.1. Low intensity field (1010 W/cm2), see Subsection 4.1.2,
and high intensity field (1014 W/cm2), see Section 4.2, simulations were chosen for the
assessment of the TDSE-NN. In total from a single simulation run, we had 2000 data
samples for high-intensity fields and 4000 samples for low-intensity fields. Each sample
comprises the pre-processed input electric field and the output in the form of the 1D-
TDSE source term. The ratio of the training and validation data was established at
80:20%. Therefore the shape of the full training features dataset for low-intensity field
(1010 W/cm2) is (3200,N , 2) and the training labels dataset shape (3200, 2 ⇥ M), or
(800,N , 2) and (800, 2 ⇥M) respectively for the low-intensity field validation datasets.
The shapes of the datasets for high-intensity field simulation (1014 W/cm2) are analogical.
13For the details about the choice of activations see Section B.3 in Appendix B.
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The datasets were initially randomly shu✏ed using the Numpy [101] shu✏e method along
the first dimension to further mitigate data bias during the training.

5.3.1 TDSE-NN for low-intensity field

We begin with the dataset for low peak intensity (1010 W/cm2), Subsection 4.1.2. We
do the subsampling of the input data to14 1025 bins including frequencies up to H ⇡ 10
corresponding to the ionization potential of argon. The real and imaginary parts of the
input and output spectra have sizes N = M = 513. The entire TDSE-NN comprises of
a total 231,306 parameters (230,154 trainable/1,152 non-trainable). The batch size was
fixed to 64.

Model accuracy and number of epochs

We first examine the accuracy of the model for 3 di↵erent amounts of training data cor-
responding to the same intensity and propagation distance. The number of epochs was
fixed to 200 and the TDSE-NN was trained and validated on the datasets of di↵erent
sizes. The training and validation losses (MSE, Eq. (5.8)) along with metrics (MAPE,
Eq. (5.16)) during the training are depicted in Figure 5.10. The figure clearly shows that
training with more data decreased the number of epochs necessary for the training but
did not significantly improve the accuracy of the model. Moreover, the model with the
largest dataset (green curve) actually starts overfitting after 100 epochs and its accuracy
decreases. Looking at the result spectra obtained for the same input from the models
at di↵erent dataset sizes in Figure 5.11, we can notice the overfitting of the model by
examining the noisy red curve for range H = 3 – 6 that di↵ers from the rest (green and
orange). We also notice a significant discrepancy between the predictions and the correct
spectrum for H = 4 – 8.

Model results

We now examine the TDSE-NN model which was trained using the full dataset (3200
train, 800 validation) with the implementation of early stopping criteria. The criteria
were chosen such that it stopped the training if the model loss had not improved after 25
consecutive epochs. In total, the model was trained for 53 epochs. The final validation
loss was Lval

.
= 2.29 · 10�11 and validation metric MAPEval = 2.06%. The training took

around 3 min on a quad-core Intel i7-6700HQ. Inference for a single input took around 40
ms. The result spectra for 2 di↵erent inputs are plotted in Figure 5.12. The predictions
again di↵er significantly in region H = 4 – 8. However, the dominant spectral features such
as the fundamental and third harmonic components or the Rydberg states quantitatively
match the values to some small margin of error. It should be stressed that the labels
and features contain details of scales spanning 10 orders of magnitude as no data scaling
technique has been used.

Figure 5.12 fills the suspicion that the training data is biased to a particular spectral shape
since the network outputs similar spectra in range H = 4 – 6 for two di↵erent inputs. We
base our claim on looking at the resolved harmonic spectra for the full propagated distance

14The odd number of bins is selected deliberately so that the positive signal in the frequency domain
always has exactly (N + 1)/2 bins.
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Figure 5.10: The result mean squared error loss (MSE) and mean absolute percentage error metric
(MAPE) during the training of TDSE-NN for 200 epochs for varying amounts of training and
validation data.

Figure 5.11: The correct result harmonic spectrum of the ab-initio source term (blue) is overlaid
by the TDSE-NN results after the training of TDSE-NN for 200 epochs for varying amounts of
training and validation data (training/validation) for the same input.

in Figure 4.6. We notice that the spectra for distances 0.8 – 2.0 mm do not contain much
variety. Since it takes up to 50% of the whole dataset, the bias is likely caused by a
uniform selection of data samples from this region of space. The data bias problem for the
low-intensity dataset could be reduced by balancing the selection of data from Figure 4.6.

The predicted source term was reconstructed in the time domain using the IFFT and
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Figure 5.12: The result spectra of the source terms for two di↵erent field inputs from the TDSE-NN
model (dashed line) along with the correct spectra (solid line).

plotted along with the correct source term in Figure 5.13. The envelope of the NN predic-
tion has been decently preserved. Inspecting the detailed subplot, we notice that the NN
prediction is slightly shifted to the left by a few atomic units of time. The shift is caused
by an incorrect phase of the fundamental frequency as depicted in Figure 5.14.
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Figure 5.13: The result reconstructed source term in the time domain for single input from the
TDSE-NN model (dashed line) along with the correct source term (solid line).
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Figure 5.14: The unwrapped phases of the source terms h�rV � Ei for di↵erent harmonic orders.

5.3.2 TDSE-NN for high-intensity field

The TDSE-NN model was trained on the full dataset with high-intensity data (1600 train,
400 validation) for 100 epochs. The batch size was fixed to 64. The size of the input
feature vector was (1000, 2) and the output labels had a size of 2000 bins, capable of
describing spectral features up to H ⇡ 20. The model comprises 432,984 parameters
(430,680 trainable/2,304 non-trainable). The final validation loss was Lval

.
= 6.36 · 10�4

and validation metric MAPEval = 862.70%. The training took around 1 min 20 s on a
quad-core Intel i7-6700HQ. Inference for a single input took around 80 ms.

The correct and predicted spectra for a single input are plotted in Figure 5.15. The lack of
spectral overlap is quantified by the high error rate of the validation metric. The network
prediction spectrum does not fit the correct source term in region H = 3.5 – 7.5. On the
other hand, the profile of the predicted source term at least follows, with a considerable
margin of error, the spectral features above H = 7.5. The root of the high validation
MAPE can be spotted by inspecting Figure 5.16. The losses and metrics are evaluated
exactly on the di↵erences between the blue (correct) and red (prediction) curves. Last
we plot the reconstructed temporal evolution of the source term in a smaller temporal
window in Figure 5.17. The prediction di↵ers from the correct result substantially after
t = 2500 a.u.

We investigate the reasons for the high prediction inaccuracy by inspecting the evolution
of losses and metrics during the training of the network, Figure 5.18. We notice that
while the test loss and metric (blue solid and dotted lines) monotonously decrease, the
same cannot be said about the validation loss and metric. We observe a local minimum
around epoch 16, then the errors soar by a factor of 5 and steadily start to decrease after
epoch 40. According to [98], this so-called ”double-descent” phenomenon can result in two
conclusions. Either the number of epochs is low or the capacity of the model is insu�cient
for the problem. During the experimentation with optimizing the training duration, it
has been shown that increasing the number of epochs did not yield better results. This
brings us to another conclusion that the TDSE-NN has low capacity, i.e. the size of the
network is insu�cient. Therefore in order to get better results, we should probably add
more hidden layers or increase the size of the current layers.
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Figure 5.15: The result spectra of the source terms for the same numerical field input from the
TDSE-NN model (red) along with the correct spectrum (blue).
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Figure 5.16: The correct (blue) and predicted labels (red) from the TDSE-NN model for a single
input. We inset a detailed comparison corresponding to the region marked by the black dashed
vertical lines. Remark that labels comprise real and imaginary parts of the source term spectrum
for the first, respectively second part of the full array. If we join the real and imaginary parts
together and plot the modulus in log-scale, we get exactly Figure 5.15.
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Figure 5.17: The result reconstructed source term in the time domain for single input from the
TDSE-NN model (red) on top of the correct source term (blue). We inset a detailed comparison
corresponding to the region marked by the black dashed vertical lines.

Figure 5.18: The result mean squared error loss for train and validation datasets, on the primary
y-axis, (solid lines) and mean absolute percentage error metric for train and validation datasets,
on the secondary y-axis, (dotted lines) during the training of TDSE-NN for 100 epochs.
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5.4 Outlook and further improvements

Let us discuss some possible design improvements of TDSE-NN and outline further re-
search paths. The general goal was to test the feasibility of using the NN for source term
computation from numerical electric fields. Therefore we naturally began with a simple
and rather small network15 to establish the starting point for further development.

Our TDSE-NN model was designed to work in the frequency domain. However, there are
no fundamental issues for it to operate in the temporal domain of the source term. In
principle, the neural network is indi↵erent to the nature of the input and output data
as long as it can find some deterministic relationship between the two. TDSE-NN in
the temporal domain would likely benefit from a correct phase of the fundamental field
component. On the other hand, inferring the spectrum from the temporal output is more
challenging as the model must sample globally the evolution of the field with a factor of
10 accuracy to output correct spectra.

An idea of how to implement the temporal component into the prediction of the network
was to evaluate MSE loss both in frequency and temporal domain and minimize their
sum. The approach was tested but due to the high cost of the custom loss function
evaluation and the lack of deep experience with Tensorflow API, the idea was dropped for
later developments. An alternative approach borrows inspiration from audio processing
neural networks and analysis of the input electric field in the time-frequency domain [103,
120]. By implementing short-time Fourier transforms we obtain a spectrogram that binds
together frequencies occurring at a given instant of the signal. The spectrogram gets
further processed by 2D convolution layers. The audio processing NNs are well accustomed
to working with frequencies spanning tens to hundreds of decibels while retaining the phase
of the signal. This coincides with the same task as the TDSE-NN is trying to achieve.

Naturally, a question emerges about how to tackle variable-sized outputs and inputs.
We are not aware of any NN architecture other than RNN or LSTM [104, 105] that
could process variable-sized inputs and outputs. On the other hand, we are uncertain
these architectures would yield superior and cost-e↵ective results anyway, see Appendix B,
Section B.4. A possible option within the realm of proposed networks is to set a su�ciently
large, fixed-sized input and output to encompass the required validity range for the desired
pulse lengths and frequencies. Further data augmentation is also possible by neglecting the
parts of the pulse (e.g. pulse front) where we do not expect any substantial harmonic yields.
Alternatively, we could keep only the individual phases and amplitudes of the generated
harmonics in a single frequency point to push the data compression even further. Instead
of looking at the whole pulse, we might also try to generate more detailed snapshots of
the numerical fields in time and estimate the generation based on these snapshots. The
physical reasoning behind this idea is the assumption that the source term generation
could be influenced just by a few preceding cycles.

Last but not least, the 1D-TDSE approximator needs large quantities of representative
data. The examples showcased in the thesis concerned a tiny portion of possible input
pulses, mainly given by constraints of the multi-scale model. More emphasis should be
placed on including pulses with varying peak intensities, pulse envelopes, central frequen-
cies, and even chirped pulses. Generally the larger the dataset for a network with su�cient
capacity, the better the outcome. The network, by construction, cannot correctly describe
anything out of the scope it has been trained on [33].

15Networks dealing with similar physical problems can take days to train even on powerful GPUs [102].
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Conclusion

The thesis covered the physics of microscopic and macroscopic scales for establishing a solid
foundation for assembling the multi-scale ad-hoc and ab-initio models. The multi-scale
model was based on the unidirectional pulse propagation equation with varying source
terms and was solved using the 4th-order Runge-Kutta scheme. Implementation of the
ab-initio model required getting deeply familiar with a numerical 1D-TDSE. Defining the
ad-hoc model required an understanding of the chi-process and obtaining the 1st- and
3rd-order susceptibilities based on the 1D-TDSE calculations.

The susceptibilities �(1) and �(3) for argon in the laser harmonic range H = 0 – 3.5 were
successfully extracted using the dipole model. The intensity threshold for the interpolation
was set to I = 1013 W/cm2 which was determined by the ionization rate. The validity
of the polynomial fits of �(1) and �(3) implemented into the ad-hoc model was checked
against the ab-initio model at intensities ranging from 1010 to 1013W/cm2 for propagation
at atmospheric pressure in argon for 26 µm upto 2.6 mm. The validity of the ad-hoc model
was constrained on 5-cycle (FWHM) pulses and frequency range H = 0 – 3.5. The ad-hoc
model results demonstrated Kerr-induced self-phase modulation at intensity 1013 W/cm2

and 3rd harmonic generation, both quantitatively and qualitatively comparable with the
ab-initio model. The ab-initio model results displayed interference patterns in the spatially
resolved harmonic spectrum. While these features may be partly attributed to physical
interaction between the individual harmonics, more in-depth testing is necessary to rule
out numerical artifacts.

The critical bottleneck in the evaluation of the ab-initio model is the computation of the
source term using the 1D-TDSE. A custom NN model called TDSE-NN was presented to
substitute the source term computation. TDSE-NN combined convolution and multilayer
perceptron NN architectures and took a numerical electric field in the frequency domain as
its input to produce the source term for the macroscopic model. The network was trained
on the propagation data from the ab-initio model for intensities 1010 and 1014 W/cm2.
The training on the low-intensity dataset (1010 W/cm2, 2.6 mm) revealed signs of data
bias during the inference phase. Moreover, the phase of the result source term was slightly
o↵, leading to the shift of the field in the temporal domain. The best-achieved validation
loss and mean absolute percentage error metric of the model for low-intensity fields was
2.29·10�11 respectively 2.06%. TDSE-NN was also trained on a wider spectral range in the
case of the higher intensity field with the best validation loss and metric being 6.26 · 10�4

respectively 862.70%. While some of the spectral features for higher-order harmonics were
predicted reasonably well, the model was unable to cope with lower harmonics. The likely
reason for the high inaccuracy of the model was the insu�cient capacity of the network.

The greatest benefit of this thesis was to examine the viability of using a simple neural
network in place of the TDSE solver. This research is still in a very preliminary stage but
the potential of NNs should not be understated and is certainly worth further examina-

85



tion. As demonstrated in a recent article by Pablos-Marín et. al. [102], NNs are capable
of predicting higher-order harmonics response in gas mimicking 3D-TDSE with good ac-
curacy. However, the model proposed in this thesis goes one step further by incorporating
a full numerical field as the input for the NN. While the evaluation of a single source term
took in the range of 10 – 100 s, the NN inference for a single input took in the range of
10 – 100 ms, o↵ering the opportunity to speed up the multi-scale model by 2 to 3 orders
of magnitude!

The future outlook is to focus on increasing the capacity of the network, possibly by
introducing multiple skipped connections in the MLP section. More emphasis should be
put on reducing the data bias through careful selection of samples from the macroscopic
propagation or by the generation of datasets with increased variability of field parameters.
To change the network design completely, we could borrow inspiration from the audio
processing neural networks [103, 120] and analyze the input electric field in the time-
frequency domain using the short-time Fourier transform. The pinnacle of the NN model
would be the option to predict the 1D-TDSE source terms for arbitrarily sized and shaped
pulses with various intensities and central frequencies.
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Appendix A

Retrieving ionization from the
1D-TDSE

The problem of modeling of photoionization rate expressions such as ADK [72] or PPT [106]
is their lack of validity across a wide intensity range. To precisely retrieve ionization, we
can employ the 1D-TDSE. One option is to retrieve the free electron density in time us-
ing the resolvent operator method (ROM) [107] for various ionization regimes [79]. The
application of the method for the tunneling regime is depicted in Figure A.1. The sec-
ond option is to compute the free electron density from the wavefunction directly once the
pulse propagated through the medium. This refers to the yellow continuum curve depicted
in Figure 2.4. Let us briefly introduce the method.

The final wavefunction at the end of the pulse | f i is composed of bound (b) and continuum
(c) states1

| f i = | bi+ | ci . (A.1)

By projecting | f i onto the bound states labelled with principal quantum numbers n 2
{1, 2, . . . ,N} we get the population of electrons in continuum as

pc = 1� h f |Pb | f i , (A.2)

where the projector onto the bound states is defined as

Pb =
NX

n=1

| ni h n| . (A.3)

The population density of the individual state n is given as

pn = | h n| f i |2. (A.4)

For the computation of the continuum density, the first 16 bound states were used (see Al-
gorithm 1 for details). The first 5 bound states of argon and their corresponding energies
are plotted in Figure A.2. The important conclusion is that the ionization rate computed
using the modified ADK [72, 73, 74], depicted in Figure 2.4, copies the continuum popu-
lation trend. The factor di↵erence is attributed to the fact that the ADK rate assumes a
3D geometry.

1Projection of the wavefunction on bound and continuum states requires extra caution depending on
the employed gauge, see [79].
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Figure A.1: Time-dependent probability density resolved in energy computed using ROM. Com-
puted for a 4-cycle sin2-pulse of central frequency !0 and field amplitude E0 = 0.14 a.u. . The figure
shows the energy distribution of electrons in the continuum in time. The first 16 bound states were
subtracted from the wavefunction. We recreated Figure 6 from [79] using the 1D-TDSE solver,
introduced in 3.1, to illustrate the method.

Figure A.2: Normalised first 5 bound states of argon with their corresponding energies in atomic
units.
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Appendix B

Neural network dead ends

In this appendix, we elaborate further on some tested approaches and problems encoun-
tered along the way when dealing with the neural network design.

B.1 Amplitude and phase training

Separating explicitly the amplitude and phase of the positive spectrum appeared as a
viable option from the start. The reason is the ability to enhance the low-amplitude
features for better comprehension by the network. The idea is as follows. Say we have a
field F and its corresponding spectrum F̂ . We can then write field F in Fourier terms as:

F =
X

!

F̂!e
�i!t =

X

!

|F̂!|e�i'! (B.1)

where we use the amplitude |F̂!| and phase '! for the inputs and outputs. Moreover,
using the following identity

|F̂!| = exp
Ä
log
Ä
|F̂!|
ää

(B.2)

we can pick the logarithmically scaled amplitude log
Ä
|F̂!|
ä
, which enhances the low-

amplitude features, along with the phase '. Because the phase of the FFT is discontinuous,
between (�⇡,⇡), we used the phase unwrapping to create a continuous phase curve.

The drawback of this procedure was the inability to train such a network that would
be sensitive enough on the phase that is well defined only where the amplitude of the
harmonic peak is meaningful, see 4.1. The phase of the individual field components is
crucial for the determination of the moment when a particular frequency is generated.
Our initial designs of NNs were incapable of dealing with this task.

B.2 N-th root feature extraction

Using the real and imaginary parts of the spectrum comes with the issue of having the
spectral features vary by several orders of magnitude. The way to tackle this problem is
to provide a nonlinear transform of computing odd roots of individual parts. The network
is then fed by a pair of inputs ( n

p
Re[F ], n

p
Im[F ]) where n is odd integer. Assuming the

definition of a square root with odd roots for negative numbers, there is no problem with
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the application of this idea. Applying the same principle on the outputs and applying
n-th power on labels then provides the unscaled results. However, during the testing and
experimentation, it became obvious that such an approach disproportionally enhances
noise and induces oscillations, further degrading the feature extraction which was the goal
in the first place. Some spectral features in predicted labels were significantly deformed
by the inverse transform due to the high nonlinearity of the n-th root.

B.3 Choice of activations

As presented in the theoretical overview, Section 5.1.1, we have multiple choices for the
activation functions. ReLU is very popular due to its simplicity and e�ciency for larger
networks composed of hundreds of layers. However, during the testing, it proved to be
incapable of coping with our highly nonlinear problem. Sigmoid is su�ciently nonlinear
but converges slowly and has a limited output range of (0, 1). For these reasons, we settled
with using the tanh(x) activation. With high nonlinearity and range (�1, 1) it is the best
candidate for solving the problem. The activation for the output layer must be selected
with special caution as we need to retain an adequate output range. The only suitable
candidates are tanh(x) or id(x) but we stick to the latter simply because we do not want
to restrict the output range in any way.

B.4 Assessment of TDSE-NN designs and trials and errors

Numerous NN designs and improvements were tried and tested:

• Deep MLP: MLP network (no CNN) with many dense layers (up to 10) of size
around 100 nodes. Problems: longer training time, high generalization error, very
high dropout rate necessary (around 0.8� 0.9).

• Shallow MLP: MLP network with a few dense layers of higher size (� 256). Prob-
lems: longer training time, inability to retrieve features from the data, and the
output was extremely noisy.

• Deep CNN: CNN network with more than 3 1D convolution layers. Problem: poor
performance – the output data of the convolution was lacking useful information.

• Compression-decompression with high compression ratio: compression ratio
in the compression-decompression part of MLP higher than 4:1 or narrower bottle-
neck (layer size < 32) resulted in a very noisy output.

• Gaussian noise: setting higher values of noise (µ > 0.2) resulted in poor training
and inference of the model.

During the experimentation with various models, it was found that CNN regularized
the network as it extracted some lower-level features. Another improvement was made
by the implementation of the batch normalization layer right after the flattening layer.
Normalizing the data in the range (�1, 1) also made significant progress in training and
inferring.

Using the skipped connection was a huge improvement. The previous designs were very
insensitive to the phase of the input field. This resulted in a significant temporal shift of
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the NN output in the temporal domain. A Skipped connection was able to keep some of
the very important features in the data during the forward propagation. As a result, the
network generalized better.

So far we have discussed only a limited class of neural network architectures. We briefly
examined recurrent neural networks (RNN) and their successors long short-term mem-
ory (LSTM) networks which are types of bi-directional neural networks where the data
flows in both directions [104, 105]. They are mainly used to predict sequences of data
given the sequences of variable lengths and are most suited for natural language pro-
cessing tasks [108] or handwriting recognition [109]. RNNs and LSTMs were overthrown
by transformer architecture [110]. Transformers do not require any recurrent units while
reaching better performance with natural language processing tasks which has led to the
rise of large language models [116, 23]. However, RNNs, LSTMs and transformers are
typically too large, overly complicated models and costly to train. Therefore we decided
to stick with conservative usage of CNNs and MLPs.
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