Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Computer Graphics Group

System for Evaluation of Model-based User
Interface Testing Techniques Effectiveness

Bc. Zdenék David

Supervisor: Ing. Feras Abdul Hadi Mustafa Daoud
Field of study: Open Informatics

Subfield: Human-Computer Interaction

May 2024

ii

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: David Zdenék Personal ID number: 483781
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction
Study program: Open Informatics
Specialisation: Human-Computer Interaction
N\ J
Il. Master’s thesis details
~
Master’s thesis title in English:
System for Evaluation of Model-based User Interface Testing Techniques Effectiveness
Master’s thesis title in Czech:
Systém pro evaluaci efektivity technik testovani uzivatelského rozhrani zalozenych na modelu
Guidelines:
Design and implement a system for evaluating the effectiveness of user interface model-based testing techniques. The
system will have the following components: a suitable system (or systems) to be tested for the case studies, for which
source code will be available, automated tests as specified by the supervisor, a description of active, historical or artificial
bugs in the software under test, and a component supporting the evaluation of the effectiveness of the automated tests.
As part of the project validating the results, conduct three case studies using the functionality of the system and document
these studies.
Bibliography / sources:
Utting, M., & Legeard, B. (2010). Practical model-based testing: a tools approach. Elsevier.
Ammann, P, & Offutt, J. (2016). Introduction to software testing. Cambridge University Press.
Kuhn, D. R., Kacker, R. N., & Lei, Y. (2013). Introduction to combinatorial testing. CRC press.
Name and workplace of master’s thesis supervisor:
Ing. Feras Abdul Hadi Mustafa Daoud Department of Computer Science FEE
Name and workplace of second master’s thesis supervisor or consultant:
Date of master’s thesis assignment: 07.02.2024 Deadline for master's thesis submission: 24.05.2024
Assignment valid until: 21.09.2025
Ing. Feras Abdul Hadi Mustafa Daoud Head of department's signature prof. Mgr. Petr Pata, Ph.D.
Supervisor's signature Dean'’s signature
_),
lll. Assignment receipt
(The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others, h
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.
Y Date of assignment receipt Student’s signature)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I would like to express my deepest ap-
preciation to my supervisor Ing. Feras
Abdul Hadi Mustafa Daoud and doc. Ing.
Miroslav Bures, Ph.D. for so much pa-
tience, insightful feedback, and unwaver-
ing support throughout the making of this
thesis.

Equally, my heartfelt thanks go to my
fiancée and my family for their endless
love, support, and patience during my
studies.

Declaration

I hereby declare 1 have written this mas-
ter’s thesis independently and quoted all
the sources of information used in accor-
dance with methodological instructions on
ethical principles for writing an academic
thesis. Moreover, I state that this thesis
has neither been submitted nor accepted
for any other degree.
In Prague, May 2024

Be. Zdenék David

Abstract

This thesis describes the design and imple-
mentation of a system developed to assess
the effectiveness of model-based user in-
terface testing methodologies, focused on
Combinatorial Interaction Testing - CIT.
The purpose of this system is to improve
software testing by enhancing defect de-
tection rates, test coverage as well as ef-
ficiency compared to traditional testing
methods. As software applications grow
in complexity, traditional testing methods
become less effective, necessitating inno-
vative approaches to ensure reliability and
quality.

In order to do this, we have created a
methodology for conducting case studies,
an environment for testing the cases and a
system for evaluating the effectiveness of
these tests. Three case studies were done
utilizing CIT in order to evaluate its prac-
tical implementation. The experiments in-
volved setting up controlled environments,
generating test cases both manually and
using CIT, executing these case studies
and analyzing the results.

The findings indicate that CIT im-
proves the effectiveness of defect detec-
tion and test coverage while reducing over-
all testing time. This means that model-
based testing techniques, such as CIT in
particular, offer a more efficient approach
to software quality assurance, promoting
their wider implementation in software
testing processes.

Keywords: Model-based Testing, User
interface testing, Combinatorial
Interaction Testing, Software quality
assurance, Test coverage, Defect
detection, Automated testing

Supervisor: Ing. Feras Abdul Hadi
Mustafa Daoud

vi

Abstrakt

Tato prace predstavuje navrh a implemen-
taci systému pro hodnoceni Gcinnosti tech-
nik testovani uzivatelského rozhrani zalo-
zenych na modelech, konkrétné pomoci
metody kombinatorického testovani (angl.
Combinatorial Interaction Testing - CIT).
Cilem je zlepsit testovani softwaru zvyse-
nim miry odhaleni chyb, pokryti testt a
efektivity ve srovnani s tradi¢nimi meto-
dami. S rostouci slozitosti softwarovych
aplikaci se tradi¢ni metody testovani sta-
vajl méné efektivnimi, coz vyzaduje ino-
vativni pristupy k zajisténi spolehlivosti
a kvality.

Za timto tcelem jsme vytvorili meto-
diku pro provadéni piipadovych studii,
prostfedi pro testovani pripadi a sys-
tém pro vyhodnocovani a¢innosti téchto
testi. Byly provedeny tii piipadové stu-
die vyuzivajici CIT k vyhodnoceni prak-
tické implementace této metody. Expe-
rimenty zahrnovaly vytvoreni kontrolo-
vaného prostredi, vytvoreni testovacich
pripadt ru¢né i pomoci CIT, provedeni
téchto pripadovych studii a analyzu vy-
sledkii.

Zjisténi ukazuji, ze CIT zlepsuje detekei
chyb a pokryti testi a zaroven zkracuje
celkovou dobu testovani. To naznacuje,
ze techniky testovani zalozené na mode-
lech, zejména CIT, poskytuji efektivnéjsi
pristup k zajisténi kvality softwaru, coz
podporuje jejich sirsi implementaci do pro-
cestl testovani softwaru.

Klicova slova: Testovani zalozené na
modelu, testovani uzivatelského rozhrani,
metody kombinatorického testovani,
zajisténi kvality software, pokryti testu,
detekce defektu, automatizované

testovani

Preklad nazvu: Systém pro evaluaci
efektivity technik testovani uzivatelského
rozhrani zalozenych na modelu

Contents

1 Introduction 1

1.1 Background and context of
model-based user interface testing. .

1.2 Importance of evaluating the
effectiveness of model-based testing

techniques
1.3 Research objectives and scope of
the thesis 2

1.4 Overview of the thesis structure .

2 Theoretical Framework of Software

testing 3
2.1 Introduction to Software Testing .
2.1.1 White box testing...........

2.1.2 Black box testing
2.1.3 Theoretical Models of Software

Quality and Testing.............
2.2 Concepts of Testability, Factors of
Testability in Software............

2.2.1 Testability Factors
2.2.2 Requirements of Software
Testability
2.2.3 Improving Software Testability
2.3 Test Coverage Criteria and
Adequacy Models
2.3.1 Code coverage
2.3.2 Compatibility coverage
2.3.3 Product coverage
2.3.4 Requirements coverage.
2.4 Principal Test Levels
2.4.1 Unit testing
2.4.2 Module testing
2.4.3 Integration testing
2.4.4 Functional and system testing

2.4.5 User Acceptance Testing
2.4.6 Beta testing
2.4.7 Regression testing..........

2.5 Combinatorial Interaction Testing

2.6 Test Planning and Management
2.6.1 Key components of a test plan
2.6.2 Designing test cases and

managing test data
2.7 Evaluating Test Automation

Return on Investment

3 Literature Review 15|

3.1 Definition and principles of
model-based user interface testing.

vii

3.2 Techniques and approaches for
model-based testing in UI design. .
3.3 Evaluation criteria and metrics for
assessing the effectiveness of testing
techniques
3.4 Principles of Model-Based Testing
3.5 Previous studies and research on
model-based testing effectiveness. .

4 Evaluating the effectiveness of

model-based testing techniques

4.1 Research design and approach for
evaluating model-based Ul testing

21

effectiveness
4.1.1 Objective
4.1.2 Methodology
4.1.3 Evaluation Criteria......... 22
4.2 Selection of testing tools and
frameworks 22
421ACTS3.2.......cooiin...
422 Cypress. ..c..ooveiene...
4.2.3 Git/Github
4.2.4 Google Sheets as a Test
Management Framework........
4.3 Design of experiments and case
studies ... oo 23

4.3.1 Impact Analysis of

Combinatorial Interaction Testing

on Systematic Software Validation
4.3.2 Combinatorial Interaction

Testing in Usability Studies
4.3.3 Effectiveness of Combinatorial
Interaction Testing in Test
Automation................... [35]
4.3.4 Threats to Validity
5 Results 43
5.1 Results of Specific Case Studies.
5.2 Summary of Key Results
5.3 Implications of Results
5.4 Limitations of the Study.......
5.5 Recommendations for Future
Research....................... 47|

6 Conclusion

)
S

Bibliography
A Acronyms
B Used Software

R

viii

Figures

2.1 Diagram of the V-Model in

Software Testing.................
4.1 Flowchart of the experiment

method........................
4.2 OpenCart - Subscription Plan

Form..........................
4.3 OpenCart - Attribute Form
4.4 Odoo - Dashboard
4.5 Odoo - Employee Form
4.6 Odoo - Product Form 33
4.7 Odoo - Sale Quotation Form . ..
4.8 JTrac - Login Form

4.9 JTrac - Creating New Item Form

ix

Tables

2.1 Mapping Testing Levels to SDLC
Stages and Code Accessibility

2.2 Test case example
4.1 Number of values of each
parameter in Adding a Subscription
Plan Form 28|
4.2 Number of values of each
parameter in Adding an Attribute
Form..........ccooiiiiiiii. 28]
4.3 CIT Parameters and Values for
Subscription Plans

4.4 Participant Observations
Collection Sheet for Usability Study
4.5 CIT Parameters and Values for

Usability Testing
4.6 Number of values of each

parameter in Creating New Item

Form........ ... 138
5.1 Comprehensive Comparison of

Testing Metrics with and without

CIT 43
5.2 Average Time to Design Test

Scenariosiia. .. [44]
5.3 Average Task Completion Time .

5.4 Comparison of count of test cases,
count of defects detected and time
spent between ’without CIT’ and
2-way’ and 'Mixed’ methods

Chapter 1

Introduction

B 11 Background and context of model-based user
interface testing

The complexity of software applications is growing in the current digital era,
driven by the need for more sophisticated features and smooth juser experience|
. This increase in complexity poses significant challenges to traditional
software testing methods, making them very time-consuming. This leads to
poor test coverage of many systems.

Model-Based Testing (MBT) has become an example of innovation in
this field, reducing overall testing time. Additionally, by using various test
selection criteria, one may use the same model to build a variety of test
suites . An industrial case study revealed that although required
more preparation, it was more methodical and effective, resulting in more
even test coverage and revealing a greater number and severity of functional
issues than manual testing, which was however faster to initiate [2].

Despite this, there is still a need for more research to understand the
effectiveness of some newer Model-Based Testing| techniques in practical,
meaningful scenarios.

W Importance of evaluating the effectiveness of
model-based testing techniques

Since [Model-Based Testingl methods have the potential to improve software
quality assurance, it is important to evaluate their effectiveness.
methods provide an organized way to find errors, guarantee thorough
coverage, and boost the effectiveness of the testing process by automating
the creation and execution of test cases from abstract models. This kind
of assessment is important for determining the benefits and drawbacks of
[Model-Based Testing|in a practical context, which would help developers and
testers choose the best approach for their work, and help in the creation of
more dependable, user-focused software applications.

Current empirical research emphasizes how important it is to implement

1. Introduction

[Model-Based Testing| to manage the complexity and improve the quality of
web applications. Many empirical studies point to the importance of effective

testing techniques in order to guarantee software dependability and adjust to
quick modifications [3-5].

B 1.3 Research objectives and scope of the thesis

The main objective of this thesis is to design and implement a system for
evaluating the effectiveness of chosen newer [Model-Based Testing| techniques.
The purpose of the system is to assess how the application of a certain
[Model-Based Testing| technique improves and speeds up the testing process
in comparison to a baseline testing process in which no particular techniques
are used while generating test cases.

. 1.4 Overview of the thesis structure

This thesis is organized into five main chapters.

The Literature Review chapter first reviews existing literature on model-
based user interface testing, including the definition and principles of
then covers techniques and approaches for UI design, evaluation
criteria and metrics for assessing testing effectiveness and briefly explores
previous studies and research on the subject.

The chapter on the Theoretical Framework of Software Testing provides an
introduction to the basic concepts in software testing. It covers topics such
as white box and black box testing, theoretical models of software quality,
and the principles of Model-Based Testing| and model checking. The chapter
also covers test levels, specific testing techniques used in this thesis and test
planning and management.

The Fvaluating the Effectiveness of|Model-Based Testing Techniques chapter
outlines the research design and also methodology used to evaluate the
effectiveness of |Combinatorial Interaction Testing (CIT). The chapter covers
the process of selecting testing tools and frameworks, design of the experiments
and setup of three case studies.

The Findings chapter presents the results of the case studies, summarizing
key findings and discussing their implications. Secondly, it also addresses the
limitations of the study and provides recommendations for future research.

The chapter Conclusion provides a concise summary of the primary contri-
butions of the thesis. It also evaluates the overall influence of the research on
the area of software testing.

Chapter 2

Theoretical Framework of Software testing

B 2.1 Introduction to Software Testing

Software testing ensures the reliability, functionality and performance of
software applications and is a crucial component of the software development
lifecycle. In order to assess one or more qualities, software/system compo-
nents are executed manually or preferably automatically to lower its cost
dramatically, decrease human error, and simplify regression testing using
tools. @ Finding errors, gaps, or missing requirements in comparison to the
real requirements is the main objective of software testing.

B 2.1.1 White box testing

White box testing (also called structural testing, clear box testing and glass
boz testing) is a software testing approach that verifies the internal structure
and functionality of a system. This approach requires access to the system’s
source code and knowledge of the underlying programming language. White
box testing is used for unit, integration and regression testing , which are
covered later in principal testing levels in section [2.4.

B 2.1.2 Black box testing

Black box testing (also known as functional testing and behavioral testing)
is a software testing approach where the functional requirements of the
software are tested without knowledge of the internal code structure and
implementation specifics. It is present in all of the principal testing levels
(covered in section apart from unit and module testing .

B 2.1.3 Theoretical Models of Software Quality and Testing

Theoretical models of software quality and testing give critical guidance for
ensuring that software solutions fulfill the highest quality requirements. The
ISO/IEC 25010 standard defines the models for both software product quality
and software quality in practice, as well as practical instructions on how to

2. Theoretical Framework of Software testing

utilize the quality models [9], while the V-Model applies this concept to a
realistic, step-by-step development and testing approach.

B 1SO/IEC 25010

The ISO/IEC 25010 standard, part of the Systems and Software Quality Re-
quirements and Evaluation (SQuaRE) framework, specifies a comprehensive
model for evaluating software quality. This model divides software quality
into eight main characteristics, each with their own set of sub-characteristics.
These characteristics ensure that software not only fulfills its intended func-
tionality, but also adheres to quality parameters that improve user satisfaction,
performance efficiency, compatibility and more [104|11].

® Functional Suitability
This is about the software’s ability to provide functions that meet
stated and implied needs under specific conditions, focusing on the
completeness, correctness, and appropriateness of those functions.

® Performance Efficiency
It evaluates the performance relative to the amount of resources used
under stated conditions, looking at time behavior, resource utilization,
and capacity.

® Compatibility
This characteristic assesses the software’s ability to co-exist and ex-
change information with other products, systems, or components in a
shared environment, emphasizing co-existence and interoperability.

® Usability
It covers the software’s ease of use and attractiveness, including user
interface aesthetics, learnability, and operability.

® Reliability
This focuses on the software’s capability to maintain a level of perfor-
mance under stated conditions for a stated time period, assessing aspects
like maturity, fault tolerance and recoverability.

® Security
Security evaluates the software’s ability to protect information and
data, preserving confidentiality, integrity, and authenticity.

® Maintainability
This characteristic, which focuses on modifiability, testability, and
analysability, looks at the ease with which the software can be modified
to correct defects, meet new requirements, or make future maintenance
easier.

® Portability
It assesses the ease with which the software can be transferred from
one environment to another.

2.2. Concepts of Testability, Factors of Testability in Software

B V-Model

The V-model, named for its characteristic V shape, is an extension of the
waterfall model used in software (and hardware) development. This model
emphasizes the value of validation at every level of the process by directly
connecting each development phase with a matching testing stage [12].

This diagram in figure illustrates the parallel relationship between each
development stage and its associated testing phase in the V-Model process.

Requirements

analysis

N

Acceptance
testing

V

System System
design testing
\ ¥
Architecture Integration

design testing
3 P
Module Unit
design testing
N
Coding

Figure 2.1: Diagram of the V-Model in Software Testing

B 22 Concepts of Testability, Factors of Testability
in Software

Software testability is a measure of how effectively a software system or
component can be tested. The ease and efficiency of conducting tests are
determined by several influencing factors. Gaining an in-depth knowledge of
testability and implementing measures to improve it is important in order
to enhance the quality of software and minimize the expenses and labor
associated with testing.

B 2.2.1 Testability Factors

There are several key factors that contribute to the testability of software.

These factors can help in assessing and improving the ease with which software
can be tested.

B Observability

Observability refers to the ability to observe the user inputs into the system
during testing. A system with high observability provides clear information

2. Theoretical Framework of Software testing

about its behavior, making it easier to identify defects. This includes log-
ging, reporting and debugging capabilities that expose the system’s internal
operations to testers [13].

B Controllability

Controllability is the degree to which the state of the software modules can be
controlled by testers in isolation. High controllability means that testers can
easily manipulate the software to achieve desired test conditions and inputs.
This includes the ability to set up and modify the software’s environment
and configurations to facilitate testing [13].

B Simplicity

Simplicity refers to the complexity of the software. Simpler software has fewer
complexities, making it easier to test. This includes well-defined interfaces,
modular design and high coding standarts. Simplified software reduces the
effort needed for testers and devs to test the system and minimizes the
potential for introducing errors during testing [14].

B Stability

Stability is the extent to which the software undergoes changes. Software
that is stable and has fewer changes is easier to test because the test cases
remain valid for longer periods. Frequent changes in the software can lead to
outdated test cases and require constant updates to the testing process [14].

B Auvailability

Availability refers to the extent to which all necessary objects and entities
for testing are readily available at every stage of development. This includes
the availability of test environments, test data, and the software itself. High
availability ensures that testers have continuous access to the resources needed
for conducting tests without significant downtime or interruptions [13].

B 2.2.2 Requirements of Software Testability

Software testability requires the fulfillment of specific conditions and attributes
to ensure testability. These requirements include:

® Test support capabilities: It is essential to ensure that every team
member, test interface, and scenario has access to the entry point for
testing drivers and root, and that it remains intact accordingly.

® Module capabilities: A modular architecture allows testing of indi-
vidual components independently, making it easier to isolate and fix
defects.

2.3. Test Coverage Criteria and Adequacy Models

® Defect disclosure capabilities: The frequency of system errors should
be reduced to prevent them from impeding software testing.

The requirement document must be testable, accurate, correct, concise,
unambiguous, not contradicting other requirements, prioritize-based, and
domain-based to ensure easy implementation and avoid challenges in
changing requirements.

® Observation capabilities: The software should have mechanisms to
monitor user inputs, output, and factors influencing it, including static,
dynamic, and functional analysis capabilities.

These requirements ensure that the software is prepared for thorough testing
and can be evaluated effectively for quality assurance [13].

B 2.2.3 Improving Software Testability

Improving software testability involves adopting strategies that enhance the
factors mentioned above. Some methods to improve testability include:

8 Refactoring Code: Regularly refactoring the code to reduce complexity
and improve readability can significantly enhance testability.

#8 Enhancing Observability: Implementing robust logging and monitor-
ing mechanisms helps in tracking the software’s behavior and diagnosing
issues within the [SU'TL

8 Improving Documentation: Maintaining up-to-date and comprehen-
sive documentation aids testers in understanding the system and creating
accurate test cases.

B Integrating Tools for Testers: Integrating automated testing tools
and frameworks into the development process ensures that tests can be
executed efficiently and frequently.

8 Designing for Testability: Incorporating testability considerations
into the software design phase, such as using modular architectures and
well-defined interfaces, can make the software inherently more testable.

By focusing on these areas, organizations can enhance the testability of
their software, leading to more effective testing processes and higher quality
software products [14].

B 23 Test Coverage Criteria and Adequacy Models

We can employ various test coverage criteria to evaluate the completeness of
a set of tests.

2. Theoretical Framework of Software testing

B 2.3.1 Code coverage

The amount of code that has been subjected to automated testing is measured
by code coverage. This category generally falls under white box testing.

We may use methods such as statement coverage, branch coverage and path
coverage, each of which focuses on a different aspect, to find untested parts of
the codebase .

B Statement coverage

Statement coverage is a testing criterion that validates the sufficiency of a
given set of tests ensuring that each statement in an application is executed

at least once .

B Branch coverage

Branch coverage is a testing metric that assesses the proportion of code’s
executed decision points, or if-else statements, to make sure a wide variety of
scenarios are tested .

Branch coverage shows the coverage of the basic logic behind the appli-
cation’s decision-making process by guaranteeing that each branch—true or
false—of each decision point is run at least once .

B Path coverage

Path coverage is a similar testing method, which aims to test every branch
combination and possible execution path in the program. Although this
approach aims for a comprehensive testing procedure, as software complexity
increases, it may significantly increase the overall number of tests required .

B 2.3.2 Compatibility coverage

Compatibility coverage employs a wide range of testing techniques, including
mobile, hardware, browser and network testing to ensure that the software
works across different browsers reliably, operating systems, and devices .

B 2.3.3 Product coverage

Product coverage is the process of evaluating a software’s performance from
a product perspective, concentrating on important areas by developing check-
lists, defining criteria, and putting test automation into practice .

B 2.3.4 Requirements coverage

By tracking the implemented requirements and testing them through various
tests, requirements coverage assesses whether a software solution satisfies all
specified functionalities and client requirements .

2.4. Principal Test Levels

B 24 Principal Test Levels

There is a testing level for every unique software development activity: Unit
testing assesses how well the code is implemented, module testing compares
the completed design of individual modules in isolation, integration testing
looks at how well subsystems are integrated, system testing confirms the
architectural design, acceptance testing makes sure the software satisfies
requirements and regression testing confirms that no unintended changes were
introduced with a software update [6].

We will also shortly explain beta testing since it can be considered a test
level [§].

Table [2.1] methodically presents the assignment of each testing level to
distinct stages of the software development life cyclel (SDLC)), together with
the code access strategy (white box vs. black box). This demonstrates how
testing approaches are strategically integrated throughout the development
process.

Test level Stage of [SDLC Access to code

Unit testing Development White box

Module testing Development White box

Integration testing Testing White box & black box
Functional and system testing Testing Black box

User Acceptance Testing Testing Black box

Beta testing Deployment Black box

Regression testing Testing & Maintenance White box & black box

Table 2.1: Mapping Testing Levels to SDLC Stages and Code Accessibility

B 2.4.1 Unit testing

Unit testing evaluates a system’s smallest components, such as functions, in
isolation from the rest of the application. Test cases are intended to cover all
potential pathways, including loops, forks, and particular lines of code, to
ensure that functionality functions as anticipated. Concurrent unit testing
with development promotes clean code and early discovery of errors, leading
to a scalable and sustainable method [19].

B 2.4.2 Module testing

Module testing, like unit testing, requires a thorough understanding of the
software’s internals. The primary goal of module testing is to detect defects
in the module’s interface and data flow interactions, ensuring that the module
meets its specifications and performs as intended. By testing modules in
isolation, developers can identify and address specific areas of failure early in
the development process. This phase broadens the scope of white box testing
while maintaining a focus on the code’s logic and structure [20].

2. Theoretical Framework of Software testing

B 2.4.3 Integration testing

Integration testing examines the interaction of several modules or components
of an application. This testing phase attempts to detect defects in the
interfaces and interactions of integrated components. The primary purpose is
to identify any inconsistencies between merged units that may not be obvious
during previous testing [21].

Unlike module or unit testing, which analyzes individual components in
isolation, integration testing investigates the data flow and communication
between modules to ensure they function properly.

B 2.4.4 Functional and system testing

Functional and system testing tries to ensure that the application meets high-
level design criteria and specifications. Functional testing determines if the
program executes its functionality specified in the requirements specification
successfully, while system testing assesses the software’s behavior in different
environments to ensure compatibility and performance per user expectations.
This testing phase focuses on outputs in response to inputs, without concern
for the application’s internal structure [8].

B 2.4.5 User Acceptance Testing

Acceptance testing is defined as formal testing in which the software is
evaluated to see whether it fits the acceptance criteria and allows the customer
to decide whether to accept the system. In this phase, it is verified that the
software meets the customer’s specifications and requirements. Acceptance
tests are often set by the customer and carried out based on their expectations
of the software’s functionality [8].

B 2.4.6 Beta testing

Beta testing involves providing the yet unreleased system to selected people
outside of the development team, often for free, with the condition that they
report any identified issues back. This phase often results in the detection of
unexpected faults, as beta testers may use the product in unforeseen ways
and in diverse environments. The benefits of beta testing include a broad
search for faults at a low cost because beta testers are often unpaid. However,
a lack of rigorous testing and potentially low-quality mistake reports might
make it difficult to assess feedback [8].

B 2.4.7 Regression testing

Testing to verify that recent modifications haven’t added new defects to
previously functional software is known as regression testing. The modifica-
tions include adding new features or requirements, bug fixes, performance
optimizations, patch updates, UI modifications, configuration changes and

10

2.5. Combinatorial Interaction Testing

integrating third-party systems. Regression testing is a good candidate for
automation since it is repetitive and acts as a frequent check to ensure the
integrity of the product [22].

Regression test automation is frequently done with tools like testRigon’}
Sahi Pro? and Selenium?, which offer support for various testing needs across
multiple platforms and environments [23].

B 2.5 Combinatorial Interaction Testing

This section explores the technique present in all of the case studies later
presented in chapter 4.3\

Combinatorial interaction testing (CIT) is a software testing approach
that methodically analyzes combinations of input parameters to efficiently
detect problems resulting from unexpected interactions among them. The
fundamental concept underlying [CIT]is that it is unnecessary to test every
conceivable combination of parameter values. Instead, by selecting strategic
combinations that optimize the coverage of interactions, the number of
test cases may be greatly reduced while still achieving a high level of test
effectiveness [24].

The technique relies on the use of covering arrays, which are mathematical
constructs that ensure each combination of parameters up to a certain length
is tested at least once. This approach is rooted in the design of experiments
(DoE) and has been adapted to address the unique challenges in software
testing [25].

Advantages of Combinatorial Interaction Testing:

8 Reduced Test Suite Size: By using algorithms that generate min-
imal covering arrays, |[CI'T| can significantly reduce the number of test
configurations compared to exhaustive testing.

8 Improved Fault Detection: Empirical studies suggest that most
defects are caused by interactions between a small number of parameters.
CIT]| targets these interactions directly, often leading to more effective
fault detection.

m Efficiency: Due to the progress in algorithms for producing covering
arrays, |CI'T] has become a feasible and effective method for evaluating
complex systems that have many parameters and configurations.

Practical Applications: |CI'T| has been successfully applied in some do-
mains, including software, hardware and system integration testing. The
method is particularly valuable in environments where parameters and con-
figurations are numerous and complex, making traditional testing approaches
both challenging and cost-prohibitive.

'testRigor. Available at https://testrigor.com/
2Sahi Pro. Available at https://www.sahipro.com/
3Selenium. Available at https://www.selenium.dev/

11

https://testrigor.com/
https://www.sahipro.com/
https://www.selenium.dev/

2. Theoretical Framework of Software testing

B 26 Test Planning and Management

Test plan is a document describing the scope, approach, resources, and schedule
of intended test activities. It identifies test items, the features to be tested,
the testing tasks, who will do each task, and any risks requiring contingency
planning.

Test management is a complete process that involves the proactive moni-
toring of testing operations throughout software development. This consists
of test planning, organization, coordination, and oversight to guarantee that
high-quality, dependable software is delivered on schedule .

B 2.6.1 Key components of a test plan

A test plan describes the approach that will be used to verify that a software
product satisfies its requirements, including design standards. This document
contains a description of the testing scope, timetable, required resources, envi-
ronments, tools, risk management strategies, defect management procedures,
and exit criteria. It acts as a road map for the testing procedure, guiding
teams through every important phase to guarantee thorough assessment and
quality control of the program .

The scope, schedule, resources, environment, tools, and strategies for
managing defects, risks, and exits are explained in the following list.

B Scope
Specifies what will be tested and the features or areas that will be
excluded from testing.

® Schedule
Lays out the timelines for every stage of testing.

® Resource Allocation
Describes how employees and equipment are distributed.

® Environment
Specifies the hardware and software setup for testing.

® Tools
Lists the software and tools required for testing.

B8 Defect Management
Describes tracking and resolving of issues.

®m Risk Management
Identifies possible risks and suggests mitigation strategies.

B Exit Parameters
Sets criteria for concluding the testing phase.

B 2.6.2 Designing test cases and managing test data

To assess whether an application’s functionality is performing properly, test
cases are created by defining the input, action, or event, as well as the intended

12

2.7. Evaluating Test Automation Return on Investment

result. The primary purpose is to discover scenarios in which the application
may not perform as planned. This involves:

8 Test Case ldentification: Identify scenarios based on needs and
specifications.

B Test Data Selection: Choosing or generating data to utilize during
testing to ensure that the application is tested properly.

® Defining Expected Results: Define the expected outcome of the test
and compare it to the actual result.

® Test Case Documentation: Documenting the test case in sufficient
detail for others to perform it.

The test case documentation is an important part of the testing process,
and properly managing the test cases will improve and simplify the testing
process. Previously, companies utilized spreadsheet applications like Microsoft
Excel for test management. Although using a test management framework is
more costly, automation frameworks can decrease software deployment times
by 75% while increasing test coverage by 35% [29].

Usual structure of a documented test case will contain fields similar to these:
Test Case ID, Test Scenario, Test Steps, Prerequisites, Browser, Test Data,
Ezpected/Intended Results, Actual Results and Test Status — Pass/Fail |30].
Table 2.2 shows a simple test case based on a specific scenario.

Test Case ID TS-75
Test Scenario ValidLogin
Visit the login page
Input ’admin’ into the login field
Test Steps Input ’admin’ into the password field
Click the submit button
Prerequisites A registered user with login and password
Browser Brave Version 1.63.169 Chromium: 122.0.6261.111
Test Data login: admin password: admin
Expected/Intended Results | User logs in, page redirects to dashboard
Actual Results Successful login, page redirects
Test Status - Pass/Fail T

Table 2.2: Test case example

B 27 Evaluating Test Automation Return on
Investment

Return on Investment| (ROI) is a statistic that quantifies the potential return
on investment achievable by integrating an automation approach into your
quality assurance processes. By calculating Test Automation’s ROI| stake-
holders may be more confident that the investment will be beneficial in the
long term.

13

2. Theoretical Framework of Software testing

We can generally calculate ROI using the formula below:

ROI = benefits—costs " 100% [3”

costs

Of course, benefits and costs are very vague terms, but often, they will be
defined similar to this:

® Benefits: This term includes cost savings(reduction in manual testing
hours, decreased time to market and lower defect resolution costs post-
release) and quality improvements(higher defect detection rates, improved
test coverage and increased reliability).

® Costs: Will include things such as initial investment(tool licensing,
hardware and training costs) and operational costs(maintenance, updates
and support costs).

After nearly six months of using tools for automation, the average ROI is
usually around 250% [32].

14

Chapter 3

Literature Review

B 3.1 Definition and principles of model-based user
interface testing

[Model-Based Testing| automates the creation of black-box tests by using a
model that represents the expected behavior of the |system under test| (SUT).
Unlike traditional black-box testing, which involves manually crafting tests
from requirements documentation, [Model-Based Testing| employs tools to
generate tests from this behavior model automatically .

We cover the specific generation of the models in chapter

B 32 Techniques and approaches for model-based
testing in Ul design

This part examines approaches to software application user interface (UI)

testing. are using more and more. In [MBT), user interactions are

described as sequences from which test cases are generated .

A. M. Memon has conducted extensive research [33-35] on
for interactive systems and he proposes these techniques to represent
the model:

B State machine
A state machine describes the states, transitions and actions of a
system depending on events or conditions. The system can only be in
one state at a time and it transitions to other states based on events and
conditions.

8 Workflow
Workflows can be used to model the processes and interactions within
a system, which can help us state what must be tested within the system
in order to meet business requirements.

8 Pre- and Postcondition
Pre- and post conditions are statements that describe the system
state before and after one function or operation. Preconditions state

15

3. Literature Review

conditions that must be fulfilled before the operation is performed, while
postconditions depict the expected outcome of an operation if it has
been performed. They are used to ensure that a particular software
application behaves in a particular manner in a given scenario.

B Fvent sequence
An event sequence is a systematic collection of critical system events
used in testing to uncover any potential problems or decrease in per-
formance during regular operations or during intense stress tests. The
goal of efficient event sequence creation is to completely cover multiple
interactions while avoiding redundancy.

8 Probabilistic
Probabilistic models utilize stochasticity and probability to forecast
distinct events and behaviors of a system. They are beneficial for simu-
lating systems with inherent uncertainties and for conducting tests that
include different probability possibilities.

8 Combinatorial
Combinatorial testing refers to a systematic approach of combining
input factors to create test cases that cover all the possible combinations
of parameter up to certain level. This approach is greatly beneficial when
looking for faults caused by interactions with multiple inputs.

®m Hierarchical

In hierarchical models the objects are arranged within the framework
of a cascade of levels: higher levels represent more general concepts
while lower levels contain detailed implementation. In software testing,
the |system under test| (SUT) are considered as being composed of sub-
systems, thus, through the hierarchy, the systems are gradually simplified
so that testing can be performed on all or selected sub—systems as chosen
by the testers.

It has been proposed to use MBT]| derived from research records, sketches,
design files, prototypes, reports, and other documentation that design teams
produce during a project as a step before human-based usability testing [36],
since it is known to be expensive and time-consuming and works better on
systems that have previously undergone extensive testing.

There is also an effort to come up with approaches that are able to model
natural interactions and the ability to use new input methods, including
multi-touch displays. For example, this study [37] proposes the Malai GUI
specification language to overcome these restrictions and identify defects in
interactive systems.

B 3.3 Evaluation criteria and metrics for assessing
the effectiveness of testing techniques

The book "Software Testing Fundamentals: Methods and Metrics" [38] cites
several key metrics relevant to our study:

16

3.3. Evaluation criteria and metrics for assessing the effectiveness of testing techniques

8 The Time Required to Run a Test
The time required to complete planned tests is a key statistic in
software testing and is used to estimate the length of a test effort. In
addition to considering the possibility of repeated attempts to accomplish
successful and reliable test execution, this estimation must account for
test setup and cleanup times, either as part of the test duration or
separately.

® The Cost of Testing
Testing costs include tester salaries, used systems, software and tools,
which together sum up to the price of running a test or a test suite.
The author states that while it is easy to calculate using accurate
project metrics, it is difficult to compare the cost of testing to the cost
of not testing.

® Test sample units
Although there isn’t a single, accepted method for calculating a test’s
size, it is nevertheless useful to recognize and quantify the various types
of tests to assess the effectiveness of testing. The techniques for es-
timating and tracking tests — which are defined by parameters like
importance/priority, quantity and type, are covered in the following list.

Importance/priority

Prioritizing tests using ranking criteria, making sure that the
most important tests are identified and run first to reduce the
greatest risks related to the functioning and dependability of the
product.
Quantity

The overall number of tests planned for a project is important
because it establishes the basis for organizing and allocating re-
sources. Comprehensive test coverage is also important because
it guarantees that all important software features are covered in
detail.
Type

To provide a thorough testing effort, there are different types of
tests, such as path tests, data tests, module tests, user scenarios,
installation tests, environment tests, and configuration tests. Each
test type covers a different aspect of the product.

® Bug sample units
While there is no standard in place for measuring bugs, according to
the author, there are several sample units we can measure regarding
bugs: Severity, quantity, type, duration, distribution and cost to find
and fix [38]. They are briefly explained in the following list.

Severity

Since there is no industry-wide standard for severity, many sys-
tems for assessing severity are common to evaluate the effect of a
defect.

Quantity

17

3. Literature Review

This refers to the total number of defects, errors or issues identified
in the software during various phases of the testing process.
Type

Bugs cover a broad range of issues, from misunderstood interfaces
to catastrophic failures, and are classified according to local rules
as well as specific criteria like reproducibility and fixability.

Distribution
The system modules with the highest number of issues, or the
most serious bugs, should be the focus of our efforts.

Cost to find and fix

This metric, which can be derived from other metrics, serves as
another source of information that we can use. It can usually be
expressed in units like currency per issue or person-time per issue.

m Test Coverage
Test coverage is a metric that evaluates the amount of software that
is tested to guarantee thorough testing. Test coverage is the part that
was actually tested out of a set of items that could be tested. This could
be expressed by the following formula:

__ test conducted
test coverage = YSLEORUEES « 100% (38

® Test Effectiveness

Test effectiveness evaluates how well tests identify errors; this can be
done by focusing on the most beneficial tests with the least amount of
time and money, without having to cover every possible scenario. It is
determined by calculating the proportion of all bugs that the tests detect,
with an emphasis on identifying the most important ones. These crucial
tests offer a significant return on testing investment and are particularly
helpful for long-term monitoring and problem-solving in real systems. It
can be calculated using the simplified formula below:

. __ bugs found in test
test effectiveness = S + 100% (38

As the book is quite old, it does not mention Automation Coverage (also
known as Test Automation statistic) as some newer literature [39}40]. This
metric simply shows what proportion of manual test cases are automated and
can be calculated as follows:

total no. of test cases automated " 100% |39]

automation coverage = total no. of test cases

B 34 Principles of Model-Based Testing

In MBT), the behavior of the program being tested during runtime is compared
to predictions generated by a model. A model is a description of the behavior
of a system. In this context, these models can be created from a domain
model, an environment model, a behavior model or from abstract tests to
generate input data, test cases or test scripts [1]

18

3.5. Previous studies and research on model-based testing effectiveness

To generate input data, the model provides information about the domains
of the input values. We might then use techniques such as |Combinatorial
Interaction Testing| (CIT)(also known as t-way or t-wise testing where ¢
indicates interaction strenght [41]) to cleverly generate a minimum number
of tests that go through each possible combination of input values.

Models describing use patterns or data value frequency that characterize
the [SUI]s expected environment can be used to generate test cases. It is
difficult to tell if a test case succeeds or fails since these models can generate
SUT]| call sequences, but cannot anticipate results, so often we can only tell if
the system crashes or not [1].

Then there’s the option of developing executable test cases containing
oracle data'| including predicted outputs or comparisons of the actual outputs
to determine correctness. For the model to do this, it must include the SUTTs
behavior regarding its inputs and outputs. Because it covers input selection,
operation sequencing, and outcome verification, it is harder to implement,
but it’s the only option that can automate the entire test design process [1].

Another principle is to use an abstract test description (e.g. [UML|sequence
diagram) and turn it into a detailed, executable test script.

. 3.5 Previous studies and research on model-based
testing effectiveness

The Practical Model-Based Testing book [1] covers these experiences of real
companies that have incorporated MBT|in their applications:

1. Model-Based Testing at IBM

IBM used a model-based test generator called GOTCHA-TCBeans
for two case studies. In the first case study, a 17% reduction in cost was
achieved by using MBT|, which took 10 person-months and discovered 2
more issues in addition to the 18 revealed by a manually designed test
suite (postmortem analysis showed 15/18 earlier defects would have been
also detected) [43].

In the second case study, which evaluated a Java garbage collector,
MBT)| discovered four more defects and raised statement coverage to 83%
while requiring about half the time of more conventional techniques [43].

2. Model-Based Testing at Microsoft

Microsoft went through at least three generations of [MB'T] tools devel-
oped and implemented in-house [44,45].

Their newest tool, Spec Explorer, was used at Microsoft to test an
interaction protocol between Windows operating system components, the
implementation code coverage increased from 60% to 70% and 10 times
more errors were found than with standard manual testing. Addition-
ally, twice as many design flaws as implementation defects were found

'a test oracle or simply oracle determines whether a test has passed or failed [42]

19

3. Literature Review

throughout this approach, demonstrating the effectiveness of [Model{
Based Testing in early mistake discovery and design validation [45].

3. Model-Based Testing in the Smart Card Industry

Because smart card software demands a high level of validation and
requires a lot of testing to assure conformity to standards, as much
as half of the development effort is reserved for testing. As a result,
incorporating Model-Based Testing into the current testing procedure is
straightforward [1].

For example, GSM 11.11 standard case study resulted in a substan-
tial 30 percent decrease in workload regarding test design time, while
providing broad coverage of around 85% [46].

4. Model-Based Testing in the Automotive Industry
A conducted evaluation of MBT! of an infotainment network has shown
that automated suites are roughly as good as manual testing at detecting
programming errors, but they are far better at detecting requirements-
related errors. Additionally, only an 11% gain in error detection rates
was achieved by automatically generating the test suite six times as big,
suggesting that there is a limit to the benefits of larger test suites. [47].

Another study named "Implementation of Model Based Testing for Testing
Kawn Subscriptions Manager Application" [48] indicates that the MBT-
generated test cases are sufficient in regard to the mutation score. However,
while [MBT| was effective in creating test cases that looked at the behavior of
the application, it was discovered that the technique was unable to identify
errors caused by mutations that had little to no effect on the behavior of the
application. According to the research, MBT|can be a useful tool for testing
important features, but other techniques are required to discover errors that
might be caused by little or nonexistent changes to the application code.

One of the IMBT| methods we evaluated was [Combinatorial Interaction
Testing| (CIT)). There is a noticeable study gap about the practical efficiency
of |(CI'T]in identifying real issues in industrial settings, even though several
studies [41,49-52] have examined the effectiveness of |CIT| using simulations
and mutation testing. Discussions focused on industry applications [53-55]
and a few papers [53,54,56,57] offer information about the time and test
efficiency of |(CIT| in identifying actual system defects. However, there are
fewer documented comparisons between [CIT| and ad hoc testing methods.

20

Chapter 4

Evaluating the effectiveness of model-based
testing techniques

. 4.1 Research design and approach for evaluating
model-based Ul testing effectiveness

This section outlines the research design and approach specifically focused
on evaluating the effectiveness of |Combinatorial Interaction Testing| (CIT)
within model-based Ul testing frameworks. The approach was designed to
systematically assess how can enhance Ul testing by improving defect
detection rates, test coverage, and efficiency in test execution.

B 4.1.1 Objective

The primary objective was to assess the effectiveness of in the con-
text of model-based Ul testing, specifically in relation to traditional testing
approaches in terms of coverage, efficiency, and defect detection.

B 4.1.2 Methodology

The methodology incorporated specific elements to effectively evaluate [CIT}

1. Selection of Tools: We chose a tool that is capable of generating
tests for 2-way through 6-way interactions. This tool was also chosen,
because it generates fewer test sets while maintaining the same level of
coverage.

2. Experimental Design: Controlled experiments were designed to di-
rectly compare the outcomes of with those of traditional testing
approaches. The experiments were designed to guarantee an accurate
assessment of the efficiency and the ability to discover defects within the

SUTL

3. Case Study Implementation: Three case studies were conducted using
in close to real-world scenarios to validate its practical effectiveness
and applicability across various software applications and environments.

21

4. Evaluating the effectiveness of model-based testing techniques

4. Data Collection and Analysis: We systematically collected quantita-
tive data to measure the impact of on test coverage, defect detection
rates, and testing time.

B 4.1.3 Evaluation Criteria
was evaluated based on the following metrics:

® Defect Detection: Evaluating the effectiveness of in identifying
defects, especially those resulting from complex interactions between
different UI elements.

® Efficiency: Evaluation of the effectiveness of in terms of minimizing
the time and resources required for detailed test case development and
execution.

B 2.2 Selection of testing tools and frameworks

In this section, we will cover all the tools and frameworks used in the case
studies and explain why they were used.

B 421 ACTS 3.2

3.2E| was used to generate test cases, focusing on achieving 2-way
and mixed coverage. This tool helped to create test cases systematically,
ensuring comprehensive parameter interaction coverage. The 2-way coverage
approach ensured that all possible pairs of parameter values were tested,
whereas the mixed coverage criteria permitted the inclusion of more complex
test scenarios.

B 4.2.2 Cypress

To automate some portion of the test cases, we have used Cypressﬂ Cypress
is a test automation tool specifically designed for modern web applications.
It works directly within the browser, allowing for real-time interaction with
the application under test. This direct browser execution provides immediate
feedback and simplifies the testing process by automatically handling tasks
like waiting for elements.

B 4.23 Git/Github

We used Gitﬂ for version control to manage our test automation scripts, allow-
ing for tracking of changes. We utilized GitHubﬁ for code sharing, enabling

'ACTS 3.2. Available at https://csrc.nist.gov/projects/
[automated-combinatorial-testing-for-software|
Cypress. Available at |https://www.cypress. io/l
®Git. Available at https://git-scm.com/|
4Github. Available at https://github. com/l

22

https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://www.cypress.io/
https://git-scm.com/
https://github.com/

4.3. Design of experiments and case studies

us to store and share our test automation scripts with team memberﬁ.

B 4.2.4 Google Sheets as a Test Management Framework

Google Sheetsﬁ is a web-based spreadsheet application that enables users
to create, edit, and collaborate on spreadsheets online. It’s part of the free,
web-based Google Docs Editors suite offered by Google within its Google
Drive service.

In section [2.6.2, we discussed that using a test management framework
leads to decreased software deployment times and increased test coverage,
however, these are often not free and if they are, they do not provide any
significant features over Google Sheets. We chose this software for those
reasons, as well as the convenience of not having to learn another framework.

We used it to track case study data involving time spent to create test
scenarios, program and record the automated tests and execute the tests,
effectiveness to detect defects, and to monitor the list of defects and test
cases. In study covered in section we also used it to track the participant
observations and the test scenarios.

B a3 Design of experiments and case studies

In this section, we will explore the methods, setups and the results of the
three case studies we conducted.

B 4.3.1 Impact Analysis of Combinatorial Interaction Testing
on Systematic Software Validation

The primary objective of this thesis is to evaluate the impact of
Interaction Testing| (CIT) on software quality assurance, with a specific focus

on its effectiveness in detecting defects in the OpenCart system. This study
seeks to establish empirical data regarding the effectiveness of in a
controlled setting by introducing artificial defects and conducting targeted
module testing.

B Experiment Method

The experiment method for this study is outlined in Figure The process
begins with the preparation of the testing environment, followed by the setup
of the test platform.

The process of developing test cases is divided into two separate paths:
manual test case creation and test case creation. During the process
of Manual Test Case Creation, scenarios are determined by analyzing the
functional requirements. Test cases are written and reviewed manually.

5The ’Effectiveness of Combinatorial Interaction Testing in Test Automation’ study was
done in collaboration with Ing. Feras Abdul Hadi Mustafa Daoud, doc. Ing. Miroslav
Bures, Ph.D. and Bc. Petr Syrovatka.

5Google, Google Sheets. Available at |https://www.google.com/sheets/about/|

23

https://www.google.com/sheets/about/

4. Evaluating the effectiveness of model-based testing techniques

During the [CIT| test case creation process, parameters and their possible
values are established, constraints and interaction levels are specified in the
advanced combinatorial testing system! (ACTS)), and the test cases are then
automatically created using the generated output from |ACTS|

After the test cases have been created, they are executed in the prepared
testing environment. This means that we are deploying both manually created
and |CI'T-generated test cases on the platform and executing them to gather
results. The results of the test executions are documented, which includes if
a defect was detected and the time spent on each test case.

The final phase of the experiment method involves analyzing these results.
This analysis evaluates the effectiveness of the manual versus |CI'T| methods,
particularly focusing on time effectiveness and defect detection rate. Subse-
quently, we gather and analyze the results, which then serve as the foundation
to evaluate the relative effectiveness of the two testing methods.

24

4.3. Design of experiments and case studies

(start)

@

| Prepare Testing Environment

)

‘ Setup the test platform |

Develop Test Cases

CIT Test Case Creation

‘ Define parameters and their potential values

Manual Test Case Creation

‘ |dentify scenarios based on functional requirements ‘
L 4

i | Configure constraints and interaction levels in ACTS ‘

‘ Write and review test cases manually ‘ l

Generate test cases automatically

Execute Test Cases

| Deploy test cases on the platform

!

‘ Run both manual and CIT-generated test cases

¥
Collect Results

)

| Record the outcomes of test executions

!

Log defects and system behavior

}

Analyze Results

Evaluate the effectiveness of manual vs. CIT methods

!

Assess coverage and defect detection rate

!

Compile Results

Figure 4.1: Flowchart of the experiment method

25

4. Evaluating the effectiveness of model-based testing techniques

B Experiment setup

1. System under test

The OpenCart’ system, hosted locally, served as the testing platform
for this study. OpenCart is an open source shopping cart solution.
The tests have been carried out in a controlled black-box environment,
replicating real-world usage conditions without having access to the core
structures of the software. The experiment was conducted using the
stable version v4.0.2.3.

Our testing efforts were primarily directed towards two main forms in
the |[SUT: the Subscription Plan Form, which allows the administrator to
create a new subscription plan in the system, and the Attribute Form,
used for creating a new attribute within the system. In the Subscription
Plan Form, we identified 9 fields that are considered relevant parameters
to the [CIT| problem. Similarly, in the Attribute Form, there are 3 fields
that are relevant to the|CIT|problem. The experiment aims to investigate
the proper functionality of these forms within the OpenCart environment.

Figures 4.2 and 4.3|depict the graphic user interface| (GUI) of OpenCart.
The former displays the subscription plan form, while the latter showcases
the form for defining a new attribute.

2. Defects
The OpenCart system was exposed to deliberate introduction of ar-
tificial defects in order to evaluate the form validation. These defects
were designed to simulate typical errors that may arise in real-world
applications. The defects included scenarios such as allowing negative
numbers in duration fields and inadequate handling of extreme values,
which assessed the system’s ability to withstand faulty inputs.

3. Test Case Design

The study required generating two separate sets of test cases to assess
the effectiveness of |Combinatorial Interaction Testing| (CIT) in compar-
ison to conventional test case design methodologies. The initial batch
included conventional test cases that were created without employing
CIT| methodologies. The purpose of these tests was to assess the fun-
damental functionality and error-handling capabilities of the system
using simple scenarios. Every test case was designed to assess particular
functionalities or failure spots, replicating user interactions and verifying
system responses against anticipated results.

The second set used |CIT. By utilizing AC'T'S|to construct combinatorial
test cases, we successfully developed a comprehensive suite that effectively
examined various parameter interactions. This expanded the scope and
complexity of the testing process and attempted to promote productivity
by minimizing the repetition commonly found in manually generated
test suites.

To generate the |CI'T| test cases for the OpenCart system using the
ACTS| tool, two specific suites were defined: one for the creation of

"OpenCart. Available at |https://www.opencart.com/

26

https://www.opencart.com/

4.3. Design of experiments and case studies

Add Subscription Plan

* Subscription Plan 7] Subscription Plan Name
Name
Trial
Trial Duration
Trial Cycle 1
Trial Frequency Day M

Trial Status

Subscription

Duration

Cycle 1

Frequency Day e

Status

Sort Order

Figure 4.2: OpenCart - Subscription Plan Form

subscription plans and another for adding an attribute. For the suites
"Adding a Subscription Plan’ and ’Adding an Attribute’ all relevant
parameters such as input fields, command buttons, and user roles were
identified and listed.

Subscription Plan Form - In this form, which is used to create a
new subscription plan, 9 parameters with 26 different values were used
for the test case generation. There were 15 test cases in the original
test set, of which 13 were replaced by 25 test cases generated by

Attribute Form - For this form, the original test set comprised of
7 test cases, 6 of which were replaced by 10 generated test cases.
For the test case generation, 3 parameters with 9 total values were
identified.

The number of parameters and the number of their respective values
for the Adding a Subscription Plan Form and the Adding an Attribute

27

. Evaluating the effectiveness of model-based testing techniques

Add Attribute

* pttribute = Attribute Name
Name

* Attribute

Group

Sort Order 4]

Figure 4.3: OpenCart - Attribute Form

Parameter Name Number of values

Subscription Plan Name

Trial Duration

Trial Cycle

Trial Frequency

Trial Status

Duration

Cycle

Frequency

NO NN DN O N =] DN

Status

Total

DO
(=]

Table 4.1: Number of values of each parameter in Adding a Subscription Plan

Form

Parameter Name | Number of values
Attribute Name
Attribute Group

Sort Order
Total

O N O N

Table 4.2: Number of values of each parameter in Adding an Attribute Form

Form are presented in Table |4.2| and Table |4.1] respectively.

Using the tool |ACTS| test cases were generated that covered all
meaningful combinations of identified parameters, focusing on pairwise

interactions.

4. Test Automation Scripts

Regarding the test cases without |CIT], for the Subscription Plans
suite, out of a total of 15 manually created test cases, 13 were then

28

4.3. Design of experiments and case studies

automated, translating to an automation rate of approximately 87%.
In the Attributes suite, 7 out of the original 7 manual test cases were
automated, achieving a 100% automation rate.

Furthermore, (Combinatorial Interaction Testing| (CIT) added an extra
level of automation. The |CIT| approach, via the |ACTS| tool, produced
a multitude of test cases by considering each possible combination of
input factors, as specified by the constraints defined inside the tool. All
of these test cases were then covered by automated tests.

The configuration for|CIT|was defined within two XML files: Subscription
Plans.xml and Attributes.xml. The files organized the test parameters
and their corresponding values, making it easier to generate compre-
hensive test cases. The |[CIT] setup included several parameters, such
as ‘SubscriptionPlanName*, ‘TrialDuration‘, and ‘AttributeName‘, each
with several possible values to include a wide range of test situations.

The test cases were generated using 2-way uniform strength combinato-
rial array technique, guaranteeing the testing of all potential interactions.
The following table [4.3]is a concise overview of the parameters and their
associated values utilized in the |CIT| configuration for the ‘Subscription
Plans‘ suite:

Parameter Values
SubscriptionPlanName Invalid, Valid
TrialDuration Valid number, Zero, Negative number, Non-numeric input
TrialCycle Valid, Invalid
TrialFrequency Day, Week, Semi Month, Month, Year
TrialStatus Checked, Unchecked
Duration Valid number, Continuous
Cycle Valid, Invalid
Frequency Day, Week, Semi Month, Month, Year
Status Checked, Unchecked

Table 4.3: CIT Parameters and Values for Subscription Plans

Each parameter was exhaustively combined with others using the
IPOG algorithm, as specified in the |ACTS/s configuration, to ensure
thorough coverage of all possible parameter interactions.

5. Time Recording and Defects Detection
We have manually recorded the amount of time spent on several tasks
related to developing, automating, and assessing test cases. These tasks
include the time spent on designing the test cases, executing them,
detecting defects, and automating the 'manual’ test set. The data was
kept in a Google Sheet.

Bl 4.3.2 Combinatorial Interaction Testing in Usability Studies

The main aim of this study is to investigate the effectiveness of |Combinatorial
Interaction Testing| (CIT) in detecting usability problems in software appli-

29

4. Evaluating the effectiveness of model-based testing techniques

cations when compared to conventional usability testing approaches. The
objective of this research is to determine if |[CIT| can effectively identify a
wider array of problems by methodically examining different combinations
of user interactions, system setups, and interface elements and decrease the
testing process time.

B Experiment method

1.

Participants

A total of 10 individuals were recruited for the study, who were divided
into two groups of five. The participants were chosen to cover a spectrum
of user experiences, ranging from beginners to experts, in order to ensure
that the findings of the study would be relevant to a broad user base.

Group Allocation

® Group 1 (CIT|Group): Underwent testing using scenarios generated
through Combinatorial Interaction Testing.

® Group 2 (Traditional Group): Was tested using traditional usability
testing methods developed based on judgment and typical user
feedback mechanisms.

Data Collection Methods

The data collection for this usability study was conducted using struc-
tured scenarios to evaluate the effectiveness of various tasks in the
system.

For each scenario, time taken to design the tasks were recorded. Also,
observations were made on the ease of use, any difficulties encountered
and overall user satisfaction. The data was systematically captured using
a structured sheet that started empty and was filled out during the
process, with columns for observations and each participant’s data, as
shown in the table 4.4t

Observations | Participant 1 | Participant 2 | ... | Participant 10

Table 4.4: Participant Observations Collection Sheet for Usability Study

B Experiment setup

1.

System under test

The Odoo® demo system, accessed online, served as the testing plat-
form for this study. Odoo is an open source [ERP| and |[CRM| bundle.
The tests were conducted in a controlled black-box environment that

80doo. Available at https://www.odoo.com/l Demo available at https://master.odoo)

com/saas_master/demo/

30

https://www.odoo.com/
https://master.odoo.com/saas_master/demo/
https://master.odoo.com/saas_master/demo/

4.3. Design of experiments and case studies

replicated real-world usage settings. This approach guarantees that
the usability evaluation accurately mirrors the experience of the end-
user. The experiment was done using the latest stable version that was
available during the investigation.

We focused our testing efforts on the "Employees’, "Product Inventory’
and ’Sales Quotations’ modules. The system dashboard is shown in

figure [4.4] and the forms can be seen in figures and

J 31 33 /] B

Discuss Calendar Appointments To-do Knowledge Contacts
B
v i 5 O y 1)
[N}
CRM Sales Dashboards Subscriptions Rental Point of Sale
Kitchen Display Accounting Documents Project Timesheets Field Service
Planning Helpdesk Website Email Marketing Events Purchase
0. °
® & =, 2 = @
Inventory Manufacturing Shop Floor Sign Employees Recruitment
A = P o
- \ | 4
Time Off Expenses Apps Settings

Figure 4.4: Odoo - Dashboard

31

4. Evaluating the effectiveness of model-based testing techniques

Employee's Name

Job Position

Tags

Work Mobile

Work Phone +1 (830) 555-0111
Work Email

Company Cemo Company
Department

Job Position

Manager

Coach’

Resume Work Information Private Information HR Settings

RESUME
Create a new entry
SKILLS
‘You can add skills from our library to the employee profile.

f skills are missing, they can be created by an HR officer.

Pick a skill from the list

Log note Activities a % Follow

Figure 4.5: Odoo - Employee Form

32

Product Name
¢ e.g. Cheese Bu

B canbeSold [Can be Purchased

General Information Attributes &

Product Type ! Storable Product

Invoicing F‘oli‘:y'J Ordered quantities

Storable products ar

4.3. Design of experiments and case studies

rger .

Can be Expensed ! Recurring ’ Can be Rented *

Variants Sales Purchase Inventory Accounting

e physical items fi

u manage the inventory level.

You can invoice them befor

Unit of Measure © Units
Purchase UoM * Units

Sales Price $1.00
Customner Taxes ’ 15% X
Cost” £0.00
Product Category All
Internal Reference

Barcode

Product Template Tags

Company

INTERNAL NOTES

Log note Activities

(= £1.15 Incl. Taxes)

per Units

Follow

Figure 4.6: Odoo - Product Form

33

4. Evaluating the effectiveness of model-based testing techniques

New

Customer Type to find a customer...

Invoice Address

Delivery Address

Quotation Template
Expiration 06/17/2024
Recurring Plan

Pricelist *

Payment Terms

Qrder Lines Optional Products Other Info Motes

Product Description Quantity Uah Unit Price Taxes Disc.% Tax excl, =
Add a product Add a section Add a note Catalog

Discount

Terms & Conditions: https:/

Total: $0.00

Log note Activities Q, ‘% Follow

Figure 4.7: Odoo - Sale Quotation Form

2. Test scenario design
The study utilized two separate sets of test scenarios to assess the
effectiveness of conventional usability testing approaches in comparison
to |Combinatorial Interaction Testing| (CIT).
We first created the traditional test scenarios - one of them can be
seen in the example below:

B Scenario 2: Product Inventory Addition

Objective: Evaluate the process of adding a new product to
the inventory in the Inventory module.

Steps:

a. Go to the Inventory module.

b. Select 'Products’ and then 'Products’ again from the drop-
down menu.

c. Click on 'New’ to add a new product.

d. Enter product details such as name, sales price, cost, and
internal reference.

e. Save the product and check for its presence in the inventory
list.

34

4.3. Design of experiments and case studies

Time to design scenario: 20 minutes.
Browser: Chrome.

Then, we created the |CI'T| test scenarios. Table 4.5 shows the |(CIT
parameters and values used for generation. ACTS tool was utilized to
construct test scenarios by utilizing the parameters and values supplied
in an XML file. These test scenarios covered all possible combinations
of the stated parameters.

Parameter Values

Module Employees, Sales Quotations, Product Inventory
Task Type Create, Edit, Delete

Browser Chrome, Firefox, Safari, Edge

Table 4.5: CIT Parameters and Values for Usability Testing

B 4.3.3 Effectiveness of Combinatorial Interaction Testing in
Test Automation

The primary objective of this study is to evaluate the impact of |Combinatorial
Interaction Testing| (CIT) on improving test automation procedures, with
a specific focus on its ability to detect usability problems within the Jtrac
system. This study aims to quantitatively analyze the effectiveness of |(CIT
by systematically generating and executing scenarios in a controlled testing
environment. The study investigates the possible improvement in defect
detection and overall system evaluation by using |[CI'T}generated scenarios, as
compared to traditional testing methodologies.

B Experiment method

In this study, the methodology mirrored the experiment design outlined
in study described in section 4.3.1, where two distinct testing approaches,
manual and [CI'T, were compared.

First, the testing environment was set up to facilitate both types of testing.
Test cases were developed through both manual processes, where scenarios
were directly derived from functional requirements, and through |CIT, where
test case scenarios were automatically generated using predefined parameters
in an |ACTS| tool. Following this, the test cases were executed across the
platform. Results from these tests were collected and analyzed to evaluate
the effectiveness of each method.

The primary distinction is that we also evaluated the mixed strength test
set generation allowing for different parameter groups to be created and
covered with different strengths as opposed to 2-Way test set generation.

B Experiment setup

1. System under test

35

4. Evaluating the effectiveness of model-based testing techniques

J Tracﬂ is a web application that is open-source and specifically designed
for the purpose of tracking issues. JTrac allows for customizable custom
fields and includes all the standard features of an issue-tracking system,
such as support for file attachments and integration with email. The
experiment was carried out on the stable version 2.3.1, which was released
in May 2023, and subsequently on version 2.3.2, which was released in
January 2024.

We focused our testing efforts on two principal forms in the
the Issue tracking form, where the user can create a new issue in the
system, in which 8 fields were identified as relevant parameters to the CIT
problem, and the Login form used for entering the system, containing
2 fields relevant to the CIT problem. In the experiment, the correct
functionality of these forms within the JTrac environment is investigated.

Figures and illustrate the user interface of JTrac, showcasing
the login form and the form of creating a new item, respectively.

rn‘ JTrac - Open Source Issue Tracking System

Login Name / email ID | |

Password | | | Submit |

remember me [

powered by JTrac 2.3.2

Figure 4.8: JTrac - Login Form

——
JLrn‘ JTrac - Open Source Issue Tracking System
DASHBOARD @ Space for testing [TEST] E/ NEW @ SEARCH W WIKI @ OPTIONS |E LOGOUT a Admin
Summary * | |
Detail *
)
Severity * Notify By Email
= — Domin
Assign To* Attachment
send email notifications Choose File | No file chosen

powered by JTrac 2.3.2

Figure 4.9: JTrac - Creating New Item Form

9JTrac. Available at |http://jtrac.info/|

36

http://jtrac.info/

4.3. Design of experiments and case studies

2. Defects

When creating test cases, two specific types of defects were considered:
historical and artificial. The historical defects were derived from the
publicly accessible bugs pagd'’| of JTrac, which documents real-world
issues that have been encountered in the past. These defects provide as
a foundation for comprehending the system’s behavior under well-known
fault scenarios.

In order to counterbalance the inherent stability of the system, which
naturally had fewer noticeable defects, extra simulated defects were
deliberately inserted. These artificial defects were specifically designed
to be more easily detectable, guaranteeing that the testing process could
thoroughly assess the effectiveness of the test cases in discovering flaws
across different scenarios. This methodology not only achieves balance
in the test environment, but also replicates a broader range of possible
operational obstacles, thereby improving the dependability of the testing
process.

3. Test cases

We conducted three distinct test sets and executed each set once. The
initial set of test cases was generated without utilizing (Combinatorial
Interaction Testing (CIT). This set consisted of a total of 136 test cases.
The second set was generated by substituting certain test cases with
newly created ones using [CIT], specifically employing a 2-way uniform
strength combinatorial array technique. We created the third set using a
distinct |CI'T| technique known as a mixed-strength combinatorial array.

The test cases were separated into suites - login page (corresponds to
Login Form later in the text), dashboard, create new issue (corresponds
to Creating New Item Form later in the text), issue record, we then
decided to focus on the login page and create new issue as|CIT| could be
used to generate most of the test cases for the suites.

Login Form - This is just a simple login form, only 2 parameters
with 4 different values were used for the |CIT]| test case generation.

The initial test set contained seven test cases, which were reduced to
6 through [CTT| This reduction involved replacing 5 of the original test
cases with 4 new ones, both in the 2-way uniform strength combinatorial
array and the mixed-strength combinatorial array.

Creating New Item Form - In the second part of the experiment,
we used a form for creating a new item (an issue in this case) with
8 identified parameters and 20 values in total used for |[CIT] test case
generation. Their numbers for individual parameters are presented in
Table 14.6.

After implementing |CI'T| with 2-way uniform strength, the original
test set consisting of 28 test cases was replaced with a reduced set of
12 test cases. The number of test cases generated was the same for the
third test set with mixed strength.

10JTrac Issues. Available at https://sourceforge.net/p/j-trac/bugs/

37

https://sourceforge.net/p/j-trac/bugs/

4. Evaluating the effectiveness of model-based testing techniques

Parameter Name Number of values

Summary
Detail
Severity
Name

AssignTo
NotifyByEmail
Attachment
SendEmailNotifications
Total

NININNN NN

DO
o

Table 4.6: Number of values of each parameter in Creating New Item Form

4. Test Automation Scripts

As stated before, we used Cypress to create the test automation scripts.
Automating all of the test cases would be too time-consuming, so we
chose to automate only a portion of the test cases - approximately 38%.
We specifically selected test cases from both suites to create the best
possible approximation. We believe the approximation to be correct
since the automation scripts are fairly repetitive for specific test cases
within suites. Next, we will cover one of the test cases from the create
new issue suite.

This specific test case aimed to validate the JTrac 'Create’ functionality
with the validity of specific fields set up according to the test plan. This
information is also preserved in the describe function.

describe (’Summary-valid_Detail-valid_Severity-
Suggestion_name-valid_AssignTo-valid_NotifyByEmail-
admin_Attachment-not_attached_sendEmailNotifications-
false’, O => {
it(’Logs in, navigates, fills out a form, and submits
it’, O = {
// Step 1: Login
cy.visit(’http://localhost:8888/app/login’);
cy.get(’#loginNamel’) .type(’admin’);
cy.get (’#password3’) .type(’admin’) ;
cy.get (’input [type="submit"]’).click();
cy.url() .should(’eq’, ’http://localhost:8888/app/’);

// Step 2: Navigation
cy.get(’table.jtrac a’).first().click();
cy.url().should(’include’, ’/app/item/form’) ;

// Step 3: Form Submission

cy.get(’ [id"="summary"]’) .type (’bug’) ;
cy.get(’textarea[name="detail"]’) .type (’Random text

38

4.3. Design of experiments and case studies

> + Math.random() .toString(36) .substring (7)) ;

cy.get(’select[name="fields:fields:0:field:border:
field"]’) .select(’5%);

cy.get (’input [name="fields:fields:1:field:field"]’).
type (’namel’) ;

cy.get(’select [name="hideAssignedTo:border:
assignedTo"]’) .select(’1’);

cy.get (’input [name="hideNotifyList:itemUsers"]’).
check() ;

cy.get (’input [name="sendNotifications"]’) .uncheck();

cy.get (’input [type="submit"]’).click();

// Step 4: Verification
cy.url().should(’match’, /http:\/\/localhost:8888\/
app\/item\/TEST-\d+\//);
1915
IDE

The test begins by navigating to the application’s login page, which is
hosted locally. It uses the cy.visit command to load the page and then
enters the credentials of a valid user into the appropriate fields. This
step is critical for ensuring that subsequent actions take place within an
authenticated session.

After successful authentication, the script navigates to the issue cre-
ation form within the application. This is accomplished by choosing the
first link in a table identified by a class attribute. The navigation step is
validated by asserting that the current URL contains a path indicating
the form’s location, ensuring that the test runs in the proper context.

The test consists primarily of filling out a form with predefined data.
This includes providing a summary, a detailed description with a dynam-
ically generated string to ensure uniqueness, choosing a severity level,
specifying additional information such as the assignee and notification
preferences and disabling email notifications for form submission.

The final step is to submit the form and verify its success by checking
the URL pattern, which should match a specific format indicating a
unique identifier for each submitted item. This verification ensures that
the form submission process not only runs smoothly but also produces the
desired result, which is the creation of a new issue within the application.

Time Recording and Defects Detection

We have manually kept track of time spent on several categories when
creating, automating and evaluating the test cases: Time spent on each
test case (min), Time spent test execution, Defect detected (T/F). For
simplicity, we also have the cumulative categories of Time spent test
execution on suite (min) and Time spent creating test cases (min). The

39

4. Evaluating the effectiveness of model-based testing techniques

data were stored in a Google Sheet.

We have designed and automated at least 25% of the tests for each
test set, with the remaining test set data being artificially estimated
using the average of those tracked times as a rough guide.

Regarding defect detection, we executed the test cases and registered
the values into the table. Note that some of the test cases were automated
and some were not.

B 4.3.4 Threats to Validity

This subsection discusses the potential threats to the validity of the findings
from three studies on [Combinatorial Interaction Testing| (CIT) in usability
and test automation. We identify and elaborate on several categories of
threats that could potentially invalidate the results. We will point out the
consequences for a different system under test| (SUT) that could be used in a
different study or an industrial setting.

B Limited Diversity in Testers

In all three studies, testing was conducted by a limited number of testers (two
studies done by a single tester, the Effectiveness of Combinatorial Interaction
Testing in Test Automation study done in collaboration by a team of three
testers). This restricts the diversity in testing approaches and perspectives,
which might lead to overlooking specific defects that a more varied group of
testers could otherwise identify.

B Experience of Testers

Only testers without previous testing experience were used in two of the
studies. As for the usability study, the person conducting the study also
had no previous experience in conducting usability studies. This lack of
experience might negatively influence the effectiveness of defect detection
and the generalization of the study results, as beginner testers might not
effectively detect issues a more experienced tester would.

B Confirmation Bias

There is an inherent confirmation bias in the studies due to the predefined
setup and methodology, particularly in the selection and creation of test cases.
This bias has the potential to influence the outcome by showing preference
towards specific sorts of defects or system behaviors, which in turn distorts
the evaluation of effectiveness.

B Artificial Defects

In two of the studies, we deliberately inserted artificial defects into the
to balance the inherent stability as well as low defect presence. Although this

40

4.3. Design of experiments and case studies

approach helps in evaluating the test case effectiveness, it may not provide a
realistic representation of real-world scenarios, where defects are not known
in advance and could be more complex or subtle or just different altogether
from the ones we inserted.

B Homogeneity of Test Environments

The experiments were carried out in controlled scenarios, which may not
adequately reflect the different operational environments in which the software
would actually operate. The study’s external validity may be compromised by
this constraint, as the findings may not apply to various hardware or software
setups.

B Reproducibility of Results

The reproducibility of the experiments may be compromised by the particular
settings and versions of the software used, such as JTrac versions 2.3.1
and 2.3.2. Variations in software behavior between different versions or
configurations may result in different outcomes when attempting to repeat
the studies.

B Dependence on CIT Techniques

The effectiveness of the testing heavily relies on the specific techniques
employed (e.g., 2-way uniform strength, mixed-strength arrays). Differences
in these techniques may lead to large variations in the results, which
could raise doubts about the reliability of the conclusions made regarding
the overall effectiveness of The variability highlights the significance of
consistently applying the methods in order to accurately evaluate the actual
effect of on software testing results.

41

42

Chapter 5

Results

This chapter summarizes the key findings from the evaluation of
techniques as discussed in chapter |4l Setting up the case studies
allowed for the collection of the necessary empirical data and offered valuable
insights into these testing approaches.

B 51 Results of Specific Case Studies

B Impact Analysis of Combinatorial Interaction Testing on Systematic
Software Validation

We assessed the influence of [Combinatorial Interaction Testing (CIT) on
software testing efficiency by comparing conventional testing approaches with
those that integrate CIT.

The results, summarized in the table provide a detailed comparison of
defect detection improvements facilitated by

Metric | Without CIT | With CIT
Total Test Cases

Subscription Plans 15 27

Attribute 7 11

Total Time Spent (hours)

Total | 10:51:00 | 10:27:15
Defects Detected

Subscription Plans 7 7

Attributes 5 6

Total Defects Detected 12 13

Defect Detection Effectiveness
Average Time per Defect Detected ‘ 54.25 minutes ‘ 48.25 minutes

Table 5.1: Comprehensive Comparison of Testing Metrics with and without CIT
The results indicate that the utilization of has led to an increase in

the overall number of test cases and a small decrease in the total testing time.
More importantly, it has also led to uncovering one additional defect in the

43

5. Results

Adding an Attribute form. However, the total number of test cases with [CIT
increased for both the Adding a Subscription Plan and Adding an Attribute
form by 80% and roughly 57% respectively.

B Combinatorial Interaction Testing in Usability Studies

The effectiveness of Combinatorial Interaction Testing| (CIT]) was compared
with traditional usability testing methods. We specifically targeted Time to
Design Test Scenarios and Time to Complete Tasks in this study.

Time to Design Test Scenarios. The time taken to design test scenarios
was measured. Traditional scenarios took an average of 20 minutes to design,
while |CIT| scenarios required an initial setup time of 30 minutes, followed by
specification of the generated test scenarios. This is summarized in Table [5.2]

Scenario Type | Setup Time (minutes) | Average Design Time (minutes)

Traditional N/A 20
CIT 30 6:15

Table 5.2: Average Time to Design Test Scenarios

While the initial setup for|CIT|scenarios was longer, the following generation
of subsequent test scenarios had reduced effort required for scenario creation
and overall was much faster (by 320%').

Time to Complete Tasks. We recorded the time taken by participants to
complete the tasks for both groups. Table |5.3| provides the average time taken
by participants in each group to complete the tasks.

The |CI'T| group completed the tasks slightly faster on average compared to
the traditional group, indicating a potential reduction in the overall testing
process time when using the |CIT| approach. This could also be caused by
the |CIT| group having more tasks, leading to the participants getting more
experience with the system during the interviews.

Group Average Time (minutes)
CIT Group 25:57
Traditional Group 26:27

Table 5.3: Average Task Completion Time

B Effectiveness of Combinatorial Interaction Testing in Test
Automation

We will assess the effectiveness of testing conducted without the knowledge of
Combinatorial Interaction Testing (CIT) in comparison to testing conducted
with the utilization of |CITL

not accounting for setup time

44

5.2. Summary of Key Results

Table [5.4] displays the results of this study. In the table, we have differenti-
ated between the Login and Issue create forms to provide more comprehensive
data, as they exhibit notable differences. Table |5.4| categorizes the arrays as
2-way’ if they have a uniform strength and as 'Mixed’ if they have varying
strengths. These descriptions will be used as references when discussing the
results later on. "Without CIT’ refers to the initial test cases that were created
without using the |CIT| methodology. This study examines the effectiveness
of |CIT] in creating and implementing test cases, with a particular focus on
the Login and Issue create forms.

The results of our study demonstrate significant improvements in test
efficiency and defect identification when using CIT. The use of |CI'T|instead of
traditional methods significantly reduced the time required to generate test
cases for the Login form. Both the 2-way and Mixed |[CI'T| methods resulted in
a time reduction of 42.8% compared to the non-CIT approach. Test cases that
remained unchanged maintained their original time duration. The execution
time for substituted test cases in the Login form was effectively halved using
both [CIT| methodologies. The generation of test cases for the Issue create
form showed a significant decrease of 57.14% when using the CIT method,
both with the 2-way and Mixed CIT methods.

Overall, the Login form showed a 25% decrease in total time with both |CIT
approaches. The Issue create form, on the other hand, experienced a more
significant reduction, with a decrease of 76.26% for the 2-way |CIT method
and 79.86% for the Mixed (CIT| method.

Defect detection saw an increase in the number of identified defects when
CIT| was applied, with the count rising from 13 without |CI'T| to 16 with the
implementation of both |[CI'T| methods. The defect detection rate has improved
by 18.75% with the use of |CIT. The application of |CIT| resulted in a notable
reduction in the number of test cases for both forms, leading to an enhanced
efficiency of the testing process. The results underline the advantages of |CIT
in improving software testing by reducing the time required for generating
and executing test cases and enhancing defect detection rates.

The mean duration required to detect a single defect reduced from 1.4
hours in the first test set to 0.4 hours utilizing the |CI'T| 2-way technique, and
further enhanced to 0.35 hours with the |CIT| Mixed technique. The 2-way
and Mixed |CI'T| techniques had a significant reduction in detection time, with
a drop of 71.43% and 75% respectively.

B 52 Summary of Key Results

8 Increased Defect Detection: The studies generally indicated an
increase in the detection of defects when employing [CIT. This increase is
likely attributed to the systematic exploration of parameter interactions
that these techniques facilitate.

8 Variable Reduction in Testing Time: The reduction in testing time
due to the adoption of [CIT| varied. One study reported a significant

45

5. Results

Without CIT | 2-way (CIT) | Mixed (CIT)
Total Test Cases
Login Form 7 4 4
Issue create form 28 12 12
Total Time Spent (hours)
Total 17.7 \ 6.15 5.65
Defects Detected
Login Form 4 5 5
Issue create form 9 11 11
Total Defects Detected 13 16 16
Defect Detection Effectiveness
Average Hours per Defect Detected 1.4 0.4 0.35

Table 5.4: Comparison of count of test cases, count of defects detected and time
spent between 'without CIT’ and ’2-way’ and 'Mixed’ methods

reduction, while another observed a minimal impact on testing duration.
We think that this highlights the dependency on specific test conditions
and configurations.

8 Cost-Effectiveness Considerations: Initial findings suggest that
using |CI'T| can be cost-effective in the long run due to decreased manual
effort, fewer requirements for extensive test case maintenance and due to
the fact that we recorded a decrease in time needed for defect detection.
However, the upfront cost and resource investment are notable and
should be considered.

® Positive Impact on Test Coverage: Model-Based Testing| techniques,
specifically (Combinatorial Interaction Testing), consistently improved test
coverage. However, the degree of improvement varied across the three
case studies.

® Time Implementation Considerations: The technique we imple-
mented takes additional time to setup compared to traditional testing
methods, which was however outweighed by the time saved later in the
process.

B 53 Implications of Results

These findings imply several practical considerations for the adoption and
implementation of [Model-Based Testing techniques in software development:

B Context-Specific Integration: The impact of Model-Based Testing
techniques can vary significantly depending on the specific software and
testing environment. Software development teams should evaluate these
techniques within the context of their specific conditions to maximize
benefits.

46

The

5.4. Limitations of the Study

Selective Tool Adoption: The choice of [Model-Based Testing| tools
should be aligned with the [system under test| and the particular needs of
the project. Not all tools yield the same level of benefit, as observed in
the varied outcomes of the studies.

Training and Skill Development: Given the complexity and spe-
cialized nature of Model-Based Testing, adequate training and skill
development are necessary for teams to leverage these techniques effec-

tively.

5.4 Limitations of the Study

study acknowledges certain limitations:

Controlled Test Environments: The experiments were performed
in controlled settings, which may not adequately represent complex
and unexpected nature of software development (e.g. autonomous driv-
ing systems and large-scale distributed systems like cloud computing
platforms).

Presence of Artificial Defects: Artificial defects were used in two of
the case studies to evaluate the effectiveness, however, this may skew
the data in favour of the tested technique.

Limited Generalizability: The results are based on specific case
studies and may not be universally applicable across different types of
software systems or industry sectors.

5.5 Recommendations for Future Research

Future research is needed on the use of Model-Based Testing in more realistic

and

less controlled environments to validate the results discussed. It would

be helpful to conduct long-term analyses to identify the long-term outcomes

and

costs of these testing methods.

47

48

Chapter 6

Conclusion

This study examined the effectiveness of model-based methodologies for
evaluating user interfaces, targeted especially on |Combinatorial Interaction
Testing (CIT). The main goal was to evaluate how |CIT| may increase defect
detection, improve test coverage and optimize the effectiveness of test case
development and execution in comparison to conventional testing approaches.

We specifically worked on development of a system that enables evaluation
of these techniques. There were three basic case studies conducted in order to
collect empirical evidence on the utility of [CIT. These studies covered a range
of software applications and settings to evaluate the capabilities of |CITl

The first case study was performed on a shopping cart system and followed
a methodology focused on comparing manual test case creation in comparison
to |[CIT]| test case creation. The second study examined utilizing [CIT] in
generation of test scenarios in a usability study performed on an [ERP|system.
The third study followed the same methodology as the first study, but was
conducted in an issue-tracking system.

Case studies indicate that |CIT| increases the probability of defect detection
and increases test coverage while at the same time reducing the overall testing
time. Unlike the conventional approaches to testing, |[CIT| applies a systematic
way of testing different combinations of input parameters to ensure thorough
testing, that may uncover defects that would otherwise have been missed.
It is easy to see that [CIT| has great potential as a tool for software testing,
especially for those complex applications with numerous configurations and
interactions among them.

Still, this research has numerous limitations; however, the results and ideas
presented in the article are certainly promising. The controlled experimental
conditions are often not comprehensive, and they are not equal to actual
software testing conditions. Further research should also try to replicate these
findings in a broader and less controlled environments in order to confirm or
deny the usefulness and reliability of [Combinatorial Interaction Testing| in
real world scenarios.

49

50

Bibliography

[1] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2006.

[2] C. Schulze, D. Ganesan, M. Lindvall, R. Cleaveland, and D. Goldman,
“Assessing model-based testing: an empirical study conducted in
industry,” in Companion Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: Association for Computing Machinery, 2014, p. 135-144.
[Online]. Available: https://doi.org/10.1145/2591062.2591180

[3] R. Marinescu, C. Seceleanu, H. Guen, and P. Pettersson, A Research
Overview of Tool-Supported Model-based Testing of Requirements-based
Designs, 12 2015, vol. 98, pp. 89-140.

[4] J. R. Monsma, “Model-based testing of web applications,” Master’s
thesis, Radboud University Nijmegen, 2015.

[5] L. Ye, “Model-based testing approach for web applications,” Master’s
thesis, University of Tampere, 2007.

[6] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge:
Cambridge University Press, 2016.

[7] L. Williams, “White-box testing,” https://students.cs.byu.edu/~cs340ta/
spring2019 /readings/ WhiteBox.pdf], 2006, accessed: 2024-04-03.

[8] ——, “Testing overview and black-box testing techniques,”
// /students.cs.byu.edu/~cs340ta/fall2018 /readings/BlackBox.pdf], 2006,
accessed: 2024-04-03.

[9] J. Britton, “What Is ISO 250107” |https://www.perforce.com/blog/qac/
what-is-is0-25010], accessed: 2024-18-03.

[10] ISO/IEC 25010, ISO/IEC 25010:2011, Systems and software engineering
— Systems and software Quality Requirements and Evaluation (SQuaRE)
— System and software quality models, Std., 2011.

o1

https://doi.org/10.1145/2591062.2591180
https://students.cs.byu.edu/~cs340ta/spring2019/readings/WhiteBox.pdf
https://students.cs.byu.edu/~cs340ta/spring2019/readings/WhiteBox.pdf
https://students.cs.byu.edu/~cs340ta/fall2018/readings/BlackBox.pdf
https://students.cs.byu.edu/~cs340ta/fall2018/readings/BlackBox.pdf
https://www.perforce.com/blog/qac/what-is-iso-25010
https://www.perforce.com/blog/qac/what-is-iso-25010

6. Conclusion

[11] Codacy, “An Exploration of the ISO/IEC 25010 Software Quality
Model,” https://blog.codacy.com /iso-25010-software-quality-model, ac-
cessed: 2024-18-03.

[12] R. S. Yadav, “Improvement in the v-model,” International Journal of
Scientific €& Engineering Research, vol. 3, no. 2, pp. 1-6, 2012.

[13] Sep 2023. [Online|. Available: https://testsigma.com/blog/testability/
|[#Requirements__of _Software_ Testability|

[14] GeeksforGeeks, “Software testability,” Feb 2023. [Online]. Available:
https://www.geeksforgeeks.org /software-testability /|

[15] CodiumAlI, “Code Coverage,” |https://www.codium.ai/glossary/
icode-coverage/| accessed: 2024-09-03.

[16] ——, “Statement Coverage,” |https://www.codium.ai/glossary/
statement-coverage/, accessed: 2024-09-03.

[17] —, “Branch Coverage,” |https://www.codium.ai/glossary/
bbranch-coverage /|, accessed: 2024-09-03.

[18] SIMFORM, “Test Coverage,” |https://www.simform.com/blog/

test-coverage/, accessed: 2024-10-03.

[19] S. Bose, “Best Practices for Unit Testing,” https://www.browserstack|
icom/guide /unit-testing-best-practices, accessed: 2024-15-03.

[20] K. Devi, “What is Component Testing? (with Examples),” https:
browserstack.com/guide /what-is-component-testing), accessed: 2024-15-
03.

[21] Kitakabee, “What is Integration Testing,” https://www.browserstack|
ccom/guide/integration-testing) accessed: 2024-15-03.

)

[22] Katalon, “What is Regression Testing? Definition, Tools and Examples,’
https://katalon.com/resources-center/blog/regression-testing, accessed:
2024-15-03.

[23] S. T. Help, “Top 10 Most Popular Regression Testing Tools In
2024,” https://www.softwaretestinghelp.com /regression-testing-tools/,
accessed: 2024-15-03.

[24] Dec 2023. [Online]. Available: https://testsigma.com/blog/
‘combinatorial-testing /|

[25] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to combinatorial
testing. CRC press, 2013.

[26] “Ieee standard glossary of software engineering terminology,” IEEE Std
610.12-1990, pp. 1-84, 1990.

52

https://blog.codacy.com/iso-25010-software-quality-model
https://testsigma.com/blog/testability/#Requirements_of_Software_Testability
https://testsigma.com/blog/testability/#Requirements_of_Software_Testability
https://www.geeksforgeeks.org/software-testability/
https://www.codium.ai/glossary/code-coverage/
https://www.codium.ai/glossary/code-coverage/
https://www.codium.ai/glossary/statement-coverage/
https://www.codium.ai/glossary/statement-coverage/
https://www.codium.ai/glossary/branch-coverage/
https://www.codium.ai/glossary/branch-coverage/
https://www.simform.com/blog/test-coverage/
https://www.simform.com/blog/test-coverage/
https://www.browserstack.com/guide/unit-testing-best-practices
https://www.browserstack.com/guide/unit-testing-best-practices
https://www.browserstack.com/guide/what-is-component-testing
https://www.browserstack.com/guide/what-is-component-testing
https://www.browserstack.com/guide/integration-testing
https://www.browserstack.com/guide/integration-testing
https://katalon.com/resources-center/blog/regression-testing
https://www.softwaretestinghelp.com/regression-testing-tools/
https://testsigma.com/blog/combinatorial-testing/
https://testsigma.com/blog/combinatorial-testing/

[27]

[28]

[29]

[30]

[31]

32]

[33]

[34]

[40]

[41]

6. Conclusion

BrowserStack, “What is Test Management?” https://www.browserstack|
com/test-management /what-is-test-management), accessed: 2024-10-03.

——, “What is Test Plan?” https://www.browserstack.com/
test-management /features/test-run-management /what-is-test-plan, ac-
cessed: 2024-18-03.

IBM, “What is test management?” |https://www.ibm.com/topics/
test-management /|, accessed: 2024-10-03.

S. Bose, “How to write Test Cases in Software Testing?
(with Format & Example),” https://www.browserstack.com/guide/
how-to-write-test-cases|, accessed: 2024-10-03.

Oct 2023. [Online]. Available: https://testsigma.com/blog/
roi-test-automation /
[Online]. Available: https://www.headspin.io/blog /

step-by-step-guide-to-calculate-roi-of-test-automation-for-digital-testing

A. M. Memon, “An event-flow model of gui-based applications for testing,”
Software testing, verification and reliability, vol. 17, no. 3, pp. 137-157,
2007.

A. M. Memon and B. N. Nguyen, “Advances in automated model-based
system testing of software applications with a gui front-end,” in Advances
in Computers. FElsevier, 2010, vol. 80, pp. 121-162.

S. Arlt, I. Banerjee, C. Bertolini, A. Memon, and M. Schéf, “Grey-box
gui testing: Efficient generation of event sequences,” 05 2012.

J. Bowen and S. Reeves, “Ui-design driven model-based testing,” 2009.

V. Lelli, A. Blouin, B. Baudry, and F. Coulon, “On model-based testing
advanced guis,” in 2015 IEEFE FEighth International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW). 1EEE,
2015, pp. 1-10.

M. Hutcheson, Software Testing Fundamentals: Methods and Metrics,
01 2003.

P. B. Nirpal and K. Kale, “A brief overview of software testing metrics,”
International Journal on Computer Science and Engineering, vol. 3,
no. 1, pp. 204-2011, 2011.

Y. Singh, A. Kaur, and B. Suri, “An empirical study of product metrics
in software testing,” Innovative techniques in instruction technology,
e-learning, e-assessment, and education, pp. 64-72, 2008.

M. Bures and B. S. Ahmed, “On the effectiveness of combinatorial inter-
action testing: A case study,” in 2017 IEEFE International Conference on
Software Quality, Reliability and Security Companion (QRS-C). IEEE,
2017, pp. 69-76.

53

https://www.browserstack.com/test-management/what-is-test-management
https://www.browserstack.com/test-management/what-is-test-management
https://www.browserstack.com/test-management/features/test-run-management/what-is-test-plan
https://www.browserstack.com/test-management/features/test-run-management/what-is-test-plan
https://www.ibm.com/topics/test-management/
https://www.ibm.com/topics/test-management/
https://www.browserstack.com/guide/how-to-write-test-cases
https://www.browserstack.com/guide/how-to-write-test-cases
https://testsigma.com/blog/roi-test-automation/
https://testsigma.com/blog/roi-test-automation/
https://www.headspin.io/blog/step-by-step-guide-to-calculate-roi-of-test-automation-for-digital-testing
https://www.headspin.io/blog/step-by-step-guide-to-calculate-roi-of-test-automation-for-digital-testing

6. Conclusion

[42]

[43]

[45]

[46]

[47]

W. Howden, “Theoretical and empirical studies of program testing,”
IEEFE Transactions on Software Engineering, vol. SE-4, no. 4, pp. 293—
298, 1978.

E. Farchi, A. Hartman, and S. S. Pinter, “Using a model-based test
generator to test for standard conformance,” IBM Systems Journal,
vol. 41, no. 1, pp. 89-110, 2002.

K. Stobie, “Model based testing in practice at microsoft,” FElectr. Notes
Theor. Comput. Sci., vol. 111, pp. 5-12, 01 2005.

M. Veanes, C. Campbell, W. Schulte, and N. Tillmann, “Online testing
with model programs,” vol. 30, 09 2005, pp. 273-282.

E. Bernard, B. Legeard, X. Luck, and F. Peureux, “Generation of test
sequences from formal specifications: Gsm 11-11 standard case study,”
Software: Practice and Experience, vol. 34, no. 10, pp. 915-948, 2004.
[Online]. Available: |https://onlinelibrary.wiley.com/doi/abs/10.1002/
spe.H97

A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel, M. Baumgartner,
B. Sostawa, R. Zélch, and T. Stauner, “One evaluation of model-based
testing and its automation,” in Proceedings of the 27th international
conference on Software engineering - ICSE "05, ser. ICSE '05. ACM Press,
2005. [Online|. Available: http://dx.doi.org/10.1145/1062455.1062529

A. Sinaga and M. Hutapea, “Implementation of model based testing for
testing kawn subscriptions manager application,” Jurnal Komputer dan
Informatika, vol. 11, pp. 174-184, 10 2023.

H. Shu, H. Lv, K. Liu, K. Yuan, and X. Tang, “Test scenarios construction
based on combinatorial testing strategy for automated vehicles,” IEEFE
Access, vol. 9, pp. 115019-115 029, 2021.

F. G. d. O. Neto, F. Dobslaw, and R. Feldt, “Using mutation testing
to measure behavioural test diversity,” in 2020 IEEE International

Conference on Software Testing, Verification and Validation Workshops
(ICSTW), 2020, pp. 254-263.

M. Betka and S. Wagner, “Extreme mutation testing in practice: An
industrial case study,” in 2021 IEEE/ACM International Conference on
Automation of Software Test (AST), 2021, pp. 113-116.

A. Parsai and S. Demeyer, “Comparing mutation coverage against branch
coverage in an industrial setting,” International Journal on Software
Tools for Technology Transfer, vol. 22, no. 4, pp. 365388, Aug. 2020.

J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N. Kacker, “Introducing
combinatorial testing in a large organization,” Computer, vol. 48, no. 4,
pp- 64-72, 2015.

o4

https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.597
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.597
http://dx.doi.org/10.1145/1062455.1062529

[54]

[55]

6. Conclusion

D. R. Kuhn, R. Bryce, F. Duan, L. S. Ghandehari, Y. Lei, and R. N.
Kacker, “Combinatorial testing: Theory and practice,” Advances in
computers, vol. 99, pp. 1-66, 2015.

J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combinatorial
interaction testing: Empirical findings on efficiency and early fault
detection,” IEEE Transactions on Software Engineering, vol. 41, no. 9,
pp. 901-924, 2015.

L. Hu, W. E. Wong, D. R. Kuhn, and R. N. Kacker, “How does combina-
torial testing perform in the real world: an empirical study,” Empirical
Software Engineering, vol. 25, pp. 2661-2693, 2020.

X. Li, R. Gao, W. E. Wong, C. Yang, and D. Li, “Applying combinatorial
testing in industrial settings,” in 2016 IEEFE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 2016, pp.
53-60.

95

56

Appendix A

Acronyms

ACTS advanced combinatorial testing system. [22| [24]

CIT Combinatorial Interaction Testing. 40,
[AT, (3146}, (49
CRM Customer Relationship Management.

ERP Enterprise Resource Planning. [30,

GUI graphic user interface.

MBT Model-Based Testing. [1 161,
ROI Return on Investment.

SDLC software development life cycle. [9
SUT system under test. [7, [15] 1261,

UML Unified Modeling Language.
UX user experience.

o7

o8

Appendix B
Used Software

The following software was used in the writing of this thesis in compliance
with the Methodological guideline No. 5/2023E|:

8 ChatGPT (OpenAI)E| for input on text style and for rephrasing sugges-
tions

] Grammarlyﬂ as a grammar and spell checker

] QuillBotﬁ as a grammar checker and for rephrasing suggestions

"https://www.cvut.cz/sites/default/files/content/
|d1dc93cd-5894-4521-b799-c7e715d3c59¢e/en/20231003-methodological-guideline-nof-52023.

p

https://chat.openai.com
https://www.grammarly.coﬂ
“https://quillbot.com/|

99

https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/en/20231003-methodological-guideline-no-52023.pdf
https://chat.openai.com
https://www.grammarly.com
https://quillbot.com/

	Introduction
	Background and context of model-based user interface testing
	Importance of evaluating the effectiveness of model-based testing techniques
	Research objectives and scope of the thesis
	Overview of the thesis structure

	Theoretical Framework of Software testing
	Introduction to Software Testing
	White box testing
	Black box testing
	Theoretical Models of Software Quality and Testing

	Concepts of Testability, Factors of Testability in Software
	Testability Factors
	Requirements of Software Testability
	Improving Software Testability

	Test Coverage Criteria and Adequacy Models
	Code coverage
	Compatibility coverage
	Product coverage
	Requirements coverage

	Principal Test Levels
	Unit testing
	Module testing
	Integration testing
	Functional and system testing
	User Acceptance Testing
	Beta testing
	Regression testing

	Combinatorial Interaction Testing
	Test Planning and Management
	Key components of a test plan
	Designing test cases and managing test data

	Evaluating Test Automation Return on Investment

	Literature Review
	Definition and principles of model-based user interface testing
	Techniques and approaches for model-based testing in UI design
	Evaluation criteria and metrics for assessing the effectiveness of testing techniques
	Principles of Model-Based Testing
	Previous studies and research on model-based testing effectiveness

	Evaluating the effectiveness of model-based testing techniques
	Research design and approach for evaluating model-based UI testing effectiveness
	Objective
	Methodology
	Evaluation Criteria

	Selection of testing tools and frameworks
	ACTS 3.2
	Cypress
	Git/Github
	Google Sheets as a Test Management Framework

	Design of experiments and case studies
	Impact Analysis of Combinatorial Interaction Testing on Systematic Software Validation
	Combinatorial Interaction Testing in Usability Studies
	Effectiveness of Combinatorial Interaction Testing in Test Automation
	Threats to Validity

	Results
	Results of Specific Case Studies
	Summary of Key Results
	Implications of Results
	Limitations of the Study
	Recommendations for Future Research

	Conclusion
	Bibliography
	Acronyms
	Used Software

