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Abstract
This study presents a comprehensive eval-
uation of a number of cluster estimation
methods applied to both simulated and
real biomedical data. We use methodol-
ogy for assessing clustering quality using
synthetic datasets that mimic real-world
biomedical data characteristics. These
datasets vary in inter-individual variabil-
ity, noise levels, and cluster separability,
allowing for systematic evaluation of clus-
tering methods’ robustness. Each data
point is assigned to a ground truth clus-
ter, serving as reference labels for evaluat-
ing clustering accuracy. We characterize
clusters using interclass-to-between-class
ratios and analyze the performance of clus-
tering algorithms across different dataset
dimensions.

Additionally, we apply clustering meth-
ods to real biomedical data obtained from
the National Institute of Mental Health,
focusing on COVID-related variables. Ex-
ploratory data analysis, preprocessing,
and principal component analysis are con-
ducted before clustering estimation. The
study aims to provide insights into the
performance of clustering methods and
their applicability to real-world biomedi-
cal data.

Keywords:

Supervisor: Ing. Eduard Bakštein,
Ph.D.

Abstrakt
Tato studie představuje přehled metod
pro odhad počtu shluků aplikovaných
na simulovaná i reálná biomedicínská
data. Byla měřena kvalita predikce po-
čtu shluků pomocí syntetických datasetů,
které napodobují vlastnosti reálných bio-
medicínských dat. Tyto soubory dat se liší
z hlediska variability, úrovně šumu a se-
parability shluků, což umožňuje systema-
tické hodnocení robustnosti metod. Každý
bod je přiřazen ke shluku a slouží jako refe-
rence pro hodnocení přesnosti shlukování.
Shluky charakterizujeme pomocí poměrů
vzdáleností ve shluku a mezi nimi.

Kromě toho aplikujeme metody shluko-
vání na reálná biomedicínská data získaná
z Národního ústavu duševního zdraví
(NÚDZ) se zaměřením na proměnné sou-
visející s COVID nákazou. Před odhadem
shlukování je provedena explorační ana-
lýza dat, předzpracování dat a analýza
hlavních komponent. Cílem studie je po-
skytnout poznatky o přesnosti metod pro
odhad počtu shluků a zda je lze použít na
reálná data.

Klíčová slova:

Překlad názvu: Separovatelnost shluků
v mnoharozměrných biomedicinských
datech
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Chapter 1
Introduction

Over the past few years, biomedical research has experienced a significant
increase in the production of complex, multidimensional data. These data
include genomics, proteomics, medical imaging, and clinical data. However,
analyzing such complex datasets is challenging, particularly when identifying
meaningful patterns and structures that can lead to valuable insights.

In data analysis, clustering is a powerful method for uncovering hidden
structures and patterns within datasets. At its core, clustering is a technique
that groups similar data based on specific characteristics, thereby enabling the
identification of natural groups within the data. Clustering is a fundamental
unsupervised learning method, identifying subsets without predefined labels.
Various methodological approaches have been developed to address clustering
challenges across diverse datasets.
Data clustering algorithms can be categorized into partitioning, hierarchical,
density-based, centroid-based, and distribution-based clustering.

Partitioning clustering methods, such as k-means and k-medoids, segment
datasets into distinct partitions, assigning each data point to one cluster
only. The k-means algorithm is, for example, often used as a prerequisite
step for other algorithms. It uses partitioning-based clustering whereby data
sets are divided into a predetermined number of clusters. This is enabled
through the mechanism of iteratively assigning data points to the nearest
cluster centroid and updating the centroids until convergence. However, it is
sensitive to outliers and may not always yield an optimal solution. [1] The
k-medoids algorithm, on the other hand, a variant of k-means, addresses some
of its drawbacks by using the median instead of the mean as the centroid of
each cluster. This makes it more robust to outliers. K-medoids iteratively
assigns data points to the nearest median and updates the medoids until
convergence.[2]

Hierarchical clustering algorithms operate by iteratively establishing clusters
based on the experience of previously formed clusters, whereas partitional
algorithms define all clusters simultaneously. Hierarchical algorithms can be
further categorized into agglomerative, which build clusters from individual
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1. Introduction ...................................
elements by progressively merging them into larger groups (bottom-up), and
divisive, which start at the level of the entire dataset with the goal of dividing
it into smaller clusters in subsequent steps (top-down).[3]
Density-based clustering methods, presented by algorithms like DBSCAN,
are useful for identifying clusters in datasets that exhibit arbitrary shapes
and sizes. These algorithms primarily focus on grouping dense regions of
points in the data space, which are then distinguished from the areas of low
density that lie between them. [4]

Finally, distribution-based clustering methods, such as Gaussian Mixture
Models, model clusters as probability distributions, assigning data points to
clusters based on their likelihood of belonging to each distribution. GMMs
are widely used in various systems to model the probability distribution
of continuous measurements or features. These models are defined by pa-
rameters such as mean vectors, covariance matrices, and mixture weights,
which are typically estimated from training data using methods like the
Expectation-Maximization algorithm or Maximum A Posteriori estimation.
[5] It is essential to understand that depending on the task, there will be a
different method that yields the most effective solution.
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Chapter 2
Background

Clustering techniques are widely used to group similar data points based
on patterns and similarities, making it easier to understand complex data.
However, determining the optimal number of clusters is one of the most
significant challenges in cluster analysis. This decision significantly influences
the interpretation and application of the results. This challenge becomes
even more crucial when dealing with multi-collinear and noisy biological data,
where identifying underlying clusters can be complex and uncertain due to the
complexity of natural occurrences. Therefore, choosing the correct clustering
number and carefully evaluating the results is essential to ensure accurate
and reliable clustering outcomes.

2.1 Existing cluster evaluation methods

Choosing the correct number of clusters is a crucial step in clustering analysis
as it directly influences the resulting insights. Different methods are available
to estimate the optimal number of clusters in a dataset, each with its unique
approach and assumptions, and careful consideration is required in selecting
an appropriate technique. One approach uses internal validation metrics
like the silhouette score or the Davies-Bouldin index, which evaluate the
clusters’ compactness and separation to identify the best number of clusters.
Another popular technique is the gap statistic, which measures the dispersion
within clusters and compares it to a reference distribution to determine the
optimal number of clusters. Besides, hierarchical clustering methods can use
dendrogram-based techniques like the cophenetic correlation coefficient to
estimate the number of clusters by assessing the clustering hierarchy’s stability.
The suitability of each method depends on the dataset’s characteristics and
the desired outcomes.

2.1.1 Elbow method

The Elbow Method evaluates the proportion of explained variance concerning
the number of clusters. It suggests that beyond a certain threshold, increasing
the number of clusters does not significantly reduce variance. The method

3



2. Background ...................................
involves gradually increasing the cluster count, represented as k, and recording
the Sum of Squared Errors (SSE):

SSE =
k∑

k−1

∑
xi∈Sk

∥xi − Ck∥22

Here, Sk represents the cluster k. SSE represents the sum of the average
Euclidean distances from each point to its centroid. The optimal number of
clusters, denoted as k, is identified where the SSE experiences a significant
drop, forming an "elbow" shape on the plot. This typically happens when
adding a new cluster (k = k + 1), resulting in the largest decrease in SSE
compared to the previous step. Further increases in k tend to yield diminishing
returns, as the additional cluster structure may not substantially reduce errors
or significantly improve the model fit. [6]

2.1.2 Gap Statistics

The Gap Statistic, introduced by Tibshirani et al. (2001) [7], is a method for
estimating the number of clusters in a dataset. It compares the within-cluster
dispersion to a null reference distribution to identify the number of clusters
that provide the best fit to the data.The gap statistic is computed as follows:

Let {xij} represent observations with i = 1, 2, . . . , n and j = 1, 2, . . . , p,
where p features are measured on n independent samples. These observations
are clustered into k clusters C1, C2, . . . , Ck, where Cr denotes the indices of
samples in cluster r, and nr = |Cr|. The distance between samples i and i′,
denoted by dii′ , can be calculated, for example, as the squared Euclidean
distance dii′ =

∑
j(xij − xi′j)2. The sum of the pairwise distances Dr for all

points in cluster r is given by Dr =
∑

i,i′∈Cr
dii′ . Then, we define Wk as:

Wk :=
k∑

r=1

1
2nr

Dr.

If d represents the squared Euclidean distance, then Wk represents the within-
cluster sum of squared distances from the cluster means. For the calculation
of the Gap function, Tibshirani et al. proposed using the difference between
the expected value of log(W ∗

k ) of an appropriate null reference and log(Wk)
of the dataset:

Gapn(k) := E∗
n[log(W ∗

k )]− log(Wk).

The appropriate number of clusters for the given dataset is determined
by finding the smallest value of k such that the Gap statistic satisfies the
condition:

Gapn(k) ≥ Gapn(k + 1)− sk+1

where sk represents the simulation error calculated from the standard devia-
tion sd(k) of B Monte Carlo replicates of log(W ∗

k ), given by sk =
√

1
1+1/B · sd(k).
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.........................2.1. Existing cluster evaluation methods

The expected value E∗
n[log(W ∗

k )] of within-dispersion measures W ∗
kb is deter-

mined as:
E∗

n[log(W ∗
k )] = 1

B

∑
b

log(W ∗
kb)

where W ∗
kb is obtained by clustering the B reference datasets. [8]

When using the gap statistic, selecting the right reference distribution is
essential. It is suggested that a specific single-component reference distri-
bution, namely the uniform distribution, be used. This ensures that the
gap statistic can reliably detect multiple clusters in the data. Regarding
univariate data, the uniform distribution U(0,1) is the best choice for this
reference distribution. Among all unimodal distributions, it is the most likely
to produce spurious clusters detected by the gap test. [7]

A comparison between Gap statistic definitions with and without the logarithm
function reveals differences in their performance and interpretation. While the
logarithm function is commonly used to standardize the within-cluster sum of
squares, some formulations omit this transformation. Tibshirani et al. high-
light that the logarithm function provides a more effective means of assessing
the deviation of log(Wk) from its expected value. However, formulations
without the logarithm function may still offer insights into the underlying
structure of the data with different characteristics. The choice between these
definitions depends on the specific requirements of the clustering task. [8]

2.1.3 Davies-Bouldin Index

The Davies–Bouldin index (DB) proposed by Davies and Bouldin in 1979
evaluates clustering quality based on the average similarity between each
cluster and its most similar one. The index is formulated as follows:

DB = 1
k

k∑
i=1

max
i ̸=j

(
di,j + dj,i

di,i

)
Here, di,j represents the Euclidean distance between the centroids of the

ith and jth clusters, while di,i and dj,i denote the average distances from each
data point in the ith and jth clusters to their respective centroids. A lower
DB value indicates a well-defined data partition, where clusters are both
internally compact and well-separated from each other. [9]
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2. Background ...................................
2.1.4 Calinski-Harabasz Index

The Calinski–Harabasz index (CH) proposed by Caliński and Harabasz in
1974 assesses the quality of a clustering solution based on the average sum of
squares of between and within clusters. It is calculated as:

CH = SSB

SSW
× n− k

k − 1
Here, SSB represents the average between-cluster sum of squares, SSW is

the average within-cluster sum of squares, k is the number of clusters, and n
is the number of observations. The average between-cluster sum of squares,
SSB, is computed as:

SSB = 1
k

k∑
i=1

ni · ∥mi − µ∥2

where mi is the centroid of cluster i, µ is the mean of all data points, and
∥ · ∥ represents the Euclidean distance between the centroid of a cluster and
the mean of all data points. The average within-cluster sum of squares, SSW ,
is calculated as:

SSW =
k∑

i=1

∑
x∈Pi

∥x−mi∥2

Here, x represents a sample, Pi is the ith cluster, mi is the centroid of
cluster Pi, and ∥ · ∥ denotes the Euclidean distance between a sample and
the centroid of its cluster.

A higher CH value indicates a better data clustering result, with larger
SSB and smaller SSW values indicating a more well-partitioned cluster. [10]

2.1.5 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is a statistical measure used for
estimating the number of clusters in a dataset. It balances model fit and
complexity, penalizing models with a higher number of parameters. The BIC
is calculated as:

BIC = −2 log L + k log n

where L is the maximized value of the likelihood function for the estimated
model, k is the number of parameters in the model, and n is the sample size.
The likelihood function L represents the probability of observing the given
data under the assumed model parameters. A higher value of L indicates
a better fit of the model to the data. The BIC penalizes models with more
parameters, as indicated by the term k log n, to prevent overfitting and favor
simpler models. Therefore, the optimal number of clusters is determined by
selecting the model with the lowest BIC value, which represents the best
compromise between model fit and complexity. [11]
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.........................2.1. Existing cluster evaluation methods

2.1.6 Akaike Information Criterion

The Akaike Information Criterion (AIC) is a statistical measure used for
model selection among a set of candidate models. It is based on the principle
of trading off the goodness of fit of the model and its complexity.

The formula for computing AIC is given by:

AIC = 2k − 2 ln(L) (2.1)

where k is the number of parameters in the model, and L is the maximum
likelihood of the model.

A lower AIC value indicates a better model fit, considering both the
goodness of fit and the complexity of the model.

The AIC criterion is commonly used in clustering analysis to estimate
the number of clusters. By fitting models with different numbers of clusters
and computing their AIC values, one can determine the optimal number of
clusters that balances model fit and complexity. [12]

2.1.7 Weighted consensus clustering

Weighted Consensus Clustering (WCC) is a technique used to combine mul-
tiple clustering solutions obtained from different algorithms or parameter
settings into a single consensus clustering solution. The goal of WCC is to
enhance the robustness and stability of the clustering results by integrating
diverse perspectives from individual clustering solutions.

Let n be the number of data points and m be the number of clustering
solutions. Each clustering solution Ci assigns data points to ki clusters,
where i = 1, 2, ..., m. The key idea behind WCC is to assign weights to each
clustering solution based on its reliability or quality and iteratively update
the cluster assignments to maximize the consensus across solutions.

The objective function for WCC can be formulated as follows:

max
X

m∑
i=1

n∑
j=1

ki∑
k=1

w
(k)
ij δxj ,c

(k)
ij

(2.2)

where X is the data matrix, xj is the j-th data point, c
(k)
ij is the cluster

assignment of data point xj in clustering solution Ci for cluster k, w
(k)
ij is

the weight assigned to clustering solution Ci for cluster k, and δxj ,c
(k)
ij

is

an indicator function that equals 1 if xj is assigned to cluster c
(k)
ij and 0

otherwise.
The weights w

(k)
ij are usually initialized to equal values and updated it-

eratively based on the agreement between clustering solutions. Common
strategies for updating the weights include measuring the similarity or dissimi-
larity between clusters across solutions and adjusting the weights accordingly.

The consensus clustering solution obtained from WCC provides a robust
representation of the underlying clusters in the data by integrating multiple

7



2. Background ...................................
clustering perspectives. It can help identify stable and reliable clusters that
are consistent across different clustering algorithms or parameter settings.
[13]

2.1.8 Hartigan’s Rule of Thumb

Hartigan proposed a heuristic method to identify well-separated clusters in a
dataset. The method suggests that if there are K* well-separated clusters,
then an optimal K+1 cluster partition should be a K cluster partition with
one of its clusters split in two. This split would drastically decrease WK , as
the split parts are well-separated. WK is accumulative value of document
dissimilarity level to the closest centroid. However, for K>=K*, WK should
stay the same. To compute Hartigan’s statistic, denoted by H, increase K
while keeping track of WK and WK + 1. H is given by

H =
(

WK

WK+1
− 1

)
(N −K − 1)

where N is the number of entities. The first K value at which H decreases
to 10 or less is taken as the estimate of K*. Hartigan’s rule was indirectly
supported by the related Duda and Hart criterion and was found to perform
well in experiments. Milligan and Cooper found that Hartigan’s rule performed
well, and Chiang and Mirkin found that it did surprisingly well in experiments
involving non-spherical clusters generated with overlapping data. [14]

2.1.9 Silhouette Analysis

Silhouette Analysis is a technique used to assess the effectiveness of clusters
produced by a clustering algorithm. It quantifies how well an object fits into
its own cluster compared to other clusters. The silhouette score ranges from
-1 to 1, with a higher value indicating a strong match within its cluster and a
poor match with neighboring clusters. The average silhouette score for all
objects is used to gauge the overall clustering quality.

To calculate the silhouette score for each object i, the following formula is
used:

s(i) = b(i)− a(i)
max{a(i), b(i)}

Here, a(i) represents the average distance from i to other points in the
same cluster, and b(i) is the smallest average distance from i to points in a
different cluster.

A silhouette score near 1 suggests effective clustering, while a score near -1
indicates potential misclassification. A score around 0 implies overlapping
clusters.

By computing the silhouette score for various k values (number of clusters),
one can determine the number of clusters that optimizes the average silhouette
score. [15]

8



.................................... 2.2. K-means

2.1.10 Cross-Validation

Cross-validation is a technique used to assess how well a predictive model
will generalize to an independent dataset. It involves partitioning the dataset
into multiple subsets, training the model on a subset of the data, and then
evaluating its performance on the remaining subset.

In k-fold cross-validation, the dataset is divided into k equal-sized subsets.
The model is trained k times, each time using a different subset as the test
set and the remaining subsets as the training set. The performance metrics
are then averaged across all k iterations.

In leave-one-out cross-validation, each observation in the dataset is used as
the test set once, with the remaining observations used as the training set.
This process is repeated n times, where n is the number of observations in
the dataset.

Cross-validation provides a more reliable estimate of model performance
compared to traditional validation methods such as a single train-test split.
It reduces the risk of overfitting by assessing the model’s performance on
multiple subsets of the data. The estimation method alone is implemented
with k-means and silhouette index and as k-fold cross-validation. [16]

2.2 K-means

The k-means clustering algorithm is widely recognized as one of the most influ-
ential and commonly used data mining techniques. Despite its popularity, the
algorithm faces certain challenges, including issues with the random initializa-
tion of centroids, which can lead to unexpected convergence. Additionally, the
algorithm requires the number of clusters to be predefined, which can result
in varying cluster shapes and outlier effects. Another fundamental limitation
of k-means is its inability to handle different types of data effectively.[17]

Suppose we have a dataset X = {x1, . . . , xN}, xn ∈ Rd. The M-clustering
problem aims to divide this dataset into M disjoint subsets (clusters) C1, . . . , CM ,
optimizing a clustering criterion. The most common criterion is the sum of
squared Euclidean distances between each data point xi and the centroid
mk (cluster center) of the subset Ck containing xi. This criterion, known as
clustering error, relies on the cluster centers m1, . . . , mM :

E(m1, . . . , mM ) =
N∑

i=1

M∑
k=1

I(xi ∈ Ck)||xi −mk||2,

where I(X) = 1 if X is true and 0 otherwise. The k-means algorithm seeks
locally optimal solutions concerning the clustering error.[18]

9



2. Background ...................................
The k-means clustering algorithm follows a simple iterative process:..1. Choose k initial cluster centers either randomly from the dataset or by

defining them within the dataset’s space...2. Assign each data point to the nearest cluster center...3. Update the cluster centers based on the current assignments...4. Repeat steps 2 and 3 until convergence, typically defined by minimal
changes in cluster assignments or cluster center positions.

Various variants of the k-means algorithm have been developed to enhance
its performance. Some focus on improving the initial partition to increase the
likelihood of finding the global minimum. Others allow for cluster splitting
and merging based on predefined criteria, enabling the algorithm to converge
to an optimal solution from any initial partition.[19]

10



Chapter 3
Methods

In this section, we outline the approach for evaluating the performance of
clustering methods on simulated and real biomedical data. We describe
the criteria and metrics used to assess clustering quality and discuss the
methodology for comparing different methods.

3.1 Evaluation using simulated data

To evaluate the clustering methods under controlled conditions, we generate
synthetic datasets that mimic the characteristics of real biomedical data.
These datasets are designed to vary in terms of inter-individual variability,
noise levels, and cluster separability, allowing us to systematically assess the
methods’ robustness and sensitivity to different data scenarios.

The synthetic datasets consist of multidimensional feature vectors, where
each feature represents a specific measurement or attribute. The dimensional-
ity of the feature space varies across datasets, ranging from low-dimensional
2D representation to higher-dimensional datasets. This variation allows us
to evaluate scalability and performance across different data complexities of
clustering methods.

We assign each data point to a ground truth cluster based on the predefined
cluster structures. These true cluster assignments serve as reference labels
for evaluating clustering methods’ accuracy and consistency in identifying
underlying clusters.

We created four distinct datasets with two clusters in each dimension to
evaluate clustering algorithms. We designed the clean dataset as benchmark
3.1a, featuring two well-separated clusters with distinct group means 0 and 5
and identical variance. The second dataset 3.1b has mean values of 0 and
3.5, with a variance of 2 for both clusters. The third dataset 3.1c has mean
values of 0 and 2, each with a variance of 3. Finally, the fourth dataset 3.1d
presents mean values of 0 and 2, with a variance of 5 for both clusters. Each
dataset contains 100 observations per group, ensuring robust evaluations of
algorithmic performance. To illustrate 10D datasets, the first 3.2a and the
fourth datasets 3.2b were projected to 2D.

11



3. Methods.....................................

(a) : 2D dataset 1 (b) : 2D dataset 2

(c) : 2D dataset 3 (d) : 2D dataset 4

Figure 3.1: 2D datasets

(a) : 10D dataset 1 (b) : 10D dataset 4

Figure 3.2: PCA projections
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.......................... 3.1. Evaluation using simulated data

3.1.1 Characterization of clusters

The evaluation of clustering algorithms often involves measuring how well
the clusters are separated from each other and how compact the clusters are
internally. One commonly used metric for evaluating clustering results is the
interclass to between-class ratio, which measures the compactness of clusters
relative to their separation. A lower ratio indicates better separability between
the clusters, signifying that the clusters are more distinct and well-separated.

The ratio was calculated for each dataset as the sum of the average Eu-
clidean distances from each data point to the centroid of its respective group,
divided by the sum of distances between the centroids of the two groups.

The interclass to between-class ratio (ratio) can be calculated using the
following equation:

ratio =
∑Nc

i=1
∑Ni

j=1 ∥xij − µi∥∑Nc
i=1 ∥µi − µ∥

where Nc is the number of clusters, Ni is the number of points in cluster i.
xij represents the j-th point in cluster i and µi is the centroid of cluster i, µ
is the centroid of all data points. ∥·∥ denotes the Euclidean distance.

The mean interclass between-class ratios were then calculated 3.1 over
100 iterations for each dataset type and dimensionality. These mean ratios
summarize the separability of the clusters and describe how the datasets
differ.

The parameters for variance and mean were carefully established to con-
tain a wide range of ratios, ensuring comprehensive coverage of the data
distribution.

Dimension Dataset 1 Dataset 2 Dataset 3 Dataset 4
2D 0.24 0.46 0.76 0.83
3D 0.25 0.47 0.76 0.82
5D 0.26 0.48 0.76 0.83
10D 0.26 0.48 0.77 0.83

Table 3.1: Mean interclass between-class ratios for clean and noisy datasets

In the following analysis phase, the goal is to determine the optimal number
of clusters for all datasets, considering that the ground truth number is two.
Subsequently, the purpose was to compare the most effective estimation
methods across all four datasets and dimensions.

13



3. Methods.....................................
Algorithm 1 Clustering Analysis

1: Define required functions
2: for each dimension dim in [2, 3, 5, 10] do
3: for each method m in methods do
4: for i from 1 to 1000 do
5: Generate dataset Dx using dim
6: Estimate clusters using method m: kx ← method_func(Dx)
7: Increment Cx[kx]
8: end for
9: end for

10: end for

3.1.2 Simulation of more clusters

We generate datasets 3.3 with varying numbers of clusters to evaluate the
performance of clustering methods. The purpose is to assess which methods
consistently yield better results across datasets with increasing complexity in
the number of clusters. The parameters include definitions for the centers of
datasets with 3, 5, and 7 clusters. The datasets consist of 800 samples each,
distributed among clusters located at specific coordinates in a two-dimensional
space. For instance, the 3 clusters dataset comprises clusters located at (-3,
-3), (3, 3), and (0, 0), while the 5 clusters dataset includes two additional
clusters at (-5, 5) and (5, -5). The 7 clusters dataset adds clusters at (-7, 0)
and (7, 0) to the existing five clusters.

Figure 3.3: Datasets

The datasets exhibit similar inter-class to between-class ratios across varying
numbers of clusters, it suggests a level of consistency in the dispersion of data
points within and between clusters 3.2.

Number of clusters Inter-class to Between-class Ratio
3 0.998
5 0.998
7 0.998

Table 3.2: Inter-class to Between-class Ratio for Datasets
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3.2 Application on real data

The dataset was provided by the National Institute of Mental Health (NÚDZ)
and contains detailed patient information. It includes demographic informa-
tion such as unique identification codes, birth year, sex, nationality, marital
status, and medical history. Additionally, it covers lifestyle factors like edu-
cation, occupation, smoking, and alcohol consumption habits. The medical
history section provides information on neurological, cardiovascular, respira-
tory, gastrointestinal, endocrine, and dermatological disorders and records
related to COVID-19, such as confirmation methods, symptoms, hospitaliza-
tion details, and long-term effects.

The following steps were taken for the analysis of COVID-related data:
First, relevant data was selected from the dataset for exploratory analysis.
Next, the data was preprocessed to handle missing values, and principal
component analysis (PCA) was applied. PCA was chosen to reduce the
dimensionality of the dataset while preserving its important features. Since
the dataset includes binary variables, PCA components enable clustering by
capturing the variability in the data. The variance of the PCA components
was examined, and relevant components were selected for further analysis.
Subsequently, cluster estimation was performed using selected methods based
on the results obtained from simulated datasets. The clustering was conducted
according to the outcomes of the analysis.
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Chapter 4
Results

4.1 Simulated data

The results chapter for simulated data presents the outcomes of various meth-
ods used to predict the number of clusters when the true number is 2, across
different dimensionalities. Each column corresponds to a different method.

For chosen dimensionalities as 2, 3, 5, and 10, the methods used include
the Elbow Method, Silhouette Analysis (SA), Calinski-Harabasz Index (C-H),
Davies-Bouldin Index (D-B), Weighted Consensus Clustering (WC), Harti-
gan’s Rule of Thumb (HR), Cross-Validation (CV), Gap Statistics (Gap),
Bayesian Information Criterion (BIC), and Akaike Information Criterion
(AIC). The table displays the number of predicted clusters by each method
for k (k pred) values ranging from 1 to 10.

The results show that different clustering methods provide varying pre-
dictions for the number of clusters in the datasets. The Elbow Method
consistently suggested 10 clusters for all datasets, indicating a potential
limitation in identifying the correct number of clusters, possibly due to its
inability to handle noisy data and unclear cluster boundaries.

On the other hand, Silhouette Analysis (SA), Calinski-Harabasz Index
(C-H), and Davies-Bouldin Index (D-B) consistently predicted two clusters
for most datasets, suggesting their effectiveness in determining the correct
number of clusters. However, their predictions varied for the last noisy dataset,
particularly for SA and C-H.

Davies-Bouldin Index (D-B) performed well for datasets with well-separated
clusters but showed increased variability in predicting cluster numbers for
datasets with more complex distributions and higher dimensions.

Weighted Consensus Clustering (WC) showed poor results for all datasets,
indicating its limitations in capturing the underlying data structure. Similarly,
Hartigan’s Rule of Thumb (HR) and Cross-Validation (CV) showed inadequate
performance across all datasets, suggesting their ineffectiveness in determining
our datasets’ optimal number of clusters.

Gap Statistics (Gap) performed well for most datasets, except the last one,
highlighting its robustness across various dimensionalities.
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4. Results .....................................
Dimensionality ndim = 2

k pred Elbow SA C-H D-B WC HR CV Gap BIC AIC
1 0 0 0 0 0 1000 1000 0 0 0
2 0 1000 1000 1000 0 0 0 1000 1000 866
3 0 0 0 0 0 0 0 0 0 58
4 0 0 0 0 0 0 0 0 0 12
5 0 0 0 0 0 0 0 0 0 8
6 0 0 0 0 0 0 0 0 0 10
7 0 0 0 0 0 0 0 0 0 8
8 0 0 0 0 0 0 0 0 0 9
9 1 0 0 0 0 0 0 0 0 16
10 999 0 0 0 1000 0 0 0 0 13

Dimensionality ndim = 3
1 0 0 0 0 0 1000 1000 0 0 0
2 0 1000 1000 1000 0 0 0 999 1000 818
3 0 0 0 0 0 0 0 1 0 32
4 0 0 0 0 0 0 0 0 0 12
5 0 0 0 0 0 0 0 0 0 19
6 0 0 0 0 0 0 0 0 0 28
7 0 0 0 0 0 0 0 0 0 35
8 0 0 0 0 0 0 0 0 0 38
9 1 0 0 0 0 0 0 0 0 45
10 999 0 0 0 1000 0 0 0 0 73

Dimensionality ndim = 5
1 0 0 0 0 0 1000 1000 0 0 0
2 0 1000 1000 1000 0 0 0 949 1000 623
3 0 0 0 0 0 0 0 43 0 42
4 0 0 0 0 0 0 0 8 0 25
5 0 0 0 0 0 0 0 0 0 20
6 0 0 0 0 0 0 0 0 0 35
7 0 0 0 0 0 0 0 0 0 37
8 0 0 0 0 0 0 0 0 0 55
9 3 0 0 0 2 0 0 0 0 72
10 997 0 0 0 998 0 0 0 0 91

Dimensionality ndim = 10
1 0 0 0 0 0 1000 1000 0 0 0
2 0 1000 1000 1000 0 0 0 772 999 504
3 0 0 0 0 0 0 0 130 1 15
4 0 0 0 0 0 0 0 45 0 2
5 0 0 0 0 0 0 0 23 0 2
6 0 0 0 0 0 0 0 15 0 19
7 0 0 0 0 0 0 0 9 0 57
8 0 0 0 0 0 0 0 3 0 61
9 6 0 0 0 3 0 0 3 0 129
10 994 0 0 0 997 0 0 0 0 211

Table 4.1: Cluster Evaluation For Dataset 1
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Dimensionality ndim = 2
k pred Elbow SA C-H D-B WC HR CV Gap BIC AIC
1 0 0 0 0 0 1000 942 0 60 0
2 0 1000 1000 1000 0 0 0 1000 940 864
3 0 0 0 0 0 0 0 0 0 44
4 0 0 0 0 0 0 0 0 0 13
5 0 0 0 0 0 0 0 0 0 8
6 0 0 0 0 0 0 0 0 0 12
7 0 0 0 0 0 0 0 0 0 14
8 0 0 0 0 0 0 0 0 0 11
9 6 0 0 0 2 0 0 0 0 12
10 994 0 0 0 998 0 58 0 0 22

Dimensionality ndim = 3
1 0 0 0 0 0 1000 813 0 1 0
2 0 1000 1000 1000 0 0 0 998 999 653
3 0 0 0 0 0 0 0 2 0 53
4 0 0 0 0 0 0 0 0 0 18
5 0 0 0 0 0 0 0 0 0 20
6 0 0 0 0 0 0 0 0 0 30
7 0 0 0 0 0 0 0 0 0 49
8 0 0 0 0 0 0 0 0 0 42
9 2 0 0 0 2 0 0 0 0 59
10 998 0 0 0 998 0 187 0 0 76

Dimensionality ndim = 5
1 0 0 0 0 0 1000 726 0 0 0
2 0 1000 1000 1000 0 0 0 939 1000 612
3 0 0 0 0 0 0 0 51 0 46
4 0 0 0 0 0 0 0 9 0 24
5 0 0 0 0 0 0 0 1 0 29
6 0 0 0 0 0 0 0 0 0 25
7 0 0 0 0 0 0 0 0 0 42
8 0 0 0 0 0 0 0 0 0 50
9 4 0 0 0 4 0 0 0 0 65
10 996 0 0 0 996 0 274 0 0 107

Dimensionality ndim = 10
1 0 0 0 0 0 1000 760 0 500 0
2 0 1000 1000 1000 0 0 0 745 497 458
3 0 0 0 0 0 0 0 117 3 13
4 0 0 0 0 0 0 0 79 0 3
5 0 0 0 0 0 0 0 27 0 8
6 0 0 0 0 0 0 0 18 0 20
7 0 0 0 0 0 0 0 9 0 71
8 0 0 0 0 0 0 0 2 0 66
9 2 0 0 0 3 0 0 3 0 135
10 998 0 0 0 997 0 240 0 0 226

Table 4.2: Cluster Evaluation For Dataset 2
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4. Results .....................................
Dimensionality ndim = 2

k pred Elbow SA C-H D-B WC HR CV Gap BIC AIC
1 0 0 0 0 0 1000 0 170 1000 809
2 0 662 477 1 0 0 0 829 0 96
3 0 83 67 1 0 0 0 1 0 19
4 0 51 116 28 0 0 0 0 0 12
5 0 28 54 40 0 0 0 0 0 7
6 0 36 56 87 0 0 0 0 0 7
7 0 31 38 101 0 0 0 0 0 8
8 0 34 60 166 0 0 0 0 0 10
9 2 29 46 223 4 0 0 0 0 17
10 998 46 86 353 996 0 1000 0 0 15

Dimensionality ndim = 3
1 0 0 0 0 0 1000 0 10 1000 612
2 0 984 998 5 0 0 0 933 0 77
3 0 3 0 1 0 0 0 57 0 17
4 0 0 0 2 0 0 0 0 0 14
5 0 3 0 27 0 0 0 0 0 24
6 0 2 0 52 0 0 0 0 0 28
7 0 3 0 110 0 0 0 0 0 40
8 0 2 0 177 0 0 0 0 0 44
9 3 2 0 215 6 0 0 0 0 61
10 997 1 0 411 994 0 1000 0 0 83

Dimensionality ndim = 5
1 0 0 0 0 0 1000 0 0 1000 374
2 0 1000 1000 518 0 0 0 831 0 111
3 0 0 0 0 0 0 0 138 0 27
4 0 0 0 0 0 0 0 22 0 26
5 0 0 0 0 0 0 0 7 0 33
6 0 0 0 3 0 0 0 1 0 53
7 0 0 0 16 0 0 1 0 0 68
8 0 0 0 36 0 0 0 0 0 78
9 10 0 0 101 4 0 0 0 0 98
10 990 0 0 326 996 0 1000 0 0 132

Dimensionality ndim = 10
1 0 0 0 0 0 1000 0 0 1000 330
2 0 1000 1000 998 0 0 0 693 0 169
3 0 0 0 2 0 0 0 156 1 19
4 0 0 0 0 0 0 0 77 0 11
5 0 0 0 0 0 0 0 26 0 7
6 0 0 0 0 0 0 0 22 0 27
7 0 0 0 0 0 0 0 8 0 53
8 0 0 0 0 0 0 0 13 0 46
9 14 0 0 0 12 0 0 5 0 90
10 986 0 0 0 988 0 1000 0 0 249

Table 4.3: Cluster Evaluation For Dataset 3
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Dimensionality ndim = 2
k pred Elbow SA C-H D-B WC HR CV Gap BIC AIC
1 0 0 0 0 0 1000 0 529 1000 876
2 0 293 128 0 0 0 0 467 0 36
3 0 199 121 3 0 0 0 4 0 23
4 0 97 140 26 0 0 0 0 0 3
5 0 49 72 30 0 0 0 0 0 6
6 0 74 99 92 0 0 0 0 0 7
7 0 60 382 125 0 0 0 0 0 6
8 0 59 97 159 0 0 0 0 0 9
9 1 73 97 219 1 0 0 0 0 8
10 999 96 164 346 999 0 1000 0 0 26

Dimensionality ndim = 3
1 0 0 0 0 0 1000 0 125 1000 667
2 0 744 904 0 0 0 0 751 0 42
3 0 30 56 0 0 0 0 120 0 14
4 0 25 31 8 0 0 0 4 0 9
5 0 35 8 39 0 0 0 0 0 17
6 0 37 1 64 0 0 0 0 0 23
7 0 24 0 118 0 0 0 0 0 36
8 0 29 0 146 0 0 0 0 0 34
9 3 32 0 203 8 0 0 0 0 75
10 997 44 0 422 992 0 1000 0 0 83

Dimensionality ndim = 5
1 0 0 0 0 0 1000 0 4 1000 491
2 0 992 994 7 0 0 0 714 0 27
3 0 2 6 1 0 0 0 203 0 24
4 0 0 0 0 0 0 0 52 0 34
5 0 1 0 4 0 0 0 17 0 35
6 0 1 0 15 0 0 0 6 0 39
7 0 0 0 67 0 0 1 3 0 59
8 0 2 0 111 0 0 0 1 0 77
9 3 1 0 232 7 0 0 0 0 90
10 997 1 0 563 993 0 1000 0 0 124

Dimensionality ndim = 10
1 0 0 0 0 0 1000 0 0 1000 606
2 0 1000 999 754 0 0 0 587 0 12
3 0 0 1 2 0 0 0 184 0 6
4 0 0 0 0 0 0 0 96 0 2
5 0 0 0 0 0 0 0 45 0 6
6 0 0 0 1 0 0 0 25 0 10
7 0 0 0 4 0 0 0 28 0 46
8 0 0 0 3 0 0 0 23 0 41
9 17 0 0 34 11 0 0 12 0 83
10 983 0 0 204 989 0 1000 0 0 188

Table 4.4: Cluster Evaluation For Dataset 4
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4. Results .....................................
Bayesian Information Criterion (BIC) was effective for datasets with well-

separated clusters but showed limitations for more complicated distributions.
Akaike Information Criterion (AIC) exhibited high variance in predicted

cluster numbers but consistently performed well across all datasets.

The table 4.5 contains the results of the evaluation for datasets with more
clusters for multiple clustering evaluation methods. Silhouette Analysis,
Calinski-Harabasz Index, Davies-Bouldin Index, and Gap statistics consis-
tently suggest the number of clusters that match the true number in the
simulated datasets, indicating their reliability in estimating cluster numbers.
However, Bayesian Information Criterion (BIC) occasionally diverges, par-
ticularly when faced with datasets containing 5 clusters, where it predicts
one extra cluster. This discrepancy suggests potential sensitivity to dataset
characteristics.

Method Predicted Number of Clusters
3 Clusters 5 Clusters 7 Clusters

Silhouette Analysis 3 5 7
Calinski-Harabasz Index 3 5 7
Davies-Bouldin Index 3 5 7
Bayesian Information Criterion 3 6 7
Gap Statistics 3 5 7

Table 4.5: Predicted Number of Clusters by Evaluation Method

For real dataset evaluation, it’s crucial to select cluster evaluation methods
that demonstrate consistency and robustness across different datasets and
dimensionalities. Based on the observations:..1. Silhouette Analysis (SA): SA consistently predicted two clusters for

most datasets, indicating its stability and reliability in identifying the
optimal number of clusters...2. Calinski-Harabasz Index (C-H): Similar to SA, C-H consistently
predicted two clusters for most datasets, suggesting its effectiveness in
capturing the underlying data structure...3. Davies-Bouldin Index (D-B): Despite its variability in predicting
cluster numbers for datasets with complex distributions, D-B exhibited
good performance for datasets with well-separated clusters. Its ability to
measure the average similarity between each cluster and its most similar
cluster makes it a valuable tool for evaluating real datasets, especially
those with clear cluster boundaries...4. Bayesian Information Criterion (BIC): BIC worked well for datasets
with well-separated clusters, showcasing its ability to penalize complex
models. However, it may exhibit high variance in predicting cluster
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numbers across different datasets. Nonetheless, its stability across various
dimensionalities makes it a valuable addition to the evaluation process
for real datasets...5. Gap Statistics (Gap): Gap Statistics performed well for most datasets,
except the last one, but is robust across various dimensionalities.

Based on their consistency, stability, and ability to capture the underlying
data structure, Silhouette Analysis (SA), Calinski-Harabasz Index (C-H),
Davies-Bouldin Index (D-B), Bayesian Information Criterion (BIC), and Gap
Statistics (Gap) are chosen for real dataset evaluation.
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4. Results .....................................
4.2 Real Covid data

4.2.1 Exploratory Data Analysis

The EDA analysis was performed on the provided COVID dataset using
various visualization techniques. This included boxplots and distribution
plots to explore the distribution of age at the first visit, segmented by sex 4.2,
marital status, and nationality 4.1. Then the correlation of COVID-related
variables was calculated to avoid processing correlated data. A boxplot 4.2
provides information of the central tendency and spread of age within each
sex category.

Distribution plot was created to explore the distribution of Body Mass
Index (BMI) 4.1a values across the dataset, identifying trends and outliers in
BMI values.

(a) : BMI (b) : Sex distribution

(c) : Marital status (d) : Nationality

Figure 4.1: EDA results

We plot the correlation graph 4.3 to visualize the correlation among indi-
vidual categories. Except for the PCR and AG results, the highest correlation
observed among all COVID-related categories in the dataset is 0.26. This
suggests that the variables are not strongly correlated, which reduces the
risk of multicollinearity. Multicollinearity leads to instability and unreliable
estimates in clustering algorithms. Having moderate correlations helps to
obtain more reliable clustering results.
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Figure 4.2: Age distribution plot

Figure 4.3: Correlation

4.2.2 Data preprocessing

The dataset was preprocessed to ensure it was ready for further analysis.
This involved extracting columns related to COVID-19. Subsequently, any
columns with missing values (highlighted in yellow on the heatmap 4.4
data graph) were removed to maintain data integrity. The yellow columns
contained additional data that were filled in with questions just in case of
hospitalization. Additionally, duplicate rows were carefully identified and
eliminated to prevent redundancy in the dataset. One missing value in the
column named "tinnitus" was replaced by zero.

During data preprocessing, we noticed that the sum of binary variables
across each column identified one column representing hospitalization, which
was positive for just one patient. As a result, this column and the correspond-
ing patient were excluded from further analysis, and the entire ’Hospitalization’
column was not used. Additionally, only symptoms were included for PCA,
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4. Results .....................................

Figure 4.4: Missing values

omitting the columns ’Potvrzeno PCR testem’ (Confirmed by PCR test) and
’Potvrzeno AG testem’ (Confirmed by AG test) from the dataset. In total,
we got 16 different symptoms.

Principal component analysis (PCA) was then performed on the modified
dataset, including only symptom variables. This preprocessing step ensured
that the PCA analysis focused solely on symptom-related features, excluding
variables related to hospitalization confirmation tests.

4.2.3 Principal component analysis

In the graph of PCA explained variance of the data 4.5b, it is clear that
the first principal component capture the largest variance. Despite the
dominance of the first component, the significant variance explained by
other components capture the multidimensional structure. This observation
highlights the importance of considering multiple dimensions when analyzing
and interpreting the COVID-19 dataset.

The projection of the patient data onto the first two principal components
reveals a representation of the dataset’s structure. This projection preserves
the most significant variability in the original multidimensional data while
reducing its dimensionality for visualization and analysis. The visualization
facilitates the exploration of patient similarities, differences, and groupings
and shows factors of variability in the dataset. According to the explained
variance plot, only eight components were included for further clustering,
with each component explaining at least five percent of the variance.

The table 4.6 illustrates the PCA loadings, with each row representing a
different Covid-19 symptom and each column corresponding to a principal
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(a) : PCA Explained Variance (b) : Projection of data

Figure 4.5: PCA results

component. The values in the table indicate the correlation between each
symptom and principal component. Examining the loadings enables us to
interpret the principal components concerning the original variables.

Component 1 2 3 4 5 6 7 8

Fever 0.164 -0.118 -0.327 -0.384 0.078 -0.351 -0.227 -0.058
Worsening of Smell 0.254 0.039 -0.177 0.366 -0.212 0.256 -0.183 -0.330
Loss of Smell 0.191 0.501 0.266 -0.279 -0.269 -0.001 -0.076 0.048
Worsening of Taste 0.267 -0.014 0.060 0.028 -0.691 -0.012 -0.044 -0.134
Loss of Taste 0.175 0.461 0.315 -0.219 0.173 0.223 -0.202 0.014
Headache 0.224 0.045 -0.402 -0.312 -0.019 -0.146 -0.120 0.483
Fatigue 0.143 -0.169 -0.264 -0.371 0.085 0.217 -0.026 -0.637
Dizziness 0.275 0.333 -0.250 0.296 0.065 -0.172 -0.117 -0.014
Insomnia 0.164 0.300 0.002 -0.174 0.253 -0.119 0.589 -0.256
Memory Problems 0.267 -0.191 0.180 -0.066 0.180 -0.095 -0.442 -0.064
Concentration Prob. 0.354 -0.173 0.152 -0.018 -0.043 -0.141 0.418 0.027
Confusion 0.315 -0.226 0.331 0.072 0.363 0.071 -0.067 -0.154
Depressed Mood 0.301 -0.278 -0.055 -0.145 -0.227 0.237 0.319 0.253
Anxiety 0.345 -0.237 0.256 0.128 0.089 -0.002 -0.068 0.176
Blurred Vision 0.280 0.173 -0.254 0.438 0.174 -0.250 0.098 -0.001
Tinnitus 0.111 0.091 -0.310 0.022 0.194 0.705 0.028 0.249

Table 4.6: Loadings for each PCA component

Component 1 primarily contains symptoms commonly associated with neu-
rological and cognitive manifestations of COVID-19. It includes symptoms
like worsening taste, headache, dizziness, memory problems, concentration
problems, and anxiety. Component 2 demonstrates a distinct pattern charac-
terized by a strong correlation with symptoms related to the loss of smell and
taste. In Component 3, symptoms such as fever, headache, and confusion are
prevalent. Component 4 displays notable positive correlations with symptoms,
including fever, blurred vision, and fatigue. Symptoms related to cognitive
function, particularly worsening of taste and confusion, are strongly associated
with Component 5. Component 6 characterizes the less prevalent symptom
of tinnitus. Component 7 includes symptoms such as insomnia, memory, and
concentration problems, suggesting sleep disturbances and cognitive function
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4. Results .....................................
issues. Lastly, Component 8 is characterized by symptoms of headache and
fatigue, which are prevalent and often reported symptoms in COVID-19 cases.

4.2.4 Number of cluster estimation

In clustering analysis, determining the optimal number of clusters is a crucial
step that directly influences the quality of the resulting clusters. Here, we
discuss the results obtained from different methods applied to a dataset of
102 patients.

The estimated number of clusters using various metrics is as follows:
The Silhouette Score and Calinski-Harabasz Score both suggest an optimal

number of clusters as 2, indicating good cohesion and separation. Conversely,
the Davies-Bouldin Score predicts a value of 10, suggesting poorer cluster
quality. The Bayesian Information Criterion (BIC) indicates a higher optimal
number of clusters at 9, while the Gap Statistics also suggest 2 clusters as
optimal.

These results may indicate some ambiguity in determining the exact number
of clusters, with variations across different metrics. However, the most
reasonable choice seems to be 2 clusters. K-means was performed on the data
4.6.

(a) : Clustering with 2 Clusters (2D) (b) : Clustering with 2 Clusters (3D)

Figure 4.6: KMeans

4.2.5 Characterization of clusters

The sizes of the clusters were not the same; the first cluster contains 76 patients,
whereas the second cluster sontains 26 patients. Despite this discrepancy
in size, the interclass-to-between-class ratio, which serves as a measure of
the compactness and separation of clusters, was calculated at 0.53. This
value closely resembled the ratio observed in the second simulated dataset,
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indicating a comparable clustering structure in terms of cluster cohesion and
dispersion.

Comparing this ratio to an alternative configuration with 10 clusters, where
the interclass-to-between-class ratio reached 0.91, highlights the superiority
of the 2-cluster configuration. A higher interclass-to-between-class ratio for
clusters with ten centers suggests that the clusters are less well-separated
and may overlap to some extent. Conversely, the lower interclass-to-between-
class ratio for clusters with two centers indicates better separation and
distinctiveness among the clusters.

Analysis of Principal component

The table 4.7 presents the means and standard deviations for each principal
component in two clusters.

Comp Claster 1 mean Std Cluster 2 mean Std t-statistics p-value
1 -0.86 0.85 2.52 1.50 -10.694 7.8× 10−12

2 -0.03 1.11 0.09 1.73 -0.322 0.750
3 0.02 1.02 -0.05 1.70 0.169 0.867
4 -0.08 1.03 0.23 1.38 -1.019 0.315
5 0.08 0.85 -0.23 1.57 0.945 0.352
6 0.09 0.94 -0.26 1.22 1.315 0.197
7 -0.05 0.91 0.15 1.08 -0.825 0.415
8 0.01 0.93 -0.04 0.95 0.243 0.810

Table 4.7: Means and Standard Deviations for Each PCA Component in Clusters

We used Welch’s t-test to evaluate the differences, as the variances differ.
The results indicate that the first component significantly differs for clusters
and is the most distinguishing factor. It is also associated with common
COVID-19 symptoms and emotional factors. The lower mean for cluster
1 suggests a weaker association than cluster 2, with a substantially higher
mean value. The other components do not show significant mean differences
between the two clusters.

Analysis of Unused Features

In order to analyze unused features, we performed calculations to determine
the percentage of vaccinated individuals within different clusters and the
percentage of males. We then used the chi-squared test to find out any
differences. The chi-squared test is a statistical method used to evaluate the
association between categorical variables. Similar analyses were conducted
for other parameters, except that a t-test was used instead of the chi-squared
test. We focused on characterizing the data for exploratory analysis, so we
didn’t perform corrections for multiple comparisons.

We can observe a significant difference based on the table 4.8. The second
cluster contains more females and has a higher average severity of COVID-19.
The subjective perception of the progression of the disease compared to

29



4. Results .....................................
Characteristic Cluster 1 Cluster 2 statistic p-value

COVID Vaccinated (%) 91.53 100.00 3.07 0.0027
Mean BMI 25.16 26.62 -1.40 0.16
Average Age 44.05 42.95 0.28 0.78
Male (%) 52.63 19.23 7.46 0.0062
Average severity of COVID-19 5.22 7.17 -3.63 0.00045
Size 76 26

Table 4.8: Cluster Characteristics

others, for instance, flu, describes this severity. Despite the cluster having a
significantly higher vaccination rate, its members suffer from more symptoms
explained by component 1 in PCA. These symptoms include worsening taste,
headache, dizziness, memory problems, concentration problems, and anxiety.
In conclusion, the clustering identifies a subset of female patients experiencing
anxiety and perceiving COVID-19 more severely than the rest of the patients.
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Chapter 5
Discussion

The analysis of simulated data provides an overview of the performance of
various clustering methods across different dimensionalities. It is evident
that these methods offer varying predictions for the number of clusters in
the datasets. The results chapter presents the outcomes of various methods
used to predict the number of clusters for simulated datasets with 2 true
clusters, across different dimensionalities. While the Elbow Method consis-
tently suggested 10 clusters, Silhouette Analysis, Calinski-Harabasz Index,
and Davies-Bouldin Index consistently predicted 2 clusters, showing their
effectiveness. Weighted Consensus Clustering, Hartigan’s Rule of Thumb, and
Cross-Validation showed poor performance. Gap Statistics performed well,
except for the last dataset. Bayesian Information Criterion was effective but
occasionally diverged. Akaike Information Criterion exhibited high variance.

For datasets with more clusters, Silhouette Analysis, Calinski-Harabasz
Index, Davies-Bouldin Index, and Gap statistics consistently suggested the
correct number of clusters, with Bayesian Information Criterion occasionally
diverging, especially for datasets with 5 clusters.

These observations underscore the significance of selectively choosing clus-
tering methods based on the dataset’s characteristics. Methods such as
Silhouette Analysis and Calinski-Harabasz Index demonstrate stability and
reliability in identifying the optimal number of clusters, particularly in datasets
with distinct cluster boundaries.

The COVID data analysis section provides a comprehensive examination
of the dataset through exploratory data analysis (EDA), data preprocessing,
principal component analysis, and cluster estimation. Initially, the EDA phase
uses various visualization techniques such as boxplots and distribution plots
to explore age distribution segmented by sex, marital status, and nationality,
followed by correlation analysis of COVID-related variables. Subsequently,
data preprocessing ensures data integrity by removing missing values, dupli-
cates, and irrelevant columns, preparing the dataset for PCA. The PCA stage
focuses on extracting meaningful features and reducing dimensionality, with
emphasis on interpreting principal components and their associations with
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5. Discussion ....................................
COVID symptoms. The number of clusters is estimated using multiple met-
rics, including the Silhouette Score, Calinski-Harabasz Score, Davies-Bouldin
Score, Bayesian Information Criterion, and Gap Statistics. Finally, cluster
characterization examines the composition and characteristics of identified
clusters, revealing significant differences in symptomatology, severity, and
vaccination rates between clusters.

In summary, these findings highlight the importance of using robust eval-
uation methods and carefully considering data characteristics in clustering
analysis.
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Chapter 6
Conclusion

The assessment of clustering methods on simulated data emphasized the
importance of choosing appropriate evaluation criteria based on dataset
characteristics. While some methods such as the Elbow Method consistently
showed limitations, others like Silhouette Analysis, Calinski-Harabasz Index,
and Davies-Bouldin Index proved to be effective in identifying the correct
number of clusters, with varying performance for complex datasets.

For the evaluation of real datasets, Silhouette Analysis, Calinski-Harabasz
Index, Davies-Bouldin Index, Bayesian Information Criterion, and Gap Statis-
tics emerged as suitable options based on their performance across different
dimensionalities. Our study used exploratory data analysis, data preprocess-
ing, principal component analysis, and number of clusters estimation. We
could identify meaningful patterns and cluster structures within the dataset
through these methodologies. The clustering analysis revealed significant dif-
ferences in symptomatology, severity, and vaccination rates between identified
clusters, providing valuable insights into patient subgroups’ characteristics
and progression. This study highlights the critical role of clustering analysis
in uncovering hidden structures and patterns within complex datasets such as
COVID-19 patient data. Researchers and healthcare professionals can gain
deeper insights into disease progression, patient heterogeneity, and treatment
outcomes using various techniques and evaluation metrics.

Overall, the study offers valuable insights into the strengths and limitations
of various clustering evaluation methods, applied both for simulated and
real-world datasets.
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