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Abstract
The Graph Search Problem (GSP) and
the Traveling Deliveryman Problem
(TDP) are variants of the NP-hard Trav-
eling Salesman Problem (TSP). GSP
finds application in Mobile Robot Search
(MRS), which involves locating a ran-
domly placed target object within a priory
known polygonal domain. The solution
quality of MRS depends on the weights
corresponding to the newly visible area
from a given location. The current state-
of-the-art method based on GSP treats
these weights as static, resulting in ap-
proximations. In this thesis, we propose
a novel formulation of MRS using GSP
with order-dependent weights. Using the
combination of various constructive and
efficient improving heuristics and the per-
turbation, we construct Sequential Vari-
able Neighborhood Search (SVND) and
General Variable Neighborhood Descent
(GVNS) metaheuristics. Based on the ex-
perimental evaluation, we select the opti-
mal parameters and components of SVND
and GVNS. The results of the experiments
show that the proposed metaheuristics
outperform the reference method signifi-
cantly.

Keywords: Mobile Robot Search,
Travelling Deliveryman Problem, Graph
Search Problem, Metaheuristics, Variable
Neighbourhood Search, Local Search
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Ph.D.
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Abstrakt
Problém hledání v grafu (GSP) a pro-
blém doručovatele (TDP) jsou varianty
NP-těžkého problému obchodního cestu-
jícího (TSP). GSP nachází uplatnění v
problému vyhledávání mobilním robotem
(MRS), které zahrnuje lokalizaci náhodně
umístěného cílového objektu v předem
známém polygonálním prostředí. Kvalita
řešení MRS závisí na váhách odpovídají-
cích oblasti nově viditelné z dané pozice.
Současná metoda založená na GSP tyto
váhy chápe jako statické, což vede k apro-
ximacím. V této práci navrhujeme novou
formulaci MRS pomocí GSP s váhami
závislými na pořadí. S využitím kombi-
nace různých konstruktivních a efektiv-
ních zlepšujících heuristik a perturbace
konstruujeme metaheuristiky Sestup ve
Variabilní Sekvenci Sousedství (SVND) a
Obecné Vyhledávání ve Variabilních Sou-
sedstvích (GVNS). Na základě experimen-
tálního vyhodnocení jsou vybrány opti-
mální parametry a komponenty SVND a
GVNS. Výsledky experimentů ukazují, že
navržené metaheuristiky poskytují lepší
řešení než referenční metoda.

Klíčová slova: Hledání mobilním
robotem, Problém cestujícího
doručovatele, Problém hledání v grafu,
Metaheuristika, Vyhledávání ve
variabilních sousedstvích, Lokální
vyhledávání
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Chapter 1
Introduction

The Traveling Salesman Problem (TSP) is a famous optimization problem
that aims to find the shortest possible route to visit each city in a given set
exactly once and return to the starting city. Due to its fundamental role in
optimizing routes and paths, the TSP and its variations are used in many
fields, including astronomy, robotics, biology, and tourism [1]. It has many
variations, such as the Traveling Deliveryman Problem (TDP) and the Graph
Search Problem (GSP). These problems are considered NP-hard, meaning
they are difficult to solve optimally within a reasonable computational time.
This puts the main focus of the research community on developing efficient
algorithms to quickly find near-optimal solutions without checking every
possible solution.
One of the GSP’s applications is Mobile Robot Search (MRS), which aims to
locate a randomly placed target object within a polygonal domain. MRS is
a complex problem; modern approaches thus discretize the environment by
representing it as a graph, with the nodes’ weights defining the new visible
area from that location. The current state-of-the-art method [2] for solving
this problem considers the weights static, leading to approximating the newly
visible area.
This thesis proposes a new formulation of the GSP with order-dependent,
dynamic weights that change based on the areas already explored. We
aim to develop metaheuristics for this problem, evaluate their properties
experimentally, and compare them with the current state-of-the-art method.
While we do not require the proposed approaches to operate in strict real-time,
we aim to progress towards that capability. Our approach could serve as a
solid foundation for a new formulation of Mobile Robot Search.

1.1 State-of-the-art

The GSP we are studying is the combinatorial optimization (CO) problem.
According to Papadimitriou and Steiglitz [3], a deterministic CO problem
involves finding the best object from a finite or possibly countable infinite
set. This object, known as a solution, is typically an integer, a subset, a
permutation, or a graph structure. The real-valued cost function of the opti-
mization problem defines the quality of the solution. All possible solutions

1



1. Introduction .....................................
to the problem are considered to be in solution space. As summarized by
Hansen and Mladenovic [4], the goal of combinatorial optimization is to find
a solution whose quality is higher than all possible solutions to the problem
or show the absence of a feasible solution within a finite and reasonable time.
The Traveling Deliveryman Problem (TDP) is a well-known CO problem
in the operational research community and has several mathematical formula-
tions [5], [6]. While the Travelling Salesman Problem (TSP) aims to minimize
the total travel time from the start to the final node in the graph, TDP shifts
to minimizing the total arrival time to each node. Using the postman analogy,
TSP focuses on saving time for the postman, while TDP aims to minimize
the average waiting time for each customer. According to Blum [7], on a
metric space, the TDP is NP-hard like the TSP, but surprisingly, the TDP
is harder to solve or approximate. In the literature, it is also known as the
Traveling Repairman Problem [8] or Minimum Latency Problem (MLP) [9].
The interesting practical application of TDP is the home delivery of pizzas
[6] or disk-head scheduling for optimizing the access and retrieval of data
from a disk [7].
Graph Search Problem is considered a weighted TDP, where every cus-
tomer has an assigned weight, and the postman wants to visit the customers
with the highest priority first, minimizing the weighted average waiting time
for each customer. Koutsoupias first formulated GSP [10] for applying search
in a large network of hypertext documents. The overview of TSP, TDP, and
GSP with some approximation schemes for designing routing strategies within
a web network can also be found in the work of Ausielo [11]. No further
developments of GSP were presented in the related literature except the last
works of Kulich [12], [13].
The operational research community follows two main trends in solving TDP:
exact and approximation algorithms. The exact algorithms aim to find
the optimal solution to the problem and are represented by Integer Linear
Programming (ILP) and Mixed Linear Programming (MILP) methods. They
are usually formulated for The Time-Dependent Traveling Salesman Problem
(TDTSP), a generalization of TSP and TDP. They can solve TDTSP using
the Branch-Cut-and-Price algorithm to optimality up to 50-60 vertices within
several hours [14], [15]. One of the best algorithms for TDTSP proposed
by Abeledo [16] solves 107 vertices within 48 hours. The approximation
algorithms are mostly represented by metaheuristics, the general frame-
works designed to solve complex optimization problems. Many researchers
propose their definitions. We will provide several ones. Osman [17] defines
metaheuristics as “An iterative process that directs a subordinate heuristic by
cleverly combining various concepts to explore and exploit the search space.
Learning strategies are employed to organize information effectively to dis-
cover near-optimal solutions efficiently”. Another possible definition is taken
from Blum [18] “Metaheuristics are high-level strategies for exploring search
spaces by using different methods.” The overview of different metaheuristics
can be found in Handbook of Metaheuristics [19] or in [20] describing the
working principles and inspiring concepts for stochastic optimization problems.

2



............................... 1.2. Contributions & Structure

The introduction for beginners on how to build the Variable Neighborhood
Descent (VND) and Variable Neighborhood Search (VNS) metaheuristics
with respective definitions can be found in the tutorial of Mladenovic [21].
Salehipour [22] proposed a GRASP metaheuristic for the Traveling Delivery-
man Problem (TDP), which employs VND or VNS. Based on this approach,
an effective metaheuristic called GILS-RVND was developed by Silva [23].
This method combines GRASP with Iterated Local Search (ILS). The current
state-of-the-art method is Multi-start-General VNS, the stochastic meta-
heuristic that uses multiple stopping criteria and iteration limits. It was first
presented by Mikula [24] and compared against the existing GILS-RVND in
a series of experiments and proved more efficient [2]. The GRASP scheme
presented by Kulich [12] mostly represents the GSP metaheuristics.
The applications of GSP for mobile robot search, where weights represent
newly covered areas in a polygonal environment, come from the work of
Kulich and Preucil [25]. Additionally, Sarmiento [26] addresses the problem
of mobile robot search in a polygonal domain by modeling the time required
to find an object as a random variable influenced by the chosen search path
and assuming a uniform probability density function for the object’s location.
The latest trend in mobile robot exploration is the Watchman Route Prob-
lem (WRP) application, where the newly covered areas are not considered,
and the goal is to find the shortest route visiting every part of a polygonal
environment[27].

1.2 Contributions & Structure

The main contributions of this thesis are as follows:.We formulated the Graph Search Problem with order-dependent weights
to model the Mobile Robot Search Problem in the polygonal domain.
The following formulation better describes the discrete version of MRS
and allows the development of new methods that lead to more promising
solutions..We developed a solution approach to the formulated problem utilizing
two main metaheuristics: Sequential Variable Neighbourhood Descent
(SVND) and General Variable Neighbourhood Search (GVNS). This
includes the effective implementation of local search strategies and con-
structive heuristics for generating initial solutions to the problem..We conducted experiments to identify the most effective local search
operators, exploration strategies, and metaheuristic parameters and
components. Then, we compared our proposed metaheuristics with the
current state-of-the-art method in the two experiments with a priority
on the solution quality.. Our experiments showed that the proposed formulation improves Mobile
Robot Search performance on various maps by approximately 6-40 %,

3



1. Introduction .....................................
with the maximal visibility regions overlapping up to 30-50%. Addition-
ally, we sought to define overlapping regions that reveal the limitations
of the reference method, but the current definition only allows for finding
the real visibility limit on the maps.

The thesis is organized into five chapters, each explaining the content step-
by-step. The Chapter 1 briefly introduces the problem, a literature review,
and contributions. The Chapter 2 details the formulation of the Graph Search
Problem with order-dependent weights based on Mobile Robot Search in
a priory known environment. The Chapter 3 describes the methods used
to solve the formulated problem. The Chapter 4 presents the experimental
evaluation and analyzes the selected methods and results. The Chapter
5 summarizes the thesis and the potential improvements for the selected
approaches.

4



Chapter 2
Graph Search Problem

This chapter addresses the Graph Search Problem with order-dependent
weights, focusing on its practical application in Mobile Robot Search. The first
section describes Mobile Robot Search in a priory known environment from a
continuous perspective and defines key visibility concepts. The second section
formulates the problem from the practical side by discretizing trajectories
and environments. The third section merges all the ideas from the previous
ones and formulates the robotic problem as the optimization problem.

2.1 Mobile robot search in priory known
environment

Assume a scenario when the mobile robot navigates in a priory known
environment and searches for the stationary object of interest that is placed
randomly. To explain the environmental terms, we refer to [28], [29]. The
robot operates within the worldW ⊂ R2, representing a non-empty connected
closed bounded subset of two-dimensional Euclidean space. The region W
denotes the obstacle-free space. The compliment R2 \ W represents the
inaccessible area to the robot with a single outer boundary and one or
multiple inner boundaries denoted as holes. The boundary is a simple
polygon defined as the closed connected series of pairwise non-intersecting
line segments. There isn’t an explicit consideration of obstacles that might
limit visibility. Instead, the entirety of the set W represents the area that
can be seen through, while R2 \W denotes the space that obstructs vision.
The environment remains static, and the robot faces two primary constraints.Motion. The robot is confined to moving within the environment W. It

cannot cross these limits or traverse over R2 \W.. Visibility. The robot’s visibility is restricted to the interior of the envi-
ronment W. It cannot see beyond or through the boundaries R2 \W.

The key visibility definitions of the environment are. Points visibility. Two points p, q ∈ W are visible to each other only if
their line segment pq lies entirely within W, pq ∈W , see Figure 2.1a.

5



2. Graph Search Problem.................................
. Visibility Region. The set of all points visible from a point p denoted as

V (p) = {q ∈ W | pq ⊂ W}.. Visibility Graph. A data structure representing visibility relationships
within a finite set of points P is defined as the undirected graph GP =
(VP , EP ), Here, VP = P denotes the vertex set, and EP = {{p, q} | p, q ∈
P ∧ p ̸= q∧ pq ⊂ W} represents the edge set, pairs of the different visible
points within the environment W.

From the physical point of view, the robot is the material point. Its configu-
ration includes its 2D coordinates, signifying the center of its footprint within
the environment, denoted as qr = (x, y), qr ∈ W . The robot is equipped with
a 360-degree sensor, placed in its center qr with a limited visibility range
rvis ∈ R+, including rvis =∞. The set of points visible by the robot within
the distance rvis is defined as the sensing limited visibility region

V(qr, rvis) = {p ∈ W | qrp ⊂ W ∧ ∥qrp∥ ≤ rvis} (2.1)

(a) : Green: Visible points, Red:
Invisible points (b) : Sensing visibility region limited by rvis

Figure 2.1: Visibility concepts for the environment W

Assume that at time t = 0, the robot is positioned at the starting point.
It begins to navigate through the environment W using the obstacle-free
continuous trajectory τ :

[
0, tend

]
→ Qτ ⊂ W. Then, the searched object is

considered to be found by the robot during the execution of a trajectory τ
when the robot’s sensors detect the object O, if there exists t ∈ [0, tend] such
that O ∈ V(τ(t), rvis).
The objective of the Mobile Robot Search is to minimize the expected time
of locating the object. To achieve this, we analyze a random variable T

6



................................. 2.2. Discrete formulation

denoting the time taken to detect the target object, with a density probability
function fT |τ (t). This function represents the probability of finding the object
at time t, assuming the robot follows a collision-free trajectory τ ∈ [0, tend].
Minimizing the average time taken across all potential object locations in
the environment is more natural, considering the object’s location can be
anywhere in the environment

E(T | τ) =
∫ tend

0
t

′
fT |τ (t′) dt

′ (2.2)

Then, the goal of Mobile Robot Search is to find a continuous trajectory that
minimizes the expected time required to detect the target object

τ∗ = argmin
τ

E(T | τ) (2.3)

2.2 Discrete formulation

The continuous formulation of MRS is deemed complex due to its infinite
potential object locations and unrestricted robot configurations. This leads to
boundless potential exploration trajectories. Hence, simplifying the problem
by adopting discrete terms becomes practical.

2.2.1 Trajectory quantization

Let’s consider a scenario where a robot follows a trajectory τ = [0, tend]
and senses the environment at discrete times t = (t0 = 0, t1, ..., tend),
∀i ∈ {0, 1, .., n − 1}, ti < ti+1. The locations where the robot performs
measurements are sensing locations si. Each ti represents the duration for
the robot to traverse to the sensing location si after exploring locations s0
through si. We assume no sensing occurs as the robot transitions from si−1
to si. After completing the measurement at sensing location si−1, the entire
environment is divided into two parts: the already explored or “covered”
denoted asWcov

i−1, and the areas yet to be explored or “uncovered”, denoted as
Wunc

i−1 , see Figure 2.2a. Additionally, we presume that the duration of sensing
the environment is zero and that the sensing region within the visibility radius
has already been explored at the starting location.

Wunc
0 =W \ V(τ(0), rvis), Wcov

0 = V(τ(0), rvis) (2.4)

The robot progresses along its trajectory; in the next step i shown in Figure
2.2b, the robot is at the location si and explores the new area of environment
that was not explored Wnew

i .

Wnew
i =Wunc

i−1 \ V(τ(ti), rvis) (2.5)

The update of the covered area in the step i will be

Wcov
i =Wcov

i−1 ∪ V(τ(ti), rvis) =Wcov
i−1 ∪Wnew

i (2.6)

7



2. Graph Search Problem.................................

(a) : Covered (blue) and uncovered (red)
area after step i − 1

(b) : New explored area (green) in the
step i

Figure 2.2: Environment split over discrete trajectory

Let’s additionally assume that a(S) =
∫∫

S , dS represents the scalar value
associated with the area S. We define the discrete cumulative probability
function that represents the likelihood of detecting the object by time ti as
the ratio of the total area covered up to time ti to the area of the entire
environment

FT |τ (ti) = P (T ≤ ti|τ) = a(Wcov
i )

a(W) (2.7)

Alternatively, the discrete probability of finding the object at time ti can be
defined as the relative area of view of the newly explored area at time ti to
the area of the whole environment

p(T = ti|τ) = a(Wnew
i )

a(W) =
a

(
Wunc

i−1 \ V(τ(ti), rvis)
)

a(W) (2.8)

Subsequently, the expected time over quantized trajectory can be computed
as the sum of times weighted by the probability of finding the object in each
sensing location

E(T |τ) =
n∑

i=1
ti p(T = ti|τ) = 1

a(W)

n∑
i=1

ti a(Wnew
i ) (2.9)

2.2.2 Environment discretization

The quantization of trajectory leads to the implicit discretization of the
environment W, which is partitioned into a finite set of possibly intersecting
sensing regions limited by a visibility radius rvis. These regions are denoted as
R = (R0,R1, ...,Rn), where each region Ri is centered at a point representing
a sensing location si ∈ W. and define the set of points that are visible for
the robot when it’s located at position si, Ri = V(si, rvis).

8



................................. 2.2. Discrete formulation

On the other hand, the environment can be discretized explicitly and inde-
pendently on a particular trajectory. The idea is to find the smallest set of
feasible sensing locations such that their limited visibility regions will cover
the entire environment.

W = R0 ∪R1... ∪Rn =
n⋃

i=0
Ri (2.10)

This discretization allows us to represent the environment as a graph, where
the vertices are the sensing locations where the robot uses its sensor to explore
the environment, and the edges represent the travel time between these sensing
locations, see Figure 2.3. The robot will cover the entire environment if it
visits all the sensing locations. Consequently, we can formulate the MRS as
the Graph Search Problem to find the path in the graph that will minimize
the expected time to visit all the locations, the vertex weights indicate the
relative area of view the robot covers at each sensing location, and the edges
represent the travel time between locations.
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Figure 2.3: Sensing locations in the discretized environment

The visibility regions can intersect, meaning they can cover the same part
of the environment. Assume the robot travels from region Ri−1 to Ri, see
Figure 2.4. The static GSP assumes that the probability of detecting the
target object is defined only by the visibility region. In reality, overlapping
area Rj ∩Ri, j < i was already covered in the previous region Rj . Therefore,
the probability of detecting the object in the region Ri depends on the new
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2. Graph Search Problem.................................
area covered, i.e., the order in which the sensing locations are visited. This
motivates the definition of GSP with order-dependent weights.

(a) : Distribution of visibility regions

(b) : Static weights (c) : Dynamic weights

Figure 2.4: GSP with static/dynamic weights

2.3 Graph Search Problem with order-dependent
weights

In the discrete Mobile Robot Search scenario, we must determine the proba-
bility of the target object being present within the interconnected visibility
regions through the shortest path graph shown in Figure 2.3. Each vertex
in this graph is associated with a weight indicating this probability. GSP
was first presented in the context of mobile robot exploration in a priory
known environment in [12]. Formally, we define a complete undirected graph
G = (V, E, d, w, s) where. V = {v0, v1, . . . , vn}, |V | = n + 1 represents the finite set of vertices.. E = {e0, e1, . . . , eM}, ei = ekl = (vk, vl) ∀vk, vl ∈ V : k ̸= l stands for

the set of edges;. d : E → R+ d(vi, vj) ≡ dij denotes the time required for the robot to
travel from vi to vj .

10



................... 2.3. Graph Search Problem with order-dependent weights

. w : V → [0, 1] - vertex weight, probability of detection of the object in
the vertex vi. s denotes the start vertex, depot.

The subset (V, E, d) is the shortest path graph Gs of the environment, where
each vertex vi is the sensing location, defining a corresponding visibility region
Ri which the robot potentially needs to visit to find the target object.
The robot’s route through the environment follows a Hamiltonian path,
which includes all possible vertex permutations x = (v0, vπ(1), ..., vπ(n)) =
(v0, x1, ..., xn), starting from the depot s = v0. Here, xi represents the vertex
at position i along the path from the permutation π. When following the
order specified by the path x, the time taken to reach vertex xi from the
depot is determined by summing the costs of the edges defined by this path.

δi = d(s, xi, x) ==
i−1∑
k=0

d(xk, xk+1) (2.11)

As the robot moves forward, the regions it traverses are subtracted from the
unexplored area, a concept commonly referred to as “clipping”. Additionally,
the newly explored areas add to the weight of the respective vertex, thereby
adjusting its importance within the environment.

Figure 2.5: Region “clipping” from the path

The uncovered area is dependent on the vertices visited before, defined as

Wunc
i−1 =W \

i−1⋃
k=0
Rk (2.12)

It implies that the weight wi is also dependent on the sequence of vertices
visited before exploring the region Ri

wi = p(δi|x) =
a(Ri ∩Wunc

i−1 )
a(W) =

a
(
Ri ∩ (W \⋃i−1

k=0Rk)
)

a(W) (2.13)

The probability wi, remains unknown beforehand and for the whole path x
respects the property of cumulative probability distribution function

n∑
i=0

wi = 1, (2.14)

11



2. Graph Search Problem.................................
The order of exploring the graph with the Hamiltonian path is dependent
on the selected permutation, which leads us to the new problem, the Graph
Search Problem, with order-dependent weights. The expected time for visiting
each vertex defines the cost of the solution x

E(T | x) ≡ T exp(x) =
n∑

i=1
δi wi =

n∑
i=1

wi

i∑
j=1

d(xj−1, xj) (2.15)

0

5

1

4

3

2

(a) : T exp(x) = 28.1

0

1

2

4

3

5

(b) : T exp(x) = 15.7

Figure 2.6: Illustration of GSP with order-dependent weights for the best/worst
solution

Then, the task is to find the permutation of vertices starting from v0 that
minimizes the overall expected time with the probability assigned to each
vertex in the path

x∗ = argmin
x

T exp(x) (2.16)
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Chapter 3
Solution Approach

This chapter outlines approaches for solving the Graph Search Problem with
order-dependent weights. It is divided into three sections to address different
stages of the solution process systematically. The first section introduces con-
structive heuristics suitable for generating a complete solution from scratch.
The second section delves into improving heuristics, concentrating on en-
hancing existing solutions. Lastly, the third section covers general-purpose
metaheuristics designed to explore potential solutions effectively.

3.1 Constructive heuristics

Constructive heuristics create a good initial solution within a limited time-
frame in a step-by-step manner, laying the foundation for further improvement.
They start with an empty or partial solution and incrementally construct a
complete one.
As the output of the constructive algorithm, we consider the tour x =
(v0, x1, ..., xn) = (v0, vπ(1), ..., vπ(n)), vi ∈ V , which represents a possible per-
mutation π of vertices with the fixed v0, input vertices V are obtained from
the distance graph G = (V, E, d) which also considered to be a global param-
eter. The quality of the tour x is determined by its expected cost T exp(x),
where better solutions correspond to smaller costs.
The general constructive heuristic is described in Algorithm 1. In each step,
i ∈ {1, 2, ..., n}, the next vertex xi is selected from the candidate list CL of
unassigned nodes (line 4) based on specific criteria, which vary depending
on the heuristic being used. At the end of the iteration, the chosen vertex
is removed from the candidate list. The initial solution x is constructed by
iteratively adding unassigned vertices. This process ensures feasibility, as the
candidate list is updated sequentially to maintain valid selections.

13



3. Solution Approach ..................................
Algorithm 1: Constructive heuristic
Input: Start vertex v0.
Output: Initial solution x = (x0, ..., xn).

1 x← (v0)
2 CL ← {v1, ..., vn}
3 for i = 1 to N do
4 xi ← SelectVertex(CL)
5 x← x⊕ xi

6 CL ← CL \ xi

7 return x

3.1.1 Fully random

This heuristics involves creating a random permutation of vertices. In this
approach, the next vertex xi is always chosen uniformly randomly from the
candidate list. This means that at each step, any vertex from the candidate
list has an equal probability of being selected as the next vertex.
This lack of specific guidance leads to inherent indeterminacy. This variance
often results in a substantial standard deviation in the initial solution costs.
Consequently, some initial solutions may be distant from the optimum, neces-
sitating additional time for the heuristic to converge towards local or global
optima. The heuristics is used in subsequent experiments to evaluate the
overall performance of metaheuristics.

3.1.2 Greedy

The following heuristic is inspired by the general greedy scheme for GSP
[12]. It extends the current path with the vertex with the lowest value of the
deterministic path function. For the incomplete path xi = (x0, x1, ..., xi−1)
we consider the time of travel along this path δi−1 and the not visited vertex
vk ∈ CL, the distance d(xi−1, vk) between the last vertex in the incomplete
path and the unassigned vertex, and its respective weight wi after the path
extension. Then we define five different path criteria and their respective
functions:.Added cost after path extension:

f1(xi ⊕ vk) = T exp(xi ⊕ vk)− T exp(xi) = (δi−1 + d(xi−1, vk)) wi (3.1). Distance to the next vertex:

f2(xi ⊕ vk) = d(xi−1, vk) (3.2). Distance-to-weight ratio:

f3(xi ⊕ xk) = d(xi−1, vk)
wi + 0.01 (3.3)
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................................ 3.1. Constructive heuristics

.Total travel time-to-weight ratio:

f4(xi ⊕ vk) = δi−1 + d(xi−1, vk)
wi + 0.01 (3.4).Weighted distance:

f5(xi ⊕ vk) = d(xi−1, vk) wi (3.5)

With one of the selected functions, we determine the best vertex to append
to the path:

xi ← argmin
vk

fr(xi ⊕ vk) , vk ∈ CL, r ∈ {1, 2, 3, 4, 5} (3.6)

The deterministic nature of the heuristic ensures repeatability, meaning
the same input will always produce the same output.

3.1.3 Randomized Greedy

We introduce the randomized greedy algorithm to expand the variability of
the generated solutions for the same input instance. This approach integrates
stochastic elements, allowing better solutions to be obtained.
To illustrate the concept, at step i of the randomized greedy algorithm, let’s
denote the list of unassigned vertices as {y1, .., yn−i} /∈ x. Then, a sorted
candidate list contains the nodes sorted by their path function fr values.
CL = {zi = yπ(i) : ∀j ∈ {i + 1, ..., n− i}, fr(x⊕ zi) ≤ fr(x⊕ zj)} (3.7)

Then, for the first m≪ |CL| candidates, probabilities are assigned for selecting
the next vertices, represented by the probability list PL = (p1, p2, ..., pm),
where

m∑
i=1

pi = 1, pi ∈ [0, 1], ∀i > j, pi > pj , (3.8)

The next vertex zπ(i) is selected randomly from the first m candidates from the
sorted candidate list based on its associated probability pi. The probability
list can be generated randomly at each step of adding a new vertex in the
constructive heuristic or provided as the additional constant parameter to the
heuristic. In our experiments, we utilized m = 3 candidates for the selection
with the constant probabilities PL = {p1, p2, p3}. These probabilities signify
selecting the first-best candidate with a probability of p1, the second-best
with p2, and the third-best with p3. If fewer than m = 3 unassigned vertices
remain, we always opt for the first-best choice. This decision is made because
the impact on the overall expected cost is relatively minor towards the end
of the path.
For the selection process, we generate a random number prand ∈ [0, 1] and
select the vertex with the smallest cumulative probability that exceeds prand.
Mathematically, this is described as follows:

k∗ ← argmin
k

(
k∑

i=1
pi ≥ prand), k ∈ {1, 2, ..., m} (3.9)

xi+1 ← zk∗ ∈ CL (3.10)
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3. Solution Approach ..................................
3.2 Improving heuristics

Unlike constructive heuristics, which build solutions from scratch, improving
heuristics starts with an initial solution and iteratively enhances it through
local modifications, potentially achieving better-quality solutions.

3.2.1 Local Search

To define the improving heuristics, assume the distance graph G = (V, E, d)
and the set H containing all possible Hamiltonian paths originating from
vertex v0, defining the solution state-space. Given the input tour x =
(x0 = v0, x1, ..., xn), we introduce the operator Φop(x, α), which generates a
new tour x′ ∈ H. This operator requires a fixed-length set of parameters
α = (α1, ..., αp), influencing the type of change. Each parameter can take the
values αi ∈ {1, 2, ..., n = |V | − 1}, which define the index of a vertex in the se-
quence x. A single set of parameters can also be considered as a p-dimensional
vector of natural numbers less or equal to n: α ∈ N p

≤n Then all possible sets
of operator parameters, denoted as Uop, form a p-ary Cartesian product over
all possible values the parameters can obtain Uop = α1 × α2...× αp. A single
parameter set α ∈ Uop defines one possible neighbor obtained through the
operator while considering all possible sets of parameters defines the set of
neighboring tours or the neighborhood of the input tour Nx

op = Φop(x, Uop).

Let’s clarify these concepts using the N-queens problem as an example [30].
In this problem, the goal is to place N queens on an N×N chessboard so that
no two queens threaten each other. This can be formulated as a CO problem
in which the objective is to minimize the number of pairs of queens that
attack each other, with the optimal solution being zero such pairs. A solution
to this problem is a particular arrangement of queens on the chessboard. The
local search operator defines how to explore neighboring solutions from a
given input solution. One such operator Φop could be to take a queen from
column i and move it to row j. This action transforms the current board
configuration into a neighboring configuration. All feasible transformations for
i, j ∈ {1, 2, ..., N} define the neighborhood, blue transformations in Figure 3.1.
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................................. 3.2. Improving heuristics

Figure 3.1: N-queens problem

The next important part is that the improving heuristic selects the improved
neighbor ximpr ∈ Nx

op with a better cost or returns the input tour if no better
tours exist in the neighborhood. Based on [31] [32], we introduce the Local
Search Procedure (LSP), see Algorithm 2, with two improvement types IT
that define the deterministic criteria for selecting a better neighbor as the
output of the improving heuristic:. Best (Hill Climbing): Selects the best neighbor from the neighborhood.. First: Chooses the first obtained neighbor that is superior to the input

tour

The knowledge of all possible operator parameters Uop allows us to define the
LSP. The Iterative Local Search (ILS), described in Algorithm 3, extends the
local search. It iteratively calls the local search procedure for the improved
solutions as the input ones until no better solution is found or the stopping
criterion is met. The drawback is that it can get stuck in the local minimum.

Figure 3.2: ILS: no better neighbour for the final solution xmost
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3. Solution Approach ..................................
Algorithm 2: Local Search Procedure (LSP)

Input: Input tour x = (x0, ..., xn).
Local search operator Φop

Parameters : Cost function T exp(x),
Improvement type IT ∈ {Best, F irst}
Output: Improved path ximpr

1 ximpr ← x
2 for α ∈ Uop do
3 xneigh ← Φop(x, α)
4 if T exp(xneigh) < T exp(ximpr) then
5 ximpr ← xneigh

6 if IT = First then
7 break

8 return ximpr

Algorithm 3: Iterative Local Search (ILS)

Input: Input route x = (x0, ..., xn).
Local search operator Φop

Output: Most improved tour xmost.
1 ximpr, xmost ← x
2 i = 0
3 repeat
4 xmost ← ximpr

5 ximpr ← LSP(xmost, Φop)
6 i← i + 1
7 until ximpr ̸= xmost

8 return xmost

3.2.2 Basic Operators

For the GSP with order-dependent weights, we employ two local search
operators that allow the generation of the different neighborhoods for the
input tour. Using them, we define two basic LSPs based on Algorithm 2.

Insert

This operator is inspired as the extension of the swap operator described
in [13]. The Insert operator can be described as follows: “Remove the i-th
vertex from the route x and insert it at position j”.

18



................................. 3.2. Improving heuristics

Figure 3.3: Application of the Insert operator

Formally, given an input tour represented by a sequence of cities x =
(x0, x1, ..., xi, ..., xj , ..., xn). All possible Insert operator parameters are Uins =
((i, j) : i ≠ j, (i, j) ∈ N2

≤n). Then, for the two accepted parameters (i, j), the
application of the Insert operator results in a new tour

x′ = Φins(x, (i, j)) = (x0, x1, ..., xi−1, xi+1, ..., xj , xi, xj+1, ..., xn) (3.11)

The application of the Insert operator is shown in Figure [3.3]: sub-sequence
(xi−1, xi, xi+1) and the edge (xj , xj+1) are removed from the tour and replaced
by the new sub-sequence (xi−1, xi+1) and the edge (xj , xi, xj+1). The number
of unique neighbors of the Insert operator is defined: remove the element
from one of the n positions and place it in one of n− 1 positions minus n− 1
same sequences :

|Nx
ins| = n(n− 1)− (n− 1) = (n− 1)2 (3.12)

2-Opt

Generally, the k-Opt operator is a local search technique that involves re-
moving k edges from the input tour and replacing them with k new edges
so that the orientation of the path is preserved [33]. Our work considers a
2-Opt operator that removes exactly 2 non-adjacent edges and adds 2 new
edges in the tour.

Figure 3.4: Application of the 2-Opt operator

For the input sequence of vertices x = (x0, x1, ..., xi, ..., xj , ..., xn) we define
the 2-Opt operator parameters as U2opt = ((i, j) : j − i > 1, (i, j) ∈ N2

≤n).
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3. Solution Approach ..................................
Then by application of 2-Opt operator for parameters (xi, xj) we get a new
tour

x′ = Φ2opt(x, (i, j) = (x0, x1, ..., xi, xj , xj−1, ..., xi+1, xj+1, ..., xn) (3.13)

In Figure [3.4], we observe that two edges (xi, xi+1) and (xj , xj+1) are removed
from the path and replaced by edges (xi, xj) and (xi+1, xj+1), respectively.
This replacement is necessary to maintain the path’s orientation. There are
no other feasible ways to reconnect the edges while preserving the path’s
direction. Furthermore, the 2-Opt operator can be conceptualized as reversing
the sub-sequence (xi+1, . . . , xj) within the input tour x. For the index i we
can reverse n− i sub-sequences after:

|N2opt| =
n−1∑
i=1

n− i = n2 − n

2 (3.14)

3.2.3 Swap of two consecutive vertices

The drawback of Algorithm 2 is that it requires calculating the cost T exp

from Equation 2.15 for every neighbor x ∈ Nx
op, meaning we need to iterate

over the tour to compute the weight of each vertex and consequentially the
path cost, which takes O(n). This slows down the algorithm because such
calculations need to be performed |Nx

op| times to evaluate every neighbor,
which leads to the overall complexity of O(n · |Nx

op|). In this section, we
propose reducing the cost computation of the Insert and 2-Opt operators
using the swap operator, which employs the cost calculation of a neighbor in
a constant time.

Operator Definition

We define the swap of two consecutive vertices as “Take the i-th vertex in the
tour and swap it with the consecutive neighbor, vertex at the position i+1.”.
The possible swap operator parameters are Uins = ((i) : (xi) ∈ N≤n−1). For
given a sequence x = (x0, x1, ..., xi, xi+1, ..., xn) the result tour is

x′ = Φswap(x, (xi)) = (x0, x1, ..., xi+1, xi, ..., xn) (3.15)

The swap operator is illustrated in Figure 3.5. The partition of path
(xi−1, xi, xi+1, xi+2) is removed from the path and replaced with the new
partition (xi−1, xi+1, xi, xi+2). The operator’s neighborhood size is

|Nx
swap| = n− 1 (3.16)
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Figure 3.5: Application of the swap operator

Weight Modification

Now, let’s examine the weight adjustments when we execute a swap between
two consecutive vertices, considering a sequence x = (x0, x1, ..., xi, xi+1, ..., xn)
and the new swapped sequence x′ = Φswap(x, xi) illustrated in Figure 3.6.

(a) : Distribution of visibility regions

(b) : Areas contributing to the weights
in the initial sequence

(c) : Areas contributing to the weights
after the swap of vertices xi, xi+1

Figure 3.6: Illustration of weights modification for the swap operator

We will assume that Wunc
i−1 (x) denotes the uncovered environment after

visiting i−1 vertices over the path x. The area that contributes to the weight
of vertex xi over path x is denotedWi. Additionally, we’ll relax on computing
the relative weight, defined in Equation (2.13), and consider the absolute
weight over the path x obtained by vertex xi, denoted as wi = a(Wi). Since
the environment’s total area remains constant, we can omit it for simplicity
of notation.
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3. Solution Approach ..................................
Equation (2.12) shows that the uncovered area depends on the visited vertices.
This implies that the uncovered area before and after swapped vertices remains
the same for both paths

Wunc
i−1 (x) =Wunc

i−1 (x′) (3.17)
Wunc

i+1 (x) = (Wunc
i−1 (x) \ Ri) \ Ri+1 = (Wunc

i−1 (x′) \ Ri+1) \ Ri =Wunc
i+1 (x′)

(3.18)

When two clip operations are performed in a different order, the resulting
uncovered area, denoted as Wunc

i+1 (x) and equivalent to Wunc
i+1 (x′), remains

unaffected. This is illustrated in Figure 3.7.

Figure 3.7: Update of uncovered environment for two sequential clips
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................................. 3.2. Improving heuristics

This allows us to localize problem to the visibility regions Ri,Ri+1 and
the uncovered area Wunc

i−1 ≡ Wunc
i−1 (x). For clarity, we’ll employ the following

designations depicted in Figure 3.8:.Rint
i =Wunc

i−1 ∩Ri ∩Ri+1 - intersection of uncovered environment and
visibility regions..Rpure

i = Wunc
i−1 ∩ Ri \ Rint

i - pure intersection of region Ri with the
uncovered environment without intersection with region Ri+1..Rpure

i+1 =Wunc
i−1 ∩Ri+1 \ Rint

i+1 - pure intersection for region Ri+1

Figure 3.8: Illustration of used notations

Also, we consider for the path x the vector of precomputed newly covered
areas that contribute to the weight of the vertex xi, W = [W1, ...,Wn] which
can be precomputed in O(n). All polygon operations are considered to be
constant. Then for the path x the respective weights are

wi = a(Wi) = a(Rpure
i ∪Rint

i ) (3.19)
wi+1 = a(Wi+1) = a(Rpure

i+1 ) (3.20)

Due to Rpure
i ∩Rint

i = ∅ the (3.19) can be rewritten as the sum of absolute
areas

wi = a(Rpure
i ) + a(Rint

i ) (3.21)

For the new sequence x′ the weights would be

w′
i = a(W ′

i) = a(Rpure
i ) (3.22)

w′
i+1 = a(W ′

i+1) = a(Rpure
i+1 ) + a(Rint

i ) (3.23)
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3. Solution Approach ..................................
Based on these equations, we can provide the update rule for the respective
areas

W ′
i =Wi \ Rint

i (3.24)
W ′

i+1 =Wi+1 ∪Rint
i (3.25)

Let’s denote Λw ≡ a(Rint
i ). Then, the weights update would be

w′
i = wi − Λw (3.26)

w′
i+1 = wi + Λw (3.27)

From the previous equations, we can see that

w′
i + w′

i+1 = wi + wi+1 (3.28)

To update the weight, we need information about the intersection Rint
i . In

practice, it has been shown that the accuracy of computing this area is
compromised by the imprecise nature of polygonal operations, resulting in
additional errors in determining its value. Therefore, it’s more practical to
compute it dynamically using the constant areas of visibility regions. To
facilitate this, we introduce another globally precomputed parameter, the
set of pair regions intersections Rint

ij = {Ri ∩ Rj : i ̸= j}, which can be
precomputed in O(n2) time. Using this parameter, the area Rint

i can be
obtained for the path x as follows:

Rint
i =Wi ∩Rint

ij (3.29)

To summarize, the weights can be updated in constant time, and their update
depends on the area Rint

i and its numerical value Λw. For this purpose,
we require the constant global precomputed parameter Rint

ij and the path
parameter W, which should also be updated to facilitate further swaps on
the new route x′.

Cost Difference

To understand how the costs of two paths are related, given that we know
how the respective weights of paths x and x′ can be updated, we aim to find
the cost difference between them, assuming that the cost of the current path
is already computed. We follow the same derivation process as in the paper
[13], where this difference was derived for GSP with static weights. For this
purpose, we define the cost difference between two tours obtained with a
single swap as:

∆swap(x, i) = T exp(Φswap(x, i))− T exp(x) = c(x′)− c(x) (3.30)

We also denote d(xi, xj) ≡ di,j . Then, the path cost from Equation (2.15),
which defines how the i-th weight contributes to the path from the source,
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can be rewritten as which weights contribute to the i-th edge over the entire
path

c(x) =
n∑

i=1
wi

i∑
j=1

di−1,i =
n∑

i=1
di−1,iγ(i) (3.31)

where
γ(i) =

n∑
k=i

wi (3.32)

is the sum of weights starting from vertex i on the path associated with the
edge di−1,i.The swap operator involves removing the three edges (xi−1, xi),
(xi, xi+1), (xi+1, xi+2) and replacing them with (xi−1, xi+1), (xi+1xi), (xi, xi+2),
with only the weights wi and wi+1 being altered. Therefore, the tour cost
before the swap can be calculated as follows:

c(x) = σ1 + ω1 + ω2 + ω3 + σ2 (3.33)

with the terms

σ1 =
i−1∑
k=1

dk−1,kγ(k) (3.34)

ω1 = di−1,i γ(i) (3.35)
ω2 = di,i+1 γ(i + 1) (3.36)
ω3 = di+1,i+2 γ(i + 2) (3.37)

σ2 =
n∑

k=i+3
dk−1,k γ(k) (3.38)

The resulting route cost is

c(x′) = σ1 + ω′
1 + ω′

2 + ω′
3 + σ2 (3.39)

Each term in this expression can be further defined based on the Equations
(3.26), (3.27), (3.36):

ω′
1 = di−1,i+1 (w′

i+1 + w′
i + γ(i + 2)) = γ(i) di−1,i+1 (3.40)

ω′
2 = di+1,i(w′

i + γ(i + 2)) = di,i+1(wi − Λw − wi+1) + ω2 (3.41)
ω′

3 = γ(i + 2) di,i+2 (3.42)

Then, the cost improvement after the swap:

∆swap(x, i) = Λ1γ(i) + β + Λ2γ(i + 2) (3.43)

with the coefficients

Λ1 = di−1,i+1 − di−1,i (3.44)
β = di+1,i(wi − Λw − wi+1) (3.45)
Λ2 = di,i+2 − di+1,i+2 (3.46)
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3. Solution Approach ..................................
The special case is a swap of the last two vertices: xi+1 = xn =⇒ Λ2 = 0.
All required coefficients from the equation are computed in constant time
and allow to obtain the cost of the new path

T exp(x′) = T exp(x) + ∆swap(x, i) (3.47)

We require precomputed γ(i) values for all i in the range [0, n− 1] to find the
cost difference in constant time. For this purpose, we introduce another path
parameter: the vector of cumulative weight sums from vertex xi, denoted as
Γ = [γ0, ..., γn−1], where γi ≡ γ(i). It can be precomputed in O(n) time. To
facilitate further swaps on the path x′, this parameter should be updated as
follows:

γ′
i = γi − wi+1 (3.48)

γ′
i+1 = γi+1 + wi + Λw (3.49)

This approach enables us to perform the cost update after swapping neigh-
boring vertices in constant time.

Algorithm

For the path x, we introduce a set of parameters X = (T exp, W, Γ), which we
need to store and update to perform swaps in constant time. We present the
precomputation process in Algorithm 4. The variables Texp, δ, and Sw (line 2)
represent the expected cost, time of travel from the starting vertex, and the
sum of weights obtained on the path, respectively. Then, the iteration over
the input tour x is performed, where these variables are updated based on
newly obtained weight and distance from the previous vertex to the current.
The area contributing to the weight (line 8) is obtained in every iteration,
and the vertex visibility region is clipped off from the uncovered environment
(line 9). The second for loop represents the calculation of the cumulative
weight sum from the vertex where we utilize the already computed weight
sum Sw (line 17). The swap procedure based on precomputed parameters is
presented in Algorithm 5 and based on previously derived equations.

The key advantage is that the parameters of the next sequence obtained
with the swap are derived from the swap procedure, eliminating the need for
recomputation. For instance, we apply the swap operator k times using the
recurrent form:

x(k) = Φ(k)
swap(x) (3.50)

A naive implementation would require recomputing the expected cost every
time we generate the next neighbor, resulting in a O(nk) complexity. However,
the new approach reduces the complexity to O(n + k) because the swap
procedure allows us to obtain the cost of the new path in constant time,
requiring only one precomputation for the initial sequence. This approach
yields significantly faster computations, particularly in cases where k ≫ n.
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Algorithm 4: Precompute Path Parameters (PrecomputeParameters)

Input: Tour x = (x0, ..., xn).
Parameters : Visible environment W,
Time of travel δi,j between vertices xi, xj

Output: Path parameters X .
1 W, Γ← []
2 T exp, δ, Sw ← 0
3 Wunc ←W
4 for i = 0 to N do
5 t← 0
6 if i ̸= 0 then
7 t← δi−1,i

8 Wi ← Ri ∩Wunc

9 W unc ←W unc \ Ri

10 W←W⊕Wi

11 wi ← a(Wi)
a(W)

12 T exp ← δ · wi

13 Sw ← Sw + wi

14 δ ← δ + t

15 for i = 0 to N − 1 do
16 γi ← Sw − wi

17 Sw ← Sw − wi

18 Γ← Γ⊕ γi

19 return (T exp, W, Γ)

Algorithm 5: Swap Procedure (PerformSwap)

Input: Index of vertex to swap i, tour x, path parameters
X = (T exp, Γ, W).

Output: Improved path ximpr.
1 Wi,Wi+1 ←Wi,i+1
2 Compute Λw,Rint

i using Equation 3.29
3 γi, γi+2 ← Γi,i+2
4 Calculate ∆swap based on Equation (3.43) and coefficients from

Equations (3.44), (3.46), (3.46)
5 Update the path parameters X based on Equations (3.47) (3.24),

(3.25) (3.48),(3.49)
6 Swap elements xi, xi+1 in the tour x
7 return x,X
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3. Solution Approach ..................................
State-Space

We can generate all possible sequence permutations by recurrently swapping
two consecutive vertices from Equation (3.50). The provided Figure 3.9
illustrates the state space of all paths H, i.e., permutations for the sequence
xinit = (0, 1, 2, 3, 4) and starting vertex 0.

Figure 3.9: Swap state-space for n = 4

We can conceptualize the state-space as the graph G = (Vs, Es, xinit), where
each permutation x ∈ H and x ∈ Vs is a node in a directed graph, with the
initial sequence serving as the root. Traversing along edges Es, representing
the swaps to perform, allows us to reach neighboring sequences. The distance
between sequences, denoted by h(xinit, x), xneigh ∈ Vs, reflects the depth of
the graph and number of swaps to perform. For example, between the initial
sequence and its reversed counterpart, the graph’s depth is 6, indicating the
necessity of 6 swaps to achieve this transformation. As the size of the initial
sequence increases, the corresponding state space also expands.
This implies that we can determine the expected cost and other parameters
of the neighbors of any node in the graph in h(xinit, x) time. Additionally,
since the entire state space can be generated from the initial sequence, and all
the neighborhoods obtained by other operators lie within this state space, we
have the potential to explore all sequences generated by other operators. This
can be achieved by performing predefined recurrent swaps of two consecutive
vertices starting from the initial one.
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3.2.4 Proposed local search procedures

The swap state-space can also be defined for a specific depth h as Nh
swap =

{Φ(k)
swap(x, (i)) : i ∈ N≤n, k ∈ N≤h}. For the maximal depth hmax, Nhmax

swap = H.
In simpler terms, these neighborhoods represent the unique paths starting
from the initial sequence x and extending to a depth h. As we move along
these paths, we generate the permutations.
Suppose an operator op defines the neighborhood as Nx

op. Our goal is to find
a swap neighborhood Nh

swap ≡ Nop
swap such that Nx

op ⊆ Nop
swap. We aim to find

tours obtained by the swap that include all permutations the operator op
can achieve. This does not mean that all neighbors in Nop

swap are also in the
neighborhood of the operator Nx

op, which implies |Nop
swap| ≥ |Nx

op|.
If we understand how to generate the neighborhood for the operator op using
swaps, we can propose a local search procedure that determines the expected
cost of each neighbor from path parameters X on the fly, given that the
swap of two neighboring vertices has constant complexity. The maximum
computational speedup is achieved when |Nop

swap| = |Nx
op|.

Swap-Based Insert

For the Insert operator neighborhood, the objective is to develop a modifi-
cation mechanism that explores the entire Insert neighborhood. The green
nodes on the Figure [3.10] represent the permutations within the Insert
neighborhood

Figure 3.10: Illustration of the Insert neighborhood in state-space
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3. Solution Approach ..................................
We propose the following approach for the sequence xinit, see Figure [3.11]:. Swap the initial sequence pairs xfrw = xj , xbckw = xj+1,∀j = 1, ..., n− 1.

Obtain a new sequence x′ = Φswap(x, j) (green nodes).. Bubble element xfrw in the forward direction to the last position in the
sequence x′ using swaps (grey nodes).. Bubble xbckw in the backward direction to the first position in the
sequence x′. (purple nodes).

Figure 3.11: Generation of the Insert neighborhood

The total number of initial swaps n− 1 and the number of further bubblings
n− 1 define the neighborhood size of the Swap-Based Insert operator

|N ins
swap| = (n− 1)2 (3.51)

This allows us to achieve the complexity of LSP, see Algorithm 6 of O(n2)
representing a substantial reduction compared to the naive approach of O(n3).

30



................................. 3.2. Improving heuristics

Algorithm 6: LSP Swap-Based Insert

Input: Input path x = (x0, x1, ...xn)
Parameters : Improvement type IT ∈ {Best, F irst}
Output: Improved path ximpr

1 x,X ← PrecomputeParameters(x)
2 ximpr,X impr ← x,X
3 for i = 1 to N − 1 do
4 // Initial swap
5 xinit,X init ← PerformSwap(i, x,X )
6 if cost(X init) < cost(X impr) then
7 ximpr,X impr ← xinit,X init

8 if IT = First then
9 return ximpr

10 xfrw,X frw ← xinit,X init

11 // Do forward swaps
12 for j = i + 1 to N − 1 do
13 xneigh,X neigh ← PerformSwap(j, xfrw,X frw)
14 if cost(X neigh) < cost(X impr) then
15 ximpr,X impr ← xneigh,X neigh

16 if IT = First then
17 return ximpr

18 xfrw,X frw ← xneigh,X neigh

19 xbckw,X bckw ← xinit,X init

20 // Do backward swaps
21 for j = i− 2 to 1 with step −1 do
22 xneigh,X neigh ← PerformSwap(j, xbckw,X bckw)
23 if cost(X neigh) < cost(X impr) then
24 ximpr,X impr ← xneigh,X neigh

25 if IT = First then
26 return ximpr

27 xbckw,X bckw ← xneigh,X neigh

28 return ximpr

Swap-Based 2-Opt

Figure 3.12a shows the distribution of 2-Opt permutations in the swap state-
space. We can not directly reach the target 2-Opt neighbors (green), meaning
we need to perform the intermediate steps and obtain the sequences not part
of the 2-Opt neighborhood (grey).
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3. Solution Approach ..................................

(a) : 2-Opt operator neighborhood in
the state-space

(b) : Different depths of the 2-Opt oper-
ator

Figure 3.12: Swap-Based 2-Opt

For the initial sequence x = (x0, xi, ...xj , ..., xn), a single application of
the 2-Opt operator reverses the sub-sequence (xi+1, ..., xj). For the position
i, the maximal length of such sub-sequence is d(i) = n − i. To reverse a
sub-sequence of length d, we need to perform a total of ∑d(i)

j=1 j swaps: the
first element goes to the end with d(i) swaps, the second with d(i)− 1 swaps,
and so on. The maximal length of the sub-sequence we can reverse for the
whole initial sequence is when i = 1, and it defines the maximal depth of the
2-Opt operator obtained with swaps.

h2opt
max = d(1) =

n∑
j=1

j = n(n− 1)
2 (3.52)

The intermediate permutations occur when we reverse sub-sequences. The
number of neighbors obtained using Swap-Based 2-Opt is defined by the
number of reversals needed for each position from 1 to n− 1.

|N2opt
swap| =

n−1∑
i=1

n−i∑
j=1

j =
n−1∑
j=1

j · (n− j) = n3 − n

6 (3.53)

To provide a visual illustration of how the complexity of the Swap-Based
2-Opt operator grows, we draw the graphs of some complexity functions that
grow asymptotically close 3.13.
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Figure 3.13: Illustration of 2-Opt complexity

2-Opt for the small instances of less than 20 nodes grows asymptotically
the same as n2 · log(n). For the bigger instances of less than 175 nodes, it
behaves similarly to n2 · log2(n). Although the upper bound asymptotical
complexity remains the same O(n3) the number of operations required to
evaluate all neighbors of the swap-based 2-Opt is less than in basic 2-Opt
n · |N2opt

swap| < |Nx
2opt|

The proposed LSP is described in Algorithm 7. We also introduce an addi-
tional parameter, the 2-Opt depth, which can range from 1 to h2opt

max. This
parameter reduces the maximal path length in the state space. This pa-
rameter is set to h2opt

max by default. From Figure 3.12, we observe that the
intermediate swaps also increase as the depth of 2-Opt increases. In other
words, obtaining a 2-Opt neighbor distant from the initial sequence requires
more additional swaps. Further, we conducted the experiments to identify
the optimal depth of 2-Opt that reduces the number of swap operations.
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Algorithm 7: Swap-Based 2-Opt

Input: Input path x = (x0, x1, ...xn)
Parameters : Maximal depth 2-Opt depth hmax

,improvement type IT ∈ {Best, F irst}
Output: Improved path ximpr

1 x,X ← PrecomputeParameters(x)
2 ximpr,X impr ← x,X
3 // Sub-sequence to reverse
4 for i = 1 to N − 1 do
5 xcur,X cur ← x,X
6 hcur ← 0
7 // Reverse distance
8 for d = i + 1 to N do
9 // Backward swaps

10 for j = d− 1 to j ≥ i with step −1 do
11 if hcur > hmax then
12 break
13 xneigh,X neigh ← PerformSwap(j, xcur,X cur)
14 if cost(X neigh) < cost(X impr) then
15 ximpr,X impr ← xneigh,X neigh

16 if IT = First then
17 return ximpr

18 xcur,X cur ← xneigh,X neigh

19 hcur ← hcur + 1

20 return ximpr

Balas-Simonetti Neighbourhood

The following is an improving heuristic that doesn’t relate to swap-based
procedures and was inspired by the Balas-Simonetti neighborhood first pro-
posed for solving the TSP with precedence constraints[34]. According to
[35], for a given integer k ≥ 2, the Balas-Simonetti (BS) neighborhood Nx

BSk

allows the restricted permutation of the vertices relative to a given path,
i.e., it permits the movement of any vertex up to k positions forward or
backward, ensuring that precedence is maintained. More precisely, for a given
tour x = (x0, x1, . . . , xn), another tour x′ = (x0, xπ(1), . . . , xπ(n)), defined by
permutation π, is in the neighborhood Nx

BSk if

i + k ≤ j =⇒ π(i) < π(j), ∀i, j ∈ {1, ..., n} (3.54)

The larger value of k offers more flexibility, allowing the neighborhoods to be
nested.
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Figure 3.14: BS2 neighbourhood for the initial path (x0, x1, x2, x3, x4, x5)

Thus far, the best-improved neighbor for Insert and 2-Opt has been achieved
through sequential evaluation of all neighbors. However, for the Balas-
Simonetti neighborhood, this approach is not ineffective because the neighbor-
hood size is exponential, Ω( k−1

e )n−1 [36]. Consequently, the optimization
approach is used, which is based on finding the shortest path in the auxiliary
graph Gk.
Figure 3.14 illustrates the auxiliary graph Gk for k = 2, where each node is de-
fined by the triple (l, i, π(i)): layer, position, and permutation of the position.
For example, traversing along the green nodes results in the valid BS2 permu-
tation (x0, x1, x2, x4, x3, x5). Building such a graph takes O(n k(k + 1)2k−2)
and finding the shortest path in the graph for the fixed k is linear to the tour
length.
The implementation of the auxiliary graph for k = 2, 3, 4 is provided in the
article [36]. Based on this paper, we construct three auxiliary graphs for
k = 2, 3, 4 respectively and consider the construction process independent
of the respective local search procedure BSk. In LSP of BSk, we call the
Dijkstra algorithm that uses the criterion from Equation 3.1 to take the
next minimum vertex. The found shortest path is considered to be the
best-improved neighbor. The procedure BSk is part of the iterative local
search.

35



3. Solution Approach ..................................
3.3 Metaheuristics

The drawback of improving heuristics is that they often get stuck in local
minima, failing to reach the global optimal solution. Metaheuristics are
typically proposed to address this limitation. One of the most popular ap-
proaches is Variable Neighborhood Search (VNS), which focuses on improving
a single solution rather than generating multiple ones and selecting the best
among them. The core concept of VNS lies in efficiently exploring different
neighborhood structures to escape local minima and aim for global optimality.
VNS recognizes that local minima in one neighborhood may not hold in
others, yet they tend to be relatively close across various neighborhoods [31].
VNS effectively balances exploration and exploitation to converge toward
good-quality solutions by iteratively refining solutions and prioritizing global
optimization.

3.3.1 Sequential Variable Neighbourhood Descent

Variable Neighborhood Descent (VND) is a version of VNS explores several
neighborhood structures deterministically. Its success is based on the fact that
different neighborhood structures usually contain distinct local minima [37].
Therefore, systematically transitioning between various neighborhood struc-
tures helps prevent entrapment in local optima. There are various versions
of VND, but we will focus on a basic sequential approach (SVND) denoted
in Algorithm 8, which can be considered a solid starting point for further
extension. In this method, several neighborhood structures are ordered in a
list and examined one after another according to the established order.
Let N = {Φ1, ..., Φlmax}be a list of local search procedures defining the oper-
ators’ neighborhoods. Then, the neighborhoods are explored iteratively, one
after another, and the order of their examination is determined by the order
of operators in the list. To facilitate this, we introduce the Neighbourhood
Change procedure, outlined in Algorithm 9. Its purpose is to guide the vari-
able neighborhood search by determining the next neighborhood to explore
and deciding whether to accept a solution as a new incumbent solution. When
an improvement occurs in the incumbent solution within a neighborhood
structure, the SVND procedure resumes searching in the first neighborhood
structure (according to the defined order) of the new incumbent solution. The
process terminates if the incumbent solution cannot be improved concerning
any of the maximum neighborhood structures.
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Algorithm 8: Sequential Variable Neighbourhood Search (SVND)

Input: Initial solution xinit

List of local search procedures N = {Φ1, ..., Φlmax}
Parameters : Time limit tmax

Output: The most optimized path xmost

1 xmost ← xinit

2 l← 1
3 t← CpuTime()
4 repeat
5 ximpr ← LocalSearch(xmost, Φl)
6 l, xmost ← NeighbourhoodChange(ximpr, xmost, l)
7 t← t− CpuTime()
8 until (l < lmax) and (t < tmax)

Algorithm 9: Neighbourhood change (NeighbourhoodChange)

Input: Improved solution within the current neighborhood ximpr.
The most optimized path xmost.
Current neighborhood index l

Output: Next neighbourhood index kto explore .
The most optimized path xmost

1 if xmost ̸= ximpr then
2 k ← 1
3 xmost ← ximpr

4 else
5 k ← l + 1
6 return k, xmost

3.3.2 General Variable Neighbourhood Search

For a more sophisticated approach capable of attaining the global minimum,
we utilized the General Variable Neighborhood Search (GVNS) represented in
Algorithm 10 due to its reported effectiveness in various applications [38], [39].
In this metaheuristics, the iterated local search is substituted with SVND,
and stochastic perturbations are introduced to enable the discovery of global
minimum solutions.
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Algorithm 10: General Variable Neighbourhood Search (GVNS)

Input: Initial solution xinit.
List of local search procedures N = {Φ1, ..., Φlmax}. Maximal
perturbation strength kmax

Parameters : Time limit tmax.
Output: The most optimized path xmost

1 xmost ← xinit

2 k ← 1
3 t← CpuTime()
4 repeat
5 xpert ← Perturbate(xmost, k)
6 ximpr ← SVND(xpert,N )
7 k, xmost ← NeighbourhoodChange(ximpr, xmost, k)
8 t← t− CpuTime()
9 until (k < kmax) and (t < tmax)

Perturbation

The purpose of perturbation is to diversify the search and prevent the local
search algorithm from getting stuck in the local optimum. By introducing
perturbation, we aim to explore various regions of the solution space. While
this may lead to obtaining a worse solution initially, the subsequent local
search phase enables exploration of the neighborhood around this solution,
potentially leading to an improved outcome.

Figure 3.15: Perturbation strength
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The classical perturbation operator is the double-bridge [40], a variation
of the 4-opt operator. While the classical 4-opt operator removes four edges
from the current tour and has many ways of adding new edges, the double-
bridge employs a unique way of tour construction. Let’s assume we have
a tour x = (x0, x1, ..., xn). Then, we select the 4 different breakpoints
b1 < b2 < b3 < b4 and remove the edges between bi and its successor, denoted
as scs(bi), creating the segments s = (A, B, C, D, E) where each segment is
the nonempty subset of vertices. The classic double-bridge is defined for the
cyclic Hamiltonian path, so the segment E, A is considered a single segment
with the vertex x0. But in our problem, the path is not cyclic, so we assume
that the edge xn, x0 is absent. The double bridge connects the segments s in
such a way that the orientation of the path remains and creates a new path
xpert = (A, D, C, B, E), which illustrated in Figure 3.16.

Figure 3.16: Double-bridge

The double bridge is advantageous [41] because it removes just four arcs from
a tour without employing reverse operations, implying that the new path is
close to the original one. Additionally, its modifications are difficult for other
operators to reverse, minimizing the likelihood of reverting to the previously
perturbed local minimum.
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Algorithm 11: k-Double-bridge (k-DoubleBridge)

Input: Sequence of vertices x = (x0, ...xn)
Perturbation strength k

Output: k-perturbated sequence of vertices xpert = (x0, ...xn)
1 xpert ← x
2 for m = 0 to k do
3 Select randomly b1, b2, b3, b4 such that 0 ≤ b1 < b2 < b3 < b4 ≤ n

4 arcs← {{0, b1}, {b1 + 1, b2}, {b2 + 1, b3}, {b3 + 1, b4}, {b4 + 1, n}}
5 xorig ← xpert

6 xorig ← ()
7 // Append the path segments
8 for arc in arcs do
9 xpert ← xpert ⊕ xorig[arc]

10 return xpert

We propose the extension based on the k-double bridge approach, considered
one of the most effective solution mutation operators [33] and detailed in
Algorithm 11. It involves iteratively applying the double bridge operation
on the tour formed by the previous application of the double bridge. The
value of k determines the strength of perturbation. Increasing k leads to
more iterations of the double bridge operation, causing the path to deviate
further from the original tour, illustrated in Figure 3.15.
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Chapter 4
Experimental evaluation

This chapter provides the experimental assessment of the proposed methods.
The first section describes the setup used for our experiments. The second
section identifies the best local search procedures for building the metaheuris-
tics described. The final section compares the proposed metaheuristics with
the reference method.

4.1 Setup

4.1.1 Software & Hardware

The primary codebase is written in C++17 and undergoes thorough test-
ing within the Visis-Planner environment 1. This environment utilizes 2D
graphics libraries Clipper 2, Triangle 3, and Robust geometric predicates 4.
To conduct experiments, we employed Python scripts to execute the C++
main program with different input arguments and gathered data about the
performance of our algorithms. The key metrics include time, measured
using the high-resolution clock integrated into C++, and cost, computed
according to the equation (2.15). The first two sections, aiming to construct
our metaheuristics, were measured on the Lenovo Legion 5 running on Ubuntu
23.04 with hardware AMD Ryzen 7, 3.8 GHz, and 16 GB of RAM. The last
section, aiming to compare the proposed methods with the reference one, was
measured on the laboratory PC running on Debian 5.0 with CPU Intel Core
i7-7700, 3.6 GHz, and 32 GB of RAM.

4.1.2 Maps overview

We will use three maps illustrated in Figure 4.1 for our experiments. We
chose them because they are among the most challenging for the weight
approximation for the reference method with static weights [12].

1https://gitlab.ciirc.cvut.cz/mission-planning/visis-planner. The planner
was developed by the team Intelligent Mobile Robotics, CIIRC, CTU in Prague.

2https://angusj.com/clipper2/Docs/Overview.htm, polygon clipping operations,
and related geometric algorithms.

3https://www.cs.cmu.edu/~quake/triangle.html, triangular mesh generation.
4https://github.com/dengwirda/robust-predicate, for geometry primitives.
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(a) : potholes, [20 x 20] (b) : jari-huge, [21 x 23] (c) : large, [40 x 40]

Figure 4.1: Maps used for measurements and their sizes

The generation of respective visibility regions and their distance relation-
ships are based on the dual sampling described in [29]. In our experiment,
we will work with the number of vertices in the graph, which defines the
problem size. However, we cannot directly generate a specific number of
vertices for the map because the number of vertices is inversely dependent on
the chosen visibility radius, which can potentially be infinite. For illustration,
we generated the number of vertices for the visibility radius ranging from 2
to 12 with a step size of 0.5 for all maps, as provided in Figure 4.2. Beyond a
certain visibility radius, we cannot generate fewer vertices, establishing the
minimal number of nodes we can use for our maps: 15 for potholes, 35 for
jari-huge, and 50 for large, respectively. We should mention that increasing
the precision in the visibility radius can lead to rounding errors in region
generations. In most of our experiments, we will assume that the visibility
radius has been predetermined and focus solely on the number of nodes within
this radius.

Figure 4.2: Nodes dependency on visibility radius
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4.2 Local Search Procedures

These experiments aim to select the most effective local search procedures
to develop our SVND and GVNS metaheuristics further. We have chosen a
single map potholes and varied the number of nodes from 15 to 50 with a
step size 5. Also, we tested all our local search procedures on the same initial
solutions, which were generated using a randomized greedy algorithm with
the criterion from Equation (3.1) and probabilities p1 = 0.66, p2 = 0.22, p3 =
0.12. For every node count, we created 20 initial solutions. This method
comprehensively evaluates the algorithm’s performance across a spectrum of
input scenarios.

4.2.1 Precomputation complexity

Our local search requires global precomputation, which is not factored into
the time evaluation of local search procedures. We consider the intersection
of polygon areas and the construction of Balas-Simonetti auxiliary graphs as
precomputation processes that need to be executed once for subsequent appli-
cations of their respective local search procedures. Figure 4.3 illustrates that
the precomputation process is swift, typically measured in tens of milliseconds
for small problem sizes. Additionally, we observe minimal variation in the
mean construction time of Balas-Simonetti graphs across different values of
k = 2, 3, 4. It’s important to note that polygon operations may not remain
constant in real-world scenarios. The complexity of polygons can increase
with the number of nodes in the graph, impacting the required time.

Figure 4.3: Real precomputation time
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4.2.2 All operators time

Now, we can focus on comparing all proposed operators. For this experiment,
we will execute one local search procedure with the best improvement with
all our operators and measure the mean time achieved by them

(a) : All operators (b) : Fast operators

Figure 4.4: Single iteration of best improvement

As seen in Figure, 4.4, the basic Insert and 2-Opt operators (basic_insert,
basic_2-opt) exhibit a significant slowdown compared to swap-based counter-
parts (insert, 2opt), validating the soundness of our selected approach. We
choose BS4, swap-based Insert, and 2-Opt among the remaining operators for
further application. We select BS4 because it can potentially lead to more
promising solutions due to its larger neighborhood, and we don’t observe a
significant slowdown for BS4 compared to BS2 and BS3. The swap operator
is not considered separately because it’s already part of the insert operator,
and the insert itself covers the neighborhood of the swap.

4.2.3 Fast operators cost

Next, we run the same experiment with a fully iterated local search with the
best improvement until no improved solution occurs, and we compute the
mean cost for a single node instance. Figure 4.5 shows that our improving
heuristics provide significant cost improvement compared to the initial solution.
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(a) : Initial solution distribution (b) : Iterated local search results

Figure 4.5: Fast operators cost comparison

We can consolidate the findings from Figures 4.5 and 4.4 into Table 4.1,
where the numbers 1, 2, and 3 represent the performance ranking of each
operator in terms of both cost and time. Specifically, 1 indicates the best
performance, while 3 signifies the worst.

Operator Cost Time
Insert 1 1
2-Opt 2 3
BS4 3 2

Table 4.1: Operators ranking

4.3 SVND, GVNS construction

This section focuses on building the SVND and GVNS metaheuristics based
on the selected fast local search procedures. SVND is a subpart of GVNS,
so properly constructing SVND allows us to obtain the desired behavior
of GVNS. For these experiments, we considered two maps, potholes and
jari-huge, with larger problem sizes of 40, 60, and 80 nodes, respectively. In
the first three experiments, we used 20 initial solutions per node instance
generated using the same randomized greedy approach as in the previous
section.

4.3.1 BS4 impact

The first step is to identify a list of local search procedures that can be utilized
for our SVND. The basic are the Insert and 2-Opt operators and the list
(Insert, 2-Opt), where the Insert operator precedes 2-Opt because it yields
the fastest and most optimized ILS solutions.
In this experiment, we aim to assess the impact of the BS4 operator within
the context of our SVND structure. We denote Insert operator as I, 2-Opt as

45



4. Experimental evaluation ................................
T , and BS4 as B. We will compare our basic SVND structure, consisting of
the operators Insert and 2-Opt (I, T ), with five variations incorporating BS4:
(B, I, T ); (I, B, T ); (I, T, B); (I, T ), B; B, (I, T ). The first three variations
represent different placements of BS4 within the SVND operators list. In the
fourth variation, we execute BS4 once using full ILS on the Best improvement
criterion, followed by the basic (Insert, 2-Opt) SVND. In the fifth variation,
the basic (Insert, 2-Opt) SVND is initially applied, and then ILS is performed
with BS4. Both Insert and 2-Opt operators are evaluated using the best
improvement criterion on the map potholes.

(a) : All measured points

(b) : Mean, standard deviation of cost and time

(c) : Points with minimal cost

Figure 4.6: Impact of BS4 for the different SVND structures
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We found that the BS4 operator improves cost only when positioned before
our Insert and 2-Opt operators. In other arrangements, it didn’t notably
affect the outcome and sometimes even caused a slight slowdown; see Figures
4.6b, 4.6c. Placing BS4 at the beginning resulted in cost improvement and a
noticeable slowdown, especially with 80 nodes.
Initially, BS4 can find better solutions, but convergence takes more time
when followed by the Insert operator. This behavior can be attributed to the
nature of BS4 neighborhoods, as it is constrained by the specific positions on
which the vertex can be placed. In contrast, Insert allows the placement of
any vertex in any position. The value of k for Balas-Simonetti increases the
variability of vertices placements. However, this experiment for BS4 showed
a significant slowdown for only marginal improvement. Hence, we opted to
stick with the basic SVND structure of Insert and 2-Opt.

4.3.2 2-Opt Depth

The next step is to limit the depth of 2-Opt, as excessive neighborhood
exploration may not always yield improvements; it simplifies the routine
without affecting the quality of the solutions [42]. To achieve this, we adjust
the maximum depth percent of 2-Opt, meaning that if 2-Opt exceeds this
depth, it stops searching further. Figure 4.7 shows how the number of explored
neighbors evolves with the increasing depth percentage for a single local search
procedure of 2-Opt with the Best improvement. Both graphs are identical,
confirming the Equation (3.52) that the number of visited neighbors in 2-Opt
stays consistent for the same number of input nodes and the same depth.

For this experiment, we used two maps, potholes and jari-huge, to measure
SVND with different depth percentages using the Best Improvement strategy
for our operators. Setting the depth percentage in SVND to 0 means we only
apply the Insert operator, with no influence from the 2-Opt operator.

Figure 4.7: Exploration of neighbors by 2-Opt relative to depth percent

Based on our measured data in Figure 4.8, we determined that the optimal
depth percentage for 2-Opt is 30 percent of the maximal depth. We observe
no significant cost improvements beyond this depth for SVND. Limiting the
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4. Experimental evaluation ................................
2-Opt depth doesn’t reduce the number of iterations executed by 2-Opt during
SVND but replaces those extra 2-Opt iterations with the less time-consuming
Insert operator. This substitution maintains solution quality while improving
time performance.

(a) : potholes

(b) : jari-huge

Figure 4.8: Measurements of SVND for different 2-Opt depths

4.3.3 Best-first improvement

We’re now examining the improvement criteria we can apply to our local search
procedures within SVND [32]. These procedures can operate under either
the Best or First improvement strategy. To explore this, we’re considering
four pairs of improvements for specific local search operators: (Best, Best),
(First, F irst), (Best, F irst), (First, Best). The first improvement strategy
in each pair pertains to the Insert operator, while the second relates to 2-Opt.
We’ll use these four pairs to run our SVND on the same input instance as in
the previous experiment.
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(a) : potholes

(b) : jari-huge

Figure 4.9: Best-first improvements comparison

Figure 4.9 demonstrates a noticeable slowdown in processing time when
opting for the First improvement strategy for the Insert operator without
yielding significant cost improvements. The most time-optimal criterion for
Insert is the Best improvement strategy, which promotes faster convergence.
With the depth reduced to 30 percent in the previous experiment, we notice
that the Best and First improvements for 2-Opt exhibit similar behavior.
Hence, we can choose between (Best, F irst) and (Best, Best), as they provide
similar cost and time performance. Subsequently, we decided to proceed with
(Best, Best) for further experiments.

4.3.4 SVND initial solution

In our earlier experiments, the initial solution was generated using the greedy
criterion from Equation (3.1). We aim to determine the criterion we will use
to generate both greedy and randomized initial solutions for SVND in the
final experiments. For that, we conducted five runs of SVND using all our
greedy criteria and assessed the overall cost and time performance.
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(a) : potholes

(b) : jari-huge

Figure 4.10: Initial solution cost/time distribution for various criteria

The fact that the initial cost remains consistent across all runs validates
the correctness of our greedy criteria, as there was no deviation observed
in Figure 4.10. After applying SVND, the greedy initial solution based on
the criterion from Equation (3.3) consistently maintained its position among
the best or at the top in cost, denoted in Figure 4.11. Additionally, SVND
demonstrated efficient convergence with this criterion, requiring minimal
time. Consequently, we have opted to continue utilizing the criterion from
Equation (3.3) for our greedy and randomized greedy constructive heuristics.
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(a) : potholes

(b) : jari-huge

Figure 4.11: Cost/time distribution after applying SVND with various greedy
criteria

Next, we attempted to generate randomized greedy solutions based on
the selected greedy criterion. To achieve this, we created 30 randomized
greedy initial solutions using three different probability sets: (0.66, 0.22, 0.12),
(0.8, 0.15, 0.05), and (0.9, 0.05, 0.05). Also, we generated 30 fully random
initial solutions and the deterministic greedy one. Then, we compared all the
solution types after the application of SVND.

From Figure 4.12, the randomized greedy approach, based on the selected
criterion, enables us to obtain better solutions compared to the greedy
one potentially. Furthermore, the solutions obtained through randomized
greedy exhibit less variability than those obtained through full randomization.
However, the choice of probability set is heavily influenced by the map and
the number of nodes. After careful consideration, we have decided to use the
probability set (0.8, 0.15, 0.05) to randomize our greedy solutions. This set
strikes a balance between providing less variability compared to the first set
and not overly reducing it compared to the third set
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(a) : potholes

(b) : jari-huge

Figure 4.12: Cost/time distribution for different probabilities of randomized
greedy after application of SVND
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4.3.5 GVNS perturbation

For the initial solution of our GVNS, we consider the deterministic greedy
one; the randomization is achieved using perturbation, potentially leading to
better solutions. To achieve this, we must select the perturbation strength for
the proposed k-double bridge. We have decided to maintain a perturbation
strength of 5 and evaluate whether this choice results in better solutions. To
assess this, we executed our GVNS algorithm 10 times on each node instance
with different perturbation strengths.

(a) : potholes

(b) : jari-huge

Figure 4.13: Perturbation evaluation

The results in Figure 4.13 confirm that the mean cost decreases with the
growing perturbation strength. Therefore, we’ve decided to continue with a
perturbation strength of 5 and prioritize the cost performance of GVNS over
time.
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4.4 Reference method comparison

In the final experiments, we compare the proposed metaheuristics with the
reference method on all three maps. For each input instance, SVND will be
executed on three types of initial solutions: full random (30 times), greedy
(5 times), and randomized greedy (30 times). Additionally, GVNS with a
perturbation strength of 5 will be run 10 times using the deterministic greedy
as the initial solution. No time or iteration limits are considered for these
experiments. The initial solution time construction is included in the result
time of the method.

The cost comparison is done using the mean and minimum cost gaps. The
cost gap (CG) is defined as the relative improvement of the method’s cost,
cost(m, n) compared to the reference cost(ref, n) over n runs:

CG(n) = 100cost(m, n)− cost(ref, n)
cost(ref, n) [%] (4.1)

For the mean cost gap, we compare the reference method’s mean cost to the
proposed method’s mean cost, evaluating the average improvement. For the
minimum cost gap, we compare the lowest cost obtained by the reference
method to the lowest cost obtained by the proposed method, evaluating the
best results achieved by each method.

4.4.1 Different instances all maps

In this experiment, we repeat the methodology from the previous section, but
this time, we include a wider range of node instances. This includes scenarios
with the minimal number of nodes that can be generated on this map and
instances with a larger number of nodes:. potholes - {15, 35, 50, 70, 90, 110}.. jari-huge - {35, 50, 70, 90, 110}.. large - {50, 70, 90, 110}.
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(a) : potholes

(b) : jari-huge

(c) : large

Figure 4.14: Comparison of SVND and GVNS on all maps across different node
instances: left column shows cost, middle illustrates time, and right is the cut of
the middle
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(a) : Mean

(b) : Min

Figure 4.15: Cost Gaps for different instances on all maps

From the results of the experiment shown in Figure 4.14 and the cost
gaps depicted in Figure 4.15, we observe that our proposed metaheuristics
perform better in terms of cost compared to the reference method for all node
instances. The cost improvement is quite dependent on the map. The mean
CG for potholes ranges from 4-31%, jari-huge from 16-31%, and large from
20-40%. It’s interesting to note that the biggest improvements are achieved
for the minimal number of nodes on each map. The larger intersections of
visibility regions can explain this compared to instances with more nodes.

The minimal (CG) shows that the worst best solutions, compared to the
best solutions of the reference method, are obtained with the greedy SVND:
4% for potholes with 90 nodes, 16% for jari-huge with 70 nodes, and 20%
for large with 90 nodes. This indicates that the deterministic nature of the
initial solution restricts the metaheuristic from obtaining more promising
solutions. At the same time, GVNS achieves the best mean cost gaps, but
the difference in cost gap between randomized and fully random SVND is
about 1-3% across all maps.

For the maximal measured number of 110 nodes, the mean time of GVNS
is 400-500 seconds, highlighting challenges for using this metaheuristic with
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an even larger number of nodes. On the other hand, SVND converges in
about 20-80 seconds for the same 110 nodes, which is also relatively slow
compared to the reference method, which takes 3-5 seconds. However, the
average time for the fully random SVND is 60-70 seconds, higher than the
randomized greedy approach at 30-50 seconds. This can be explained by the
more variable initial solutions, which take more time to converge because
they are far from the local optimum.

Based on these observations, we propose the following ranking of cost and
time performance methods summarized in Table 4.2

Method Cost Time
GVNS 1 4

Full random SVND 2-3 3
Greedy SVND 4 1

Randomized greedy SVND 2-3 2

Table 4.2: Ranking of SVND and GVNS for different instances experiment

4.4.2 Extended visibility radius

The next experiment aims to assess the performance of the proposed methods
for different measurements of visibility regions overlapping. The hypothesis is
that greater overlapping leads to larger weight errors in the reference method.

We selected one visibility radius for each map and generated approximately
60 nodes. Next, we scaled the generated visibility regions with radii ranging
from 0.5 to the size of the map’s diagonal. The distances between the regions
remain unchanged. A radius of 0.5 simulates no overlapping, resulting in
GSP with static weights, see4.16. The map’s diagonal size is the theoretical
visibility limit because increasing the radius beyond this point has no practical
effect, as the map’s borders constrain it. The selected visibility radius for
generation, number of nodes, and chosen visibility limit for each map are
summarized below:. potholes: (2.5, 58, 30).. jari-huge: (3, 60, 30).. large: (6, 62, 60).
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(a) : potholes r = 0.5
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(b) : potholes r = 2.5
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(c) : potholes r = 3
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(d) : jari-huge r = 0.5
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(e) : jari-huge r = 3
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(f) : jari-huge r = 4
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(g) : large r = 0.5
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(h) : large r = 6
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(i) : large r = 7

Figure 4.16: Illustration of visibility regions overlapping for different scaled
visibility radii

We measured the proposed metaheuristics for each scaled visibility radius
using the same initial solutions and their respective number of runs as in the
previous experiment. Due to the imprecision of polygon operations for the
scaled visibility radius, we empirically set a threshold of 10−5 for our local
search procedures. During the local search procedure, if a neighbor with a
better cost is found, we update the current best solution only if the absolute
cost difference |∆cost| between the neighbor and the current best is greater
than the threshold. Otherwise, we will consider them the same solution.
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(a) : potholes

(b) : jari-huge
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(c) : large

Figure 4.17: Cost and time comparison for SVND and GVNS for scaled visibility
radii. The first row of the subfigure shows: the first column - cost, the second
column - cost for the scaled radii near the generated one. The second row of the
subfigure: cut of the time and the time.
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(a) : Mean

(b) : Min

Figure 4.18: Cost gaps for scaled visibility radii

The results of the experiment, shown in Figures 4.17 and 4.18, confirm that
as the scale of visibility regions increases, the Cost Gap (CG) also increases,
and the proposed methods perform better. For the maximal overlapping
scenarios, the CGs converge to the following values: potholes and jari-huge
around 30%, and large about 50%.

Interestingly, on smaller maps, we observe even higher CGs: for potholes
with a scaled visibility radius of 10, the CG is about 40%, and for jari-huge
with a radius of 7, the CG is about 35%. This can be attributed to specific
properties of these maps.

However, it is notable that the Cost Gap is worse compared to the reference
method for non-overlapping regions (radius = 0.5), with a CG of about 0-10%.
Theoretically, the GSP with order-dependent weights should not perform
worse than the GSP with static weights. We propose that this discrepancy
is unrelated to the weights of visibility regions, and the reference method is
inherently stronger for non-overlapping regions because it is more advanced
from the solution approach perspective.
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In the end, we aim to derive the map property that defines overlapping

regions, which sheds light on the performance of GSP with order-dependent
weights. We define the visibility regions overlapping OVR for visibility regions
(R0, ...,Rn) as

OVR = a(
⋃
i ̸=j

Ri ∩Rj \ R0) (4.2)

Figure 4.19: Visibility regions overlapping for different maps

Theoretically, the following coefficient defines the total area of intersecting
parts of regions without including the starting R0, as the starting region’s
weight doesn’t directly contribute to any edge on the path. Figure 4.19 shows
that for the maps jari-huge and large, the overlapping saturates without any
peaks. This can be explained by the fact that the starting region is limited
by some obstacles, preventing it from covering more of the environment. As
the area of other regions expands, the degree of overlapping also increases.
We propose that initially, the obstacles are located at a distance of 4, but
they are not very dense. As the scaling increases, the scaled starting region
can overcome these obstacles and cover more of the environment. Saturation
occurs when the scaled R0 faces the map’s outer boundaries.

However, the proposed overlapping definition doesn’t fully explain why
we observe better cost gaps before reaching the visibility limit on the maps
potholes and jari-huge. The proposed coefficient only helps identify the
visibility limit, which, in reality, is smaller than the size of the map’s diagonal.
It can determined by observing when this coefficient value saturates rather
than applying metaheuristics to multiple input solutions across different
scaled visibility radii.
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Chapter 5
Conclusion

In this work, we proposed a new approach for Mobile Robot Search in the
polygonal domain by introducing the problem as the Graph Search Problem
with order-dependent weights, described in Chapter 2. This formulation
allows the improvement of the existing methods for solving MRS.
In Chapter 3, we presented a comprehensive solution approach, systematically
divided into several key steps. In Section 3.1, we introduced three construc-
tive heuristics, full random, greedy, and randomized greedy, that facilitate
the initial construction of solutions from scratch. We proposed five distinct
criteria to enhance the effectiveness of the greedy heuristics, enabling the
generation of various deterministic initial solutions. These heuristics and
criteria collectively form a robust foundation for the initial solution phase. In
Section 3.2, we introduced improving heuristics based on the Iterated Local
Search. We considered two basic local search operators: Insert and 2-Opt.
The naive implementation of their local search procedures has a computa-
tional complexity of O(n3). We introduced an additional operator that swaps
two consecutive vertices in the path to address this. It was demonstrated
that the path cost update after performing the swap can be computed in
constant time by precomputing certain path parameters and updating them
accordingly. This innovation allowed us to define a swap state-space where
each possible neighboring permutation can be obtained through the recurrent
application of swapping two neighboring vertices. We proposed effective
Swap-Based Insert and 2-Opt procedures based on the swap state-space. The
complexity of the basic Insert was reduced to O(n2). While the upper bound
complexity of Swap-Based 2-Opt remains the same, the number of operations
required to explore the neighborhood is significantly reduced to n3−n

6 : for
large instances (up to 175 nodes) the complexity is n2 log2(n), making the
swap-based 2-Opt more efficient than the basic 2-Opt. Also, we proposed the
additional Balas-Simonetti (BSk) for k = 2, 3, 4 operator that allows us to
find the best-improved neighbor dynamically. In Section 3.3, we presented
two metaheuristics: Sequential Variable Neighborhood Descent and General
Variable Neighborhood Search with double-bridge application for solution
perturbation. These metaheuristics further enhance optimization by system-
atically exploring and escaping local optima.
In Chapter 4, a series of experiments were conducted to evaluate the correct-
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5. Conclusion......................................
ness and efficacy of the chosen approach. From the experiments detailed in
Section 4.2, three local search procedures were selected for integration into
our SVND: Swap-Based Insert, Swap-Based 2-Opt, and the Balas-Simonetti
operator for k = 4 (BS4). However, based on the results from Section 4.3,
it became evident that the impact of BS4 was relatively minor compared to
the other operators. Consequently, it was omitted from the list of operators
utilized in SVND. Furthermore, an optimal 2-Opt depth of approximately
30% was determined, enabling the removal of unpromising neighbors and
further reducing computational complexity. Evaluation of the Best and First
improvement strategies for our operators within SVND led to selecting the
Best for both. Subsequently, upon constructing SVND, we determined that
the criterion from Equation 3.3 is best for the greedy constructive heuristics.
Additionally, a probability set of (0.85, 0.15, 0.05) was established for the
randomization of deterministic greedy. For the General Variable Neighbor-
hood Search (GVNS), a perturbation strength of 5 was selected, with results
proving that increasing perturbation strength led to better solutions. In
Section 4.4, we compared SVND employing three different initial solution
types (fully random, deterministic, and randomized greedy) and GVNS with
the state-of-the-art method in two experiments. First, we compared the cost
and time performance on different input instances and obtained cost gap
improvements of 6-40 %, depending on the map and the node instances. In
the second experiment, we compared the methods for increasing overlapping
of visibility regions. The cost improvement for 60 nodes was about 30-50 %
for the maximal scaled visibility radii. Also, we defined the visibility regions
overlapping that allows understanding when the visibility limit occurs for
different scaling of regions
Overall, the proposed metaheuristics perform better than the reference
method, with the exception of the non-overlapping visibility regions leading
to static weights, which the reference method solves more efficiently due to
a more advanced solution approach. The new formulation of Mobile Robot
Search for GSP with order-dependent weights allows for an improved solution
approach and can be considered a solid starting point for further research.

5.1 Future work and improvements

We will highlight the following possible extensions to the project.. Extension of the Balas-Simonetti neighborhood to larger values of k
utilizing A∗ for finding the shortest path and evaluation of different
greedy criteria for that purpose. This neighborhood can be applied as an
intensification procedure in SVND/GVNS or as part of the constructive
heuristics.. Investigation into potential time improvements of the metaheuristics by
implementing time or iteration limits for the ILS procedures, reducing
the perturbation strength for GVNS, and introducing multi-start GVNS
with multiple stopping criteria for GSP with order-dependent weights.
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.............................5.1. Future work and improvements

. Further exploration of overlapping, with a focus on proposing a new
definition that better describes the properties of the maps.. Continued research into impreciseness in polygon operations and ex-
perimentation with different values of thresholds in our local search
procedures.
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Appendix A

A.1 Additional Software

We used the following AI tools: ChatGPT 1, Grammarly 2, Github Copilot3

according to Methodical Guideline No. 5/2023 4.

A.2 Attachments

. thesis_latex.zip: The .zip file containing the LATEX files of the thesis.. scripts.zip: The .zip file with the Python scripts used for the research
and running of our methods in the experiments.. graphs.zip: The .zip file containing graphs from the experimental section
of the thesis.. visis_codes.zip5: The source codes of the implemented methods.

1https://chat.openai.com/chat
2https://www.grammarly.com/
3https://github.com/features/copilot
4https://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b79

9-c7e715d3c59e/cs/20240130-metodicky-pokyn-c-52023.pdf
5https://gitlab.ciirc.cvut.cz/mission-planning/visis-planner/-/tree/dsear

ch
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