
F3
Faculty of Electrical Engineering

Department of Computer Science

Master’s Thesis

Scaling Up Deep Relational

Learning

Bc. Jan Neumann

janneumannprg@gmail.com

May 2024

Supervisor: Ing. Gustav Šír, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483732 Osobní číslo:Jan Jméno:Neumann Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:

Umělá inteligence Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Škálování hlubokého relačního učení

Název diplomové práce anglicky:

Scaling up Deep Relational Learning

Pokyny pro vypracování:
Deep relational learning [1] aims to generalize neural networks for learning from structured data, such as graphs, exploited
with the recently popularized Graph Neural Networks (GNNs) [2], all the way to complex structures expressible in relational
logic [3]. A salient feature of these approaches is that the sparse, irregular, and heterogeneous structure of the input data
is also reflected in the structure(s) of the respective neural computation graph(s), which makes it very difficult to accelerate
using standard parallelization of the common dense, regular, and homogeneous tensor operations exploited in classic
deep learning. The aim of this thesis is to explore ways for efficient acceleration of this unorthodox computation regime,
enabling to scale up to real-world structured datasets, such as those stored in relational databases.
1) Get acquainted with the principles of deep relational learning [1] and popular models such as GNNs [2].
2) Review existing deep (relational) learning frameworks [3] with focus on their respective acceleration practices [4].
3) Review the common principles of GPU acceleration, with focus on sparse, irregular, and heterogeneous computation.
4) Explore possibilities of the Graphcore's Intelligence Processing Unit (IPU) to address the respective limitations of GPUs
[5].
5) Based on your research from 1-4, propose possible ways for accelerating the compute regime of deep relational models.
6) Design and implement suitable model acceleration strategies within the relational learning framework of NeuraLogic
[3].
7) Demonstrate your advancements via deep learning directly from relational databases, beyond the currently explored
single-table setup [6].

Seznam doporučené literatury:
[1] Šír, Gustav. Deep Learning with Relational Logic Representations. IOS press, 2022.
[2] Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open 1 (2020): 57-81.
[3] Sourek, Gustav, Filip Zelezny, and Ondrej Kuzelka. "Beyond Graph Neural Networks with Lifted Relational Neural
Networks." arXiv preprint arXiv:2007.06286 (2020).
[4] Fey, Matthias, and Jan Eric Lenssen. "Fast graph representation learning with PyTorch Geometric." arXiv preprint
arXiv:1903.02428 (2019).
[5] Graphcore IPU documentation: https://www.graphcore.ai/developer
[6] Badaro, Gilbert, Mohammed Saeed, and Paolo Papotti. "Transformers for Tabular Data Representation: A survey of
models and applications." Transactions of the Association for Computational Linguistics 11 (2023): 227-249.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Gustav Šír, Ph.D. Intelligent Data Analysis FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2024 Datum zadání diplomové práce: 08.08.2023

Platnost zadání diplomové práce: 16.02.2025

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Gustav Šír, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I offer my sincerest thanks to my mum,
whom I am forever indebted to for her
neverending and unconditional love and
support, which she has always shown me
in all of my endeavors. I am also beyond
grateful to my supervisor, for tasking me
with such an interesting field and topic
to work on, and for his trust and support
along the way.

The access to the computational infras-
tructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics” is
also gratefully acknowledged.

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, May 24, 2024

v

Abstrakt / Abstract

Hluboké relační učení zevšeobecňuje
principy neuronových sítí na učení na
relačních datech, čímž umožňuje využít
přirozeně strukturální povahu tako-
vých dat (tvořenou např. cizími klíči
v relačních databázích) jako součást
samotného učení. Přestože takový pří-
stup má teoretický nevyužitý potenciál
přinést novou revoluci do strojového
učení otevřením dveří k přímému vyu-
žití jednoho z patrně nejpopulárnějších
formátů pro ukládání dat na světě,
podobné disciplíny hlubokého učení se
dosud nestaly příliš populárními, pa-
trně z důvodu obtížné škálovatelnosti
trénování takových neuronových sítí.
Navzdory tomu, grafové neuronové sítě
(GNN), samy o sobě podmnožinou hlu-
bokého relačního učení, se v posledních
letech staly relativně populárními a
úspěšnými pokusy o hluboké učení na
strukturálních (grafových) datech. Jme-
nované výzvy z hlediska škálovatelnosti
se jim podařilo do značné míry překo-
nat, hlavně díky schopnosti efektivního
využití grafických karet pro trénování,
které byly a nadále zůstávají jedním z
hlavních pilířů drtivé většiny úspěchů
strojového učení, které v posledních
letech vídáme. Tato diplomová práce
představuje „kompilátor” pro neuro-
nové sítě hlubokého relačního učení,
který úspěšně využívá principy efektiv-
ního učení grafových neuronových sítí
pro celou jejich nadmnožinu hlubokých
relačních sítí. Měření rychlostí běhů
jednotlivých trénovacích procedur vy-
chází pro představený kompilátor nejen
na stejné úrovni jako existující řešení
pro grafové neuronové sítě, ale mnohdy
vychází dokonce lépe, navzdory tomu,
že představený kompilátor je daleko
všeobecněji použitelný.

Deep relational learning generalizes
neural networks to relational data,
allowing to utilize the inherent struc-
tural nature of such data (the foreign
keys in relational databases) as part
of the learning itself. While this has
the theoretical untapped potential of
revolutionizing deep learning yet again,
allowing the utmost utilization of ar-
guably one of the most widespread
data storage representations for deep
learning, similar deep learning fields
have not gained significant traction yet,
most likely due to challenges with re-
spect to the scalability of training such
neural networks. Nonetheless, graph
neural networks (GNNs), themselves a
subset of deep relational learning, have
in recent years become an unexpect-
edly popular and successful endeavor
into deep learning on top of structural
(graph) data. Despite said challenges,
GNNs are relatively successful in terms
of scalability of their training, namely
through successful utilization of GPUs,
hardware that has been one of the
crucial components to the many recent
successes of deep learning as a whole.
This thesis introduces a compiler for
deep relational networks, which utilizes
the principles forming the backbone of
efficient GNN training for the full class
of deep relational learning architectures,
thereby opening the doors to efficient
deep learning on top of relational data.
Performance benchmarks show that in
terms of performance of the neural net-
work training procedure itself, networks
trained with the use of the compiler not
only match, but often exceed the perfor-
mance of existing solutions for GNNs,
despite the compiler being significantly
more generally applicable.

vi

Contents /

1 Introduction 1

1.1 Deep Learning Parallelization . . 2
1.2 Chapter Structure 4
2 Literature Review 5

2.1 Deep Learning on Struc-
tured Inputs 6

2.1.1 Dynamic Computa-
tional Graphs 6

2.1.2 Graph Neural Networks . . . 7
2.1.3 Graphcore IPUs 7
2.1.4 Deep Relational Learning . . 8
3 Graph Convolution Computation10

3.1 Terminology and Notation . . . 10
3.1.1 Graph 11
3.1.2 Graph Convolution 12

3.2 Vectorized Graph Repre-
sentation 13

3.3 Vectorized Image Convolu-
tion Computation 14

3.4 Vectorized Graph Convolu-
tion Computation 16

3.4.1 Gather/Scatter 19
3.4.2 Sparse Matrix Multi-

plication 20
3.4.3 Segment CSR 23
4 NeuraLogic 25

4.1 Syntax 25
4.2 Example 27

4.2.1 More Complex Examples . 29
4.3 Computational Graph

Structure 30
4.3.1 Rules as Computation-

al Graphs 31
4.3.2 Optimizations 32
5 Implementation 33

5.1 Vectorization 34
5.1.1 Computational Graph

Definition 34
5.1.2 The Input Computa-

tional Graph Operations . . 35
5.1.3 Node Group Vectorization . 36
5.1.4 Vectorized Input Order

Discrepancy 37
5.1.5 The Vectorized Com-

putational Graph 38

5.1.6 Note About Aggrega-
tion Nodes 40

5.1.7 Generalization 41
5.1.8 The Batching Problem . . . 42
5.1.9 Implementation Details . . 44

5.2 Optimizations 45
5.2.1 Basic Gather Opti-

mizations 46
5.2.2 Basic Scatter Opti-

mizations 46
5.2.3 Basic Linear Layer Op-

timizations 47
5.2.4 Advanced Linear Lay-

er Optimizations: Re-
ordering and Padding . . . 49

5.2.5 Advanced Linear
Layer Optimizations:
Advanced Reorder-
ing/Padding 50

5.2.6 Deduplication: Down-
ward Propagation of
Gathers 51

5.2.7 Upward Propagation of
Gathers 52

5.2.8 Unit Fact Processing 54
5.2.9 Further Optimizations

for More Complex Ar-
chitectures 54

5.2.10 The Full Implementation . 55
6 Results 58

6.1 Datasets 58
6.2 Graph Neural Networks 58

6.2.1 Performance 58
6.2.2 CPU Performance 63
6.2.3 Computational Graphs

– GCN Example 63
6.3 Relational Architectures 69
6.4 The Backward Pass 71
6.5 Graphcore Intelligence Pro-

cessing Units (IPUs) 72
7 Conclusion 76

A Complex Computational

Graph Example 79

B Code Guide 81

C Additional Figures 82

vii

D Glossary 93

References 94

viii

/ Figures

3.1 Row-Major Ordering 11
3.2 Column-Major Ordering 11
3.3 Implicit Pixel Lattice Graphs

in CNNs . 14
3.4 Vectorized Pseudo-Algorithm

For CNN Computation 16
4.1 Example NeuraLogic Com-

putational Graph. 28
4.2 Example NeuraLogic Edge

Predicate Effect on Compu-
tational Graphs 30

5.1 Vectorization Input Order
Discrepancy Example – In-
terleaving . 37

5.2 Vectorization Input Order
Discrepancy Example – Rep-
etition. 37

5.3 Vectorization Multi-Input
Gather Example 39

5.4 Computational Graph Vec-
torization . 41

5.5 Computational Graph
Vectorization Suboptimal
Grouping Example 43

5.6 NeuraLogic Recursive Rules
Vectorization Example 44

5.7 Basic Linear Layer Optimiza-
tion . 47

5.8 Basic Linear Layer Optimiza-
tion: Dimension 2 Repeating . . 48

5.9 Basic Linear Layer Optimiza-
tion: Padding. 50

5.10 Upward Gather Propagation
Optimization 53

6.1 GNN Forward Pass Perfor-
mance Comparison on GPU . . . 60

6.2 GNN Forward Pass Perfor-
mance Comparison on GPU
(Close-Up) . 61

6.3 GNN Forward Pass Perfor-
mance Comparison on GPU
(Best Result) 62

6.4 GNN Forward Pass Perfor-
mance Comparison on CPU . . . 64

ix

6.5 GNN Forward Pass Perfor-
mance Comparison on CPU
(Close-Up) . 65

6.6 GNN Forward Pass Perfor-
mance Comparison on CPU
(Best Result) 66

6.7 Example PyTorch Geometric
GCN Forward Pass. 67

6.8 Example Unoptimized Vec-
torized NeuraLogic GCN
Forward Pass 67

6.9 Example Optimized Vector-
ized NeuraLogic GCN For-
ward Pass . 68

6.10 Example Optimized Vector-
ized NeuraLogic GCN For-
ward Pass, With Absolute
Upward Gather Propagation . . 69

6.11 Example Relational Forward
Passs Performance Compari-
son on GPU (Close-Up) 70

6.12 Performance Comparison Be-
tween Scatter and Segment
CSR For Forward/Backward
Pass . 71

6.13 GNN Backward Pass Perfor-
mance Comparison on GPU . . . 73

6.14 GNN Combined Forward +
Backward Pass Performance
Comparison on GPU 74

C.1 GNN Backward Pass Perfor-
mance Comparison on CPU . . . 83

C.2 CNN Combined Forward +
Backward Pass Performance
Comparison on CPU 84

C.3 GNN Forward + Backward
Pass Performance Compari-
son on GPU . 85

C.4 GNN Forward + Backward
Pass Performance Compari-
son on GPU (Close-Up) 86

C.5 GNN Backward Pass Perfor-
mance Comparison on GPU . . . 87

C.6 GNN Backward Pass Perfor-
mance Comparison on GPU
(Close-Up) . 88

x

C.7 GNN Forward + Backward
Pass Performance Compari-
son on CPU . 89

C.8 GNN Forward + Backward
Pass Performance Compari-
son on CPU (Close-Up) 90

C.9 GNN Backward Pass Perfor-
mance Comparison on CPU . . . 91

C.10 GNN Backward Pass Perfor-
mance Comparison on CPU
(Close-Up) . 92

xi

Chapter1
Introduction

The efforts towards making computers learn to perform various tasks from experience
as opposed to giving them exact instructions have had meaningful initial success as
early as three quarters of a century ago, depending on when we start counting. The
vast majority of methods covered by the all-encompassing umbrella term “machine
learning” is designed to operate on input in the form of fixed-size 𝑛-dimensional dense
numeric arrays, often called tensors. No matter whether we are discussing methods such
as decision trees [1], support vector machines [2], or whether we turn to the most widely
discussed approach of the last decade – deep learning [3], which has allowed us to achieve
impressive results in domains such as image recognition, speech recognition or natural
language processing [4], the format of input data used remains relatively unchanged.
The conversion of e.g. image data to the feature tensor format is straightforward. The
same can be said with relative ease for ‘streaming’ data such as text (see e.g. [5]), video
(a sequence of images), or audio.
Unlike all of the above, real-life data is often non-sequential, structural and irregular;
in fact, arguably the most popular data storage format in enterprise applications is
relational database management systems (RDBMS) [6], dominating other data storage
systems in industries such as finance or medicine, as well as, e.g., in technologies used
on the Web. The keyword relational refers to the basis of the design model of RDBMS,
which is rooted in1 relational algebra [7], a theory for modeling, structuring and querying
data, proven to be equivalent in its expressive power to (domain) relational calculus [8],
based on first-order logic (FOL).
One of the main reasons why deep learning has enjoyed tremendous success in recent
years is that the training has successfully been massively parallelized and distributed
[9–17], specifically on the graphics processing unit (GPU) [13–17]. However, problems
arise for NN architectures operating on top of structural data, as they, in the general
case, do not inherently possess the properties needed for effective parallelization.
Dynamic NN architectures have long been proposed and studied for various applica-
tions [18–20]; however, they have not gained meaningful traction, possibly due to said
challenges in terms of scalability. An exception from recent years has been graph neural
networks (GNNs), designed to operate on top of graph data representations,2 based on
extending the concept of a convolution (and of convolutional neural networks – CNNs
[21]) to non-Euclidean domains (such as graphs) [22].
Since graphs, as a data representation, are a subset of relational data, the aim of this
thesis is to study the principles guiding efficient, parallelized GNN training, and to ex-
tend said principles onto relational data, and, by extension, onto deep relational neural

1 With relaxed requirements and additional features for the ease of use as a database, diverging a bit from
its theoretical roots.

2 In the case of GNNs, please make sure not to confuse the data on which they operate – graphs – with
their computational graphs, i.e., the representation of the algorithm itself as the composition of simple
operations. To make the distinction more apparent, the former are referred to as input graphs, and the
latter as computational graphs.

1

1. Introduction .

networks. To demonstrate that this is indeed possible, a Compiler for dynamic struc-
tural computational graphs will be introduced, where the input computational graphs
corresponding to the forward passes of arbitrary deep relational networks, granular to
the degree of individual neurons (i.e., graphs of many operations on individual scalar
values or small tensors, as such not trivially parallelizable, e.g., on a GPU), will be con-
verted into vectorized equivalents of significantly lower granularity, consisting of a low
number of highly parallelizable standard operations. Next, multiple optimizations as
part of the Compiler will be introduced, as well as a degree of flexibility in the resulting
computational graphs, allowing to reduce the overall runtime even further in exchange
for increased memory usage whenever possible.
In terms of performance, it will be shown that the subset of deep relational learning
that corresponds to GNNs yields not only equivalent, but often even better performance
in training when utilizing the Compiler, compared to using existing frameworks for
the training of GNNs (namely PyTorch Geometric [23]). What is more, it will be
demonstrated that the Compiler successfully applies these concepts onto the full range of
deep relational networks, operating on top of arbitrary relational data, such as data from
relational databases. This allows the parallelized training of arbitrary deep relational
networks.
This demonstration will be done on top of neural networks built using NeuraLogic
[24–25], an open source framework for the construction, training and inference of deep
relational learning networks, using the formalism of first-order logic, equivalent to rela-
tional data querying languages, for their construction. NeuraLogic trains its networks
exclusively on the CPU, and as such does not trouble itself with the task of vectorizing
their computational graphs. Together with the Compiler, the immense expressive power
of deep relational networks, as offered by NeuraLogic, is enhanced with the capabilities
of the parallelization of its training, including on specialized hardware, which until now
was accessible only to the graph neural network subset of the possible networks.

1.1 Deep Learning Parallelization

The ability to parallelize the training (as well as the inference) via the use of hardware
such as GPUs, has been crucial to the success that deep learning has had, as, e.g., train-
ing a neural network (NN) of a “mere” 60 million parameters on two consumer-grade
GPUs can take 5 to 6 days [26], and the same effort performed sequentially, e.g., on
consumer-grade CPU (central processing unit) hardware of the same retail price, would
likely require orders of magnitude longer training time. The necessity of doing so on
CPUs would thus have stumped any efforts of training large models. Thankfully, train-
ing deep learning models on GPUs has now long been widely accessible to the public
via open source frameworks such as TensorFlow [27] and PyTorch [28], and the most
demanding models of today, with billions or even trillions of learnable parameters,
are trained by industry leaders on clusters of 1000s of GPUs [29], thus widening the
performance gap achieved by massive parallelism even further.
The ability to parallelize existing deep learning models with ease is attributable to the
fact that both the training and inference algorithms commonly rarely consist of much
more than elementwise mathematical operations on large dense tensors (i.e., operations
on large consecutive blocks of memory where individual values can be processed inde-
pendently, and thus are parallelizable trivially), and matrix multiplication of large dense
tensors, which is now a well-studied and scalable task in terms of parallelization/dis-

2

. 1.1 Deep Learning Parallelization

tribution as well [30]. Furthermore, the computational graphs of such models (i.e., the
representation of the underlying computation – the algorithm – itself, in the form of a
composition of simple operations) are static, i.e., the same for any input data, since the
input data structure itself is regular and fixed. This lends an inherently trivial solution
to input batching, which is a necessary precursor to effective parallelization specifically
on the GPU.
Neural network architectures operating on top of structural data, on the other hand, do
not inherently have these properties: Firstly, they have dynamic computational graphs,
i.e., computational structures unique to the specific input. With respect to the GPU,
this poses an additional challenge, where batching the input-unique dynamic compu-
tational graphs together (i.e., aligning operations that are common together across
examples) is an NP-hard task in the general case [31]. Using a suboptimal solution to
this problem impairs the degree to which a given neural network can be parallelized on
the GPU, and in some cases even the optimal solution may not allow for full parallelism
at all times. Secondly, even when successfully batched and parallelized, additional data
shuffling/reordering operations may be needed due to the structural nature of the input
data, adding extra computational overhead compared to deep learning on plain feature
tensors, especially on the GPU.
GNNs have a trivial solution to the computational graph batching/alignment prob-
lem, as the graph convolution operations are typically defined as operations made on
arbitrary input graphs using static, hand-crafted computational graphs of vectorized
operations, which means that the task of batching is merely the task of modifying the
input, not the computation. This is done trivially, as the batching of input graphs
into a single input graph requires mere concatenation of tensors, or an equally simple
operation, depending on the exact input graph representation. Furthermore, graph
convolutions can typically be computed using operations with commonly available vec-
torized implementations, e.g., on the GPU. Aside from operations frequently used in
deep learning on plain feature tensors, this requires either matrix multiplication opera-
tions on sparse tensor representations, or principially equivalent operations in the form
of the so-called “gather”/“scatter” operations, discussed in detail in Chapter 3. This
means that the resulting computational graphs are in fact static, even on the GPU.
Even so, specialized hardware, such as the Intelligence Processing Units (IPUs) by
Graphcore, has been developed to achieve better parallelism when training models
such as GNNs [32–34], by introducing a hybrid between the highly flexible nature of
MIMD (multiple instruction, multiple data) architecture of CPUs, and the specialized
SIMD (single instruction, multiple data) architecture of GPUs. The benefit of this is
that the IPU allows for parallelization of computational graphs without their batching,
even when the computation differs across input examples; something that is impossible
to do on the GPU. This allows for parallelism in arbitrary NN architectures, and in the
case of GNNs, potentially allows for a different approach to their computation entirely.
Nonetheless, the IPU architecture itself has restrictions with respect to the dynamicity
of its computational graphs, as they must be fixed across batches, resulting in the need
for clever solutions to NP-hard batching problems of a different nature [32].

3

1. Introduction .

1.2 Chapter Structure

Chapter 2 goes into further detail about the vast array of existing machine learning
methods for relational data, as well as the deep learning on structural data in general,
GNNs, and deep relational learning.
Chapter 3 explains in detail the main principles underlying the efficient training of
graph neural networks, which will be utilized in later chapters for equivalently efficient
training of deep relational networks.
Chapter 4 offers an introduction to deep relational learning by introducing the Neu-
raLogic framework. The goal is to familiarize the reader with deep relational learning
architectures, and how their design, as well as their computational graph, relate to
relational data representations.
Chapter 5 introduces the main contribution of this thesis, i.e., the Compiler. In this
chapter, it will be thoroughly explained how the Compiler transforms the computational
graph into highly parallelizable equivalents, as well as the additional optimizations
that it applies to the resulting computational graphs in order to further improve their
performance.
Chapter 6 compares the performance of the resulting system on classical GNN archi-
tectures and commonly available datasets with PyTorch Geometric, and demonstrates
how it operates on more complex architectures as well. Some example computational
graphs are also shown in this chapter, so that the reader is equipped with some initial
intuition into how some of the most important configuration parameters of the Com-
piler affect the computational graph transformations, as well as how they affect the
resulting performance itself. Lastly, the Graphcore IPU is also discussed with respect
to the Compiler in this chapter.
Chapter 7 serves as the conclusion and discussion of possible next steps.

4

Chapter2
Literature Review

Learning on top of relational data representations has been the subject of study of a
field known as Inductive logic programming (ILP), a term coined in the early 1990s
as an intersection of inductive learning (i.e. machine learning) and logic programming
[35]; logic programming here referring to the use of FOL formalism for expressing the
input data (positive and negative examples), as well as some background knowledge in
the form of FOL rules. The goal of ILP then was to obtain an algorithm for inferring
hypotheses, i.e. the rules seemingly governing the positive/negative examples (ones that
are not necessarily provable with full certainty given the background knowledge, but
ones that cannot be proven incorrect either), to be able to classify and/or generate
further examples [36]. Soon after, Statistical relational learning (SRL) introduced the
modeling of uncertainty into the mix [37–38]. Unfortunately, approaches based on
symbolic inference, such as SRL and ILP, typically do not scale well, especially for
significantly large problems.
Despite the omnipresence of relational data in enterprise applications, as discussed in
Chapter 1, the business go-to approach for training machine learning models on such
data is not to use it in its original relational form. Instead, the industry standard is
to preprocess such data into numeric feature vectors/tensors. This technique is known
as propositionalization [39]. It is often used together with feature engineering, which
propositionalization itself can be viewed as a form of. The resulting data is typically
used with decision tree ensemble models such as XGBoost [40] to achieve state-of-the-
art performance, as they appear to perform better than recent deep learning models for
plain tabular data [41]; let alone relational data. Propositionalization-based solutions
have had meaningful commercial success [42–44].
Unfortunately, the use of methods such as decision trees or SRL over deep learning strips
the models of the latent representation learning capability inherent to deep learning,
which the unmatched success of deep learning in such a wide array of complex tasks can
easily be attributed to (among other reasons) [45]. What is more, propositionalization
is by principle inferior to finding ways to keep the data in its original, fully relational
form. This is because propositionalization is inevitably lossy, as in order to present
the data in flattened form, it must discard the relational data structure, and as such
simplify the data, potentially to a great degree. Technically speaking, it is possible to
perform lossless flattening of relational data (known as a universal relation), but only to
a limited depth, as the result may otherwise be infinite. Furthermore, doing so typically
leads to an exponential explosion of the size and complexity of the data, as well as to
a lot of repetition [46]. This is not only demanding in terms of memory usage, but also
for the model to be able to utilize the relationships within the data, which are now no
longer explicit, but rather implicit. Therefore, feature engineering is used in order to
(to a limited degree) restore the information that has been lost as a result of flattening
the data, while preventing the exponential blowup. However, feature engineering is
by nature driven mainly by heuristics, which makes it close to manual representation
engineering, i.e. the exact opposite of latent representation learning. Since proposition-

5

2. Literature Review .

alization is the go-to method nonetheless, tabular data (and by extension relational
data) has been labeled as “the last unconquered castle for deep learning” [47].

2.1 Deep Learning on Structured Inputs

The two most widely known and used deep learning frameworks/libraries for devel-
oping and training deep NNs are undeniably TensorFlow and PyTorch. Both the
aforementioned frameworks allow the user to define neural network architectures by
composing sets of pre-made, reusable array operations together into static computa-
tional graphs, done using programming interfaces exposed in the Python programming
language. In terms of training/inference itself, TensorFlow compiles the network ar-
chitecture down into an executable program beforehand, executing it on the given
hardware after [27], whereas PyTorch executes code on the GPU asynchronously, in-
terleaving GPU hardware operation execution with the eager execution of the Python
code [28].1

Irrespective of this architectural difference of the two frameworks, however, neither
is particularly concerned with any form of direct support for dynamic computational
graphs, as the networks are meant to be designed static, via the explicit use of operation
sequences based on array operations commonly available on standard hardware.

2.1.1 Dynamic Computational Graphs

For the specific purpose of training neural networks with dynamic computational
graphs, there have been solutions developed in the past, such as TensorFlow Fold [50]
or DyNet [51]. Both of these frameworks perform dynamic batching, i.e. they take the
individual computational graphs corresponding to the individual inputs, and convert
them into a single computational graph of a lower granularity, merging matching
operations from different computational graphs (corresponding to different input
examples) together. This batching algorithm is necessary because the computational
graphs of individual examples no longer batch together trivially, since they can have
arbitrary structures, and the batching is needed for parallelism on SIMD hardware
such as GPUs.
Both TensorFlow Fold and DyNet use heuristic approaches to do this, albeit different
algorithms are used in each respective framework. In the end, the resulting batched
computational operations are the same as those commonly available in e.g. PyTorch or
TensorFlow. For example, TensorFlow Fold facilitates the batched execution via the
use of TensorFlow’s gather and concat operations [27].
Despite the low popularity of either of the two frameworks (compared to GNNs at the
very least), efforts have continued to improve the on-demand batching algorithms, as
well as to keep the extra overhead of using these algorithms during runtime sufficiently
low, considering that the original algorithms are based on heuristics, and therefore
suboptimal [52–55, 31]. The task of optimal batching of arbitrary (computational)
graphs has been shown to be NP-hard [31], a property that should come as no surprise.

1 Newer versions of PyTorch add optional support for just-in-time (JIT) compilation, as well as tracing
compilation, operating closer to how TensorFlow operates, should the user prefer this [48]. Conversely,
TensorFlow now offers eager execution, in the spirit of the original PyTorch proposal, as well [49].

6

. 2.1 Deep Learning on Structured Inputs

2.1.2 Graph Neural Networks

After the initial proposal of a graph convolutional network (GCN) [56], many GNN pro-
posals similar in spirit, defining more complex graph convolution operators, have soon
appeared [57–62], all being available for use in e.g. the PyTorch Geometric library [23].
A very important property of GNN convolutions is that they commonly allow for being
represented directly as static computational graphs operating on top of arbitrary graph
input represented as a pair (𝑉 ,𝐸), where 𝑉 is an 𝑛+1-dimensional tensor of node values
of shape (|𝑉 |, 𝑚1, . . . , 𝑚|𝑉 |), and 𝐸 is either an edge index tensor, or an adjacency ma-
trix of the whole graph.2 Training e.g. a GCN does not require a dynamic computational
graph per se, but allows for a fixed computational structure (irrespective of the exact
values contained in the input tensors). Technically speaking, this can be done using
only the set of operations commonly used in deep learning on feature tensors, namely
(dense) matrix multiplication. However, in practice, the adjacency matrix of the input
graph is commonly a sparse matrix, and as such requires a specialized representation, in
order to prevent inefficient memory use and inefficient computation. A custom matrix
multiplication algorithm is also needed for this. Common sparse matrix representations
are discussed in Chapter 3, together with an equivalent alternative solution in the case
of the edge index input graph representation. Both such solutions are commonly used
e.g. by PyTorch Geometric, which supports either graph representation.
This means that complex approaches for dynamic batching are often not needed for
GNNs, as building a batch of inputs is simply equivalent to concatenating the individual
𝑉 tensors together, and either concatenating individual 𝐸 edge index tensors together as
well (after the 𝑉 tensor concatenation has been reflected in the individual indices in 𝐸),
or, in the case of adjacency matrices being used in place of 𝐸, building a block-diagonal
matrix from them [23]. In either case, the operation has linear (i.e. negligible) time
complexity, and is done ahead-of-time, prior to training.
Ultimately, it is possible that GNNs jumped ahead in terms of popularity over other
dynamic NN architectures precisely as a result of the simplicity with which they can
be built/trained/evaluated on commonly available hardware, using paradigms not too
different, nor significantly more complex, to those commonly already used for NNs for
non-structural data.

2.1.3 Graphcore IPUs

The Graphcore IPU, as already introduced in Chapter 1, offers a specialized hardware
architecture for training/inference of atypical neural network architectures. The design
of the IPU allows parallel computation of computational graphs without the need for
the alignment of their individual components, i.e. without dynamic batching as done
in [50–55, 31].
The computational paradigm of the IPU involves the scheduling of small computational
tasks onto a large array of independent processing units called tiles, interleaved with
centralized task scheduling and memory exchange operations [63].
The programming paradigm for the IPU requires defining the full computational graph
AOT, which must then be compiled AOT into the actual instruction sets for the individ-
ual hardware components; only then can the program be executed. This computational
graph must be static, but any operations within said graph that are truly independent

2 In the case of the input examples being individual small graphs, a full batch of examples is then a graph
consisting of the individual example graphs as its connected components.

7

2. Literature Review .

can be executed in parallel, such that as many tiles as possibly are utilized at any given
moment. The task of determining and scheduling operations based on this onto the
individual tiles is done as part of the AOT compilation. The advantage of this is that
operations can run in parallel irrespective of what they are (i.e. the IPU can perform
multiple different operations in parallel, unlike a GPU); the only requirement is that
they are independent (i.e. that the output of one is not needed as the input of the
other), but unlike on the GPU, the computational instructions can differ.
This computational graph can then be reused multiple times with different numeric
inputs.
This means that while the IPU does not require clever ways of batching the instructions
within a single batch, it benefits from (or needs, depending on the task) clever ways of
batching the data across batches. Since the computational graph must remain fixed for
a given program, then when multiple runs (for multiple batches of data) are performed,
it must be ensured that the computational graph can remain the same for each batch.
For neural network architectures with dynamic computational graphs, this often trans-
lates into NP-hard problems as well, albeit different ones than in the case of GPU
execution. For example, in the case of GNNs trained on the IPU, this means that
padding becomes needed for the 𝑉 input tensor. This is because the 𝑉 input ten-
sor must have the exact same shape across batches on the IPU, including the batch
dimension, meaning that additional padding must be used in the tensor for batches
where the total no. of nodes is lower than the maximum one. Therefore, the work in
[32] for the IPU introduces an advanced batching method across batches, finding the
optimal pairwise disjoint split of the input examples into individual batches, such that
the padding needed is minimal, i.e. such that the total numbers of nodes are roughly
the same for each batch. Note that such padding is not determined by the number of
examples (i.e. graphs), but by the number of nodes, which makes the problem of “batch
packing” (as named by the paper) an NP-hard problem as well [32].
Conversely, a GNN written e.g. in PyTorch Geometric, being executed on the GPU,
does not require the same batch size across different batches, as the size of the batch
dimension of the 𝑉 tensor is not important, even when the sequence of GPU operations
is kept the same across batches.

2.1.4 Deep Relational Learning

NeuraLogic [24–25] is one of the very few examples of deep learning being studied
specifically for relational data in connection with the broader structural deep learning
approaches discussed above. While many methods do find a link between deep relational
learning and GNNs [64–67], NeuraLogic comes from the opposite end of attempting to
bridge the gap between deep learning and the original work of ILP and SRL.
Specifically, NeuraLogic uses the FOL formalism for defining both the input data and
the NN architectures. However, for those uninitiated about FOL, NeuraLogic also sup-
ports working directly with datasets stored in RDBMS [68]. Direct use of RDBMS as
input for deep learning has also recently been explored by the same authors in [66],
utilizing both GNNs and the Transformer architecture [69] in PyTorch, instead of Neu-
raLogic, for training directly on data with relational structures. This work also provided
a set of helper tools for directly accessing RDBMS, and a publicly available directory of
relational datasets for benchmarking with other methods. A parallel, duplicate effort,
specifically for deep learning on relational data, appeared mere months later in [67].

8

. 2.1 Deep Learning on Structured Inputs

Nonetheless, NeuraLogic itself remains interesting outside of the research trend of ap-
proaching deep relational learning as an extension of GNNs. This is because NeuraLogic
allows designing not only typical GNN architectures using FOL, but also an entire class
of more complex architectures, which closely reflect the (often arbitrary) structure of
the input data, as designing such novel NN architectures becomes second nature using
the NeuraLogic FOL formalism.
As a result of this, unfortunately, the problem of dynamic computational graphs does
not escape NeuraLogic. NeuraLogic, however, has thus far not been concerning itself
with solving this problem, as the authors found the CPU computation, performed
directly on the computational graph built AOT, to be significantly faster than other
frameworks, including PyTorch Geometric, for the unbatched case [70–71]. However,
this should not come as a surprise considering that batching is often utilised precisely as
the main approach towards achieving parallelism in NN training. On the other hand,
it must be said in favor of NeuraLogic that batching has altogether been shown to
be unfavorable in terms of the generalization capabilities of the resulting NN models
[72–73], and as such, the CPU approach of NeuraLogic may in fact be the better choice.
Nevertheless, since NeuraLogic is able to, among other things, construct architectures
equivalent to commonly known GNNs [74], the resulting computational graph should
in principle be convertible to one similar to that returned e.g. by PyTorch Geometric
for the same NN, as such allowing for parallel computation, including for the full batch
case. In other words, in this special case at the very least, the dynamic graph batching
problem should have a simple solution, ideally applicable to other architecture instances
as well, allowing for simple batching of at least a subclass of NeuraLogic NNs.

9

Chapter3
Graph Convolution Computation

The computational graphs produced by the Compiler share key characteristics with
how GNNs are typically computed on the GPU, in both their batched and unbatched
form. The convolution operation will be explained first, followed by an explanation of
how e.g. PyTorch Geometric performs the computation.

3.1 Terminology andNotation

Before we proceed, we shall define some terminology and notation used later in the
text:
. A tensor is a 𝐷-dimensional array of scalar numbers, e.g. 𝗧 ∈ ℝ𝑚1 × 𝑚2 × ... × 𝑚𝐷 .
. The shape of tensor 𝗧 ∈ ℝ𝑚1 × 𝑚2 × ... × 𝑚𝐷 is a sequence 𝗦 = (𝑚1, 𝑚2, . . . , 𝑚𝐷) ∈ ℝ𝐷

denoting the individual dimensions of the tensor.
. A 1-dimensional tensor is also known as a vector.
. A 2-dimensional tensor is also known as a matrix.

To obtain a value from a tensor, we will be using the notation 𝗧(𝑖, 𝑗) instead of the
more commonly used 𝗧𝑖,𝑗 due to readability. Indexing starts at 1. For example, given
𝗧 ∈ ℝ𝑚×𝑛 as defined in Equation (1), it holds for 𝑖 ∈ {1, . . . ,𝑚} and 𝑗 ∈ {1, . . . , 𝑛}
that 𝗧𝑖,𝑗 = 𝗧(𝑖, 𝑗). This notation can be extended intuitively to any 𝐷-dimensional
tensor.

𝗧 =
⎡
⎢⎢⎢
⎣

𝗧1,1 𝗧1,2 · · · 𝗧1,𝑛
𝗧2,1 𝗧2,2 · · · 𝗧2,𝑛

...
...

. . .
...

𝗧𝑚,1 𝗧𝑚,2 · · · 𝗧𝑚,𝑛

⎤
⎥⎥⎥
⎦

(1)

For brevity, to denote the domain of real tensors of shapes 𝗦 = (𝑚1, 𝑚2, . . . , 𝑚𝐷), we
may write 𝕋𝗦 instead of ℝ𝑚1×𝑚2×...×𝑚𝐷 .
Furthermore, we may also use the above indexing notation to obtain tensors of lower
dimensionality from other tensors. For example, for a 𝐷 + 1-dimensional tensor 𝗥,
𝗥(1) is a 𝐷-dimensional tensor, 𝗥(1, 1) is a (𝐷 − 1)-dimensional tensor, etc. To index
along dimensions other than the leftmost, we will be using “−” to indicate the skipped
dimensions. For example, 𝗥(−, 1) is also a 𝐷-dimensional tensor. Furthermore, for any
index 𝑖, 𝗥(𝑖) = 𝗥(𝑖,−) = 𝗥(𝑖,−,−) = 𝗥(𝑖,−, . . . , −).
Specifically for the matrix 𝗧 from Eq. (1), e.g. 𝗧(2) is the second row of 𝗧,
i.e. 𝗧(2) = [𝗧2,1, 𝗧2,2, · · · , 𝗧2,𝑛], and 𝗧(−, 2) is the second column of 𝗧, i.e. 𝗧(2) =
[𝗧1,2, 𝗧2,2, · · · , 𝗧𝑚,2].
Let us also define the notation for tensor slicing. We will extend the notation of
indexing. For a given tensor 𝗥 = [𝗥(1), . . . , 𝗥(𝑚)], a slice of said tensor along the first

10

. 3.1 Terminology and Notation

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

𝗧1,1 𝗧1,2 𝗧1,3 𝗧1,4

𝗧2,1 𝗧2,2 𝗧2,3 𝗧2,4

𝗧3,1 𝗧3,2 𝗧3,3 𝗧3,4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Figure 3.1. Row-major ordering

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

𝗧1,1 𝗧1,2 𝗧1,3 𝗧1,4

𝗧2,1 𝗧2,2 𝗧2,3 𝗧2,4

𝗧3,1 𝗧3,2 𝗧3,3 𝗧3,4

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Figure 3.2. Column-major ordering

dimension from 𝑖 to 𝑗 (𝑖 < 𝑗) is 𝗥(𝑖 → 𝑗) = [𝗥(𝑖), 𝗥(𝑖 + 1), . . . , 𝗥(𝑗)]. This can be
applied to other dimensions as well (e.g. 𝗥(−, 𝑖 → 𝑗)), or to multiple dimensions.
Let us also define the notion of reshaping tensors. Since any tensor is essentially merely
a consecutive sequence of scalar values, any tensor 𝗥 ∈ ℝ𝑚1×..., 𝑚𝐷 can simply be
thought of as a vector 𝗥 ∈ ℝ𝑚, where 𝑚 = ∏𝑖∈1,...,𝐷 𝑚𝑖. This is known as flattening a
tensor. Moreover, you may also choose to flatten a tensor only partially, i.e. for select
dimensions only (keeping the remaining dimensions as-is), or the inverse operation of
un-flattening can be done, or a sequence of a partial flattening followed by a partial
un-flattening of a different subset of dimensions can be done as well. All such operations
are together given the umbrella term reshaping. For any computer representation of
a tensor, the underlying memory representation is typically a consecutive sequence of
scalars irrespective of the exact reshaping of the tensor, which means that it typically
does not change as a result of reshaping, only indexing of the tensor is affected. In
other words, reshaping is computationally nearly free; a non-operation.
However, we must also explain how the consecutive memory is accessed in order to
resolve ambiguity in how reshaping is understood with respect to indexing. This is
best understood on the simple example of a 2-dimensional tensor 𝗧 ∈ ℝ𝑚×𝑛 of shape
(𝑚, 𝑛): Given an index (𝑖, 𝑗) ∈ {1, . . . ,𝑚} × {1, . . . , 𝑛}, in the underlying consecutive
array/vector, the value corresponding to (𝑖, 𝑗) can either be found at position (𝑖 − 1) ∗
𝑛+𝑗, or at position (𝑗−1)∗𝑚+𝑖. The former is known as row-major ordering, and the
latter as column-major ordering. This is illustrated in Figures 3.1 and 3.2, respectively.
This idea extends to 𝐷-dimensional tensors inductively.
In line with how PyTorch, TensorFlow, and NumPy [75–76] libraries operate with
matrices and tensors, we will be using row-major ordering, depicted in Fig. 3.1. To
provide an additional example, this means that if a 𝐷-dimensional tensor 𝗥 of shape
(𝑎, 𝑏, 𝑐3, . . . , 𝑐𝐷) is reshaped e.g. to a (𝐷−1)-dimensional 𝗥′ of shape (𝑎 ∗ 𝑏, 𝑐3, . . . , 𝑐𝐷),
then the sub-tensor 𝗥(𝑖, 𝑗) is now found at 𝗥′(𝑖 ∗ 𝑏 + 𝑗), and this sub-tensor is, given
the reshaping, exactly the same, with the shape (𝑐3, . . . , 𝑐𝐷).
Lastly, + and ⊙ will be used to denote elementwise addition and multiplication on
tensors, respectively. The latter is circled in order to not be confused with linear
matrix multiplication.

3.1.1 Graph

Let us begin with a simple definition of a graph, i.e. the data structure that the graph
convolution operates on. Before we concern ourselves with how the computation is per-
formed on hardware, let us use a definition of a graph that abstracts any computational
details away from us for the sake of simplicity.
A graph is a triple (𝑉 ,𝐸,𝒯), where the following applies:
. 𝑉 is a set of nodes with some arbitrary identifiers, e.g. 𝑉 = {1, 2, . . . , |𝑉 |} ⊂ ℕ.
. 𝐸 is a set of (directed) edges, 𝐸 ⊆ 𝑉 × 𝑉.

11

3. Graph Convolution Computation .

. There exists a directed edge from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉 if and only if (𝑖, 𝑗) ∈ 𝐸.
. 𝒯: 𝑉 ↦ ℝ𝑚0×𝑚1×...×𝑚𝐷 is a mapping of the nodes to their corresponding

𝐷-dimensional tensors, all of which have the shape 𝗦 = (𝑚0, 𝑚1, . . . , 𝑚𝐷).

Let us also denote 𝔾𝗦 as the domain of all graphs with tensors of shape 𝗦.
Furthermore, let us denote 𝕋𝗦

𝑉 as the domain of all possible mappings 𝒯: 𝑉 ↦ ℝ𝗦, and
𝕋𝗦 as the union of all 𝕋𝗦

𝑉 over all possible 𝑉.
For brevity, given the shape 𝗦 = (𝑚0, 𝑚1, . . . , 𝑚𝐷), we will also write ℝ𝑚0×𝑚1×...×𝑚𝐷

as ℝ𝗦.

3.1.2 Graph Convolution

Mathematically speaking, a graph convolution 𝒪: 𝔾𝗦 × ℕ ↦ ℝ𝗦′ is a mapping that
takes a graph 𝐺 = (𝑉 ,𝐸,𝒯) and a node 𝑖 ∈ 𝑉 on input, and produces a new value
𝒪(𝐺, 𝑖) = 𝒯′(𝑖) ∈ ℝ𝗦′ for the node, taking into account not only the original value
of the node 𝒯(𝑖), but also other information contained in the graph 𝐺, including the
values 𝒯(𝑗) of other nodes 𝑗 ∈ 𝑉, as well as the graph structure given by 𝐸.
A better intuitive way to view this is that the graph convolution in fact produces a whole
new mapping 𝒯′ for the input 𝐺 = (𝑉 ,𝐸,𝒯), i.e. new value tensors for all nodes in
the graph. A perhaps even better intuitive view is that the graph convolution produces
a graph 𝐺′ = (𝑉 ,𝐸,𝒯′), with the same structure as the original graph, i.e. the same
sets of nodes and edges, but with new value tensors. The original definition allows the
simplest way of formally defining concrete convolutions, though.
For readability, let us also represent the mappings 𝒯 and 𝒯′ using sequences 𝘅 =
(𝘅1, 𝘅2, . . . , 𝘅|𝑉 |) and 𝘆 = (𝘆1, 𝘆2, . . . , 𝘆|𝑉 |), where for a node 𝑖 ∈ 𝑉, 𝘅𝑖 = 𝒯(𝑖) and
𝘆𝑖 = 𝒯′(𝑖).
So far, we have been defining what is a generic tensor operation on a graph, not neces-
sarily a convolution. A convolution typically has the general form shown in Equation (2)
for all 𝑖 ∈ 𝑉, given the following:

. 𝒩(𝑖) – the neighbors of node 𝑖 ∈ 𝑉, i.e. 𝑗 ∈ 𝒩(𝑖) if and only if (𝑖, 𝑗) ∈ 𝐸

.⨁ – any differentiable, permutation-invariant function, e.g. sum

. 𝜙, 𝛾 – any differentiable functions (e.g. multi-layer perceptrons)

𝘆𝑖 ≔ 𝛾(𝘅𝑖, ⨁
𝑗∈𝒩(𝑖)

𝜙(𝘅𝑖, 𝘅𝑗, 𝗲𝑖,𝑗)) (2)

The 𝗲𝑖,𝑗 term is only used in some convolutions, and allows e.g. assigning tensor values
to individual edges and involving them in the computation, thus extending the expres-
siveness of the graph data representation. This is something that we will not need for
the purposes of explaining relevant computational mechanisms, and we will offer similar
features differently via the relational representation. Therefore, from now on, we will
omit the term from the general graph convolution definition; it has only been included
here for the sake of completeness.
A typical example of a convolution would be that of the GCN convolution [56], defined
in Equation (3) (please note the enforced self-loops via the added summation term with
𝑗 = 𝑖).

12

. 3.2 Vectorized Graph Representation

𝘆𝑖 ≔ ∑
𝑗∈𝒩(𝑖)∪{𝑖}

(1
√deg(𝑖)⋅√deg(𝑗) 𝗪

𝑇 𝘅𝑗) + 𝗯 (3)

The matrix 𝗪 and the vector 𝗯 denote the learnable parameters. The deg(𝑖) function
is the degree (i.e. the total number of neighbors) of node 𝑖 in the graph, i.e. deg(𝑖) ≔
|𝒩(𝑖)|. The scaling factor 1

√deg(𝑖)⋅√deg(𝑗) will later be referred to as normalization.

The GCN convolution fits into the general graph convolution scheme by defining the
individual operations 𝜙, ⨁, 𝛾 respectively as shown in Equation (4).

𝜙(𝘅𝑖, 𝘅𝑗) ≔ (1
√deg(𝑖)⋅√deg(𝑗) 𝗪

𝑇 𝘅𝑗) + 𝗯

⨁ ≔ ∑
𝛾(𝘇) ≔ 𝘇

(4)

This assumes that ∀𝑖: 𝑖 ∈ 𝒩(𝑖). Should that not be the case, self-loops must be added
to the graph prior to execution. Alternatively, we may define 𝛾(𝘅𝑖, 𝘇) ≔ 𝜙(𝘅𝑖, 𝘅𝑖) + 𝘇,
but then we must remove all existing self-loops from the graph, otherwise the 𝜙(𝘅𝑖, 𝘅𝑖)
term would be added twice for nodes with self-loops. The normalization factor (i.e. the
deg(𝑖) function) should be updated accordingly as well.

3.2 Vectorized Graph Representation

Instead of the original representation of a graph (𝑉 ,𝐸,𝒯) ∈ 𝔾𝗦, we may use a repre-
sentation (𝗩, 𝗘), where 𝗩 and 𝗘 are both tensors. Let us assume that the original set 𝑉
has |𝑉 | total nodes, and 𝒯 has shape 𝗦 = (𝑚0, . . . , 𝑚𝐷), meaning that for every 𝑖 ∈ 𝑉,
each value tensor 𝒯(𝑖) is 𝐷-dimensional and has shape 𝗦. Without loss of generality,
let us also assume that 𝑉 = {1, 2, . . . , |𝑉 |}.
We may represent 𝑉 directly as a 𝐷+1-dimensional tensor 𝗩 consisting of the individual
values 𝒯(𝑖) for each 𝑖 ∈ 𝑉. Given that 𝑉 = {1, 2, . . . , |𝑉 |}, the value for 𝑖 ∈ 𝑉 can be
found at the 𝑖-th position along the first dimension of tensor 𝗩, i.e. 𝗩(𝑖) = 𝘅𝑖 = 𝒯(𝑖).
There are multiple ways to represent the set of edges 𝐸. Firstly, we may use the
adjacency matrix representation, which is a 2-dimensional tensor (i.e. a matrix) 𝗘 ∈
{0, 1}|𝑉 |×|𝑉 |, where (𝑖, 𝑗) ∈ 𝐸 if and only if 𝗘(𝑖, 𝑗) = 1, otherwise 𝗘(𝑖, 𝑗) = 0.
Alternatively, we may represent 𝐸 using a 2-dimensional edge index tensor (matrix)
𝗘 ∈ ℕ2×|𝐸|, which essentially corresponds to a sequence of the values in 𝐸. Therefore,
(𝑖, 𝑗) ∈ 𝐸 if and only if there exists a 𝑘 ∈ {1, . . . , |𝐸|} such that 𝗘(−, 𝑘) = (𝑖, 𝑗),
i.e. 𝗘(1, 𝑘) = 𝑖 and 𝗘(2, 𝑘) = 𝑗.
The edge index representation of 𝐸 imposes an ordering onto edges based on their
positions 𝑘 in the 𝗘 edge index tensor. This ordering can be arbitrary.
The general definition of a graph convolution, shown earlier in Eq. (2), can be redefined
using 𝗩 as shown in Equation (5).1

𝗩′(𝑖) ≔ 𝛾(𝗩(𝑖), ⨁
𝑗∈𝒩(𝑖)

𝜙(𝗩(𝑖), 𝗩(𝑗))) (5)

1 The neighborhood 𝒩 is still used instead of 𝗘 because the two different representations of 𝗘 would require
two different definitions, and we do not need to bother with this just yet.

13

3. Graph Convolution Computation .

Figure 3.3. Implicit pixel lattice graphs in convolutional neural networks (node neighbor-
hood highlighted in blue)

3.3 Vectorized Image Convolution Computation

Before we discuss how the vectorized computation of a graph convolution is performed in
the case of a general graph, we shall first discuss the special case of an image convolution,
i.e. the backbone of convolutional neural networks (CNNs), operating on top of images
(i.e. plain tensors) instead of graphs. This is important because it will help us under-
stand why computing graph convolutions is computationally a more complex task than
computing more classical, non-structural deep learning architectures, such as CNNs,
and what the differences are.
A CNN is typically not viewed as having anything to do with graphs, and an image
tensor is typically not understood as a graph, but we may view an image convolution as
a special case of a graph convolution, where the graph is a two-dimensional lattice (grid),
with diagonal edges and self-loops, where nodes correspond to pixels. This means that
the neighborhood of a pixel consists of the pixel itself and its neighboring pixels. This
results in a 3 by 3 pixel neighborhood, which is illustrated in Figure 3.3. Often, a 5 by 5
pixel neighborhood is used instead, which is only a slightly more complex lattice, with
edges 𝐸′ defined from the 3 by 3 lattice 𝐸 such that if (𝑖, 𝑗) ∈ 𝐸 and (𝑗, 𝑘) ∈ 𝐸, then
(𝑖, 𝑗), (𝑖, 𝑘) ∈ 𝐸′. Let 𝑛 be the width/height of the pixel neighborhood (e.g. 3 or 5).
Only the image tensor is needed on input, not the actual graph, as the graph structure
is fixed. In other words, the graph is essentially only implicit, and the convolution
operates directly on images.
The convolution, as used in CNNs, fits our definition of a graph convolution, as the
output of the convolution is a graph of the same structure, with different node values,
i.e. an image of the same dimensions, with different pixel values.2

For a given pixel 𝘆𝑖, a typical image convolution is computed as written in Eq. (6),
where 𝗪 is the learnable weights in the form of a tensor (of ∣𝒩(𝑖)∪ {𝑖}∣ total weights).

𝗩′(𝑖) ≔ ∑
𝑗∈𝒩(𝑖)∪{𝑖}

𝗪(𝑗) 𝗩(𝑗) (6)

While image convolution is typically not defined as in Eq. (6), we can afford to do
this because our general graph definition allows us to use the 𝒩 symbol. Commonly,
however, the image isn’t represented as a tensor of shape (|𝑉 |, . . .), but rather in a

2 You may notice that in actual CNNs, edge pixels are typically handled differently; either excluded, or
padded. This is ignored for now, for the sake of simplicity.

14

. 3.3 Vectorized Image Convolution Computation

reshaped form that maintains the image structure, i.e. with shape (ℎ, 𝑤, . . .), where ℎ
is the image height (i.e. number of rows of pixels), 𝑤 is the image width (i.e. number of
columns of pixels), and |𝑉 | = 𝑤 ∗ ℎ. 𝑊 is also typically in matrix form rather than in
vector form, with shape (𝑛, 𝑛). Given 𝗜 being the reshaped image tensor, 𝗪′ being the
reshaped parameter matrix, and 𝗜𝒩(𝑟,𝑐) ≔ 𝗜((𝑟 − ⌊𝑛/2⌋) → (𝑟 + ⌊𝑛/2⌋), (𝑐 − ⌊𝑛/2⌋) →
(𝑐+⌊𝑛/2⌋)) being the neighborhood slice of 𝗜 induced by the pixel at position (𝑟, 𝑐) (as
shown in Fig. 3.3), the convolution is typically defined as in Equation (7).

𝗜′(𝑖, 𝑗) ≔ ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) ⋅ 𝗜𝒩(𝑖,𝑗)(𝑥, 𝑦) (7)

Please note that for this to work, we need to ensure that the neighborhoods 𝒩(𝑖, 𝑗)
always form matrices of shape (𝑛, 𝑛). However, as you probably realize, this is not the
case for edge pixels. This can be solved e.g. by adding extra padding to the edges of
the tensor in the width and height dimensions, or by skipping the edge pixels entirely,
using only those pixels, the neighborhoods of which form (𝑛, 𝑛) matrices. We will be
doing the latter for simplicity, even though the output image tensor will have shape
(ℎ−𝑛+1, 𝑤−𝑛+1, . . .) instead of (ℎ, 𝑤, . . .). Therefore, we can rewrite the convolution
as in Equation (8).

∀𝑖 ∈ {1, . . . , ℎ − 𝑛 + 1}, 𝑗 ∈ {1, . . . , 𝑤 − 𝑛 + 1}:

𝗜′(𝑖, 𝑗) = ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) ⋅ 𝗜𝒩(𝑖+⌊𝑛/2⌋,𝑗+⌊𝑛/2⌋)(𝑥, 𝑦) =

= ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) ⋅ 𝗜(𝑖 + 𝑥 − 1, 𝑗 + 𝑦 − 1)

(8)

This allows us to rewrite the convolution further, using a formula for the whole output
tensor 𝗜′, as opposed to a formula for individual 𝗜′(𝑖, 𝑗). This is shown in Equation (9).

𝗜′ = ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) ⋅ 𝗜(𝑥 → (ℎ − 𝑛 + 𝑥), 𝑦 → (𝑤 − 𝑛 + 𝑦)) (9)

If it is not immediately clear why we can do this, perhaps Equation (10) will provide
intuition, where we merely replace the 𝗜′(𝑖, 𝑗) value assignment from Eq. (8) with a sum
over all 𝗜′(𝑖, 𝑗) values, and then simplify the resulting formula.

∑
𝑖∈{1,...,ℎ−𝑛+1}, 𝑗∈{1,...,𝑤−𝑛+1}

∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) 𝗜(𝑖 + 𝑥 − 1, 𝑗 + 𝑦 − 1) =

= ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

∑
𝑖∈{1,...,ℎ−𝑛+1}, 𝑗∈{1,...,𝑤−𝑛+1}

𝗪′(𝑥, 𝑦) 𝗜(𝑖 + 𝑥 − 1, 𝑗 + 𝑦 − 1)

= ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) ∑
𝑖∈{1,...,ℎ−𝑛+1}, 𝑗∈{1,...,𝑤−𝑛+1}

𝗜(𝑖 + 𝑥 − 1, 𝑗 + 𝑦 − 1)

= ∑
𝑥∈{1,...,𝑛}, 𝑦∈{1,...,𝑛}

𝗪′(𝑥, 𝑦) ∑
𝑖∈{𝑥,...,ℎ−𝑛+𝑥},𝑗∈{𝑦,...,𝑤−𝑛+𝑦}

𝗜(𝑖, 𝑗)

(10)

Please note the 𝑖, 𝑗 re-indexing in the inner sum in the final rewrite. The inner sum is
essentially a sum over all values in a slice of the tensor 𝗜(𝑥 → (ℎ−𝑛+𝑥), 𝑦 → (𝑤−𝑛+𝑦)).
Equivalently, a similar re-indexing has been done in Eq. (9).

15

3. Graph Convolution Computation .

𝗜′ ≔ new tensor of zeros, of shape (ℎ − (𝑛 − 1), 𝑤 − (𝑛 − 1), . . .)
for 𝑥 ∈ {1, . . . , 𝑛}, 𝑦 ∈ {1, . . . , 𝑛} do:

(𝑥start, 𝑥end) ≔ (𝑥, ℎ − 𝑛 + 𝑥)

(𝑦start, 𝑦end) ≔ (𝑦, 𝑤 − 𝑛 + 𝑦)
𝗜slice ≔ 𝗜(𝑥start → 𝑥end, 𝑦start → 𝑦end, . . .)

𝗜mult ≔ 𝗪′(𝑥, 𝑦) ⊙ 𝗜slice

𝗜′ ≔ 𝗜′ + 𝗜mult

end for

Algorithm 3.4. Vectorized pseudo-algorithm for the computation of an image convolution

Equation (9) is close to how the image convolution operation is typically computed
efficiently, allowing to utilize high parallelization. We can trivially rewrite it into an
algorithm, shown in Figure 3.4.
This algorithm is is highly parallel because the inner loop need not be performed se-
quentially, but can be performed simply by slicing the input image tensor, followed by
vectorized (elementwise) multiplication and addition. All of these operations, including
slicing, are typically implemented on hardware, including GPUs. The outer loop can
be parallelized as well, but this will not be discussed.
While both TensorFlow and PyTorch implement image convolution directly in low-level
programming languages close to hardware, Algorithm 3.4 can be used in either frame-
work to reimplement it directly in Python via the composition of the three aforemen-
tioned simpler operations. The backward pass will be handled by the two frameworks
automatically.
To understand the image convolution in greater detail, including the backward pass,
see [3; Section 9.5].
The important conclusion for us is that to compute a vectorized convolution on a
graph with nice properties, such as the lattice graph we discussed, only tensor slicing,
elementwise multiplication, and elementwise addition operations are needed.

3.4 Vectorized Graph Convolution Computation

Now that we have a tensor representation of a graph formally defined, and we under-
stand the parallel computation of an image convolution, we can now proceed onto the
explanation of how the parallel computation of a graph convolution is implemented
e.g. in PyTorch Geometric.
To compute even the simplest possible convolution operation, such as the GCN convo-
lution (Eq. (3), p. 13) excluding the normalization factor, we need to be able to perform
operations over node neighborhoods for arbitrary graphs.
To demonstrate one way of solving this, given a graph 𝐺, let us say that we want to
retrieve a tensor 𝗻 such that its 𝑖-th position 𝗻(𝑖) contains the list of values 𝗩(𝑗) for
all neighbors 𝑗 ∈ 𝒩(𝑖). Since each node in a graph can have a different number of

16

. 3.4 Vectorized Graph Convolution Computation

neighbors, we will have to pad the tensor. The resulting shape of tensor 𝗻 will thus be
(|𝑉 |,Δ(𝐺), . . .), where Δ(𝐺) ≔ max {deg(𝑖) ∣ 𝑖 ∈ 𝑉}.
We will need to generalize this concept onto any tensor, so let us do it as follows:
Given a graph 𝐺 = (𝑉 ,𝐸) and an arbitrary tensor 𝗧 ∈ ℝ|𝗩| × ... (please note that
𝗧 is required to have |𝑉 | values in its first dimension), let us define an operation
𝒱𝗘: ℝ|𝑉 | × ... ↦ ℝ|𝑉 | × Δ(𝐺) × ..., such that 𝒱𝗘(𝗧) is a tensor of shape (|𝑉 |,Δ(𝐺), . . .),
built by gathering the values 𝗧(𝑗) for 𝑗 ∈ 𝒩(𝑖), much like in the case of the tensor 𝗻,
but generalized onto any value tensor 𝗧, not just the original 𝗩.
Therefore, assuming an operation 𝒱𝗘 is available to us, then for a given 𝑖 ∈ 𝑉, to
compute e.g. 𝘆𝑖 ≔ ∑𝑗∈𝒩(𝑖) 𝗪

𝑇𝘅𝑗 + 𝗯 will become possible as shown in Equation (11),
assuming padding is done with zeros.

𝗩′ = [∑
𝑘∈(0,...,Δ(𝐺))

𝗪𝑇 ⋅ (𝒱𝒩(𝗩)(𝑖, 𝑘)) + 𝗯 ∣ 𝑖 ∈ |𝑉 |]

= [∑
𝑘∈(0,...,Δ(𝐺))

𝒱𝗘 (𝗪𝑇 ⋅ 𝗩(𝑖)) (−, 𝑘) + 𝗯 ∣ 𝑖 ∈ |𝑉 |]

= ∑
𝑘∈(0,...,Δ(𝐺))

𝒱𝗘 ([𝗪𝑇 ⋅ 𝗩(𝑖) ∣ 𝑖 ∈ |𝑉 |]) (−, 𝑘) + 𝗯

(11)

Having such an operation would thus work very well, as we could perform the compu-
tation by simply doing the following:
1. For each 𝗩(𝑖), perform matrix multiplication 𝗪𝑇 ⋅ 𝗩(𝑖). Since the same operation

(matrix multiplication with 𝗪𝑇) is being performed for each 𝑖, this is easy to par-
allelize on SIMD hardware such as the GPU. This is typically known as broadcasted
matrix multiplication.

2. Apply the 𝒱𝗘 operation onto the result.
3. Sum the result along its second dimension (i.e. along the neighborhoods),

i.e. to obtain a tensor of shape (|𝑉 |, 𝑐2, . . . , 𝑐𝐷) from an input tensor of shape
(|𝑉 |,Δ(𝐺), 𝑐2, . . . , 𝑐𝐷).

4. Add 𝗯.

Of course, the remainder of our discussion will revolve around how to efficiently perform
𝒱𝗘(𝗧), or how to efficiently compute graph convolutions similarly, as all of the other
operations that we used here, are commonly used in deep learning, whereas 𝒱𝗘 is
exclusive to deep learning on structure inputs, such as to GNNs.
Please note that from this point onwards, any matrix multiplication will be generalized
to use the broadcasted variant if needed. We will denote broadcasted matrix multipli-
cation using ∘. Since this is inexact, we will only be using it sparingly, when it is clear
how the broadcasting is performed, merely to avoid unnecessary verbosity.
This allows us to rewrite Eq. (11) as Equation (12).

𝗩′ = ∑
𝑘∈(0,...,Δ(𝐺))

𝒱𝗘 (𝗪𝑇 ∘ 𝗩) (−, 𝑘) + 𝗯 (12)

If 𝗘 is an adjacency matrix, we do not need to have the exact equivalent of the 𝒱𝗘
operation. By doing 𝗘 ⋅ (𝗪𝑇 ∘ 𝗩) + 𝗯, we obtain the full result of the computation of

17

3. Graph Convolution Computation .

the GCN convolution. Matrix multiplication with 𝗘 directly sums the results over the
neighborhoods, so we have performed steps 2 and 3 in a single step, also being able to
avoid padding.

However, for the adjacency matrix, it often holds that (∑𝑖,𝑗∈𝑉 𝗘(𝑖, 𝑗)) ≪ |𝑉 |2, which
means that only a small number of elements is non-zero3, i.e. that the matrix is sparse.
Therefore, the common representation of the matrix as a consecutive array of val-
ues, known as a dense representation, is often too memory intensive, and performing
matrix multiplication with such a matrix in dense representation would also be com-
putationally quite expensive, performing many unnecessary multiplication operations
with zeros. Therefore, sparse matrix representations and sparse matrix multiplication
algorithms are typically used instead of the common, dense ones. They are discussed
in Section 3.4.2.
Alternatively, to avoid the padding that 𝒱𝗘 requires, we may instead choose to de-
fine a similar operation 𝒱′

𝗘 that also outputs neighborhoods of individual nodes in
order, but does so all in the first dimension, i.e. resulting in a tensor with shape
(∑𝑖∈𝑉 deg(𝑖), . . .) = (|𝐸|, . . .), so that padding is not needed.
What 𝒱′

𝗘 does is that it gathers individual values from the first dimension of 𝗩 in the
order of indices [𝑗 ∣ ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝒩(𝑖)].
When using 𝒱′

𝗘 instead of 𝒱𝗘, aggregation can no longer be done along a single di-
mension, which the padding allowed us to do, but must be done using a more clever
method, as the boundaries between individual neighborhoods in the first dimension are
no longer clear. Therefore, we need an operation that is, loosely speaking, inverse to 𝒱′

𝗘,
such that it is able to produce a tensor of shape (|𝑉 |, . . .) from input of shape (|𝐸|, . . .),
based on node neighborhood groupings. Since |𝑉 | ≤ |𝐸|, this inverse operation must
be able to perform aggregation as well. We will thus denote it as 𝒱′−1

𝗘,⨁, to suggest that
it uses the ⨁ operation to aggregate values from individual groups.
We can rewrite the GCN convolution specifically using 𝒱′

𝗘 and 𝒱′−1
𝗘,∑ as shown in Equa-

tion (13).

𝗩′ = 𝒱′−1
𝗘,∑ (𝒱′

𝗘 (𝗪𝑇 ∘ 𝗩)) + 𝗯 (13)

This also indicates that in the case of ⨁ = ∑ and the adjacency matrix 𝗘 representa-
tion, it holds that 𝒱′−1

𝗘,∑ (𝒱′
𝗘(𝗧)) = 𝗘 ⋅ 𝗧.

Equation (14) generalizes the use of 𝒱𝗘 to an arbitrary graph convolution, as defined
in Eq. (5) (p. 13).

𝗩′(𝑖) = 𝛾(𝗩(𝑖), ⨁
𝑗∈{1,...,Δ(𝐺))}

𝜙(𝗩(𝑖), 𝒱𝗘(𝗩)(𝑖, 𝑗))) (14)

Unfortunately, we cannot use 𝒱𝗘 directly to simplify the graph convolution in the
general case. We also cannot use 𝒱′

𝗘 and 𝒱′−1
𝗘,⨁ as they are defined. Instead, we will need

operations known as “gather” and “scatter.” 𝒱′
𝗘 is a special case of the gather operation,

and 𝒱′−1
𝗘,⨁ is a special case of the scatter operation. Gather and scatter operations

themselves are special cases of sparse matrix multiplication. The two complementary
operations will be defined and discussed in greater detail in Section 3.4.1.

3 Please remember that the values of an adjacency matrix are in the {0, 1} domain.

18

. 3.4 Vectorized Graph Convolution Computation

3.4.1 Gather/Scatter

The gather4 operation 𝒢𝐼 on a tensor 𝗧 of shape (𝑚, . . .) is an operation that produces
a reordering of 𝗧 of shape (𝑛, . . .) along its first dimension based on a mapping of
indices ℳ: {1, . . . , 𝑚} ↦ {1, . . . , 𝑛}. The mapping itself is defined using a sequence
of indices 𝐼 ∈ {1, . . . , 𝑚}𝑛 (|𝐼| = 𝑛), where ℳ(𝑖) = 𝑗 if and only if 𝐼(𝑗) = 𝑖. This
means that the inverse mapping to ℳ is injective.
The result of the gather operation can be written as shown in Equation (15).

𝒢𝐼(𝗧) ≔ [𝗧(𝑖) ∣ 𝑖 ∈ 𝐼] (15)

The scatter operation 𝒮⨁
𝐽 on a tensor 𝗧 of shape (𝑛, . . .) is an operation that produces

a reordering of 𝗧 of shape (𝑚, . . .) along its first dimension (with possible aggregations
of multiple rows) based on a mapping of indices ℳ−1: {1, . . . , 𝑛} ↦ {1, . . . , 𝑚}. The
mapping itself is defined using a sequence of indices 𝐽 ∈ {1, . . . , 𝑚}𝑛 (|𝐽 | = 𝑛) where
ℳ−1(𝑗) = 𝑖 if and only if 𝐽(𝑗) = 𝑖. This means that the mapping ℳ−1 is injective.
The result of the scatter operation can be written as shown in Equation (16).

𝒮⨁
𝐽 (𝗧) ≔ [⨁

𝑗∈{1, ..., 𝑛},
𝐽(𝑗)=𝑖

𝗧(𝑗) ∣ 𝑖 ∈ {1, . . . , 𝑚}] (16)

The above shows that the operations are complementary in the sense that a gather
operation allows us to explicitly define the input value index 𝑖 for each output index
𝑗, whereas a scatter operation has us define the output value index 𝑗 for each input
index 𝑖. This means that the operations also have complementary limitations: a gather
operation is restricted to using each output index exactly once (i.e. placing exactly
one input value to each output position), whereas a scatter operation is restricted to
placing each input value exactly once. Since the scatter operation may (unlike the
gather operation) place multiple input values onto the same output index, a reduction
operation must be defined alongside the mapping, to merge said input values into one
(most commonly used reduction methods are elementwise sum, mean, minimum or
maximum of the input values). Conversely, the gather operation is unrestricted in
being able to duplicate an input value onto multiple output positions, which the scatter
operation cannot do.
Gather and scatter operations can be seen as special cases of sparse matrix multipli-
cation, as will be shown below. Nonetheless, specialized algorithmic implementations
are usually provided for gather and scatter (outside from the generic sparse matrix
multiplication algorithms), taking advantage of the specifics of the two operations.
The gather operation on a matrix 𝗠 ∈ ℝ𝑚×𝑜 is an operation equivalent to 𝗔⋅𝗠, where
𝗔 ∈ ℝ𝑛×𝑚 is a sparse matrix of values from the two-value domain of {0, 1}, and where
the sum of each row is equal to 1, i.e., for each row 𝑖, there is exactly one column 𝑗 where
𝗔(𝑖, 𝑗) = 1, and the remaining columns in said row contain zeros. Note that the matrix
𝗔 can have an arbitrary number of rows. The gather operation on a higher-dimensional
tensor 𝗧 of shape (𝑚, . . .) can be defined as 𝗔 ∘ 𝗧.

4 What PyTorch refers to as a “gather” operation is in fact a generalized version of the operation described
here, where the “gathering” is performed independently in all dimensions of the input tensor. What
is being referred to as a “gather” operation in this text, is implemented in PyTorch in its specialized,
simplified form as index_select.

19

3. Graph Convolution Computation .

The scatter operation on a matrix 𝗠 ∈ ℝ𝑛×𝑜 is an operation equivalent to 𝗔 ⋅ 𝗠,
where 𝗔 ∈ ℝ𝑚×𝑛 is a sparse matrix of values from interval [0, 1]. However, there is
a restriction that for each column 𝑗, it holds that ∑𝑖⌈𝗔(𝑖, 𝑗)⌉ = 1 (where the ⌈ ⌉
operation is applied to the matrix values elementwise), meaning that each column 𝑗 of
matrix 𝗔 can have a non-zero value at exactly one position (𝑖, 𝑗), for some row index
𝑖. If the reduction method is summation, then values of 𝗔 are either 0 or 1. If mean
reduction is used, then all non-zero values in a given row 𝑖 are equal, summing up to
1, i.e. ∀𝑗1, 𝑗2: 𝗔(𝑖, 𝑗1) = 𝗔(𝑖, 𝑗2) and ∀𝑖: ∑𝑗 𝗔(𝑖, 𝑗) = 1. The scatter operation on a
higher-dimensional tensor 𝗧 of shape (𝑛, . . .) can be defined as 𝗔 ∘ 𝗧.
Based on this, using the edge index representation of 𝗘, we can rewrite the general case
of the graph convolution using 𝒢𝐼 and 𝒮⨁

𝐽 , as shown in Equation (17). Note that 𝜙 is
applied pairwise.

𝗩′(𝑖) = 𝛾 (𝗩(𝑖), 𝒮⨁
𝗘(1) (𝜙 (𝒢𝗘(1)(𝗩), 𝒢𝗘(2)(𝗩)))) (17)

Equation (17) is how PyTorch Geometric typically computes its convolutions using the
edge index representation of 𝗘. The intuition behind this can be that the individual
node values are first collected (gathered) from their individual locations in the graph
into a dense tensor, then operated upon, and then placed back individually (i.e. scattered
back) into their original positions in the graph.
Since both gather and scatter are special cases of sparse matrix multiplication, we may
rewrite Eq. (17) as sparse matrix multiplication as well, using matrices 𝗔1, 𝗔2 ∈ ℝ|𝐸|×|𝑉 |,
corresponding to gathering using 𝗘(1) and 𝗘(2), respectively, and matrix 𝗔′

1 ∈ ℝ|𝑉 |×|𝐸|,
corresponding to scattering using 𝗘(1). See Equation (18).

𝗩′(𝑖) = 𝛾 (𝗩(𝑖), 𝗔′
1 ∘ 𝜙 (𝗔1 ∘ 𝗩, 𝗔2 ∘ 𝗩)) (18)

As we have seen in Section 3.4, a gather operation immediately followed by a scatter
operation can be replaced with a single sparse matrix multiplication operation. This
follows from the fact that both can be represented as matrix multiplications, and matrix
multiplication is associative. We were able to utilize this when designing efficient com-
putation of the GCN convolution, where the matrix multiplication with the adjacency
matrix of the graph happens to be the operation that combines both the gathering and
the scattering into a single operation. We cannot do this in the general case, only on a
case-by-case basis given concrete graph convolutions, because in the general case, the
operation 𝜙 is arbitrary. Furthermore, GNN frameworks such as PyTorch Geometric
can typically only use the result from Eq. (17), as the edge index tensor can be used
for it as-is. However, they cannot use the result from Eq. (18) as-is, as the individual
sparse matrices are not immediately available for use, at least not all of them (e.g. the
sparse gather matrices 𝗔1 and 𝗔2 can be built with relative ease, by one-hot encoding
𝗘(1) and 𝗘(2), respectively).
Ultimately, gather and scatter operations will be very useful for our purposes with
respect to deep relational learning.

3.4.2 SparseMatrixMultiplication

Sparse matrix representations are designed to perform matrix multiplications involving
sparse matrices such that they are less expensive both computationally, as well as in
terms of memory usage. The representations typically involve a value container, holding

20

. 3.4 Vectorized Graph Convolution Computation

the non-zero values of the tensor, and an index container, holding the information on
where the non-zero values are located in the tensor being represented.
The operation of particular interest to us given what we discussed in previous sections
is that of “sparse-dense” matrix multiplication, i.e. matrix multiplication where the
matrix on the left-hand side is in a sparse representation, the matrix on the right-hand
side is dense, and the output is also a dense tensor. Methods for multiplying two such
matrices, producing output in a sparse representation, also exist, as well as “sparse-
sparse” multiplication algorithms, multiplying two matrices in a sparse representation
together, but we will not be discussing those.
Of course, different algorithms must be used depending on the sparse representation
used. We will only introduce sparse representation formats useful to us.
The so-called coordinate list format, also known as the COO format, represents a tensor
as a pair of two tensors (𝗗, 𝗜), where 𝗗 ∈ ℝ𝑛 is the value vector (𝑛 being the total num-
ber of non-zero values), and 𝗜 ∈ ℕ𝐷×𝑛

0+ is the index matrix (𝐷 being the dimensionality
of the tensor being represented). (𝗗, 𝗜) then represents a tensor 𝗔 ∈ ℝ𝑚1×...×𝑚𝐷 . The
representation works as follows: for a given index (𝑖1, . . . , 𝑖𝐷), it holds that if there
exists a 𝑘 ∈ {1, . . . , 𝑛} such that 𝗜(−, 𝑘) = (𝑖1, . . . , 𝑖𝐷), then 𝗔(𝑖1, . . . , 𝑖𝐷) = 𝗗(𝑘),
otherwise 𝗔(𝑖1, . . . , 𝑖𝐷) = 0.
An interesting thing to point out is that for an arbitrary graph, the COO representation
of its adjacency matrix 𝗔 is (𝗗, 𝗜) where the 𝗜 matrix is in fact the edge index of the
graph. 𝗗 vector, on the other hand, is redundant in the case of the adjacency matrix, as
it is a vector from the domain {1}𝑛, i.e. each its scalar value being 1, given the adjacency
matrix definition. Therefore, using the edge index representation of the edges of a graph
corresponds to using the adjacency matrix representation in the COO format.
Since the COO format (and equivalently, the edge index representation of a graph) in
principle allows the 𝗜 matrix to contain the same (𝑖1, . . . , 𝑖𝐷) value in different columns,
i.e. there may exist some 𝑘1 ≠ 𝑘2, where 𝗜(−, 𝑘1) = 𝗜(−, 𝑘2), COO tensors with such
occurrences are known as uncoalesced, as they contain duplicate value entries for a
single position in the tensor being represented. For example, PyTorch interprets this
as the represented tensor having the sums of the corresponding 𝗗 value entries in its
individual positions [77], i.e. in the sense as shown in Equation (19). Furthermore, it
offers a “coalesce” operation that removes the duplicate entries from the 𝗜 matrix and
sums the duplicate value entries together in the 𝗗, keeping only up to a single value
entry per each position in the represented tensor as a result. Since the indices in 𝗜 are
also allowed to be in arbitrary order, the “coalesce” operation also updates both 𝗗 and
𝗜 such that the indices in 𝗜 are ordered lexicographically.

𝗔(𝑖1, . . . , 𝑖𝐷) = ∑
𝑘∈{1, ..., 𝑛},

𝗜(𝑘)=(𝑖1, ..., 𝑖𝐷)

𝗗(𝑘) (19)

What is more, PyTorch supports an extension of the COO representation, where it
allows the 𝗗 tensor to be multi-dimensional. This means that for 𝗗 with shape
(𝑛, 𝑛1, . . . , 𝑛𝑁), and 𝗜 ∈ ℕ𝐷×𝑛

0+ , the represented tensor 𝗔 is (𝐷 + 𝑁)-dimensional,
with 𝐷 sparse and 𝑁 dense dimensions, with shape (𝑚1, . . . , 𝑚𝐷, 𝑛1, . . . , 𝑛𝑁). The
original definition of the COO format still applies without change.
A more efficient representation of sparse tensors is known as the compressed sparse row
(CSR) format. It has lower requirements both computationally, as well as in terms

21

3. Graph Convolution Computation .

of memory usage. The CSR format typically represents a sparse matrix 𝗔 ∈ ℝ𝑚1×𝑚2

using a triple of vectors (𝗗,𝗖,𝗥), where 𝗗 ∈ ℝ𝑛, 𝗖 ∈ ℕ𝑛
0+, and 𝗥 ∈ ℕ𝑚1+1

0+ . 𝗗 is the
value vector, 𝗖 contains column indices, and 𝗥 contains row extents. Let us describe
the CSR format in terms of its differences from the COO format, i.e. let 𝗜 ∈ ℝ2×𝑛

be the corresponding COO index matrix of 𝗔. The CSR format requires index pairs
(i.e. the columns of 𝗜) to be ordered based on row indices, i.e. 𝗜(1) is expected to be
ordered, without any explicit restrictions being imposed on 𝗜(2). This means that the
columns of 𝗜 can simply be sorted lexicographically, but permutations of individual
(𝑖1, 𝑖2) index pairs are allowed as well, as long as only the index pairs with matching
𝑖1 are permuted.
This restriction on 𝗜 allows us to define the vectors 𝗖 and 𝗥. Using the CSR format,
column indices are stored in an uncompressed way, i.e. 𝗖 = 𝗜(2). Row indices, on the
other hand, are compressed. Since 𝗜(1) is known to be ordered, it means that for each
row 𝑟 ∈ {1, . . . , 𝑚1} of 𝗔, there exists a range of indices defined by 𝑘𝑟

start (inclusive)
and 𝑘𝑟

end (exclusive), where for each 𝑘 ∈ (𝑘𝑟
start, 𝑘𝑟

start + 1, . . . , 𝑘𝑟
end − 1), it holds that

𝗜(1, 𝑘) = 𝑟. Furthermore, from the fact that 𝗜(1) is ordered, we can also infer that
for any pair of consecutive row indices 𝑟, 𝑟 + 1, it holds that 𝑘𝑟

end = 𝑘𝑟+1
start. Therefore,

we can define 𝗥 based on 𝗜 as a vector of 𝑚1 + 1 total values, where for each row
𝑟 ∈ (1, . . . , 𝑚1) in 𝗔, 𝗥(𝑟) = 𝑘𝑟

start and 𝗥(𝑟 + 1) = 𝑘𝑟
end. For rows 𝑟 where all values in

𝗔(𝑟) are zero, we may simply set 𝑘𝑟
start = 𝗥(𝑟) = 𝗥(𝑟+1) = 𝑘𝑟

end, and then no values in
𝗖 belong to the row 𝑟. Using this definition of 𝗥, 𝗜(1) is fully reconstructible from 𝗥.
Typically, of course, in algorithms operating with tensors in CSR format, 𝗜(1) is not
directly reconstructed from 𝗥. Instead, 𝗖 is partitioned (sliced) based on the row
extents in 𝗥, where each such partition (slice) of 𝗖 then corresponds to a specific row
𝑟 in 𝗔.
The CSR format is typically extended to support multi-dimensional tensors 𝗔 with
shapes (𝑏1, . . . , 𝑏𝐵, 𝑚1, 𝑚2, 𝑛1, . . . , 𝑛𝑁). Please note that the only sparse dimensions
are 𝑚1 and 𝑚2, and there cannot be more than two sparse dimensions. The support for
(𝑛1, . . . , 𝑛𝑁) can be added by allowing 𝗗 to be a tensor of shape (𝑛, 𝑛1, . . . , 𝑛𝑁), much
like in the case of the COO format. The support for (𝑏1, . . . , 𝑏𝐵) can be added simply by
operating over 𝗥 and 𝗖 in batched form, where 𝗥 and 𝗖 have shape (𝑏1, . . . , 𝑏𝐵, 𝑚1+1),
and (𝑏1, . . . , 𝑏𝐵, 𝑛), respectively. Note that this means that each batch is only able to
utilize the same 𝑛 values in 𝗗, as 𝗗 itself is not batched. This extension of the CSR
format is supported in PyTorch [77].
It is also worth mentioning that the compressed sparse column (CSC) format also
exists, where the only difference from the CSR format is that the roles of 𝗥 and 𝗖 are
reversed, in the sense that the column index representation is compressed, and the row
index representation is uncompressed, i.e. 𝗥 = 𝗜(1) and 𝗖 is the compressed version of
𝗜(2) (assuming that 𝗜(2) is ordered).
An implementation of sparse-dense matrix multiplication is typically available for all
the formats discussed, in their respective extended (multi-dimensional) forms. Specif-
ically for the COO format, PyTorch also supports an implementation of sparse-dense
matrix multiplication that is able to propagate a gradient through the sparse matrix.
This is something that we will not need. It holds that gradient propagation through
the right-hand side dense matrix is supported in the matrix multiplication algorithms
for all sparse matrix formats, which is sufficient for the purposes of both GNNs and
deep relational learning. It is advantageous to use CSR or CSC over COO due to the
CSR/CSC algorithms typically being faster.

22

. 3.4 Vectorized Graph Convolution Computation

However, it is worth noting that in terms of performance, sparse-dense matrix multipli-
cation typically does not provide competitive performance over matrix multiplication
of matrices in dense formats, despite significantly higher memory requirements in the
latter case. In fact, the GPU supplier Nvidia says that matrix multiplication opera-
tions typically benefit from sparse representations only when the sparsity is over 99%
[78]. GPU architectures can then typically utilize sparsity well only in specific, highly
symmetric instances, as discussed e.g. in [78]. Such highly specific instances are not
something we will be exploring further.

3.4.3 Segment CSR

Now that sparse matrix representations were introduced, let us return to the scatter
operation 𝒮⨁

𝐽 for a brief moment. For specific index sequences 𝐽, we are able to ap-
ply a similar compression principle to that underlying the CSR sparse matrix format.
This is possible specifically when the sequence 𝐽 is ordered. Intuitively, an ordered
sequence of 𝐽 means that values are to be aggregated in consecutive groups of different
sizes, as opposed to being scattered arbitrarily. For example, 𝐽 = (1, 1, 1, 2, 2, 3, 4, 4, 4)
says that 𝒮⨁

𝐽 (𝗧) = [⨁𝑖∈{1, ..., 3} 𝗧(𝑖), ⨁𝑖∈{4, ..., 5} 𝗧(𝑖), 𝗧(6), ⨁𝑖∈{7, ..., 9} 𝗧(𝑖))]. In in-
stances such as this one, 𝐽 can simply be represented via a sequence of group totals
(i.e. counts), which for this specific example is (3, 2, 1, 3).
Typically, however, the compression is not done by building a sequence of counts, like
above. Instead, the compression of 𝐽 is truly done in the same way as the compression
of 𝗜(1) to 𝗥 for the CSR representation of a sparse matrix, as follows:
Since 𝐽 ∈ {1, . . . , 𝑚}𝑛 represents the mapping {1, . . . , 𝑛} ↦ {1, . . . , 𝑚}, the com-
pressed form of 𝐽 is 𝐽 ′ ∈ {1, . . . , 𝑛 + 1}𝑚+1, where for each 𝑜 ∈ {1, . . . , 𝑚}, there exists
a range of indices defined by 𝑜start and 𝑜end such that 𝑜start = 𝐽 ′(𝑜) ≤ 𝐽 ′(𝑜 + 1) = 𝑜end,
and for each 𝑖 ∈ {𝑜start, 𝑜start + 1, . . . , 𝑜end − 1}, it holds that 𝐽(𝑖) = 𝑜.
For the example of 𝐽 presented earlier, its corresponding 𝐽 ′ is thus 𝐽 ′ = (1, 4, 6, 7, 10),
when indexing starting by 1 is used. In programming, as opposed to mathematical
notation, zero-based indexing is typically used instead, meaning that 𝐽 ′ should in fact
be 𝐽 ′ = (0, 3, 5, 6, 9).
This operation is typically known as (CSR) segmentation.
As a middle ground between the scatter operation and the CSR segmentation oper-
ation, sometimes COO segmentation is also used, which is a segmentation operation
that expects the same input as the generic scatter operation (i.e. 𝐽 need not be com-
pressed), where 𝐽 is merely expected to be ordered (so that the input can also be merely
grouped/segmented, not scattered in the general sense). Both segmentation operations,
however, are only usable if the assumption of 𝐽 being ordered is applicable, whereas
the scatter operation is more universal. COO segmentation is usually computationally
faster (i.e. less expensive) than the generic scatter operation, and CSR segmentation is
typically even faster than the COO variant.
An interesting example to return to is that of the operations 𝒱′

𝗘 and 𝒱′−1
𝗘,⨁ from Sec-

tion 3.4, where the former is a gather operation on 𝐼 = [𝑗 | ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝒩(𝑖)], and the
latter is a scatter operation on 𝐽 = [𝑖 | ∀𝑖 ∈ 𝑉 , 𝑗 ∈ 𝒩(𝑖)]. Since 𝐽 is ordered, 𝒱′−1

𝗘,⨁ can
in fact be replaced with either a COO or a CSR segmentation operation.
In various deep learning frameworks, segmentation operations may be found under
names such as segment_csr, segment_coo, segment_reduce, or e.g. segment_sum.

23

3. Graph Convolution Computation .

While TensorFlow offers the COO variant in its core library [79], PyTorch users have
access to both the COO and CSR segmentation variants through an extension library
developed by the author of PyTorch Geometric [80].

24

Chapter4
NeuraLogic

NeuraLogic [24, 70] is a deep learning library that supports the full range of expressibil-
ity of deep relational learning. Through this paradigm, it allows us to define not only
graphs and GNNs, but also advanced graph convolutions (e.g. direct sub-structure/pat-
tern matching), heterogeneous graphs and GNNs via multiple relations and object types,
hypergraphs, nested graphs, relational databases, TreeNNs [81], etc. [74]. This is done
via a representation based on FOL, and the process of building individual NN archi-
tectures is based on logical inference.
Thus, covering the vectorization task for the domain of architectures producible by
NeuraLogic covers the task for deep relational learning itself.
While NeuraLogic does support direct use of e.g. existing graph datasets, including
heterogeneous graph datasets, or data directly from RDBMS, which offers the same
level of expressiveness as the logic representation itself, we will briefly introduce the
FOL-based representation, as it translates well to how the NN architectures are built,
and is thus illustrative.

4.1 Syntax

The syntax of NeuraLogic is derived from the Datalog programming language [82],
which is a restricted function-free subset of Prolog [83]. Both Datalog and Prolog are
programming languages rooted in FOL, where the programming is based on logical
inference. Datalog, in contrast to Prolog, is a truly declarative language, where the
order of clauses has no impact on execution. Datalog itself was developed as a querying
language for relational databases, and is therefore very similar in capabilities to e.g. SQL
(structured query language) [84], a popular database querying language, although the
syntax of the two languages is very different.
Datalog programs consist of rules that represent FOL statements. Each rule can be
thought of as an “if …, then …” sentence. For example, a rule “if X is a person and X is a
parent of Y, then Y is a person,” can be expressed in Datalog as shown in Equation (1).

Person(𝑌) ∶− Person(𝑋), Parent(𝑋, 𝑌). (1)

In general, rules in either Prolog, Datalog, or first-order logic consist of the following:
. Constant symbols, e.g. ℎ1, represent specific elements in the domain, and are typically

written in lowercase.
. Variable symbols, e.g. 𝑋, represent any element in the domain (i.e. the rule has an

implicit “for each 𝑋 in the domain, it holds that …” prefix), and are typically written
in uppercase, in order to differentiate them from constants.
. A term represents either a constant, or a variable.
. Predicate symbols, e.g. “Person” or “Parent,” represent relations, i.e. properties of

terms, or relationships between multiple terms.

25

4. NeuraLogic .

. An atom is a predicate symbol applied to a term or a sequence of terms,
e.g. Parent(𝑋, 𝑌).
. A literal is an atom or the negation of an atom. Negated atoms are denoted using ¬

in FOL, e.g. ¬Person(𝑋).

What NeuraLogic calls “rules” is in fact a special type of clauses, which are disjunctions
of literals. In first-order logic, a disjunction of literals (i.e. a clause) is typically written
as 𝑙1 ∨ . . . ∨ 𝑙𝑛, where 𝑙1, . . . , 𝑙𝑛 are arbitrary literals, and the ∨ symbol represents “or.”
Similarly, a conjunction of literals would be 𝑙1 ∧ . . . ∧ 𝑙𝑛, where the ∧ symbol represents
“and.”
In Datalog and Prolog, a sequence of literals (separated with the comma “,” symbol)
corresponds to a conjunction of literals.
Rules in Datalog and Prolog represent the so-called definite clauses, which have the
disjunctive form ℎ ∨ ¬𝑎1 ∨ . . . ∨ ¬𝑎𝑛 in FOL, where ℎ is a single positive literal, and
¬𝑎1 ∨ . . . ∨ ¬𝑎𝑛 are all negative literals. Based on the rules of first-order logic, this can
be rewritten in the form of an implication ℎ ⇐ 𝑎1 ∧ . . . ∧ 𝑎𝑛, which is thus itself also
still a definite clause (even though the right-hand side now contains a conjunction of
atoms), because its truth-value table is the same. This is written in Prolog and Datalog
as “ℎ ∶− 𝑎1, . . . , 𝑎𝑛.” and can be seen as “if all of 𝑎1, . . . , 𝑎𝑛 are true, then ℎ is true.”
For a definite clause, ℎ is known as the head of the rule, and 𝑎1, . . . , 𝑎𝑛 is known as
the body.
A definite clause without any negative literals (i.e. with an empty body) is known as a
fact. This is because the head literal then applies unconditionally.
With respect to relational representations (e.g. RDBMS), facts in Datalog correspond to
the data (with most facts consisting mainly, though not exclusively, of constants), and
Datalog rules loosely correspond to relations (e.g. foreign keys in RDBMS). To initiate
the logical inference process in Datalog, a query must be posed, e.g. “Person(𝑝John)?”
or “Person(𝑋)?.” This resolves either to a truth value (i.e. “true” or “false”), or to
a sequence of combinations of constants for which the query is truthful, when the
variables are substituted for the constants (a process known as grounding). The latter
is equivalent to a typical query response in RDBMS, where the output is typically in
the form of a table.
NeuraLogic extends the Datalog syntax with the ability to associate weights with facts,
as well as with individual literals within rules. The semantics of this (i.e. how the
weights are used as part of the resulting neural network architecture) will be explained
on an illustrative example later. Weights are either fixed tensors with explicitly defined
values, or learnable tensors, i.e. the parameters of the resulting neural network.
In NeuraLogic, a dataset can be represented directly using ground facts, i.e. facts con-
sisting only of constants.1 Using the FOL syntax to represent data may perhaps seem
verbose when compared to other, less expressive forms of data representations; however,
this representation offers the full expressive power to represent any relational data.
The rules with a non-empty body form what is known in NeuraLogic as the template,
and their atoms typically contain mainly variables. Instead of a logical inference-based
algorithm being used directly to answer queries, like in Datalog, NeuraLogic uses the

1 To represent a non-ground fact as part of the dataset, one must explicitly rewrite it into the form of
individual ground facts. Nonetheless, this is commonly not necessary to do, as ground facts are typically
all that is needed to form a dataset, without any unnecessary verbosity.

26

. 4.2 Example

template (and logical inference) to build the (dynamic) differentiable computational
graph, which forms the neural network architecture, made to answer a specific query
for arbitrary input. This can be understood as a differentiable version of Datalog, or a
differentiable version of a relational database.
Alternatively, the template may simply be viewed as the dynamic NN architecture
itself, and the dataset as the individual inputs that the architecture will loop over. The
logical inference algorithm is then a form of pre-processing of the NN architecture, with
respect to the given input dataset, forming a static differentiable computational graph
induced by the input dataset. During inference, where the input is potentially different
from the training dataset, the pre-processing must be done as well, as the resulting
computational graph again depends on the input.

4.2 Example

Let us use a simple example of training a classifier using NeuraLogic on a dataset of
molecules. A molecule representation sufficient for the purposes of this simple example
will merely encode the molecular structure itself; nothing else. Using the logic represen-
tation of the dataset in NeuraLogic, the individual atoms are represented as constants,
for which an “atom” predicate 𝑎 is provided (to state that the items are atoms), and
the molecular structure is represented by encoding the individual bonds between pairs
of atoms using a binary “bond” predicate 𝑏.
You may immediately recognize this as a mere graph representation. This is true; this
example is purposefully kept simple. More complex representations, e.g. heterogeneous
graphs encoding the individual atoms’ elements, are also possible in NeuraLogic, and
briefly discussed later.
Let us use two examples of data samples (molecules), defined in Equations (2) and (3).
(Individual facts are separated/terminated using the dot “.” symbol.) Please note that
this encoding does not differentiate individual atom elements! To differentiate e.g. that
𝑜1 is oxygen and ℎ1 is hydrogen, instead of a single 𝑎 predicate, we would need two
predicates, 𝑜 and ℎ, respectively. This would also require a slightly more complex
template than the one defined below. Again, this is not done here purely to keep the
example brief, as its mere purpose is understanding the general approach of NeuraLogic.

𝑎(ℎ1). 𝑎(𝑜1). 𝑎(ℎ2).
𝑏(ℎ1, 𝑜1). 𝑏(𝑜1, ℎ2).
𝑏(𝑜1, ℎ1). 𝑏(ℎ2, 𝑜1).

(2)

𝑎(ℎ3). 𝑎(ℎ4).
𝑏(ℎ3, ℎ4).
𝑏(ℎ4, ℎ3).

(3)

Next, let us define the template using two rules. See Equation (4).

ℎ(𝑋) ∶− 𝑎(𝑌), 𝑏(𝑋, 𝑌).
𝑞 ∶− ℎ(𝑋).

(4)

These rules are incomplete as-is. We must explicitly state where individual weights,
i.e. matrix multiplications, shall be placed. See Equation (5).

27

4. NeuraLogic .

O1

b(o1, h2)

b(o1, h1)

a(o1)

H2 a(h2)

b(h2, o1)

H1 a(h1)

b(h1, o1)

Sample 1:

Template: α1 : Wh1 :: h(X) =⇒ Wa : a(Y) ∧ Wb : b(X,Y) . α2 : Wq :: q =⇒ Wh2 : h(X) .

b(h1, o1)

Fact nodes

b(o1, h1)

a(h1)

a(o1)

a(h2)

b(h2, o1)b(o1, h2)

Rh(h1)
α1θ1

[X/o1, Y /h1]

Rule nodes

∧

Rh(o1)
α1θ2

[X/h1, Y /o1]
∧

Rh(o1)
α1θ3

[X/h2, Y /o1]
∧

Rh(h2)
α1θ4

[X/o1, Y /h2]
∧

Gh(h1)
α1 [X/h1]

Aggregation nodes

∗

Gh(o1)
α1 [X/o1]∗

Gh(h2)
α1 [X/h2]∗

Ah(h1)

Atom nodes

∨

Ah(o1)

∨

Ah(h2)

∨

Rq
α2θ5

[X/h1]

Rule nodes

∧

Rq
α2θ6

[X/o1]
∧

Rq
α2θ7

[X/h2]
∧

Gq
α2
[∅]

Aggregation nodes

∗
Aq

Atom nodes

∨

Wb

Wa

W
b

Wa

Wb

Wa

Wb

W
a

Wh1

Wh1

Wh1

Wh2

Wh2

Wh2

Wq

H1a(h1)

b(h1, h2) H2 a(h2)

b(h2, h1)

Sample 2: b(h1, h2)

Fact nodes

a(h2)

a(h1)

b(h2, h1)

Rh(h1)
α1θ1

[X/h2, Y /h1]

Rule nodes

∧

Rh(h2)
α1θ2

[X/h1, Y /h2]
∧

Gh(h1)
α1 [X/h1]

Aggregation nodes

∗

Gh(h2)
α1 [X/h2]∗

Ah(h1)

Atom nodes

∨

Ah(h2)

∨

Rq
α2θ3

[X/h1]

Rule nodes

∧

Rq
α2θ4

[X/h2]
∧

Gq
α2
[∅]

Aggregation nodes

∗
Aq

Atom nodes

∨

W
b

Wa

Wb

Wa

Wh1

Wh1

Wh2

Wh2

Wq

Figure 4.1. Example NeuraLogic computational graphs for two input examples, image
taken from [70], with small modifications

𝗪ℎ1 ℎ(𝑋) ∶− 𝗪𝑎 𝑎(𝑌), 𝗪𝑏 𝑏(𝑋, 𝑌).
𝗪𝑞 𝑞 ∶− 𝗪ℎ2 ℎ(𝑋).

(5)

The two rules are very simple, essentially defining a structural neural network with four
linear layers and two aggregations in the forward pass. Firstly, all atoms and bonds are
multiplied with learnable weight matrices 𝗪𝑎 and 𝗪𝑏, respectively. Secondly, all such
weighted atoms and bonds are paired based on the body of the first rule, and aggregated
into a latent representation denoted by the predicate ℎ. Based on the definition of the
first rule, ℎ(𝑋) represents the aggregated information from all immediate neighbors of
any atom 𝑋. Thirdly, all such ℎ(𝑋) are weighted first by 𝗪ℎ1 and immediately after
by 𝗪ℎ2 (with a non-linearity in between), and aggregated into a single constant (or,
zero-arity predicate) 𝑞. Lastly, 𝑞 is weighted one last time by 𝗪𝑞.
The resulting final computational graphs for the two examples from Eqs. (2) and (3)
are drawn in Figure 4.1, where you can also see that the individual neurons form what
can be perceived as “layers,” even though the full structure of the network is irregular.
Of course, a neural network such as this one must also contain non-linearities between
any two consecutive linear layers. This is done in NeuraLogic either by placing a
non-linear elementwise function (known in NeuraLogic as a transformation) after every
computational node by default, or on a rule-by-rule basis using extended syntax for
defining the metadata of individual rules. The aggregation method (e.g. “sum” or
“mean”) can also be specified in this way.
This network is essentially a one-layer GCN (i.e. a single GCN convolution) without
the normalization factor, followed by a sequence of multiple linear layers (and an ad-
ditional aggregation near the end, which, if we perceive the two computational graphs
as a single batched graph, is irregular). This is because the individual input samples
are expressible as plain (i.e. not heterogeneous) graphs, and the first rule in Eq. (5)

28

. 4.2 Example

encodes an aggregation across immediate neighbors in the graph, much like the GCN
convolution. The second aggregation, as defined by the second rule in Eq. (5), merely
aggregates all the intermediate ℎ values into a single value.
The individual input atoms (i.e. predicates with constants in place of variables,
e.g. 𝑎(ℎ2) or 𝑏(ℎ1, ℎ2)) have no tensors explicitly assigned to them in this example. As
such, their corresponding values are essentially implicit unit vectors, of an arbitrary
shape. This means that matrix multiplication with an arbitrary weight matrix 𝗪 is
automatically resolved to 𝗪 itself. This may seem to suggest that the resulting NN
with not be capable of learning. On the contrary, as a result of this, the NN will be
forced to learn based on the irregular structure itself of the individual input samples,
encoded in the individual computational graphs.

4.2.1 More Complex Examples

To encode additional information into the network, we may e.g. define a heterogeneous
graph by presenting individual predicates per each node type. In the context of the
molecular example, a natural extension would be individual predicates per element,
e.g. “Oxygen” or “Hydrogen.” Then, we can define a set of rules per each node type in the
form of e.g. ℎ(𝑋) ∶− 𝑊OxygenOxygen(𝑋) and ℎ(𝑋) ∶− 𝑊HydrogenHydrogen(𝑋). Since
the implicit input atom value defaults are unit vectors, this effectively corresponds to a
learnable embedding layer for the node types. Alternatively, NeuraLogic also supports
direct assignment of concrete tensor values to individual predicates and/or input atoms,
through which the node types could be encoded e.g. using a fixed one-hot encoding.
Worth noting is that the computational graphs in Fig. 4.1 are formed based on the
structure determined by the 𝑏(𝑋, 𝑌) atoms, but they also involve the individual 𝑏(𝑋, 𝑌)
atoms as part of the computation itself. Thus, we may either assign types to the
bonds and weight2 them as well, similarly as we have done it for the atoms of the
molecules (e.g. 𝑏(𝑋, 𝑌) ∶− 𝗪𝑏1

𝑏1(𝑋, 𝑌) and 𝑏(𝑋, 𝑌) ∶− 𝗪𝑏2
𝑏2(𝑋, 𝑌), etc.), or, we may

instead remove the 𝗪𝑏 weight and mark the 𝑏 predicate as implicit, given the fact
that it adds almost3 no additional useful information to the computation, other than
forming the computational graph structure. Marking a predicate as implicit will result
in the predicate merely affecting the computational graph structure, but not itself being
directly propagated through the computational graph. In NeuraLogic, this is done by
naming the predicate starting with the underscore “ ̲” symbol, e.g. “ ̲𝑏.” In the original
example, using the unweighted “ ̲𝑏” bond predicate instead of 𝑏 corresponds better to
the actual GCN convolution definition, as the GCN convolution does not involve any
𝗲𝑖𝑗 values directly either, only performs the aggregation over the 𝑗 ∈ 𝒩(𝑖) relationships,
determined by 𝗲𝑖𝑗.
To compare how the explicit/implicit predicate setting (e.g. “𝑏” versus “ ̲𝑏”) affects the
computational graphs, as well as to see the effect on the computational graphs when
the “𝑏” predicate is removed entirely (e.g. ℎ(𝑋) ∶− 𝑎(𝑋)), see Figure 4.2.
NeuraLogic also supports the definition of e.g. the normalization factor 1

√deg(𝑖)⋅√deg(𝑗)
used by the GCN convolution (as discussed in Chap. 3, p. 13), which can be defined by
using additional rules with specific aggregation and transformation configurations.

2 “To weight” meaning “to apply weight to,” as opposed to “to weigh,” meaning “to measure the weight of.”
For more details see [85].

3 It acts as bias.

29

4. NeuraLogic .

O1

b(o1, h2)

b(o1, h1)

a(o1)

H2 a(h2)

b(h2, o1)

H1 a(h1)

b(h1, o1)

h(X) :− a(Y), b(X,Y).:

O1

b(o1, h2)

b(o1, h1)

a(o1)

H2 a(h2)

b(h2, o1)

H1 a(h1)

b(h1, o1)

h(X) :− a(Y), b(X,Y).:

O1a(o1)

H2 a(h2)

H1 a(h1)

h(X) :− a(X).:

b(h1, o1)

Fact nodes

b(o1, h1)

a(h1)

a(o1)

a(h2)

b(h2, o1)b(o1, h2)

Rh(h1)
α1θ1

[X/o1, Y /h1]

Rule nodes

∧

Rh(o1)
α1θ2

[X/h1, Y /o1]
∧

Rh(o1)
α1θ3

[X/h2, Y /o1]
∧

Rh(h2)
α1θ4

[X/o1, Y /h2]
∧

Gh(h1)
α1 [X/h1]

Aggregation nodes

∗

Gh(o1)
α1 [X/o1]∗

Gh(h2)
α1 [X/h2]∗

Ah(h1)

Atom nodes

∨

Ah(o1)

∨

Ah(h2)

∨

Wb

Wa

W
b

Wa

Wb

Wa

Wb

W
a

Wh1

Wh1

Wh1

a(h1)

Fact nodes

a(o1)

a(h2)

Rh(h1)
α1θ1

[X/o1, Y /h1]

Rule nodes

∧

Rh(o1)
α1θ2

[X/h1, Y /o1]
∧

Rh(o1)
α1θ3

[X/h2, Y /o1]
∧

Rh(h2)
α1θ4

[X/o1, Y /h2]
∧

Gh(h1)
α1 [X/h1]

Aggregation nodes

∗

Gh(o1)
α1 [X/o1]∗

Gh(h2)
α1 [X/h2]∗

Ah(h1)

Atom nodes

∨

Ah(o1)

∨

Ah(h2)

∨

Wa

Wa

Wa

W
a

Wh1

Wh1

Wh1

a(h1)

Fact nodes

a(o1)

a(h2)

Rh(h1)
α1θ1

[X/h1]

Rule nodes

∧

Rh(o1)
α1θ2

[X/o1]
∧

Rh(h2)
α1θ3

[X/h2]
∧

Gh(h1)
α1 [X/h1]

Aggregation nodes

∗

Gh(o1)
α1 [X/o1]∗

Gh(h2)
α1 [X/h2]∗

Ah(h1)

Atom nodes

∨

Ah(o1)

∨

Ah(h2)

∨

Wa

Wa

Wa

Wh1

Wh1

Wh1

Figure 4.2. Comparison of NeuraLogic edge predicate usages in terms of their effect on the
computational graphs: explicit (top), implicit/underscored (middle), and none (bottom).

Image based on the original from [70], modified.

To construct the generic case of the ⨁(𝜙(…)) part of the general graph convolution (as
defined in Chap. 3, p. 12, Section 3.1.2), the following rule encapsulates the structural
part: ℎ(𝑋) ∶− 𝑎(𝑋), 𝑎(𝑌), 𝑏(𝑋, 𝑌).
All of the aforementioned examples should indicate to the reader that writing more
complex rules is possible, which allows designing neural networks with expressive power
well beyond that of e.g. the general definition of GNN convolutions (Chap. 3, p. 12,
sec. 3.1.2).
More examples, as well as a more detailed description of the example from Fig. 4.1, are
available in [70].

4.3 Computational Graph Structure

The CPU implementation of the NeuraLogic computational graph forward/backward
pass computation sees the individual nodes of the computational graph as fully inde-
pendent neurons. In other words, there is no notion of “layers” in the implementation
[86].
The underlying data structure of the computational graph for a given input sample
begins with the output node (i.e. the single node for which there are no outgoing edges,
e.g. 𝐴𝑞 in Fig. 4.1. Each node then holds a sequence of pointers to its input nodes
𝑛1, . . . , 𝑛𝑙, as well as a sequence of pointers to the weights 𝗪𝑛

1 , . . . , 𝗪
𝑛
𝑙 , which the

corresponding inputs should be multiplied with (each 𝑖-th input corresponding to the

30

. 4.3 Computational Graph Structure

𝑖-th weight). Select neurons are also unweighted. Each neuron then also contains an
optional aggregation function ⨁ and an optional transformation function 𝒯.
The computation of the output value 𝗩𝑛 of a neuron 𝑛 (in the forward pass) then
operates as follows:
1. Retrieve the individual (output) values 𝗩𝑛1

, . . . , 𝗩𝑛𝑙
of the neurons 𝑛1, . . . , 𝑛𝑙 that

are the inputs of the neuron 𝑛.
2. Optionally, for each 𝗩𝑛𝑖

, perform matrix multiplication with its corresponding weight
𝗪𝑛

𝑖 .
• Note: Some weights 𝗪𝑛

𝑖 and/or some 𝗩𝑛1
may be unit values. If either of the

two is a unit value, the other is simply returned, instead of the actual matrix
multiplication being performed. (If both are unit values, a unit value will be
returned.)

3. If 𝑙 > 1, apply an aggregation function ⨁.
4. Optionally, apply a transformation function 𝒯.

These steps can be combined into a single Equation (6).

𝗩𝑛 ≔ 𝒯(⨁
𝑖∈(1, ..., 𝑙)

(𝗪𝑛
𝑖 ⊙𝗩𝑛𝑖

)) (6)

Bias is typically added as an extra input 𝑛𝑏, where 𝑏 ∈ {1, . . . , 𝑙}, and 𝗩𝑛𝑏
is a unit

value.
The computational graphs themselves begin with fact neurons, i.e. neurons without
inputs, with fixed values, which are either unit values, or the values explicitly assigned
to the inputs.
It is worth noting that while some weights 𝗪𝑛

𝑖 are learnable, some have fixed values.
For example, unit weights are not learnable.

4.3.1 Rules as Computational Graphs

. For each ground fact from the dataset, there is a fact neuron.

. For each body of each grounding of each rule, there is a rule neuron with the individ-
ual (ground) literals as inputs. When an input literal consists of a predicate that is
the result of some preceding rule(s), the input is the atom neuron (discussed below)
of the predicate.
. For each head (i.e. left-hand side) of each grounding of each rule, there is an aggre-

gation neuron, with the rule neurons corresponding to all applicable right-hand sides
as input.
. For each predicate that is built from rules, i.e. comes as the head of at least one rule,

there is an atom neuron, with individual rules deriving said predicate as inputs.

Or, intuitively speaking:
. Fact neurons are the dataset inputs.
. Rule neurons build the individual rules from their bodies. This is done for each

instance (grounding) of each rule, separately.
. Aggregation neurons form the rules from their individual instances (groundings).
. Atom neurons build predicates by combining all the rules that define them.

This is described in greater detail in [70].

31

4. NeuraLogic .

For our purposes, the following is important in terms of weights:
. Fact neurons are not weighted.
. Rule neurons have input weights (as well as inputs themselves) in the order of

the elements in the rule bodies. For example, each rule neuron for 𝗪ℎ1ℎ(𝑋) ∶−
𝗪𝑎𝑎(𝑌), 𝗪𝑏𝑏(𝑋, 𝑌) has input weights (𝗪𝑎, 𝗪𝑏).. Aggregation neurons are not weighted.
. Atom neurons have input weights (as well as inputs themselves) in the order of

definition of the corresponding rules. E.g., given a unary predicate ℎ defined by rules
with heads 𝗪ℎ1 ℎ(𝑋), ℎ(𝑋), and 𝗪ℎ2 ℎ(𝑋), the input weights of its atom neuron
are (𝗪ℎ1, Unit, 𝗪ℎ2).

4.3.2 Optimizations

Some neurons in the rule → aggregation → atom chain may be redundant. This may
happen when a predicate is defined by only one rule, making its atom neuron redundant
(as it is already built by the aggregation neuron), or when there is only one ground
instance of a rule, making the aggregation neuron redundant (as the rule is built directly
by the rule neuron), or when the body of a rule consists of a single unweighted literal,
making the rule neuron redundant. The merging of redundant neurons is available in
the optional “chain pruning” optimization.
Please note that this is not done on a “per-layer” basis, but on a per-neuron basis, as
NeuraLogic has no concept of layers. This means that e.g. an aggregation neuron may
be merged with the preceding neuron only in a few instances, when other aggregation
neurons at the same depth are preserved.
A more advanced optimization, named isomorphic compression, is a stochastic4 al-
gorithm for merging neurons performing the same computations. If two neurons, no
matter their type or location in the computational graph, are found to compute the
same results (which is determined by them consistently returning identical values, ir-
respective of the current assignment of specific – random – values to the learnable
parameters in the network), they are merged, as doing so will not change the network
output with respect to the input and the learnable parameters. Of course, learnable
parameters themselves cannot be (and are not) removed from the network by this. The
algorithm is described in great detail in [87].
Isomorphic compression is also done on a per-neuron basis.

4 With probability reaching 1 in the limit that the network output will remain unchanged by the use of this
optimization algorithm.

32

Chapter5
Implementation

The main contribution of this thesis is a computational graph processing solution for
the conversion of differentiable computational DAGs (directed acyclic graphs) to their
highly performant vectorized equivalents. The code for the implementation is available
on GitHub,1 and its structure is described in Appendix B.
While the result has mainly been tested on top of NeuraLogic inputs, it is important
to understand that the implementation operates purely on computational graphs and
is usable outside of the NeuraLogic context. The aim is to vectorize arbitrary dif-
ferentiable computational graphs of deep relational learning, irrespective of how they
were constructed in the first place. The approach is thus applicable on computational
graphs produced by other frameworks as well. In this chapter, NeuraLogic will merely
sometimes be used as an example.
The high-level idea behind the architecture of this algorithm is a two-phase approach:
The output of the first phase is a vectorized computational graph following a generic
scheme, to which any input can be transformed. The goal of the second phase is to
transform this graph further such that the final result is performant. In other words,
the first phase tasks itself with the vectorization, and the second phase tasks itself with
performance optimization. In terms of the outputs of the two respective phases, the
domain of all possible outputs of the former is a subset of the latter’s. In other words,
the intermediate output is simpler, adhering strictly to a scheme that is consistent for
any given input.
In the rest of this thesis, the first phase of the algorithm will be referred to as “the Vec-
torizer,” the second phase as “the Optimizer,” and the complete algorithm, consisting
of the two aforementioned phases in sequence, as “the Compiler.”
The intermediate output of the Vectorizer is in theory executable as-is,2 although its
individual nodes translate to their most generic versions, thus potentially being compu-
tationally unnecessarily slow. This is done on purpose, so that even if no optimizations
are applicable, the Compiler produces working vectorized outputs nonetheless. This
two-phase approach to the Compiler architecture is motivated by the idea that even
for unprecedented, extraordinarily difficult, potentially even adverse input instances,
the Compiler should produce working, executable outputs. Of course, the vast ma-
jority of inputs is optimizable further; however, the two-phase design offers a fallback
inherently, i.e., by design, even in hypothetical unprecedented situations, as the manda-
tory transformations operate only on a subset of the full domain of the intermediate
representation(s).
The Optimizer phase works primarily by pattern matching and substituting operations
in the computational graph with faster equivalents, where such substitution is imme-

1 https://github.com/neumannjan/nn-structural-graph-vectorizer-compiler
2 In practice, some transformations of this intermediate representation are still needed. However, the set of

transformations necessary for the output to be executable is only a minimal subset of the full sequence of
transformations involved in the Optimizer.

33

https://github.com/neumannjan/nn-structural-graph-vectorizer-compiler

5. Implementation .

diately available. Furthermore, more advanced optimizations precede this, attempting
more complex transformations of the computational graph, aiming to produce results
consisting mainly of operations that can be substituted as such. The Optimizer algo-
rithm is in the form of a sequence (a pipeline) of consecutive optimization operations,
which operate in complement to one another.
The inspiration for this design comes from programming language compilers, i.e., algo-
rithms that take programs written in high-level programming languages as input, and
produce equivalent low-level instruction sequences, executable directly on select hard-
ware. Higher-level programming languages typically abstract select complexities away
from the programmer in exchange for improved ease of use of the language. This means
that the compilers are tasked not only with the conversion itself, but also with the bur-
den of compensating for the absence of the programmer’s input where the abstractions
occur. However, a human programmer tasked with manually rewriting a program to its
low-level equivalent has access to the domain knowledge of the specific program, and
is thus much better equipped for the optimization task. Compilers, on the other hand,
perform their optimizations without access to any specific domain knowledge for the
given input. This means that man-made low-level instruction sequences typically have
an edge over their compiler-produced counterparts in terms of performance. Nonethe-
less, compilers are typically capable of producing results with competitive performance
in most instances, and domain knowledge is needed only in edge cases. This is similar
to our task at hand.
Furthermore, the architectural design of compilers is typically also similar to that of our
Compiler, performing a sequence of transformations of the input, with various interme-
diate representations of progressively increasing resemblance to the final representation,
which is equivalent to the output language. Furthermore, various optimizations are ap-
plied along this process, also done by finding optimizable patterns and replacing them
with more performant equivalents. An example programming language compiler is de-
signed for educational purposes in [88], teaching the reader the whole process, as well as
the individual optimizations involved. The design of our program is loosely inspired by
this, even though it shares neither the domain, nor the individual optimizations with
common programming language compilers.

5.1 Vectorization

The purpose of the Vectorizer is to merely convert the highly granular input computa-
tional graph, i.e., with a high number of nodes corresponding to operations on scalars
and/or small tensors, to an equivalent computational graph that is of low granularity,
i.e., with a low number of nodes, where each node corresponds to an operation on a
large tensor. The goal is to do so such that any node in the resulting graph corresponds
to an operation that can be performed in parallel on a GPU.
The terminology and syntax from Chapter 3 will be used below.

5.1.1 Computational Graph Definition

Firstly, let us formally define a computational graph by extending the definition of a
graph from Section 3.1.1.
A computational graph 𝐺 is a tuple of six values 𝐺 = (𝑉 ,𝐸,𝒯, ℐ, 𝒮,ℳ). The individual
elements are defined as follows:
. 𝑉 and 𝐸 are defined as in Sec. 3.1.1.

34

. 5.1 Vectorization

. ℐ is a mapping 𝑉 ↦ Seq(𝑉), where ℐ(𝑖) is an ordered sequence of the input nodes
of node 𝑖 ∈ 𝑉. ℐ determines the order of individual inputs of every node. Formally
speaking, for each node 𝑖 ∈ 𝑉, there is an ordered sequence of nodes ℐ(𝑖), where for
each 𝑗 ∈ 𝑉 such that (𝑗, 𝑖) ∈ 𝐸, it holds that 𝑗 ∈ ℐ(𝑖).
. 𝒯 is defined as in Sec. 3.1.1, with the following exception: 𝒯 does not contain value

tensors for all nodes, but only for fact nodes, i.e., for the nodes 𝑖 ∈ 𝑉 that do not
have any input nodes, i.e., for which ℐ(𝑖) is an empty sequence.
. 𝒮 is a mapping 𝑉 ↦ ∪𝑖∈ℕ+

ℕ𝑖
+, which determines the individual shapes that the

individual nodes have when their values are computed. This is a substitute for non-
fact nodes, which do not have a tensor in 𝒯. 𝒮(𝑖) enforces a specific shape that any
output of a given node 𝑖 must have.3
.ℳ is a mapping 𝑉 ↦ (Seq(𝕋) ↦ 𝕋), where ℳ(𝑖) is the function needed to com-

pute the output tensor 𝗧 of the node 𝑖 from a sequence of tensors (𝗧𝑗1
, . . . , 𝗧𝑗𝑚

),
where ℐ(𝑖) = (𝑗1, . . . , 𝑗𝑚). In plain English, ℳ(𝑖) is the computation operation
corresponding to the node 𝑖.

The computation is then performed for individual nodes in their topological order as
follows:
1. The node 𝑖 ∈ 𝑉 receives the individual computed tensors 𝗧𝑖1

, . . . , 𝗧𝑖|ℐ(𝑖)|
of its inputs

𝑖1, . . . , 𝑖|ℐ(𝑖)| ∈ ℐ(𝑖). If it has 𝒯(𝑖) instead, it receives 𝗧𝑖 = 𝒯(𝑖).
2. The output value for this node is then 𝗧𝑖 ≔ ℳ(𝗧𝑖1

, . . . , 𝗧𝑖|ℐ(𝑖)|
).

5.1.2 The Input Computational Graph Operations

Without loss of generality, let us define the exact specifications of the operations ℳ(𝑖)
for nodes 𝑖 ∈ 𝑉 of the input DAG:
. A fact node 𝑖 ∈ 𝑉 has zero inputs and merely returns a tensor value. In other words,

the 𝒯(𝑖) is present, |ℐ(𝑖)| = 0, and ℳ(𝑖) is the identity function, i.e. ℳ(𝑖)(𝗧) = 𝗧.
. A weight node 𝑖 ∈ 𝑉 is a fact node. However, in the actual computational graph

representation, the value 𝒯(𝑖) is not needed for weight nodes in the vectorization
stage, and the shape 𝒮(𝑖) is sufficient. This is because weights are initialized im-
mediately before the first execution of the computational graph. In the Compiler,
which involves merely graph preprocessing, we do not need weight values. Their
initial values may be present in 𝒯 optionally.

. A linear node 𝑖 ∈ 𝑉 performs matrix multiplication (i.e. ℳ(𝑖)(𝗔,𝗕) = 𝗔 ∘ 𝗕) and
has exactly two inputs, i.e. |ℐ(𝑖)| = 2, one for the left-hand side (usually the weight)
and one for the right-hand side.
. An aggregation node 𝑖 ∈ 𝑉 has an arbitrary number of inputs, minimum of one,

usually at least two. All its inputs must have the same shape. It performs aggregation
of its inputs using a permutation-invariant aggregation function ℳ(𝑖) = ⨁, and its
output typically has the same shape 𝒮(𝑖) as all its individual inputs 𝒮(𝑗) for 𝑗 ∈ ℐ(𝑖),
though this is not enforced nor required.
. A transformation node 𝑖 ∈ 𝑉 must have exactly one input, i.e. |ℐ(𝑖)| = 1. The

transformation function ℳ(𝑖) ∈ (𝕋 ↦ 𝕋) is expected to be a unary tensor function.
The shape 𝒮(𝑖) is typically equal to the shape 𝒮(𝑗) of its only input 𝑗 ∈ ℐ(𝑖).

This is different from the computational graphs produced by NeuraLogic, discussed in
Chapter 4, where a node typically consists of multiple of the above: all of the matrix

3 Do not confuse the graph shape mapping 𝒮 with the scatter operation 𝒮⨁
𝐽 .

35

5. Implementation .

multiplications of its inputs, an aggregation, and a transformation, or an arbitrary sub-
set of these three, in a single node. The individual inputs are not necessarily expected
to have the same shape, but they all must have the same shape after the individual
optional linear operations are applied. The NeuraLogic computational graph can be
converted to the representation defined in this chapter, and vice versa, while satisfying
all the conditions of the respective definitions. As such, the two computational graph
representations are equivalent. For the purposes of this chapter, we will be using the
input DAG definition as defined above, as it is simpler than the NeuraLogic one.

5.1.3 Node GroupVectorization

For an input DAG 𝐺 = (𝑉 ,𝐸,𝒯, ℐ, 𝒮,ℳ), vectorizing (or merging) a group of nodes
𝑁 = (𝑖1, . . . , 𝑖|𝑁|) ⊆ 𝑉 (where all nodes in 𝑁 are of the same type, e.g., fact, or
aggregation) refers to building a DAG 𝐺′ = (𝑉 ′, 𝐸′, 𝒯′, ℐ′, 𝒮′,ℳ′) where the following
holds:
. 𝑉 ′ = (𝑉 ∖ 𝑁) ∪ {𝑁}, i.e. the nodes from 𝑁 are replaced with a single node 𝑁.
. For any (𝑖, 𝑗) ∈ 𝐸 where 𝑖 ∈ 𝑁, 𝑗 ∉ 𝑁, it holds that (𝑁, 𝑗) ∈ 𝐸′.
. For any (𝑖, 𝑗) ∈ 𝐸 where 𝑗 ∈ 𝑁, 𝑖 ∉ 𝑁, it holds that (𝑖,𝑁) ∈ 𝐸′.
. For any (𝑖, 𝑗) ∈ 𝐸 where 𝑖, 𝑗 ∉ 𝑁, it holds that (𝑖, 𝑗) ∈ 𝐸′.
. ℐ′ is set as follows:
. ℐ′(𝑁) ≔ [𝑘 ∣ ∀𝑗 ∈ (1, . . . , |𝑁|), 𝑘 ∈ ℐ(𝑖𝑗)].. For 𝑖 ∈ 𝑉 ′, 𝑖 ≠ 𝑁, where none of 𝑗 ∈ 𝑁 are in ℐ(𝑖), we may set ℐ′(𝑖) ≔ ℐ(𝑖).
. For 𝑖 ∈ 𝑉 ′, 𝑖 ≠ 𝑁, where some 𝑗 ∈ 𝑁 are in ℐ(𝑖), we must set ℐ′(𝑖) ≔ (ℐ(𝑖) ∖ 𝑁) ∪

{𝑁}. The operation ℳ′(𝑖) must reflect this change, and it will be updated below
to do so.

. 𝒮′(𝑁) = 𝒮(𝑖1) = . . . = 𝒮(𝑖|𝑁|). For any other 𝑗 ∈ 𝑉 ′, 𝒮′(𝑗) = 𝒮(𝑗).

. For 𝒯′, one of the two below cases applies:
. 𝒯(𝑖) is not present for any 𝑖 ∈ 𝑁. In such case, 𝒯′(𝑁) is not present either,

i.e. 𝒯′ = 𝒯.
. 𝑁 consists of fact nodes, meaning that 𝒯(𝑖) is present for all 𝑖 ∈ 𝑁. Then, 𝒯′(𝑁) =

[𝒯(𝑖𝑗) ∣ 𝑗 ∈ (1, . . . , |𝑁|)]. For any other 𝑖 ∈ 𝑉 ′, 𝒯′(𝑖) = 𝒯(𝑖) if 𝒯(𝑖) is present.
.ℳ′(𝑁) is determined based on the type of the nodes in 𝑁 (e.g. fact or aggregation).

This is explained in great detail below. For any other 𝑖 ∈ 𝑉 ′, ℳ′(𝑖) = ℳ(𝑖).

In a more concrete sense, vectorizing refers to the underlying node operation(s) specif-
ically, whereas merging is the term for the structural changes to the graph. However,
since one cannot be done without the other, the terms may also be used interchangeably.
It goes without saying that only pairwise independent nodes can be merged, which can
be defined formally as follows: Let G be a (directed) graph. Nodes 𝑖, 𝑗 ∈ 𝑉 can be
defined as dependent when there exists a directed path between them, i.e. a sequence
of nodes 𝑖, 𝑖1, . . . , 𝑖𝑘, 𝑗 ∈ 𝑉 such that (𝑖, 𝑖1) ∈ 𝐸, for each 𝑙 ∈ {1, . . . , 𝑘 − 1} it holds
that (𝑖𝑙, 𝑖𝑙+1) ∈ 𝐸, and (𝑖𝑘, 𝑗) ∈ 𝐸. Nodes 𝑗, 𝑖 ∈ 𝑉 are dependent if 𝑖, 𝑗 ∈ 𝑉 are
dependent. Nodes 𝑖, 𝑗 ∈ 𝑉 are independent if and only if they are not dependent. A set
of nodes 𝑁 ⊆ 𝑉 is pairwise independent if for all pairs 𝑖, 𝑗 ∈ 𝑁 it holds that 𝑖 and 𝑗 are
independent.
Eventually, all original nodes 𝑖 ∈ 𝑉 must be part of some 𝑁 ⊂ 𝑉 ,𝑁 ∈ 𝑉 ′, even if the
only possibility for a given 𝑖 ∈ 𝑉 is the trivial one, i.e. 𝑁 = (𝑖). Therefore, eventually,
after all vectorizations are performed, 𝑉 ′ ∩ 𝑉 = ⌀, and 𝑉 ′ consists of disjoint sets of
values from 𝑉. The resulting graph then is the fully vectorized graph 𝐺′ = (𝑉 ′, . . . ,ℳ′),
where it holds that all ℳ′(𝑖) operate on tensors that correspond to lists of tensors from

36

. 5.1 Vectorization

Figure 5.1. Example of broken input order as a result of vectorization due to interleaving.
Different node colors indicate different node types and/or parameters, where nodes of equal

color are vectorizable together.

Figure 5.2. Example of broken input order as a result of vectorization due to repetition.
Different node colors indicate different node types and/or parameters, where nodes of equal

color are vectorizable together.

the original graph 𝐺 = (𝑉 , . . . ,ℳ). In other words, any 𝗧 on input of any ℳ′(𝑖) is
expected to have shape (|𝑁|, 𝗦) for some 𝑁 ⊂ 𝑉, where for each 𝑗 ∈ 𝑁, 𝒮(𝑗) = 𝗦.
The operations ℳ′(𝑖) are thus vectorized in the sense that they operate on vectorized
inputs, and produce vectorized outputs.

5.1.4 Vectorized Input Order Discrepancy

When the whole graph is vectorized as described above, input order will inevitably be
broken for most newly created nodes! If there is a group of nodes 𝑁1 that can be
vectorized, but the nodes are used as input of some subsequent nodes 𝑁𝑠 in an order
where they are interleaved with some other inputs 𝑁2, then by vectorizing 𝑁1 we enforce
a consecutive order on 𝑁1, meaning that 𝑁1 values can no longer be interleaved with
𝑁2 on the input of 𝑁𝑠. This is illustrated in Figure 5.1. Similarly, if nodes from 𝑁1 are
used as inputs by some 𝑁𝑠 in a different order than 𝑁1 establishes, possibly even with
some inputs requesting nodes from 𝑁1 repeatedly, input order is then also broken for
𝑁𝑠. This is illustrated in Figure 5.2.
Therefore, the change in the order of individual input values must be reflected in the
vectorized nodes, so that they continue to produce equivalent results. Specifically,
a node must reorder its inputs back to the expected order, prior to performing its
computation. To do this, the node may use a multi-tensor gather operation.

37

5. Implementation .

A multi-tensor gather operation ̅𝒢𝐼′ : 𝕋 × . . . × 𝕋 ↦ 𝕋 is a gather operation performed
on multiple tensors, using the index sequence 𝐼′ ∈ Seq({1, . . . , 𝑁} × ℕ+). This allows
a vectorized node to take its vectorized inputs 𝗧1, . . . , 𝗧𝑁 and reorder their individual
values in arbitrary order into a single tensor, also allowing for interleaving values from
different inputs, or for repetition of select inputs. The operation can be defined as
shown in Equation (1).

̅𝒢𝐼′(𝗧1, . . . , 𝗧𝑁) ≔ [𝗧𝑖(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐼 ′] (1)

For example, given two input tensors 𝗧1 and 𝗧2 of equal shapes 𝗦 = (𝑁, . . .), to gather
their individual elements in an alternating order, we may use multi-tensor gather with
the index sequence 𝐼′ from Equation (2).

𝐼′ = ((1, 1), (2, 1), (1, 2), (2, 2), . . . , (1,𝑁), (2,𝑁)) (2)

A vectorized implementation of such an operation is typically not available, e.g., for
GPUs. Therefore, it is in practice replaced with a concatenation operation followed
by a gather operation. The former concatenates the individual vectorized inputs along
the first dimension into a single tensor. The latter reorders the individual values in the
expected order. For the above 𝐼′ example, given input tensors 𝗧1 and 𝗧2, the concate-
nation operation could produce 𝗧 = [𝗧1, 𝗧2], and the subsequent gather operation 𝒢𝐼
would then use the index sequence 𝐼 = (1, 𝑁 + 1, 2, 𝑁 + 2, . . . , 𝑁, 𝑁 +𝑁).
To define the concatenation operation formally, see Equation (3).

Concat(𝗧1, . . . , 𝗧𝑁) ≔ [𝗧1, . . . , 𝗧𝑁] (3)

In general, given input tensors 𝗧1, . . . , 𝗧𝑁, with respective shapes 𝗦1 = (𝑙1, 𝗦), . . . ,
𝗦𝑁 = (𝑙𝑁, 𝗦), the multi-tensor gather operation ̅𝒢𝐼′ can be rewritten using Concat and
𝒢𝐼 as shown in Equation (4).

̅𝒢(𝗧1, . . . , 𝗧𝑁) = 𝒢𝐼(Concat(𝗧1, . . . , 𝗧𝑁)),

where 𝐼 ≔ [(∑𝑗∈1, ..., 𝑛−1 𝑙𝑗) + 𝑖 ∣ (𝑛, 𝑖) ∈ 𝐼′]
(4)

Figure 5.3 shows how this fixes the example from Fig. 5.1.

5.1.5 TheVectorized Computational Graph

Let us list how all the input nodes can be merged and vectorized, and what the resulting
nodes look like:
. Transformation nodes 𝑁 = (𝑖1, . . . , 𝑖|𝑁|) ⊆ 𝑉 can be merged together as long as

they are pairwise independent, they perform the same transformation operation
𝑀 = ℳ(𝑖1) = . . . = ℳ(𝑖𝑚), and their shapes are equal, i.e. 𝗦 = 𝒮(𝑖1) = . . . = 𝒮(𝑖𝑚).
The resulting operation ℳ′(𝑁) is the same transformation 𝕋𝗦 ↦ 𝕋𝗦′ as for any of the
individual original nodes. However, the transformation now must be “broadcasted,”
i.e., it must operate on a batched tensor of shape (∑𝑖∈(1, ..., |𝑁|) |ℐ(𝑖)|, 𝗦). The output
tensor has shape (∑𝑖∈(1, ..., |𝑁|) |ℐ(𝑖)|, 𝗦

′), where typically 𝗦′ = 𝗦. The transforma-
tion is applied independently across the first dimension of the input tensor. When

38

. 5.1 Vectorization

Concat GI S
⊕
J

Figure 5.3. Example of a multi-input gather solution for the problem from Fig. 5.1. The
vectorized node (highlighted in light orange) now consists of three vectorized operations
applied in sequence: Concat, 𝒢𝐼, and 𝒮⨁

𝐽 . The first two serve the purpose of re-arranging
input values back to the expected order, before the main operation (in this case aggrega-

tion) is applied.

combined with the preceding concat+gather operation, the resulting operation ℳ′(𝑖)
looks as follows (𝛾 refers to the transformation itself):

ℳ′(𝑖)(𝗧1, . . . , 𝗧|ℐ′(𝑖)|) = 𝛾(𝒢𝐼(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|))))

. Aggregation nodes 𝑁 = (𝑖1, . . . , 𝑖|𝑁|) ⊆ 𝑉 can be merged together as long as ⨁ =
ℳ(𝑖1) = . . . = ℳ(𝑖𝑚) (please note that each original node 𝑖 ∈ 𝑁 is allowed to
have a different number of inputs to be aggregated), and their input and output
shapes are equal, i.e. ⨁:𝕋𝗦 × . . . × 𝕋𝗦 ↦ 𝕋𝗦′ . The equivalent vectorized operation
of the vectorized node is the scatter operation 𝒮⨁

𝐽 . More specifically, it is in fact a
segmentation operation as defined in Section 3.4.3. As such, it can be parametrized
using a sequence of counts 𝐶 = [|ℐ(𝑖𝑗)| ∣ ∀𝑗 ∈ (1, . . . , |𝑁|)]. The input shape is
(∑𝑖∈(1, ..., |𝑁|) |ℐ(𝑖)|, 𝗦) and the output shape is 𝒮′(𝑁) = (|𝑁|, 𝗦′). When combined
with the preceding concat+gather operation, the resulting operation ℳ′(𝑖) looks as
follows:

ℳ′(𝑖)(𝗧1, . . . , 𝗧|ℐ′(𝑖)|) = 𝒮⨁
𝐽 (𝒢𝐼′(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|)))

. Fact nodes 𝑁 = (𝑖1, . . . , 𝑖|𝑁|) ⊆ 𝑉 can be merged together as long as they have
identical shapes 𝗦 = 𝒮(𝑖1) = . . . = 𝒮(𝑖𝑚). Then, the resulting tensor is 𝒯′(𝑁) =
𝗧 = [𝒯(𝑖𝑗) ∣ 𝑗 ∈ (1, . . . , |𝑁|)]. The operation ℳ′(𝑁) is still the identity function.
. Linear nodes 𝑁 = (𝑖1, . . . , 𝑖|𝑁|) ⊆ 𝑉 can be merged together as long as they have

identical left-hand side shapes, and identical right-hand side shapes (note that for
all 𝑖 ∈ 𝑁, it holds that |ℐ(𝑖)| = 2). In other words, 𝒮(ℐ(𝑖1)1) = . . . = 𝒮(ℐ(𝑖|𝑁|)1),
and 𝒮(ℐ(𝑖1)2) = . . . = 𝒮(ℐ(𝑖|𝑁|)2). Assuming that 𝗪(𝑖) are the left-hand side value
tensors, and 𝗫(𝑖) are the right-hand side value tensors of all 𝑖 ∈ 𝑁, the vectorized
operation is then 𝜙(𝑁)(𝗪,𝗫) = [𝗪(𝑖𝑗) ⋅ 𝗫(𝑖𝑗) ∣ 𝑗 ∈ (1, . . . , |𝑁|)] = 𝗪 ∘ 𝗫. The

39

5. Implementation .

output shape is thus 𝒮′(𝑁) = (|𝑁|, 𝗦), where 𝗦 = 𝒮(𝑖1) = . . . = 𝒮(𝑖|𝑁|). To obtain
𝗪 and 𝗫 from the actual vectorized node inputs (𝗧1, . . . , 𝗧|ℐ′(𝑖)|), we must use
concat+gather, as follows:

𝗪 ≔ 𝒢𝐼1
(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|))

𝗫 ≔ 𝒢𝐼2
(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|))

To summarize, the following are the individual vectorized operations for the different
node types, including the concatenation/gather operations:
. Fact nodes: ℳ′(𝑖)(𝗧) = 𝗧.
. Transformation nodes: ℳ′(𝑖)(𝗧1, . . . , 𝗧|ℐ′(𝑖)|) = 𝛾(𝒢𝐼(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|)))).
. Aggregation nodes: ℳ′(𝑖)(𝗧1, . . . , 𝗧|ℐ′(𝑖)|) = 𝒮⨁

𝐽 (𝒢𝐼(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|))).. Linear nodes:

ℳ′(𝑖)(𝗧1, . . . , 𝗧|ℐ′(𝑖)|) =
= 𝒢𝐼1

(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|)) ∘ 𝒢𝐼2
(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|))

Linear nodes may be simplified further, as the two gathers only need to operate on
their respective subsets of the input tensors 𝗧1, . . . , 𝗧|ℐ′(𝑖)|. Therefore, we may instead
redefine its operation ℳ′(𝑖) (also updating its input order ℐ′(𝑖) accordingly) as follows:

ℳ′(𝑖)(𝗪1, . . . , 𝗪𝑊, 𝗧1, . . . , 𝗧𝑇) =
= 𝒢𝐼′′

1
(Concat(𝗪1, . . . , 𝗪𝑊)) ∘ 𝒢𝐼′′

2
(Concat(𝗧1, . . . , 𝗧𝑇))

The resulting vectorized computational graph is also a DAG.
Figure. 5.4 illustrates how individual operations (transformation, aggregation, and lin-
ear) are vectorized, and what the resulting computational graphs may look like with
respect to the nodes’ inputs, vectorized independently.

5.1.6 Note About Aggregation Nodes

Figure 5.3 may suggest that the gather operation is redundant when immediately fol-
lowed by a scatter operation, and that using the concatenation operation by itself with
the scatter operation is sufficient. This is true in this particular example. However,
keep in mind that the gather operation may also reuse input nodes multiple times in
preparation for the scatter operation, and the scatter operation cannot use input values
multiple times by itself. This was discussed in greater detail in Chapter 3, Section 3.4.1
(p. 19). The use of the gather operation also allows us to use a segmentation operation
in every instance, instead of the generic scatter operation.
However, in instances where each input value is used exactly once, a scatter operation
can be used without a preceding gather operation, instead of a gather operation followed
by the segmentation operation.
Alternatively, sparse matrix multiplication can be used in place of any gather+scatter
sequence.

40

. 5.1 Vectorization

Figure 5.4. Vectorization before/after for individual operation types: transformation
(blue), aggregation (orange), and linear (purple). Notice that the vectorization of the
input nodes operates completely independently, which is illustrated using gray nodes, of
arbitrary configurations. This is why the total number of inputs for each node is arbitrary
after vectorization, and is re-gathered appropriately at the beginning of each vectorized

node.

5.1.7 Generalization

We could generalize this further and allow arbitrary vectorizable differentiable 𝑛-ary
functions ⨀, where the corresponding node operations would then follow a general
scheme as follows:

ℳ′(𝑖)(𝗧1, . . . , 𝗧|ℐ′(𝑖)|) ≔ ⨀
𝑗∈{1, ..., 𝑛}

𝒢𝐼𝑗
(Concat(𝗧1, . . . , 𝗧|ℐ′(𝑖)|))

Such general scheme encompasses all of the node types that we defined, and others.
However, this is disadvantageous for the Optimizer, for two reasons: Firstly, many
optimizations target the linear operations specifically. Secondly, many optimizations
reduce the total number of gather operations by propagating gathers through aggrega-
tion/transformation layers. This is trivial for the transformation layers as defined, and
for the aggregation layers, requires access to the metadata of their scatter operations.
In other words, such optimizations may not be possible for general 𝑛-ary functions.
Support for additional operations may in the future be added, but it is currently not
implemented. Instead, it is encouraged to construct more advanced computations via

41

5. Implementation .

the composition of existing building blocks. For example, to compute the normalization
factor 1

√deg(𝑖)⋅deg(𝑗) , one could use aggregation nodes (with “count” aggregation) for
deg(𝑖), followed by aggregation nodes (with scalar multiplication aggregation) for their
pairwise products, followed by 𝛾(𝑥) ≔ 1√

𝑥 transformation nodes.

5.1.8 The Batching Problem

The remaining topic left to discuss is the following question: How to choose the groups of
nodes to merge together? While the question may appear simple, it is in fact no different
from the NP-hard “batching” problem of dynamic computational graphs, discussed in
Chapter 2, Section 2.1.1 (p. 6). This is especially the case when the inputs are batched,
i.e. multiple input samples (independent sub-graphs) are contained in the computational
graph; however, it might also be the case even when vectorizing a computational graph
of only a single input sample.
However, specifically in the case of NeuraLogic, we may utilize domain knowledge and
simply group nodes based on from which FOL rules they were created. Even better:
we may group all nodes for which the left-hand side predicate matches. For example, if
there are rules “𝗪1ℎ(𝑋) ∶− 𝑎(𝑌), 𝑏(𝑋, 𝑌)” and “𝗪2ℎ(𝑋) ∶− 𝑎(𝑋),” all of their nodes
can be grouped together. In other words, the grouping occurs loosely based on the
intuition of “layers” that you may intuitively have when looking at, e.g., Figure 4.1
(p. 28).
Of course, not all nodes can be grouped as such; we must split them further into groups
based on their aggregation/transformation configurations, as well as the dimensions of
their individual tensors.
For the example of the two rules “𝗪1ℎ(𝑋) ∶− 𝑎(𝑌), 𝑏(𝑋, 𝑌)”, and “𝗪2ℎ(𝑋) ∶− 𝑎(𝑋)”,
this means specifically:
. A single vectorized aggregation node will collect and aggregate the values for all

ground rules of both the template rules at once. This requires gathering the values
of all ground rules for both right-hand sides, i.e for all of 𝑎(𝑋), and all pairs of
𝑎(𝑌) and 𝑏(𝑋, 𝑌), and then aggregating such that all corresponding pairs of 𝑎(𝑌)
and 𝑏(𝑋, 𝑌) are aggregated, and all 𝑎(𝑋) are propagated as-is. (In other words, the
corresponding scatter/segmentation operation will have counts of 2 for the first rule,
and counts of 1 for the second rule.) The output tensor has values for all ℎ(𝑋) from
the first rule, as well as all ℎ(𝑋) from the second rule.
. A single vectorized linear node will then perform the matrix multiplication, gathering

𝗪1 and 𝗪2 for the left-hand side of the operation, depending on the rule sources of
the corresponding values on the right-hand side.

There are some situations where multiple rules with matching left-hand side predicates,
or even a single rule, may produce multiple vectorized nodes:
. A single rule ℎ(. . .) ∶− 𝗪𝑎𝑎(. . .),𝗪𝑏𝑏(. . .), where tensors 𝗪𝑎 and 𝗪𝑏 have different

dimensions, or where tensors for the predicates 𝑎 and 𝑏 have different dimensions,
require two separate vectorized linear nodes. For subsequent aggregation, the di-
mensions must match nonetheless, and as such a single aggregation node remains
sufficient.
. Two rules with the same predicate, but a different aggregation function require sep-

arate aggregation nodes.

42

. 5.1 Vectorization

Figure 5.5. Comparison of an optimal and a suboptimal grouping. Different node colors
indicate different node types. Light-colored rectangles indicate how vectorization can be
performed. Notice that there is an exponential number of suboptimal groupings with
unnecessary skip connections (e.g., the one on the right), and only a single possible solution

without skip connections (the one on the left).

. Two rules with the same predicate, but a different transformation function require
separate transformation nodes.
. Two rules 𝗪1ℎ(. . .) ∶− . . . and 𝗪2ℎ(. . .) ∶− . . ., where tensors 𝗪1 and 𝗪2 have

different dimensions, require two separate vectorized linear nodes. For subsequent
aggregation, the dimensions must match nonetheless, and as such a single aggregation
node remains sufficient.

It may happen that this approach to node grouping produces situations where multiple
independent groups are still groupable, despite having different left-hand side pred-
icates, as their node types, aggregation/transformation configurations, and operation
input/output shapes are by chance equivalent. In such case the grouping is not optimal.
The solution is trivial, though: the groups can simply be merged into one.4

The reader may argue that the domain knowledge is unnecessary; that it is sufficient
to group nodes based on their node types, dimensions, and operation configurations.
This is not true, as without the domain knowledge, an exponential number of solutions,
most of which are suboptimal, is possible. What happens when grouping is performed
as such is illustrated in Fig. 5.5. To avoid this, a depth-based algorithm could be used,
similar to that used by TensorFlow Fold. However, using depth is also suboptimal,
as problematic examples still exist, such as those discussed in [31; Fig. 1], which are
avoidable when domain knowledge is used.
In NeuraLogic instances where different input samples resolve to different depths due to
recursive rule definitions, the recursively expanded layers can be merged across samples
in two ways to minimize skip connections: at the beginning, or at the end. This is
illustrated in Figure 5.6. The better choice of the two could be made e.g. such that
memory consumption (i.e., the number of nodes in a single layer) is minimized.5

It is important to note that this does not necessarily solve the NP-hard batching prob-
lem, and the solution is not guaranteed to be optimal for NeuraLogic. However, the

4 At the time of writing, this is not implemented, though doing so is not necessarily particularly difficult.
The grouping is purely based on the predicates.

5 At the time of writing, recursive NeuraLogic NNs have not been tested.

43

5. Implementation .

Figure 5.6. Example of NeuraLogic computational graphs with recursive rules, with dif-
ferent depths across independent sub-graphs. Note that the situation from Fig. 5.5 cannot
occur, as domain knowledge is used, and thus any solution will properly follow layers. In
this example, there is at least one skip connection needed nonetheless; however, there are
exactly two solutions that do not have more than one skip connection, and we may choose

either of them.

approach taken, which groups together nodes with corresponding semantics using do-
main knowledge from the NeuraLogic architecture design, is highly unlikely to produce
problematic solutions in the vein of those discussed e.g. in [31; Fig. 1], as the domain
knowledge-informed algorithm is not depth-based. This indicates that the groupings
will be close to optimal for most computational graphs. For example, for many GNNs,
including GCN or GraphSAGE [57], the solutions are optimal, since their resulting
computational graphs do not contain any skip connections.
Please note that none of the FOL syntax is present in the Vectorizer. The Vector-
izer operates on computational graphs directly, and is completely independent from
NeuraLogic, suitable for applications on arbitrary computational graphs, unrelated to
either FOL or NeuraLogic.
However, no automated solver has been implemented for solving the batching/grouping
problem in the general case. The input API asks the user to input the computational
graph(s) in pre-grouped form, which is how the domain knowledge-based grouping is
done in the NeuraLogic case. It is up to the user of the Compiler to decide what
grouping approach they choose to use for any custom computational graphs of their
own.
The Vectorizer is thus very simple, merely producing the initial vectorized computa-
tional graph representation for the Optimizer, which is the main point of interest, as it
ensures the vectorized computational graph is performant; a property that is not the
main point of focus for the Vectorizer.6

5.1.9 Implementation Details

At the time of writing, the actual Vectorizer implementation outputs all vectorized
nodes as nodes of a single type. In other words, a single node performs the concate-
nate+gather operation(s), followed by an optional vectorized matrix multiplication,
followed by an optional vectorized aggregation, and lastly an optional vectorized trans-

6 Of course, the grouping problem must be resolved at the Vectorizer stage, which obviously affects perfor-
mance, as the Optimizer expects this to be resolved on its input.

44

. 5.2 Optimizations

formation. This representation is equivalent to that described in this text, where the
individual operations are represented as separate nodes. Any computational graph
written using the former representation is convertible to the latter, and vice versa.
Therefore, this is merely an implementation detail.

5.2 Optimizations

Before the motivation for optimizations is explained, let us first define some additional
terminology to be used with vectorized computational graphs that are the immediate
outputs of the Vectorizer. This will help make the discussion less verbose. Given a
vectorized node 𝑖 ∈ 𝑉 ′, let us define:
. The output length of 𝑖 as the first (batch) dimension of its output tensor, i.e., 𝒮′(𝑖)(1).
. The input length of 𝑖 as the sum of the output lengths of its input nodes:

∑𝑗∈ℐ′(𝑖) 𝒮
′(𝑗)(1).

. The inner length of 𝑖 as the length |𝐼| of the index sequence 𝐼 of any of its gather
operations 𝒢𝐼.

The computational graph output of the Vectorizer consists of a low number of nodes,
where each node is typically “wide”, i.e., it has large inner/output lengths, meaning
that it broadcasts the same operation across a large number of values. No matter the
specifics, this is done in any case by first resizing (gathering) the inputs from their input
length to the inner length, and then performing the broadcasted operation.
For example, for a linear node, this requires two gather operations, one for the left-hand
side, and one for the right-hand side, both of which expand the two respective input
tensors to the (wide) inner length, which only then is followed by the (wide) broadcasted
matrix multiplication. However, for many linear nodes, at least one side (typically, but
not exclusively, the weight side) has the number of unique inputs significantly lower
than the inner length of the node. For example, a linear node may apply matrix
multiplication 𝑛 = 2000 times, using only 3 unique weight inputs. It will nonetheless
expand the concatenated weight tensor of shape (3, . . .) to shape (2000, . . .) first, before
performing the matrix multiplication itself. This is redundant, which becomes even
more apparent when the node only uses a single weight, meaning that it duplicates it
2000 times before performing the matrix multiplication, even though each of the 2000
values is the same value. A different interesting example is one where the linear layer
multiplies every possible combination of its weight and input value pairs, as in such
case both the lengths 𝑎 and 𝑏 of the two input sides are significantly lower than the
output length 𝑛 = 𝑎 ∗ 𝑏. In such case, both inputs have their values duplicated many
times over redundantly.
What is more, the possibility for optimizations does not end here. We may do two
following things:

a) Remove duplicates from, e.g., linear nodes by propagating gathers “downwards,”
i.e., to subsequent layers, thereby decreasing the memory footprint at the expense of
(possibly) additional gather operations.

b) Or, reduce the total number of gather operations by propagating gathers “upwards,”
i.e., to preceding layers, thereby duplicating nodes and increasing memory footprint
at the benefit of lower computational overhead.

45

5. Implementation .

For an arbitrary input computational graph, a balancing act between a) and b) can
be done, where depending on its memory footprint, different configurations may yield
different performance. Overall, a) is applied first to remove unnecessary duplicates
nonetheless, and then the strength of b) can be configured to achieve different results.
Lastly, other low-hanging fruit optimizations can also be done, such as the replacement
of gather/scatter operations with simpler equivalents in specific instances.

5.2.1 Basic Gather Optimizations

When individual gathers have very specific layouts, they can be simplified:

. When a gather only retrieves a single value, instead of using the computationally
involved gather algorithm, we may simply retrieve the single value by indexing into
the tensor.
. When a gather retrieves values in increasing order such that every consecutive index

is exactly 𝑙 values greater than the previous, we may simply use the symmetrical (and
thus easier to parallelize) slicing operation. In other words, if for each 𝑖 ∈ {1, . . . , |𝐼|}
it holds that 𝐼𝑖+1 = 𝐼𝑖 + 𝑙, then we may simply take each 𝑙-th value from the slice of
the tensor starting at index 𝐼1 and ending at index 𝐼|𝐼| (incl.).
. This of course simplifies further when 𝑙 = 1, where we simply take the slice without

skipping values.
. Even further, when 𝑙 = 1, 𝐼1 = 1, and |𝐼| is equal to the input length, then the

gather operation can be skipped entirely, as its output is equal to its input.
. When the gather index sequence 𝐼 consists of a subsequence of values 𝐼𝑠 repeated 𝑟

times, such that 𝐼 = 𝐼𝑠𝐼𝑠𝐼𝑠 . . . 𝐼𝑠 (e.g., 𝐼𝑠 = (𝑖1, 𝑖2), 𝐼 = (𝑖1, 𝑖2, 𝑖1, 𝑖2, . . . , 𝑖1, 𝑖2)), we
may simply gather using the subsequence 𝐼𝑠 (to which any of the above optimizations
can also be applied), and then use the “repeat” operation, which copies memory 𝑟
times such that the same result is obtained. However, it must be noted that in such
situations, the use of the repeat operation is typically still suboptimal, and better
optimizations, discussed later, typically exist, which avoid copying memory.
. For future reference, let us refer to this as dimension 1 repetition.
. When the gather index sequence 𝐼 is made from some value sequence 𝐼𝑠 by duplicating

each its individual value 𝑟 times (e.g., 𝐼𝑠 = (𝑖1, 𝑖2), 𝐼 = (𝑖1, . . . , 𝑖1, 𝑖2, . . . , 𝑖2)), we may
simply gather using the subsequence 𝐼𝑠 (to which any of the above optimizations can
also be applied), and then use the “interleave” operation, which copies memory 𝑟
times such that the same result is obtained. However, it must be noted that in such
situations, the use of the interleave operation is typically still suboptimal, and better
optimizations, discussed later, are typically available, avoiding memory copying.
. For future reference, let us refer to this as dimension 2 repetition.

5.2.2 Basic Scatter Optimizations

When the index sequence 𝐽 of the scatter operation 𝒮⨁
𝐽 can be represented via a se-

quence of counts, then it can be replaced by the segment CSR operation, as discussed
in Chapter 3, Section 3.4.3, p. 23.
When the segmentation operation’s counts sequence 𝐶 consists of the same value,
i.e. 𝐶 = (𝑐, 𝑐, . . . , 𝑐) for some 𝑐, then simple reshaping followed by dense aggregation
can be used. An input tensor with shape 𝗦 = (𝑛, . . .) can be reshaped to (𝑛/𝑐, 𝑐, . . .),
and the aggregation operation ⨁ (e.g., sum) can be performed on the dense tensor’s
second dimension. It always holds that 𝑛 is divisible by 𝑐, otherwise the segmentation

46

. 5.2 Optimizations

𝗪1 𝗪2 𝗪3 𝗪1 𝗪2 𝗪3 . . .[] ∘ 𝗫1 𝗫2 𝗫3 𝗫4 𝗫5 𝗫6 . . .[]

𝗪1 𝗪2 𝗪3[] ∘ 𝗫1 𝗫2 𝗫3 𝗫4 𝗫5 𝗫6 . . .[]

𝗪1 𝗪2 𝗪3

𝙒1 𝙒2 𝙒3

𝙒1 𝙒2 𝙒3

...
...

...

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎧{{
⎨{{⎩

implicit
∘

𝗫1 𝗫2 𝗫3

𝗫4 𝗫5 𝗫6

𝗫7 𝗫8 𝗫9

...
...

...

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝗪1 ⋅ 𝗫1 𝗪2 ⋅ 𝗫2 𝗪3 ⋅ 𝗫3

𝗪1 ⋅ 𝗫4 𝗪2 ⋅ 𝗫5 𝗪3 ⋅ 𝗫6

𝗪1 ⋅ 𝗫7 𝗪2 ⋅ 𝗫8 𝗪3 ⋅ 𝗫9

...
...

...

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

𝗪1 ⋅ 𝗫1 𝗪2 ⋅ 𝗫2 𝗪3 ⋅ 𝗫3 𝗪1 ⋅ 𝗫4 𝗪2 ⋅ 𝗫5 𝗪3 ⋅ 𝗫6 . . .[]

Remove repeats

Reshape

Broadcasted matrix
multiplication

Reshape back

Figure 5.7. A visual explanation of a linear layer optimization on an example of a dimen-
sion 1-repeating left-hand side.

operation itself would be illegal in the first place.7 The equivalence of the result when
using such reshaping, followed by the aggregation along the 2nd dimension, follows from
the fact that we use row-major indexing (Fig. 3.1, p. 11).

5.2.3 Basic Linear Layer Optimizations

Continuing a similar pattern to the sections above, very specific layouts of the gather
pairs of linear layers allow for significant simplification of the linear nodes.
Specifically, when either of the two gathers (or both) has a layout matching the last
two bullet points from Section 5.2.1 (dimension 1 and dimension 2 repetition), then the
full linear layer can be simplified.
When exactly one gather (either left-hand side or right-hand side) of a linear layer has
the structure of dimension 1 repetition, then it is sufficient to gather the subsequence
(without repetition) instead of the full sequence. Then, more advanced broadcasting for
the matrix multiplication can be used:
Let 𝑛 be the length of both of the original sequences. Let 𝑙 be the length of the
simplified gather’s sequence. After said simplification of the gather, we have two tensors,

7 Technically, a segmentation operation can operate in instances where ∑𝑖 𝐶𝑖 < 𝑛, but in such case, the
input tensor itself contains unused values and can be simplified in earlier layers, or can at least be sliced
to ∑𝑖 𝐶𝑖 along the first dimension, and then the reshaping solution becomes applicable.

47

5. Implementation .

𝗪1 𝙒1 𝙒1 . . .
𝗪2 𝙒2 𝙒2 . . .
𝗪3 𝙒3 𝙒3 . . .

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⎧{{⎨{{⎩ implicit

𝗪1 . . . 𝗪1 𝗪2 . . . 𝗪2 𝗪3 . . . 𝗪3[]

Corresponds to

Figure 5.8. A visual explanation of the implicit broadcasting on a dimension 2-repeating
example input tensor.

of shapes (𝑙, . . .) and (𝑛, . . .) respectively, that we are trying to perform broadcasted
matrix multiplication on. Given the fact that both PyTorch and TensorFlow use row-
major ordering (Fig. 3.1, p. 11), by reshaping both tensors to (1, 𝑙, . . .) and (𝑛/𝑙, 𝑙, . . .)
respectively, and then applying matrix multiplication, both the frameworks operate as
if both tensors had shape (𝑛/𝑙, 𝑙, . . .), which for the former tensor is done by re-using it
as-is for all the 𝑛/𝑙 computations along the first dimension. The matrix multiplication
is then applied independently across all dimensions except the final two, in which the
actual matrix multiplication occurs. Afterwards, we may reshape the resulting tensor
back to (𝑛, . . .), which gives us the same result as the original operation. This is
illustrated in Figure 5.7.
As reshaping is known from Chapter 3 to be a nearly free operation computationally,
we were able to simplify the computation by removing tensor value copying by using
reshaping+broadcasting instead, as no explicit memory copying of the smaller input
tensor is done as part of the broadcasting, as opposed to the gather+repeat equivalent.
The same is applicable in the instance of dimension 2 repetition; the only difference
being that the initial reshaping must be done (𝑙, 1, . . .) and (𝑙, 𝑛/𝑙, . . .) respectively, as
the implicit repetition is then done along the second dimension. When later reshaped
back, the output tensor is then equivalent to the original variant, where both the gathers
had the length of 𝑛, or when the dimension 2 repetition was used explicitly. Again, this
is the case because of the row-major ordering of tensor values. To compare how this
differs from the previous example, Figure 5.8 illustrates the reshaping for dimension 2
repetition.
When both original sequences are either dimension 1 repeatable, or dimension 2 repeat-
able (with the same repeatability type on both sides), only one of the two can be taken
advantage of via broadcasting. It makes sense to choose that which produces a shorter
gather operation (i.e. greater 𝑛/𝑙).
When one original gather sequence is dimension 1 repeatable with 𝑙1, and the other
is dimension 2 repeatable with 𝑙2, and for both it holds that 𝑙1 ⋅ 𝑙2 = 𝑛, then both
techniques can be applied at once, i.e., both gathers can be simplified, and the resulting
tensors may be reshaped to (1, 𝑙1, . . .) and (𝑙2, 1, . . .), respectively, resulting in a tensor
of shape (𝑙2, 𝑙1, . . .) after the matrix multiplication, which can then be reshaped back
to (𝑙1 ⋅ 𝑙2, . . .) = (𝑛, . . .), giving us the correct result. Since such broadcasting replaces
memory copying for both the input gathers, this results in even greater reduction in
redundant, computationally expensive memory copy operations. Note that different
gather sequences may be dimension 1 or dimension 2 repeatable with different lengths
of 𝑙. E.g., the sequence 𝐼 = (1, 2, 1, 2, . . . , 1, 2) is dimension 1 repeatable not only with

48

. 5.2 Optimizations

𝑙 = 2, but, e.g., also with 𝑙 = 4 if |𝐼| is divisible by 4, which increases the applicability
of this paired technique, as the likelihood that a pair of gathers will be pairable as such
is increased by this. Lastly, if a gather index sequence consists of the repeated use of a
single value, i.e., 𝑙 = 1, then it is both dimension 1 and dimension 2 repeatable, allowing
it to be utilized with an opposing side of either type of repeatability, in the exact same
way, as it is reshaped to (1, 1, . . .) in either case.

5.2.4 Advanced Linear Layer Optimizations: Reordering and

Padding

The initial conditions needed to be able to apply optimizations from Section 5.2.3
are quite rare. Nonetheless, it would be beneficial if we could use the broadcasting
techniques as often as possible, in order to minimize the use of unnecessary value
duplications in gathers, or the total number of gathers, even.
Ideally, we would like to be able to utilize similar optimizations in every instance of at
least one of the two gathers containing a low number of unique values to be repeated.
Thankfully, this is achievable.
Firstly, we may reorder the computations (i.e., the individual values) within the linear
layer such that the gather operation for at least one side (the side with the small number
of unique values specifically) is dimension 1 or dimension 2-repeatable. Such reordering
is possible, since it only affects the output value order of the layer. It may initially seem
that this will require an additional gather operation at the end of the layer; however,
instead, we may simply update any subsequent layers’ input gathers accordingly, so that
the reordering is reflected in them. This means that an additional gather operation is
typically not needed as a result of this.
Without loss of generality, let us assume that the left-hand side is the side that we
want to make dimension 1 or dimension 2-repeatable. Often, the indices cannot be
reordered as such due to the fact that some values from the left-hand side are used
more times than others, making such reordering impossible. To solve this, we may
add clever padding to the linear layer, i.e., we may add extra (pairs of) values to be
matrix-multiplied, that are never used by any subsequent layers. This may be worth
doing as long as the increase in the tensor sizes as a result of the padding is lower
than the decrease in the tensor sizes as a result of the removal of the memory copy
operation(s). This is illustrated in Figure 5.9. (Note that this also requires updating
the input gathers of any subsequent layers accordingly, as the individual indices of this
layer’s output values shift as a result of this.)
In some cases, it is beneficial to add padding such that each unique value from the
left-hand side is multiplied with each unique value from the right-hand side. Then,
there exists a value pair ordering (specifically, the lexicographical ordering) such that
one side becomes dimension 2-repeatable, and the opposite side becomes dimension 1-
repeatable. This allows for the greatest memory copy reduction. However, this may
often require too much padding, making the result computationally more expensive.
Therefore, in some cases, it may be beneficial to only do it for one side, which requires
less padding. Therefore, we must consider all three alternatives (both sides together,
or either of the two sides), as well as a fourth alternative where no padding is applied
at all.
To decide which of the four alternatives is the best one, we may simply measure the
resulting lengths of the two gather operations (where if a gather operation is either

49

5. Implementation .

∘𝗪1 𝗪2 𝗪3 𝗪1 𝗪3 . . .[] 𝗫𝑖1
𝗫𝑖2

𝗫𝑖3
𝗫𝑖4

𝗫𝑖5
. . .[]

Missing value

𝗪1 𝗪2 𝗪3 𝗪1 𝗪3 . . .[]

⎧{{{⎨{{{⎩Repeated segment

∘𝗪2 𝗫𝑖1
𝗫𝑖2

𝗫𝑖3
𝗫𝑖4

𝗫𝑖5
. . .[]

Added padding

𝟬

𝗪1 𝗪2 𝗪3[], 𝗫𝑖1
𝗫𝑖2

𝗫𝑖3
𝗫𝑖4

𝟬 𝗫𝑖5
. . .[]

Subsequences to be reshaped and broadcasted:

Figure 5.9. A visual explanation of the padding optimization in linear layers. Example of
adding padding such that the left-hand side becomes dimension 1-repeatable.

dimension 1 or dimension 2-repeatable, we only count the length of the subsequence,
since the explicit repeating will not be performed), and choose the variant where their
sum is minimal.8

5.2.5 Advanced Linear Layer Optimizations: Advanced

Reordering/Padding

The padding variants from Section 5.2.4 are in fact not sufficient, and there are many
more padding variants worth considering.
For example, let us consider a linear layer that uses two weights, 𝗪1 and 𝗪2, in an
arbitary order, where 𝗪1 is used roughly twice as often as 𝗪2. Then, the padding
needed to achieve the weight gather subsequence (𝗪1,𝗪2) is significantly greater than
the padding needed to achieve (𝗪1,𝗪1,𝗪2). Given the setting, the latter requires
minimal padding, or even zero padding if 𝗪1 is used exactly twice as much as 𝗪2.
What is more, an additional benefit of this is that if the resulting subsequence is suf-
ficiently short and the preceding concatenate operation only concatenates single-value
inputs (e.g., weights), we may remove the corresponding gather operation entirely,
and simply concatenate the inputs. For example, concatenating (𝗪1,𝗪1,𝗪2) directly
(where the order of concatenation is typically determined on the CPU) is likely cheaper
than the concatenation of (𝗪1,𝗪2) followed by a gather operation with index se-
quence 𝐼 = (1, 1, 2) performed on, e.g., the GPU. This is purely because either of the
two sequences to concatenate is very short, and the added overhead of performing the
additional gather operation on different hardware is likely too big for such a short index
sequence.

8 This may not be the optimal decision in terms of the resulting performance, but it is likely a satisfactory
proxy. Finding the actual optimal solution would require us to compare the total number of gather
operations in the full computational graphs (including other layers) for all four variants, but this leads to
an exponentially larger number of variants to test across all linear layers of the computational graph, and
is thus infeasible.

50

. 5.2 Optimizations

To find the subsequence likely to produce the least amount of padding, we may do the
following:
1. Find all unique values in the index sequence. Let the following be their identifiers:

𝑈 = (𝐼1, . . . , 𝐼|𝑈|).
• Let (𝑛𝐼1

, . . . , 𝑛𝐼|𝑈|
) be the total counts of the uses of individual unique values in

the index sequence.
2. Find the value 𝑛min ≔ min𝑖∈{𝐼1, ..., 𝐼|𝑈|} 𝑛𝑖 that is used the lowest number of times in

the index sequence.
3. For all the unique values, compute how much more often they roughly appear in the

index sequence: 𝑡𝐼 ≔ ⌊ 𝑛𝐼
𝑛min + 1

2⌋
4. The subsequence is one in which each 𝐼𝑖 is used 𝑡𝐼𝑖

times, as long as its length does
not exceed the predetermined upper limit.

All of the padding methods from Section 5.2.4 then can be used with the subsequence(s)
found by the above method.

5.2.6 Deduplication: Downward Propagation of Gathers

The situations which perform reordering of individual values in a vectorized node, and
as a result require reindexing of gathers in subsequent layers, is what we refer to as
downward propagation of gathers, as it in some instances may require the introduction
of additional gather operations. We will discuss in a moment when additional gathers
are needed, and when not. The reordering and padding discussed in Sections 5.2.4
and 5.2.5 is one example of the downward propagation of gathers.
A simple optimization that should precede any optimizations of linear layers discussed
earlier (such as the introduction of padding) is the simple removal of unused values, as
well as deduplication of values. The removal of unused values refers to the removal of
any values which are not referred to by any subsequent layers’ gathers. Deduplication
refers to the removal of values that are redundant based on the fact that the same
computation is already being performed in the layer at a different location.
The simpler version of deduplication simply checks for duplicate indices in input gathers,
and ensures that gathers consist only of “unique” values. For transformation layers, this
is trivial. Linear layers must keep matching pairs of indices in its two gather operations
unique. Aggregation layers must keep matching groups of indices, based on how the
inputs are grouped by its scatter operation. For fact layers this is done also (not for
weights, though, as they are learnable), simply by comparing values. This ensures that
every layer performs each computation exactly once and does not perform redundant
computations.
It may seem counterintuitive that we first perform the removal of unused values and
deduplication, to then do the exact opposite in later optimizations, such as by intro-
ducing padding in linear layers. Nonetheless, we must account for suboptimal com-
putational graphs which perform redundant computations, and simplify them first, so
that the subsequent optimizations truly operate properly.
The more complex deduplication method is isomorphic compression [87], discussed
previously in the NeuraLogic chapter in Section 4.3.2 (p. 32). This method performs
multiple forward passes of the full network, each with different weight value initializa-
tions. Any groups of values that are found to be consistently matching for all forward
passes, are deemed “duplicate.” This form of compression is guaranteed to be lossless.
The Optimizer reimplements the isomorphic compression algorithm to remove duplicate

51

5. Implementation .

values, but it does so independently for each vectorized node (i.e., only values within
each vectorized node are compared, never across different layers), so as not to disrupt
the computational graph structure.9

As discussed earlier, all of these methods must be reflected in subsequent layer gathers.
The situations in which this may result in additional gather operations are twofold:
Firstly, if the layer in which this type of optimization is performed is the last layer, a
final gather operation must be added at the end to obtain the output in expected order.
Secondly, if one of the subsequent layers using these values is an aggregation layer, it
is likely that it uses at least some input values multiple times. It may be the case that
if such form of deduplication had not been used, the aggregation layer would not have
required a gather operation, as the necessary duplicates would have already existed in
the prior layer’s output. Therefore, by removing duplicates in the earlier layers, the
aggregation layer must begin with a gather operation, in order to recover the proper
segments to be aggregated.
Nonetheless, since it cannot be presumed that the computational graph is already in
its optimal form on input, we first perform all the optimizations that deduplicate and
simplify individual layers, i.e., all the optimizations that propagate gathers downwards,
and then we perform upward propagation, to introduce (or reintroduce) any duplicities
that help avoid redundant gather operations.
Lastly, it is worth noting that in some instances, it is not an easy task to determine
prior to execution whether an additional gather operation is beneficial for performance
or not. For example, for linear layers immediately followed by aggregation layers, it
may be beneficial to simplify (deduplicate) the linear layer, and introduce an additional
gather operation to the aggregation layer; however, the contrary may sometimes also
be better for performance, i.e., to keep duplicate computations in the linear layer, and
avoid an unnecessary additional gather operation.

5.2.7 Upward Propagation of Gathers

Upward propagation of gathers refers to the situation where we remove a gather opera-
tion from a layer’s input by reordering/duplicating the values computed in the preceding
layer. It must be noted that for simplicity, we only do so if the layer being modified is
the only layer that uses the preceding layer on input (as the result would introduce – or
reintroduce – gather operations into all the other layers that have the layer on input).
Furthermore, we only do so if the vectorized node being modified has only a single
vectorized node on its input (in other words, if the layer being modified has no Concat
operation, as nearly all instances of Concat must be followed by a gather operation).
One motivation for upward propagation of gathers has already been discussed in Sec-
tion 5.2.6. However, a perhaps even more motivating example is one where the upward
propagation is taken to the extreme: Let us consider a computational graph where the
structure of its vectorized variant is a simple sequence of layers.10 If we perform upward
propagation of gathers for every single layer (i.e., in the reverse topological ordering of

9 I mention this because NeuraLogic has its own implementation of isomorphic compression, which compares
individual neurons across the whole computational graph. However, as a result of this fact, when using the
Compiler with NeuraLogic, it is recommended to disable NeuraLogic’s isomorphic compression algorithm,
as it may disrupt the network structure and, e.g., introduce unnecessary skip connections, which are then
unresolvable by the Vectorizer. Therefore, the layerwise (vectorized) compression implementation, as part
of the Optimizer, should be used instead.

10 For example, many typical instances of graph neural networks have this structure.

52

. 5.2 Optimizations

1

2

3

1

2

3

1

2

3

Figure 5.10. Illustration of how the computational graph may expand into the form of a
forest via the upward gather propagation optimization. The yellow layer is an aggregation
layer. Note that as a result of the operation, the individual values are already in the

expected order for the second layer, and so a gather operation is no longer needed.

the layers), irrespective of the amount of the (transitive) value duplication it causes,
we obtain an equivalent computational graph without any gather operations. In other
words, the non-vectorized variant of such computational graph is a forest (i.e. for each
output node, its corresponding connected component is a tree, where if we flip the ori-
entation of every edge, the output node becomes the root of the directed tree). What
this may look like in practice is illustrated in Figure 5.10. What is even more interesting
is that even though it may seem that the transitive upward node duplication will result
in an exponential increase in the total number of nodes, this is oftentimes not the case,
and what we will see later is that the resulting computational graph may sometimes in
fact perform the fastest, due to the increase in memory usage being negligible in terms
of performance compared to the reduction in the total number of vectorized operations
performed.
Nevertheless, some degree of upward propagation of gathers is typically useful in any
instance. The least aggressive configuration propagates gathers upwards only if such
propagation does not increase the total number of values in the preceding vectorized
operations at all. This is safe to do, as it may only lead to removals of gather operations,
without any other side effects. However, it is typically useful to relax the strictness to
further degree, as when the node duplication rate is sufficiently low, the increase in the
total number of values is negligible compared to the reduction in the total number of
(gather) operations performed.
What is also important to understand is that the upward propagation of gathers can
start at any vectorized node in the computational graph, skip any gather along the way,
and resume right after. This means that even for long chains of vectorized nodes, a well
configured upward propagation optimization can, e.g., keep a single gather operation
in the middle of a chain, and remove all gather operations that precede it, as well as
all that follow it, simply because the single gather operation is found to be the only
one worth keeping in the graph in terms of its effect on reducing the size of the full
computational graph.
The implementation of the optimization in the Compiler offers multiple hyperparame-
ters to configure the degree/strength to which it operates.

53

5. Implementation .

It must already be obvious to the reader that this optimization is able to propagate a
gather not only because of an aggregation layer, but also through another (preceding)
aggregation layer. In fact, the optimization is able to propagate a single gather through
the full computational graph, if necessary. For aggregation layers, the reordering/du-
plication of its outputs requires the reordering/duplication of the whole groups of its
inputs.11

5.2.8 Unit Fact Processing

One important processing step worth mentioning is that the input data representation
supports “unit” facts, which can be used either in place of weights, or in place of data
inputs. They are understood as “tensors of arbitrary shapes, which, when matrix-
multiplied with another tensor, simply act as the identity function for the opposite
tensor.” Since this is only an abstract concept, processing steps must resolve this to
actual operations. This is because matrix multiplication with a unit fact may not be
removable always, and sometimes must actually be performed. For example, the same
unit fact may be used as weight in two separate linear layers, alongside other weight
values, where the weight values in the first layer have a different shape than the weight
values in the second layer. To properly support this, the Optimizer must do two things:

A) For all linear layers, where the gather operations interleave unit values with actual
values, produce unit value tensors of appropriate shapes, to support the operation.
The required form of a unit fact to properly correspond to the identity operation in
linear layers may either be a diagonal matrix, or a vector of ones.12

B) Simplify any linear layer where either of its sides consists exclusively of unit facts, by
simply replacing it with the gather operation of the opposing side instead, skipping
the matrix multiplication operation itself. This is needed for two reasons:
1) The linear operation is completely redundant in such instances, and the iden-

tity matrix multiplication can thus be removed entirely, sparing computational
resources.

2) Step A) is impossible to do for computational graphs where there exists a linear
layer with both sides consisting exclusively of unit facts, since the required shape of
such layer cannot be inferred, and the unit fact tensors thus cannot be materialized.

5.2.9 Further Optimizations for More Complex Architectures

In vectorized computational graphs with a lot of branching, it may be beneficial to put
a greater focus on layers which perform the concatenation of multiple inputs:13

Firstly, if possible, the individual values in the layer should be reordered such that
the initial gather operation’s index sequence 𝐼 can be represented as the concatenation
of index sequences 𝐼 = 𝐼1, . . . , 𝐼𝑛, where 𝐼𝑖 only accesses values from the 𝑖-th input.
In aggregation operations, such reordering can be done even if values are aggregated
across inputs, either by using scatter operations instead of segmentation operations,
or, in the instances where aggregation is done using reshaping and aggregation along a
dimension, by using aggregation along dimension 1 instead of dimension 2.

11 This is nontrivial, and so it deserves an explicit mention.
12 Why do we need unit values in linear layers? Why cannot we simply skip the matrix multiplication for

corresponding indices entirely? We can; however, in some instances, it is beneficial to vectorize nodes that
perform matrix multiplication with nodes that do not. This is because it may prevent unnecessary skip
connections, which mainly prevents an extra concatenation operation in subsequent layers, at the expense
of the linear layer being wider.

13 Almost none of this is implemented at the time of writing.

54

. 5.2 Optimizations

Secondly, as long as the first step is possible to do, the 𝑛 individual gather operations
can then be performed first, and the result then can be aggregated. The benefit of this
is twofold: The individual gather operations can potentially be upwards-propagated
through, or at least simplified. This is because for many such concatenate + gather
operations, the original gather index sequence 𝐼 may not be optimizable using methods
from Section 5.2.1, whereas the individual index sequences 𝐼𝑖 may be. It is worth
studying when exactly it is beneficial to perform multiple separate (simpler) gather
operations as opposed to running a single, more complex operation. It is worth noting
that this will likely differ depending on the hardware on which the computational graphs
are to be executed. Nonetheless, when upward propagation of gathers is enabled to the
strongest degree, using this approach will allow to propagate even through such layers,
dropping their gather operations as a result entirely.14

5.2.10 The Full Implementation

Additional operations are performed along the whole process, such as the removal of
unused layers (operating iteratively in reverse topological order of vectorized nodes),
as well as various conversions between intermediate data representations, depending
on the individual needs of the various optimizations, for the sake the implementation
being simpler.
For the sake of the completeness of this chapter, the next few pages explain in detail the
full optimization pipeline, explaining the Optimizer’s current implementation, mainly
the order in which the individual optimizations are performed. The full optimization
pipeline performs the optimizations in the following order:
1. Unit facts are merged into a single initial fact layer of a single value. All references

to the unit fact across all layers are replaced with this single reference.
2. Fact layers are deduplicated.
3. Individual layer counts are computed for future reference.
4. Layers are condensed. Since the layer representation combines optional matrix mul-

tiplication with subsequent optional aggregation and transformation, then if there
are layers that can be condensed, they are condensed (e.g., matrix multiplication +
identity + identity, and identity + aggregation + transformation are merged into a
single layer of matrix multiplication + aggregation + transformation, if there is no
branching between the two former layers).

5. Individual layer shapes are computed for future reference.
6. Transposition of layers containing dimension 2 aggregations is done, so that they

become dimension 1 aggregations (refer back to Section 5.2.9.)
7. Linear layers that are found to be gathering values of incompatible shapes are split

into separate layers, and concatenated back together after their respective matrix
multiplications are performed.15

8. Individual layer counts are recomputed for future reference.
9. Linear layers consisting exclusively of unit facts are simplified (refer back to Sec-

tion 5.2.8).

14 As discussed in Section 5.2.7, upward propagation of gathers is currently only implemented such that it
only propagates through vectorized nodes that have no more than one vectorized node on input.

15 As discussed at the very beginning of this chapter, the lines between the Vectorizer and the Optimizer are
slightly blurry in the actual implementation. This is one of those instances, as this is clearly a problem
pertaining to the Vectorizer. For the purposes of this text, this can be considered an implementation
detail.

55

5. Implementation .

10. Isomorphic compression is performed (refer back to Section 5.2.6). This requires the
conversion of the current intermediate representation of the vectorized computational
graph into an executable one, so that the forward pass can be computed using the
appropriate backend. A simplified pipeline (without optimizations) is used for this, so
that the isomorphic compression can conclude before other optimizations follow. The
simplified pipeline is explained later. After the isomorphic compression is performed,
additional required updates are done:

(i) All multi-input gather operations are updated to properly reflect the changes made
by isomorphic compression in their input layers.

(ii) Individual layer counts are recomputed for future reference.
11. Multiple downward gather propagation optimizations are performed, for each layer,

in the following order:
(i) Multi-input gather operations are updated to reflect any changes made by this

optimization in preceding layers.
(ii) Index-based deduplication is done in linear layers (refer back to Section 5.2.6. An

additional gather operation is added temporarily after each updated linear layer,
unless there already is a gather operation immediately after, in which case it is
updated with the results of this optimization.

(iii) Padding for linear layers is done, to be simplified later (refer back to Sections 5.2.3,
5.2.4, and 5.2.5). An additional gather operation is added temporarily after each
updated linear layer, unless there already is a gather operation immediately after,
in which case it is updated with the results of this optimization.

(iv) Index-based deduplication is done in non-linear layers, together with the down-
ward propagation of the intermediate gather operations, if possible. Downward
propagation of these gather operations may not be possible because they often
immediately precede aggregation operations, which may require the gathers to du-
plicate some values. If the additional gather operations are not desirable, upward
propagation optimization will remove them in a moment. Refer to Sections 5.2.6
and 5.2.7 for more details.

(v) Layer counts are recomputed for future reference.
12. Layer representations, where a linear operation, itself always beginning with a gather

operation, is followed by another gather operation prior to the optional aggregation
+ transformation, are simplified. This is done by splitting such complex layers into
chains of simpler layers: The linear layer by itself (with no aggregation nor trans-
formation), followed by a layer with the second gather operation, and the optional
aggregation + transformation from the original layer. This is merely a change in the
intermediate data representation, so that the subsequent optimizations are simpler.

13. The multi-input gather representations are converted to concatenation + gather rep-
resentations. Please refer to Section 5.1.4 for more details. The decision to do this
now is because the preceding optimizations are simpler with the former representa-
tion, whereas the optimizations that follow are simpler with the latter.

14. The basic linear layer optimizations (refer to Section 5.2.3) are performed, utilizing
the padding made in preceding optimizations.

15. Upward propagation of gathers is performed (refer to Section 5.2.7), after which the
layer counts are recomputed for future reference. This optimization is sometimes
optionally performed before the basic linear layer optimizations, as the actual imple-
mentation of upward gather propagation does not support propagating through linear
layers with both sides utilizing broadcasting. When this optimization runs after the
basic linear layer optimization, it propagates through single-side broadcasted linear

56

. 5.2 Optimizations

layers such that it honors the broadcasting. When this optimization runs before, it
disrupts the padding.

16. Remaining gather operations are simplified in line with Section 5.2.1. Any concate-
nate + gather operations that only concatenate single-value inputs (e.g., weights)
are simplified to just concatenate, as long as the number of inputs is sufficiently low.
This is discussed in greater detail in Section 5.2.5.

17. Single-input layers where all operations are identity operations, are removed. Any
references to such layers are updated accordingly, to instead refer to preceding layers.

18. Unit facts are materialized (refer to Section 5.2.8).
19. If any facts or weights are only ever referenced together, using the same consecu-

tive order of concatenation, then the facts/weights are pre-concatenated together,
to remove the need for the concatenation operations. Note that learnable weights
must never be pre-concatenated with non-learnable facts. What is more, note that
a learnable weight must never be concatenated with itself (i.e., the concatenation
sequences affected by this optimization must never contain duplicates of learnable
weights), as it would lead to learnable parameter duplication.

20. Unused layers (i.e., layers that are not the output of the computational graphs, nor are
the input of any subsequent layers) are removed. (This is done in reverse topological
order, so that transitively unused layers are also removed.)

21. The identifiers of individual facts, weights, and other layers are prepended with the
respective prefixes (f_, w_, and l_), so that references to them can from this point
onward co-exist without any additional type identifiers.

22. The layer representation of the computational graph is converted to a representation
where individual nodes are mere sequences of vectorized operations. In other words,
the strict representation of what a “layer” is, is relaxed.

23. Sequences of nodes (without branching) are merged into single operation sequences,
so that the total number of nodes is minimized.

24. Any pairs of reshape operations found in immediate succession are modified so that
only the final reshape operation remains, as the preceding ones are redundant.

25. The vectorized network is now finished.

For the sake of completeness, let us discuss the simplified tail end of the pipeline for
the isomorphic compression (i.e. to obtain an executable computational graph from the
representation found in step 10 above, using as few steps as possible):

1. Individual layer counts are computed for future reference.
2. Individual layer shapes are computed for future reference.
3. The multi-input gather representations are converted to concatenation + gather rep-

resentations.
4. Unit facts are materialized.
5. Unused layers are removed.
6. The identifiers of individual facts, weights, and other layers are prepended with the

corresponding f_, w_, and l_ prefixes.
7. The layer representation is relaxed to the operation sequence representation.
8. This is now an executable computational graph.

57

Chapter6
Results

Let us show that the Compiler is able to optimize the performance of computational
graphs significantly. We will be comparing the performance of graph neural networks
against the baseline of PyTorch Geometric on different hardware. We will also measure
the performance of more complex relational networks; however, the only baseline we
will be using in such case is the (not vectorized) CPU implementation of NeuraLogic,
as PyTorch Geometric does not support such networks.

6.1 Datasets

We will be using the following datasets:
. “Mutagenesis”: A dataset of 188 molecules, each having 17.9 nodes and 39.6 edges

on average. 3371 nodes and 7442 edges in total. Classification task into 2 classes.
. The version we will be using to compare against PyTorch Geometric has 7 features

for each node. It has been sourced by the TU Dortmund University [89] and is in
this form available directly on the PyTorch Geometric website [90].
. The version we will be using in more advanced (non-GNN) examples has a node

type of 8 possible values, and 6 different bond strengths. It is available in the form
of a relational database at [91].

. “Enzymes”: A dataset of 600 molecules (746 connected components, though), each
connected component having 26.2 nodes and 100.0 edges on average. 3 features
for each node, 19 580 nodes and 74 564 edges in total. Available from [89] and the
PyTorch Geometric website [90].
. “Proteins”: A dataset of 1113 molecules, each having 36.2 nodes and 135.1 edges on

average. 3 features for each node, 34 471 nodes and 162 088 edges in total. Available
from [89] and the PyTorch Geometric website [90].

For everything discussed in this chapter, each dataset will be fully batched, unless
mentioned otherwise.

6.2 Graph Neural Networks

Since graph neural networks give us a good baseline to compare the Compiler against,
let us begin with them. We will be comparing the performance of example GNNs built
in NeuraLogic, vectorized using the Compiler from Chapter 5, against equivalent GNNs
built with PyTorch Geometric.

6.2.1 Performance

Let us measure the performance of various GNNs. The compared GNN architectures are
two-layer GCN and GraphSAGE, on all three datasets mentioned at the beginning of
this chapter. Figure 6.1 (p. 60) shows the performance comparison of the forward passes

58

. 6.2 Graph Neural Networks

of the Compiler-produced (optimized) output against PyTorch Geometric, executed on
an Nvidia Tesla V100 GPU. Figure 6.2 (p. 61) is a zoomed-in view of the same.
The Compiler is parameterized only in terms of the strength of the upward gather
propagation optimization (Section 5.2.7). All other optimizations are enabled and
configured to their default settings. The “strength” is only an approximate repre-
sentation of the actual configuration of the upward gather propagation optimization,
as the actual parametrization consists of multiple different hyperparameters, which to-
gether loosely translate to the strength with which the optimization pushes gathers
upwards. “Minimal strength” performs only propagation that does not duplicate any
values (i.e., propagates only gathers that merely reorder values, and are as such truly
redundant). “Maximal strength,” on the other hand, propagates (removes) all gathers,
as explained in Chapter 5, or as shown by example later in Section 6.2.3. There are
other variants in between; 18 in total. All 18 variants are available to the users of
the Compiler as presets.
Unoptimized Compiler output (i.e., with all optimizations disabled, corresponding to
the immediate output of the Vectorizer) is also added for comparison.
As you can see, the Compiler beats PyTorch Geometric across all architectures and
datasets of all sizes by a significant amount, especially on the GPU, sometimes even
with its unoptimized variant. This is likely because the Compiler is able to use segment
CSR operations instead of scatter operations immediately, even without applying other
optimizations. Nonetheless, the optimizations improve the results even further.
In each instance, at least half of the 18 configurations surpasses PyTorch Geometric in
terms of performance. For the GraphSAGE architecture on the Mutagenesis dataset,
the best performing configuration is the one with the most aggressive upward propa-
gation of gathers, i.e., the computational graph with the lowest number of gather op-
erations possible (zero), at the expense of the largest memory utilization. Conversely,
for the Proteins dataset, the largest of the datasets, this configuration performs the
worst, as the memory utilization is simply too high as a result. This is because for the
Proteins dataset, the unrestricted upward gather propagation results in 948 017 values
on the input, whereas the computational graph resulting from the 2nd strongest up-
ward propagation configuration has only 2 additional gather operations in total, and
the largest number of values (i.e., the size of the first tensor dimension) that it has in
a single tensor is 240 271, corresponding to a significantly lower memory utilization.
Figure 6.3 (p. 62) compares the best performing Compiler configuration with PyTorch
Geometric, for multiple consecutive iterations in each instance. As you can see, the
first few iterations are typically outliers, which is due to the GPU typically performing
additional operations during the first few iterations, such as freeing old memory.
Ultimately, as expected, it seems that the best configuration of this optimization de-
pends on the dataset size and architecture complexity. Based on this, performance
tuning requires finding the sweet spot for this optimization. This can be done, e.g., by
utilizing the intuition from Section 6.2.3 for finding the best configuration, or simply
by trying all of the 18 presets prior to the actual training. This should not be difficult
in any case because the Compiler typically does not require tuning for any other of its
optimizations.

59

6. Results .

0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Dataset = tu-mutag, Architecture = gcn

0.50 0.75 1.00 1.25
0.0

0.1

0.2

0.3

0.4

0.5

Dataset = tu-mutag, Architecture = gsage

0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20
Dataset = tu-proteins, Architecture = gsage

0.4 0.6 0.8

Time [ms]

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

0.6 0.8 1.0

Time [ms]

0.00

0.02

0.04

0.06

0.08

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

Figure 6.1. Forward pass performance comparison of GNN architectures on a GPU.

60

. 6.2 Graph Neural Networks

0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

0.6 0.8
0.0

0.2

0.4

0.6

Dataset = tu-mutag, Architecture = gsage

0.3 0.4 0.5 0.6
0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

0.6 0.8
0.00

0.05

0.10

0.15

0.20

Dataset = tu-proteins, Architecture = gsage

0.4 0.5

Time [ms]

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

0.6 0.7 0.8 0.9

Time [ms]

0.00

0.02

0.04

0.06

0.08

0.10

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

Figure 6.2. Forward pass performance comparison of GNN architectures on a GPU, close-
up view (with outliers excluded).

61

6. Results .

0 50 100

0.4

0.5

0.6

0.7

T
im

e
[m

s]
Dataset = tu-mutag, Architecture = gcn

0 50 100

0.5

0.6

0.7

0.8

Dataset = tu-mutag, Architecture = gsage

0 20 40

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
[m

s]

Dataset = tu-proteins, Architecture = gcn

0 20 40

0.6

0.7

0.8

0.9

1.0

1.1

1.2
Dataset = tu-proteins, Architecture = gsage

0 20 40

Iteration

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
[m

s]

Dataset = tu-enzymes, Architecture = gcn

0 20 40

Iteration

0.6

0.7

0.8

0.9

1.0

1.1

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler

Figure 6.3. Forward pass performance comparison of GNN architectures on a GPU, com-
paring the best performing Compiler configurations with the baseline, for multiple consec-

utive iterations.

62

. 6.2 Graph Neural Networks

6.2.2 CPU Performance

Figures 6.4 (p. 64) and 6.5 (p. 65) show the same forward pass comparison on the CPU,
where the NeuraLogic CPU implementation in Java is added as another baseline. It
must be noted that since the NeuraLogic Java implementation is fully sequential, it
does not utilize batching.
Here, the Compiler-produced computational graphs still have the best performance.
Figure 6.6 (p. 66) compares the best performing Compiler configuration with the two
baselines for multiple consecutive iterations.
However, as opposed to GPUs, there is a clear performance benefit in keeping the
upward propagation strength low for CPUs. This is obvious, as the CPU operates
more-less sequentially (unlike, e.g., the GPU), so the less values to process, the better.
Futhermore, CPUs perform operations requiring random memory access very well, and
as such, having more gather operations barely makes a difference in and of itself in
terms of performance.
Lastly, both the Compiler and PyTorch Geometric perform better than the NeuraLogic
CPU backend, even on the CPU. This is because CPUs are able to perform vectorized
operations to a small degree, and both the former solutions utilize the PyTorch CPU
backend, which is implemented in a low-level language, and is able to vectorize individ-
ual operations to the degree that CPUs support. NeuraLogic’s original CPU backend,
however, is implemented in Java in a way that likely does not utilize CPU vectorization
at all.

6.2.3 Computational Graphs – GCN Example

Let us now take a momentary break from direct performance comparisons, to compare
select computational graphs themselves, in order to better understand the effect of the
Optimizer, especially that of the upward optimization of gathers. We will be looking
at a very simple GNN architecture, which is a two-layer GCN convolution without
normalization, on the Mutagenesis dataset. We will be using Python-like pseudo-code to
represent the (vectorized) computational graphs of the forward passes of the respective
solutions.
Figure 6.7 (p. 67) shows the pseudo-code equivalent to the PyTorch Geometric forward
pass, and Figure 6.8 (p. 6.8) shows the pseudo-code equivalent to the unoptimized,
vectorized NeuraLogic computational graph (i.e., the output of the Compiler on Neu-
raLogic input, with all optimizations disabled).
As you can see, the computational graphs are not too different. There are three main
differences:
1. The unoptimized, general representation of a Compiler-produced graph contains un-

necessary gathers for weights. In this example, consisting of GCN convolutions, all
the weights are single-valued, and so each corresponding gather operation merely
repeats each weight 7442 times. The broadcasting optimization (Section 5.2.3) will
solve this once enabled. The PyTorch Geometric computational graph, on the other
hand, is essentially hand-crafted as-is for the GCN convolution, and as a result does
not contain this redundancy.

2. The PyTorch Geometric example performs linear operations first, as the GCN convo-
lution is defined like this, and its computational graph is hand-crafted for the GCN
convolution specifically. This is not the case in the Compiler-produced result, which
was built without any such domain knowledge.

63

6. Results .

0.5 1.0 1.5
0.00

0.05

0.10

0.15

0.20
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

2 4
0.00

0.05

0.10

0.15

0.20
Dataset = tu-mutag, Architecture = gsage

5 10 15
0.00

0.01

0.02

0.03

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

20 40 60
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Dataset = tu-proteins, Architecture = gsage

5 10 15

Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

20 40

Time [ms]

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

NeuraLogic (Java)

Figure 6.4. Forward pass performance comparison of GNN architectures on a CPU.

64

. 6.2 Graph Neural Networks

0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Dataset = tu-mutag, Architecture = gsage

2 4 6
0.00

0.01

0.02

0.03

0.04

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

4 6 8
0.00

0.01

0.02

0.03

Dataset = tu-proteins, Architecture = gsage

2 3 4

Time [ms]

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

2 3 4 5

Time [ms]

0.00

0.01

0.02

0.03

0.04

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

Figure 6.5. Forward pass performance comparison of GNN architectures on a CPU, close-
up view (with outliers excluded).

65

6. Results .

0 20 40

0.5

1.0

1.5

2.0

T
im

e
[m

s]
Dataset = tu-mutag, Architecture = gcn

0 20 40

1

2

3

4

5

Dataset = tu-mutag, Architecture = gsage

0 20 40

2.5

5.0

7.5

10.0

12.5

15.0

17.5

T
im

e
[m

s]

Dataset = tu-proteins, Architecture = gcn

0 20 40
0

20

40

60

80

100
Dataset = tu-proteins, Architecture = gsage

0 20 40

Iteration

2.5

5.0

7.5

10.0

12.5

15.0

T
im

e
[m

s]

Dataset = tu-enzymes, Architecture = gcn

0 20 40

Iteration

5

10

15

20

25

Dataset = tu-enzymes, Architecture = gsage

NeuraLogic (Java)

PyTorch Geometric

The Compiler

Figure 6.6. Forward pass performance comparison of GNN architectures on a CPU, com-
paring the best-performing Compiler configurations with the baselines, for multiple con-

secutive iterations.

66

. 6.2 Graph Neural Networks

def forward(x): # x is a tensor of shape (3371, 7)
x = linear(w1, x)
x = gather(x) # 3371 -> 7442
x = scatter(x) # 7442 -> 3371
x = relu(x)
x = linear(w2, x)
x = gather(x) # 3371 -> 7442
x = scatter(x) # 7442 -> 3371
x = scatter(x) # 3371 -> 188
x = linear(w3, x)
x = sigmoid(x)
return x

Figure 6.7. PyTorch Geometric forward pass computational graph for an example GNN
with two GCN convolutions

def forward(x): # x is a tensor of shape (3371, 7)
x = gather(x) # 3371 -> 7442
w1_f = gather(w1) # 1 -> 7442
x = linear(w1_f, x)
x = segment_csr(x) # 7442 -> 3371
x = relu(x)
x = gather(x) # 3371 -> 7442
w2_f = gather(w2) # 1 -> 7442
x = linear(w2_f, x)
x = segment_csr(x) # 7442 -> 3371
x = segment_csr(x) # 3371 -> 188
w3_f = gather(w3) # 1 -> 188
x = linear(w3_f, x)
x = sigmoid(x)
return x

Figure 6.8. Unoptimized Vectorized NeuraLogic forward pass computational graph for an
example GNN with two GCN convolutions

3. The Compiler was able to use the computationally less expensive segment CSR oper-
ations instead of scatter operations immediately, even with all optimizations disabled.
This is done at the Vectorizer stage already, as every (unoptimized) aggregation layer
in this stage is defined as a sequence of a gather operation immediately followed by
a scatter operation (done for the sake of the computational graph following a strict
scheme before optimizations are applied; for details see Chapter 5). For this rea-
son, any scatter operation can be a segment CSR operation, as its preceding gather
operation can ensure the necessary order of the individual elements.1

1 Given that all optimizations are disabled, there should be additional gather operations before each of the
two final segment CSR operations, to match the unoptimized vectorized graph definition from Chapter 5.
In this case, however, the gather operations are both exactly equivalent to the identity functions, and so

67

6. Results .

def forward(x): # x is a tensor of shape (7, 7)
x = linear(w1, x)
x = gather(x) # 7 -> 67
x = segment_csr(x) # 67 -> 25
x = relu(x)
x = linear(w2, x)
x = gather(x) # 25 -> 524
x = segment_csr(x) # 524 -> 207
x = gather(x) # 207 -> 3371
x = segment_csr(x) # 3371 -> 188
x = linear(w2, x)
x = sigmoid(x)
return x

Figure 6.9. NeuraLogic forward pass computational graph, optimized using the Vectorizer
+ the Optimizer with the default upward propagation configuration, built for an example

GNN with two GCN convolutions.

Figure 6.9 shows the equivalent computational graph produced by the Compiler with
all optimizations enabled and the upward propagation of gathers set to a modest con-
figuration. These are the key differences:
. The redundant gathers of weights are no longer present.
. Linear operations are now performed before gather operations, which in this case is

the better option. This is the result of the downward gather propagation optimization
(Section 5.2.6).
. The numbers of values in the individual layers are significantly lower, including also

the input (which is actually a fact layer, optimized together with the rest of the
computational graph, as the computational graph itself is input-dependent). This
is the result of, e.g., the isomorphic compression optimization (Section 5.2.6). Note
that this reduction is completely lossless.
. There is an additional gather operation between the two final segment CSR oper-

ations. This is because the gather operation itself is a downwards-propagated one,
and the upward propagation optimization (Section 5.2.7) decided not to remove it,
as it found the operation to significantly reduce memory usage.

Figure 6.10 shows the computational graph that the Compiler produces when its upward
gather propagation optimization is configured to the limitless (aggressive) setting. As
you can see, there are no longer any gather operations, but the duplication of values is
significantly higher as a result, starting with 18 298 values on the input.
Note that there are many possible additional equivalents of these computational graphs,
including ones with more gather operations than in Fig. 6.9, or, conversely, with less
gather operations than in Fig. 6.9. In fact, any gather operation can be upwards-
propagated (i.e., removed), allowing for any possible balance between the total number
of operations and additional memory utilization. As shown earlier, different configura-
tions may have different impact on performance depending on the size of the dataset
as well as batch size.

they are removable trivially. In the implementation of the Compiler, removing identity operations is not
considered to be an “optimization,” and as such is done always (i.e., cannot be disabled).

68

. 6.3 Relational Architectures

def forward(x): # x is a tensor of shape (18298, 7)
x = linear(w1, x)
x = segment_csr(x) # 18298 -> 7441
x = relu(x)
x = linear(w2, x)
x = segment_csr(x) # 7441 -> 3371
x = segment_csr(x) # 3371 -> 188
x = linear(w2, x)
x = sigmoid(x)
return x

Figure6.10. NeuraLogic forward pass computational graph, optimized using the Vectorizer
+ the Optimizer, built for an example GNN with two GCN convolutions. The upward

gather propagation optimization is set to the extreme (absolute) configuration.

6.3 Relational Architectures

We shall also study more complex relational architectures, going beyond the typical
graph neural networks, albeit without having any baselines on the GPU to compare
ourselves against.
As the dataset, we will be using the relational representation of the Mutagenesis dataset,
discussed at the beginning of this chapter.
We will be comparing two different network architectures, not a lot more complicated
than the GNNs we worked with previously, although with a few notable differences,
making the resulting computational graphs more complex.
Let us first explain the two architectures using NeuraLogic template rules. The following
is the simpler one:

𝗪𝗶[3,] AtomEmbed(𝐴) ∶− AtomType𝑖(𝐴). ∀𝑖 ∈ {C,O,Br, I,F,H,N,Cl}

𝗪𝗷[3,] BondEmbed(𝐵) ∶− BondStrength𝑗(𝐵). ∀𝑗 ∈ {𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵7}

Layer1(𝑋) ∶− 𝗪𝟯[3, 3] AtomEmbed(𝑋), 𝗪𝟰[3, 3] AtomEmbed(𝑌),

_Bond(𝑋, 𝑌 ,𝐵), BondEmbed(𝐵).

Layer2(𝑋) ∶− 𝗪𝟱[3, 3] Layer1(𝑋), 𝗪𝟲[3, 3] Layer1(𝑌),

_Bond(𝑋, 𝑌 ,𝐵), BondEmbed(𝐵).

Layer3(𝑋) ∶− 𝗪𝟳[3, 3] Layer2(𝑋), 𝗪𝟴[3, 3] Layer2(𝑌),

_Bond(𝑋, 𝑌 ,𝐵), BondEmbed(𝐵).

𝗪𝟵[1, 3] Out ∶− Layer3(𝑋)

This network template uses learnable embeddings for nodes and edges. Since bonds
(edges) now carry values, the bond predicate is now ternary (as opposed to graphs’ edge
predicates typically being binary). First, the network creates learnable embeddings for
the 8 different atom (node) types, and separate learnable embeddings for the 6 different
bond (edge) types. Then, it creates three consecutive “layers,” which follow the molecule
structure (aggregating based on atom neighbors using the “_Bond” predicate) and

69

6. Results .

combine the corresponding atom pair embeddings with the corresponding bond strength
embeddings as well, which are then aggregated back to the individual source nodes 𝑋.
The following is a slightly more complex version:

𝗪𝗶[3,] AtomEmbed(𝐴) ∶− AtomType𝑖(𝐴). ∀𝑖 ∈ {C,O,Br, I,F,H,N,Cl}

𝗪𝗷[1,] BondEmbed(𝐵) ∶− BondStrength𝑗(𝐵). ∀𝑗 ∈ {𝐵1, 𝐵2, 𝐵3, 𝐵4, 𝐵5, 𝐵7}

Layer1(𝑋) ∶− 𝗪𝟯[3, 3] AtomEmbed(𝑋), 𝗪𝟰[3, 3] AtomEmbed(𝑌),

Bond(𝑋, 𝑌 ,𝐵), 𝗪𝟱[3, 1] BondEmbed(𝐵).

Layer2(𝑋) ∶− 𝗪𝟲[3, 3] Layer1(𝑋), 𝗪𝟳[3, 3] Layer1(𝑌),

Bond(𝑋, 𝑌 ,𝐵), 𝗪𝟴[3, 1] BondEmbed(𝐵).

Layer3(𝑋) ∶− 𝗪𝟵[3, 3] Layer2(𝑋), 𝗪𝟭𝟬[3, 3] Layer2(𝑌),

Bond(𝑋, 𝑌 ,𝐵), 𝗪𝟭𝟭[3, 1] BondEmbed(𝐵).

𝗪𝟭𝟮[1, 3] Out ∶− Layer3(𝑋)

The main difference of this architecture from the former is that the bond embedding
vectors have different dimensionalities than the atom embedding vectors. This also
means that the bond embeddings must be weighted in the individual layers as well
(which they previously were not), otherwise the dimensions would not match. Also, the
“Bond” predicate is no longer used implicitly (see Chapter 4 for details).
Figure 6.11 shows the resulting performance on the GPU. The corresponding computa-
tional graph is significantly more complex, and it is shown in Appendix A for the latter
(“dims”) example, with maximal strength of the upwards propagation optimization.

1.0 1.1 1.2

Time [ms]

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Architecture = simple

1.2 1.4 1.6

Time [ms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Architecture = dims

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

Figure 6.11. Forward pass performance comparison of more complex architectures on a
GPU, with outliers excluded.

70

. 6.4 The Backward Pass

0.0 0.5 1.0 1.5

Density

−0.6

−0.4

−0.2

0.0

0.2

0.4

T
im

e
D

iff
er

en
ce

[m
s]

Dataset = tu-mutag, Architecture = gcn

0.00 0.25 0.50 0.75

Density

−1.0

−0.5

0.0

0.5

Dataset = tu-mutag, Architecture = gsage

Pass

Forward

Forward + Backward

Backward

Figure 6.12. Performance comparison between Compiler-built computational graphs uti-
lizing scatter operations, when compared to segment CSR. The Y axis shows the time
difference between scatter and segment CSR runtimes (for otherwise equivalent computa-
tional graphs): negative values correspond to segment CSR being faster, whereas positive

values correspond to scatter being faster.

6.4 The Backward Pass

For the backward pass, we use the “autograd” feature of PyTorch, which automatically
infers the backward pass computational graph from any forward pass computational
graph. A notable downgrade in performance can be observed compared to the forward
pass. This is mainly caused by PyTorch autograd, which is explained below.
A comparison for overall best-performing models (with fastest combined forward +
backward pass) is shown on Figures 6.13 (p. 73) and 6.14 (p. 74). (Additional plots are
available in Appendix C.) As you can see, when compared against PyTorch Geometric,
even though the forward pass is typically faster for the Compiler, the backward pass
is in fact quite substantially slower. The overall performance of the forward and the
backward pass combined is tied between the two, though.
The slow backward pass is in fact caused entirely by the differences between the back-
ward pass implementations of the segment CSR operation, used by the Compiler, and
the scatter operation, used by PyTorch Geometric. Figure 6.12 shows a performance
comparison between the forward and backward passes when using scatter operations
in the Compiler in place of segment CSR operations. The computational graphs are
otherwise identical. As expected based on Chapter 3, Section 3.4.3, the forward pass is
significantly faster for the segment CSR operation compared to the scatter equivalent.
However, the opposite is the case for the backward pass, where the segment CSR back-
propagation computation is noticeably slower, thus negating its performance advantage
on the forward pass.
However, since the segment CSR (forward) operation performs the exact same compu-
tation as the scatter operation, there is no reason for its backward pass to be slower,
since it is fully exchangeable with the backward pass implementation of the scatter

71

6. Results .

operation. The segment CSR operation is a special case of the scatter operation, but
not the other way around, and so we can use the backward pass implementation of the
scatter operation for either of the two operations. Therefore, we can easily fix this by
simply using the backward pass implementation of the scatter operation in place of the
segment CSR backward pass.
The reason why the backward pass implementations for the two operations differ in
PyTorch in the first place, is that the scatter operation is in the PyTorch base library,
whereas the segment CSR operation is not. The segment CSR operation comes from an
external source, namely the pytorch_scatter library [80], which has its own low-level
implementation for both its forward and its backward pass, for both CPU and GPU
hardware.
The backward pass of the scatter operation is the gather operation. For the segment
CSR operation, the backward pass is implemented using a “gather CSR” operation,
which is a gather operation that uses the index sequence in the compressed (CSR)
representation (discussed in Chapter 3, Section 3.4.3).
One possible explanation for the performance difference is that the “gather CSR” op-
eration in the pytorch_scatter library is less optimized than the gather operation
in the base PyTorch library. Another possibility is that the “gather CSR” operation
is simply a more difficult operation to perform. If the latter is the case, then there
is no reason for us not to use segment CSR on the forward pass, and the standard
gather implementation on the backward pass, each utilizing different index sequence
representations. Either way, this is a resolvable issue.
Ultimately, it appears that the slow backward passes that we measured are not indicative
of any shortcomings of the Compiler, but are rather the result of a shortcoming in the
pytorch_scatter library. The performance difference measured on the forward pass
is thus the most indicative of the performance benefits that the Compiler offers.

6.5 Graphcore Intelligence Processing Units (IPUs)

Unlike GPUs, since Graphcore IPUs are not SIMD, and as such are able to parallelize
different operations at once (Chapter 2, Section 2.1.3, p. 7), earliest experiments per-
formed on the IPU involved attempts at skipping the vectorization/compilation process
entirely. This idea comes naturally, as the batching/vectorization of dynamic compu-
tational graphs is only needed as a result of the design of typically available hardware,
and the IPU appears to be designed to overcome these hardware shortcomings. Fur-
thermore, the Graphcore IPU uses its own computational graph compiler, which takes
the input computational graph and transforms it for the IPU such that different com-
putations are “batched” together, i.e., executed on the IPU in parallel, even when the
operations are themselves different.
However, the early experiments showed that custom preprocessing of computational
graph, i.e., vectorization, is still necessary, even for execution on the IPU, as the IPU ex-
pects vectorized computational graphs on its input. In fact, essentially all of the custom
libraries available for the IPU provide APIs that are more-less similar to, e.g., PyTorch
or TensorFlow, which means that they are designed to build computational graphs that
are already vectorized. Therefore, the focus of this work shifted to the task of the com-
putational graph vectorization early on, as the outcome of the initial IPU experiments
was that the vectorization is necessary nonetheless, irrespective of the use of specialized
hardware.

72

. 6.5 Graphcore Intelligence Processing Units (IPUs)

0 50 100

0.45

0.50

0.55

0.60

T
im

e
[m

s]
Dataset = tu-mutag, Architecture = gcn

0 50 100

0.5

0.6

0.7

0.8

0.9

Dataset = tu-mutag, Architecture = gsage

0 20 40

0.5

0.6

0.7

0.8

T
im

e
[m

s]

Dataset = tu-proteins, Architecture = gcn

0 20 40

0.6

0.7

0.8

0.9

1.0

1.1

Dataset = tu-proteins, Architecture = gsage

0 20 40

Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

T
im

e
[m

s]

Dataset = tu-enzymes, Architecture = gcn

0 20 40

Iteration

0.6

0.8

1.0

1.2

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler

Figure 6.13. Backward pass of the best-performing (for the forward+backward pass) con-
figurations on the GPU, on GNN architectures.

73

6. Results .

0 50 100

0.8

0.9

1.0

1.1

1.2

T
im

e
[m

s]
Dataset = tu-mutag, Architecture = gcn

0 50 100

1.30

1.35

1.40

1.45

1.50

Dataset = tu-mutag, Architecture = gsage

0 20 40

1.0

1.2

1.4

T
im

e
[m

s]

Dataset = tu-proteins, Architecture = gcn

0 20 40

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Dataset = tu-proteins, Architecture = gsage

0 20 40

Iteration

1.0

1.1

1.2

1.3

1.4

1.5

1.6

T
im

e
[m

s]

Dataset = tu-enzymes, Architecture = gcn

0 20 40

Iteration

1.4

1.6

1.8

2.0

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler

Figure 6.14. Forward + backward pass of the best-performing configurations on the GPU,
on GNN architectures.

74

. 6.5 Graphcore Intelligence Processing Units (IPUs)

The aforementioned IPU experiments were done as follows: An example proof-of-
concept forward pass was implemented using IPU-exclusive APIs, first using PopXL (a
high-level computation graph-building library in Python for the Graphcore IPU), and
later using Poplar (the underlying computation graph-building library with a C++ API).
The proof-of-concept was written simply to see how the Graphcore graph compiler op-
erates on graphs of thousands of operations on small tensors, as opposed to a few tens
to a few hundreds of operations on large tensors.
The algorithm involved running one forward pass on a single batch of a fixed number of
data “samples,” where each data sample was run through a simple feed forward neural
network transforming a vector of 2 scalars to a scalar, with a hidden layer dimension of
8 units, with weights shared across the individual small modules.2 Even though all the
small neural networks were identical, and transforming them such that they operate on
an arbitrarily large batch with a single forward pass is trivial in this particular case,
the runtime performance on the IPU hardware should be equivalent even when not
explicitly vectorized beforehand.
As expected, the runtime performance itself of a single forward pass through an ar-
bitrarily large batch was fast. However, unfortunately, the compilation time, i.e., the
preprocessing of the highly granular input computational graph by the Graphcore com-
piler, was slow.
The original aim was to test batch sizes that would reach the memory limit of the
hardware, as a proof of concept for large datasets. Then, the subsequent goal was to
proceed to finding a good solution to the IPU-specific batching problem (Section 2.1.3).
However, the compilation time reached highly impractical runtimes too early on, where
a computational graph of mere 8192 independent connected components of nodes (the
example described above) already took over three minutes of compilation. For any
practical real-life examples of non-vectorized computational graphs, this approach was
entirely infeasible, as the compilation did not finish.
Therefore, the simple conclusion for the IPU was that computational graph vector-
ization is needed nonetheless. The testing of the finished Vectorizer/Optimizer from
Chapter 5 was unfortunately not done on the IPU due to a lack of time. However, it can
be reasonably expected that the performance will be better than on the GPU, as long
as the input is not batched (as the IPU-specific batching problem does not have a good
solution for the arbitrary computational graph structures of ours). The reason why the
single-batch performance is expected to be better than on the GPU is that the IPU
compiler will take the vectorized input (of up to hundreds of nodes, not thousands) and
vectorize it further, as part of its compilation of the program to low-level IPU instruc-
tions, as long as there are independent nodes in the computational graph to be found in
the first place. Furthermore, the IPU implementations for gather/scatter operations in
and of themselves are likely significantly faster than their GPU equivalents. Therefore,
the IPU might still be useful for future testing.

2 This resembles the computational graph structures we keep seeing throughout this entire thesis. Even
though this example is trivially vectorizable, the goal was to see whether the explicit vectorization step is
necessary in the first place, and this example network, itself highly granular, was a mere representation of
the full class of possible computational graphs in the non-vectorized, highly granular form.

75

Chapter7
Conclusion

The training of deep neural networks comes with a plethora of unique challenges when
highly structural data is involved, which the classical, non-structural deep neural net-
works typically are not burdened by. These challenges mainly pertain achieving good
performance and scalability with respect to large input datasets, as the lack of either of
these properties limits effective training only to simple neural networks. Existing solu-
tions either reduce the data to simpler (i.e., non-structural) representations, in order to
train on top of such data effectively, which in turn limits the inferential and represen-
tational capabilities of the models, or they simply do not have sufficient performance
to scale well altogether.
Deep relational learning, itself operating on top of structural data, is affected by these
challenges as well. Despite the fact that it pertains deep learning on arguably the most
widespread data representations of today – the relational representations, deep rela-
tional learning itself is not widespread, likely because effectively scaling deep learning
on such data is still an open problem. On the other hand, graph neural networks – a
subset of deep relational learning architectures, able to process a subset of relational
data representations – found a reasonable middle ground between restricting the data
and the architectures, and having good computational performance and scalability.
To offer a direction towards solving the problem of scaling deep relational networks for
arbitrary relational data, a solution was presented in this thesis, based on extending the
scalability principles used in graph neural networks onto the relational superset of these
networks. A compiler for differentiable relational (dynamic) computational graphs was
developed as a result, based on the generalization of the computational concepts pro-
moted by GNNs, together with precompilation of the networks. It was demonstrated
that on the subset of data and computational graphs equivalent to GNNs, it achieves
performance and scalability equivalent or better to that of commonly available GNN
solutions. Furthermore, it was shown that the capabilities of the resulting system, to
ensure scalability of NNs, extend beyond GNNs, to NN architectures that no longer fit
the GNN paradigm. As such, the capabilities of the compiler were demonstrated both
in terms of the raw performance on arbitrary hardware (compared against the GNN
baseline), as well as in terms of its capability of effectively and efficiently covering the
full range of relational data representations and deep relational networks. This was
shown by demonstrating how the compiler is able to cover the full range of the com-
putational graphs constructible in NeuraLogic – a framework for building and training
deep relational networks, on top of relational data, including directly from relational
databases.
The initial results were shown to be highly promising for the scalability of deep relational
learning as a whole. As an immediately usable result, the compiler can be used together
with NeuraLogic to train arbitrary deep relational networks, e.g., on the GPU, using
arbitrary backends/frameworks (not just PyTorch, on top of which the outputs of the

76

. .

compiler were mainly tested). Previously, training on the GPU, the IPU, or other
hardware was not possible using just NeuraLogic by itself.
Of course, there is plenty of room for follow-up work. There are additional ways to
improve the performance even further, and the research in this regard can proceed in
parallel with the research into the relational neural network architectures themselves.
Firstly, the simplest improvements can be made in the low-level gather/scatter imple-
mentations themselves; namely in the backward pass implementation of the segment
CSR operation. Similarly, the gather operation can be studied for whether a faster
equivalent can be implemented for the GPU, e.g., by also utilizing data locality to a
performance advantage, much like the segment CSR operation is able to utilize data
locality to achieve better performance over the scatter operation.
Secondly, there is space for additional, more advanced optimizations in the resulting
computational graph compiler. The more complex the network architectures, the more
opportunities for more advanced optimizations arise based on the resulting computa-
tional graphs, which is to be expected.
Lastly, the usability of specialized hardware, such as the Graphcore IPUs, should be
studied further. While the compiler is perfectly usable on the IPU, it has not been
tested to see the results in terms of the actual resulting performance on this hardware.
Ultimately, there is reason to believe that similar pre-compilation and optimization of
the computational graphs is the way forward for training neural networks on top of
structural data in general. This is because in a way, it can itself be understood as
a mere extension of the ideas already successfully employed in the training of GNNs,
where instead of pre-compilation, the individual computational graph optimizations,
from which the performance and scalability stems, are merely hand-made. As the
results of this thesis show, it is not only unnecessary for these optimizations to be
hand-made, but the added compilation step is even able to outdo them at times. The
question hence becomes: how much further can we get with this?

77

AppendixA
Complex Computational Graph Example

This is the computational graph for the second example from Section 6.3 (p. 69).

input: unit tensor, with shape (3,1)
def forward(unit31):

bond embeddings:

w_bond: shape (6,1,1)
b = tanh(w_bond)

atom embeddings:

w_a: shape (16,1,1)
w_a = concat([wB1, wB6, wB7, wB2,

wB8, wB5, wB4, wB3,
wB6, wB1, wB7, wB2,
wB8, wB5, wB4, wB3])

a = tanh(w_a)

layer 1:

w_3_4: shape (2,3,3)
l1 = linear(reshape(w_3_4, (2,1,3,3)), reshape(a, (2,8,3,1)))
l1 = reshape(a, (16,3,1))

w_5: shape (1,3,1)
b1 = gather(b) # 6 -> 6
b1 = linear(w_5, b1) # (6,3,1)

l1 = concat([l1, b1, unit31]) # (23,3,1)
l1 = gather(l1) # 23 -> 2000
l1 = sum(reshape(l1, (4,500,3,1)), dim=0) # -> (500,3,1)
l1 = tanh(l1)
l1 = segment_csr(l1) # 500 -> 174
l1 = tanh(l1)

79

A Complex Computational Graph Example .

layer 2:

w_6_7: shape (2,3,3)
l2 = linear(reshape(w_6_7, (2,1,3,3)), reshape(l1, (2,87,3,1)))
l2 = reshape(l2, (174,3,1))

w_8: shape (1,3,1)
b2 = gather(b) # 6 -> 6
b2 = linear(w_8, b2) # (6,3,1)

l2 = concat([l2, b2, unit31]) # (180,3,1)
l2 = gather(l2) # 174 -> 9440
l2 = sum(reshape(l2, (4,2360,3,1)), dim=0) # -> (2360,3,1)
l2 = tanh(l2)
l2 = segment_csr(l2) # 2360 -> 834
l2 = tanh(l2)

layer 3:
w_9_10: shape (2,3,3)
l3 = linear(reshape(w_9_10, (2,1,3,3)), reshape(l2, (2,417,3,1)))
l3 = reshape(l3, (834,3,1))

w_11: shape (1,3,1)
b3 = gather(b) # 6 -> 6
b3 = linear(w_11, b3) # (6,3,1)

l3 = concat([l3, b3, unit31]) # (840,3,1)
l3 = gather(l3) # 840 -> 41944
l3 = sum(reshape(l3, (4,10486,3,1)), dim=0) # -> (10486,3,1)
l3 = tanh(l3)
l3 = segment_csr(l3) # 10486 -> 4893
l3 = tanh(l3)

predict:
predict = segment_csr(l3) # 4893 -> 188

w_12: (1,1,3)
predict = linear(w_12, l3)
predict = tanh(predict)

result shape: (188,1,1)
return predict

80

AppendixB
Code Guide

The code is available mainly on GitHub.1 The following is its high-level structure:2

. benchmark.py - executable script for running benchmarks, such as those done in
Chapter 6
. lib/ - directory containing the main code of the library
. benchmarks/ - utilities for running benchmarks using different technologies (the

Compiler, Java NeuraLogic, PyTorch Geometric)
. datasets/ - Contains a unified API for the datasets, for both the Compiler, as

well as PyTorch Geometric, where applicable. Contains also the individual NN
architecture templates.
. engines/torch/ - Contains the final step of the Compiler - the conversion of the

symbolic computational graph to a PyTorch module
. facts/ - utilities for parsing and writing datasets/rules in the format recognized

by NeuraLogic
. model/ - type definitions for individual aggregation and transformation operations
. sources/ - the API for the input computational graphs for the Compiler
. minimal_api/ - the minimal API interface, and example implementations,

namely for the input from NeuraLogic (including all the NeuraLogic-specific
code).
. base.py, base_impl.py, builders.py - the full (easy to use, “Pythonic”) input

API interface and implementation
. minimal_api_bridge.py - utilities for converting minimal API implementations

to the full API
. vectorize/ - the Compiler itself, including all the optimizations
. model/ - the symbolic data structures that together represent intermediate vec-

torized computational graphs, as well as the resulting computational graphs
. op_network.py - the model for the final data representation of the resulting

computational graphs
. pipeline/ - the individual optimizations
. pipeline.py - The main entry point, containing the composition of the final

optimization sequence, as described in detail in Chapter 5, Section 5.2.10.
. settings.py - settings structure for the configuration of the Compiler
. settings_presets.py - iterators over various Compiler settings presets (con-

figurations)

1 https://github.com/neumannjan/nn-structural-graph-vectorizer-compiler
2 As of May 24, 2024.

81

https://github.com/neumannjan/nn-structural-graph-vectorizer-compiler

AppendixC
Additional Figures

82

. .

0 20 40

1

2

3

4

5

6

T
im

e
[m

s]
Dataset = tu-mutag, Architecture = gcn

0 20 40

5

10

15

Dataset = tu-mutag, Architecture = gsage

0 20 40
−60

−40

−20

0

20

T
im

e
[m

s]

Dataset = tu-proteins, Architecture = gcn

0 20 40
−40

−20

0

20

40

60

80

Dataset = tu-proteins, Architecture = gsage

0 20 40

Iteration

5

10

15

20

T
im

e
[m

s]

Dataset = tu-enzymes, Architecture = gcn

0 20 40

Iteration

0

20

40

60

80

Dataset = tu-enzymes, Architecture = gsage

NeuraLogic (Java)

PyTorch Geometric

The Compiler

Figure C.1. Backward pass of the best-performing (for the forward+backward pass) con-
figurations on the CPU, on GNN architectures.

83

C Additional Figures .

0 20 40

2

4

6

8

T
im

e
[m

s]
Dataset = tu-mutag, Architecture = gcn

0 20 40

5

10

15

20

Dataset = tu-mutag, Architecture = gsage

0 20 40

10

15

20

25

30

35

T
im

e
[m

s]

Dataset = tu-proteins, Architecture = gcn

0 20 40

20

40

60

80

100

120

Dataset = tu-proteins, Architecture = gsage

0 20 40

Iteration

10

20

30

T
im

e
[m

s]

Dataset = tu-enzymes, Architecture = gcn

0 20 40

Iteration

20

40

60

80

100

Dataset = tu-enzymes, Architecture = gsage

NeuraLogic (Java)

PyTorch Geometric

The Compiler

Figure C.2. Forward + backward pass of the best-performing configurations on the CPU,
on GNN architectures.

84

. .

1.0 1.5
0.00

0.05

0.10

0.15

0.20
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

1.5 2.0 2.5
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Dataset = tu-mutag, Architecture = gsage

2 4
0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

5 10
0.00

0.01

0.02

0.03

0.04

0.05

Dataset = tu-proteins, Architecture = gsage

1 2

Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

2 4 6

Time [ms]

0.00

0.01

0.02

0.03

0.04

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

Figure C.3. Forward + Backward pass performance comparison of GNN architectures on
a GPU.

85

C Additional Figures .

0.8 1.0 1.2 1.4
0.00

0.05

0.10

0.15

0.20

0.25
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

1.5 2.0 2.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Dataset = tu-mutag, Architecture = gsage

1.0 1.5
0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

1.5 2.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Dataset = tu-proteins, Architecture = gsage

1.0 1.5

Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

1.5 2.0 2.5

Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

Figure C.4. Forward + Backward pass performance comparison of GNN architectures on
a GPU, close-up view (with outliers excluded).

86

. .

0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25
D

en
si

ty
Dataset = tu-mutag, Architecture = gcn

0.5 1.0 1.5 2.0
0.00

0.05

0.10

0.15

0.20

Dataset = tu-mutag, Architecture = gsage

2 4
0.00

0.02

0.04

0.06

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

5 10
0.000

0.025

0.050

0.075

0.100

0.125

Dataset = tu-proteins, Architecture = gsage

0.5 1.0 1.5 2.0

Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

2 4

Time [ms]

0.00

0.02

0.04

0.06

0.08
Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

Figure C.5. Backward pass performance comparison of GNN architectures on a GPU.

87

C Additional Figures .

0.4 0.6 0.8
0.00

0.05

0.10

0.15

0.20

0.25

0.30
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Dataset = tu-mutag, Architecture = gsage

0.50 0.75 1.00
0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

1.0 1.5
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Dataset = tu-proteins, Architecture = gsage

0.5 1.0

Time [ms]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

0.5 1.0 1.5 2.0

Time [ms]

0.00

0.02

0.04

0.06

0.08

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

FigureC.6. Backward pass performance comparison of GNN architectures on a GPU, close-
up view (with outliers excluded).

88

. .

1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

5 10
0.00

0.02

0.04

0.06

0.08

0.10
Dataset = tu-mutag, Architecture = gsage

20 40
0.000

0.001

0.002

0.003

0.004

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

0 100 200
0.0000

0.0005

0.0010

0.0015

0.0020

Dataset = tu-proteins, Architecture = gsage

10 20

Time [ms]

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

0 50 100

Time [ms]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

NeuraLogic (Java)

Figure C.7. Forward + Backward pass performance comparison of GNN architectures on
a CPU.

89

C Additional Figures .

1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

0.12
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

Dataset = tu-mutag, Architecture = gsage

10 20 30
0.000

0.001

0.002

0.003

0.004

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

20 40 60
0.0000

0.0005

0.0010

0.0015

0.0020

Dataset = tu-proteins, Architecture = gsage

5 10 15

Time [ms]

0.000

0.002

0.004

0.006

0.008

0.010

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

10 20 30

Time [ms]

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

NeuraLogic (Java)

Figure C.8. Forward + Backward pass performance comparison of GNN architectures on
a CPU, close-up view (with outliers excluded).

90

. .

1 2
0.00

0.05

0.10

0.15

0.20
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

5 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Dataset = tu-mutag, Architecture = gsage

−50 0
0.000

0.001

0.002

0.003

0.004

0.005

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

0 100
0.0000

0.0005

0.0010

0.0015

0.0020

Dataset = tu-proteins, Architecture = gsage

10 20

Time [ms]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

0 50

Time [ms]

0.000

0.002

0.004

0.006

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

NeuraLogic (Java)

Figure C.9. Backward pass performance comparison of GNN architectures on a CPU.

91

C Additional Figures .

0.5 1.0 1.5
0.00

0.05

0.10

0.15

0.20
D

en
si

ty

Dataset = tu-mutag, Architecture = gcn

1 2 3
0.00

0.05

0.10

0.15

Dataset = tu-mutag, Architecture = gsage

−50 −25 0 25
0.000

0.001

0.002

0.003

0.004

0.005

D
en

si
ty

Dataset = tu-proteins, Architecture = gcn

−25 0 25 50
0.000

0.001

0.002

0.003

0.004

0.005

Dataset = tu-proteins, Architecture = gsage

2.5 5.0 7.5 10.0

Time [ms]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
en

si
ty

Dataset = tu-enzymes, Architecture = gcn

−40 −20 0 20

Time [ms]

0.000

0.002

0.004

0.006

Dataset = tu-enzymes, Architecture = gsage

PyTorch Geometric

The Compiler (Minimal Upward Strength)

The Compiler (Maximal Upward Strength)

The Compiler (Fastest)

The Compiler (No Optimizations)

NeuraLogic (Java)

Figure C.10. Backward pass performance comparison of GNN architectures on a CPU,
close-up view (with outliers excluded).

92

AppendixD
Glossary

AOT . Ahead-of-time compilation
CNN . Convolutional neural network
COO . Coordinate list (sparse matrix representation format)
CPU . Central processing unit
CSC . Compressed sparse column (sparse matrix representation format)
CSR . Compressed sparse row (sparse matrix representation format)
DAG . Directed acyclic graph
FOL . First-order logic
GCN . Graph convolutional network
GNN . Graph neural network
GPU . Graphics processing unit
ILP . Inductive logic programming
IPU . Intelligence processing unit
JIT . Just-in-time compilation
MIMD . Multiple instruction, multiple data
NN . Neural network
RDBMS . Relational database management system
SIMD . Single instruction, multiple data
SQL . Structured query language
SRL . Statistical relational learning

93

References

[1] Breiman, Leo, Jerome Friedman, R. A. Olshen, and Charles J. Stone. Classifi-
cation and Regression Trees. New York: Chapman and Hall/CRC, 2017. ISBN 978-
1-315-13947-0. Available from DOI 10.1201/9781315139470.

[2] Hearst, M.A., S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support
Vector Machines. IEEE Intelligent Systems and their Applications. 1998, Vol. 13,
No. 4, pp. 18–28. ISSN 2374-9423. Available from DOI 10.1109/5254.708428.

[3] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016 . Adaptive Computation and Machine Learning Series. ISBN 978-0-
262-03561-3. Available from https://books.google.cz/books?id=Np9SDQAAQBA
J.

[4] Sharifani, Koosha, and Mahyar Amini. Machine Learning and Deep Learning:
A Review of Methods and Applications. World Information Technology and Engi-
neering Journal. 2023, Vol. 10, No. 07, pp. 3897–3904. Available from https://
papers.ssrn.com/abstract=4458723.

[5] Brants, Thorsten, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean.
Large Language Models in Machine Translation. In: Jason Eisner, ed. Proceedings
of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL). Association
for Computational Linguistics, 2007. pp. 858–867. Available from https://
aclanthology.org/D07-1090.

[6] Halpin, Terry, and Tony Morgan. Information Modeling and Relational
Databases. Morgan Kaufmann, 2010 . ISBN 978-0-08-056873-7.

[7] Codd, E. F.. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM . 1970, Vol. 13, No. 6, pp. 377–387. ISSN 0001-0782.
Available from DOI 10.1145/362384.362685.

[8] Codd, E. F.. Relational Completeness of Data Base Sublanguages. San Jose, Cal-
ifornia: IBM Corporation, 1972.

[9] Dean, Jeffrey, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marc’ aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc
Le, and Andrew Ng. Large Scale Distributed Deep Networks. In: Advances in
Neural Information Processing Systems. Curran Associates, Inc., 2012. Available
from https://proceedings.neurips.cc/paper_files/paper/2012/hash/
6aca97005c68f1206823815f66102863-Abstract.html.

[10] Ho, Qirong, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip
B. Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. More Effective
Distributed ML via a Stale Synchronous Parallel Parameter Server. In: Advances in
Neural Information Processing Systems. Curran Associates, Inc., 2013. Available
from https://proceedings.neurips.cc/paper_files/paper/2013/hash/
b7bb35b9c6ca2aee2df08cf09d7016c2-Abstract.html.

94

http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1109/5254.708428
https://books.google.cz/books?id=Np9SDQAAQBAJ
https://books.google.cz/books?id=Np9SDQAAQBAJ
https://papers.ssrn.com/abstract=4458723
https://papers.ssrn.com/abstract=4458723
https://aclanthology.org/D07-1090
https://aclanthology.org/D07-1090
http://dx.doi.org/10.1145/362384.362685
https://proceedings.neurips.cc/paper_files/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2012/hash/6aca97005c68f1206823815f66102863-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2013/hash/b7bb35b9c6ca2aee2df08cf09d7016c2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2013/hash/b7bb35b9c6ca2aee2df08cf09d7016c2-Abstract.html

. .

[11] Chilimbi, Trishul, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanara-
man. Project Adam: Building an Efficient and Scalable Deep Learning Training
System. In: Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation. USENIX Association, 2014 . pp. 571–582. OSDI’14.
ISBN 978-1-931971-16-4.

[12] Li, Mu, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling
Distributed Machine Learning with the Parameter Server. In: 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14). USENIX As-
sociation, 2014 . pp. 583–598. ISBN 978-1-931971-16-4. Available from https://
www.usenix.org/conference/osdi14/technical-sessions/presentation/
li_mu.

[13] Iandola, Forrest N., Khalid Ashraf, Matthew W. Moskewicz, and Kurt
Keutzer. FireCaffe: Near-Linear Acceleration of Deep Neural Network
Training on Compute Clusters. arXiv.org [online]. 2016. Available from DOI
10.48550/arXiv.1511.00175.

[14] Moritz, Philipp, Robert Nishihara, Ion Stoica, and Michael I. Jordan.
SparkNet: Training Deep Networks in Spark. arXiv.org [online]. 2016. Available
from DOI 10.48550/arXiv.1511.06051.

[15] You, Yang, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer.
ImageNet Training in Minutes. arXiv.org [online]. 2018. Available from DOI
10.48550/arXiv.1709.05011.

[16] Goyal, Priya, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv.org
[online]. 2018. Available from DOI 10.48550/arXiv.1706.02677.

[17] Smith, Samuel L., Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t
Decay the Learning Rate, Increase the Batch Size. arXiv.org [online]. 2018. Avail-
able from DOI 10.48550/arXiv.1711.00489.

[18] Pollack, Jordan B.. Recursive Distributed Representations. Artificial Intelli-
gence. 1990, Vol. 46, No. 1, pp. 77–105. ISSN 0004-3702. Available from DOI
10.1016/0004-3702(90)90005-K.

[19] Goller, Christoph, and Andreas Küchler. Learning Task-Dependent
Distributed Representations by Backpropagation through Structure.
In: 1996 . pp. 347-352 vol.1. ISBN 978-0-7803-3210-2. Available from DOI
10.1109/ICNN.1996.548916.

[20] Bianucci, Anna Maria, Alessio Micheli, Alessandro Sperduti, and Antonina
Starita. Application of Cascade Correlation Networks for Structures to Chem-
istry. Applied Intelligence. 2000, Vol. 12, No. 1, pp. 117–147. ISSN 1573-7497.
Available from DOI 10.1023/A:1008368105614.

[21] O’Shea, Keiron, and Ryan Nash. An Introduction to Convolutional Neural Net-
works. arXiv.org [online]. 2015. Available from DOI 10.48550/arXiv.1511.08458.

[22] Bronstein, Michael M., Joan Bruna, Yann LeCun, Arthur Szlam, and
Pierre Vandergheynst. Geometric Deep Learning: Going beyond Euclidean
Data. IEEE Signal Processing Magazine. 2017, Vol. 34, No. 4, pp. 18–42.
ISSN 1558-0792. Available from DOI 10.1109/MSP.2017.2693418.

95

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
http://dx.doi.org/10.48550/arXiv.1511.00175
http://dx.doi.org/10.48550/arXiv.1511.06051
http://dx.doi.org/10.48550/arXiv.1709.05011
http://dx.doi.org/10.48550/arXiv.1706.02677
http://dx.doi.org/10.48550/arXiv.1711.00489
http://dx.doi.org/10.1016/0004-3702(90)90005-K
http://dx.doi.org/10.1109/ICNN.1996.548916
http://dx.doi.org/10.1023/A:1008368105614
http://dx.doi.org/10.48550/arXiv.1511.08458
http://dx.doi.org/10.1109/MSP.2017.2693418

References .

[23] Fey, Matthias, and Jan Eric Lenssen. Fast Graph Representation Learning
with PyTorch Geometric. arXiv.org [online]. 2019. Available from DOI
10.48550/arXiv.1903.02428.

[24] Sourek, Gustav, Vojtech Aschenbrenner, Filip Zelezny, and Ondrej
Kuzelka. Lifted Relational Neural Networks. arXiv.org [online]. 2015. Available
from DOI 10.48550/arXiv.1508.05128.

[25] Šír, Gustav. Deep Learning with Relational Logic Representations. In: Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19. International Joint Conferences on Artificial Intelligence Organization,
2019 . pp. 6462–6463. Available from DOI 10.24963/ijcai.2019/920.

[26] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In: Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2012. Available from https://
papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e92
4a68c45b-Abstract.html.

[27] Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A Sys-
tem for Large-Scale Machine Learning. arXiv.org [online]. 2016. Available from
DOI 10.48550/arXiv.1605.08695.

[28] Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. arXiv.org [online]. 2019. Available from DOI
10.48550/arXiv.1912.01703.

[29] Naveed, Humza, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed An-
war, Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. A
Comprehensive Overview of Large Language Models. arXiv.org [online]. 2024.
Available from DOI 10.48550/arXiv.2307.06435.

[30] Liao, Xia, Shengguo Li, Wei Yu, and Yutong Lu. Parallel Matrix Multiplication
Algorithms in Supercomputing. In: 2021 6th International Conference on Intelli-
gent Computing and Signal Processing (ICSP). 2021. pp. 1–4. Available from
DOI 10.1109/ICSP51882.2021.9409013.

[31] Chen, Siyuan, Pratik Pramod Fegade, Tianqi Chen, Phillip Gibbons, and Todd
Mowry. ED-Batch: Efficient Automatic Batching of Dynamic Neural Networks
via Learned Finite State Machines. In: Proceedings of the 40th International Con-
ference on Machine Learning. PMLR, 2023. pp. 4514–4528. ISSN 2640-3498.
Available from https://proceedings.mlr.press/v202/chen23g.html.

[32] Helal, Hatem, Jesun Firoz, Jenna Bilbrey, Mario Michael Krell, Tom Mur-
ray, Ang Li, Sotiris Xantheas, and Sutanay Choudhury. Extreme Accelera-
tion of Graph Neural Network-based Prediction Models for Quantum Chemistry.
arXiv.org [online]. 2022. Available from DOI 10.48550/arXiv.2211.13853.

[33] Bilbrey, Jenna A., Kristina M. Herman, Henry Sprueill, Soritis S. Xantheas,
Payel Das, Manuel Lopez Roldan, Mike Kraus, Hatem Helal, and Sutanay

96

http://dx.doi.org/10.48550/arXiv.1903.02428
http://dx.doi.org/10.48550/arXiv.1508.05128
http://dx.doi.org/10.24963/ijcai.2019/920
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://dx.doi.org/10.48550/arXiv.1605.08695
http://dx.doi.org/10.48550/arXiv.1912.01703
http://dx.doi.org/10.48550/arXiv.2307.06435
http://dx.doi.org/10.1109/ICSP51882.2021.9409013
https://proceedings.mlr.press/v202/chen23g.html
http://dx.doi.org/10.48550/arXiv.2211.13853

. .

Choudhury. Reducing Down(Stream)Time: Pretraining Molecular GNNs Using
Heterogeneous AI Accelerators. arXiv.org [online]. 2022. Available from DOI
10.48550/arXiv.2211.04598.

[34] Cattaneo, Alberto, Daniel Justus, Harry Mellor, Douglas Orr, Jerome Mal-
oberti, Zhenying Liu, Thorin Farnsworth, Andrew Fitzgibbon, Blazej Ba-
naszewski, and Carlo Luschi. BESS: Balanced Entity Sampling and Sharing for
Large-Scale Knowledge Graph Completion. arXiv.org [online]. 2022. Available
from DOI 10.48550/arXiv.2211.12281.

[35] Muggleton, Stephen. Inductive Logic Programming. New Generation Comput-
ing. 1991, Vol. 8, No. 4, pp. 295–318. ISSN 0288-3635. Available from DOI
10.1007/BF03037089.

[36] Muggleton, Stephen, and Luc de Raedt. Inductive Logic Programming: Theory
and Methods. The Journal of Logic Programming. 1994, Vol. 19–20, pp. 629–679.
ISSN 0743-1066. Available from DOI 10.1016/0743-1066(94)90035-3.

[37] Getoor, Lise, and Ben Taskar. Introduction to Statistical Relational Learning.
Cambridge, MA, US: MIT Press, 2007. ISBN 978-0-262-07288-5.

[38] Kimmig, Angelika, Lilyana Mihalkova, and Lise Getoor. Lifted Graphical
Models: A Survey. Machine Learning. 2015, Vol. 99, No. 1, pp. 1–45. ISSN 1573-
0565. Available from DOI 10.1007/s10994-014-5443-2.

[39] Kramer, Stefan, Nada Lavrač, and Peter Flach. Propositionalization
Approaches to Relational Data Mining. Available from DOI
10.1007/978-3-662-04599-2_11.

[40] Friedman, Jerome H.. Greedy Function Approximation: A Gradient Boosting
Machine.. The Annals of Statistics. Institute of Mathematical Statistics, 2001,
Vol. 29, No. 5, pp. 1189–1232. ISSN 0090-5364, 2168-8966. Available from DOI
10.1214/aos/1013203451.

[41] Shwartz-Ziv, Ravid, and Amitai Armon. Tabular Data: Deep Learning Is Not
All You Need. Information Fusion. 2022, Vol. 81, pp. 84–90. ISSN 1566-2535.
Available from DOI 10.1016/j.inffus.2021.11.011.

[42] The SQLNet Company GmbH. getML. [cit. 2024-05-05]. Available from http
s://www.getml.com/.

[43] The Alteryx. Deep Feature Synthesis: How Automated Feature Engineering
Works – Alteryx | Innovation. [cit. 2024-05-05]. Available from https://innov
ation.alteryx.com/deep-feature-synthesis/.

[44] The Alteryx. Featuretools. [cit. 2024-05-05]. Available from https://www.feat
uretools.com/.

[45] Crabbe, Jonathan, Zhaozhi Qian, Fergus Imrie, and Mihaela van
der Schaar. Explaining Latent Representations with a Corpus of
Examples. In: Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2021. pp. 12154–12166. Available from
https : / / proceedings . neurips . cc / paper_files / paper / 2021 / hash /
65658fde58ab3c2b6e5132a39fae7cb9-Abstract.html.

[46] Zaniolo, Carlo, Peter C. Lockemann, Marc H. Scholl, and Torsten Grust.
Advances in Database Technology - EDBT 2000: 7th International Conference on
Extending Database Technology Konstanz, Germany, March 27-31, 2000 Proceed-
ings. Springer Science & Business Media, 2000 . ISBN 978-3-540-67227-2.

97

http://dx.doi.org/10.48550/arXiv.2211.04598
http://dx.doi.org/10.48550/arXiv.2211.12281
http://dx.doi.org/10.1007/BF03037089
http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://dx.doi.org/10.1007/s10994-014-5443-2
http://dx.doi.org/10.1007/978-3-662-04599-2_11
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.inffus.2021.11.011
https://www.getml.com/
https://www.getml.com/
https://innovation.alteryx.com/deep-feature-synthesis/
https://innovation.alteryx.com/deep-feature-synthesis/
https://www.featuretools.com/
https://www.featuretools.com/
https://proceedings.neurips.cc/paper_files/paper/2021/hash/65658fde58ab3c2b6e5132a39fae7cb9-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/65658fde58ab3c2b6e5132a39fae7cb9-Abstract.html

References .

[47] Kadra, Arlind, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-
Tuned Simple Nets Excel on Tabular Datasets. In: Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2021. pp. 23928–23941. Available
from https://proceedings.neurips.cc/paper/2021/hash/c902b497eb972281
fb5b4e206db38ee6-Abstract.html.

[48] PyTorch Contributors. TorchScript — PyTorch 2.3 Documentation.
[cit. 2024-05-05]. Available from https://pytorch.org/docs/stable/jit.html.

[49] Shankar, Asim, and Wolff Dobson. Eager Execution: An Imperative, Define-by-
Run Interface to TensorFlow. 2018-04-03. [cit. 2024-05-11]. Available from http://
research.google/blog/eager-execution-an-imperative-define-by-run-
interface-to-tensorflow/.

[50] Looks, Moshe, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig.
Deep Learning with Dynamic Computation Graphs. arXiv.org [online]. 2017.
Available from DOI 10.48550/arXiv.1702.02181.

[51] Neubig, Graham, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed
Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang,
Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia
Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro,
Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin.
DyNet: The Dynamic Neural Network Toolkit. arXiv.org [online]. 2017.
Available from DOI 10.48550/arXiv.1701.03980.

[52] Neubig, Graham, Yoav Goldberg, and Chris Dyer. On-the-Fly Operation
Batching in Dynamic Computation Graphs. arXiv.org [online]. 2017. Available
from DOI 10.48550/arXiv.1705.07860.

[53] Xu, Shizhen, Hao Zhang, Graham Neubig, Wei Dai, Jin Kyu Kim, Zhijie Deng,
Qirong Ho, Guangwen Yang, and Eric P. Xing. Cavs: An Efficient Runtime
System for Dynamic Neural Networks. In: 2018. pp. 937–950. ISBN 978-1-939133-
01-4. Available from https://www.usenix.org/conference/atc18/presentati
on/xu-shizen.

[54] Zha, Sheng, Ziheng Jiang, Haibin Lin, and Zhi Zhang. Just-in-Time
Dynamic-Batching. arXiv.org [online]. 2019. Available from DOI
10.48550/arXiv.1904.07421.

[55] Fegade, Pratik. Auto-Batching Techniques for Dynamic Deep Learning Computa-
tion. 2023. Dissertation. Available from https://kilthub.cmu.edu/articles/
thesis/Auto-batching_Techniques_for_Dynamic_Deep_Learning_Computati
on/21859902/1.

[56] Kipf, Thomas N., and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv.org [online]. 2017. Available from DOI
10.48550/arXiv.1609.02907.

[57] Hamilton, William L., Rex Ying, and Jure Leskovec. Inductive Representa-
tion Learning on Large Graphs. arXiv.org [online]. 2018. Available from DOI
10.48550/arXiv.1706.02216.

[58] Veličković, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph Attention Networks. arXiv.org [online].
2018. Available from DOI 10.48550/arXiv.1710.10903.

98

https://proceedings.neurips.cc/paper/2021/hash/c902b497eb972281fb5b4e206db38ee6-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c902b497eb972281fb5b4e206db38ee6-Abstract.html
https://pytorch.org/docs/stable/jit.html
http://research.google/blog/eager-execution-an-imperative-define-by-run-interface-to-tensorflow/
http://research.google/blog/eager-execution-an-imperative-define-by-run-interface-to-tensorflow/
http://research.google/blog/eager-execution-an-imperative-define-by-run-interface-to-tensorflow/
http://dx.doi.org/10.48550/arXiv.1702.02181
http://dx.doi.org/10.48550/arXiv.1701.03980
http://dx.doi.org/10.48550/arXiv.1705.07860
https://www.usenix.org/conference/atc18/presentation/xu-shizen
https://www.usenix.org/conference/atc18/presentation/xu-shizen
http://dx.doi.org/10.48550/arXiv.1904.07421
https://kilthub.cmu.edu/articles/thesis/Auto-batching_Techniques_for_Dynamic_Deep_Learning_Computation/21859902/1
https://kilthub.cmu.edu/articles/thesis/Auto-batching_Techniques_for_Dynamic_Deep_Learning_Computation/21859902/1
https://kilthub.cmu.edu/articles/thesis/Auto-batching_Techniques_for_Dynamic_Deep_Learning_Computation/21859902/1
http://dx.doi.org/10.48550/arXiv.1609.02907
http://dx.doi.org/10.48550/arXiv.1706.02216
http://dx.doi.org/10.48550/arXiv.1710.10903

. .

[59] Du, Jian, Shanghang Zhang, Guanhang Wu, Jose M. F. Moura, and Soummya
Kar. Topology Adaptive Graph Convolutional Networks. arXiv.org [online]. 2018.
Available from DOI 10.48550/arXiv.1710.10370.

[60] Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Power-
ful Are Graph Neural Networks?. arXiv.org [online]. 2019. Available from DOI
10.48550/arXiv.1810.00826.

[61] Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. Dynamic Graph CNN for Learning on Point Clouds.
arXiv.org [online]. 2019. Available from DOI 10.48550/arXiv.1801.07829.

[62] Corso, Gabriele, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar
Veličković. Principal Neighbourhood Aggregation for Graph Nets. arXiv.org
[online]. 2020. Available from DOI 10.48550/arXiv.2004.05718.

[63] Graphcore Ltd. IPU Hardware Overview — IPU Programmer’s Guide.
[cit. 2024-05-09]. Available from https://docs.graphcore.ai/projects/ipu-
programmers-guide/en/latest/about_ipu.html.

[64] Schlichtkrull, Michael, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. Modeling Relational Data with Graph Con-
volutional Networks. In: Aldo Gangemi, Roberto Navigli, Maria-Esther Vi-
dal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and
Mehwish Alam, eds. The Semantic Web. Springer International Publishing, 2018
. pp. 593–607. ISBN 978-3-319-93417-4. Available from DOI 10.1007/978-3-319-
93417-4_38.

[65] Cvitkovic, Milan. Supervised Learning on Relational Databases with
Graph Neural Networks. arXiv.org [online]. 2020. Available from DOI
10.48550/arXiv.2002.02046.

[66] Zahradník, Lukáš, Jan Neumann, and Gustav Šír. A Deep Learning Blueprint
for Relational Databases. In: NeurIPS 2023 Second Table Representation Learning
Workshop. 2023. Available from https://openreview.net/forum?id=b4GEmjsH
AB.

[67] Fey, Matthias, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan,
Joshua Robinson, Rex Ying, Jiaxuan You, and Jure Leskovec. Relational Deep
Learning: Graph Representation Learning on Relational Databases. arXiv.org [on-
line]. 2023. Available from DOI 10.48550/arXiv.2312.04615.

[68] Šír, Gustav. Towards Deep Learning for Relational Databases. [cit. 2024-05-06].
Available from https://towardsdatascience.com/towards-deep-learning-
for-relational-databases-de9adce5bb00.

[69] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is
All You Need. In: Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017. Available from https://papers.nips.cc/paper_files/
paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[70] Sourek, Gustav, Filip Zelezny, and Ondrej Kuzelka. Beyond Graph Neu-
ral Networks with Lifted Relational Neural Networks. Machine Learning. 2021,
Vol. 110, No. 7, pp. 1695–1738. ISSN 0885-6125, 1573-0565. Available from DOI
10.1007/s10994-021-06017-3.

[71] Zahradník, Lukáš. LukasZahradnik/PyNeuraLogic. [cit. 2024-05-06]. Available
from https://github.com/LukasZahradnik/PyNeuraLogic.

99

http://dx.doi.org/10.48550/arXiv.1710.10370
http://dx.doi.org/10.48550/arXiv.1810.00826
http://dx.doi.org/10.48550/arXiv.1801.07829
http://dx.doi.org/10.48550/arXiv.2004.05718
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/about_ipu.html
https://docs.graphcore.ai/projects/ipu-programmers-guide/en/latest/about_ipu.html
http://dx.doi.org/10.1007/978-3-319-93417-4_38
http://dx.doi.org/10.1007/978-3-319-93417-4_38
http://dx.doi.org/10.48550/arXiv.2002.02046
https://openreview.net/forum?id=b4GEmjsHAB
https://openreview.net/forum?id=b4GEmjsHAB
http://dx.doi.org/10.48550/arXiv.2312.04615
https://towardsdatascience.com/towards-deep-learning-for-relational-databases-de9adce5bb00
https://towardsdatascience.com/towards-deep-learning-for-relational-databases-de9adce5bb00
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://dx.doi.org/10.1007/s10994-021-06017-3
https://github.com/LukasZahradnik/PyNeuraLogic

References .

[72] Wilson, D.Randall, and Tony R. Martinez. The General Inefficiency of Batch
Training for Gradient Descent Learning. Neural Networks. 2003, Vol. 16, No. 10,
pp. 1429–1451. ISSN 08936080. Available from DOI 10.1016/S0893-6080(03)00138-
2.

[73] Masters, Dominic, and Carlo Luschi. Revisiting Small Batch Training
for Deep Neural Networks. arXiv.org [online]. 2018. Available from DOI
10.48550/arXiv.1804.07612.

[74] Zahradník, Lukáš. PyNeuraLogic — PyNeuraLogic Documentation. [cit. 2024-
05-14]. Available from https://pyneuralogic.readthedocs.io/en/latest/
index.html.

[75] Harris, Charles R., K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten
H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Array Programming with NumPy. Nature. Nature Publishing
Group, 2020, Vol. 585, No. 7825, pp. 357–362. ISSN 1476-4687. Available from
DOI 10.1038/s41586-020-2649-2.

[76] NumPy. [cit. 2024-05-07]. Available from https://numpy.org/.
[77] PyTorch Contributors. Torch.Sparse — PyTorch 2.3 Documentation.

[cit. 2024-05-14]. Available from https://pytorch.org/docs/stable/sparse.
html.

[78] Yamaguchi, Takuma, and Federico Busato. Accelerating Matrix Multiplication
with Block Sparse Format and NVIDIA Tensor Cores. 2021-03-19. [cit. 2024-05-14].
Available from https://developer.nvidia.com/blog/accelerating-matrix-
multiplication-with-block-sparse-format-and-nvidia-tensor-cores/.

[79] TensorFlow Developers. TensorFlow. [cit. 2024-05-14]. Available from DOI
10.5281/zenodo.10798587.

[80] Fey, Matthias. rusty1s/pytorch_scatter . [cit. 2024-05-14]. Available from http
s://github.com/rusty1s/pytorch_scatter.

[81] Busa-Fekete, Róbert, András Kocsor, and Sándor Pongor. Tree-Based Al-
gorithms for Protein Classification. Available from DOI 10.1007/978-3-540-76803-
6_6.

[82] Ullman, Jeffrey D.. Principles of Database and Knowledge-Base Systems. Com-
puter Science Press, 1989 . ISBN 0-7167-8162-X.

[83] Bratko, Ivan. Prolog Programming for Artificial Intelligence. Pearson Education,
2001 . ISBN 978-0-201-40375-6.

[84] Chamberlin, Donald D, and Raymond F Boyce. SEQUEL: A Structured English
Query Language. In: Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control. 1974 . pp. 249–264.

[85] Merriam Webster, Incorporated. The Verbing Adventures of ’Weigh’ and
’Weight’. 2019-01-16. [cit. 2024-05-16]. Available from https://www.merriam-
webster.com/wordplay/when-to-use-weigh-and-weight-as-a-verb.

[86] Šír, Gustav. GustikS/NeuraLogic. [cit. 2024-05-16]. Available from https://gith
ub.com/GustikS/NeuraLogic.

100

http://dx.doi.org/10.1016/S0893-6080(03)00138-2
http://dx.doi.org/10.1016/S0893-6080(03)00138-2
http://dx.doi.org/10.48550/arXiv.1804.07612
https://pyneuralogic.readthedocs.io/en/latest/index.html
https://pyneuralogic.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1038/s41586-020-2649-2
https://numpy.org/
https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/docs/stable/sparse.html
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
https://developer.nvidia.com/blog/accelerating-matrix-multiplication-with-block-sparse-format-and-nvidia-tensor-cores/
http://dx.doi.org/10.5281/zenodo.10798587
https://github.com/rusty1s/pytorch_scatter
https://github.com/rusty1s/pytorch_scatter
http://dx.doi.org/10.1007/978-3-540-76803-6_6
http://dx.doi.org/10.1007/978-3-540-76803-6_6
https://www.merriam-webster.com/wordplay/when-to-use-weigh-and-weight-as-a-verb
https://www.merriam-webster.com/wordplay/when-to-use-weigh-and-weight-as-a-verb
https://github.com/GustikS/NeuraLogic
https://github.com/GustikS/NeuraLogic

. .

[87] Sourek, Gustav, Filip Zelezny, and Ondrej Kuzelka. Lossless Compression of
Structured Convolutional Models via Lifting. In: 2020. Available from https://
openreview.net/forum?id=oxnp2q-PGL4.

[88] Siek, Jeremy G.. Essentials of Compilation: An Incremental Approach in Racket.
MIT Press, 2023 . ISBN 978-0-262-04776-0.

[89] Morris, Christopher, Nils M. Kriege, Franka Bause, Kristian Kersting, Pe-
tra Mutzel, and Marion Neumann. TUDataset: A Collection of Benchmark
Datasets for Learning with Graphs. arXiv.org [online]. 2020. Available from DOI
10.48550/arXiv.2007.08663.

[90] PyG Team. Datasets — PyTorch Geometric Documentation. [cit. 2024-05-23].
Available from https://pytorch-geometric.readthedocs.io/en/latest/
modules/datasets.html.

[91] Motl, Jan, and Oliver Schulte. The CTU Prague Relational Learning Reposi-
tory. arXiv.org [online]. 2024. Available from DOI 10.48550/arXiv.1511.03086.

101

https://openreview.net/forum?id=oxnp2q-PGL4
https://openreview.net/forum?id=oxnp2q-PGL4
http://dx.doi.org/10.48550/arXiv.2007.08663
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
http://dx.doi.org/10.48550/arXiv.1511.03086

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Deep Learning Parallelization
	Chapter Structure

	Literature Review
	Deep Learning on Structured Inputs
	Dynamic Computational Graphs
	Graph Neural Networks
	Graphcore IPUs
	Deep Relational Learning

	Graph Convolution Computation
	Terminology and Notation
	Graph
	Graph Convolution

	Vectorized Graph Representation
	Vectorized Image Convolution Computation
	Vectorized Graph Convolution Computation
	Gather/Scatter
	Sparse Matrix Multiplication
	Segment CSR

	NeuraLogic
	Syntax
	Example
	More Complex Examples

	Computational Graph Structure
	Rules as Computational Graphs
	Optimizations

	Implementation
	Vectorization
	Computational Graph Definition
	The Input Computational Graph Operations
	Node Group Vectorization
	Vectorized Input Order Discrepancy
	The Vectorized Computational Graph
	Note About Aggregation Nodes
	Generalization
	The Batching Problem
	Implementation Details

	Optimizations
	Basic Gather Optimizations
	Basic Scatter Optimizations
	Basic Linear Layer Optimizations
	Advanced Linear Layer Optimizations: Reordering and Padding
	Advanced Linear Layer Optimizations: Advanced Reordering/Padding
	Deduplication: Downward Propagation of Gathers
	Upward Propagation of Gathers
	Unit Fact Processing
	Further Optimizations for More Complex Architectures
	The Full Implementation

	Results
	Datasets
	Graph Neural Networks
	Performance
	CPU Performance
	Computational Graphs -- GCN Example

	Relational Architectures
	The Backward Pass
	Graphcore Intelligence Processing Units (IPUs)

	Conclusion
	Complex Computational Graph Example
	Code Guide
	Additional Figures
	Glossary
	References

