
F3 Faculty of Electrical Engineering
Department of Measurement

Master’s Thesis

Vehicle IP Network Analyzer

Bc. Peter Fučela
Cybernetics and Robotics

May 2024
Supervisor: Ing. Jan Sobotka, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

510635 Personal ID number: Fučela Peter Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Vehicle IP Network Analyzer

Master’s thesis title in Czech:

Analyzátor automobilové IP sítě

Guidelines:

1. Research available computer network analysis tools.
2. Implement in-vehicle IP network analysis software with the following features:
a. Network topology identification and visualization.
b. Identification of individual nodes – physical and network address, available services, and used communication protocols.
c. Identification of data flows between individual ECUs.
3. The software should primarily focus on offline analysis of measured data.
4. Explore the possibilities of network identification using active communication (ICMPv6, DoIP).

Bibliography / sources:

[1] MATHEUS, Kirsten; KÖNIGSEDER, Thomas. Automotive ethernet. Cambridge University Press, 2017.
[2] Craig Smith. 2016. The Car Hacker's Handbook: A Guide for the Penetration Tester (1st. ed.). No Starch Press, USA.
[3] Nicolas Navet, F. and Simonot-Lion, F.: Automotive Embedded Systems Handbook, CRC PressINC, 2009.

Name and workplace of master’s thesis supervisor:

Ing. Jan Sobotka, Ph.D. Department of Measurement FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 30.01.2024

Assignment valid until:
by the end of summer semester 2024/2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jan Sobotka, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I want to express my profound
gratitude to my supervisor, Ing. Jan
Sobotka, Ph.D., for his valuable in-
sight, help, and feedback. I would
also like to thank doc. Ing. Jiří
Novák, Ph.D., for his help with the
project. In addition, I would like to
thank my family, friends and girl-
friend for their support and patience
during my studies.

I declare that this thesis is my own
work and I have cited all sources I
have used in the bibliography.

Prague, May 20, 2024

. .

v

Abstrakt / Abstract

Cieľom tejto práce je otestovanie
možnosti rekonštrukcie topológie Et-
hernetovej siete vo vozidle na základe
logov vytvorených jednosmerným
zachytávaním paketov. Vytvorený
nástroj by mal dokázať detekovať
prítomnosť prepínačov, smerova-
čov a všetkých zariadení ktoré boli
zachytené v logu. Práca rozoberá
technológiu Automotive Ethernet a
spôsoby, akými môžeme Ethernetové
siete monitorovať. Následne pred-
stavuje algoritmus, ktorý zostavuje
topológiu jednotlivých meraných
segmentov a algoritmus ktorý spája
segmenty do celkovej topológie siete.
Následne sú v grafe topológie zobra-
zené dátové toky v sieti. Pri meraní
dát z viacerých segmentov paralelne
sú niektoré pakety zachytené viac-
násobne, čo spôsobouje zkreslené
štatistiky o dátových tokoch v sieti.
Preto bol navrhnutý postup ako tieto
štatistiky napraviť a boli implemne-
tované základné štatistické funkcie
po vzore Wiresharku. Záverečná ka-
pitola sa zaoberá možnosťami vylep-
šenia výsledkov algoritmu pomocou
aktívneho dotazovania v sieti.

Kľúčové slová: Automotive Ether-
net, topológia siete, analýza dátových
tokov, sieťové štatistiky.

The objective of the thesis is to
test the possibility of reconstruct-
ing the topology of the in-vehicle
Ethernet network based on the logs
generated by unidirectional packet
capture. The created tool should
be able to detect the presence of
switches, routers, and all end devices
that have been captured in the log.
The document discusses Automotive
Ethernet technology and the ways
in which Ethernet networks can be
monitored. Then it presents the algo-
rithm that creates the topology graph
of each measured segment and the
algorithm that merges the segments
to the overall network topology. The
data flows are further visualized in
the topology graph. When packets
from multiple segments are captured
parallelly, some packets are captured
multiple times, which causes skewed
statistics about data flows in the
network. Therefore, a procedure was
proposed to correct these statistics,
and basic statistical functions were
implemented along the lines of Wire-
shark. The final chapter discusses
how the results of the algorithm can
be improved by sending the packets
on the network from the test device.

Keywords: Automotive Ethernet,
network topology, data flow analysis,
network statistics.

vi

Contents /

1 Introduction 1
2 Ethernet network analy-

sis background 2
2.1 Physical layer 2

2.1.1 100 BASE TX 3
2.1.2 100 BASE T1 3
2.1.3 1000 BASE T1 3

2.2 Data Link Layer 4
2.3 TCP/IP 7

2.3.1 Internet protocol 7
2.3.2 IPv4 8
2.3.3 IPv6 9
2.3.4 TCP 9
2.3.5 UDP 10
2.3.6 Topology 11

2.4 Network Traffic Monitoring . 12
2.4.1 Monitoring network

using switch port mir-
roring 12

2.4.2 Single active test ac-
cess point 13

2.4.3 Multi active test ac-
cess point 13

2.5 Network Traffic Analysis . . 14
2.5.1 Data Sources 14
2.5.2 Common Network

Analysis Tools 14
2.6 Tools for visualization of

PCAPs 16
2.7 Application Background . . 19

3 Input Data Analysis 20
3.1 Input data 20
3.2 Loading the data to database 21

4 Offline Topology Mapping 24
4.1 Topology structure 24
4.2 Data preprocessing 25
4.3 Single segment topology

creation 26
4.3.1 Single segment topol-

ogy principle 26
4.3.2 Single segment topol-

ogy example 27
4.3.3 Single segment topol-

ogy limitations 30
4.4 Network graph 32

4.4.1 Localization and up-
dating the devices at
the end of the mea-
sured edge 32

4.4.2 Updating the edge
between the devices . . . 34

4.4.3 Updating remaining
devices from the seg-
ment graph into the
network graph 35

4.5 Network topology cre-
ation example 36

4.5.1 Network graph af-
ter adding informa-
tion from the segment
graph 4.3 37

4.5.2 Network graph af-
ter adding informa-
tion from the segment
graph 4.4 39

4.5.3 Results from a vehicle . . 41
5 Traffic Flow Analysis 43

5.1 Duplicate packets in cap-
ture file 43

5.2 Network statistics 45
5.3 Data-flow diagram 46

6 Online analysis 48
6.1 Detecting routers using

the TTL field 48
6.2 Testing on the HIL 50

7 Conclusion 54
References 56

A Segment graphs from
the vehicle log 59

B List of Abbreviations 63

vii

Tables / Figures

4.1 Captured addresses at link
eth1.1 . 29

4.2 Setup of communication
to demonstrate second and
third case from the Section
4.3.1 . 29

4.3 Captured addresses at link
eth2.5 . 29

4.4 Setup of communication
to demonstrate limitations
switch switch eth1.5. 31

2.2 Example of Automotive
Ethernet network with 4
nodes and 1 switch. 4

2.3 VLANs example. 5
2.4 VLAN tag. 6
2.5 IP addressing modes. 8
2.6 VLANs example. 8
2.7 The TCP header. 10
2.8 The UDP header. 11
2.9 Example of single active

TAP connection. 13
2.10 Example of multi active

TAP connection. 14
2.11 CANoe Protocol Monitor. . . . 16
2.12 NetCapVis user interface. 17
2.13 A-Packet user interface. 17
2.14 DynamiteLab user inter-

face. 18
2.15 GrassMarlin user interface. . . 18

3.1 Data in the database. 22
4.1 Simulated network topolo-

gy. 28
4.2 Segment graph constructed

from packets captured at
link eth1.1. 28

4.3 Segment graph constructed
from packets captured at
link eth2.5. 30

4.4 Segment graph constructed
from packets captured at
link eth1.5. 31

4.5 Change in network topolo-
gy after first two steps. 37

4.6 Network topology as de-
tected by our algorithm
after adding information
from graph in figure 4.2 to
graph 4.3. 38

4.7 Network topology as de-
tected by our algorithm
after adding information
from graph in figure 4.4. 40

4.8 Network topology graph of
a vehicle as detected by the
algorithm. 41

viii

4.9 Physical network topology
graph of a vehicle as de-
tected by the algorithm. 42

5.1 Example of multi active
TAP connection. 43

5.2 Data returned by query. 45
5.3 Top 10 unicast UDP con-

versations returned by
Wireshark. 46

5.4 Top 10 unicast UDP con-
versations returned by de-
veloped tool. 46

5.5 UDP dataflow diagram. 47
6.1 Network example. 49
6.2 Reconstructed network

topology . 49
6.3 Ping response with TTL

equal to 2, sent from PC1
to PC6. 50

6.4 Ping response with TTL
equal to 2, sent from PC3
to PC4. 50

6.5 Photo of the connected HIL . . 51
6.6 Ethernet packet builder. 52
A.1 Segment graph from seg-

ment ETH1/ETH2 59
A.2 Segment graph from seg-

ment ETH3/ETH4 60
A.3 Segment graph from seg-

ment ETH5/ETH6 60
A.4 Segment graph from seg-

ment ETH7/ETH8 61
A.5 Segment graph from seg-

ment ETH9/ETH10. 61
A.6 Segment graph from seg-

ment ETH21/ETH22 62
A.7 Segment graph from seg-

ment ETH25/ETH25 62

ix

Chapter 1
Introduction

The first use of Ethernet in the automotive industry can be traced back to 2004
when Thomas Konigseder was tasked with finding a solution to speed up the
software flashing process. With the CAN interface used at a time, flashing the 1
Gbyte of data would require 16 hours. After careful evaluation, Thomas chose and
enabled the use of standard 100Base-TX Ethernet for flashing purposes, resulting
in the first serial car with an Ethernet interface, a BMW 7-series [1].

The EMC properties of standard 100Base-TX Ethernet significantly limited its
applications - the technology was usable with cost-competitive unshielded cables
only when the car was stationary in the garage, meaning that the typical use-cases
of Ethernet were for software flashing and On-Board Diagnostics. BMW further
examined options to remove the EMC limitation with Broadcom, resulting in an
optimized physical layer transceiver (PHY) that yielded even better EMC per-
formance over unshielded cable than the FlexRay. With the EMC limitation
removed, the second generation of Ethernet automotive applications started. In
this generation, the Automotive Ethernet is commonly used for infotainment and
vehicle sensors such as cameras, LiDARs, and other sensors used for ADAS. In
the future, the third generation of Automotive Ethernet can be expected. While
in the previous generations, the Ethernet was responsible only for specific appli-
cation domains, in this generation, it will become the backbone of the in-vehicle
network [2].

It is evident that proper functioning of the Ethernet network in a car is critical
for ensuring vehicle safety and security, and its importance will only increase in
the near future. Our university, together with TUV Sud and Skoda Auto, is
working on a solution for testing and analyzing vehicle networks. As part of
this project, this thesis investigates the possibility of reconstructing the network
topology based on packet captures that are sniffed on Ethernet interfaces. The
motivation for exploring this topic is that external companies that want to test
or certify vehicles often do not have access to the documentation of the devices,
network topology, and protocols used in the vehicle. The network analyzer tool
should provide them with this information.

1

Chapter 2
Ethernet network analysis background

Since its invention in the early 1970s, Ethernet has become the most common
form of wired LAN in the computer world. This is one of the reasons for the
use of technology in the automotive environment. Broadcom Corporation, one
of the leading semiconductor design firms in the field of communication and net-
working, developed OABR (OPEN Alliance BroadR-Reach) Ethernet technology
in 2011 [2]. The OPEN Alliance (One-Pair Ether-Net) Inc. is a non-profit group
formed in 2011 by mostly automotive industry and technology providers collabo-
rating to promote wide-scale adoption of Ethernet-based networks as the standard
in networking applications [3].

Figure 2.1. ISO/OSI model of Automotive Ethernet.

BroadR-Reach technology allows point-to-point Ethernet communication over
a single unshielded twisted pair (UTP) cable. As wiring is one of the heaviest
and most expensive components of a modern car, using as few cables as possible
directly impacts vehicle price and fuel economy.

OABR Ethernet was standardized by OPEN Alliance SIG in 2015 into IEEE
standard IEEE 802.3bw also known as 100BASE-T1. After a year in 2016 the
standard IEEE 802.3bp was published for 1Gb/s Physical Layer also known as
1000BASE-T1.

2.1 Physical layer
In order to meet the demands of the automobile sector, special physical layers were
created to enable Ethernet in vehicles. One of the factors taken into account was

2

. 2.1 Physical layer

the desire to employ unshielded twisted pair (UTP) cables in order to guarantee
a high level of electromagnetic interference immunity, while also saving weight
and money, as wiring is one of the heaviest and most expensive components in a
modern vehicle.

The physical layer can be changed as needed without affecting the layers above
it. This greatly improves the flexibility of the network. Higher data rates can
be easily implemented by using a different physical layer. Currently 3 different
Physical Layers are used in the automotive industry, described in sections below.

2.1.1 100 BASE TX

. Standard physical layer used in the PC field. In vehicles it is used for the diagnostic interface. As a physical medium it uses 4-wire shielded cable. Data transfer rate is 100 Mbps. Maximum length of a cable is 100 meters

2.1.2 100 BASE T1

. Special physical layer for use in the automotive sector. In vehicles it is used mostly for the networking of ADAS ECU’s. As a physical medium it uses unshielded 2-wire cable. Data transfer rate is 100 Mbps. Maximum length of a cable is 15 meters

2.1.3 1000 BASE T1

. Special physical layer for use in automotive sector. In vehicles it is used mostly for networking of ADAS ECU’s and infotainment
systems. As a physical medium it uses 2-wire unshielded cable. Data transfer rate is 1000 Mbps. Maximum length of a cable is 15 meters

One more important property of Physical Layers mentioned above is that all of
them are full duplex, which is not the case with some older automotive networks
such as CAN, Flexray or MOST. This means that while each 100 BASE T1 link is
rated at 100Mbps, the total aggregate throughput between nodes is 200Mbps [4].

Another difference from traditional automotive networks is that, at the basic
Physical Layer level, the Ethernet network is constructed of point-to-point lines,
meaning that each UTP cable supports only two nodes, one at each end. Con-
sidering a typical network containing more than two devices, a switch is used to
interconnect the devices.

3

2. Ethernet network analysis background .
To illustrate this, consider a simple 100 BASE T1 network with 4 nodes shown

in Figure 2.2. There is a switch with four ports connected to the head unit, the
display node, the console node, and the speaker node. Each UTP cable from the
switch to the four end nodes is physically distinct from the other; it could be said
that there are four mini-networks here, called network segments.

Figure 2.2. Example of Automotive Ethernet network with 4 nodes and 1 switch.

The advantage of a full-duplex, packet-switched network as Ethernet is its abil-
ity to support multiple data exchanges between nodes simultaneously [5]. For
example, consider that the display needs to communicate with the console, while
the head unit needs to talk with the speaker. Because all links are independent
and the switch transmits received messages only to the specified recipients, these
two communications can occur concurrently without waiting. When each device
transmits at the full nominal rate of 100 Mb/s, the total aggregate network band-
width is 400 Mb/s.

2.2 Data Link Layer
The data link layer is left unchanged. It provides the basic functions for bus
traffic control and bus access control and defines a unified structure of commu-
nication frames, including how nodes are addressed. All these basic functions
are implemented in the Ethernet controller, which is usually integrated in the
microprocessor.

For data transmission and node communication, unique identification addresses
are essential. Under the IEEE 802 scheme, the MAC address consists of six bytes.
The initial three bytes (OUI field) are designated to hardware manufacturers,

4

. 2.2 Data Link Layer

while the subsequent three bytes are assigned by the manufacturer to their re-
spective products.

Devices often require data to be transmitted to multiple recipients simultane-
ously. To accommodate this, the IEEE 802 MAC scheme uses a specific flag that
distinguishes transmissions directed at a group of recipient MAC addresses from
those aimed at a single target. This flag is located in the first (least significant)
bit of the OUI field of the MAC address, known as the I/G (individual/group)
flag. When this bit is set to zero, indicating an individual device, the message
is sent as a unicast. Conversely, when set to one, it signifies a group address
(multicast). Since the I/G bit is exclusively set to one for group addressing, it is
only applicable as a target address.

Another specific MAC address is the broadcast address, which is essentially a
MAC address with all bits set to one: FF-FF-FF-FF-FF-FF. Within a LAN, any
frame that has this MAC address in its destination address is intended for any
device that might be listening. Broadcasts serve to address specific scenarios in
which the sender lacks knowledge of the address of the device with which it needs
to communicate.

Figure 2.3. VLANs example [1].

In automotive applications, the traditional addressing scheme can be enhanced
by employing Virtual Local Area Networks (VLANs). VLAN addresses facilitate
the creation of virtual networks on top of a physical one, allowing the segmenta-
tion of communications. This segmentation defines distinct domains for various
applications and use cases. An Electronic Control Unit (ECU) can belong to mul-

5

2. Ethernet network analysis background .
tiple application domains and VLANs as shown in Figure 2.3. In addition, VLANs
serve as a foundation for security measures that incorporate firewall functionality.
For example, this setup ensures that specific browser applications cannot access
internal car data, even if transmitted over the same network wire [1].

Figure 2.4. VLAN tag. [6]

It is worth noting that VLAN also allows to assign distinct priorities to each
message routed to Ethernet switches, enhancing real-time communication capa-
bilities. This is done using a process called Q-tagging. To tag the frame, 4
bytes are inserted between the Source MAC address and the Length/Type field
in the 802.3 header. These 4 bytes identify the frame as being VLAN tagged
and provide the necessary tag information. The first two bytes are called tag
protocol identifier (TPID), which highlights that the frame is tagged by using a
special Ethertype, which has a value of 0x8100. The other two bytes are called
tag control information (TCI), which is further divided into 3 subfields:

. Priority Code Point (PCP): Indicates the priority of the frame. The size of the
field is 3 bits, meaning that there are eight priority levels, where a higher value
means a higher priority.. Drop Eligible Indicator (DEI): A flag that indicates whether the frame is suit-
able for being dropped in the event of network congestion (is flag is set to 1).. VLAN Identifier (VID): This subfield is 12 bits long, meaning that there are
4096 possible VLAN IDs. Of these, three are reserved. VID of 0 indicates
that the frame is not assigned to any VLAN, in this case the tag serves only
to specify the priority. VID of 1 is the default value, and the VID of 4095 is
reserved.

Figure 2.3 illustrates an example of a vehicle network with VLANs, where the
internal car communication, diagnostics, and external connections run on separate
VLANs.

6

. 2.3 TCP/IP

2.3 TCP/IP

TCP/IP combines layers 3 and 4 within the Ethernet OSI model. Just as in
regular LAN setups, the TCP/IP suite operates over the Ethernet physical layer to
support various automotive applications. In the following sections, the individual
protocols that make up the TCP/IP suite are explained.

2.3.1 Internet protocol

The Internet Protocol (IP) handles the routing between different networks. While
Ethernet frames within a network can be sent directly via a switch, packets des-
tined for hosts in remote networks must pass through a router. To facilitate this,
each network node is assigned a unique IP address, which operates independently
of the physical address (MAC address) and thus acts as a logical address. When a
packet is sent to a host not lying in the same network, the router can look up the
network this node lies in and can thus route the packet to the correct network.
For automotive use, routing is commonly used to send packets between different
VLANs.

Although the number of active nodes in an in-vehicle network can change, the
network is considered a closed system because the maximum number of nodes
is predetermined. Due to the frequent restarts a car undergoes daily, there is a
time constraint that requires swift initialization of all nodes. Therefore, static IP
configurations are usually recommended and used [2].

IP addressing can work in four different modes, according to the intended re-
cipients, as shown in Figure 2.5. The possible modes are:

. Unicast - the connection between two devices.

. Anycast - the message is intended only for any recipient in a specific group.

. Broadcast - the message is sent to all recipients inside a network

. Multicast - the message is sent to an arbitrary number of recipients

7

2. Ethernet network analysis background .

Figure 2.5. IP addressing modes. [7]

2.3.2 IPv4

Figure 2.6 displays the IPv4 header format.

Figure 2.6. Differences in headers between IPv4 and IPv6. [8]

The header fields are explained below:
. Version: specifies the version of the IP protocol (IPv4).

8

. 2.3 TCP/IP

. IP Header Length (IHL): specifies the length of the header in multiples of 4
bytes.. Type of Service (TOS): specifies the quality of service, for example, delay or
precedence.. Identification, Flags, Fragment Offset: these fields are used to facilitate IP
fragmentation. This process is used to break down large IP packets into
smaller ones when endpoints or routers cannot handle large IP packets. How-
ever, modern routers typically no longer support IP fragmentation. Instead,
they discard such packets and send a control message back to the source Elec-
tronic Control Unit (ECU) to notify the transmitter that the selected packet
size is not supported.. Time to Live (TTL): When an IP packet traverses a router, the TTL field is
reduced by 1. Upon reaching 0, the router discards the packet and sends an
ICMP time exceeded message back to the sender.. Protocol: This 8-bit field indicates the protocol encapsulated within the IP
packet. For most common protocols, TCP is assigned a value of 6, while UDP
is assigned a value of 17.. Header Checksum: contains checksum that allows receiver to check whether
there are errors in the header. Source Address: 32 bit address of the sender. Destination Address: 32 bit address of the receiver. IP options: optional field for more specific uses of the protocol. Padding: used to ensure that the header size is multiple of 4 bytes (due to
IHL)

2.3.3 IPv6

The changes in the IPv6 header structure, illustrated in Figure 2.6, begin with
the elimination of the IHL field and the replacement of the TOS with the Traffic
class. Subsequently, the total length is replaced by the payload length, which
now excludes length of the header, and is positioned after the Flow label field.
The Flow label provides an option to label a sequence of IPv6 packets. The
Next header field denotes the type of the encapsulated protocol. The final
modification to the IP header, aside from the address sizes, it the Hop limit
field, which replaces the TTL field while serving practically the same function.

2.3.4 TCP

In the transport layer of the Internet, there are two primary protocols: one is
connectionless, and the other is connection-oriented. These protocols comple-
ment each other. TCP, the connection-oriented protocol, handles many tasks
such as establishing connections, ensuring reliability through retransmissions,

9

2. Ethernet network analysis background .
and managing flow and congestion control, serving the applications that utilize
it.

Figure 2.7. The TCP header. [9]

A TCP connection is started through a three-way handshake where, firstly,
ECU A sends a request for connection establishment to ECU B, specifying the
Sequence Number. The ECU B sends the acceptance of the connection, also
specifying the sequence number. Finally, ECU A sends the final acceptance
acknowledgment. Once established, data can flow between the two nodes via
a point-to-point connection; in other words, TCP does not support multicast
or broadcast. TCP further confirms all successfully received packets, using a
checksum to identify transmission errors, and retransmits incorrectly transmit-
ted segments. The receiving device assembles the transmitted segments using
sequence numbers [9]. This makes the structure of a TCP header more complex
than its UDP counterpart, as seen in Figure 2.7.

2.3.5 UDP

The purpose of the UDP (User Datagram Protocol) is to provide a lightweight
communication protocol that allows the exchange of data between devices with-
out the overhead of establishing a connection, with error checking performed
only at the nodes. This protocol operates without establishing connections, al-
lowing out-of-sequence deliveries and lacking segment numbering for loss checks.
However, having connectionless transmission results in faster transmission com-
pared to TCP. Additionally, UDP enables segment transmission in multicast or
broadcast mode. Figure 3.21 displays a header for the UDP segment.

10

. 2.3 TCP/IP

Figure 2.8. The UDP header. [9]

In addition to the data payload, UDP includes information about the source
and destination ports, each represented by 16-bit integers ranging from 0 to
65,535. Many of these ports are reserved or forbidden. The length field in UDP
summarizes the size of both the UDP header and the carried payload. For error
detection, a checksum field is appended to the header. To generate the check-
sum, the sender calculates the sum of all 16-bit segments in the packet, then
inverts all the bits of the sum, and inserts the resulting 16 bits into the check-
sum field. The receiver computes the checksum in a similar manner, adding its
own checksum to the sender’s checksum. If the result contains any zeros, an
error is detected and the receiver discards the packet.

2.3.6 Topology

Because an Automotive Ethernet network with more than two nodes requires a
switch to interconnect its end devices, it is naturally based on a star topology.
Adding more connections allows the star topology to be easily expanded, limited
only by the number of ports on the switch. Multiple connected switches can
extend the topology even further into a tree topology [2].

The example shown in Figure 2.2 is a fundamentally different way of net-
working than that implemented by CAN, FlexRay, LIN, or MOST. These older
networking technologies use a shared medium, meaning that all devices can
access the cabling through which they are connected. Shared cabling prevents
more than one device from communicating on the network, but it also means
that if any frame exists on the network, all connected nodes can see it. How-
ever, in a switched Ethernet network, the sender usually sends the frame to a
switch, which will then retransmit it only on the port connected to the intended
recipient; the remaining ports will remain idle.

As an example, let us return to the example from Figure 2.2. If the console
transmits a frame to the display, the frame will first be sent to port 3 of the
switch. After a while, the switch will copy the frame to its port 1, from which
it will travel to the display. This has two consequences; first, for most of the
transmission, parts of two frames will exist on the network: one traveling from
the console to the switch and another from the switch to the display. Second,
the frame will never exist on the network segments leading to devices that are

11

2. Ethernet network analysis background .
neither source nor destination; ports 0 and 2 will remain idle, as will the cables
attached to them.

There are more consequences when it comes to the selection of tools in the
automotive network. CAN tools cannot be used to monitor or simulate message
traffic, as there is no single place on the network to see all the traffic. Connecting
a tool to a link on an Ethernet network only shows the frames on that link, not
everything on the network, as is the case with older technologies.

2.4 Network Traffic Monitoring

There are many different approaches for monitoring Ethernet networks. The
selection of the methods will depend on available hardware and requirements
of the user. Three common methods are explained in the following sections.

2.4.1 Monitoring network using switch port mirroring

In conventional Ethernet, switches often deal with the task of traffic monitoring
using a technique called port mirroring. The principle of the method is that a
copy of each frame that passes through a switch is mirrored to a debug port,
or to a regular port configured for this purpose. A computer or other device
can be connected to this port and use standard software to sniff packets, such
as Wireshark, to monitor the switch traffic. A regular computer lacks support
for Automotive Ethernet Physical Layers like BroadR-Reach, so it is necessary
to convert packets at Layer 1 to enable connection to a conventional Fast or
Gigabit Ethernet port on the monitoring device[2, 10].

This method seems to be promising; however, for monitoring Automotive
Ethernet, there are several drawbacks:. All faulty frames on the network will be dropped by the switch, and they

won’t be forwarded to the debug port. It is impossible to identify defective
frames on the network using this method.. As explained earlier, the total aggregate throughput of the network is much
higher than the throughput of a single link. Unless the debug port is magni-
tudes faster than a regular port, overflow may occur, where the port buffer
fills up, and additional frames are discarded. This means that the user will
never see these frames.. The existence of a fast enough debug port makes the system more expensive.
It is necessary to have a physical connector accessible to the monitoring de-
vice, and all associated Physical Layer chips and connections on a board must
be provided. Car manufacturers usually don’t provide additional hardware
to a production vehicle just for debugging.

12

. 2.4 Network Traffic Monitoring

2.4.2 Single active test access point

Another option is to use an active test access point (TAP), a device developed
to test Ethernet networks. An active TAP is inserted into a link of an Ethernet
network to provide access to the network for testing. It must be understood
that the TAP is not simply connected to the physical wires of the network in the
same way as when the CAN network is measured using the Y-cable. Instead,
it is inserted, which means that the wires connecting the TAP to the switch
(Figure 2.9) are physically separated from the wires connecting the TAP to the
Monitoring node. The TAP will transfer all Ethernet frames from Port 1 to
Port 1’ and all frames from Port 1’ to Port 1. The TAP will also copy these
frames to a port connected to a monitoring node so that a PC can monitor
them using a test tool. The PC can also transmit Ethernet frames through the
TAP [11].

Figure 2.9. Example of single active TAP connection. [11]

The benefit of this method is that the TAP can capture a corrupted Ethernet
frame and encapsulate it into a new frame. This frame can be sent to the
computer, which will unwrap the corrupted frame and allow us to analyze it.
With this method, packets can also be sent on the network with the same MAC
address as the node to which the TAP is connected, without introducing a new
MAC address to the network.

The main drawback is that the user must be able to insert the device into the
network, and the TAP introduces a delay in the network by copying the frames
from one port to another.

2.4.3 Multi active test access point

The principle of multi active TAP is same as with single active TAP, resulting
in the same advantages and drawbacks. The added benefit is that it allows

13

2. Ethernet network analysis background .
monitoring and synchronizing frames from multiple ports of an Automotive
Ethernet switch. Modern devices for monitoring Automotive Ethernet supports
monitoring up to 12 switch ports.

Figure 2.10. Example of multi active TAP connection.[11]

2.5 Network Traffic Analysis
This section presents data sources for network traffic analysis and present ex-
ample of some popular tools for network analysis.

2.5.1 Data Sources

Two primary sources of data for analyzing network traffic include packet cap-
tures (PCAPs) and network flows (NetFlows). NetFlows represents connec-
tions between communicating nodes. In contrast to PCAPs, NetFlows contains
limited attributes, typically specifying the source and destination of the flow,
its volume, and selected details about communication protocols. In contrast,
PCAPs are used for in-depth examinations of network performance issues or
forensic analyses of identified cybersecurity incidents. As implied by its name,
PCAPs represent the unprocessed packet data extracted from the network or
its segments.

2.5.2 Common Network Analysis Tools

Network testers and security analysts use command-line utilities or highly flex-
ible tools that allows user to capture and inspect the network traffic. Common
examples of command-line utilities used in traffic analysis is ping or tracert
(traceroute for UNIX-like systems):

14

. 2.5 Network Traffic Analysis

. Ping command uses the Internet Control Message Protocol (ICMP) to verify
connectivity to another TCP/IP device at the IP level. It sends echo Request
messages to the target IP address, which responds by sending back an echo
Reply message. The received message is displayed, together with round-trip
times. Ping is an essential tool for troubleshooting connectivity, reachability,
and name resolution [12].. Traceroute command also uses ICMP echo Request messages, but this time it
modifies the TTL field (Section 2.3.2) of the IP packet. First, it sends a packet
with TTL of 1 and increments it by one on every subsequent transmission,
until the target device responds back with an echo Reply message. Each
router along the path is required to decrease the TTL in an IP packet by 1
before forwarding it. When the TTL reaches 0, router sends Time exceeded
message back to the sender, letting the program know that there is a router
in the path [13].

Typical examples of more advanced open-source tools for network traffic anal-
ysis are Wireshark or Network Miner:. Wireshark [14] is the most popular network packet analyzer. It allows the

user to capture packets and analyze them both online and offline. For analysis
it provides functions for advanced filtering and inspection of the protocols.. NetworkMiner [15] is a network forensics application specifically designed to
retrieve artifacts from network traffic captured in PCAP files, such as files,
images, emails, and passwords. Similarly to Wireshark, NetworkMiner can
also capture live network traffic by monitoring a network interface.

Both tools offer network statistics and detailed information for each cap-
tured packet. However, they display the data primarily in tables with limited
visualization features, such as highlighting rows or basic static line charts.

In the automotive domain, one of the most significant providers of network
analysis tools is Vector GmbH, providing both hardware (test access points)
and software. Their software CANoe provides tools for analysis, diagnostics,
simulation, and testing of the automotive networks. Specifically for analysis
of the Ethernet traffic, CANoe Ethernet [16] implements two tools, Trace
Window and Protocol Monitor:. Trace Window provides very similar functionality to the packet analyzers

mentioned above. It allows the user to capture packets in real-time, display
them during measurement, filter, and search for specific packets, decode
packet contents, and inspect packet details.. Protocol Monitor, shown in Figure 2.11 provides a real-time visual repre-
sentation of Ethernet traffic. It shows the endpoints on all OSI layers and

15

2. Ethernet network analysis background .
the communication relationships between them. It also provides filtering
functions to view only certain types of network communications.

Figure 2.11. CANoe Protocol Monitor [16]

2.6 Tools for visualization of PCAPs

As the volume of network data exchanges increases, the importance of re-
searching and creating network visualizations also grows. Visualizations are
increasingly applied across various domains of network security. There are
many different tools and approaches for visualization; the overview below
shows mostly the graph-based tools.

NetCapVis [17], shown in Figure 2.12, offers both overview and analytics
functions by enabling filtering based on transport protocol, IP addresses, and
port numbers for both incoming and outgoing traffic. Users can also export
filter configurations for use in Wireshark.

16

. 2.6 Tools for visualization of PCAPs

Figure 2.12. NetCapVis user interface.

A-Packets [18], shown in Figure 2.13, offers various views on the PCAP
files. These views are independent of each other and mostly text-based. The
network graph does not provide many filtering functions and it may be chal-
lenging to interpret for larger datasets. Under the free plan, the maximum
allowable file upload size is 25 MB, and any uploaded PCAP file becomes
publicly accessible.

Figure 2.13. A-Packet user interface.

DynamiteLab [19], shown in Figure 2.14, which allows the user to analyze
files up to 75MB, although it keeps PCAP files public as well. From net-
work graph perspective, compared to A-packets it gives user more options for
filtering - namely by protocol, IP address, ports, and timestamps.

17

2. Ethernet network analysis background .

Figure 2.14. DynamiteLab user interface.

GrassMarlin [20], developed by the National Security Agency, is a mapping
tool tailored for industrial control systems and SCADA networks. It excels
in handling large volumes of traffic data, helping to understand how data
enter and move within critical environments by visualizing the network in a
communication graph.

GrassMarlin, compared to previous tools, also provides a physical graph
(Figure 2.15) that depicts the physical network infrastructure, including man-
aged switches and routers, the connections between them and the physical
workstations. GrassMarlin gets this data from the configuration data for
managed devices [20].

Figure 2.15. GrassMarlin physical graph. [20]

18

. 2.7 Application Background

2.7 Application Background
The idea of the thesis is to explore whether it is possible to use packet capture
files acquired using a single-TAP or multi-TAP device to reconstruct the
topology (similar to physical graph used by GrassMarlin shown in Figure
2.15) of the in-vehicle network. The TAP devices allow one to separate and
tag the traffic by direction, which helps us to identify on which side of the
physical interface the devices are located.

The core principle of device identification is simple, on every LAN (or
VLAN) each ECU should have a single MAC address and single IP address
(only network with static IP addresses is considered, as the in-vehicle net-
work is fixed). When TAP is inserted into a wire, based on the number of
different IP and MAC addresses on each side of the wire, the application
should be able to detect end devices, switches working on MAC level, as they
do not manipulate packets but allow multiple distinct MAC adresses and IP
addresses to be on one side of the wire, and also the routers, which changes
the source MAC address of packets incoming from other LANs, resulting in
packets with distinct IP addresses but the same MAC address on one side of
the segment.

As it is not possible to reconstruct the entire network topology only from
a measurement at a single wire on the network, the algorithm that combines
topology graphs constructed from multiple measurements must be developed.

The topology graph can be used for validating the network architecture
with the documentation or for visualization of data-flows on the network.

19

Chapter 3
Input Data Analysis

This chapter explains how to get the data for analysis and what are the
assumptions.

3.1 Input data
While writing the thesis, a vehicle that could be measured was not accessible
and only one trace measured on a car was available. Therefore, a GNS3 net-
work simulator was used to simulate different network topologies and validate
our algorithms.

GNS3 is an open-source graphical network simulation tool that allows em-
ulation of complex computer networks. GNS3 uses several emulators, such
as Dynamips for emulating Cisco IOS, VirtualBox for emulating Windows or
Linux workstations, or Pemu for emulating Cisco PIX firewall. Because emu-
lation is used instead of simulation, the behavior of the devices is very similar
to that of the real ones. One disadvantage of GNS3 is that the Dinamips
emulator does not support emulation of L2 switches due to the high compu-
tational demands of emulating ASICs used in switches. A built-in switch was
used to simulate switches, which is not an emulation of an actual device, but
it allows some basic settings, such as setting up VLAN. For routers, image
of the Cisco 7200 router was used, and for simulating end devices, a built-in
Virtual PC Simulator (VPC) was used. Virtual PC Simulator is a program
written by Paul Meng that allows us to simulate a lightweight PC supporting
DHCP and ping. It consumes only 2MB of RAM per instance and requires
no additional image [21].

GNS3 works on a client-server principle, that allows us to run server side on
a different device than a client part. This is beneficial when a client computer
does not have enough hardware to run multiple images and allows multiple
people to collaborate on a project.

After building the network and configuring all devices, packet capture can
be started by right-clicking on one of the links and selecting Start capture.
The button will open Wireshark and start capturing packets on the interface.
The traffic was simulated by opening the terminal of one of the virtual PCs
and using the ping command that supports ICMP, TCP, and UDP protocol.

20

. 3.2 Loading the data to database

There is a limitation: by default, it is impossible to tag packets by their
direction, which is a necessary condition for our purposes. This can be over-
come by filtering the packets in Wireshark according to the network’s known
topology. For example, consider that traffic is captured at link eth1.5 in the
network shown in figure 4.1. To get traffic only in one direction, one can
filter all frames with Node 1.1 and Node 1.2 as sources (by IP address). To
get the other direction, filter them as a destination. Next, save the filtered
packets in two PCAP files by their direction, and in the end, merge them us-
ing Tracewrangler - a tool for merging capture files, especially PCAPng files
with more than one interface [22]. Wireshark also allows for merging multiple
PCAPs, but compared to Tracewrangler, it does not give us the option to
tag them.

3.2 Loading the data to database
The capture files are not easy to analyze with Python in its raw form (.pcap,
.pcapng or .blf), as every operation requires traversing the whole log file.
Furthermore, the application is not supposed to provide information about
every packet individually but to provide information about the devices on the
network, what ports and protocols they use, and with which other devices
they communicate. Therefore, there are many useless data in the raw log file
for the purpose of the analyzer, which would make the analyzer unnecessarily
slow.

There are multiple Python libraries that can be used for analysis of network
capture files, most popular are dpkt, Scapy and Pyshark:. dpkt is a Python library specifically designed for low-level packet parsing

and manipulation. It provides functionality for parsing and dissecting var-
ious network protocols, supports packet creation and manipulation and is
designed for high performance packet processing.. Scapy is an packet manipulation library, that is built mainly toward online
analysis of the network. Scapy allows the user to create, sniff, modify and
send packets. Previously mentioned dpkt can only analyse packets and
create them. To send them, raw sockets are needed.. PyShark is a Python wrapper for Wireshark’s packet dissection capabilities.
It provides the Python interface to access the same packet details (protocols
and metadata) as are available in Wireshark
As Wireshark is basically an industry standard for network traffic analy-

sis, and most people working with networks are comfortable with the tool,
PyShark was selected to read and parse the log files. To analyze conversa-
tions, nine attributes were identified that need to be extracted from the log

21

3. Input Data Analysis .
file: source and destination MAC address, source and destination IP address,
source and destination port, VLAN ID, protocols, and segment ID.

The log parser goes through each packet in the log and extracts the afore-
mentioned attributes to a tuple called record. The size of each packet is
extracted separately. All unique records are stored in a Python dictionary as
keys, with the total payload stored as values. For each occurrence of record
in the dictionary, the payload is updated with the size of current packet as
shown below.
conversations = dict()
for packet in capture_file:

record = get_packet_attributes(packet)
packet_size = get_packet_size(packet)
if record not in conversations:

conversations[record] = [1, packet_size]
else:

conversations[record][0] += 1
conversations[record][1] += packet_size

Once the capture file is loaded into dictionary, every item (key-value pair)
is inserted into the database. This leaves us with much smaller database
file (several kB instead of MB) compared to the original capture file. The
resulting data stored in the database are shown in image below.

Figure 3.1. Data stored in the database.

This solution works fine for smaller capture files in size of a few megabytes.
However, for bigger log files in the order of gigabytes, the approach of reading
packets one by one with PyShark is not sufficient because even reading all
packets without manipulation takes several hours.

As the logs measured on a car provided to us were too large for Python
processing, another way of processing logs was used. The log file is first
exported to a csv file using TShark, which is a command-line interface version
of a Wireshark.
tshark -r filename.blf -T fields \
-e eth.src -e eth.dst \
-e ip.src -e ip.dst \
-e ipv6.src -e ipv6.dst \
-e udp.srcport -e udp.dstport \
-e tcp.srcport -e tcp.dstport \

22

. 3.2 Loading the data to database

-e frame.len -e frame.protocols \
-e vlan.id -e frame.interface_name \
| sort > output.csv

Once the extraction is finished, the csv file is read line by line and stored in
the database the same way as when the packets are read with Python library,
resulting in the same database, so both options are compatible with the rest
of the app. Using tshark directly without the Python wrapper is much faster.

23

Chapter 4
Offline Topology Mapping

This chapter explains the process of creating a network topology graph from
packets sniffed at multiple locations in the network. The goal is to identify
nodes, L2 switches, and L3 routers in the network and give the user infor-
mation on how these devices are connected. The first section details how
the topology is created from packets captured on a single location on the
network and presents its limitations. The second section describes the im-
plementation of an algorithm to mitigate these limitations by combining the
information captured in different segments. The last section analyzes the
resulting topology reconstructed from packets captured on a vehicle.

4.1 Topology structure
Algorithms described in the following chapters are implemented in the li-
brary analyzer. The network topology graphs created by these algorithms
are constructed using the Python igraph library.

The super-class GraphBase initializes instance of an igraph Graph, that
contains detected network topology. The super-class further defines graph
manipulation methods that are common for every graph, such as getting
vertex by IP or MAC address, adding and copying vertices and edges, and
plotting the graph.

The class SegmentGraph inherits from the super-class GraphBase and de-
fines methods for preprocessing the data as described in section 4.2 and for
building the segment graph as described in Section 4.3.

The class NetworkGraph inherits from the super-class GraphBase and de-
fines methods for merging multiple segment graphs into one graph as de-
scribed in section 4.4. The code snippets provided for this class do not exactly
match the code in the library. They contain only the necessary information
to understand the algorithm (some graph manipulation steps were removed
from the text to make snippets shorter). As this class works both with the
graph from the SegmentGraph class and with graph from the NetworkGraph
itself, the ng_ prefix in the code refers to vertices from NetworkGraph and
the sg_ prefix refers to vertices from SegmentGraph.

Each device in the graph is represented by an igraph Vertex. In the cur-
rent implementation, four attributes are assigned to each vertex, namely de-

24

. 4.2 Data preprocessing

vice_type, mac_address, ip_address, and vlan. If some more information
needs to be added for the devices in the future, this can be easily done by
adding a new attribute to the vertex in the add_vertex method of the Graph-
Base.

Devices in the graph are connected by an igraph Edge, where each edge
holds the following attributes: name, label, color, and width.

4.2 Data preprocessing
To create a graph from a single segment, the unique sets of source IP ad-
dress, destination IP address, source MAC address and destination MAC
address captured on one interface and in one direction are queried from the
database. Next, the addresses are divided into two groups according to their
direction, such that one group contains only pairs of source IP address and
MAC address, and the second group contains destination pairs. These two
groups represent two sets of physically connected devices at each end of the
measured segment.

The packets queried from the database must be unidirectional, meaning
that every MAC address and IP address in the set queried from the database
is only present as a source address or only as a destination address. This
gives information on which side of the measured segment the device with the
given address is located. From this point on, it is possible to build a segment
graph (section 4.3.1).

However, the packets captured on the same interface but in opposite di-
rection are also available in the database. One way would be to repeat the
steps from the first paragraph, build a second segment graph, and merge
these graphs later. This solution is more computationally demanding, as the
number of segment graphs to merge is doubled. Instead, the address pairs
from the second direction are also queried from the database and added to
the groups, this time with little difference. In this case, the destination ad-
dresses are added to the group with the source addresses, and vice versa, so
the devices are added to the correct side of the measured segment. Another
benefit of merging information from the same segment now is that it includes
devices that send only multicast packets. A device that sends only multicast
packets gives no information about which device is on the other side of the
measured segment, as at this moment, there is no information about which
physical device belongs to which multicast group. When the measurements
in both directions from the same segment are merged now, it guarantees at
least one device at each end of the measured segment, as the source address
in each direction cannot be multicast.

25

4. Offline Topology Mapping .

4.3 Single segment topology creation
In Section 4.2, the addresses captured on one segment were divided into two
groups based on which side of the measured segment they physically are. This
step adds and connects the vertices that represent the physical devices to the
segment topology graph. Based on the working principle of an L2 switch and
an L3 router, four distinct types of topology that can be detected at each end
of the measured segment were identified. Each case is uniquely recognized by
the number of distinct IP and MAC addresses in the group, as explained in
the following section.

4.3.1 Single segment topology principle

In the first case, only a single IP address and a single MAC address are present
in the group. The graph element will contain only one vertex, representing
the end device (node).
def create_graph_element(graph, macs, ips):

m, i = len(set(macs)), len(set(ips))
if i == 1: # 1 node vertex

origin = graph.add_vertex(NODE, macs[0], ips[0])

In the second case, suppose that the group contains n distinct IP addresses
and a single unique MAC address. In that case, the graph element will con-
tain one router vertex with the corresponding MAC address and n unknown
vertices with the corresponding IP addresses that are connected to the router
vertex. An unknown vertex is used to express that there is insufficient infor-
mation about the device communicating through the router. For example,
whether it is connected directly to the router or whether the devices behind
it (from the point of measurement) are connected through a switch and then
through a router.

elif m == 1: # 1 router and i unknown vertices
origin = graph.add_vertex(ROUTER, macs[0])
for ip in ips:

neighbor = graph.add_vertex(UNKNOWN, ip)
graph.add_edge(origin, neighbor)

In the third case the group contains multiple distinct IP addresses and
multiple distinct MAC addresses, but its count n is equal. The graph element
consists of the switch vertex and n node vertices with the corresponding MAC
and IP addresses connected to the switch vertex.

elif m == i: # 1 switch and m node vertices
origin = graph.add_vertex(SWITCH)
for mac, ip in zip(macs, ips):

neighbor = graph.add_vertex(NODE, mac, ip)
graph.add_edge(origin, neighbor)

26

. 4.3 Single segment topology creation

In the last case, the group contains n different IP addresses and m distinct
MAC addresses where n > m. If a specific MAC address is represented in
the graph only once, with the corresponding IP address, a node with these
addresses is added to a graph. Every successive node is connected to this node
by a switch. If the same MAC address is present in the group multiple times,
each time with different IP address, a router with this MAC address is added
to a graph and connected to the switch. For every IP address corresponding
to this MAC address, an unknown node is added to the graph and connected
to this router.

else:
origin = graph.add_vertex(SWITCH)
detected_router_macs = []
for idx, mac in enumerate(macs):

if macs.count(mac) == 1: # mac belongs to node
neighbor = graph.add_vertex(NODE, mac, ips[idx])
graph.add_edge(origin, neigbor)

else: # mac belongs to router
if mac in detected_routers_macs:

continue
detected_routers_macs.append(mac)
router = graph.add_vertex(ROUTER, mac)
graph.add_edge(origin, router)
for i in range(idx, len(macs)):

if macs[i] != mac:
continue

unknown = graph.add_vertex(UNKNOWN, ips[i])
graph.add_edge(router, unknown)

return origin

After creating the graph elements for each of the two groups of addresses,
the origin vertices of each graph element are connected by an edge. This edge
will be referred to as a measured edge and is marked by a wide line in the
graph.

4.3.2 Single segment topology example

To better understand the rules presented in the previous section, this section
provides analysis of the resulting segment graphs built from packets captured
in a simulated network shown in the picture 4.1 with eight end devices, three
switches and one router. To demonstrate the first and the last rule from
Section 4.3.1 the communication was set such that NODE1.1 sends packets
to every end device in the network, and the packets were captured at the link
eth1.1. The addresses extracted from the capture file are shown in Table 4.1.
When these addresses are divided into two groups by direction, the source

27

4. Offline Topology Mapping .
addresses contain only one unique MAC address (00:50:79:66:68:00) and IP
address (10.1.1.1), so on one side of the measured edge, there should be only
one node. The destination addresses contain 7 unique pairs of MAC addresses
and IP addresses, but only 4 unique MAC addresses. This means that the
second side of the measured segment will contain 1 switch with 3 devices, and
the switch will also be connected to a router that is further connected to 4
unknown vertices as shown in the picture 4.2

Figure 4.1. Simulated network topology.

Figure 4.2. Segment graph constructed from packets captured at link eth1.1.

28

. 4.3 Single segment topology creation

Source MAC Destination MAC Source IP Destination IP

00:50:79:66:68:00 00:50:79:66:68:05 10.1.1.1 10.1.1.2
00:50:79:66:68:00 00:50:79:66:68:04 10.1.1.1 10.1.1.3
00:50:79:66:68:00 00:50:79:66:68:03 10.1.1.1 10.1.1.4
00:50:79:66:68:00 ca:01:1e:38:00:08 10.1.1.1 10.1.2.1
00:50:79:66:68:00 ca:01:1e:38:00:08 10.1.1.1 10.1.2.2
00:50:79:66:68:00 ca:01:1e:38:00:08 10.1.1.1 10.1.2.3
00:50:79:66:68:00 ca:01:1e:38:00:08 10.1.1.1 10.1.2.4

Table 4.1. Captured addresses at link eth1.1

Source device Target device

NODE2.1 NODE1.1
NODE2.2 NODE1.1
NODE2.3 NODE1.2
NODE2.4 NODE1.2

Table 4.2. Setup of communication to demonstrate second and third case from the Section
4.3.1.

To demonstrate the second and third rules from Section 4.3.1, the commu-
nication was set as shown in Table 4.2, and the packets were captured at the
link eth2.5. In this situation, the captured addresses are shown in the Table
4.3. The source addresses contain 4 unique MAC addresses and 4 unique IP
addresses. This means that one side of the measured segment consists of one
switch and four end devices. Destination addresses contain only one unique
MAC address and two unique IP addresses, resulting in a router with the cap-
tured MAC address connected to two unknown vertices with the captured IP
addresses. Figure 4.3 shows the resulting segment graph.

Source MAC Destination MAC Source IP Destination IP

00:50:79:66:68:01 ca:01:1e:38:00:06 10.1.2.1 10.1.1.1
00:50:79:66:68:02 ca:01:1e:38:00:06 10.1.2.2 10.1.1.1
00:50:79:66:68:06 ca:01:1e:38:00:06 10.1.2.3 10.1.1.2
00:50:79:66:68:07 ca:01:1e:38:00:06 10.1.2.4 10.1.1.2

Table 4.3. Captured addresses at link eth2.5

29

4. Offline Topology Mapping .

Figure 4.3. Segment graph constructed from packets captured at link eth2.5.

4.3.3 Single segment topology limitations

When the segment topologies created by the algorithm shown in Figures
4.2 and 4.3 are compared to the original topology of the network shown in
Figure 4.1, several differences may be observed. These differences are caused
by the fact that the packets measured in a single segment do not provide
enough information for the algorithm to reconstruct the topology of the entire
network. The identified limitations of this algorithm are listed below:. The first obvious limitation is that only devices communicating on a mea-

sured segment can be seen by the algorithm. An example is shown in figure
4.3 where only 6 nodes or unknown nodes were detected, as other devices
were not communicating on the measured segment (see Table 4.2).. The second limitation is that it is impossible to recognize multiple switches
connected in a cascade at the ends of a segment; they will always look like a
single switch. This limitation can be seen in the picture 4.2, where nodes 0,
7, 8, and 9 seem to be connected to a single switch, but when in the original
network, the devices with the corresponding addresses are connected to two
distinct switches.. The third limitation is that there is not enough information about the con-
nection of devices behind the router, whether they are connected directly
to the detected router, through a switch, or there is another router in a
way. This is visible in both pictures 4.2 and 4.3 where the unknown vertices

30

. 4.3 Single segment topology creation

are always connected directly to a router, but in the original network, the
devices with corresponding IP addresses are connected through a switch
that is not detected.. The fourth limitation is that if only a single end device communicates
through a router, the router cannot be detected properly. The router will
be incorrectly detected as an end device with a router’s MAC address and
end-device IP address, as in this case, the difference between unique IP
addresses and unique MAC addresses cannot be detected. An example of
this limitation can be seen in the topology shown in the picture 4.4. The
vertex with the name NODE 4 is detected as an end device with the IP
address of NODE2.3 from the original network but has the MAC address
of a router.. The last limitation is that the router’s IP address cannot be detected. The
current algorithm will make it look like another unknown device is in the
network. This limitation can be mitigated by using only packets that use
transport protocol for the algorithm, as the TCP or UDP packets usually
do not have origin at the router.

Figure 4.4. Segment graph constructed from packets captured at link eth1.5.

Source device Target device

NODE1.1 NODE1.4
NODE1.2 NODE1.3
NODE1.2 NODE2.3

Table 4.4. Setup of communication to demonstrate limitations switch switch eth1.5.

31

4. Offline Topology Mapping .

4.4 Network graph
As explained in the previous section, the topology created from a measure-
ment on a single network segment has some limitations. However, the infor-
mative value of the created topology can be improved by combining infor-
mation from multiple measured segments. Unless every segment is measured
and unless it is ensured that every device on the network communicates, there
is still some uncertainty in the topology; therefore, the task is to extract as
much information as possible regarding the limitations stated in the section
above.

In the first step, one of the segment graphs is used as a base for the network
graph. The algorithm then iterates through all other segment graphs that
were created and updates the additional information to the network graph,
as explained below.

4.4.1 Localization and updating the devices at the end
of the measured edge

The algorithm takes the devices at the end of the measured edge in the
segment graphs and tries to locate them in the network graph. Three distinct
cases may occur depending on the type of device, as explained in the following
list. There cannot be an unknown device type at the end of the measured
edge by the design of the segment graph algorithm.. The algorithm searches for the node (end device) - it checks if there is

a vertex with the same IP address in the network graph. If there is no
such node, a new vertex is added to the graph, and the MAC and IP
addresses are copied from the searched vertex. If there is such a vertex
and its device type is unknown, the device type is changed to node, and
the MAC address is copied from the searched vertex. If there is such a
vertex whose device type is a node, the MAC addresses of the searched
vertex and the found vertex must be compared. If they are different, it
means that one of the MAC addresses belongs to the router (as explained
in Section 4.3.3). In this case, the device type of found node is changed to
a router, and its IP address is set to None, as the router IP addresses are
not detected by the algorithm. A new vertex with the device type node is
added to the graph, and the IP address of the searched vertex is copied to
this vertex. Algorithm updates both MAC addresses for both vertices until
it can reliably tell which one belongs to which vertex (this information may
be available in other segment graphs). If the MAC addresses are the same,
vertex parameters remain unchanged.
def find_node(ng_graph, sg_node):

found = ng_graph.get_device_by_ip(sg_node.get_ip())

32

. 4.4 Network graph

if found:
if found.is_unknown():

found.set_type(NODE)
found.set_mac(sg_node.get_mac)

else:
found = ng_graph.get_device_by_mac(sg_node.get_mac())
if found and found.is_router():

new_node = ng_graph.add_vertex(UNKNOWN, sg_node.get_ip())
ng_graph.add_edge(found, new_node)

else:
found = ng_graph.copy_vertex(sg_node)

return found

. The algorithm searches for the router - it checks if there is a vertex with
the same MAC address in the network graph. If there is no such vertex,
a new vertex with the device-type router is added to the graph, and the
MAC address is copied from the searched vertex. If there is only one vertex
found in the network graph and its device type is a node, its device type
will be changed to a router. Next, the IP address of the found vertex is
copied and removed, and a new unknown vertex with the said IP address is
added to the network graph and connected to the found vertex. This step
fixes the fourth limitation of a segment graph (Section 4.3.3). If there is
only one vertex with the corresponding MAC address and its device type
is a router, the parameters remain unchanged.

def find_router(ng_graph, sg_router):
found = ng_graph.get_device_by_mac(vertex.get_mac())
if not found:

found = ng_graph.copy_vertex(sg_router)
if device_found.is_node():

new_node = ng_graph.add_vertex(UNKNOWN, found.get_ip())
ound.set_device_type(ROUTER)
ng_graph.add_edge(found, new_node)

return device_found

. The algorithm searches for the switch - a switch cannot be uniquely iden-
tified by an IP address or MAC address. Therefore, a different approach
is used that requires iterating through all the switch vertices in the net-
work graph. For each switch vertex in the network graph, its neighbors
are compared to the neighbors of the searched switch vertex. If the switch
vertex in the network graph is connected to any end device with the same
MAC address as the switch in the segment graph is linked to, this vertex
is considered the found vertex. This approach may return two switches
that satisfy this condition (as a result of the second limitation in Section
4.3.3). This situation can be seen when using the segment graph from Fig-

33

4. Offline Topology Mapping .
ure 4.4 as the base for the network graph and attaching the segment graph
from Figure 4.2. In this case, the algorithm will return both SWITCH 0 and
SWITCH 3 as found vertices when searching for SWITCH 0 from the segment
graph. In this case, the node at the other end of the measured edge in the
segment graph needs to be considered with higher priority. In the example,
there is NODE 0 with the MAC address 00:50:79:66:68:00 at the other end
of the measured edge (Figure 4.2), and this node is connected to SWITCH 0
in the network graph 4.4. Therefore, only SWITCH 0 will be considered the
found vertex in this case. And once again, if no such switch exists in the
network graph, a new switch vertex is added to the graph.

def find_switch(ng_graph, sg_switch, sg_ancestor_mac):
ng_switches = graph.vs.select(device_type=SWITCH)
if not ng_switches:

found_switch = ng_graph.add_vertex(SWITCH)
return found_switch

sg_switch_neighbors = [neighbor.get_mac() \
for neighbor in sg_switch.neighbors()]

found_switch = None
for ng_switch in ng_switches:

ng_switch_neighbors = [neighbor.get_mac() \
for neighbor in ng_switch.neighbors()]

if set(ng_switch_neighbors) & set(sg_switch_neighbors):
if sg_ancestor_mac in ng_switch_neighbors:

return ng_switch
found_switch = ng_switch

if not found_switch:
found_switch = ng_graph.add_vertex(SWITCH)

return found_switch

4.4.2 Updating the edge between the devices

In the next step, the algorithm checks if the two vertices found in the pre-
vious step are connected. If they are connected, it only marks the edge as
measured; otherwise, it adds a new edge and marks it as measured. There is
one more special case to handle: when both devices from the segment graph
are pointing to the same device from the network graph. This situation will
occur when the segment graph that should be added to the network graph
is measured between two switches. In the network graph these switches are
currently represented only as a single switch (due to the second limitation
from Section 4.3.3). In this case, another new switch vertex is added to the
network graph and connected to the switch that was found - this edge is
marked as the measured edge.

34

. 4.4 Network graph

4.4.3 Updating remaining devices from the segment
graph into the network graph

The last step is to iterate through the neighbors for each device at the end
of the measured edge from the segment graph, compare them to neighbors
of the found device in the network graph, and possibly update these devices
and connections. In further text, the device on the other end of the measured
edge is not considered a neighbor, as this neighbor was resolved separately
in the previous step. As a result, if the device at the end of the measured
edge is a node (end device), no changes are needed, because this device is
connected only to the device that is at the other end of the measured edge
(for example, NODE 0 is connected only to SWITCH 1 in the segment graph
4.2).

If the device at the end of the measured edge is a router, its neighbors
will be only unknown vertices. In this case, the algorithm only checks if the
device is present in the network graph (it searches by IP address). If the
device is present, no updates are made to the network graph, as there is no
new information due to the third limitation from Section 4.3.3). If a vertex
with given IP address is not present in the network graph, a new unknown
vertex with the corresponding IP address is added to the graph and connected
to the router.
def update_router_neighbors(ng_graph, ng_router, sg_router, \

sg_ancestor):
edges = set()
for sg_neighbor in sg_router.neighbors():

if sg_neighbor == sg_ancestor:
continue

ng_neighbor = ng_graph.get_vertex_by_ip(sg_neighbor)
if ng_neighbor is None:

ng_neighbor = ng_graph.copy_vertex(sg_neighbor)
ng_graph.add_edge(ng_router, ng_neighbor)

elif ng_neigbor.is_unknown() and sg_ancestor.is_router():
ng_neigbor.delete_edges()
ng_graph.add_edge(ng_neigbor, ng_router)

If the device at the end of the measured edge is a switch, it can have only
two types of neighbors - node or router. It cannot be an unknown vertex, as
those are connected exclusively to a router. It also cannot be a switch because
if a switch were neighboring in the real network, from the measurement point
of view, it would be seen as only a single switch. The two situations that can
occur for the switch neighbor based on the device type are explained below.. If the searched neighbor is a node vertex and it is already present in the net-

work graph as a node vertex, no changes are made to the network graph.
There is one exception to this rule: When both devices at the ends of

35

4. Offline Topology Mapping .
the measured edge are switches, the found neighbor may need to be re-
connected to the appropriate switch, as this is the only situation where
the algorithm knows the correct connection. If no corresponding vertex
is found, a new node vertex is added and connected to the switch. If a
corresponding unknown vertex is found, the graph is updated with the ad-
ditional information. The device type of the vertex is changed to node,
and the missing MAC address is copied from the corresponding vertex in
segment graph. Then the connection of the updated vertex is deleted, as
it was previously connected to a router, but now it is clear that this ver-
tex should be connected to a switch. Then a new connection from the
switch vertex to the node vertex is added. Finally, it is also checked that
the switch itself is connected to the router that was disconnected from the
unknown vertex. It is known that this vertex was communicating through
this router, therefore there must be a path. If it is missing, a new edge
from the switch to the said router is added to the network graph.

. If the searched neighbor is a router, it may be found on the network graph
as a router or as a node. If it is found as a router, no changes to this
vertex are made. If it is found as a node, its device type is changed to a
router, and its IP address is deleted. A new unknown vertex with the IP
address that was removed from the router vertex is added to the network
graph and connected to the router. If no corresponding vertex is found in
the network graph, a new vertex, a copy of the searched router vertex, is
added to the network graph. As a last step, all neighbors of a searched
router from the segment graph are searched if they are already present in
the network graph. As all neighbors of a router vertex will be unknown
vertices (except for the device on the other side of the measured edge) if
the routers neighbors are present in a network graph, no changes are made
here; only if it is not present, the unknown vertex is copied to the network
graph and connected to the router.

4.5 Network topology creation example

In this section, a concrete example of reconstructing a network graph from
multiple segment graphs is presented and compared to the original network.
The algorithm will be used to reconstruct the topology of the network shown
in Figure 4.1, using the segment graph shown in Figure 4.2 as the base for the
network and adding information from the segment graph shown in Figures
4.3 and 4.4.

36

. 4.5 Network topology creation example

4.5.1 Network graph after adding information from the
segment graph 4.3

This section describes complete steps that the algorithm is doing when using
4.2 as a base for the network graph and adding information from the segment
graph in Figure 4.3.

First, it checks if the devices at the end of measured segment are already
present in the network graph. In this case, at one end of the measured edge
is a router with MAC address ca:01:1e:38:00:06 that is not present in the
network graph. Therefore, the searched router vertex is copied to the net-
work graph. On the other side of the measured edge is a switch connected to
any of the vertices with MAC addresses 00:50:79:66:68:01, 00:50:79:66:68:02,
00:50:79:66:68:06 or 00:50:79:66:68:07. The only switch currently present
in the network graph is connected only to vertices with MAC addresses
00:50:79:66:68:00, 00:50:79:66:68:03, 00:50:79:66:68:04, and 00:50:79:66:68:05.
As the MAC addresses of the neighbors of the searched switch and the neigh-
bors of the switch in the network graph do not overlap, a new switch vertex
is also added to the network graph. The newly created vertices are connected
by an edge that is marked as the measured edge. The graph after this step
is shown in figure 4.5.

Figure 4.5. Change in network topology after first two steps.

37

4. Offline Topology Mapping .
Next, the neighbors of the switch in the segment graph are searched in

the network graph (except for the router, as this is a device on the end of
a measured edge that is handled separately). These neighbors are nodes
with IP addresses 10.1.1.1, 10.1.1.2, 10.1.1.3, and 10.1.1.4. The vertices with
these IP addresses are already present in the network graph, although their
device type is unknown, and they are connected to the router with MAC
address ca:01:1e:38:00:08, which based on the current segment graph is in-
correct. The device type of these vertices is changed to node, and the cor-
responding MAC address is copied from the segment graph. Then the con-
nections are fixed. First, the connection to the router with MAC address
ca:01:1e:38:00:08 is deleted for each vertex, and then they are connected to
the newly created switch. After creating new connections between nodes
and switch, the algorithm checks if there is a path in the network graph be-
tween these nodes and the router to which they were originally connected
as unknown vertices. There must be, as these devices were communicating
through both of these routers. Because such path does not exist, the router
with MAC address ca:01:1e:38:00:08 is connected to the router with MAC
address ca:01:1e:38:00:06. This edge is marked with red, signifying that it is
unknown what is between these routers. The result after this step is shown
in figure 4.6

Figure 4.6. Network topology as detected by our algorithm after adding information from
graph in figure 4.2 to graph 4.3.

38

. 4.5 Network topology creation example

The last remaining step is to check if all the router’s neighbors in the
segment graph are present in the network graph. In this case, the router
has only two neighbors, unknown vertices with IP addresses 10.1.1.1 and
10.1.1.2. Both vertices are already represented in the network graph as nodes.
Therefore, there is no new information to add and the network topology will
not change.

4.5.2 Network graph after adding information from the
segment graph 4.4

This section describes how the current network graph 4.6 changes, when
another segment graph 4.4 is added to it.

The same process as in the previous example is repeated again. First,
the devices at the ends of the measured edge from the segment graph are
localized in the network graph. In this case, the searched devices are two
switches, one connected to nodes with MAC addresses 00:50:79:66:68:00 and
00:50:79:66:68:05, and the second connected to nodes with MAC addresses
00:50:79:66:68:03, 00:50:79:66:68:00, and ca:01:1e:38:00:08.

When these switches are located in the network graph as explained in
chapter 4.4.2, both searched vertices will point to the same vertex in the
network graph 4.6, SWITCH 1. As the second switch is missing in the network
graph, one more switch vertex (SWITCH 12 in the network graph 4.7) is
added and connected to SWITCH 1 by an edge. This edge will be marked as
a measured edge.

The neighbors are updated for each switch. SWITCH 0 of the segment
graph 4.4 is connected only to nodes with MAC addresses 00:50:79:66:68:00
and 00:50:79:66:68:05. SWITCH 1 in the network graph 4.6 is already con-
nected to these vertices. Therefore, no changes are made to the graph in this
step. The second switch (SWITCH 3) from the segment graph 4.4 is con-
nected to nodes with MAC addresses 00:50:79:66:68:03, 00:50:79:66:68:00,
and ca:01:1e:38:00:08. The vertices with MAC addresses 00:50:79:66:68:03
(NODE 9), 00:50:79:66:68:04 (NODE 3) are located on the network graph
4.6 and reconnected from SWITCH 1 to the newly added SWITCH 12. The
vertex with MAC address ca:01:1e:38:00:08 (ROUTER 4) is also located and
reconnected in the same way. But for this vertex, the algorithm will find that
the IP address and device type of the searched vertex and the located vertex
do not match (10.1.2.3 != None and ROUTER != NODE). This means that
the searched vertex was incorrectly detected in the segment graph due to the
fourth limitation mentioned in Section 4.3.3, and that there should be a ver-
tex with this IP address (10.1.2.3) in the network graph as well. When this
IP is searched in the network graph, it is already present as NODE 6, so no

39

4. Offline Topology Mapping .
further changes are needed. If it was not present, the algorithm would create
a new unknown vertex with given IP address and connect it to the ROUTER
4.

This process will lead to the final reconstructed topology of the network as
shown in figure 4.7

Figure 4.7. Network topology as detected by our algorithm after adding information from
graph in figure 4.4

When the reconstructed topology is compared with the original network
topology shown in figure 4.1, all eight end devices are detected and they
have the correct MAC and IP address. All three switches on the network are
detected and connected to the correct devices. The router is represented as
two vertices, one for each detected interface, as it is impossible to tell that
these two interfaces belong to one physical device with this method, but every
detected interface is connected to the correct switch.

In conclusion, with this method, it is possible to reconstruct the network
topology from multiple segment graphs if a measurement is available between
every pair of switches, every device is correctly represented in any of the
measured segments at least once, and the measurement was taken at every
LAN at least once.

40

. 4.5 Network topology creation example

4.5.3 Results from a vehicle

After testing the algorithm on a simulated network, the data measured in
a vehicle became available. The seven individual segment graphs that were
used to construct the network graph can be seen in the Appendix A. The
resulting topology after running the algorithm can be seen in Figure 4.8.

As the network grew bigger, plotting the graph using the igraph plot func-
tion (as was the graphs in the previous chapters) proved to be problematic,
mainly because the igraph algorithm for laying out the vertices does not ac-
count for the labels, resulting in overlaps and bad readability. Therefore, for
visualization purposes, all the following graphs in the text were exported to
graphML format and opened in CytoScape, an open-source software platform
for visualizing complex networks. The Cytoscape session used for visualiza-
tion is available in the attachments, and it does not change the structure of
the graphs in any way, it only maps the attributes of graph elements assigned
by the code to visualization (e.g. if the detected device type is ROUTER, it
is mapped to visualize a router symbol).

Figure 4.8. Network topology graph of a vehicle as detected by the algorithm.

However, the reconstructed topology graph shown in Figure 4.8 does not
represent the topology of the network in a physical sense (that is, how the
wires go between the devices). This is caused by the fact that the analyzed
in-vehicle network uses VLAN, and some ECUs belong to multiple VLANs

41

4. Offline Topology Mapping .
(as explained in Section 2.2). In the graph merging algorithm, the presence
of the node in the graph was determined by IP address, and because dif-
ferent VLANs use distinct address spaces (not necessarily, but it is a best
practice that allows routing between different VLANs), the physical device
is represented in the topology multiple times. This can be seen, for example,
in nodes 1, 16, 20 and 25, where each node has the same MAC address, but
different IP addresses. Another discrepancy is that switches 0, 9, 22 and 24
are connected to the same router interface, which is physically impossible.
In reality, it is a single physical switch connected to a router interface by a
trunk port. Therefore, to get a physical topology a slightly modified version
of algorithm was implemented, that searches nodes by both IP and MAC
address and keeps all detected IP addresses for the node with the same MAC
address. As the equivalence of the switch is determined by the nodes con-
nected to it, the modification of node-searching algorithm also solves the issue
with the same physical switch being present multiple times in the physical
topology graph. The result of the modified algorithm is shown in Figure 4.9.
The ROUTER 17 and two unknown nodes connected to it are not a part of
the in-vehicle network, it is an artifact from the logging computer. This can
be removed by introducing an IP address filter during data loading into the
database. Otherwise all the addresses that were available in the log file are
present in the graph, and the topology resembles the expected topology of
the in-vehicle network with VLAN, as was presented in the theoretical part
of the thesis Figure 2.3. The comparison with the vehicle documentation
showed that switch 0 in Figure 4.9 is in reality not a single switch, but mul-
tiple switches connected in cascade. The algorithm could not recognize that
due to the limitations stated before.

Figure 4.9. Physical network topology graph of a vehicle as detected by the algorithm.

42

Chapter 5
Traffic Flow Analysis

This chapter explains the process of removing duplicate packets from the
database, creating the network flow graph, and network statistics.

5.1 Duplicate packets in capture file
When monitoring and testing automotive networks it is common practice to
capture packets from multiple switch ports at once, as explained in chapter
2.4.3. If the network is monitored using this method, the resulting trace may
contain the same packets captured multiple times. Let’s consider that the
multi TAP is connected to the example network from figure 2.2 as shown in
figure 5.1.

When Display node sends a packet to every device in the network, the
packet sent to Speaker node will be captured two times, as it’s first seen
travelling from the Display to the Switch and then from the Switch to the
Speaker. In comparison, packets travelling to Radio and Console will be seen
only once, on their way from the Display to the Switch.

Figure 5.1. Example of multi active TAP connection.

43

5. Traffic Flow Analysis .
If such a trace is analyzed using common tools for PCAP analysis, such as

Wireshark, or A-Packets, the resulting statistics (such as number of packets
sent by each device), will be skewed in a way that some devices will seem
to send more packets than is the reality. Therefore, to create a meaningful
network statistics, it is necessary to filter out those packets.

With the way the data is stored in the database, the first solution that came
to mind was to remove all the records that are the same in all fields except
for the segment identifier (segment_id), which is unique for each measured
segment. However, this approach works only for the packets that are cap-
tured on a single LAN or VLAN. When the packets are captured on multiple
VLANs, the source and destination MAC is changed by the router, therefore,
routed packets would not be filtered out. This approach is therefore used
only for filtering non-IP records from the database that cannot be routed.

The way it works in the analyzer for IP records, which make up the ma-
jority of network traffic in a vehicle, is that the records in the database are
partitioned by the source and destination IP address and the source and
destination ports. Then each partition is ordered in descending order by pay-
load. This ordering was selected because, especially for UDP communication,
some packets may not get delivered. This means that the same stream can
be captured multiple times, each time with a different payload and packet
count. The ordering ensures that only the maximum payload observed for
each stream is selected. Then records in every partition are assigned an index
number as shown in the SQL query below. To get only unique records, all
records from the FlowOccurences table are selected where the occurrence is
equal to 1. The SQL query is built using a Python function that allows user
to specify more filters, to get only records with specific addresses, ports, or
protocols.

WITH FlowsOnSegment AS
(SELECT mac_src,

mac_dst,
ip_src,
ip_dst,
port_src,
port_dst,
segment_id,
SUM(payload) AS total_payload,
SUM(cnt) AS packet_count

FROM communication
WHERE protocol LIKE "%ip%"
GROUP BY ip_src,

ip_dst,
port_src,

44

. 5.2 Network statistics

port_dst,
segment_id),

FlowOccurences AS
(SELECT *,

ROW_NUMBER() OVER (PARTITION BY ip_src,
ip_dst,
port_src,
port_dst

ORDER BY total_payload DESC) AS ocurence
FROM FlowsOnSegment)

SELECT * FROM FlowOccurences

The sample of a result of running the query above can be seen in the picture
5.2. The records in rows 1 and 2 are obviously from the same flow, but in the
second record there is one packet less, therefore only the first one is picked.
The reason why MAC addresses cannot be used in partitioning of the records
can be seen in rows 9 to 11, where all three records belong to the same flow,
but the record in row 10 has the source MAC address of a router, as was
detected in the network graph 4.8.

Figure 5.2. Data returned by query.

The filtered data are used for displaying statistics and visualization of the
flows.

5.2 Network statistics
Currently, there are two statistic functions implemented, inspired by those
available in Wireshark - endpoints and conversations. The difference between
the statistics from the developed tool and the Wireshark statistics can be seen
when the same log file that was used for network reconstruction, shown in
Figure 4.8, is used for statistics. As an example, the figures below show the
result of the top 10 unicast UDP conversations, Figure 5.3 from Wireshark,
and Figure 5.4 from the developed tool. The fourth and fifth conversation
from Wireshark got shifted to seventh and eight positions, and the number
of sent packets and bytes is (almost, due to packet losses) half. This is no
surprise, as when the path between these nodes is checked in Figure 4.8, it

45

5. Traffic Flow Analysis .
is clear that the packets traveled through two measured edges. In contrast,
the first three conversations are the same, because there is only one measured
edge in the path between the nodes.

Figure 5.3. Top 10 unicast UDP conversations returned by Wireshark.

Figure 5.4. Top 10 unicast UDP conversations returned by developed tool.

5.3 Data-flow diagram
To visualize data-flows between devices, the topology graph that keeps the
nodes separate for every IP address was used, such as the graph shown in
Figure 4.8. The reason for using this graph instead of the graph representing
the physical topology is mainly because it is easier to find the path of the
packet when the devices from different VLAN communicate. If the connection
between the switch and router that routes the packets between VLANs is
represented by a trunk port, the shortest path between the nodes in the
graph is only through a switch, but the path from switch to router and back
from router to switch is missing.

If a data-flow diagram represented in a physical topology graph is needed,
such as the topology graph shown in Figure 4.9, the data-flow diagram can
be converted to physical by merging the switches connected to the same
router interface and merging the nodes with the same MAC address (and
adding data-flows from corresponding edges), or another option would be to
develop a more complicated pathfinding algorithm that would take routing
into account.

46

. 5.3 Data-flow diagram

To create a data-flow diagram, the topology graph is first converted to a
directed graph. Then the data-flows are extracted from the database using
the query from Section 5.1, which allows user to specify protocol, source and
destination address, source and destination port and whether to use only
unicast packets.

Figure 5.5. UDP dataflow diagram

Then, for each data-flow, the endpoints are localized in the graph (if IP
addresses are available by IP, otherwise by MAC), and the shortest path
between them is found using the built-in igraph method. If the flow is unicast,
for each edge in the path the payload of the flow is added to it. For multicast
flows there are multiple paths to multiple endpoints; therefore, for each edge
also the source and destination port is kept, and the payload is added to the
edge only if the ports are not present, ensuring that the same data-flow is
not present in one edge multiple times. Membership in multicast groups is
determined only for the nodes that were on the ends of the measured edge,
as for these nodes, it can be reliably determined to which multicast groups
they subscribe.

In the end, the width of the edges is normalized according to the payload,
resulting in a data-flow diagram as shown in Figure 5.5

47

Chapter 6
Online analysis

This chapter explains the possibilities of getting more information about the
network by sending packets from the TAP device. The TAP device used is
Vector VN 5620 with CANoe software. There are two basic ways how to send
the packets, one is directly from CANoe, using the built-in Ethernet Packet
Generator, or by connecting a PC to the VN device configured as a switch and
sending the packets from computer using other software, for example python
Scapy library. For purposes of the thesis, only Ethernet Packet Generator
was used, as the goal was to test whether it is possible to get some useful
information from the network, and this tool is sufficient (although not as
flexible). One thing to note is that when connecting TAP to the network,
it is a good idea to capture outgoing packets from one of the devices on the
network to get its IP and MAC address and use these addresses as the source
addresses for the packets, since the car network usually has some network
access restrictions.

6.1 Detecting routers using the TTL field

Looking back at the reconstructed topology of the simulated network shown in
Figure 4.7, there was an issue that the algorithm could not decide, whether
the two detected router vertices are two interfaces of the same router, or
whether there are multiple routers in the network.

To distinguish these two situations, the TTL field (hop limit in IPv6) can
be used. The TLL field is specified for each IP packet and every time the
packet passes through a router, its value decreases by one. If the TTL value
of the packet reaches zero before reaching the destination, the router discards
the packet and sends an ICMP message back to the sender.

48

. 6.1 Detecting routers using the TTL field

Figure 6.1. Network example in GNS3

Figure 6.1 shows an example of two very simple networks. In this example,
consider that all end devices are communicating together and packets are
captured at the links between switches and routers. The topology returned
by the algorithm will be the same for both networks, as seen in Figure 6.2.

Figure 6.2. Reconstructed network topology

To distinguish between the two cases, the user can ping the device behind
the router, first with the TTL set to 2, and continue increasing the TTL value
until the device responds - in a similar way that the traceroute command
works. Keep in mind that the router will first decrease the TTL value, and if
it is equal to zero, it will drop the packet. Therefore, the number of routers

49

6. Online analysis .
in the path is equal to TTL - 1 for the lowest TTL that allows the packet
to reach destination. If a packet with TTL equal to 2 is sent from PC1 to
PC6 in Figure 6.1, PC1 will receive an ICMP response type 11 code 0 (TTL
expired in transmit). If the TTL is increased to a value of three, the PC6 will
respond to the ping, therefore there are two routers between PC1 and PC6.

Figure 6.3. Ping response with TTL equal to 2, sent from PC1 to PC6.

Similarly, if a packet is sent from PC3 to PC4 with a TTL value of 2, the
PC4 will respond, and it is clear that there is only one router in the path.

Figure 6.4. Ping response with TTL equal to 2, sent from PC3 to PC4.

6.2 Testing on the HIL

To check the possibilities of using DoIP for network analysis, the HIL built
from Skoda Enyaq units was used. More information on HIL (schematics and
use) can be found in [7]. HIL is available in the Department of Measurement
laboratory and consists of 6 units [7]:

50

. 6.2 Testing on the HIL

Figure 6.5. Photo of the connected HIL [7].

. In Car Application Server (ICAS) 1 - server responsible for functionality
of driving assistance systems, AC, airbags, locking. In Car Application Server (ICAS) 3 - server for digital devices, such as
infotainment or head-up display. Online Connectivity Unit (OCU) - telematics device, reponsible for wireless
communications. Signal Acquisition Module (SAM) - unit for receiving data from sensors
and controllers. Electronic Steering Lock (ELV) - unit reponsible for blocking the steering
wheel. Keyless Entry Start and Exit System (KESSY) - unit for keyless access
and starting. Button

The connection between ICAS 1 and ICAS 3 was split and connected
through a Vector VN 5620 device to a monitoring computer with CANoe
15 installed. The VN 5620 was configured as a switch, with ICAS 1 con-
nected on one port, ICAS 3 connected to a second port, and on the third
port was an Ethernet Packet Builder (Figure 6.6), which allows one to build
and send the packets to the network.

51

6. Online analysis .

Figure 6.6. Ethernet packet builder.

From the ICMPv6 protocol, an idea was to remove the limitation that only
devices that communicate on the network are visible to the algorithm. This
can be solved by pinging all the end devices on the LAN, using the ICMPv6
ping by sending an Echo Request message to a multicast address FF02::1.
This has to be done on every VLAN in the network, as the scope of the
address is only link-local. Similarly, ping sent to a FF02::2 address is sent
to all routers to the network, which will give us the missing IP address of the
router, which the algorithm cannot detect.

Another idea was to use the Neighbor Discovery Protocol (NDP) to get
the MAC addresses of the unknown devices, but it is not really useful for this
purpose, because it works only on the local network. If the tester is already
connected to the LAN with the unknown device, the packets captured from
the multicast ping will already make the MAC address of the unknown node
visible to the algorithm.

From the DoIP protocol, an use-case for improving the function of the al-
gorithm was not found. Mainly because everything except vehicle announce-
ment requires diagnostic address of the ECUs that is not known, and vehicle
announcement does not provide any additional information about the net-
work. One thing to note is that at the start of the vehicle, every DoIP enabled

52

. 6.2 Testing on the HIL

ECU sends a vehicle announcement message to a DoIP gateway, therefore
capturing the packets during the startup of the vehicle may improve number
of detected devices in the network.

53

Chapter 7
Conclusion

The first part of the thesis described how Ethernet is used in vehicles and how
such networks can be monitored. In the implementation part, the capture file
was first parsed into a database to make access to relevant data quicker. Based
on the fact that TAP devices allow one to separate the network traffic by
direction and that the addresses of the devices in the automotive network are
static for security reasons, an algorithm to create topology graphs from every
measured segment was proposed and developed. Another algorithm merged
multiple segment graphs into an overall network topology. The topology
can be further exported to a graphml file and analyzed in various graph
visualization tools, such as Gephi or Cytoscape.

The topology graphs and the data from the database were further used
to visualize the dataflows in the network, allowing user to specify requested
devices, protocols or ports. During the work I realized that using the Multi-
TAP device for network monitoring causes that some packets are captured
multiple times, resulitng in skewed statistics. A procedure to get rid of the
duplicate records was presented. Then the functions to present corrected
statistics were implemented, as to filter out duplicates from the original log
file would be more complicated.

To overcome lack of real-world data, during the development a GNS3 net-
work simulator was used to simulate various network configurations, however
it was also tested on data measured on an Ethernet part of the network of
Skoda Enyaq vehicle.

In the end, some options were explored to improve the results of the analysis
using active polling. Some limitations were identified during the testing, for
example, that the current implementation of the algorithm cannot identify
whether the two interfaces belong to the same router or not, which can be
solved by sending packets with increasing TTL. Routers and devices can be
forced to answer using multicast ping. The plan was to also use Network
Discovery Protocol, but in the end it showed that it does not provide any
useful information compared to ping for the current use case.

The tool can be easily expanded for more functionality - the data from the
logs is exported using tshark, therefore all packet fields available in Wireshark
may be accessed by the tool by adding the fields in database controller. For

54

. .
each detected device the information about it can be stored in its attributes
and the visualization can be configured to visualize these attributes as needed.

55

References

[1] K. Matheus, and T. Königseder. Automotive Ethernet. Cambridge Uni-
versity Press, 2021. ISBN 9781108841955.
https://books.google.cz/books?id=IjMiEAAAQBAJ.

[2] C.M. Kozierok. Automotive Ethernet: The Definitive Guide ; [TCP/IP,
BroadR-Reach, Switch Technology, Real-Time Protocols, Audio Video
Bridging, IEEE Physical Layers, Electromagnetic Compatibility & More.
Intrepid Control Systems, 2014. ISBN 9780990538806.
https://books.google.cz/books?id=GlqhoAEACAAJ.

[3] About OPEN Alliance. 2024.
https://opensig.org/about/.

[4] D. Paret, H. Rebaine, and B.A. Engel. Autonomous and Connected Ve-
hicles: Network Architectures from Legacy Networks to Automotive Eth-
ernet. Wiley, 2022. ISBN 9781119816133.
https://books.google.cz/books?id=6ZtkEAAAQBAJ.

[5] C.E. Spurgeon, and J. Zimmerman. Ethernet: The Definitive Guide.
O’Reilly, 2014. ISBN 9781449361846.
https://books.google.cz/books?id=UcXanQEACAAJ.

[6] G. Lee. Cloud Networking: Understanding Cloud-based Data Center Net-
works. Elsevier Science, 2014. ISBN 9780128008164.
https://books.google.cz/books?id=7QV0AwAAQBAJ.

[7] Jakub Hortenský. SOME/IP Implementation for Testing. 2023.

[8] Muzhir Al-Ani, and Rola A.A.Haddad. IPv4/IPv6 Transition. Interna-
tional Journal of Engineering Science and Technology. 2012, 4 4815-4822.

[9] A.S. Tanenbaum, and D.J. Wetherall. Computer Networks. Pearson Ed-
ucation, 2012. ISBN 9780133072624.
https://books.google.cz/books?id=IRUvAAAAQBAJ.

[10] C.E. Spurgeon, and J. Zimmerman. Ethernet Switches. O’Reilly Media,
2013. ISBN 9781449367305.
https://books.google.cz/books?id=_-ak0iJuHqQC.

[11] Kai Jansen. Getting started with Ethernet VN Devices. 5.10.2021.
https://cdn.vector.com/cms/content/know-how/_application-

56

https://books.google.cz/books?id=IjMiEAAAQBAJ
https://books.google.cz/books?id=GlqhoAEACAAJ
https://opensig.org/about/
https://books.google.cz/books?id=6ZtkEAAAQBAJ
https://books.google.cz/books?id=UcXanQEACAAJ
https://books.google.cz/books?id=7QV0AwAAQBAJ
https://books.google.cz/books?id=IRUvAAAAQBAJ
https://books.google.cz/books?id=_-ak0iJuHqQC
https://cdn.vector.com/cms/content/know-how/_application-notes/AN-ANI-1-116_Getting_started_with_Ethernet_Interfaces.pdf

. .
notes/AN-ANI-1-116_Getting_started_with_Ethernet_Interface
s.pdf.

[12] ping. 2023.
https://learn.microsoft.com/en-us/windows-server/administr
ation/windows-commands/tracert.

[13] tracert. 2023.
https://learn.microsoft.com/en-us/windows-server/administr
ation/windows-commands/tracert.

[14] Wireshark: A Network Protocol Analyzer . 2024.
https://www.wireshark.org/.

[15] NetworkMiner - The NSM and Network Forensics Analysis Tool. 2024.
https://www.netresec.com/?page=NetworkMiner.

[16] CANoe.Ethernet: Development and Test Tool CANoe.Ethernet. 2024.
https://www.vector.com/in/en/products/products-a-z/softwar
e/canoe/option-ethernet/#.

[17] NetCapVis: Analyse your local network traffic files. 2024.
https://netcapvis.igd.fraunhofer.de/.

[18] A-Packets: Unleash the Power of PCAP Analysis. 2024.
https://apackets.com/.

[19] About DynamiteLab. 2024.
https://lab.dynamite.ai/about.

[20] GRASSMARLIN User Guide. 2024.
https://github.com/nsacyber/GRASSMARLIN/blob/master/GRASSM
ARLIN%20User%20Guide.pdf.

[21] Getting Started with GNS3. 2024.
https://docs.gns3.com/docs/.

[22] TraceWrangler - Packet Capture Toolkit. 2020.
https://www.tracewrangler.com/.

57

https://cdn.vector.com/cms/content/know-how/_application-notes/AN-ANI-1-116_Getting_started_with_Ethernet_Interfaces.pdf
https://cdn.vector.com/cms/content/know-how/_application-notes/AN-ANI-1-116_Getting_started_with_Ethernet_Interfaces.pdf
https://cdn.vector.com/cms/content/know-how/_application-notes/AN-ANI-1-116_Getting_started_with_Ethernet_Interfaces.pdf
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tracert
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tracert
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tracert
https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tracert
https://www.wireshark.org/
https://www.netresec.com/?page=NetworkMiner
https://www.vector.com/in/en/products/products-a-z/software/canoe/option-ethernet/#
https://www.vector.com/in/en/products/products-a-z/software/canoe/option-ethernet/#
https://netcapvis.igd.fraunhofer.de/
https://apackets.com/
https://lab.dynamite.ai/about
https://github.com/nsacyber/GRASSMARLIN/blob/master/GRASSMARLIN%20User%20Guide.pdf
https://github.com/nsacyber/GRASSMARLIN/blob/master/GRASSMARLIN%20User%20Guide.pdf
https://docs.gns3.com/docs/
https://www.tracewrangler.com/

Appendix A
Segment graphs from the vehicle log

Figure A.1. Segment graph from segment ETH1-ETH2.

59

A Segment graphs from the vehicle log .

Figure A.2. Segment graph from segment ETH3-ETH4.

Figure A.3. Segment graph from segment ETH5-ETH6.

60

. .

Figure A.4. Segment graph from segment ETH7-ETH8.

Figure A.5. Segment graph from segment ETH9-ETH10.

61

A Segment graphs from the vehicle log .

Figure A.6. Segment graph from segment ETH21-ETH22.

Figure A.7. Segment graph from segment ETH25-ETH26.

62

Appendix B
List of Abbreviations

ADAS Advanced Assistance Systems
ASIC Application Specific Integrated Circuit
CAN Controller Area Network
DEI Drop Eligible Indicator

DHCP Dynamic Host Configuration Protocol
DoIP Diagnostics Over Internet Protocol
ECU Electronic Control Unit
ELV Electronic Steering Lock

EMC Electromagnetic Compatibility
GNS3 Graphical Network Simulator-3

HIL Hardware In the Loop
ICAS In Car Application Server

ICMP Internet Control Message Protocol
ICMPv6 Internet Control Message Protocol Version 6

ID Identifier
IEEE Institute of Electrical and Electronics Engineers

IHL IP Header Length
IOS Internetworking Operating System

IP Internet Protocol
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6

KESSY Keyless Entry Start and Exit System
L2 Layer 2
L3 Layer 3

LAN Local Area Network
LIN Local Interconnect Network

LiDAR Light Detection And Ranging
MAC Media Access Control

MOST Media Oriented Systems Transport
Mbps Megabits per second
NDP Neighbor Discovery Protocol

OABR OPEN Alliance BroadR-Reach

63

B List of Abbreviations .
OCU Online Connectivity Unit

OPEN One-Pair Ether-Net
OUI Organizationally Unique Identifier
PC Personal Computer

PHY Physical Layer
PIX Private Internet eXchange

RAM Random Access Memory
SAM Signal Acquisition Module
SQL Structured Query Language
TAP Test Access Point
TCI Tag Control Information

TCP Transmission Control Protocol
TOS Type of Service

TPID Tag Protocol Identifier
TTL Time To Live
UDP User Datagram Protocol
UTP Unshielded Twisted Pair
VID VLAN Identifier

VLAN Virtual Local Area Network

64

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Ethernet network analysis background
	Physical layer
	100 BASE TX
	100 BASE T1
	1000 BASE T1

	Data Link Layer
	TCP/IP
	Internet protocol
	IPv4
	IPv6
	TCP
	UDP
	Topology

	Network Traffic Monitoring
	Monitoring network using switch port mirroring
	Single active test access point
	Multi active test access point

	Network Traffic Analysis
	Data Sources
	Common Network Analysis Tools

	Tools for visualization of PCAPs
	Application Background

	Input Data Analysis
	Input data
	Loading the data to database

	Offline Topology Mapping
	Topology structure
	Data preprocessing
	Single segment topology creation
	Single segment topology principle
	Single segment topology example
	Single segment topology limitations

	Network graph
	Localization and updating the devices at the end of the measured edge
	Updating the edge between the devices
	Updating remaining devices from the segment graph into the network graph

	Network topology creation example
	Network graph after adding information from the segment graph _xdef communication2segmentgrapheth2.5_xlink refcommunication2_setcolor 0gG4.4
	Network graph after adding information from the segment graph _xdef communication2segmentgrapheth1.5_xlink refcommunication2_setcolor 0gG4.4
	Results from a vehicle

	Traffic Flow Analysis
	Duplicate packets in capture file
	Network statistics
	Data-flow diagram

	Online analysis
	Detecting routers using the TTL field
	Testing on the HIL

	Conclusion
	References
	Segment graphs from the vehicle log
	List of Abbreviations

