
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3
Faculty of Electrical Engineering

Department of Computer Science

Master’s Thesis

A system for measured data
processing, evaluation of faults
and predictive maintenance of a
photovoltaic power plant

Bc. Ondřej Tůma
Open Informatics, Software Engineering

May 2024

Supervisor: RNDr. Miroslav Kulich, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

491867 Personal ID number: Tůma Ondřej Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

A system for measured data processing, evaluation of faults and predictive maintenance of a
photovoltaic power plant

Master’s thesis title in Czech:

Systém pro zpracování naměřených dat, vyhodnocení poruch a prediktivní údržbu fotovoltaické
elektrárny

Guidelines:

For accurate and efficient diagnosis of a photovoltaic power plant (PVP), it is advisable to have a software tool that
processes input data in the form of a model and operational data of the plant. This tool should analyze the impact of faults
on overall operation and output of the PVP and recommend the most suitable maintenance approach for the PVP,
considering the maximization of delivered power, economic efficiency, and impact on the energy system. The task for the
student will be to create the core of such a tool in the following steps:
- Familiarize yourself with the open-source electronic circuit simulator ngspice.
- Make a review of current solutions providing diagnosis of PVPs.
- Design and implement an interface for simulating PVP in ngspice.
- Design and implement a web-based user interface for managing the simulation of the PVP and processing results from
this simulation. Key functionalities: display of an electronic and physical layout of PVP elements (modules, converters,
strings) together with their current state, display of detailed information about modules (thermal images, results of VA and
performance characteristics simulation, maintenance recommendation), management of PVPs, users, and module types.
- Design the deployment process, deploy the system on a specified FEL server and verify the tool functionality on the data
from a real PVP provided by the superivisor.
- Properly document the implemented software from both programming and user perspectives.

Bibliography / sources:

[1] Nallapaneni Manoj Kumar, K. Sudhakar, M. Samykano, and V. Jayaseelan. On the technologies empowering drones
for intelligent monitoring of solar photovoltaic power plants. 2018. International Conference on Robotics and Smart
Manufacturing (RoSMa2018).
[2] Giovanni Tanda, and Mauro Migliazzi. Infrared thermography monitoring of solar photovoltaic systems: A comparison
between UAV and aircraft remote sensing platforms. Thermal Science and Engineering Progress. 2024, 48 102379.
[3] NGspice Project. NGspice: Open-source Spice Circuit Simulator. 2024-01-01. https://ngspice.sourceforge.io/.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D. Intelligent and Mobile Robotics CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 05.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature RNDr. Miroslav Kulich, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to express my sincere grati-
tude to my supervisor, RNDr. Miroslav
Kulich, Ph.D., for his excellent guidance
and support throughout this thesis. I
would also like to thank Ing. Karel Koš-
nar, Ph.D., for introducing me to the
DiPreFE project, which provided a solid
foundation for my work. Additionally, I
am grateful to the researchers who intro-
duced me to the photovoltaic industry,
offering essential insights and perspec-
tives. A special thanks to my family and
my partner for their unwavering support
and encouragement during this journey.

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, date 24. May 2024

. .

v

Abstrakt / Abstract

Tato práce si klade za cíl vyvinout soft-
warový nástroj pro efektivní diagnostiku
a údržbu fotovoltaických elektráren s
využitím simulátoru obvodů Ngspice
společně s daty shromážděnými pro-
střednictvím termografie za pomoci
autonomních dronů. Vytvořený nástroj
bude analyzovat dopad poruch na cel-
kový výkon fotovoltaických elektráren a
doporučovat optimální strategie údržby
za účelem maximalizace výstupního vý-
konu při zajištění ekonomické efektivity.

Klíčová slova: software, web, solární,
elektrárna, údržba, termografie, ngspice,
simulace, dron

Překlad titulu: Systém pro zpracování
naměřených dat, vyhodnocení poruch
a prediktivní údržbu fotovoltaické elek-
trárny

This thesis aims to develop a software
tool for effective diagnostics and main-
tenance of photovoltaic power plants
using the Ngspice electronic circuit
simulator in conjunction with data
collected through drone thermography.
The developed tool will analyze the
impact of faults on overall power plant
performance and recommend optimal
maintenance strategies for maximizing
power output while ensuring economic
efficiency.

Keywords: software, web, solar, power,
plant, maintenance, thermography,
ngspice, simulation, drone

vi

Contents /

1 Introduction .1
2 Prerequisites analysis3
2.1 Photovoltaic systems3

2.1.1 Basic operations3
2.1.2 Components3
2.1.3 Failure types5
2.1.4 Thermography6

2.2 DiPreFE project6
2.2.1 Project assignment.6
2.2.2 Introduction7
2.2.3 Flight .8
2.2.4 Image data processing8
2.2.5 Electrical schema9
2.2.6 Output data format9

2.3 Ngspice simulator 10
2.3.1 Basic concepts 10
2.3.2 Usage . 11
2.3.3 Environment configu-

ration . 12
3 Analysis of related work 13
3.1 Methodology 13

3.1.1 Academic work 13
3.1.2 Related commercial so-

lutions and indepen-
dent research analysis . . . 14

3.2 Commercial usage analysis 14
3.2.1 Scopito 15
3.2.2 RaptorMaps 16
3.2.3 MapperX 17
3.2.4 Sitemark. 18
3.2.5 Above Surveying 19
3.2.6 vHive . 20
3.2.7 GeoWGS84 20
3.2.8 Other . 20
3.2.9 Summary 20

3.3 Independent research 21
3.3.1 Interuniversity Micro-

Electronics Center 21
3.3.2 Thermography frame-

work . 21
3.4 Related academic work anal-

ysis . 23
4 Software requirements 24
4.1 Requirements gathering 24

4.1.1 Requirements based on
the DiPreFE research
project . 24

4.1.2 Requirements based on
project context 25

4.1.3 Requirements based on
customer requirements. . . 25

4.2 Software requirement speci-
fication . 26
4.2.1 General definitions 26
4.2.2 Functional require-

ments . 26
4.2.3 Non-functional re-

quirements 28
5 Implementation 29
5.1 Architecture . 29

5.1.1 Backend 30
5.1.2 Ngspice worker 31
5.1.3 Frontend. 31
5.1.4 Implications 31

5.2 Implementation details 32
5.2.1 Code structure 32
5.2.2 Backend 33
5.2.3 Ngspice worker 34
5.2.4 Frontend. 34

5.3 Ngspice integration 35
5.3.1 WebAssembly 36
5.3.2 Native binary 37

5.4 User experience 38
5.4.1 Power plant overview 38
5.4.2 Map . 39
5.4.3 Power plant settings 41
5.4.4 Power plant economy

settings 42
5.4.5 Detail pages 43
5.4.6 Listing pages 43
5.4.7 Report generation. 46
5.4.8 Module type configu-

ration . 47
5.4.9 Simulation management . 48

5.4.10 User management 48
5.5 Documentation 51

5.5.1 Technical documenta-
tion . 51

5.5.2 User documentation 51
6 Deployment process 53

vii

6.1 Considerations 53
6.1.1 Peak performance re-

quirements 53
6.1.2 Load characteristics. 54
6.1.3 Durability 54
6.1.4 Maintainability. 54

6.2 Infrastructure 55
6.2.1 CPU utilization evalu-

ation . 55
6.2.2 Additional services 56

6.3 Continuous integration 57
6.4 Continuous delivery 57
6.5 Deployment tools 58

6.5.1 Ansible 58
6.6 Local development 59

7 Conclusions . 60
References . 63

A Abbreviations . 65
B Ngspice example schema -

module . 66

viii

Tables / Figures

3.1. Comparison of commercially
available software 21

2.1. Module schema4
2.2. Inverter schema5
2.3. Module failure examples6
2.4. Database schema7
2.5. Processed high altitude image . . .8
3.1. Screenshot of Scopito plat-

form [1] . 15
3.2. Screenshot of Raptor Solar

platform [2] . 16
3.3. Screenshot of MapperX plat-

form [3] . 17
3.4. Screenshot of Sitemark Fuse

platform [4] . 18
3.5. Screenshot of Above Survey-

ing platform [5] 19
3.6. Screenshot of Thermography

desktop application [6] 22
5.1. Architecture schema 30
5.2. Simulation process sequential

diagram . 32
5.3. Module depencency graph 33
5.4. Architecture schema - com-

plete . 36
5.5. Power plant overview 39
5.6. Map view 1 . 40
5.7. Map view 2 . 40
5.8. Power plant metadata set-

tings . 41
5.9. Module type assignment 41

5.10. Power plant economy settings . 42
5.11. Module list . 43
5.12. Module detail. 44
5.13. Inverter detail 45
5.14. Inverter list . 46
5.15. Module report 47
5.16. Inverter report 47
5.17. Module type configuration 48
5.18. Module type verification 49
5.19. Simulation management 50
5.20. User detail . 50

6.1. Deployment diagram 56

ix

Chapter 1
Introduction

The demand for renewable power sources has been increasing and the production of
renewable energy has doubled over the last 10 years. Solar energy is among the fastest-
growing renewable sources, with over 3000% growth1, while the module installation
cost per watt has decreased by over 80% in the same period2. With such a signifi-
cant decrease in the deployment cost, the relative cost of operation and maintenance
has increased significantly. After a solar power plant is deployed, the newly installed
modules might experience defects that affect the overall power plant performance. The
power plant monitoring systems usually cannot pinpoint issues on individual inverters,
and the defect discovery process is mostly manual. Inspections and maintenance are
necessary at regular intervals. For power plants spanning large areas, this process is
expensive due to the human labor involved and the loss of generation capacity.

One of the currently used solutions that attempts to make the maintenance process
more efficient is thermography. Certain types of module failures can be recognized with
an infrared (IR) camera due to heat accumulation on the broken cells. This results
in a distinct feature visible in the IR spectrum. In most cases, the task is currently
performed by drones. The drone operators fly the drones equipped with IR cameras
over the solar plant, periodically capturing images. The results are then processed
either manually or by automatic reporting software.

Commercial software for this purpose, with the support for analysis of the IR images
paired with geographic information system (GIS) data, is available. The availability
and current state of software for predictive solar power plant maintenance based on
IR drone imagery that would also take into account the electrical schema of the power
plant and calculate the effect of individual module defects with regard to the rest of the
circuit is unknown. One accomplishment of this thesis is the analysis of the availability
of such software. As part of the DiPreFE [7] research project, the Intelligent and Mobile
Robotics Group (IMR) at the Czech Institute of Informatics, Robotics and Cybernetics
(CIIRC), Czech Technical University (CTU) in Prague, has proposed a similar method
for the inspection of solar power plants using a drone equipped with an IR camera.

The primary goal of this thesis is to build, test, and deploy analytical software to sup-
port the proposed solution. The system’s main innovation is the integrated simulation
capability. The system automatically simulates the circuits based on the failures found
in the imagery, with the ability to evaluate the individual module’s impact on the rest
of the circuit and estimate the power output based on the current state. Based on
this, the system is able to estimate the monetary loss over the expected lifespan of the
power plant and recommends appropriate maintenance action. This further helps with
understanding the impact of the damages and increases the efficiency of the damage as-

1 https://ourworldindata.org/renewable-energy
2 https://ourworldindata.org/grapher/solar-pv-prices

1

https://ourworldindata.org/renewable-energy
https://ourworldindata.org/grapher/solar-pv-prices

1. Introduction .
sessment. The built software also includes a standard set of features for navigation and
exploration of the captured data, together with the necessary management capabilities.

Apart from providing a fully functional deployment of a software solution for further
usage and research by the IMR at CIIRC, the main contributions are the following:

. Evaluation of existing solutions for the thermography analysis of photovoltaic power
plants (PvPs).

. Demonstration of the usage of Ngspice simulator for predictive maintenance of solar
power plants.

. Evaluation of Ngspice WebAssembly compilation.

. Development of a Node.js application. The application comprises two services and
four deployable artifacts with communication over a message queue. The built sim-
ulation software solution is vertically scalable.

. Development of a React.js client application communicating over REST API. The
application features a web-based user interface, data pdf reporting, advanced table
filtering, multitenancy, and role-based access control.

. Implementation of an automated deployment process for a multi-artifact application
on a dedicated server using Docker in combination with Ansible.

The built software is expected to be further developed and used for additional research
of the drone-based thermography of PvPs. Furthermore, it should serve as the core
for an analytical tool offering a wide range of applications in the PvP industry and
enabling further research at CIIRC.

2

Chapter 2
Prerequisites analysis

This chapter aims to provide the necessary domain context. This mainly includes the
PvP industry terminology and the schematic working of individual components used in
the industry. Another vital prerequisite is an understanding of the DiPreFE project,
which produces the input data for the built software. Further prerequisites presented
in this chapter include a fundamental understanding of the Ngspice circuit simulator
used as the core simulation tool in the built software.

2.1 Photovoltaic systems

In order to create software that improves the efficiency of processes in a particular
domain, the necessary prerequisite is an in-depth understanding of the domain’s core
principles. The prerequisites to building software capable of simulating a solar power
plant are an understanding of the operating principles and the inner workings of in-
dividual electrical components of a power plant. Understanding the domain-specific
terminology is necessary to properly describe the problem and communicate with the
stakeholders.

2.1.1 Basic operations

The basic operating principle of a solar power plant is the conversion of absorbed
sunlight into electricity. There are a lot of components between the actual component
generating the electricity and the final connection to the grid. For the purpose of this
thesis, the components that are important for the simulation and related to the circuit
inside the power plant are going to be explained.

2.1.2 Components

The individual schematic components are described using industry terminology. Their
understanding is essential for effective software design and communication with the
researchers, who will later be providing the schematics for electronic circuit simulations.
The common terminology and component hierarchy are necessary for automated circuit
schema generation and database schema design.

Photovoltaic cell

The photovoltaic cell is the core building block of a power plant. It is the component
that absorbs the sunlight and generates the electricity. It is currently the smallest unit
of measure for failure detection, where we can confidently say if a cell is broken or not
based on thermography data.

3

2. Prerequisites analysis .
Substring

A substring is a serial connection of cells inside of a module (described later). Failure
inside of a single substring has the potential to highly affect other cells in the same
substring. Failure inside a single substring generally does not have to affect other
substrings within the same module.

Module

Solar modules are the smallest practical building blocks of a power plant, meaning that
this is the smallest component that is separately handled (bought and replaced as part
of maintenance).

From a schematic point of view, it is an assembly consisting of multiple Substrings.
From a physical point of view, the module is an enclosure that is able to protect the
raw cells from the environment and provide mechanical strength. The schema of a
module and its subcomponents can be seen in Figure 2.1.

Figure 2.1. Module schema

String

A string is a serial connection of modules. A broken module within a string has the
potential to diminish the power output of the whole string, depending on the particular
module type.

Inverter

Inverter is a component that converts the direct current (DC) generated by the pho-
tovoltaic cells into alternating current (AC). A single inverter can be connected to
multiple strings connected in parallel. A failure within a string might affect the power
output of other strings connected to the same inverter, depending on the particular in-
verter type used. From the schematic point of view, it is the failure boundary, meaning
that any failure that happens below an inverter, from a hierarchical point of view, does
not spread to the rest of the power plant. We can, therefore, assume that the total

4

. 2.1 Photovoltaic systems

output of the power plant is the sum of individual inverter outputs. For the purpose of
the simulation, an inverter is simply a circuit connecting multiple strings. A simplified
schema of the connection between inverter and module strings can be seen in Figure 2.2.

Junction box

A junction box is a part of a module where the substrings are connected and the place
where external connectors are placed. The external connectors are used to connect
the photovoltaic (PV) module to the external electrical circuit, enabling the transfer of
generated electrical power to an inverter or other load. Usually, it is an enclosure on
the back of the PV module. The junction box can usually be seen in the thermography
images, appearing as a hotter area at the top or bottom center of the PV module.

Figure 2.2. Inverter schema

2.1.3 Failure types

Using thermography, it is possible to distinctly identify temperature differences between
individual cells, known as hotspots. This identification ability, paired with a failure-type
classification based on the distribution of hotspots, allows for automatic maintenance
action recommendations and future failure development prediction based on the existing
failure-type knowledge.

Figure 2.3 depicts a few examples of detected failure types, with known future devel-
opment and performance implications, detected based on the temperature differences
between individual cells.

5

2. Prerequisites analysis .

a) single hotspot b) multi hotspot c) chessboard
Figure 2.3. Module failure examples [8]

2.1.4 Thermography

Digital thermography is the process of capturing image data using a camera capable
of capturing in the infrared spectrum. In the context of PV modules, it is possible
to detect certain types of anomalies based on the temperature differences between
individual cells.

To detect such differences, a basic measurement using a handheld thermal camera can
be used. It is possible to assess the results visually. For an effective scaling, a better
method is necessary. One of the most popular ones is using a drone-mounted camera.
The drones can be scheduled to fly autonomously over the solar plant, periodically
capturing images, and pairing them with geospatial data using GPS. The images have
to be later analyzed by specialized software.

2.2 DiPreFE project

This section takes a detailed look at the DiPreFE [7] research project. It mainly
elaborates on the project motivation and the input and output components of the
project while briefly introducing the inner workings. The output data and database
will be necessary for this thesis, as they are used as an input into the newly-built
system.

2.2.1 Project assignment

The goal of this project is to design, develop, and verify a prototype system for predictive
maintenance of a photovoltaic powerplant capable of periodic thermographic and visual

6

. 2.2 DiPreFE project

inspection of PV modules making use of UAVs during the operation time of PP. The
system is able to predict module failure and evaluate the influence of this failure on the
power production of PP. The system for predictive maintenance allows the proposal of
optimal actions to maximalize power production and economic effectiveness. Partial
goals are [9]:

. Design, development, and verification of specialized methods for accurate navigation
and location of unmanned aerial vehicles

. Methods for the collection of thermographic and visual image data, their fusion, and
subsequent evaluation to detect potential defects of PV modules with the possible
addition of a detailed picture of the expected defective module

. Estimation of the impact of the module defect on the performance, when the module
will be dismantled and measured in laboratory conditions

. Creation and maintenance of a catalog of module defects with a specific signature in
the visual and thermal area and the measured impact on their performance

. Statistical temporal models of progression of individual types of defects.

2.2.2 Introduction

The most important aspect of the project, as far as this thesis is concerned, is the
output data format. The data will be in the form of a single SQLite database file,
accompanied by a set of detailed thermal images, one for each module. The resulting
database schema can be seen in the Figure 2.4.

Figure 2.4. Database schema

7

2. Prerequisites analysis .
The individual processes that need to happen to get the output database are described
in the following sections. Their understanding is not strictly necessary from a soft-
ware development standpoint, but it plays a crucial role from a product development
standpoint. The final software built as part of this thesis is used to accompany the fol-
lowing workflows. Therefore, their understanding is necessary to properly understand
the problems the users might be facing.

2.2.3 Flight

The flight consists of a series of high-altitude flights to chunk the area into smaller
sections and take a set of overview images. These images cover the whole plant and
include the GPS coordinate reference points. The pictures are processed using the
OpenSfM toolkit1. The outcome is a 3D model of the whole power plant. The pictures
from the OpenSfM toolkit are then segmented using the U-Net model, which detects
the actual modules and benches in the pictures. The high-altitude flight is performed
as an initial step when planning the monitoring of a power plant. The outcome of this
step can be seen in Figure 2.5.

Figure 2.5. Processed high altitude image [10].

The high-altitude flight is then followed by a series of overview flights over the detected
benches to check individual panel states. The drone flights over every bench, taking
a quick and relatively low-resolution picture to evaluate whether the module has an
anomaly and needs detailed imaging.

As a last step, the drone flies over the modules that were reported to have an anomaly
in the previous step. This is a low-altitude flight to take detailed thermal image data
of each module that can later be used to detect the particular anomaly type.

The outcome of this step is the set of individual module detail images paired with the
positional and structural data in the database. The available image resolution depends
on whether the low-altitude flight was performed for a given module.

2.2.4 Image data processing

With the gathered image and positional data, the individual module state evaluation is
being performed at this stage. The result is then included in the output data (column

1 https://opensfm.org

8

https://opensfm.org

. 2.2 DiPreFE project

fault type in the Module measurement table from Figure 2.4). It consists of analysis
of individual IR images, where individual cells have to be recognized, and converted
to schematic values, and then the temperature differences have to be evaluated on a
per-cell basis (result saved in table Cell measurement from Figure 2.4).

For the purpose of this thesis, the relevant information is that after this step, the data
in tables Module, Cell, Cell type from the Electrical connection package, and all the
tables from packages Physical layout and Measurement from Figure 2.4 are populated.

2.2.5 Electrical schema

With the individual module records created in the database, it is possible to assign
them to the electrical schema in the database structure. This step is performed as an
initial step when a new power plant is analyzed or the schema of an existing power
plant changes. This process is currently mostly manual and requires a significant effort
from the researchers.

The simplest and cheapest variant is if the operators already have an existing docu-
ment that might be used for such mapping. If it exists at all, it usually has many
different forms and is not standardized across power plants, so parsing the document
and assigning the modules to the actual electrical schema is a labor-intensive process.

In the case when there was no such documentation before engaging with the research
group, it is desired to introduce a solution where the customer could either manually or
with automatic assistance, mark the important schematic features in a map view based
on the data gathered from the Flight and Image Processing phase. Right now, this is
performed by the researchers manually after consulting with the customer technicians,
so such a solution would greatly decrease the researcher’s time required to process a
single power plant.

In another significant portion of cases, the schema is represented as an Excel sheet. Each
cell in the sheet represents either a module or an empty physical space between benches.
The assignment to each power line is marked by a number in the target cell or by color-
coding of the target cell. This sheet is usually used as a reference for technicians.
Currently, the schema can be converted to usable format using ad-hoc scripts (usually
Python or bash) or, in most cases, completely disregarded, as processing it takes more
effort than coming up with a mapping function based on client specification.

After this step, the individual modules are correctly assigned to the Electric line in the
database schema from Figure 2.4.

2.2.6 Output data format

As a result of the drone flights, data post-processing and the electrical schema assign-
ment, the power plant data is available as a single SQLite database file, accompanied
by a set of images in a bitmap format.

The SQLite format was chosen for easy distribution and data sharing among researchers.
For the purpose of the simulation, it is safe to assume that the data already includes
the correct module mapping with respect to the connected Electric line and Inverter,
as described in Section 2.2.5.

9

2. Prerequisites analysis .

2.3 Ngspice simulator

Ngspice is an open source simulator for electric and electronic circuits [11], that allows
engineers and researchers to model and simulate the behavior of analog and mixed-
signal circuits. It is the simulator used as part of this thesis to simulate the circuits
within PvPs.

2.3.1 Basic concepts

Users define their electronic circuits by specifying the components (such as resistors,
capacitors, and transistors) and their interconnections. This description is often written
in a netlist format, which is a textual representation of the circuit.

Ngspice supports various simulation types, including DC analysis, AC analysis, tran-
sient analysis, and more. Each simulation type focuses on different aspects of the
circuit’s behavior, such as steady-state conditions, frequency response, and transient
response.

Netlist

A netlist is a textual representation of an electronic circuit’s connectivity. It provides
a concise and standardized way to describe the components in a circuit and their inter-
connections. In a netlist, each component is defined along with its connection points,
and the connections between components are specified using a list of nodes and the
corresponding interconnecting elements.

Below is an example of a simple circuit with a 1 kΩ resistor connected between nodes
1 and 2.

R1 1 2 1k

Netlists allow the definition of sub-components called subcircuits. The advantage of
such subcircuits is the reusability, where a particular subcircuit can be defined only once,
and used at multiple places in a given netlist. The example below is a component that
wraps the above-mentioned resistor with parameters for the resistance and terminals.

.subckt circuit_1 Res Vpv+ Vpv-
R1 Vpv+ Vpv- Res
.ends

The subscircuit definition also supports configuration parameters that are locally
scoped. Meaning that each place where the subcircuit appears, can have different value
of the input parameters.

.subckt circuit_1 Vpv+ Vpv-
R1 Vpv+ Vpv- Res
.param Res 1k
.ends

10

. 2.3 Ngspice simulator

Each netlist can also define a control section, which specifies the simulation steps to
perform on a given circuit, together with commands to control the output of the simu-
lation.

Below is an example control section that performs DC analysis from 0V to 1000 V with
a step of 0.1 V, while printing the voltage, current, and electric power for each step of
the DC simulation.

.control
dc Vpv 0 1000 0.1
print v(0) I(vpv) v(2)*I(vpv)
quit 0
.endc

The most important control section commands for the purpose of this thesis are:

. dc - Performs a DC analysis

. print - Prints the arguments as a column-based tab-delimited ascii output for each
simulation step

. wrdata - Similar to print, but outputs to a file

The structure of the output from the Ngspice simulation with the above control section
can be seen below. It is a simple textual output with no additional formatting support
in the Ngspice simulator.

Index v-sweep i(vpv) v(2)*i(vpv)

0 0.000000e+00 1.139951e+01 2.946705e-25

2.3.2 Usage

Basic Ngspice usage is as simple as calling the executable with the circuit specification
in the file.cir netlist.

ngspice "file.cir"

This loads the circuits in a given file and opens an interactive shell that lets the user
perform commands on the given circuit. The user can then proceed by inputting the
following into the interactive shell.

.dc Vpv 0 1000 0.1

Notice the prefix in the .dc. The usage of the commands differs slightly when compared
to using the .control section described above

Another type of usage is using the -b flag to run batch operation, which executes the
commands in the .control section and does not open the interactive shell, allowing for
automated execution.

11

2. Prerequisites analysis .
2.3.3 Environment configuration

Ngspice supports multiple configuration options. They can change anything from pars-
ing and formatting, to multithreading and error handling.

The simulation behavior and environment configuration can either be performed man-
ually by inputting commands into the interactive shell, in the .control section, or via
settings in a .spiceinit file in the directory where Ngspice is being executed. This file is
read automatically on the program startup.

The most important configuration options for the purpose of this thesis are:

. ngbehavior - Allows to change the behavior with respect to different netlist formats

. num threads - Number of threads that Ngspice can use (default 2)

The complete documentation can be found on the official Ngspice website1.

1 https://ngspice.sourceforge.io/docs.html

12

https://ngspice.sourceforge.io/docs.html

Chapter 3
Analysis of related work

This chapter explores existing commercial software focusing on solar power plant ther-
mography and provides an overview of the state of academic research related to software
for such analysis.

By examining commercial software dedicated to solar power plant thermography, we
can get a valuable lesson regarding user requirements, feature sets, established stan-
dards, compliance requirements, and potential areas for improvement. Similarly, an
exploration of academic work in this domain offers a deeper understanding of emerging
technologies, theoretical frameworks, and innovative approaches. Only with a com-
prehensive understanding of the existing landscape is it possible to make informed
decisions throughout the software development lifecycle, ensuring that the resulting
tool effectively addresses the needs and challenges of solar power plant analysis and
visualization.

3.1 Methodology

The methodology used to explore the domain should provide insight into the research
process, explain how the results were gathered and filtered, and enable the reader to
replicate the research. Understanding the used methodology is also crucial for the
evaluation of possible biases and systematic mistakes.

3.1.1 Academic work

The list of relevant resources was acquired using Google Scholar1 and Research Gate2.
The following search queries were used:

. solar plant thermal imagery software

. solar thermal imagery software

. solar thermography software

. solar plant thermography software

. PV thermography software

. photovoltaic thermography software

. drone solar maintenance

. drone solar monitoring

For each search term, results returned on the first page of the respective search engine
were considered. Results that were either not focused on the PV thermography or
primarily focused on the PV technology itself without any mention of the usage of
thermography or a drone were excluded from the analyzed result set, apart from the
examples mentioned below.

1 https://scholar.google.cz
2 https://www.researchgate.net/

13

https://scholar.google.cz
https://www.researchgate.net/

3. Analysis of related work .
3.1.2 Related commercial solutions and independent research
analysis

The list of resources was acquired primarily using Google search1. The following queries
were used:

. solar plant thermal imagery software

. solar thermal imagery software

. solar thermography software

. solar plant thermography software

. PV thermography software

. photovoltaic thermography software

. solar plant thermal inspection

Only non-advertisement results were evaluated. Results ranked within the first 25
results were considered for each search term. Results offering or advertising general
thermography software (not specialized for photovoltaic measurement, or without au-
tomated analytical capabilities) were not considered. Sites with non-explanatory de-
scription of the software features, or the description hidden behind a paywall, were also
omitted from the research.

Another great resource used for the commercial solutions analysis are the publicly
available reviews of such software. The most detailed and comprehensible among the
reviewed ones was the one by TheDroneLife [12].

Potential issue with this research method might be the lack of online presence for soft-
ware providers in this category. Since the sales channel is mostly business-to-business
(B2B), the website search engine optimization (SEO) and Google search relevance might
not play a crucial role for the business, and therefore this research might not include a
well established software.

3.2 Commercial usage analysis

Analysis of commercial solutions that offer thermography analysis targeted at the PV
industry. The overview is based on publicly available data from the linked websites at
the time of publication. The presented data is the result of a subjective understanding
of the publicly available materials, and there is no intention to benefit any of the
mentioned companies.

1 https://google.com/

14

https://google.com/

. 3.2 Commercial usage analysis

3.2.1 Scopito

Website: https://scopito.com/solar-pv-inspection-software
Pricing strategy: Per MW or Enterprise
Related features:
. Desktop/Web application - map view
. Mobile application for technicians

Additional features:
. Integration with SAP

Description:
Scopito is a data management system that supports many industries, with a specialized
version for the PV industry. They provide a web-based data analytical platform that
supports automatic AI-based fault classification based on the thermal image data, with
comprehensive PDF or CSV reporting of the results.

The base pricing is per MW (with the website-available pricing of 20 EUR per MW).
The fee per MW is fixed, including all features, regardless of the resource usage or
amount of reporting generated.

They do not seem to offer a mobile application for field access to the data.

Figure 3.1. Screenshot of Scopito platform [1]

15

https://scopito.com/solar-pv-inspection-software

3. Analysis of related work .
3.2.2 RaptorMaps

Website: https://raptormaps.com/products/solar-aerial-inspections
Pricing strategy: Not public
Related features:. Desktop/Web application - map view
. Desktop/Web application - thermal anomaly and root cause detection
. Mobile application for technicians

Additional features:. API access
Description:
RaptorMaps offers a set of solutions for the digital thermography of solar plants, with
anomaly detection, map-based view, and report generation. Their solution offers filter-
ing and aggregations based on the anomaly type. The software can enhance the data
by measurements from other sensors. They also offer API connection, so it is possible
to analyze the data even further or build advanced tools on top of Raptor Maps. The
software supports the management of a portfolio of power plants and aggregate data
among them.

In addition to only providing the software, where you can provide the data from your
drone, their unique offering is a service where they perform the PV thermography in
cooperation with a network of service providers, so the plant owner gets only access to
the platform without any physical work on their side.

They offer a mobile application for field access to the data, paired with GPS for tech-
nicians to navigate easily.

Figure 3.2. Screenshot of Raptor Solar platform [2]

16

https://raptormaps.com/products/solar-aerial-inspections

. 3.2 Commercial usage analysis

3.2.3 MapperX

Website: https://mapperx.com
Pricing strategy: Tiered, per module
Related features:
. Desktop/Web application - map view
. Desktop/Web application - thermal anomaly and root cause detection
. Mobile application for technicians

Additional features:
. Task Manager module - module for managing maintenance tasks
. Process for logging module serial numbers using OCR
. Digital twin simulation

Description:
A solution from MapperX offers a platform with core features for digital thermography.
They also offer a separate solution that operates the drones, which supports three
different DJI drone models. Additionally, their software offers management capabilities
for maintenance technicians. They do not offer any sensor data gathering or processing
as part of their services.

The pricing is split by tears, where individual tiers offer different sets of features, flight
altitudes, image resolution, and anomaly detection capabilities. This structure is similar
to Software as a Service (SaaS) companies but uncommon among maintenance software
providers.

It is not clear if they have a mobile application. There is a support for tablet devices
through a web app or a dedicated application based on the screenshots available.

Figure 3.3. Screenshot of MapperX platform [3]

17

https://mapperx.com

3. Analysis of related work .
3.2.4 Sitemark

Website: https://www.sitemark.com
Pricing strategy: Not public
Related features:
. Desktop/Web application - map view
. Desktop/Web application - AI-based thermal anomaly and root cause detection
. IEC TS 62446-3 compliant reporting
. Mobile application for technicians

Additional features:
. Application for solar plant construction
. Application for data monitoring from sensors

Description:
Sitemark focuses mainly on the PV industry while providing a complete set of tools
for management, preventive and reactive maintenance, and reporting. Their coverage
includes the construction part of the process as well.

The analytical part for the thermographic images was created in collaboration with the
Interuniversity Micro-Electronics Center [13]. It supports power loss estimation based
on a rule-based classification of thermal signatures on a module level.

Figure 3.4. Screenshot of Sitemark Fuse platform [4]

18

https://www.sitemark.com

. 3.2 Commercial usage analysis

3.2.5 Above Surveying

Website: https://www.abovesurveying.com/inspection/aerial-thermographic-
solar-inspection
Pricing strategy: Not public. Base and Pro version available.
Related features:
. Desktop/Web application - map view
. Desktop/Web application - Thermal anomaly and root cause detection
. Advanced simulation - String/Inverter level
. Desktop/Web application - Historical inspection data comparison
. IEC TS 62446-3 compliant reporting
. Mobile application with reporting

Additional features:
. Built-in task management

Description:
Above Surveying offers a solution based on the SolarGain data processing and reporting
platform. Beyond the processing of thermal images, the platform offers task manage-
ment capabilities and automatically generates tasks based on module failure reporting.

In collaboration with C.R.E.S.T1, they seem to be simulating complex electrical system
performance regarding the actual system design. They seem to support simulation at
the String and Inverter levels.

Figure 3.5. Screenshot of Above Surveying platform [5]

1 https://www.lboro.ac.uk/research/crest

19

https://www.abovesurveying.com/inspection/aerial-thermographic-solar-inspection
https://www.abovesurveying.com/inspection/aerial-thermographic-solar-inspection
https://www.lboro.ac.uk/research/crest

3. Analysis of related work .
3.2.6 vHive

Website: https://www.vhive.ai/solar-panels
Pricing strategy: Not public
Related features:
. Application for drone orchestration
. Desktop/Web application - Fault auto detection
. Mobile application

Additional features:
. Digital twig technology

Description:
Despite the software not being well documented on the website, it seems that their
software offers the core set of features for automated thermography analysis.

Additionally, vHive seems to offer a separate solution for data capture, which supports
parallel scanning by multiple drones. It seems that their core offering is the modelling
and digital twin simulation software, that focuses primarily on the wind turbine energy
generation industry.

3.2.7 GeoWGS84

Website: https://www.geowgs84.com/getvision
Related features:
. Web application (Beta)
. Automatic fault detection

Description:
The approach by GeoWGS84 seems to be capable of automatic AI-based module failure
classification based on thermal image data. They seem to offer automated module
failure classification from thermal data and report generation.

They offer a web-based platform currently in beta access. There is no documentation
or additional platform description available at the moment.

3.2.8 Other

Other resources seem to primarily include service providers, who do not advertise the
used software but provide the service and value generated by the data reporting, pos-
sibly using one of the above-analyzed software solutions.

Another significant group among the results is general-purpose thermal imaging solu-
tions, possibly able to detect hotspots but with no direct optimization for usage with
PV modules or the required segmentation.

3.2.9 Summary

Table 3.1 summarizes the overview of the core features of the reviewed applications.
Below is explanation of the individual table columns:

. Application - Reviewed application name.

20

https://www.vhive.ai/solar-panels
https://www.geowgs84.com/getvision

. 3.3 Independent research

. Sensor data - Whether the application supports processing and displaying data from
equipment sensors.

. Failure classification type - The type of failure classification technology. AI for tech-
nologies based on Artificial Intelligence or Unknown when the used technology is not
known.

. Simulation - Whether the application supports simulating the impact of the failure
on the rest of the string or inverter.

Application Sensor data Failure classification type Simulation
Scopito No AI No
Raptor Maps Yes Unknown No
MapperX No AI No
Sitemark Yes AI No
Above Surveying Unclear Unknown Yes
vHive No AI No
GeoWGS84 No AI No

Table 3.1. Comparison of commercially available software

All the explored solutions offer a map-based overview, with failure classification and
direct localization in the map. At least some of the explored software solutions offer
advanced search functionality and exports to PDF and CSV formats. Only one solution
calculates the effect of a single module failure on the rest of the String / Inverter.

The research suggests that the core features required for such a software platform
are consistent across multiple vendors. At the same time, there is a possibility of
introducing additional features to provide additional value.

3.3 Independent research

Another category found during the research is Independent research, which currently
spans independent research centers and open-source projects.

3.3.1 Interuniversity Micro-Electronics Center

The non-profit organization based in Belgium seems to be doing independent research
in the field. They also seem to be cooperating with companies in the commercial sector,
based on the mention on the Sitemark website [13]. No other mention of this particular
project or cooperation was found during the research phase.

3.3.2 Thermography framework

Website: https://github.com/cdeldon/thermography
Description:
A GitHub repository with Python software for AI-based PV module defect detection
from thermal images. The license file is missing from the GitHub repository, so the
licensing needs to be clarified.

21

https://github.com/cdeldon/thermography

3. Analysis of related work .

Figure 3.6. Screenshot of Thermography desktop application [6]

It focuses only on the detection part from video footage, so it is not a competitive
implementation in the context of this thesis. However, it provides a great example of
the individual subproblem of defect detection, so it is kept here to enable the reader to
understand the subproblem better.

22

. 3.4 Related academic work analysis

3.4 Related academic work analysis

A conference paper from 2014 [14] briefly evaluates the general idea of using UAVs for
PvP monitoring, and concludes that the inspection method is reliable, cost effective
and time-saving.

An article from 2018 [15] presents the development of a real-time monitoring system
that processes data gathered from the power plant using sensors on individual inverters
or modules. Such software does provide detailed view into the operation, but requires
usage of particular equipment, and upfront investment.

An article from 2018 [16] elaborates on the cost-effectiveness of using drones for inspec-
tions. The conclusion is that drone inspections are always more expensive for all power
plant sizes while being more accurate than the ones performed by humans.

Publication from 2021 [17] elaborates on the usability of automated AI analysis to
predict future PV module failures based on thermal imagery. The publication akcnowl-
edges the added value of having thermal images with GIS data available, evaluates the
feasibility of using AI to evaluate the module failures, and concludes, that drone ther-
mal imaging is a possible solution for converting solar power plants into their respective
Digital Twins.

Article from 2022 [18] proposes an innovative method for filtering the IR images, result-
ing in improved defect detection capabilities when measured at lower irradiance levels
(cloudy days, winter). As part of the paper, the algorithm is implemented in Matlab.

Article from 2023 [19] focuses mainly on the detection of PV module features and
hotspots. The publication mentions a custom developed software, that is able to present
the geospatial data together with the thermal images. The software seems to focus on
individual module failure analysis.

Article from 2023 [20] proposes an even more scalable monitoring model using aircraft to
take image data. Where aircraft becomes more cost-effective for plants with more than
50MW capacity. This further supports the idea of creating an application that allows
processing such data, as the source of the data is not important for later processing.

Based on the above reviewed publications, I conclude that the publications can be
categorized into the following categories based on the core area of focus:

. Module fault type recognition from thermal data

. Thermography data processing

. Drone inspection with emphasis on drone research

. Power plant monitoring system

None of which seem to be doing exactly what this thesis aims to do. That is, based
on this analysis, to develop a software similar to the commercial solutions available,
that simulates the electrical properties based on the assumed state from thermography
results.

23

Chapter 4
Software requirements

In software development, the software requirements are a crucial part of each project.
They are used as a specification for the final software. They should clearly and undis-
putably describe the expectations for the to-be-built software. The software developer
should be able to follow the written software requirements to build the software that
the other party imagined.

For contractual work, the software requirements are often used as the basis of the
underlying contract, holding the developing party responsible for not fulfilling them.
Without clearly defined requirements, it becomes challenging to measure the success of
the project or to verify that the final product fulfills its intended purpose.

4.1 Requirements gathering

Composing a list of requirements for a to-be-build software is a challenging task. It
should ideally take into account all expected use cases from all stakeholders. The
requirements in the final specification should not be contradictory to one another. This,
however, does not have to be the case with real-world stakeholder requirements, where
each of the stakeholders might have completely different expectations. This phase,
therefore, includes discussions with all the stakeholders and an understanding of their
goals.

The requirements for the software developed as part of this thesis were primarily based
on the three representative groups described below.

4.1.1 Requirements based on the DiPreFE research project

The newly built software is intended to process the output of the previous stages of
the DiPreFE research project, as discussed in Section 2.2. Therefore, it is necessary to
understand the target users among the researchers and their use cases.

Among the requirements based on the research project are primarily:

. Input data format

. SQLite database handling

. Internal user actions

. Data export specification

The application has to be able to process data from an existing application that is part
of the DiPreFE research project and should not put any additional constraints on the
input format.

24

. 4.1 Requirements gathering

One example of a requirement based on this constraint group, which is highly uncommon
in other applications and would typically not be listed as a functional requirement, is the
possibility of violating foreign keys in the SQLite database. The common expectation
in basically all other software would be that if the database specifies foreign keys, their
violation is not a valid state. This might, however, happen, and the application should
handle this gracefully and not reject the input database file.

Foreign key in a relational database system is a concept that restricts the possible
values of one column to only allow the values based on the specified table and column.

4.1.2 Requirements based on project context

After this thesis is complete, the software being built as part of this thesis is going to
be run and maintained by already established research groups at CIIRC. Since they
are going to be the ones primarily taking ownership of running this software, their
understanding of the software project and the deployment processes is paramount for
future maintenance and new developer onboarding.

The deployment and infrastructure part is going to be handled by the infrastructure
team that manages the whole faculty. To minimize the support necessary for the main-
tenance and deployment processes in the future, it is desirable to follow this team’s
standard deployment practices and avoid introducing novel approaches into this group’s
workflow, which might require additional training and effort.

The set of requirements based on this category can be mostly split into the following
categories:

. Deployment platform limitations

. Maintenance requirements

. Deployment automation

To gather this type of requirements, it was necessary to understand the deployment ca-
pabilities of the organization, as well as the approval process for any additional software
components and third-party tools. It was also necessary to understand the capabili-
ties of the future maintainers and their opinions on different deployment platforms and
orchestration tools.

4.1.3 Requirements based on customer requirements

This section primarily includes the requirements that specify what actions the users can
perform and how the actions should be performed. These requirements were gathered in
coordination with stakeholders and future users. The results of the commercial software
analysis performed in Section 3.2 were used to identify the necessary standard features
available in the industry.

An important aspect of this part was that the stakeholders are neither the end users of
the application nor have any previous formal experience in the User Experience (UX)
field. It was, therefore, necessary to ensure that the stakeholder requirements made
sense from a user perspective and did not diminish the user experience.

The outcomes of this section primarily include the following requirements categories:

25

4. Software requirements .
. List of screens
. Data available on each screen
. Actions available on each screen
. Data filtering options

4.2 Software requirement specification

One of the popular ways to represent the software requirements is in the form of Func-
tional and Non-functional requirements.

Functional requirements define the features of the product and define what the product
should do. They are necessary for the application to provide the desired functionality.

Non-functional requirements define how the product should work. Often also called
non-behavioral, they specify things such as security and scalability requirements.

This section provides an insight into the key requirements used for the development of
this software. In a contractually binding specification of commercial projects, the set of
requirements would be much more detailed. Given the nature of software development
as part of a thesis, as compared to commercial projects, it was not necessary to specify
all the aspects of the software before the development phase began and it was possible
to develop non-key features without the necessity to specify them in a binding way.

4.2.1 General definitions

This section specifies the definitions used in the description of individual requirements.

User type

User types used in the formulation of functional requirements.

. Internal user - User performing actions and having access to the application on behalf
of the software supplier.

. External user - Any personnel related to the customer. The access to the application
for this user has to be approved by the customer.

. User - Internal user or External user

4.2.2 Functional requirements

Below are the specified functional requirements, categorized by the requirement cate-
gory and detail level.

Access requirements

FR 4.1. User has to log-in in order to access any application data.
FR 4.2. Available login method will include email and password.
FR 4.3. External user access can be restricted to certain power plants.
FR 4.4. Internal user can access all power plants.
FR 4.5. Internal user can manage access settings for any External user. This mainly
includes adding and removing accessible power plants.
FR 4.6. User has to be manually verified by Internal user after registration, before login
is allowed.

26

. 4.2 Software requirement specification

Management requirements

FR 4.7. Internal user is able to create a new power plant.
FR 4.8. Internal user is able to upload a SQLite file as specified in Section 2.2.6 for a
power plant.
FR 4.9. Internal user is able to upload bitmap image for each module.

Bulk data access

FR 4.10. User can see a list of damaged modules.
FR 4.11. User can filter the list of broken modules by row and bench.
FR 4.12. User can download a zip file with PDF reports for individual broken modules.
The PDF document will include:
. recommended action
. the loss due to the module breakage
. chart with actual power output
. chart with healthy power output

FR 4.13. User can download a zip archive with PDF reports for inverters with broken
modules. The PDF document will include the sum of the losses due to the module
breakage and the list of individual broken modules.
FR 4.14. User can see a map view of the whole power plant. User should be able to
navigate in the map using click-and-drag functionality.

Module detail

FR 4.15. User can access a detail page of each module. The detail page can be accessed
from the listing specified in FR 4.10.
FR 4.16. The module detail page shows a power output chart based on the current
module state in an isolated circuit.
FR 4.17. The module detail page shows a power output chart based on the healthy
module state in an isolated circuit.
FR 4.18. The module detail page shows the colorized thermal image for given module.

Inverter detail

FR 4.19. User can see a detail page of each inverter.
FR 4.20. The inverter detail page shows a listing of modules connected to the particular
inverter.
FR 4.21. The inverter detail page shows a power output chart based on the current
state.
FR 4.22. The inverter detail page shows a power output chart based on the state if
none of the modules were broken.

Module configuration

FR 4.23. Internal user is able to create new and edit existing module schema definitions.
FR 4.24. Internal user is able to delete existing module schema definition if it is not
assigned to any power plant.
FR 4.25. Module types are shared across power plants, so that they do not have to be
redefined for every power plant.

27

4. Software requirements .
Power plant configuration

FR 4.26. External user is able to set basic properties for a power plant. These include
. Cost of single module replacement
. Electricity resale value

FR 4.27. External user is is able to set the address information for a given power plant.
FR 4.28. External user is able to set the expected lifespan of the power plant. In the
form of setting the start of life and end of life dates.
FR 4.29. Each power plant will be assigned to one module type. Internal user is able
to change the assignment. The list of available module types has to be searchable.

Simulation

FR 4.30. Internal user is able to run the simulation after the upload of the relevant
SQLite file specified in FR 4.8.
FR 4.31. Internal user is able to manually rerun the simulation after changing settings
specified in FR 4.29.
FR 4.32. When a simulation is running, Internal user should be able to see the progress
of the simulation. The interface should automatically refresh the displayed progress.

4.2.3 Non-functional requirements

NR 4.1. The application can work with power plants with up to 100k modules.
NR 4.2. Data processing should not affect user interface responsiveness.
NR 4.3. Simulation result data should be stored, or transferrable to the original SQLite
database file, or available for export in the same format.
NR 4.4. The input SQLite database format is open for extension. The application
should not require any modification to support new columns in the SQLite database
file.
NR 4.5. The application should handle data inconsistencies and foreign key violations
in the SQLite database gracefully. Such data inconsistency in part of the data should
not block the simulation of the rest of the power plant.
NR 4.6. Simulation for a given power plant based on the input data should not take
more than 24 hours to complete.
NR 4.7. The application should be deployable to a publicly accessible virtual machine
or a set of virtual machines, given a list of IP addresses and SSH keys.

28

Chapter 5
Implementation

5.1 Architecture

The goal of the application architecture is to define a structured solution to develop
an application that meets all the functional and non-functional requirements defined
in Chapter 4 while optimizing the quality attributes such as performance, security,
manageability, and extensibility.

For this particular application, the requirements with the most significant impact on the
architecture are the scalability requirements to meet the time constraints for the simu-
lation and PDF generation process, the storage requirements for the SQLite files, and
platform limitations, as specified in NR 4.6, FR 4.12, NR 4.3 and NR 4.7, respectively.

The application is split into three components: a backend application, a frontend ap-
plication, and the Ngspice simulation service. The backend is the central part of the
application logic and is responsible for handling user requests, communicating with the
central database, scheduling asynchronous tasks, and retrieving their results. The exter-
nal services used include a message queue (RabbitMQ1), a database (PostgreSQL2) and
a storage server. The decisions behind choosing a particular technology are described
in the following paragraphs.

Figure 5.1 shows a schematic overview of the final system. Further decomposition of
individual components is explained in the later sections.

The backend server’s primary purpose is to serve user requests and send back responses.
It is not directly responsible for data processing and does not directly handle compu-
tationally expensive tasks. Its responsibility is also to authenticate and authorize the
user’s actions. It uses PostgreSQL as the primary data store. The PostgreSQL database
is used because a managed version is available at the faculty.

One of the most resource-consuming parts of the application is the Ngspice simulation
process. In order to achieve the required maximum execution time, as specified in
NR 4.6, it is necessary to scale the simulation part independently of the rest of the
application. While there are opportunities for caching and deduplicating the necessary
simulations, the architecture should be able to handle the worst possible scenario, that
is, with no deduplication. Therefore, the simulation process is extracted into a separate
service. This service will receive messages, process them by simulating the requested
simulation schema, and return the simulation results.

A message queue has been chosen for communication between the backend and Ngspice
service due to the ease of scalability of asynchronous message processing. This, however,

1 https://www.rabbitmq.com
2 https://www.postgresql.org/

29

https://www.rabbitmq.com
https://www.postgresql.org/

5. Implementation .

Figure 5.1. Architecture schema

imposes additional development overhead for tasks that would be simple to implement
in a blocking manner (e.g., a preview of output for schema as described in Section 5.4.8).
With a message queue, the application has to implement mechanisms for checking task
completion and retry policies, which would not be necessary in the synchronous variant.
In this case, the simplified scalability and operational benefits outweigh the increased
application complexity. The particular message broker used is RabbitMQ, due to a more
developer-friendly approach, when compared to the alternatives like Apache Kafka and
ActiveMQ [21].

Further non-standard architectural decisions (for a typical web application) were made
due to the use of SQLite storage for the power plant schema. It is desired to keep the
data in the original SQLite database, as that decreases the development costs, allows
for independent development cycles, and does not require schema updates when the
input file schema changes, as specified in NR 4.3. In practice, this means that to work
with the SQLite data, the application has to either load the whole database into the
local file system or access it on a network-mounted drive. Given that the network and
storage solutions were unknown until the deployment phase, it was decided that the
only component working with the SQLite database would be the backend.

5.1.1 Backend

The main purpose of the Backend part of the application is to expose an API for the
Frontend and enable users to perform actions. It is also responsible for authenticating
and authorizing the user actions. The request-response processing should not be delayed
by any computationally intensive tasks.

One such action that could significantly slow down the server is the generation of PDF
reports (as specified in FR 4.12). The PDF document has to be generated for each
module after the Ngspice simulation is run. This allows the user to download the PDF
documents instantaneously, as generation on the fly is not feasible. This generation also

30

. 5.1 Architecture

offers significantly fewer deduplication opportunities than for the Ngspice simulation
since the generated PDF needs to be dynamic for each module.

Another action that could impose a significant load on the server is the handling of the
events produced by the Ngspice simulation consumer. The Ngspice simulation consumer
will emit an event every time a simulation finishes. It is, therefore, desirable to scale the
handling of such events accordingly without affecting the processing of user requests.

Due to this, the service was split into three separately deployable and scalable artifacts:

. Backend server - server handling user requests

. PDF Generation consumer - consumer capable of generating PDF reports

. Backend NGspice consumer - consumer handling events produced by Ngspice service

This enables us to scale up or start the individual artifacts on a completely different
machine so that the request processing is not slowed down at all. It was kept as a part
of the backend service due to the need to access the PostgreSQL and SQLite databases.

5.1.2 Ngspice worker

The Ngspice service is not aware of any business logic. Its primary purpose is to run an
Ngspice simulation for a given netlist and output the result to the appropriate location.
It communicates with the rest of the system through a message queue. This allows
us to scale the workers independently on the rest of the application. For a better
understanding of the interaction, Figure 5.2 depicts the application interaction with
the service.

5.1.3 Frontend

The Frontend is a separate client application. It is the only part of the application
the user will directly interact with. The main task for this application is handling
communication with the backend. The technology used should allow for easy handling
of asynchronous tasks and rich user interactions.

5.1.4 Implications

As a result of the architecture decision, the simulation can be performed with minimal
performance requirements for the primary backend server. The sequential diagram in
Figure 5.2 shows the steps necessary to get the simulation result for a single module.

. The Backend initiates the generation by sending a message to appropriate the Rab-
bitMQ queue.

. The Ngspice consumer processes the message by simulating the appropriate Ngspice
schema, saving the simulation output to the Network Storage, and sending a message
to another RabbitMQ queue upon completion.

. The Backend Ngspice consumer consumes the message sent upon completion and
edits appropriate data in the PostgreSQL database.

This sequence is repeated for every module in the power plant. Each highlighted group
in the diagram can be scaled separately.

31

5. Implementation .

Figure 5.2. Simulation process sequential diagram

5.2 Implementation details

5.2.1 Code structure

Before creating any code, deciding how to organize it was necessary. A single
monorepository was used primarily due to the simplified dependency management,
organization, and better coordination between developers and simplified tooling
development [22]. The structure of the monorepository is the following:

deployment . Deployment tools
docs . Project documentation
nx .Root of the application code

apps . Individual applications
solar-backend .Backend application
solar-frontend . Frontend application
ngspice-consumer . Ngspice consumer

packages . Reusable packages

Note that this is not a complete directory structure of the repository.

All services are written in Typescript (the decision for each service is discussed in the
respective subsection.). TypeScript is a strongly typed programming language that is
a superset of JavaScript. It is the third most popular programming language [23] as of
2021.

The implications of this choice with regard to monorepository management is that it
enables the usage of tools specifically designed to work with Typescript-only monorepos-

32

. 5.2 Implementation details

itories. The tool selected for this task is NX1. The tool was selected mainly due to
experience from previous projects and relative popularity in the developer community.
At the time of writing, the official NX GitHub repository2 had 22.000 GitHub stars.

5.2.2 Backend

The backend service is implemented using Node.js with Typescript. The final decision
to use Node.js was due to the overall architecture of the application, where the backend
should ideally only process requests and schedule asynchronous tasks. This workflow
is well suited for Node.js due to the event-loop and low resource consumption relative
to other considered technologies. Due to the architectural decisions, the application
should be easily vertically scalable, so the single-threaded nature of Node.js should not
be an issue. The place where a potential bottleneck could be seen is with the usage of
SQLite database since all the database operations require CPU time from the process
performing the queries, which differs significantly from the commonly used databases
like PostgreSQL or Mysql, where the application only sends the queries to the database
server, and can wait for a response, without blocking the CPU. This might block the
event loop and cause delays in the application. This can be easily overcome by verti-
cally scaling the application or separating the functionality into separately deployable
artifact, if that ever causes issues, and was considered before choosing the technology.

The particular framework used is Nest.js3. It offers a reasonable level of abstraction and
a lot of the features known from frameworks in other languages, such as Dependency
injection, while simplifying the work by providing existing reference implementation.
It provides out-of-the-box support for microservices using numerous communication
technologies, including RabbitMQ.

The application is separated into multiple Nest.js Modules. A module is essentially a
grouping of controllers, services, and entities. It is an effective way to manage and mini-
mize dependencies between parts of a single application, as the module has to explicitly
declare so-called exports that can be imported into other modules. This provides clear
visibility into dependencies between individual functionalities of the application and
simplifies testing. The module hierarchy is depicted in Figure 5.3.

Figure 5.3. Module dependency graph

1 https://nx.dev
2 https://github.com/nrwl/nx
3 https://nestjs.com

33

https://nx.dev
https://github.com/nrwl/nx
https://nestjs.com

5. Implementation .
Pagination

All listing endpoints where the data growth is expected are implemented with pagina-
tion and filtering by default. Applications without proper pagination and filtering often
suffer from a significant degradation in user experience as the amount of data grows.

A generic pagination solution was implemented as a separate Nest.js Module. It allows
for a simple definition of a new paginated endpoint, ensures consistency for all such
endpoint shapes, and allows the building of generic solutions on the client side. Using
the relatively advanced options of type manipulation in Typescript, together with the
Typia library1 allows for type validation without libraries such as class-validator2 and
class-transformer3. It enables the developer to write a simple definition and generate
complex types, complete with input validation.

5.2.3 Ngspice worker

The Ngspice worker service is implemented using the same technologies as the Backend.
The code consists only of a thin wrapper that consumes RabbitMQ messages, calls
the Ngspice binary in a subprocess, and publishes other RabbitMQ messages. The
reasoning behind the decision to choose Typescript and Node.js is the same as for
Backend, with the added benefit that this service does not use SQLite database, so
there should theoretically be no CPU-bound tasks in the application itself. Its lifecycle
is the following:

. Receive message - The worker receives a message with an identifier and a Ngspice
netlist.

. Run simulation for given netlist - Compute the simulation using Ngspice.

. Save the results - Upload the graph data to shared storage.

. Notify - Emit an event, that the netlist has been simulated and uploaded.

To allow the execution of Ngspice in a subprocess, the instances of this service will be
run in a docker container with Ngspice installed, as described in Section 5.3.2.

5.2.4 Frontend

For a client application, the choice of technology was limited by the browser support.
This means primarily Javascript, or languages that are transpiled into Javascript. The
technology chosen for this project is Typescript.

React.js was chosen as the rendering library, as it was the most commonly used web
framework as of 2021 [24]. Login is required to access any part of the application,
so SEO or server-side rendering is not necessary. For this reason, only the client-side
React.js application was used without any server-side rendering.

1 https://github.com/samchon/typia
2 https://github.com/typestack/class-validator
3 https://github.com/typestack/class-transformer

34

https://github.com/samchon/typia
https://github.com/typestack/class-validator
https://github.com/typestack/class-transformer

. 5.3 Ngspice integration

The application uses react-router1 for route management, and has the following route
hierarchy:

/ . List of power plants
/plants/:plantUuid .Power plant detail page

/plants/:plantUuid/modules Power plant - list of modules
/plants/:plantUuid/inverters Power plant - list of inverters
/plants/:plantUuid/map .Power plant - map
/plants/:plantUuid/settings .Power plant - settings
/plants/:plantUuid/debugPower plant - internal generation statistics

/global . Global PV module settings
/global/substring/:substringUuid Substring detail page

/users . List of users
/users/:userUuid . User detail page

Authorization

The application supports role-based route display and role-based element display. In
practice, that means that certain routes, buttons, and forms are only visible to internal
users, such as the options to delete generated data.

API Client

The communication between the Backend and Frontend is done using REST API.
Typically, the calls from frontend would be done using the fetch API2, or a library such
as Axios3. The calls would be manually written and type-annotated on the client side.
This introduces zero coupling between the type systems on both sides but also increases
the surface for bugs, as there is no static analysis that would prevent the change of the
API shape on the backend side while it is being used. This results in an elevated need
for testing after such changes, which drives up the development costs.

As a part of this thesis, the API client is automatically generated based on the generated
OpenApi specification. This ensures that the request and response objects are correctly
typed, and breaking changes on any side prevent the build of the other application. The
OpenApi documentation process is described in detail in Section 5.5.2. The client is not
committed as part of the code and is automatically generated during the build process
or as part of the developer workflow for local development.

Architecture summary

The complete architecture schema, including the individual artifacts can be seen in
Figure 5.4.

5.3 Ngspice integration

Early on, it became apparent that relying on system-wide installation of Ngspice creates
significant friction. Researchers working on the project are using multiple platforms
(MacOS, Windows, various variants of Linux). Each of the platforms has component

1 https://github.com/remix-run/react-router
2 https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
3 https://https://axios-http.com

35

https://github.com/remix-run/react-router
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://https://axios-http.com

5. Implementation .

Figure 5.4. Architecture schema - complete

libraries installed in different paths, uses different newline delimiters, and other minor
nuances. This complicates the sharing of Ngspice schemas and makes the runtime
properties of each file dependent on the machine on which they were tested. It is
possible that if the engineer tests a schema on his machine, it will not work once it is
uploaded to the production server.

It is, therefore, desirable to have a standardized runtime environment for Ngspice that
could be shared and used by the whole team. It should behave the same regardless of
whether it is the production environment or it is run locally on the developer machines.

In order to be able to use Ngspice in our application, we need to be able to

. Generate Ngspice input

. Provide the necessary component libraries

. Execute the simulation

. Gather and convert the output

. Handle potential errors during the simulation

Two execution approaches were evaluated. They are described in the following sections.

5.3.1 WebAssembly

WebAssembly (WASM) is a binary instruction format for virtual machines and a viable
compilation target. It is designed to run with near-native performance while being
in a memory-isolated sandbox with explicit permission management. This provides
undisputed security benefits. Since WebAssembly is supported in most popular web
browsers, it is possible to run the same compiled library on the server and on the client.

The benefit of compiling Ngspice this way would be the decrease in the number of
external dependencies, as the output would be a single WASM binary that could be
executed from any supported environment.

36

. 5.3 Ngspice integration

The approach evaluated in this thesis compiles Ngspice to WebAssembly using the
Emscripten1 toolchain. Emscripten is a Compiler toolchain that uses LLVM as its
backend. It supports APIs such as pthreads and POSIX.

With such compiled binary, we would then be able to run it with appropriate runtime
environment. In the context of this thesis, the assumed runtime environment would be
the V8 engine.

Another added benefit is that it would allow Ngspice execution on the frontend, so
that users could test new schematics directly. Without this option, if the users wanted
to test any Ngspice schema, they would have generate the schema locally and test it
on their personal installation of Ngspice. This often result in numerous compatibility
issues when they later decide to run the schema against the server installation, because
the created netlists would usually depend on static libraries linked through filesystem
paths, platform specific paths, or other locally imported file paths.

The chain of events to generate the output would be the following:

. Program generates input file

. Calls the Ngspice WASM wrapper

. Redirects the stdout and parse the output

. Handles potential errors during the simulation

One minor problem with this approach is that since there is no persistent filesystem,
all the required component libraries need to be copied to the created web assembly
instance. The number of libraries might grow significantly in the future, and it is
desired to enable the users to upload their own libraries.

This approach worked well for smaller circuits, but the main drawbacks became visible
during later phases of the testing process, with the biggest one being the memory
limit of WebAssembly, which is currently at 4GB [25]. The memory limit became an
apparent issue for larger circuits (as low as hundreds of modules on a single inverter).
Other issues included the difficulties with multithreading. Ngspice uses openMP for its
parallelization, which posed significant issues during the compilation to WebAssembly.

Furthermore, runtime was 10 times slower than the native version for single-core runs,
which would further increase the project’s operational expenses, as more hardware
would be needed to provide the same functionality. Larger instances (thousands of
modules on a single inverter) could not be run at all.

This approach was abandoned as it would result in decreased reliability for larger in-
stances and the management of component libraries would defeat the purpose of easy
unified runtime on the client side, as if the libraries were not part of the distributed
binary, we would still need to ensure that client is using only the libraries available on
the server.

5.3.2 Native binary

Other approach it to utilize the native Ngspice binary. The simplest approach would
be to install the binary on the system and rely on that. It solves the memory and

1 https://emscripten.org

37

https://emscripten.org

5. Implementation .
multithreading issues from the previous approach, but makes the application deploy-
ment dependent on the version of the package installed on the system, as well as its
configuration.

To remove the dependency on the system it is running on, a docker image with Ngspice
installed is created, which will be used to run the part of the application that requires
Ngspice. This makes it independent of the underlying operating system. The overhead
of the docker container is minimal.

The flow of the program using native binary would be as follows:

. Program generates input file and stores it on local filesystem

. Executes the Ngspice binary in a subprocess

. Gathers and converts the output

. Handles potential errors during the simulation

The main benefit of this approach is that the final docker image can then be distributed
among the researchers for local schema testing, together with providing a standardized
runtime environment for the development and production environment.

5.4 User experience

User experience is one of the most important aspects of any application, as it directly
impacts the user’s satisfaction when using the application [26]. The understanding
of individual use cases and application screens is necessary to understand the user
experience, as each screen directly contributes to the overall usability, functionality, and
effectiveness of the application in facilitating the user’s goals. This section describes
a few selected use cases and screens for a better understanding of the implemented
application and evaluation of the overall application capabilities.

5.4.1 Power plant overview

After opening the application, the user is presented with a list of power plants. After
selecting a power plant, the first screen the user is going to see is the overview of the
power plant (Figure 5.5). This screen provides a quick overview of the power plant
state while providing the monetary value of the failures based on the currently selected
calculation model.

38

. 5.4 User experience

Figure 5.5. Power plant overview

5.4.2 Map

One of the most important views in the application is the map view (Figure 5.6). It
provides the user with a graphical representation of the power plant’s physical layout,
with a color annotation based on the state of the module. This provides an intuitive
way to explore the data and assess the patterns related to physical layout. The user
interface is designed to be intuitive and similar to other map applications. Users can
zoom in and out and pan across the map.

Users can also interact with specific modules to access detailed information and select
them. Once the modules are selected (Figure 5.7), the user can easily navigate to the
module detail (Figure 5.12) while keeping the selection state. This allows them to easily
cycle between modules to compare their results.

39

5. Implementation .

Figure 5.6. Map view 1

Figure 5.7. Map view 2

40

. 5.4 User experience

5.4.3 Power plant settings

Each power plant is saved with relevant metadata, such as address (Figure 5.8), that is
used primarily to visually assert the user that the correct power plant is selected, since
the naming scheme used for the power plant is not necessarily understandable for all
users.

Other metadata include the settings related to the power plant lifespan, which is crucial
for calculating the economy impact over time. Users can adjust this value to experiment
and see the impact on the overall economy of the power plant.

It is also possible to select different module types for the power plant (Figure 5.9) with
a single selection. The user can select from many available module types or request to
add a new module type from the researchers. This is currently not used by end users
since the primary power plant module type does not change, but it is a useful option
for experimentation.

Figure 5.8. Power plant metadata settings

Figure 5.9. Module type assignment

41

5. Implementation .
5.4.4 Power plant economy settings

In order to efficiently calculate the impact of the faults on the overall power plant
economy, it is necessary to give users a way to specify the exact economic conditions
for their power plant (Figure 5.10). General economy settings are available, while
three financial impact calculation strategies are available. One strategy assumes a flat
electricity buyout price over the whole lifespan of the power plant. This will probably
be used only as an initial example when presenting the data. For the majority of cases,
the Yearly strategy reflects the economic conditions. It allows the buyout price for each
year to be set separately over the lifespan of the power plant. For rare cases, when
custom calculation is necessary, it is possible to set a custom function.

Figure 5.10. Power plant economy settings

42

. 5.4 User experience

5.4.5 Detail pages

In order to explore individual failures, each module and inverter has an available detail
page with detailed graphs and a summary of the data.

For a module (Figure 5.12), the detail page shows the current state based on the
thermography data, compared to the state without a failure. For the current state,
images from the thermography and their schematic interpretation are displayed.

For an inverter (Figure 5.13), the current state is compared with the state without
any failure on all the connected modules. For the current state, the electric schema is
displayed, highlighting the individual module states with the appropriate color.

For both states, the result of the Ngspice simulation is shown in the form of a chart.
The most important data from the chart is the peak performance value, which is shown
in the table at the top of the respective page.

Figure 5.11. Module list

5.4.6 Listing pages

A method to quickly find the resources the user is looking for is crucial for good user
experience. In this application, the relevant searchable resources are the Inverters
and Modules. For this purpose, the listing pages are available, as can be seen in
Figures 5.14 and 5.11, respectively. The module listing supports filtering based on
the status, particular physical location, or the Inverter, while the Inverter listing only
supports filtering based on the status. With a single click, the user can navigate to the
respective detail page for each resource.

43

5. Implementation .

Figure 5.12. Module detail

44

. 5.4 User experience

Figure 5.13. Inverter detail

45

5. Implementation .

Figure 5.14. Inverter list

5.4.7 Report generation

The web application is useful for visual exploration and easy navigation, but for a lot
of mostly legacy reasons, PDF reporting is still the norm in the PV industry. For the
enterprise user, the function of generating and exporting PDF reports is, therefore, as
important as the rest of the application.

Application users can download a report for each module or inverter. They can either
download a report of a single module or inverter on the respective detail page (Fig-
ures 5.12 and 5.13 in the upper right corner of the page) or bulk download the mod-
ule/inverter reports in bulk on the respective listing pages (described in Section 5.4.6).
The structure of the reports for modules and inverters can be seen in Figures 5.15
and 5.16, respectively.

Implementation

In order to have a reasonable user experience when downloading the reports, especially
for bulk downloads, it is necessary to pre-generate all the data so that the user does not
have to wait for the generation, and the server could just return the pre-generatated
items. This results in a significantly better user experience, where the majority of time
is spent waiting for the transfer of the PDF documents.

Another not obviously complex, yet not an easy-to-solve problem this creates is the
actual item selection for the bulk actions. On frontend, the user has access to paginated
tables, so he usually sees only about 25 items on a single page. For bulk actions, the
user has the option to select all currently filtered items, only the current page, or select

46

. 5.4 User experience

Figure 5.15. Module report Figure 5.16. Inverter report

particular items. In the first case, the list of the affected items can potentially have
millions of items. The implemented solution, therefore, is to send the currently selected
filters, together with the individually selected items, to the backend, where the data is
accessible. The other possible approach commonly used is to only send the identifiers
for the bulk actions, but that approach is hard to scale for large datasets.

5.4.8 Module type configuration

New module types are being introduced to the market rapidly. This creates a need to
support adding new module types directly in the application so that the PV researchers
can add PV module types without any developer action. For this purpose, a simple con-
figuration screen was implemented (Figure 5.17). It enables the researchers to modify
the electrical properties, as well as the base electrical schema used for the simulation,
in case any non-standard configuration is needed.

As a means to minimize the required support with invalid schemas and misbehaving
simulations, a validation step was added before saving the schema. A test simulation
must succeed for the edited schema before saving it is allowed in the application. This
eliminates most of the manual user errors. This verification step is shown in Figure 5.18.

As an optimization for better user experience, a bulk upload option was added after
identifying the root data the researchers use for their representation of the modules. It
is possible to upload raw schematic files, and the system automatically parses them and
creates or edits module types in bulk, saving hours of work when compared to manual
creation in the application using the standard edit flow.

47

5. Implementation .

Figure 5.17. Module type configuration

5.4.9 Simulation management

The simulation of a power plant can take a significant amount of time (up to 24 hours,
based on NR 4.6). A screen, available to internal users, showing the current simula-
tion process with additional controls for the simulation was added and can be seen
in Figure 5.19. It primarily allows the researchers to reschedule the simulation and
regenerate PDF documents when the automatic scheduling is not enough (e.g. after a
manual schema update).

5.4.10 User management

Internal users can manage the access for all application users. For this purpose, a
page that lists all the registered users was added to the application. Each user has a
detail page, as can be seen in Figure 5.20, where the necessary management actions

48

. 5.4 User experience

Figure 5.18. Module type verification
49

5. Implementation .

Figure 5.19. Simulation management

are available. After registration, each user has to be verified by an already registered
internal user to prevent unmanaged access to the platform. A button for the verification
process can be seen in the upper right corner of the user detail page. It is also possible
to limit the user access to certain power plants by moving the power plants between
the Available Power Plants and Power Plants to Assign sections at the bottom of the
user detail page.

Figure 5.20. User detail

50

. 5.5 Documentation

5.5 Documentation

Documentation is an integral part of software development and should be one of the
outcomes of a software project.

Technical documentation plays a crucial role during project handover and future main-
tenance and development. User documentation should be available and should answer
the user’s question of how to perform certain actions.

5.5.1 Technical documentation

Developer documentation

To simplify new developer onboarding and to help with understanding the codebase
and related developer processes, a comprehensive developer documentation was com-
posed. This documentation is in the form of Markdown1 documents with a hierarchical
structure. It guides the developer through the process of setting up the repository
on a new machine and documents the necessary steps to successfully commit to the
codebase, such as linting and automatic code generation setup. This documentation
can be found in the docs folder as part of the repository to eliminate any additional
deployment steps.

OpenAPI

Formerly known as Swagger, OpenAPI is a specification for building APIs, focusing on
machine-readable interface files. These files, typically in YAML or JSON format, outline
the structure, endpoints, parameters, responses, and authentication requirements of
an API. This detailed documentation clarifies API functionalities and standardizes its
interface, aiding seamless integration and interoperability.

In this project, OpenAPI specification is automatically generated from the Backend
code. It provides clear documentation for future project developers and enhances au-
tomated type-checking across the whole application.

Based on this specification, an API client is automatically generated for the Frontend
application. This ensures that if a breaking change was introduced in any part of the
application (e.g., changing the shape of the API, invalid usage of the API on Frontend),
the type system would not transpile the code, and the programmer would have to fix
the issue, instead of the error being discovered at runtime. The specification can also
be used for manual API testing through tools such as Postman2 and Insomnia3.

5.5.2 User documentation

Especially among enterprise users, it is necessary to have all the processes documented,
even though they may seem straightforward to the average user. Any interface change
that is not documented might pose a need for additional training on the customer
side. Documentation of the common actions performed by end-users was composed to

1 https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-
and-formatting-on-github/basic-writing-and-formatting-syntax

2 https://www.postman.com
3 https://insomnia.rest

51

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://www.postman.com
https://insomnia.rest

5. Implementation .
simplify the onboarding and training of new customers. This documentation consists
of the steps to accomplish the basic actions such users might need. Such as:

. The registration process

. Map navigation

. Explanation of the individual detail pages

Additional documentation was composed for the internal users, primarily focusing on
the management processes. The actions documented for this user group include:

. Adding new power plant

. Uploading a database

. Uploading images

. Managing simulations

. Module type management

With this documentation, the onboarding process for both user types should not pose
a problem even after passing the ownership of the software. Future maintainers of the
software will be able to simply document new processes as they are developed.

52

Chapter 6
Deployment process

This chapter elaborates on the deployment process, the tools used, and the selection of
the target platform.

It is necessary to evaluate the decisions made in this chapter in the organization’s
context and with the available maintenance capabilities in mind. There are numerous
highly sophisticated orchestration tools available that would accomplish all the dis-
cussed requirements, but the maintenance of these tools would impose a significant
overhead for the organization. The decisions made in this chapter were primarily made
with the intention to minimize the total cost of ownership of the deployment process
while keeping the required functionality.

6.1 Considerations

Among the most important considerations for the deployment platform is compliance
with the non-functional requirements introduced in Section 4.2.3. This section elabo-
rates on the most impactful ones in detail.

6.1.1 Peak performance requirements

For the expected application access patterns, the peak performance is going to be hit
during the calculation of new power plant data after uploading the relevant SQLite
database file. If we assume that a large power plant can have over three million indi-
vidual modules (such as the Longyangxia Dam Solar Park, China power plant, with a
capacity of more than 850MW)1, and we want to generate a PDF for each one. Each of
which takes approximately 1s (a conservative assumption to simplify the calculations).
PDF generation alone would have a serial runtime of:

Ts ≈ 3000000s ≈ 833h ≈ 34d

This is an unreasonable amount of time for anyone to wait if the application had to
perform this operation sequentially.

It was decided that the maximum time for the generation phase of such a large power
plant is about 12 hours. (The strict requirement introduced in the non-functional
requirements NR 4.6 sets this limit to 24 hours. The 12-hour strict limitation is in-
troduced here as a means to improve the worst-case user experience, even though it is
not required based on the requirements alone). For a great user experience, we would
ideally want to process the whole power plant within 1 hour.

1 https://www.power-technology.com/features/the-worlds-biggest-solar-power-plants

53

https://www.power-technology.com/features/the-worlds-biggest-solar-power-plants

6. Deployment process .
This gives us the necessary speedup of at least:

S = Ts

Tp
= 3000000

43200 ≈ 70

Where Ts is the serial runtime, and Tp is the parallel runtime in seconds. That means
we would need at least 70 parallel processors to complete the task in a reasonable time.
This is a simplified calculation which disregards any potential overhead in a real-world
scenario.

6.1.2 Load characteristics

The primary requirement for the application is that it has to be able to serve requests
continuously without stopping. This can be handled by a single machine using approx-
imately 0.1 CPU cores with 256Mb of RAM, as the request count is expected to stay
in the single-digit numbers even during peak load.

The computationally intensive load is expected to burst when new data is uploaded.
This will typically be a few times in the lifetime of a power plant, but it does require
a huge amount of computing power for completion in a reasonable timeframe. We can
assume that new power plant data will be uploaded once a month.

The assumptions introduced above give us a clear understanding of the computational
resources necessary to operate the platform while meeting user expectations.

6.1.3 Durability

The majority of application data will be stored in a PostgreSQL database, together
with images and simulation results stored on a filesystem, and further data will be
temporarily stored in messages in exchanges.

For production usage, all of these data stores need to be properly backed up. In the
case of managed solutions, the backup and disaster recovery process is handled by the
service provider.

For self-hosted PostgreSQL, the backup process could either be solved by a near real-
time replication or periodic snapshots of the database [27], Both of which require a
proper maintenance and backup data validation. Such maintenance is not feasible,
as it would have to be done by the research team. For the self-managed file system
backups, the imposed maintenance is not acceptable as well. For the RabbitMQ, the
disaster recovery process is outside of the capabilities of the future maintainers as well.

Therefore, the only feasible solution is the one where all three services are managed by
the infrastructure providers, and the backups and disaster recovery responsibilities are
delegated.

6.1.4 Maintainability

The deployment platform has to be chosen so that faculty full-time employees can
manage it without problems or any additional training requirements.

The faculty currently operates a set of computational clusters, together with a set of
managed services, such as managed PostgreSQL and S3-like storage solutions.

54

. 6.2 Infrastructure

After discussions with the infrastructure providers, a solution that met all the com-
putation requirements while being maintainable was introduced. Since there is an
established process of managing virtual machines (VMs) and physical servers in the
cluster, the feasible solution included the usage of a VM or a dedicated server.

6.2 Infrastructure

As discussed in Section 6.1.4, the feasible solution included a VM or a Dedicated server.
After evaluating the available options for both, the most appealing solution consisted
of:

. Single VM for the Backend server

. Dedicated server for Ngspice consumers and other Backend artifacts

. Managed version of PostgreSQL

. Managed version of RabbitMQ

. Network attached storage

Due to the operational delays and other external factors, the final solution was changed
to the following:

. Dedicated server for Backend server, Ngspice consumers, and other Backend artifacts

. Managed version of PostgreSQL

. Network attached storage

For this deployment, a single dedicated server was provided to host the application.
The specification includes 128 CPUs and 256GB of RAM. The resources should be
more than sufficient for the intended workflow. As a result of this choice, all the
application components are deployed on this single machine.

This could, in theory, mean that a significant load on the simulation could deplete
all the available resources for the request processing part, therefore not meeting the
non-functional requirement NR 4.2. Due to the significant cost of acquiring new infras-
tructure and the minor probability of such a thing happening, it was disregarded after
thorough discussions with the stakeholders.

Another implication of this decision is in direct conflict with the requirements intro-
duced in Section 6.1.3. In this case, the RabbitMQ instance has to be self-hosted on
the dedicated server. Due to the imposed overhead, the backup and disaster recovery
process for the RabbitMQ component has been disregarded. Instead, an option to re-
generate all the messages that could possibly be lost in the event of a failure, was added
to the application. This allows the researchers to reinitialize the RabbitMQ node and
resume the operation with a single click of a button in the application.

The deployment diagram of the system can be seen in Figure 6.1. Please note that the
individual components are not split into individual artifacts, since all of the artifacts
will be deployed on a single machine.

6.2.1 CPU utilization evaluation

With the deployment platform specified, it is possible to calculate the utilization of
resources based on the expected usage. For such calculation, we assume the size of

55

6. Deployment process .

Figure 6.1. Deployment diagram with exposed port numbers

a power plant ranges from 5000 modules to 3000000 modules, with the median being
50000 modules, calculated once a month.

This means that the required compute time for the application is going to be approxi-
mately

. 267840 compute-seconds per month for serving requests

. 50000 compute-seconds per month for report generation

With the dedicated server provided and a single median power plant calculated each
month, the average CPU utilization will be:

E ≈

Useful CP U time︷ ︸︸ ︷
267840 + 50000
128 ∗ 2678400︸ ︷︷ ︸
T otal CP U time

= 317840
342835200 ≈ 0.09%

If we assume that a single largest possible power plant will be calculated each month,
the average CPU utilization will be:

E ≈ 267840 + 3000000
128 ∗ 2678400 = 3267840

342835200 ≈ 0.95%

This assumes that there will be only one application running on the server. The used
server was deployed with the plan that there would be more applications running on it
in the future. Therefore, this number might vary significantly based on future develop-
ment.

6.2.2 Additional services

The deployed system consists of the components deployed as a part of this thesis, as
well as all the used resources provided by third parties.

56

. 6.3 Continuous integration

Network filesystem

A network filesystem was provided by the infrastructure team and was already mounted
to the provided dedicated server. Therefore, any management related to the underlying
server or the filesystem itself is delegated to the infrastructure team. The application
can access the filesystem as if it were a local filesystem.

PostgreSQL

A managed version of PostgreSQL was provided by the faculty infrastructure team.
The responsibilities for managing the database cluster are, therefore, delegated and
not part of the deployment process. The application can use the database as a service
without worrying about the underlying management.

RabbitMQ

As discussed in Section 6.2, no managed RabbitMQ instance was provided. The solu-
tion is currently to use a single-node dockerized version of RabbitMQ running on the
provided dedicated server. Given the usage patterns for this particular application and
the fault tolerance for the long-running bulk actions, it is not expected to become an
issue in the future.

6.3 Continuous integration

GitLab CI/CD1 was used because the organization relies entirely on Gitlab.

The standard process for continuous integration would be to run a pipeline that would
trigger automatic build and testing of the pushed code.

Due to the organizational policies, it is forbidden to run docker-in-docker on the pro-
vided runners, so we are unable to build images in the integration pipeline under the
current policies.

Other options could be to use self-hosted runners or third-party services. Using third-
party services is not feasible, as the faculty approval process was not reasonable to
accomplish during the time window provided for this thesis. Setting up self-hosting
runners would be a viable option, but from a long-term perspective, it would increase
the project’s long-term maintenance while not providing many benefits compared to a
local pre-commit hook, given the infrequent updates planned in the future, so it was
discarded as well.

As a result of the policies in effect, the project ended up not using continuous integra-
tion, as the necessary communication with the IT department was not feasible as part
of this thesis.

6.4 Continuous delivery

The standard process for Continuous Delivery would be to use an already built image
from the Continuous Integration phase or to build a new image and switch the image
deployed to the latest one as part of the configuration on the deployment platform.

1 https://docs.gitlab.com/ee/ci

57

https://docs.gitlab.com/ee/ci

6. Deployment process .
Since there is no way to build docker images directly in the pipelines, we opted for
a non-standard solution. The deployment process is managed using Ansible, and the
steps are following:

. Connect to the target server

. Verify the docker network setup

. Build all of the artifacts one-by-one, tagging them accordingly

. Execute pending migrations

. Stop the old version of services and start the latest version

. Start new application version

Due to the stopping and starting of the services, a short downtime happens. Typically
it is less than 3s, according to the performed empirical tests.

Zero downtime updates were considered, but due to increased maintenance, they were
disregarded. The application usage will be sparse and the frequency of deployments
will not be enough to justify the development time spent on this solution.

Standard deployment platforms, such as docker-swarm/Kubernetes, have zero-
downtime deployments solved by default. This is achieved by first scaling up the
new version of the service, then redirecting all the traffic and stopping the original ser-
vice as the last step. These options were disregarded, as they would impose additional
knowledge requirements on future maintainers while not providing a justifiable benefit.

6.5 Deployment tools

The runtime environment on the target machine is a plain docker daemon. Docker
swarm was evaluated, but due to the increased complexity, the future maintainers
disregarded it.

6.5.1 Ansible

At its core, Ansible1 is an open-source automation engine primarily designed for config-
uration management, application deployment, and task automation. Through modular
playbooks and declarative language syntax, configuration tasks are executed and should
be idempotent, mitigating the risk of configuration drift.

Developed by Red Hat, Ansible operates on agentless architecture, distinguishing itself
from traditional configuration management tools. This agentless nature alleviates the
need to install client software on managed nodes, thereby simplifying the setup process
and reducing overhead.

1 https://github.com/ansible/ansible

58

https://github.com/ansible/ansible

. 6.6 Local development

For the deployment process of this particular application, Ansible is used to declara-
tively

. Setup the networking

. Clone a new version of the repository

. Build new images

. Start docker containers

It should be possible to run exactly the same Ansible script against a different ma-
chine and end with the same application deployment. This disregards any additional
configuration needed on the infrastructure side.

6.6 Local development

For local development, docker-compose1 is used. This ensures that the environment is
as close to production as possible, apart from the network topology. The applications
are run in development mode, which enables features like debugging and hot-reloading.
It also lets developers run the same configuration on any machine without the need to
install specific software versions, further reducing new developer onboarding overhead.

1 https://docs.docker.com/compose

59

https://docs.docker.com/compose

Chapter 7
Conclusions

The primary outcome of this thesis is a fully functional web application for the analysis
of data from drone-based thermography of photovoltaic power plants, integrating the
Ngspice circuit simulator for advanced assessment of the impacts of various failures
within the photovoltaic system. Similar functionality is only available in one of the
commercial solutions, so its first-class integration is a unique offering.

The resulting system consists of a React.js client application and multiple backend
services built with Node.js. Asynchronous processing is enabled by multiple RabbitMQ
consumers. Together with an automated deployment process, the application will serve
as a core platform for future development of thermography analysis software at the
IMR at CIIRC, CTU in Prague.

The initial step consisted of the introduction to the problem domain and analysis of
existing solutions in the form of a competitive analysis. The analysis provided valuable
insights into the existing market and allowed for the identification of common features
and potential improvements.

A specification for the software was then composed, aided by the insights gained by the
competitive analysis. The specification required significant cooperation with domain
experts. Which, in turn, required a clear definition and mutual understanding of the
business goals and added value of the built software. Based on the specification, a clear
definition of software requirements and the expected capabilities of the final application
were composed.

The composed software requirements were then used to guide the software design pro-
cess and ensure that all critical aspects of the application were considered and addressed.
The design phase involved creating architectural plans for the software and selecting
appropriate technologies for each software component. The final architecture enables a
scalable solution to the presented problem.

The implementation phase consisted of writing each software component based on the
application architecture plan. This phase consisted primarily of coding the application,
integration of the necessary libraries and frameworks, and testing to ensure proper
function and performance. User documentation was created to simplify the onboarding
of new customers.

With the working software, it was then possible to specify the platform requirements
and design the automated deployment process. This primarily included the selection of
the platform itself based on the available resources and the writing of the deployment
scripts to support the automated deployment process. After the software deployment
was stable, it was possible to upload data and execute a simulation on the production
server. Access was given to testing users to explore the new software and find potential
issues.

60

. .
The resulting software is, therefore, the product of extensive research and competitive
analysis in the target domain of PvPs, cooperation and collaboration with domain
specialists, and the combination of the gained knowledge with software engineering
expertise to build a product that addresses the specific needs and challenges of the
industry.

This thesis, along with the analysis and software developed, serves as a foundation for
further advancements in monitoring and predictive maintenance in the PV industry at
the IMR, at CIIRC, CTU in Prague.

While further development of the software is needed to provide a fully featured and com-
mercially competitive platform, the developed software serves as a feature-rich, scalable,
and extensible core for future development. A few of the most notable opportunities
for future development are the following:

. Among the primary considerations to further enhance the usability of the platform,
is the development of a mobile user interface. The current version primarily targets
desktop users, but the potential for enabling field usage of the application could
unlock further use cases of the application.

. Industry standardization and compliance play a critical role for the enterprise usabil-
ity of the application. One of the fields of focus can be ensuring that all the output
data are compliant with industry certifications.

. The enhancement of the electric schema editing functionalities on top of the map
layer can pose a significant improvement in the researcher’s workflow while saving
hours of time for each power plant.

These features were, however, out of the scope of this thesis and further demonstrate
the broad range of opportunities that lie in the successful combination of software engi-
neering expertise with related domain-specific knowledge to develop software with high
added value for the end users while enabling novel approaches in established industries.

61

References

[1] Scopito. Solar panel inspection software.
https://scopito.com/solar-pv-inspection-software. Accessed: 2024-05-20.

[2] Raptormaps. Raptor Solar platform screenshots.
https://raptormaps.com/products/solar-aerial-inspections. Accessed: 2024-05-
20.

[3] MapperX Global. MapperX: Solar PV panel inspection software.
https://mapperx.com/en/main-page. Accessed: 2024-05-20.

[4] Sitemark. Software for solar operation.
https://www.sitemark.com/solutions/solar-operation. Accessed: 2024-05-20.

[5] TheDroneLife. Above Surveying Solar Reporting.
https://thedronelifenj.com/drone-solar-inspection-software/. Accessed: 2024-
05-20.

[6] Carlo Del Don. Screenshot of Thermography desktop application. 2017.
https://github.com/cdeldon/thermography. Accessed: 2024-05-20.

[7] Starfos. Implementation of diagnostic and predictive maintenance for efficient con-
trol of photovoltaic powerplants using autonomous vehicles.
https://starfos.tacr.cz/en/projekty/TK03020144#project-main. Accessed: 2024-
05-20.

[8] Ing. Ladislava Černá, Ph.D. LDFS Report.
[9] Department of Electrotechnology, FEE, CTU in Prague. Implementation of di-

agnostics and predictive maintenance for efficient control of photovoltaic power
plants by autonomous means.
https://technology.fel.cvut.cz/diprefe/. Accessed: 2024-05-20.

[10] Intelligent, and Mobile Robotics Group. Autonomní vzdušný prostředek pro in-
spekci fotovoltaických elektráren. Report number: TK03020144 V1. Czech Insti-
tute of Informatics, Robotics and Cybernetics. Available at:
https://imr.ciirc.cvut.cz/uploads/Research/DiPreFE_popis_vysledku_V1.pdf,
Accessed: 2024-05-20.

[11] NGspice Project. NGspice: Open-source Spice Circuit Simulator .
https://ngspice.sourceforge.io/. Accessed: 2024-05-20.

[12] TheDroneLife. The Best Drone Solar Inspection Software for 2024 .
https://thedronelifenj.com/drone-solar-inspection-software/. Accessed: 2024-
05-20.

[13] Sitemark. Anomaly Loss Estimation — Sitemark Help Center .
https://support.sitemark.com/en/articles/5664646-anomaly-loss-estimation.
Accessed: 2024-05-20.

[14] Mohammadreza Aghaei. Unmanned Aerial Vehicles in Photovoltaic Systems Mon-
itoring Applications. In: 2014.

63

https://scopito.com/solar-pv-inspection-software
https://raptormaps.com/products/solar-aerial-inspections
https://mapperx.com/en/main-page
https://www.sitemark.com/solutions/solar-operation
https://thedronelifenj.com/drone-solar-inspection-software/
https://github.com/cdeldon/thermography
https://starfos.tacr.cz/en/projekty/TK03020144#project-main
https://technology.fel.cvut.cz/diprefe/
https://imr.ciirc.cvut.cz/uploads/Research/DiPreFE_popis_vysledku_V1.pdf
https://ngspice.sourceforge.io/
https://thedronelifenj.com/drone-solar-inspection-software/
https://support.sitemark.com/en/articles/5664646-anomaly-loss-estimation

References .
[15] Václav Beránek, Tomáš Olšan, Martin Libra, Vladislav Poulek, Jan Sedláček,

Minh-Quan Dang, and Igor I. Tyukhov. New Monitoring System for Photovoltaic
Power Plants’ Management. Energies. 2018, 11 (10), DOI 10.3390/en11102495.

[16] Nallapaneni Manoj Kumar, K. Sudhakar, M. Samykano, and V. Jayaseelan. On
the technologies empowering drones for intelligent monitoring of solar photovoltaic
power plants. 2018.
https://www.sciencedirect.com/science/article/pii/S1877050918310366. Inter-
national Conference on Robotics and Smart Manufacturing (RoSMa2018).

[17] Maximilian Lowin, Domenic Kellner, Tobias Kohl, and Cristina Mihale-Wilson.
From Physical to Virtual: Leveraging Drone Imagery to Automate Photovoltaic
System Maintenance. INFORMATIK 2021. 2021.

[18] Kuo-Chien Liao, Hom-Yu Wu, and Hung-Ta Wen. Using Drones for Thermal Imag-
ing Photography and Building 3D Images to Analyze the Defects of Solar Modules.
Inventions. 2022, 7 (3), DOI 10.3390/inventions7030067.

[19] David Hernández-López, Esteban Ruíz de Ona, Miguel A. Moreno, and Diego
González-Aguilera. SunMap: Towards Unattended Maintenance of Photovoltaic
Plants Using Drone Photogrammetry. Drones. 2023, DOI 10.3390/drones7020129.

[20] Giovanni Tanda, and Mauro Migliazzi. Infrared thermography monitoring of
solar photovoltaic systems: A comparison between UAV and aircraft remote
sensing platforms. Thermal Science and Engineering Progress. 2024, 48 102379.
DOI 10.1016/j.tsep.2023.102379.

[21] Alibaba Cloud. Message Brokers Revealed: Kafka vs. RabbitMQ vs. ActiveMQ.
https://www.alibabacloud.com/tech-news/a/message_queue/gugz0vw2oh-message-
brokers-revealed-kafka-vs-rabbitmq-vs-activemq. Accessed: 2024-05-20.

[22] Gleison Brito, Ricardo Terra, and Marco Túlio Valente. Monorepos: A Multivocal
Literature Review. ArXiv. 2018, abs/1810.09477

[23] Stack Overflow. Stack Overflow Developer Survey 2021 .
https://survey.stackoverflow.co/2021#section-most-loved-dreaded-and-wanted
-programming-scripting-and-markup-languages. Accessed: 2024-05-20.

[24] Stack Overflow. Stack Overflow Developer Survey 2021 .
https: / / survey . stackoverflow . co / 2021#section-most-popular-technologies-
web-frameworks. Accessed: 2024-05-20.

[25] MozDevNet. WebAssembly.memory() constructor - webassembly: MDN .
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/
Memory/Memory. Accessed: 2024-05-20.

[26] Marc Hassenzahl. Experience Design: Technology for All the Right Reasons. 2010.
[27] Gunnar (Nick) Bluth. An overview of PostgreSQL’s backup, archiving and replica-

tion. FOSDEM VZW. FOSDEM 2017. 2018.
https://doi.org/10.5446/41887.

64

http://dx.doi.org/10.3390/en11102495
https://www.sciencedirect.com/science/article/pii/S1877050918310366
http://dx.doi.org/10.3390/inventions7030067
http://dx.doi.org/10.3390/drones7020129
http://dx.doi.org/10.1016/j.tsep.2023.102379
https://www.alibabacloud.com/tech-news/a/message_queue/gugz0vw2oh-message-brokers-revealed-kafka-vs-rabbitmq-vs-activemq
https://www.alibabacloud.com/tech-news/a/message_queue/gugz0vw2oh-message-brokers-revealed-kafka-vs-rabbitmq-vs-activemq
https://survey.stackoverflow.co/2021#section-most-loved-dreaded-and-wanted -programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2021#section-most-loved-dreaded-and-wanted -programming-scripting-and-markup-languages
https://survey.stackoverflow.co/2021#section-most-popular-technologies-web-frameworks
https://survey.stackoverflow.co/2021#section-most-popular-technologies-web-frameworks
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Memory/Memory
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Memory/Memory
https://doi.org/10.5446/41887

Appendix A
Abbreviations

API . Application programming interface

B2B . Business to business

CIIRC . Czech Institute of Informatics, Robotics and Cybernetics

CTU . Czech Technical University

GIS . Geographic Information System

GPS . Global positioning system

IMR . Intelligent and Mobile Robotics Group

IR . Infrared

PP . Power plant

PV . Photovoltaic

PvP . Photovoltaic power plant

REST . Representational State Transfer

SEO . Search Engine Optimization

UAV . Unmanned aerial vehicle

UX . User experience

WASM . WebAssembly

65

Appendix B
Ngspice example schema - module

Module 3031
Vpv 2 0
* PowerLine 1
XModul3031 1 0 x20_3x20_3x20_3
Rload 2 1 0.01

* Substring ps_190m_24f_ss
.subckt ps_190m_24f_ss Isc Vpv+ Vpv-
Dpv Isc Vpv- Dcell
Rp Isc Vpv- {Rp}
Rs 1 Isc {Rspv}
Epv Vpv+ Vpv- 1 Vpv- {ndvac}
Fcell1 Vpv- 1 Epv 1
.MODEL Dcell D (Isr={Isrec*area} Is={Isdif*area} cjo={Cjorec/ndvac}
Rs={Rsrec*area*ndvac*3} XTi={XTi} BV={BV} Ibv={Ibv} VJ={VJ*ndvac}
M={Mrec} tt={ttrec} FC={FCrec} N={Nrec} Nr={Ndif})
.param area=154.63
.param Rsrec=0.00014e-6
.param XTi=5
.param BV=6*ndvac
.param Ibv=1e-5
.param VJ=1
.param Mrec=0.3
.param ttrec=50n
.param Cjorec=100p
.param FCrec=0.5
.param Nrec=2
.param Isrec=1.6n
.param Rspv=0.000009
.param Ndif=1.43
.param Rp=500
.param Isdif=0.001n
.param ndvac=20
.ends ps_190m_24f_ss

* Module x20_3x20_3x20_3
.subckt x20_3x20_3x20_3 PV_out+ PV_out-
D1 2 PV_out+ MBRB2545CT
Isc1 2 3 3
XSS1 3 PV_out+ 2 ps_190m_24f_ss
D2 4 2 MBRB2545CT
Isc2 4 5 3
XSS2 5 2 4 ps_190m_24f_ss

66

. .
D3 PV_out- 4 MBRB2545CT
Isc3 PV_out- 7 3
XSS3 7 4 PV_out- ps_190m_24f_ss
.model MBRB2545CT D(Trs1=0.002824 Tnom=25 Is=19.4n Rs=0.01 N=1 Eg=1.1
Xti=3 Cjo=2.05n Vj=0.4 M=0.41 mfg=GI type=Schottky)
.ends x20_3x20_3x20_3
.temp 25
.control
dc Vpv 0 46.2 1
print v(0) I(vpv) v(2)*I(vpv)
quit 0
.endc
.end

67

	Introduction
	Prerequisites analysis
	Photovoltaic systems
	Basic operations
	Components
	Failure types
	Thermography

	DiPreFE project
	Project assignment
	Introduction
	Flight
	Image data processing
	Electrical schema
	Output data format

	Ngspice simulator
	Basic concepts
	Usage
	Environment configuration

	Analysis of related work
	Methodology
	Academic work
	Related commercial solutions and independent research analysis

	Commercial usage analysis
	Scopito
	RaptorMaps
	MapperX
	Sitemark
	Above Surveying
	vHive
	GeoWGS84
	Other
	Summary

	Independent research
	Interuniversity Micro-Electronics Center
	Thermography framework

	Related academic work analysis

	Software requirements
	Requirements gathering
	Requirements based on the DiPreFE research project
	Requirements based on project context
	Requirements based on customer requirements

	Software requirement specification
	General definitions
	Functional requirements
	Non-functional requirements

	Implementation
	Architecture
	Backend
	Ngspice worker
	Frontend
	Implications

	Implementation details
	Code structure
	Backend
	Ngspice worker
	Frontend

	Ngspice integration
	WebAssembly
	Native binary

	User experience
	Power plant overview
	Map
	Power plant settings
	Power plant economy settings
	Detail pages
	Listing pages
	Report generation
	Module type configuration
	Simulation management
	User management

	Documentation
	Technical documentation
	User documentation

	Deployment process
	Considerations
	Peak performance requirements
	Load characteristics
	Durability
	Maintainability

	Infrastructure
	CPU utilization evaluation
	Additional services

	Continuous integration
	Continuous delivery
	Deployment tools
	Ansible

	Local development

	Conclusions
	References
	Abbreviations
	Ngspice example schema - module
	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Prerequisites analysis
	Photovoltaic systems
	Basic operations
	Components
	Failure types
	Thermography
	DiPreFE project
	Project assignment
	Introduction
	Flight
	Image data processing
	Electrical schema
	Output data format
	Ngspice simulator
	Basic concepts
	Usage
	Environment configuration
	Analysis of related work
	Methodology
	Academic work
	Related commercial solutions and independent research analysis
	Commercial usage analysis
	Scopito
	RaptorMaps
	MapperX
	Sitemark
	Above Surveying
	vHive
	GeoWGS84
	Other
	Summary
	Independent research
	Interuniversity Micro-Electronics Center
	Thermography framework
	Related academic work analysis
	Software requirements
	Requirements gathering
	Requirements based on the DiPreFE research project
	Requirements based on project context
	Requirements based on customer requirements
	Software requirement specification
	General definitions
	Functional requirements
	Non-functional requirements
	Implementation
	Architecture
	Backend
	Ngspice worker
	Frontend
	Implications
	Implementation details
	Code structure
	Backend
	Ngspice worker
	Frontend
	Ngspice integration
	WebAssembly
	Native binary
	User experience
	Power plant overview
	Map
	Power plant settings
	Power plant economy settings
	Detail pages
	Listing pages
	Report generation
	Module type configuration
	Simulation management
	User management
	Documentation
	Technical documentation
	User documentation
	Deployment process
	Considerations
	Peak performance requirements
	Load characteristics
	Durability
	Maintainability
	Infrastructure
	CPU utilization evaluation
	Additional services
	Continuous integration
	Continuous delivery

	Deployment tools
	Ansible
	Local development

	Conclusions
	References

	Abbreviations
	Ngspice example schema - module

