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Abstract
This thesis deals with the principles of
modelling dependence of random variables
by copulas. The study of copulas and
their applications in statistics is a rather
modern phenomenon. While mixtures of
copulas are well described, little is known
about copulas describing conditionally in-
dependent distributions. In this thesis, we
investigate how the properties of copulas
are restricted by the assumption that they
describe joint distributions of mixtures of
two (and more) independent distributions.

Considering the lack of available litera-
ture sources mentioning formulas for the
probability density functions of copulas
and some found errors in already pub-
lished sources, we derive densities of copu-
las by taking the second mixed derivatives
of the copulas (assuming they are abso-
lutely continuous).

The densities of various types of cop-
ulas near the extremes of their domain
and their limits are studied. Conclusions
regarding the applicability of such copulas
for financial risk modeling are discussed
and presented. Also there are outlined
potential directions of possible future re-
search and development based on the ob-
tained results.

Keywords: Copula, random variable,
probability distribution, quantile
function, singular value decomposition,
copula density

Supervisor: prof. Ing. Mirko Navara,
DrSc.

Abstrakt
Tato práce se zabývá principy modelování
závislostí mezi náhodnými veličinami po-
mocí kopulí. Studium kopulí a jejich apli-
kace ve statistice je poměrně moderním
jevem. Zatímco směsi kopulí jsou dobře
popsány, málo se ví o kopulích popisují-
cích podmíněně nezávislá rozdělení. V této
práci zkoumáme, jak jsou vlastnosti ko-
pulí omezeny předpokladem, že popisují
sdružené rozdělení směsi dvou (a více) ne-
závislých rozdělení.

S ohledem na nedostatek dostupných li-
terárních zdrojů uvádějících vzorce pro
hustoty pravděpodobnosti kopulí a ně-
které nalezené chyby v již publikovaných
zdrojích jsou zde odvozeny hustoty kopulí
pomocí druhých smíšených derivací ko-
pulí (za předpokladu, že jsou absolutně
spojité).

Jsou studovány hodnoty hustoty růz-
ných typů kopulí v blízkosti extrémů je-
jich definičního oboru a jejich limity. Jsou
diskutovány a prezentovány závěry týka-
jící se použitelnosti takových kopulí pro
modelování finančního rizika. Také jsou
naznačeny potenciální cesty pro další vý-
zkum a vývoj na základě získaných vý-
sledků.

Klíčová slova: Kopule, náhodná
veličina, rozdělení pravděpodobnosti,
kvantilová funkce, singulární rozklad,
hustota kopule

Překlad názvu: Modelování závislosti
náhodných veličin pomocí kopulí —
Principy modelování závislosti
náhodných veličin pomocí kopulí
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Chapter 1

Introduction

In the modern world, research and practical applications in the fields of
statistics and probability are increasingly confronted with the growing need
for precise and flexible modeling of dependencies among random variables.
These dependencies play a pivotal role in forecasting, decision-making, and risk
management across various domains, including finance, medicine, climatology,
and many others.

However, there is a crucial aspect of dependencies that requires special
attention: conditional independence. Understanding this concept and its
significance constitutes a fundamental aspect in the field of modeling de-
pendencies among random variables. Conditional independence entails that,
under certain conditions, variables can be considered independent despite
the presence of common factors or interconnections. This concept becomes
particularly relevant when analyzing data and developing models where it
is necessary to account for the context and conditions under which the data
were collected.

In this thesis, we will study the principles of modelling dependence of
random variables by copulas and endeavor to explore and deepen our under-
standing of conditional independence and its role in modeling dependencies
among random variables. We will examine both the theoretical and practical
aspects of this concept and demonstrate how it can be applied in real-world
scenarios, especially within the context of finance and the prediction of ex-
treme events. This work aims to underscore the importance of conditional
independence in modeling the dependencies of random variables and its
impact on practical applications across diverse domains.

We will concentrate on the bivariate normal distribution because it is the
most important case in practice (applications in quantitative finance include
pricing of options and estimation of asset correlations; the impressive list by
Balakrishnan and Lai (2009) [10] mentions applications in agriculture, biology,
engineering, economics and finance, the environment, genetics, medicine,
psychology, quality control, reliability and survival analysis, sociology, physical
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1. Introduction .....................................
sciences and technology) [14]. We will give a view on its limiting values close
to extreme points.

Firstly, in Chapter 1 we will study the existing terms, properties and
limitations for copulas, and also analyze the relevance and problematics of
this issue in economics. Further, in Chapter 2, graphs of various types of
copulas will be presented, as well as formulas for finding the limits of the
probability density of these types of copulas in the proximity of their extremes
will be derived. These limits will also be calculated. In Chapter 3, we tried
to answer the question whether mathematical analysis, statistical tools, and
optimization can determine the number of random vectors with independent
components (RVICs) constituting a copula of the mixture.

1.1 Foundations of copulas

Fundamental principles of copulas have been outlined by R. B. Nelsen [16]. We
will delve into the core principles he has introduced, including the definition
of copulas, their properties, and their role in capturing dependence structures.

So what are copulas and what is it for? In general terms copulas can
be described as functions that join or “couple” multivariate distribution
functions to their one-dimensional marginal distribution functions which are
uniform on the interval (0, 1). For example, a 2D-copula (two-dimensional
copula) is a mathematical concept used to model the dependence between
two random variables. It describes the structure of dependence between
these two variables, independently of their specific marginal distributions.
In other words, a 2D-copula focuses solely on the relationship between the
variables, disregarding their individual distributions. Thus, consider arbitrary
continuous marginal distribution functions F1, ..., Fn. Then, we can define a
multivariate distribution function using the copula such that F (y1, ..., yn) =
C(F1(y1), ..., Fn(yn)). Here, F is a multivariate distribution function in
this equation. In 1959, Sklar [19] showed that any continuous multivariate
distribution function F can be written in the form of this equation—using
a copula representation. In the subsequent discussion, we will delve into
the theoretical aspects using illustrative examples of copulas for two random
variables. To make this more tangible, let’s consider two random variables,
denoted as X and Y , which are transformed to uniformly distributed random
variables S = FX(X) and T = FY (Y ).

We form a copula as C(s, t) = F (F −1
X (s), F −1

Y (t)), where the data being
located in the copula are simulated and predefined. Thus any copula is a
function with the following properties [5]:..1. Dom C = S1 × S2, where S1 and S2 are subsets of I = [0, 1] containing 0

and 1.
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................................ 1.1. Foundations of copulas..2. For every s ∈ S1 and every t ∈ S2:

C(s, 1) = s

C(1, t) = t

C(s, 0) = C(0, t) = 0..3. For any values a, b, c, d ∈ I such that a ≤ b and c ≤ d:

C(b, d) − C(b, c) − C(a, d) + C(a, c) = P (a < x ≤ b, c < y ≤ d) ≥ 0 .

Combining the above equations yields the copula (Fréchet-Hoeffding)
bounds:

W (s, t) := max(s + t − 1, 0) ≤ C(s, t) ≤ min(s, t) =: M(s, t) .

Consequently, C is uniformly continuous within its defined domain.

Based on these definitions and formulas above, let’s explore how copula
plots look like. The graph of any copula is a continuous surface within the
unit cube I3 whose boundary is the skew quadrilateral with vertices (0, 0, 0),
(1, 0, 0), (1, 1, 1) and (0, 1, 0). Also the useful way to present the plot of a
copula is with a contour diagram – the graph of level sets in I2 given by C(s, t)
= const. In Figure 1.1 there are presented the graphs of the copulas M and
W , as well as the graph of Π, a portion of the hyperbolic paraboloid Π(s, t) =
st. In Figure 1.2 we present the contour diagrams of these mentioned copulas.

Figure 1.1: 3D graphs of copulas [1].

Figure 1.2: Contour diagrams of copulas [1]. (The light grey triangle represents
the Fréchet-Hoeffding bounds for x = y = 0.3.)

3



1. Introduction .....................................
1.2 Use of copulas in economics

Why are copulas useful in many fields of life and why exactly them? The
following Figures 1.3 and 1.4 can help us to answer this question.

Figure 1.3: Stock portfolios [12].

The graph in Figure 1.3 shows the relationship between two stocks, labeled
as stock A and stock B. The axes of the graph represent the changes in prices
of these stocks on a particular day.

The graph has different areas, painted in their special colour:

.Green area (“ordinary days”): the most common situation where
changes in the prices of both stocks are not very strong..Yellow area (“both stocks gain strongly” and “both stocks gain“): days
when both stocks show growth. A lighter shade of yellow corresponds to
moderate growth, while a darker shade indicates strong growth..Red area (“both stocks lose” and “both stocks lose strongly“): days
when both stocks lose in value. A darker shade of red indicates larger
losses..Purple areas (“asymmetric days: one up, one down“): days when one
stock rises in price and the other falls.

Due to the fact that copulas are mathematical functions used to describe
the relationship or dependency between random variables, their application

4



.............................. 1.2. Use of copulas in economics

is particularly useful in finance for modeling and analyzing dependencies
between different financial assets, such as stocks. This is related to several
advantages of copulas:

- Flexibility in modeling dependencies: Copulas allow modeling vari-
ous types of dependencies, including asymmetric and nonlinear relationships,
which are often encountered between financial assets. On the graph in Fig-
ure 1.3 above, this is manifested in the form of asymmetric days, when one
stock rises and the other falls.

- Modeling extreme events: Copulas can effectively model the joint
behavior of assets in extreme market conditions, such as crises. This helps in
analyzing scenarios where stocks either simultaneously drop sharply or rise
sharply (as shown by the red and yellow areas on the graph).

- Improving risk understanding: Using copulas allows for a better
assessment of portfolio risk, as they provide information about the likelihood
of joint price movements of stocks. This is important for determining the
likelihood of large losses or gains.

- Portfolio diversification: Understanding the dependencies described by
copulas helps to identify which stocks in the portfolio behave independently
of each other, which is critically important for a diversification strategy.

Using copulas to analyze data presented on such graphs can significantly
improve investment management and risk strategies, providing a deeper and
more accurate understanding of how stocks may react in different market
scenarios.

Figure 1.4: Bank loans [12].

The graph in Figure 1.4 is used to show how two borrowers, labeled as
borrower j and borrower k, behave in terms of loan repayment. The graph is
divided into different sections based on the outcomes of their loan repayments.

5



1. Introduction .....................................
The graph, as the previous one, has different areas, painted in their special

colour:

.Blue area (“both j and k pay“): This is the section where both borrowers
pay back their loans. It’s the most favorable outcome for banks..Red area (“j pays, k defaults“): In this part, borrower j pays back the
loan, but borrower k does not..Pink area (“k pays, j defaults“): Here, borrower k pays back the loan,
whereas borrower j defaults..Grey area (“both j and k default“): This is the least favorable scenario
where both borrowers fail to pay back their loans.

Copulas are particularly good at modeling tail dependence, which is the
likelihood of extreme events occurring simultaneously, such as both borrow-
ers defaulting at the same time. This is critical for stress testing and for
understanding worst-case scenarios in financial risk management.

Moreover, financial institutions are often required to maintain adequate
capital against potential losses. By providing a more accurate measure of joint
default probabilities, copulas help banks comply with regulatory requirements
more effectively.

1.3 The 2008 mortgage crisis: applying Gaussian
copulas in economics

In the mid-80s, Wall Street turned to quants [18] like David X. Li, who
introduced a groundbreaking method for assessing risk called the Gaussian
copula function.

David Li’s formula, developed by the Canadian mathematician, became
a cornerstone in financial engineering, offering a simple way to assess risks,
particularly in the realm of bonds and debt instruments. Relying on credit
default swap prices, it provided an attractive method for measuring correlation
between various assets without the need for extensive default data.

However, despite its mathematical elegance, the Gaussian copula proved
ineffective in predicting risks. Issues arose from the assumption of constant
correlation, which did not align with the reality of financial markets. It failed
to account for the volatility of correlation in crisis conditions when housing
prices sharply declined. The lack of flexibility and inability to consider
possible changes played a key role in its failure.

As a result of employing the Gaussian copulas in risk assessment, numerous
new AAA bonds and other financial instruments were created, often based

6



............. 1.3. The 2008 mortgage crisis: applying Gaussian copulas in economics

on questionable assets. This led to the growth of credit default swap and
variable-rate debt-based bond markets. Ultimately, the Gaussian copulas’
inability to adequately account for real risks contributed to the 2008 financial
crisis, where many bonds previously considered risk-free lost their value,
causing significant repercussions for the global economy.

The story serves as a cautionary tale about the dangers of relying on
quantitative models without fully understanding their limitations. Now, we
will explore the factors that led to this crisis and examine potential measures
to better predict and mitigate such financial catastrophes.

The linear nature of the Gaussian copula means that the copula fails
to capture complex non-linear dependencies that may manifest in extreme
situations. Particularly in economic phenomena prone to extreme fluctuations,
such as financial crises, where non-linear and unstable deviations are crucial,
the Gaussian copula may provide distorted and underestimated results.

In extreme regions, the Gaussian and Student-t copulas may yield high
probability density values, making it less suitable for capturing tail risks (the
risk of an extreme event [20]) because they have no limits in these areas.
In such cases, alternatives such as Archimedean copulas may provide more
adequate risk estimates in the vicinity of extreme values because some of
them have exact values in limits (this will be discussed in Chapter 2).

. Student-t copula:
The Student-t copula has a parameter called “the number of degrees of
freedom” (ν), which influences the dependence structure. In extreme
points (edges), it causes heavier tails compared to the Gaussian copulas..Archimedean copulas (e.g., Clayton, Frank):
These copulas can also model various forms of dependence. Archimedean
copulas are characterized by an “index” parameter that affects the
heaviness of tails. In the vicinity of edges, depending on the parameters,
they may provide more flexible probability estimates compared to the
Gaussian copulas.

7
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Chapter 2

Copulas critical points and analysis of
mathematical models

2.1 Derivation of formulas for bivariate copulas’
probability densities

Table 2.1 contains formulas defining the values of the main copula types,
which will be studied in this thesis.

Copula type C(u, v) Coefficient boundaries

Gaussian Φρ
(
Φ−1 (u) , Φ−1 (v)

)
−1 ≤ ρ ≤ 1

Student-t tρ,ν
(
t−1
ν (u) , t−1

ν (v)
)

−1 ≤ ρ ≤ 1, ν ∈ N

Clayton
(
max(u−θ + v−θ − 1, 0)

)− 1
θ −1 ≤ θ < ∞, θ ̸= 0

Frank −1
θ ln

(
1 + (e−θu − 1)(e−θv − 1)

e−θ − 1

)
−∞ < θ < ∞, θ ̸= 0

Table 2.1: Bivariate copulas.([21] and [16])

Here:

. Φ−1 is the quantile function of the standard normal distribution;. Φρ is the joint cumulative distribution function of the two-dimensional
normal distribution with zero mean vector and correlation matrix

R =
[
1 ρ
ρ 1

]
;

. t−1
ν is the quantile function of Student-t distribution with ν degrees of

freedom;

9



2. Copulas critical points and analysis of mathematical models ................
. tρ,ν is the joint cumulative distribution function of the two-dimensional

Student-t distribution with correlation coefficient ρ. The covariance
matrix for multivariate t-distribution differs from the Gaussian correlation
matrix R [6], especially:

Cov(X) = ν

ν − 2R

for ν > 2.

Nelsen [16] has conditions of strictness for Clayton copula θ ≥ 0, where for
θ = 0: C0 = Π(u, v) = uv is the product copula.

According to [7], there is another notation for Frank copulas, namely: the
family (T F

λ )λ∈[0,∞] of Frank t-norms (copulas) is given by:

T F
λ (x, y) =


min(x, y) if λ = 0,

x · y if λ = 1,

max(x + y − 1, 0) if λ = ∞,

logλ

(
1 + (λx−1)(λy−1)

λ−1

)
otherwise.

The parameter λ is defined here as λ = e−θ.

The Gaussian copula is dependent solely on the correlation coefficient ρ
between random variables.

The Student-t copula, like the Gaussian copula, serves as a tool to model
dependency between random variables. However, it introduces an additional
parameter known as the number of degrees of freedom. So in the context of
the Student-t copula:

.Correlation Coefficient: This parameter, similarly to the Gaussian
copula, determines the strength and direction of the linear relationship
between random variables. It quantifies the degree to which the variables
move together..Degrees of Freedom: The number of degrees of freedom (often denoted
as ν) determines the thickness of the tails of the distribution. Higher
values of degrees of freedom result in thinner tails, approaching a Gaussian
distribution, while lower values lead to fatter tails, implying greater
probability of extreme events.

Some Archimedean copula families, especially Clayton and Frank copulas,
are characterized by a single parameter (θ). They have different boundaries
of this parameter (see Table 2.1).

Considering the lack of available literature sources mentioning formulas for
the probability densities of copulas, and some found errors in them (as for
example in [9]), it was decided to derive such formulas.

10



.............. 2.1. Derivation of formulas for bivariate copulas’ probability densities

In this section, we will derive some formulas for computing the density of
key copula types (Gaussian, Student-t, Frank). Since we need to find the
formula for the probability density of the copula, and for two variables it
will be a volumetric figure in space, we will need to find the second mixed
derivative of the cumulative distribution function (assuming the copula is
absolutely continuous).

In this chapter, the following notations and formulas will be used:

X, Y
Random variables, which will be evaluated
at points x, y ∈ (−∞, +∞)

FX , FY Distribution functions of X, Y

S = FX(X),
T = FY (Y )

Transformed random variables, which will be
evaluated at points s = FX(x), t = FY (y) ∈ (0, 1)

fX(x) = F ′
X(x) = ∂

∂x

s︷ ︸︸ ︷
FX(x) = ∂s

∂x
Density of random variable X

fY (y) = F ′
Y (y) = ∂

∂y

t︷ ︸︸ ︷
FY (y) = ∂t

∂y
Density of random variable Y

FX,Y Joint distribution function of (X, Y )

fX,Y (x, y) = ∂

∂x

∂

∂y
FX,Y (x, y) Joint density of a random vector (X, Y )

C(s, t) = FX,Y (F −1
X (s), F −1

Y (t))
The copula of (X, Y ) (the joint distribution
function of (S, T ))

c(s, t) = ∂

∂s

∂

∂t
C(s, t) The copula density of (X, Y )

Using the notations above, we can obtain the copula density generally as:

c(s, t) = ∂

∂s

∂

∂t
C(s, t) = ∂

∂s

∂

∂t
FX,Y

(
F −1

X (s), F −1
Y (t)

)

= ∂

∂t

(
∂

∂s
FX,Y

(
F −1

X (s), F −1
Y (t)

)
· ∂

∂s

x︷ ︸︸ ︷
F −1

X (s)︸ ︷︷ ︸
∂x
∂s

)

=
(

∂

∂s

∂

∂t
FX,Y

(
F −1

X (s), F −1
Y (t)

))
· ∂x

∂s︸︷︷︸
1

fX (x)

· ∂y

∂t︸︷︷︸
1

fY (y)

= 1
fX

(
F −1

X (s)
) · 1

fY

(
F −1

Y (t)
) · fX,Y

(
F −1

X (s), F −1
Y (t)

)
(2.1)
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2. Copulas critical points and analysis of mathematical models ................
Abbreviation Formula
fX(x) 1√

2π
e− 1

2 x2

fX,Y (x, y) 1
2π
√

1 − ρ2 e− 1
2(1−ρ2)

[x2−2ρxy+y2]

Table 2.2: Formulas for Gaussian copulas ([15] and [9]).

a) Probability density of Gaussian copulas

Substituting known formulas, listed in Table 2.2, into (2.1), we obtain an
expression for the probability density cρ of the Gaussian bivariate copula:

cρ(s, t) = cρ(FX(x), FY (y))

=

1
2π

√
1−ρ2

exp

− 1
2(1−ρ2) [

x2︷ ︸︸ ︷
F −1

X (s)2 −2ρ

x︷ ︸︸ ︷
F −1

X (s)
y︷ ︸︸ ︷

F −1
Y (t) +

y2︷ ︸︸ ︷
F −1

Y (t)2]


1√
2π

exp
(

−F −1
X (s)2

2

)
· 1√

2π
exp

(
−F −1

Y (t)2

2

)

= 1√
1 − ρ2 exp

(
−1

2
( 1

1 − ρ2 · x2 − 2ρ

1 − ρ2 · xy + 1
1 − ρ2 · y2 − x2 − y2

))

= 1√
1 − ρ2 exp

(
− ρ

2(1 − ρ2)(ρx2 − 2xy + ρy2)
)

The resulting formula corresponds to the expression for the normal copula
density in [21].

b) Probability density of Student-t copulas

Let’s conduct similar calculations for the density of the Student-t copula
for two variables. The formulas to be used are listed in Table 2.3).

Abbreviation Formula

fX(x)
Γ
(

ν+1
2

)
√

πνΓ
(

ν
2
) (1 + x2

ν

)− ν+1
2

fX,Y (x, y)
Γ
(

ν+2
2

)
Γ
(

ν
2
)

πν
√

1 − ρ2

(
1 + x2 − 2ρxy + y2

ν(1 − ρ2)

)− ν+2
2

Table 2.3: Formulas for Student-t copula ([15] and [13]).

Here:

. ν is the number of degrees of freedom,

12



.............. 2.1. Derivation of formulas for bivariate copulas’ probability densities

. Γ is the Gamma function.

However, in [9], comprehensive presentation describing copulas of Institute
of Mathematics and Statistics, University of São Paulo, Brazil, there was
found a mistake in the joint density formula:

fX,Y (x, y) = 1
2π
√

1 − ρ2

(
1 + x2 − 2ρxy + y2

ν(1 − ρ2)2

)− ν+2
2

In this formula, the first multiplier in the denominator is missing the
coefficient with the Gamma function, which depends on the degrees of freedom,
a characteristic feature of the t-distribution; instead, the coefficient 2 · π is
indicated there. Also, in the denominator of the second multiplier, (1 − ρ2) is
squared, whereas in other studied sources of Student-t copula ([13], [25] and
[3]), this squaring is not present. For further calculations, the formula from
source [13] will be used because it is mentioned there explicitly.

The corresponding Student-t copula density may be calculated by (2.1),
similarly to the density of the Gaussian copula:

cρ,ν(s, t) = cρ,ν(FX(x), FY (y)) =

Γ( ν+2
2 )

Γ( ν
2 )πν

√
1−ρ2

(
1 + x2−2ρxy+y2

ν(1−ρ2)

)− ν+2
2

Γ( ν+1
2 )2

πνΓ( ν
2 )2

(
1 + x2

ν

)− ν+1
2
(
1 + y2

ν

)− ν+1
2

= 1√
1 − ρ2 ·

Γ
(

ν
2
)

Γ
(

ν+2
2

)
Γ
(

1+ν
2

)2 ·

((
1 + x2

ν

) (
1 + y2

ν

)) ν+1
2

(
1 + x2−2ρxy+y2

ν(1−ρ2)

) ν+2
2

The resulting formula corresponds to the bivariate Student-t copula in [25].

c) Probability density of Frank copulas

The formula for the density of the Frank copula is specified in many sources;
however, we will verify the accuracy of the result through calculations.

Similar to the Gaussian and Student-t copulas, the probability density of
a copula can be obtained by taking the mixed second derivative of the copula.
Firstly, we take the derivative with respect to the first variable, considering
the second as a constant. Then we do the same, but with the second variable.
The calculations are presented below:

∂C(u, v)
∂u

= −1
θ

· (e−θ − 1)
(e−θu − 1)(e−θv − 1) + e−θ − 1 · (e−θv − 1)

(e−θ − 1) · e−θu · (−θ)

= (e−θv − 1) · e−θu

(e−θu − 1)(e−θv − 1) + e−θ − 1

13



2. Copulas critical points and analysis of mathematical models ................
Let’s denote the long expression k = (e−θu − 1)(e−θv − 1) + e−θ − 1, then

we obtain:
∂2C(u, v)

∂u∂v
= e−θue−θv · (−θ) · k − (e−θu − 1)e−θv · (−θ)(e−θv − 1)e−θu

((e−θu − 1)(e−θv − 1) + e−θ − 1)2

= (−θ)e−θue−θv(e−θ − 1)
((e−θu − 1)(e−θv − 1) + e−θ − 1)2 = (−θ)e−θ(u+v)(e−θ − 1)

((e−θu − 1)(e−θv − 1) + e−θ − 1)2

When specific numbers were substituted into the resulting formula, the
results matched the numbers on the Frank copula graphs in MATLAB. In [22],
the following formula was utilized, but with slightly different notation:

c(u, v) = −θ · g(1)(1 + g(u + v))
(g(u)g(v) + g(1))2 ,

where the function g is defined by: g(x) = e−θx − 1.

2.2 Visualization of copulas

In this section, we delve into the visualization of copulas, essential tools for
modeling dependency structures. We start by exploring various types of
copulas through graphical representations, emphasizing an examination of
how copulas behave near their extremal values. Additionally, we provide an
overview of utilizing programming software, particularly MATLAB libraries
and functions [17] – copulacdf and copulapdf – for constructing copula plots.
Through visualizations, we aim to elucidate the distinctive characteristics and
behavior of different copula families, providing insights into their applications
in diverse fields such as finance, statistics, and risk management.

To accurately represent the values on the axes representing random vari-
ables, a small margin was truncated from both sides of 0 and 1 (as it is hard
to compute limits at the boundary points for graphs). The parameter was set
to a value of a = 0.0001. Thus, the interval for depiction on all subsequent
plots in this work along the axes of random variables will be (a, 1 − a).

Let’s start by examining Gaussian copulas for independent random variables,
dependent random variables with a correlation coefficient of 0.25, and fully
dependent random variables (Figures 2.1–2.3). Each figure represents a copula
over the entire domain and on the interval close to the origin of coordinates
(a, 0.1).

The Gaussian copula, dependent solely on the correlation coefficient, vi-
sually portrays the relationship between random variables in a multivariate
normal distribution.

In the case of zero correlation (Figure 2.1), the copula density is a flat
surface. This occurs because there is no linear relationship between the
random variables. Each variable behaves independently of the other, resulting
in a copula that is spread uniformly across the entire space.

14



................................ 2.2. Visualization of copulas

Figure 2.1: Gaussian copula density, ρ = 0.

Figure 2.2: Gaussian copula density, ρ = 0.25.

Figure 2.3: Gaussian copula density, ρ = 0.75.

As the correlation coefficient ρ increases to 0.25, the copula density begins
to elongate along the diagonal axis. This elongation indicates a weak positive
linear relationship between the variables. Although the dependence is present,
it is not strong enough to significantly alter the shape of the copula.

With a correlation coefficient of 0.75, the copula density exhibits pronounced
elongation along the diagonal axis. This elongation signifies a strong positive
linear relationship between the variables.
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2. Copulas critical points and analysis of mathematical models ................
Due to the fact that the values of copula densities tended to +∞, some

graphs were plotted with a constraint on the z-axis in the interval [0, 30].
Let’s now examine how the graphs of the Student-t copula look like.

Figure 2.4: Student-t copula density, ρ = 0.25, ν = 3.

Figure 2.5: Student-t copula density, ρ = 0.25, ν = 60.

In Figures 2.4 and 2.5, we observe the Student-t copula with 3 degrees
of freedom and 60 degrees of freedom, respectively. The Student-t copula
with 3 degrees of freedom exhibits heavier tails and greater tail dependence
compared to the one with 60 degrees of freedom. As the degrees of freedom
increase, the copula approaches the Gaussian copula depicted in Figure 2.3:
with the same parameter ρ, when ν → +∞. This convergence is indicative of
the behavior of the Student-t copula toward a Gaussian copula as the tails
become thinner with higher degrees of freedom.

Now it’s time to explore the graphical representations of the Archimedean
copula family, especially Clayton and Frank copulas.

As observed from Figures 2.6–2.7, as the coordinates approach the extreme
point (0, 0), the Frank copula tends towards a constant, whereas the Clayton
copula is unbounded.
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.................. 2.3. Computation of limits of copula in extremes of domain

Figure 2.6: Clayton copula density, θ = 1.

Figure 2.7: Frank copula density, θ = 2.5.

There are obvious differences in the copula functions. Gaussian copula,
Student-t copula and Frank copula have symmetric tails and can capture
the symmetric tail correlations between random variables; Student-t copula
has thicker tails, it is more sensitive to tail correlation changes between
random variables and can capture symmetric tail correlations between random
variables better. Frank copula has a simple structure and strong adaptability,
and can meet the needs of most fields of application. Clayton copula is
suitable for applications with asymmetric tails, lower tail correlation, and
upper tail asymptotic independent two-dimensional random vectors.

2.3 Computation of limits of copula in extremes of
domain

Except for computing the limits of copula extreme values, we should check the
continuity of the function around the extreme points. We use the definition
of continuity:
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2. Copulas critical points and analysis of mathematical models ................
Definition 2.1. [23] A function f defined in the neighborhood of point a is
continuous at point a if and only if lim

x→a
f(x) = f(a).

There are presented the final formulas for calculating the probability
densities of studied copulas in Table 2.4.

Copula type Probability density formula c(u, v)

Gaussian 1√
1−ρ2

exp
(
− ρ

2(1−ρ2)(ρx2 − 2xy + ρy2)
)

Student-t 1√
1 − ρ2 ·

Γ
(

ν
2
)

Γ
(

ν+2
2

)
Γ
(

1+ν
2

)2 ·

((
1 + x2

ν

) (
1 + y2

ν

)) ν+1
2

(
1 + x2−2ρxy+y2

ν(1−ρ2)

) ν+2
2

Clayton (θ + 1)(uv)−θ−1(u−θ + v−θ − 1)− 1
θ

−2, θ > 0

Frank (−θ) · e−θ(u+v)(e−θ − 1)
((e−θu − 1)(e−θv − 1) + e−θ − 1)2

Table 2.4: Probability densities of copulas [22].

Here:. ρ is the correlation coefficient;. ν is the number of degrees of freedom;. Γ is the Gamma function.

Now let’s examine the copula density values around the extreme point (0, 0).

Definition 2.2. [15] Continuous random variables have a continuous distribu-
tion function. A random variable X is absolutely continuous if there exists a
non-negative function fX : R → [0, ∞) (the density of random variable X)
such that

FX(t) =
∫ t

−∞
fX(u)du.

The density then satisfies ∫ ∞

−∞
fX(u)du = 1.

Remark 2.3. Strictly speaking, densities of random vectors are not defined
uniquely, only up to a set of measure zero. Each random vector has at most
one continuous density.

All the formulas in Table 2.4 define densities continuous on the interior of
the unit square, (0, 1)2. We investigate these uniquely defined densities and
we ask whether they have (possibly improper/infinite) limits at the border of
the unit square, in particular in the origin (0, 0).
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.................. 2.3. Computation of limits of copula in extremes of domain

To create visualizations and perform additional analyses, there were used
MATLAB libraries. For a more precise reflection of copula values over the
interval (0, 0.1], 2D graphs were constructed. In these graphs, the diagonal line
s = t was taken as the horizontal axis, while the vertical axis directly reflects
the copula values. Copulas were obtained for variables with a correlation
coefficient of 0.25 (and corresponding coefficients θ for Archimedean copulas).
The results are presented in Figures 2.8–2.9.

For Gaussian copula density we have:

lim
(s,t)→(0,0)

c(s, t)

= lim
(x,y)→(−∞,−∞)

1√
1 − ρ2 exp

(
− 1

2(1 − ρ2)︸ ︷︷ ︸
<0

· ρ2︸︷︷︸
>0

·
(

(x2 + y2︸ ︷︷ ︸
→+∞

) −

→+∞︷︸︸︷
2xy

ρ

))

The value of the Gaussian probability density depends on the specific value
of the correlation coefficient ρ between random variables:

- For ρ < 0:

− 1
2(1 − ρ2) · ρ2 < 0; (x2 + y2) → +∞; −2xy

ρ
→ +∞ , so

lim
(x,y)→(−∞,−∞)

c (FX(x), FY (y)) = e−∞ = 0.

- For ρ = 0: lim
(x,y)→(−∞,−∞)

c (FX(x), FY (y)) = 1√
1 − 0

· e0 = 1.

- For ρ > 0: For y = kx, k ≥ 0:

In this case, the exponent’s degree takes the form:

lim
x→−∞

(
x2 + k2 · x2 − 2kx2

ρ

)
= lim

x→−∞

(
x2·
(
1 + k2 − 2

ρ
k
))

Now let’s solve the equation for which cases the expression
(
1 + k2 − 2

ρk
)

equals 0. This is a quadratic equation, and its solutions are given by the
quadratic formula:

k1,2 =
2
ρ ±

√
4
ρ2 − 4

2 =
2
ρ ±

√
4·(1−ρ2)

ρ2

2 =
2
ρ ± 2

ρ ·
√

1 − ρ2

2 = 1 ±
√

1 − ρ2

ρ

After denoting k1 = 1−
√

1−ρ2

ρ and k2 = 1+
√

1−ρ2

ρ , we have:
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2. Copulas critical points and analysis of mathematical models ................


0 ≤ k < k1 : lim
x→−∞

x2 ·
(

1 + k2 − 2
ρ

k

)
= +∞, then

lim
(s,t)→(0,0)

c(s, t) = lim
x→−∞

1√
1 − ρ2 · ex = 0

k = 1−
√

1−ρ2

ρ : lim
x→−∞

x2 ·
(

1 + k2 − 2
ρ

k

)
= 0, then

lim
(s,t)→(0,0)

c(s, t) = 1√
1 − ρ2 · e0 = 1√

1 − ρ2

k1 < k < k2 : lim
x→−∞

x2 ·
(

1 + k2 − 2
ρ

k

)
= −∞, then

lim
(s,t)→(0,0)

c(s, t) = lim
x→−∞

1√
1 − ρ2 · e−x = +∞

k = 1+
√

1−ρ2

ρ : lim
x→−∞

x2 ·
(

1 + k2 − 2
ρ

k

)
= 0, then

lim
(s,t)→(0,0)

c(s, t) = 1√
1 − ρ2 · e0 = 1√

1 − ρ2

k2 < k ≤ 1 : lim
x→−∞

x2 ·
(

1 + k2 − 2
ρ

k

)
= +∞, then

lim
(s,t)→(0,0)

c(s, t) = lim
x→−∞

1√
1 − ρ2 · ex = 0

Figure 2.8: Zoomed-in Gaussian, Student-t copula density plots near (0, 0)1.

1Parameters for plots were chosen as ρ = 0.25, ν = 3.
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.................. 2.3. Computation of limits of copula in extremes of domain

Based on this description, the following conclusions can be drawn regarding
the limits of Gaussian copula’s probability density: for the case where y = kx,
the limit is +∞ for k in some interval containing 1, and the limit is 0 outside
this interval. At the bounds of the interval, the limit is 1√

1−ρ2
.

Hence, for ρ > 0, we can see that the Gaussian copula around the point
(0, 0) doesn’t have a limit because its directional limits differ along different
curves, spanning the range (0, +∞) on an arbitrarily small neighborhood.

For Student-t copula density we have:

lim
(s,t)→(0,0)

c(s, t)

= lim
(x,y)→(−∞,−∞)

1√
1 − ρ2 ·

Γ
(

ν
2
)

Γ
(

ν+2
2

)
Γ
(

ν+1
2

)2

︸ ︷︷ ︸
const c1>0

·

((
1 + x2

ν

) (
1 + y2

ν

)) ν+1
2

(
1 + x2 − 2ρxy + y2

ν(1 − ρ2)︸ ︷︷ ︸
>0

) ν+2
2

The expression((
1 + x2

ν

) (
1 + y2

ν

)) ν+1
2

(
1 + x2 − 2ρxy + y2

ν(1 − ρ2)

) ν+2
2

=

√√√√√√√√
((

1 + x2

ν

) (
1 + y2

ν

))ν+1

(
1 + x2 − 2ρxy + y2

ν(1 − ρ2)

)ν+2

is the square root of a rational function in variables x and y. We’re taking the
square root, its argument should be (and is) positive. We will continue working
with the expression under the square root. Moreover, as (x, y) → (−∞, −∞),
we neglect insignificant terms, as the value will prevail and carry greater
weight for the terms with variables x, y.

To compute the limit, we use substitutions x = −uv, y = −u
v , where

u, v > 0, u → +∞, v arbitrary.

lim
(x,y)→(−∞,−∞)

(
x2y2)ν+1(

x2 − 2ρxy + y2
)ν+2 = lim

u→+∞

(
u2v2 u2

v2

)ν+1

(
u2v2 − 2ρuv

u

v
+ u2

v2

)ν+2

= lim
u→+∞

u4(ν+1)

u2(ν+2)
(

v2 − 2ρ + 1
v2

)ν+2

= lim
u→+∞

u2ν(
v2 − 2ρ + 1

v2

)ν+2

As we can see, the numerator and the denominator depend on different
variables, which are not connected to each other in any way. That’s why
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2. Copulas critical points and analysis of mathematical models ................
it’s impossible to precisely determine the value of the limit for this part of
an expression. The numerator can be arbitrarily large, so the values are
not bounded from above. Also the denominator can be chosen arbitrarily
large, allowing to achieve (for u fixed) an arbitrarily small value. In any
neighborhood of (0, 0), the values of the copula density span the whole interval
(0, ∞). Therefore, the limit of the copula density at the point (0, 0) doesn’t
exist.

The solutions for the limits coincided with the plots on the graphs simulated
in MATLAB (Figure 2.8). For a positive correlation coefficient ρ = 0.25
and movement along the diagonal s = t to (0, 0), the limit of the Gaussian
copula density tends to +∞. The limiting value of Student-t copula density
is higher compared to the Gaussian copula due to the presence of additional
positive coefficients (product of Gamma functions), which increase the weight
of values as the number of the degrees of freedom grows.

Now let’s examine the limits of Archimedean copulas near the origin (0, 0).

Figure 2.9: Zoomed-in Archimedean copula density plots near (0, 0)2.

Clayton copulas for θ < 0 are nilpotent [7], therefore equal to 0 in a neigh-
borhood of (0, 0) and so with zero density there, too. For θ > 0, we consider
the special case u = vk, 0 < k < 1. We analyze the limit

lim
v→0

c(vk, v) = lim
v→0

(θ + 1)v(k+1)(−θ−1)(v−kθ + v−θ − 1︸ ︷︷ ︸)− 1
θ

−2 .

In the limit, the sum v−kθ + v−θ − 1 may be replaced by its highest order
term, which is v−θ,

lim
v→0

c(vk, v) = lim
v→0

(θ + 1)v(k+1)(−θ−1)+(−θ)(− 1
θ

−2) = lim
v→0

(θ + 1)vθ−(1+θ)k .

The parameter θ is fixed, while k ∈ (0, 1) may be chosen arbitrarily. Thus
the exponent θ − (1 + θ)k can have any sign, making it possible to get results
from 0 to ∞. The limit lim

(u,v)→(0,0)
c(u, v) does not exist.

2Parameters for plots were chosen as Clayton θ = 1, Frank θ = 2.5.
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For Frank copula density we have:

lim
(u,v)→(0,0)

(−θ)
→1︷ ︸︸ ︷

e−θ(u+v)(e−θ − 1)(
(e−θu − 1)(e−θv − 1)︸ ︷︷ ︸

→0

+e−θ − 1
)2 = −θ

e−θ − 1

This is always a positive finite number.
The solutions for the limits coincided with the plots on the graphs simulated

in MATLAB. While moving along the diagonal s = t to (0, 0), the limit of
the Clayton copula probability density tends to +∞. The limiting value of
Frank copula density has exact value, which fully corresponds to the data
obtained in Figure 2.9 above.

The exact value of the copula density can be very useful in forecasting
various events. For example, in an article [2] studying Value at Risk (VaR)
– a method to estimate the worst risk of an investment, calculations were
conducted using the Frank copula. Previous research on VaR by other
researchers found that VaR value was reliable only for data fulfilling the
normality assumption. Therefore, it was necessary to estimate VaR without
ignoring the presence of heteroscedasticity and unfulfilled residual normality
of the joint distribution model. This research aimed to measure VaR using
the Frank Copula with stock return data from 2014 to 2018. They were
able to predict the risk obtained from the calculation of VaR with the Frank
copula and Monte Carlo simulation, and maximum loss in one-day prediction
at high levels of confidence.

Now let’s examine the copula density values around the extreme point (1, 1).

Figure 2.10: Zoomed-in Gaussian, Student-t copula density plots near (1,1)3.

For Gaussian and Student-t copula probability densities we have the same
situation, as we had for the extreme point (0, 0) (Figure 2.10).

3Parameters for plots were chosen as ρ = 0.25, ν = 3.
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2. Copulas critical points and analysis of mathematical models ................
As was analyzed in [11], Student-t copula can always be mistaken for a

Gaussian copula if its number of degrees of freedom is sufficiently large. Then,
depending on the correlation coefficient, the Student-t copula can predict a
non-negligible tail dependence which is completely missed by the Gaussian
copula assumption. In other words, the Gaussian copula predicts no tail
dependencies and therefore does not account for extreme events that may
occur simultaneously but nevertheless too rarely to modify the test statistics.
To quantify the probability for neglecting such events, in this research have
been investigated the situations when one is unable to distinguish between
the Gaussian and Student-t copulas for a given number of degrees of freedom.
It led to the conclusion that it may be very dangerous to embrace blindly the
Gaussian copula hypothesis when the correlation coefficient between the pair
of assets is too high as the tail dependence neglected by the Gaussian copula
can be as large as 0.6.

Now let’s examine the limits of Archimedean copulas near the point (1, 1)
because they will be different.

Figure 2.11: Zoomed-in Archimedean copula density plots near (1, 1)4.

For Clayton copula density we have:

lim
(u,v)→(1,1)

θ + 1

uθ+1 · vθ+1
(

1
uθ + 1

vθ − 1
) 1

θ
+2

= θ + 1
1 = θ + 1

If in the case of the point (0, 0) the Clayton copula density doesn’t have a
limit, then at the point (1, 1) it assumes a precise number. Therefore, it can
be convenient to use the Clayton copula to forecast the behavior of functions
at this point, as it has an exact value here.

4Parameters for plots were chosen as Clayton θ = 1, Frank θ = 2.5.
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For Frank copula density we have:

lim
(u,v)→(1,1)

(−θ)
e−2θ︷ ︸︸ ︷

e−θ(u+v)(e−θ − 1)(
(e−θu − 1)(e−θv − 1)︸ ︷︷ ︸

(e−θ−1)2

+e−θ − 1
)2 = (−θ)e−2θ(e−θ − 1)

(e−θ(e−θ − 1))2

= (−θ)e−2θ(e−θ − 1)
e−2θ(e−θ − 1)2 = −θ

e−θ − 1

The solutions for the limits coincided with the plots on the graphs simulated
in MATLAB (Figure 2.11). In the direction along the diagonal s = t to (1, 1),
the limits of the Clayton and Frank copula probability densities tend to some
exact value.

In this chapter, we analyzed and calculated the limits of probability density
for the main types of bivariate copulas. We aimed to derive the limits
of copula density near the extremes of the domain. Our focus was on a
conditionally independent distribution created by a mixture of independent
components. We wanted to detect the limit of its probability density in
extreme points. However, we did not achieve this. Even for one random
vector with independent components, it usually has not a meaningful solution
(the density often tends to +∞ and its limit need not exist).
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Chapter 3
Identifying the number of random variables
included in the mixture

Many random variables can be expressed as mixtures of other random variables.
The use of copulas provides a framework for probabilistic understanding the
involvement of multiple random variables in such mixtures. We will create a
definition which will be used throughout this chapter.
Definition 3.1 (Random Vector with Independent Components - RVIC). In 2D,
a random vector with independent components (RVIC) can be defined as the
formation of 2 independent random variables.

Recall that random variables X, Y are independent if for all intervals I, J
the events X ∈ I, Y ∈ J are independent, i.e.,

P (X ∈ I, Y ∈ J) = P (X ∈ I) · P (Y ∈ J)

It is sufficient to consider intervals of the form (−∞, t], i.e.,

P (X ≤ x, Y ≤ y) = P (X ≤ x) · P (Y ≤ y) = FX(x) · FY (y)

for all x, y ∈ R [15], where FX , FY are cumulative distribution functions of
X, Y .

The RVIC from these random variables is Z = (X, Y ) with the joint
cumulative distribution function

FZ(x, y) = FX(x) · FY (y) .

Let’s consider RVICs Z1 = (X1, Y1) and Z2 = (X2, Y2). Let Z = (X, Y ) be
a mixture of Z1 and Z2 with coefficients c, 1 − c.

Now let’s define the differences between mixture of copulas and copula of
a mixture:..1. Mixture of copulas. This involves combining multiple copulas to

create a new copula. Each copula in the mixture can model different
types of dependencies. The overall copula is a convex combination of
individual copulas.
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3. Identifying the number of random variables included in the mixture ...............2. Copula of a mixture. This involves a single copula that models the
joint distribution of a mixture of random vectors. The mixture refers to
the random variables themselves being drawn from different distributions.
The copula here captures the dependence structure of the entire mixture
distribution.

We deal with the second case. The difficult problem is that, to obtain
a copula, we need to change the scales of the marginal distributions by their
cumulative distribution functions, which are complex and different from the
cumulative distribution functions of the original components. We studied mix-
tures of Gaussian distributions. Then the cumulative distribution functions,
as well as their inverses (the quantile functions) are transcendent. These are
still implemented by numerical approximations in MATLAB. However, when
we switch to mixtures, the computation of quantile functions becomes hardly
feasible. Therefore we decided to make a numerical simulation on sampled
data. This approach appeared computationally efficient. We present it in
this chapter.

We will perform the following steps:

1. Simulate random variables X1, Y1, X2, Y2 with normal distributions.
(Make samples of 1D normal distributions and use their empirical distribu-
tions.)

2. Create RVICs Z1 = (X1, Y1) and Z2 = (X2, Y2) from the empirical
distributions; FZ1(x, y) = FX1(x) · FY1(y), FZ2(x, y) = FX2(x) · FY2(y).

3. Create a mixture Z of Z1 and Z2 and find its marginal distributions of
X, Y (which are the corresponding mixtures of X1, X2, resp. Y1, Y2).

4. Map X, Y by FX , FY to random variables FX(X), FY (Y ) which have
an empiric distribution sampled from the uniform distribution on the interval
[0, 1].

5. Apply the transformation according to step 4 component by component
to the random vector Z, thereby obtaining its copula C.

6. By discretizing [8] copula C, we will get a matrix whose essential rank
can be estimated using Singular Value Decomposition [24].

All subsequent steps were implemented in MATLAB [4]. In this chapter,
we use images of data simulated with MATLAB, their density distributions,
copulas, etc.

Continuous random variables’ data was simulated on a computer using
3500 points for every variable. Some inaccuracies in plotting and deviations
in calculations may be associated with the selected number of points; for
more points, the results should be more accurate.

Table 3.1 explains the notation used in this chapter (in MATLAB):
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................3.1. Step 1. Sampling random variables from normal distributions

Abbreviation Meaning
mu mean
sigma standard deviation
X_1, Y_1, X_2, Y_2 1D random variables [1 ∗ 2450] and [1 ∗ 1050]
Z_1 RVIC with coordinates (X1, Y1)
Z_2 RVIC with coordinates (X2, Y2)
num_points_Z1, numbers of points belonging to the mixture
num_points_Z2 (2450 and 1050)
X all the points from X1 and X2 for the mixture
Y all the points from Y1 and Y2 for the mixture
Z mixture with coordinates (X, Y )
sorted_X a sorted array of X in ascending order to

calculate distribution and quantile functions
ecdf_values_X cumulative distribution function values of X
copula_values copula values matrix [3500 ∗ 3500]
n number of dividing intervals
intervals uniform distribution of n intervals on [0, 1]
points indices for selecting copula values from the

matrix
A matrix (n + 1, n + 1) with copula values for

selected points

Table 3.1: Table of notations for Chapter 3.

3.1 Step 1. Sampling random variables from
normal distributions

Every random variable with a normal distribution was sampled using MATLAB.
The means and the standard deviations have been set to different values. The
code below describes this.

In Figure 3.1 we can observe the histogram of random variable X1. This
plot resembles classical Gaussian curve. The other variables were sampled
similarly, with different means and standard deviations.

% Generating a random variable X_1 with normal distribution
n_samples = 3500;
mu = 10;
sigma = 2;
X_1 = mu + sigma * randn(n_samples, 1);

% plot the graph
figure;
histogram(X_1, 50); % Histogram with 50 bins
title(’Random Variable $X_1$ from Normal Distribution’,

’Interpreter’, ’latex’);
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3. Identifying the number of random variables included in the mixture .............
xlabel(’Value $X_1$’, ’Interpreter’, ’latex’);
ylabel(’Frequency’, ’Interpreter’, ’latex’);

Figure 3.1: Histogram of simulated random variable X1.

3.2 Step 2. Creating independent random vectors

Then there were formed two RVICs Z1, Z2 from these simulated random
variables: Z1 = (X1, Y1), Z2 = (X2, Y2).

Figure 3.2 shows the location of the simulated points in 2D. (Only 100
points are drawn from each component to keep the diagram uncluttered.)

3.3 Step 3. Creating a new mixed variable

We denote by Z the mixture of RVICs Z1 and Z2 with coefficient c [15]. It
has a probability measure given by:

PZ = c · PZ1 + (1 − c) · PZ2

and a cumulative distribution function given by:

FZ = c · FZ1 + (1 − c) · FZ2

where. PZ is the probability measure of the mixture Z,
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................. 3.4. Step 4. Corresponding samples from uniform distributions

Figure 3.2: RVICs Z1, Z2.

. FZ is the cumulative distribution function of the mixture Z,. PZ1 and FZ1 are the probability measure and cumulative distribution
function of Z1, respectively,. PZ2 and FZ2 are the probability measure and cumulative distribution
function of Z2, respectively,. c is the mixing coefficient.

We would like the new mixed variable to have 3500 points, so we constructed
it from 2450 points from RVIC Z1 and 1050 points from RVIC Z1, so 3500 in
total (with c = 0.7).

Here is the MATLAB code for the processes above:

num_points_Z1 = 0.7 * n_samples;
num_points_Z2 = 0.3 * n_samples;

X = [X1; X2];
Y = [Y1; Y2];
Z_mix = [X Y];

3.4 Step 4. Corresponding samples from uniform
distributions on the interval [0, 1]

To find (samples of) uniform distribution corresponding to the simulated
data, the following calculations were carried out.

31



3. Identifying the number of random variables included in the mixture .............
The quantile function, also known as the percent-point function or inverse

cumulative distribution function, can be calculated using the cumulative
distribution function (CDF) of the normal distribution.

After transforming the first coordinate X of the mixture Z, we obtain a
new random variable S = FX(X), and similarly for the second coordinate,
T = FY (Y ) [15]. Now we have two uniformly distributed variables which will
be further used in the mixture.

Here is the MATLAB code for the processes above:

sorted_X = sort(X);
for i = 1:n_samples

ecdf_valuesX(i) = sum(X <= sorted_X(i)) / n_samples;
end

Similar calculations were performed for X1, X2, Y1, Y2.

(a) : Cumulative distribution
functions of X1, X2, X.

(b) : Cumulative distribution
functions of Y1, Y2, Y .

Figure 3.3: Cumulative distribution functions of simulated random variables.

(a) : Quantile functions of X1, X2, X. (b) : Quantile functions of Y1, Y2, Y .

Figure 3.4: Quantile functions of simulated random variables.

In Figures 3.3–3.4 we can see the corresponding distributions or both
of the transformed variables X and Y , which then will be used for copula
construction.
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............ 3.5. Step 5. Construct the copula from two uniformly distributed variables

3.5 Step 5. Construct the copula from two
uniformly distributed variables

Now we are ready to construct an appropriate copula for our simulated data.
The “copula values” will be a matrix [3500 ∗ 3500], where for every point will
be counted a cumulative probability of this point in 2D.

Here is the MATLAB code:

copula_values = zeros(n_samples);

for i = 1:n_samples
for j = 1:n_samples

count_points_in_quadrant =
sum(X <= sorted_X(i) & Y <= sorted_Y(j));

copula_values(i, j) = count_points_in_quadrant / n_samples;
end

end

The graph of the resulting copula is drawn in Figure 3.5, its density in
Figure 3.6. The latter is not sufficiently precise because it is a histogram of
a discretized function. The density being small in some regions, the number
of data points in the bins are small and subject to big fluctuations due to
randomness of the simulation. A high number of points would improve it,
but the computational complexity would have been high. The graph at least
shows two heaps which originate from the two components of the mixture,
rescaled to the unit interval.

Figure 3.5: Copula CDF contours for simulated Z.
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3. Identifying the number of random variables included in the mixture .............

Figure 3.6: Copula density for simulated Z.

3.6 Step 6. Discretizing by SVD and essential rank

Next, let’s envisage our continuous random variables in the form of discrete
ones. Let’s choose n partition points that will divide the data into n + 1 parts
(n must be greater than the number of mixture components, i.e., n ≥ 2).
Create a matrix with copula values for these points.

Points were chosen using the equal interval method. For instance, if there
were 3500 points in the simulated data, copula values were selected for points
with indices 0, 3500/7, 3500/7 · 2, 3500/7 · 3 and so on.

For each of the selected points (s, t), the value of the copula is obtained
using the formula:

C(s, t) = FZ(F −1
X (s), F −1

Y (t))

where:. FZ is the cumulative distribution function of Z,. F −1
X , F −1

Y are the quantile functions of X, Y .

Finally, by discretization we construct a copula matrix from these calculated
copula values, which will be used in subsequent calculations.

The code below describes the process of selecting discrete points and
forming a matrix:

% Selecting points and making a matrix
n = 7;
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......................3.6. Step 6. Discretizing by SVD and essential rank

intervals = linspace(0, 1, n+5);
points = zeros((n+1)^2, 2);
counter = 1;
for i = 5:n+5

for j = 5:n+5
points(counter, 1) = intervals(i);
points(counter, 2) = intervals(j);
counter = counter + 1;

end
end

interp_values = interp2(ecdf_valuesX, ecdf_valuesY,
copula_values, points(:, 1), points(:, 2));

% Making matrix from points
A = reshape(interp_values, [n+1, n+1]);
disp(A);

The essential rank of a matrix is a concept related to singular value
decomposition (SVD), which is a factorization of a matrix A ∈ Rm·n into the
product of three matrices:

A = USV T =
p∑

i=1
siuiv

T
i ,

where p = min(m, n), the matrix S = diag(s1 . . . sp) ∈ Rp·p is diagonal,
and the matrices U = [u1 . . . up] ∈ Rm·p and V = [v1 . . . vp] ∈ Rn·p have
orthonormal columns [24].

The essential rank is the number of essential singular values in the diagonal
matrix S – values, which are the biggest ones and as far from zero as possible.

The nearest lower-rank matrix B from SVD, with rank k, can be defined
as:

B = USkV T =
k∑

i=1
siuiv

T
i

This expression describes the construction of the nearest lower-rank matrix
B from the SVD of matrix A, where only the first k singular values are
retained. The matrix Sk is formed by retaining the top k singular values and
zeroing out the remaining n − k singular values.

There was made an SVD of matrix A in MATLAB:

A = copula_matrix;
rank_A = rank(A);
disp(rank_A); % 6

% Singular Value Decomposition
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3. Identifying the number of random variables included in the mixture .............
[U, S, V] = svd(A);
disp(S);

Here you can see the resulting matrix S:

3.7879 0 0 0 0 0 0 0
0 0.3074 0 0 0 0 0 0
0 0 0.0053 0 0 0 0 0
0 0 0 0.0031 0 0 0 0
0 0 0 0 0.0014 0 0 0
0 0 0 0 0 0.0006 0 0
0 0 0 0 0 0 0.0000 0
0 0 0 0 0 0 0 0.0000

The rank of an original matrix A is 6, but the most significant singular
values are the first two. That can be interpreted that the essential rank is
equal to the number of components that entered the mixture. Thus, the
essential rank of A is 2 (components Z1, Z2).

The same experiment was conducted for a mixture of more than two random
vectors with independent components (RVICs).

(a) : RVIC - Initial graph. (b) : RVIC - Colored graph.

Figure 3.7: Graph of 3 simulated random vectors.

In Figure 3.7a, it is quite difficult to see exactly how many random vectors
with independent components are depicted and contributing to the mixture,
as their means and variances are close to each other.

The singular values matrix S looks like:

3.1056 0 0 0 0 0
0 0.3171 0 0 0 0
0 0 0.0211 0 0 0
0 0 0 0.0005 0 0
0 0 0 0 0.0001 0
0 0 0 0 0 0.0000
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......................3.6. Step 6. Discretizing by SVD and essential rank

The rank of an original matrix A was 5, but the most significant singular
values are the first 3. That means that the essential rank is equal to the
number of components that entered the mixture. Thus, the essential rank of
A is 3 (even though the coefficient for the second component of the mixture
was too small, 0.2, this algorithm found the right decision).

It’s important to note that during our experiments, we noticed some
patterns:.The more points we used to represent one variable, the better we could

figure out how many variables were in the mixture (which makes sense,
as in this case, the variable tended towards continuous random values)..We tried different numbers of intervals for discretizing the copula density
and representing it as a matrix of discrete values. We showed the most
successful divisions into intervals that gave a clear result for determining
the number of variables..The further apart the average values of the variables were, the clearer
the matrix of singular values looked, making it easier to distinguish the
essential rank from other insignificant singular values.
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Chapter 4
Conclusions

In this thesis we studied the principles of modelling dependence of random
variables by copulas. They are important for forecasting in real world in such
fields as medicine, engineering, economics, agriculture, and so on. The thesis
concentrated on bivariate normal distribution models.

We studied why the Gaussian copula [18], which was initially celebrated
for its simplicity and effectiveness and enabled the modeling of complex
financial risks, was leading to the creation of vast quantities of new securities.
However, the method’s limitations were ignored, and cracks began to appear
in 2008 when the financial system faced unprecedented challenges, resulting
in a global economic meltdown.

The linear nature of the Gaussian copula means that the copula fails
to capture complex non-linear dependencies that may manifest in extreme
situations. Particularly in economic phenomena prone to extreme fluctuations,
such as financial crises, where non-linear and unstable deviations are crucial,
the Gaussian copula may provide distorted and underestimated results [18].

Considering the lack of available literature sources mentioning formulas
for the probability densities of copulas and existence of mistakes in it [9], it
was decided to derive such formulas. There were derived some formulas for
computing the density of key copula types (Gaussian, Student-t, Frank).

We analyzed, calculated and presented a probability density limiting values
close to extreme points of some basic types of bivariate copulas such as
Gaussian, Student-t and Archimedean family copulas (Clayton, Frank).

It was a mistake for economists to use the Gaussian copula to predict
market behavior, since it need not have limits at the extremes. Its directional
limits usually tend to +∞ or 0. However, for example, Frank copula (near
the extreme points of the domain) or Clayton copula (near the point (1, 1))
have exact limits that are expressed by formulas. Thus, they can be used
to predict events that could lead to overheating of the economy following
a potential crisis of any market, depending on parameters that are random
variables [2].

We aimed to derive the limits of copula density near the extremes of the
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4. Conclusions .....................................
domain. Our focus was on a conditionally independent distribution created
by a mixture of independent components. We wanted to detect the limiting
values there. However, we did not achieve this. Even for one random vector
with independent components, a meaningful solution may not always exist.
For example, Gaussian or Student-t copulas do not have limits near some
extreme points.

During the process of analyzing copulas which are mixtures of some random
vectors with independent components, we answered the question whether
mathematical analysis, statistical tools and optimization can determine the
number of such components constituting these copulas. We have proposed a
methodology for identifying the number of components in a copula mixture.
Through theoretical analysis and MATLAB implementation, we demonstrated
the approach’s applicability and provided insightful visualizations for it.

Therefore, having a copula describing a mixture of random vectors with
independent components, we can predict how many such components formed
that given copula. This tool can be useful in analyzing the dynamics of
indicators at extreme points. From an economic perspective, this is an
indicator for periods of economic overheating and signals a change in the
behavior of economic agents and market dynamics.

Copulas are a complex topic, especially when working with more than
two variables. Here there were computed and verified probability density
functions for bivariate copulas. In real life, there are very few processes that
depend only on 2 factors (causes), so it would be quite difficult to forecast
their behavior without knowing the laws that govern their behavior as they
approach extreme bounds.

Since the purpose of this work was to study the behavior of copulas and
their applicability to economics, certain copulas (Frank, Clayton) could be
used for these purposes, however, in the case of a large number of random
variables, detailed analysis could be carried out more efficiently using computer
technology (like MATLAB, R for graphs. Python, etc.).
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Appendix A
MATLAB codes

The MATLAB code for operations with 2 random vectors with independent
components.

% Table of notations:
%
% n_samples - number of points in each random variable (3500)
% mu - mean
% sigma - deviation
% X_1, X_2, Y_1, Y_2 - 1D random variables [1 * 3500]
% Z_1 - 2D random variable with coordinates (X_1, Y_1)
% Z_2 - 2D random variable with coordinates (X_2, Y_2)
% num_points_Z1 / Z2 - number of points belonging to the mixture
% X1_chosen - chosen points from variable X_1.. etc.
% X - chosen points from X_1 and X_2 for the mixture
% Y - chosen points from Y_1 and Y_2 for the mixture
% Z_mix - mixture with coordinates (X, Y)
% sorted_X - sorted array X in ascending order for calculating

the values of the distribution function
% ecdf_valuesX - values of the distribution function X in

ascending order
% copula_values - copula matrix [3500 * 3500]

n_samples = 3500;
mu = 10; % mean
sigma = 2; % standard deviation
X_1 = mu + sigma * randn(n_samples, 1);

figure;
histogram(X_1, 50); % Histogram with 50 bins
title(’Random Variable X_1 from Normal Distribution’);
xlabel(’Value X_1’);
ylabel(’Frequency’);
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A. MATLAB codes ...................................
saveas(gcf, ’x1_histogram.png’);

mu = 0; % mean
sigma = 1; % standard deviation
Y_1 = mu + sigma * randn(n_samples, 1);

mu = -25; % mean
sigma = -5; % standard deviation
X_2 = mu + sigma * randn(n_samples, 1);

mu = 10; % mean
sigma = 2; % standard deviation
Y_2 = mu + sigma * randn(n_samples, 1);

figure;
scatter(X_1, Y_1, ’x’, ’DisplayName’, ’Z_1’);
hold on;
scatter(X_2, Y_2, ’.’, ’DisplayName’, ’Z_2’);
hold on;
%scatter(X, Y, ’o’, ’filled’, ’DisplayName’, ’Z’);
%hold off;

title(’Random variables with independent components Z_1, Z_2’);
xlabel(’X-axis’);
ylabel(’Y-axis’);
legend(’Location’, ’best’);
grid on;
saveas(gcf, ’original_rv.png’);

% Mixture
num_points_Z1 = 0.7 * n_samples;
num_points_Z2 = 0.3 * n_samples;

indices_Z1 = randperm(n_samples, num_points_Z1);
indices_Z2 = randperm(n_samples, num_points_Z2);

X1_chosen = X_1(indices_Z1);
X2_chosen = X_2(indices_Z2);
Y1_chosen = Y_1(indices_Z1);
Y2_chosen = Y_2(indices_Z2);

X = [X1_chosen; X2_chosen];
Y = [Y1_chosen; Y2_chosen];

Z_mix = [X Y];

44



.................................... A. MATLAB codes

%Z_mix = [X1_chosen; Y1_chosen; X2_chosen; Y2_chosen];
disp(size(Z_mix));

figure;
scatter(X1_chosen, Y1_chosen, ’x’, ’DisplayName’, ’Chosen from Z_1’);
hold on;
scatter(X2_chosen, Y2_chosen, ’.’, ’DisplayName’, ’Chosen from Z_2’);
hold on;

title(’Chosen Random variables with independent components’);
xlabel(’X-axis’);
ylabel(’Y-axis’);
legend(’Location’, ’best’);
grid on;
saveas(gcf, ’chosen_rvic.png’);

% Estimation of density to create a smooth CDF
[f_X, x_X] = ksdensity(X);
[f_X1, x_X1] = ksdensity(X1_chosen);
[f_X2, x_X2] = ksdensity(X2_chosen);

minX = min([min(x_X), min(x_X1), min(x_X2)]);
maxX = max([max(x_X), max(x_X1), max(x_X2)]);
x_X_0 = [minX, x_X, maxX];
x_X_01 = [minX, x_X1, maxX];
x_X_02 = [minX, x_X2, maxX];
f_X_0 = [0, cumsum(f_X) / sum(f_X), 1];
f_X_01 = [0, cumsum(f_X1) / sum(f_X1), 1];
f_X_02 = [0, cumsum(f_X2) / sum(f_X2), 1];

figure;
plot(x_X_0, f_X_0, ’LineWidth’, 2);
hold on;
plot(x_X_01, f_X_01, ’LineWidth’, 2);
hold on;
plot(x_X_02, f_X_02, ’LineWidth’, 2);
title(’Cumulative distribution function of X_1, X_2 and X’);
xlabel(’Value’);
ylabel(’Cumulative probability’);
legend(’X’, ’X_1’, ’X_2’, ’Location’, ’best’);
xlim([-43, 20]);
saveas(gcf, ’cdf_X.png’);

[f_Y, y_Y] = ksdensity(Y);
[f_Y1, y_Y1] = ksdensity(Y1_chosen);
[f_Y2, y_Y2] = ksdensity(Y2_chosen);
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minY = min([min(y_Y), min(y_Y1), min(y_Y2)]);
maxY = max([max(y_Y), max(y_Y1), max(y_Y2)]);
y_Y_0 = [minY, y_Y, maxY];
y_Y_01 = [minY, y_Y1, maxY];
y_Y_02 = [minY, y_Y2, maxY];
f_Y_0 = [0, cumsum(f_Y) / sum(f_Y), 1];
f_Y_01 = [0, cumsum(f_Y1) / sum(f_Y1), 1];
f_Y_02 = [0, cumsum(f_Y2) / sum(f_Y2), 1];

figure;
plot(y_Y_0, f_Y_0, ’LineWidth’, 2);
hold on;
plot(y_Y_01, f_Y_01, ’LineWidth’, 2);
hold on;
plot(y_Y_02, f_Y_02, ’LineWidth’, 2);
title(’Cumulative distribution function of Y_1, Y_2 and Y’);
xlabel(’Value’);
ylabel(’Cumulative probability’);
legend(’Y’, ’Y1’, ’Y2’, ’Location’, ’best’);
xlim([-4, 17]);
ylim([0, 1]);
saveas(gcf, ’cdf_Y.png’);

% Quantile functions for X
figure;
plot(f_X_0, x_X_0, ’LineWidth’, 2);
hold on;
plot(f_X_01, x_X_01, ’LineWidth’, 2);
hold on;
plot(f_X_02, x_X_02, ’LineWidth’, 2);
title(’Quantile function of X_1, X_2 and X’);
xlabel(’Cumulative probability’);
ylabel(’X-Value’);
legend(’X’, ’X_1’, ’X_2’, ’Location’, ’best’);
ylim([-43, 20]);
saveas(gcf, ’quantile_X.png’);

% for Y
figure;
plot(f_Y_0, y_Y_0, ’LineWidth’, 2);
hold on;
plot(f_Y_01, y_Y_01, ’LineWidth’, 2);
hold on;
plot(f_Y_02, y_Y_02, ’LineWidth’, 2);
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title(’Quantile functions of Y_1, Y_2 and Y’);
xlabel(’Cumulative probability’);
ylabel(’Y-Value’);
legend(’Y’, ’Y_1’, ’Y_2’, ’Location’, ’best’);
ylim([-4, 17]);
xlim([0, 1]);
saveas(gcf, ’quantile_Y.png’);

% Sort
sorted_X = sort(X);
sorted_X1 = sort(X1_chosen);
sorted_X2 = sort(X2_chosen);
sorted_Y = sort(Y);
sorted_Y1 = sort(Y1_chosen);
sorted_Y2 = sort(Y2_chosen);

% CDF by hands for 1000 samples
ecdf_valuesX = zeros(size(X));
ecdf_valuesX1 = zeros(size(X1_chosen));
ecdf_valuesX2 = zeros(size(X2_chosen));
ecdf_valuesY = zeros(size(Y));
ecdf_valuesY1 = zeros(size(Y1_chosen));
ecdf_valuesY2 = zeros(size(Y2_chosen));

for i = 1:n_samples
ecdf_valuesX(i) = sum(X <= sorted_X(i)) / n_samples;
ecdf_valuesY(i) = sum(Y <= sorted_Y(i)) / n_samples;

end
for i = 1:num_points_Z1

ecdf_valuesX1(i) = sum(X1_chosen <= sorted_X1(i)) / num_points_Z1;
ecdf_valuesY1(i) = sum(Y1_chosen <= sorted_Y1(i)) / num_points_Z1;

end
for i = 1:num_points_Z2

ecdf_valuesX2(i) = sum(X2_chosen <= sorted_X2(i)) / num_points_Z2;
ecdf_valuesY2(i) = sum(Y2_chosen <= sorted_Y2(i)) / num_points_Z2;

end

figure;
plot(sorted_X, ecdf_valuesX, ’LineWidth’, 2);
hold on;
plot(sorted_X1, ecdf_valuesX1, ’LineWidth’, 2);
hold on;
plot(sorted_X2, ecdf_valuesX2, ’LineWidth’, 2);
title(’Cumulative distribution function of X_1, X_2 and X (of points)’);
xlabel(’Value’);
ylabel(’Cumulative probability’);
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legend(’X’, ’X1’, ’X2’, ’Location’, ’best’);

% Creating copula values matrix for 3500 simulated points
copula_values = zeros(n_samples);

for i = 1:n_samples
for j = 1:n_samples

count_points_in_quadrant = sum(X <= sorted_X(i)
& Y <= sorted_Y(j));
copula_values(i, j) = count_points_in_quadrant / n_samples;

end
end

%disp(size(copula_values));
%disp(copula_values);

% CDF copula
[X_mesh, Y_mesh] = meshgrid(ecdf_valuesX, ecdf_valuesY);
figure;
contour3(X_mesh, Y_mesh, copula_values, ’EdgeColor’, ’k’,

’LineWidth’, 1.5, ’LevelStep’, 0.05);
hold on;
surf(X_mesh, Y_mesh, copula_values, ’FaceAlpha’, 0.5,

’EdgeColor’, ’none’);
title(’3D Copula with contours’);
xlabel(’X’);
ylabel(’Y’);
zlabel(’Copula Value’);
grid on;
saveas(gcf, ’copula_cdf.png’);

% PDF manual calculations for 10 * 10 intervals in 2D
step = 10;
pdf_copula_values = zeros(step, step);
area = step / n_samples;

% Calculations for the first rectangle X[0, 100]
for j = 2:step

x_max = sorted_X(1/area);
x_min = sorted_X(1);
y_max = sorted_Y(j * (1/area));
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y_min = sorted_Y((j-1) * (1/area));
count_points_quadrant = sum(X >= x_min & X <= x_max &

Y > y_min & Y <= y_max);
% density is probability divided by area
pdf_copula_values(1, j) = count_points_quadrant / n_samples / 0.01;

end
% Calculations for the first rectangle Y[0, 100]
for i = 2:step

y_max = sorted_Y((1/area));
y_min = sorted_Y(1);
x_max = sorted_X(i * (1/area));
x_min = sorted_X((i-1) * (1/area));
count_points_quadrant = sum(X > x_min & X <= x_max &

Y >= y_min & Y <= y_max);
pdf_copula_values(i, 1) = count_points_quadrant / n_samples / 0.01;

end
% Calculations for the other points
for i = 2:step

for j = 2:step
x_max = sorted_X(i * (1/area));
y_max = sorted_Y(j * (1/area));
x_min = sorted_X((i-1) * (1/area));
y_min = sorted_Y((j-1) * (1/area));
count_points_quadrant = sum(X > x_min & X <= x_max

& Y > y_min & Y <= y_max);
pdf_copula_values(i, j) = count_points_quadrant / n_samples / 0.01;

end
end

% Check that the sum of the probabilities is 100
total_probability = sum(pdf_copula_values(:));
disp(total_probability);

% uniform axes X and Y,
% linspace granted equal division into 10 blocks
% on the interval [0, 1] for the X and Y axes
[X_mesh, Y_mesh] = meshgrid(linspace(0, 1, step), linspace(0, 1, step));

% PDF copula plot manually
light_blue_color = [173, 216, 230] / 255;
%
figure;
surf(X_mesh, Y_mesh, pdf_copula_values, ’EdgeColor’, ’none’,

’FaceColor’, light_blue_color, ’FaceAlpha’, 0.6);
hold on;
scatter3(X_mesh(:), Y_mesh(:), pdf_copula_values(:), ’filled’,
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’MarkerFaceAlpha’, 0.6);

title(’PDF Copula’);
xlabel(’X’);
ylabel(’Y’);
zlabel(’Probability Density’);
grid on;
saveas(gcf, ’copula_pdf.png’);

% Table of notations:
%
% n - number of dividing intervals (7)
% intervals - uniform distribution for n intervals on [0, 1]
% points - indices for selecting values from the copula matrix
% interp_values - array of length (n+1)*(n+1) with values

of the copula for the selected points
% A - matrix (n+1, n+1) with values

of the copula for the selected points

% Discretizing
n = 7;
intervals = linspace(0, 1, n+5);
points = zeros((n+1)^2, 2);
counter = 1;
for i = 5:n+5

for j = 5:n+5
points(counter, 1) = intervals(i);
points(counter, 2) = intervals(j);
counter = counter + 1;

end
end

interp_values = interp2(ecdf_valuesX, ecdf_valuesY, copula_values,
points(:, 1), points(:, 2));

% Making matrix from points
A = reshape(interp_values, [n+1, n+1]);

rank_A = rank(A);
disp(rank_A);

% Singular Value Decomposition
[U, S, V] = svd(A);
disp(S);
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The MATLAB code for operations with 3 random vectors with independent
components.

n_samples = 3500;
mu = 10; % mean
sigma = 2; % standard deviation %5
X_1 = mu + sigma * randn(n_samples, 1);

mu = 0; % mean
sigma = 2; % standard deviation
Y_1 = mu + sigma * randn(n_samples, 1);

mu = -8; % mean
sigma = 4; % standard deviation
X_2 = mu + sigma * randn(n_samples, 1);

mu = 6; % mean
sigma = 3; % standard deviation
Y_2 = mu + sigma * randn(n_samples, 1);

mu = -15; % mean
sigma = 3; % standard deviation
X_3 = mu + sigma * randn(n_samples, 1);

mu = 10; % mean
sigma = 2; % standard deviation
Y_3 = mu + sigma * randn(n_samples, 1);

%
figure;
scatter(X_1, Y_1, ’o’, ’DisplayName’, ’Z_1’, ’MarkerEdgeColor’, ’b’);
hold on;
scatter(X_2, Y_2, ’o’, ’DisplayName’, ’Z_2’, ’MarkerEdgeColor’, ’b’);
hold on;
scatter(X_3, Y_3, ’o’, ’DisplayName’, ’Z_3’, ’MarkerEdgeColor’, ’b’);
hold off;
title(’RVIC Z_1, Z_2, Z_3’);
xlabel(’X-axis’);
ylabel(’Y-axis’);
%legend(’Location’, ’best’);
grid on;
saveas(gcf, ’question_3rv.png’);
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% for question
figure;
scatter(X_1, Y_1, ’o’, ’DisplayName’, ’Z_1’, ’MarkerEdgeColor’, ’r’);
hold on;
scatter(X_2, Y_2, ’o’, ’DisplayName’, ’Z_2’, ’MarkerEdgeColor’, ’g’);
hold on;
scatter(X_3, Y_3, ’o’, ’DisplayName’, ’Z_3’, ’MarkerEdgeColor’, ’b’);
hold off;
title(’RVIC Z_1, Z_2, Z_3’);
xlabel(’X-axis’);
ylabel(’Y-axis’);
legend(’Location’, ’best’);
grid on;
saveas(gcf, ’original_3rv.png’);

% Mixture
num_points_Z1 = 0.4 * n_samples;
num_points_Z2 = 0.2 * n_samples;
num_points_Z3 = 0.4 * n_samples;

indices_Z1 = randperm(n_samples, num_points_Z1);
indices_Z2 = randperm(n_samples, num_points_Z2);
indices_Z3 = randperm(n_samples, num_points_Z3);

X1_chosen = X_1(indices_Z1);
X2_chosen = X_2(indices_Z2);
X3_chosen = X_3(indices_Z3);
Y1_chosen = Y_1(indices_Z1);
Y2_chosen = Y_2(indices_Z2);
Y3_chosen = Y_3(indices_Z3);

X = [X1_chosen; X2_chosen; X3_chosen];
Y = [Y1_chosen; Y2_chosen; Y3_chosen];

Z_mix = [X Y];

figure;
scatter(X1_chosen, Y1_chosen, ’x’, ’DisplayName’, ’Chosen from Z_1’);
hold on;
scatter(X2_chosen, Y2_chosen, ’.’, ’DisplayName’, ’Chosen from Z_2’);
hold on;
scatter(X3_chosen, Y3_chosen, ’.’, ’DisplayName’, ’Chosen from Z_3’);
title(’Chosen RVIC’);
xlabel(’X-axis’);
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ylabel(’Y-axis’);
legend(’Location’, ’best’);
grid on;
saveas(gcf, ’chosen_rvic3.png’);

% Estimation of density to create a smooth CDF
[f_X, x_X] = ksdensity(X);
[f_X1, x_X1] = ksdensity(X1_chosen);
[f_X2, x_X2] = ksdensity(X2_chosen);
[f_X3, x_X3] = ksdensity(X3_chosen);
%
figure;
plot(x_X, cumsum(f_X) / sum(f_X), ’LineWidth’, 2);
hold on;
plot(x_X1, cumsum(f_X1) / sum(f_X1), ’LineWidth’, 2);
hold on;
plot(x_X2, cumsum(f_X2) / sum(f_X2), ’LineWidth’, 2);
hold on;
plot(x_X3, cumsum(f_X3) / sum(f_X3), ’LineWidth’, 2);
title(’Cumulative distribution function of X_1, X_2, X_3 and X’);
xlabel(’Value’);
ylabel(’Cumulative probability’);
legend(’X’, ’X1’, ’X2’, ’X3’, ’Location’, ’best’);
saveas(gcf, ’cdf_X3.png’);

[f_Y, y_Y] = ksdensity(Y);
[f_Y1, y_Y1] = ksdensity(Y1_chosen);
[f_Y2, y_Y2] = ksdensity(Y2_chosen);
[f_Y3, y_Y3] = ksdensity(Y3_chosen);

%
figure;
plot(y_Y, cumsum(f_Y) / sum(f_Y), ’LineWidth’, 2);
hold on;
plot(y_Y1, cumsum(f_Y1) / sum(f_Y1), ’LineWidth’, 2);
hold on;
plot(y_Y2, cumsum(f_Y2) / sum(f_Y2), ’LineWidth’, 2);
hold on;
plot(y_Y3, cumsum(f_Y3) / sum(f_Y3), ’LineWidth’, 2);
title(’Cumulative distribution function of Y_1, Y_2, Y_3 and Y’);
xlabel(’Value’);
ylabel(’Cumulative probability’);
legend(’Y’, ’Y1’, ’Y2’, ’Y3’, ’Location’, ’best’);
saveas(gcf, ’cdf_Y3.png’);
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% Sort
sorted_X = sort(X);
sorted_X1 = sort(X1_chosen);
sorted_X2 = sort(X2_chosen);
sorted_Y = sort(Y);
sorted_Y1 = sort(Y1_chosen);
sorted_Y2 = sort(Y2_chosen);

% CDF by hands for 3500 samples
ecdf_valuesX = zeros(size(X));
ecdf_valuesY = zeros(size(Y));
for i = 1:n_samples

ecdf_valuesX(i) = sum(X <= sorted_X(i)) / n_samples;
ecdf_valuesY(i) = sum(Y <= sorted_Y(i)) / n_samples;

end

copula_values = zeros(n_samples);
for i = 1:n_samples

for j = 1:n_samples
count_points_in_quadrant = sum(X <= sorted_X(i) &

Y <= sorted_Y(j));
copula_values(i, j) = count_points_in_quadrant / n_samples;

end
end
%
[X_mesh, Y_mesh] = meshgrid(ecdf_valuesX, ecdf_valuesY);
figure;
contour3(X_mesh, Y_mesh, copula_values, ’EdgeColor’,

’k’, ’LineWidth’, 1.5);
hold on;
surf(X_mesh, Y_mesh, copula_values, ’FaceAlpha’, 0.5,

’EdgeColor’, ’none’);
title(’3D Copula with contours’);
xlabel(’X’);
ylabel(’Y’);
zlabel(’Copula Value’);
grid on;
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