
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Interpretable Symmetry-Aware Deep Learning
for Planning

Martin Krutský

Supervisor: Ing. Gustav Šír, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483792 Personal ID number: Krutský Martin Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Interpretable Symmetry-Aware Deep Learning for Planning

Master’s thesis title in Czech:

Interpretovatelné hluboké učení se symetriemi pro plánování

Guidelines:

With a growing interest in addressing planning tasks with deep learning methods, ranging from simple models to Graph
Neural Networks (GNNs) [1] and Transformers [2], questions of data efficiency and model trustworthiness arise. Recently,
Geometric Deep Learning [3] has emerged to address the former issue by designing neural models invariant to various
symmetries, while the latter has normally been tackled by interpretability methods [4] rooted in relational logic formalisms
[5].
The aim of this thesis is to explore intersections of the two aspects by delving into the inner structures of the neural models
to advance their trustworthy applications in planning domains.
1) Review common deep learning approaches to planning problems [6], focusing on symmetry-invariant architectures,
such as GNNs [1].
2) Select suitable planning domains to showcase the principles of interpretable symmetries, such as the Rubik’s cube
problem [7].
3) Explore the algebraic and group-theoretic properties [3] of the selected domains and architectures.
4) Propose, implement, and evaluate appropriate symmetry-aware models for the selected problems.
5) Review common model-agnostic [4] and planning-related [8] approaches to explaining predictions of neural networks,
and analyze your models’ predictions.

Bibliography / sources:

[1] Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and
learning systems 32.1 (2020): 4-24.
[2] Joshi, Chaitanya. "Transformers are graph neural networks." The Gradient 7 (2020).
[3] Bronstein, Michael M., et al. "Geometric deep learning: Grids, groups, graphs, geodesics, and gauges." arXiv preprint
arXiv:2104.13478 (2021).
[4] Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible AI." Information fusion 58 (2020): 82-115.
[5] Sourek, Gustav, et al. "Lifted relational neural networks: Efficient learning of latent relational structures." Journal of
Artificial Intelligence Research 62 (2018): 69-100.
[6] Almasan, Paul, et al. "Deep reinforcement learning meets graph neural networks: Exploring a routing optimization use
case." Computer Communications 196 (2022): 184-194.
[7] Agostinelli, Forest, et al. "Solving the Rubik’s cube with deep reinforcement learning and search." Nature Machine
Intelligence 1.8 (2019): 356-363.
[8] Tsirtsis, Stratis, Abir De, and Manuel Rodriguez. "Counterfactual explanations in sequential decision making under
uncertainty." Advances in Neural Information Processing Systems 34 (2021): 30127-30139.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Gustav Šír, Ph.D. Intelligent Data Analysis FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 01.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Gustav Šír, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I am very grateful to my supervisor for
guiding me through the thesis, signifi-
cantly helping me to improve my academic
writing, and supporting me in my research
interests.

I want to thank my family for creating
an environment where I could concentrate
on the thesis and my friends for reinforc-
ing my self-confidence when I needed it.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 21, 2024

v

Abstract
In many domains, including automated
planning, deep learning has become the
mainstream approach to solving hard
problems by learning from data without
the need for domain-expert input. Such
an approach is, however, often inefficient
in terms of data and computation resource
requirements. The situation can be im-
proved by informing the neural architec-
ture about the symmetries of the respec-
tive domain. This approach has been for-
malized as the Geometric Deep Learn-
ing framework. This work contributes to
the framework by studying symmetries
commonly found in planning problems
and implementing a well-substantiated,
symmetry-invariant graph neural architec-
ture for the Rubik’s cube problem based
on its group-theoretical properties. In our
cost-to-goal regression experiments, this
architecture not only outperforms the pre-
vious state-of-the-art architecture, both in
the mean absolute error and solved rate
when employed as a heuristic in search
algorithms, but it also exhibits a high
degree of interpretability. We show that
explanations based on this intrinsic prop-
erty are preferable to standard explainer
algorithms for graph neural networks.

Keywords: geometric deep learning,
planning, interpretability, symmetries,
Rubik’s cube, graph neural networks

Supervisor: Ing. Gustav Šír, Ph.D.

Abstrakt
V mnoha doménách včetně automatizo-
vaného plánování se hluboké učení stalo
hlavním přístupem k řešení složitých pro-
blémů pomocí učení se z dat bez nutnosti
zapojení doménových expertů. Tento po-
stup je ale často neefektivní vzhledem k
množství potřebných dat a výpočetních
prostředků. Situaci lze zlepšit informová-
ním neuronové architektury o symetriích
příslušné domény. Tento přístup byl zfor-
malizován do frameworku geometrického
hlubokého učení. Tato práce přispívá do
frameworku studiem symetrií, které se
běžně vyskytují v plánovacích problémech,
a implementací dobře zdůvodněné gra-
fové neuronové architektury, invariantní
vůči symetriím, pro problém Rubikovy
kostky založené na jejích vlastnostech z
teorie grup. V našich regresních experi-
mentech predikce ceny k cíli tato architek-
tura nejenže překonává předchozí nejmo-
dernější architekturu ve střední absolutní
chybě a v míře vyřešených stavů při pou-
žití v prohledávácích algortimech, ale také
vykazuje vysokou úroveň vnitřní vysvětli-
telnosti. Ukážeme, že vysvětlení založená
na této vlastnosti jsou vhodnější než stan-
dardní vysvětlovací algoritmy pro grafové
neuronové sítě.

Klíčová slova: geometrické hluboké
učení, plánování, vysvětlitelnost,
symetrie, Rubikova kostka, grafové
neuronové sítě

Překlad názvu: Interpretovatelné
hluboké učení se symetriemi pro
plánování

vi

Contents
1 Introduction 1
1.1 Problem Statement 2
1.2 Related Work 2

1.2.1 Related Work on Deep Learning
in Planning . 2

1.2.2 Related Work on Neural
Interpretability 3

1.2.3 Related Work on Symmetries in
Deep Learning 4

1.2.4 Related Work on Solving
Rubik’s Cube 5

2 Theoretical Background 7
2.1 AI Planning 7

2.1.1 Planning Problems 8
2.2 Planning Problems Analysis 8

2.2.1 Planning Representations 9
2.2.2 Planning Symmetries 10
2.2.3 Planning Domain Selection . . 11
2.2.4 Rubik’s Cube Planning

Problem . 12
2.3 Rubik’s Cube Analysis 12

2.3.1 Problem Structure 12
2.3.2 Group Theory 15
2.3.3 Domain symmetries 16

2.4 Symmetry-Aware Deep Learning 18
2.4.1 Equivalence Classes 19
2.4.2 Conjugacy Classes 20
2.4.3 Other Cube Equivalence

Classes . 20
2.4.4 Invariant Neural Architecture

Design . 21
2.4.5 Neural Symmetry Detection . 22

2.5 Parameters of GNN
Interpretability Methods 26

3 Rubik’s Cube Experiments 27
3.1 Data . 27

3.1.1 Color Patterns 27
3.1.2 Reverse Generation 27
3.1.3 Sampling 28

3.2 Results . 28
3.2.1 Architecture Design 28
3.2.2 Pattern Representation

Ablations . 29
3.2.3 Learning Performance 31
3.2.4 Search Performance 34

3.2.5 Performance Comparison
Tables . 35

3.2.6 Implementation Details and
Hyperparemeters 36

3.3 Interpretability of SymmetryNet 38
3.3.1 Distinguishing Different

Distances . 38
3.3.2 Explaining Single Cube Move

with GNNExplainer 39
3.3.3 Architecture-Based

Interpretations 40
3.3.4 Comparison of Interpretability

Techniques . 41
4 Conclusion 43
4.1 Future Work 43
Bibliography 45
A Other Cube Pattern
Representations 53
A.1 Eliminated Pattern

Representation 53
A.1.1 Surface-Distance Invariant . . 53

A.2 CNN-based Global Invariant
Ablation . 54
A.2.1 Face Crosses 54

B Learning Performance Plots 55
C Source Code and Resources 57
C.1 Acknowledgments 57

vii

Figures
2.1 The minimal examples of the

object (left), atom (middle), and
object-atom (right) representations
for the Blocksworld domain with
blocks a, b, and c. 9

2.2 Our taxonomy of symmetries found
in planning problems. 10

2.3 A solved cube state in the standard
color ordering, with denoted face Fj

views (F, B, D, U, R, L) composed of
individual facelets f

Fj

i in a flattened
“cube cross” view (below), and an
outline of three rotation and
reflection axes in a 3D view (above). 13

2.4 The (standard) one-hot encoding
of the cube state representation . . . 14

2.5 An original (A), a
recoloring-equivalent (B), and a
symmetry-equivalent (C) cube states,
originating through a color
permutation π and a 90◦

counter-clockwise geometric rotation
ϕ around the front face. 17

2.6 The proposed symmetry-invariant
architecture (Sec. 2.4.4). 23

3.1 Test-set MAE model performances
when generalizing from decreasing
fractions of the exhaustive dataset
(dqt = [1 . . . 5]), displayed with a 95%
confidence interval. 32

3.2 The effect of symmetry-invariance
demonstrated through the models’
learning convergences when
generalizing from 10% of the
exhaustive dataset (dqt = [1 . . . 5]),
displayed with a 95% confidence
interval. 33

3.3 The effect of symmetry-invariance
demonstrated through the models’
learning convergences on the full 105

sampled dataset (dft = [14 . . . 19]),
displayed with a 95% confidence
interval. 33

3.4 Models’ learning performances
when generalizing to the
symmetry-equivalent states from an
increasingly large portion of the
sampled dataset (dft = [14 . . . 19]),
displayed with a 95% confidence
interval. 34

3.5 Model comparison through the
problem-solving (search) performance
metrics - (i) accuracy of selecting
optimal successor, (ii) solution rates,
and (iii) optimal solution rates
(higher is better). 35

3.6 Log-scale comparison of the models’
A∗ search performances as measured
through the average number of
expanded nodes (lower is better). . 35

3.7 A detailed depiction of the
SymmetryNet V1, SymmetryNet V2,
and DeepCube models (left to right)
decomposed into individual layers. 37

3.8 Explanations of cube states of
distance d = 1 produced by
GNNExplainer. 38

3.9 Explanations of cube states of
distance d = 3 produced by
GNNExplainer. 39

3.10 Comparison of cube states: a
solved one on the left side, and one
resulting by clock-wise 90 deg
rotation of the right face. 39

3.11 Two explanations of a cube state
with d = 1: a better explanation on
the left side, highlighting mostly
colors of facelets twisted by the move,
a worse explanation on the right side,
mixing both twisted and untwisted
facelets. 39

3.12 An illustrative example of the
second message passing of
distance-vectors, which are weighted
by the distances before aggregation. 41

B.1 Models’ learning convergences
when generalizing from 90% of the
exhaustive dataset. 55

viii

B.2 Models’ learning convergences
when generalizing from 50% of the
exhaustive dataset. 55

B.3 Models’ learning convergences
when generalizing from 10% of the
exhaustive dataset. 56

B.4 Models’ learning convergences on
the 103-sized subset of the sampled
dataset. 56

B.5 Models’ learning convergences on
the full 105 sampled dataset. 56

Tables
2.1 The Rubik’s cube state space

decomposed by the goal distances . 15
2.2 Alternative equivalence classes of

the Rubik’s cube and their
properties. 21

3.1 State space statistics of the 3
datasets, with (expressiveness) error
and compression of the proposed
(WL2) model design. 29

3.2 Expressiveness errors of the
different pattern invariants on the
three (distance-decomposed)
datasets. 31

3.3 Compression rates of the pattern
invariants on the datasets 32

3.4 Comparison of the models’ MAE
performances across different
train-test ratios of the exhaustive
dataset . 36

3.5 Comparison of the models’ MAE
performances while increasing the
(subset) size of the sampled dataset 36

3.6 Comparison of the models’
performances in problem solving . . 36

ix

Chapter 1
Introduction

Incorporating suitable inductive biases into machine learning models can generally
improve their training efficiency, robustness, and generalization to unseen data. In
deep learning, this has typically been approached by exploiting certain domain
“symmetries”, i.e., transformations that retain important input properties. The
most popular example of this approach has been Convolutional Neural Networks
(CNNs, [62]), exploiting translation equivariance in regular grid domains, such as im-
ages. Recently, the term Geometric Deep Learning [13] has been coined for the overall
paradigm, with a number of new architectures proposed to exploit the symmetries
beyond the regular Euclidean domains, such as the permutation invariance naturally
present in data structured in the form of sets [119] and graphs [113]. Nevertheless,
explorations into less obvious symmetries beyond the standard application domains
remain scarce.

One reason for that is the increasing emphasis on scaling and deepening well-known
types of neural networks, such as feed-forward networks and transformers, instead of
designing justified, efficient architectures. But, with the expansion of deep learning
applications to critical domains, including many planning tasks, where humans
are ultimately responsible for the decisions made, it is crucial for the model to be
explainable [5, 85, 84] and enlarging neural models only worsens the situation. The
black-box nature of deep networks prevents us from fully understanding the networks’
inner computation, and we have to resort to approximate explanations of networks’
predictions mainly through post-hoc methods [61, 71, 106]: generating visual/textual
explanations, studying the impact of local changes, generating examples, simplifying
the model, or assigning importance scores to inputs [5]. Lately, we have also seen
a surge in the popularity of the novel field of mechanistic interpretability [21, 75],
which uses some of the mentioned post-hoc methods to study neural circuits in
transformer-based architectures. All the above-listed methods depend heavily on data
selection, as they analyze the dependency between model input and prediction. The
transparency and inherent interpretability of the model, which would be independent
of the input data selection, is usually left to simple machine learning models, such
as linear regression, decision trees, k-nearest neighbors, etc.

Inspired by the simple models, we aspire to understand models’ decisions by
design without the need for external algorithms, concentrating on modeling and
reasoning about the neural architectures and representations instead of tuning
post-hoc explainers.

1

1. Introduction ..
1.1 Problem Statement

This work addresses the interpretability problem with an alternative approach,
achieving more transparent deep neural models via geometric deep learning (GDL)
principles. It provides a blueprint for extending the GDL principles into planning
domains by taking advantage of their graph-induced symmetry structures, improving
the learning efficiency of the architectures. In order to implement geometric deep
learning architectures, the thesis identifies the most promising categories of planning
symmetries and the domains where they are applicable and puts an extra emphasis
on the Rubik’s cube domain, which is well-known for the complexity of its intriguing
symmetries rooted in group theory. Furthermore, the choice of Rubik’s cube conve-
niently connects two topics from Bronstein’s GDL taxonomy of 5Gs (Grids, Groups,
Graphs, Geodesics, and Gauges; [13]), groups through the underlying symmetry and
graphs through the data representation.

We incorporate the group conjugacy-based symmetry between Rubik’s cube
states into the neural network and systematically train and evaluate the resulting
architecture, both w.r.t. classical machine learning and planning metrics. We argue
that such models and their decisions are more interpretable due to being constrained
to produce representations adhering to human-understandable symmetries and
equivalences. This type of interpretability is useful since it does not rely on (possibly
biased) data selection.

1.2 Related Work

The work is naturally related to previous works on using deep learning to address
planning problems, either within a reinforcement learning framework or in the form
of learning a heuristic for search algorithms. We also review previous literature on
deep learning interpretability techniques, specifically those concerned with auto-
mated planning and architectures implementing equi-/invariances, e.g., graph neural
networks. We continue with the topic of symmetries in deep learning, reviewing
unifying frameworks and state-of-the-art approaches. Finally, we turn to related
work on the selected planning problem, the Rubik’s cube (for further explanation of
the selection, see Sec. 2.2.3). We discuss previous attempts at solving Rubik’s cube
algorithmically, both with deep learning algorithms and classical solvers.

1.2.1 Related Work on Deep Learning in Planning

While automated planning has been studied since the 1950s [46], the prevalence of
machine learning (in particular deep learning) techniques in the field is relatively
new. Previously, the optimized solvers, search algorithms, and handcrafted heuristics
clearly overshadowed the performance of learning algorithms. Today, however, we
see a growing interest in using (deep) neural networks for solving planning tasks,
be it by learning policies [50, 39], the transition model [111], heuristics for a search
algorithm [33, 104, 116], or even learning end-to-end planners directly from visual
information [6, 31, 7]. Most of the mentioned works approach machine learning

2

....................................... 1.2. Related Work

algorithms as uninformed universal approximators, usually resorting to feed-forward
networks and classical vector-based ordered representations of the input data.

There is, however, another natural representation of planning problems – graphs,
suggesting that graph neural networks (GNNs) might be a more suitable choice of
a learning algorithm. Indeed, GNNs are currently being employed in predicting
the importance of objects in a planning state [92], in learning policies within a
reinforcement learning setup [79, 3], and, most commonly, in learning approximations
of heuristic functions, evaluating states with an estimation of the cost to goal [17,
15].

However, such experiments are sensitive to the selected graph representation and
GNN architecture, as some combinations are not expressive enough to distinguish
between different planning states [114, 43]. Thus, multiple variants of graph rep-
resentations were proposed, either for GNNs directly [88, 92, 99], or by utilizing
precomputed GNN-like features, e.g., the Weisfeiler-Lehman color refinement [89,
18], for classical machine learning algorithms.

1.2.2 Related Work on Neural Interpretability

While most of the AI community agrees on the need to explain deep neural networks,
the taxonomy for explainable AI (XAI) is not agreed upon universally. Arrieta et
al. [5] create a taxonomic tree distinguishing transparent (interpretable) models and
post-hoc explainability on the first level and further dividing post-hoc explainability
into model-agnostic and model-specific methods on the second level. Saleem et
al. [85] further divide techniques into global and local explanations. Kenny et
al. [51], on the other hand, dislike the ambiguous term “transparent model” and
instead talk about the pre-hoc and post-hoc methods, with the latter being factual,
counterfactual, or semi-factual. In many classification/decision tasks, there is a
growing interest in counterfactual explanations in particular [105].

The distinction between AI explainability and interpretability also differs in
literature. Glanois et al. [38] define interpretability as the “intrinsic property of a
model”, while explainability is “a post-hoc operation”. On the other hand, Fan et
al. [32] talk about the interpretability of neural networks and include even classical
post-hoc methods in their taxonomy of interpretation methods.

For the purpose of this thesis, we will not distinguish between AI interpretability
and explainability and will mention only methods usable for deep learning models.
This decision rules out training fully transparent models. Based on Arrieta’s taxon-
omy [5], in the model-agnostic post-hoc category, there are simplification methods
(such as LIME [78]), feature relevance explanations (e.g., SHAP [68]), and visual
explanations. For the deep-learning model-specific techniques, there are, among
others, model simplification techniques (such as tree extraction methods [26]) and
feature relevance methods [91]; for convolutional neural networks specifically, there
is a well-known visual explanation technique based on saliency maps [93].

With respect to our work, it is also interesting to look at Fan’s taxonomy [32],
which adds an alternative bracket next to the post-hoc category, the ad-hoc modeling,
including interpretable representations. While Fan et al. mention regularization
techniques steering the learning algorithm to explainable representations, we believe

3

1. Introduction ..
that inductive biases in the form of symmetries are an even more powerful way to
achieve interpretable yet expressive models.

Interpretability of Graph Neural Networks. Due to the inherent structure of their
input data, GNNs have their own specific set of explainability and interpretability
methods that exploit human understanding of graph structure. These methods
often try to find important nodes, node features, edges, or subgraphs that impact
the model’s decisions. Yuan et al. [117] divide the techniques into instance- and
model-level explanations. While the first category focuses on finding importance in
the input data features, the second explains general model behavior independent of
the input graphs. The most widely used instance-level explanations are perturbation-
based methods, e.g., GNNExplainer [115], PGExplainer [69], or GraphMask [86].
Other instance-level methods include gradient-based models (e.g., Grad-CAM [9])
and decomposition methods (e.g., GNN-LRP [87]). One of the only known techniques
for model-level explanations is XGNN [118].

Interpretability of Neural Networks in Planning. Many planning and scheduling
domains have a long tradition of human planners employing brushed-up domain
knowledge and would, therefore, benefit from human-AI collaboration. However,
typical deep learning techniques used for automated planning lack interpretability [16].
The interpretability efforts are often centered around model-specific techniques, e.g.,
for GNNs (see Sec. 1.2.2). We discuss a few exceptions. Skirzyński et al. [95]
suggest the AI-Interpret algorithm that transforms learned planning policies into
interpretable descriptions, allowing for collaboration with human planners and
improving their strategies. Consul et al. [22] proceed by “cognitively informed”
reinforcement learning methods that lead to better human-like strategies. Finally,
Lyu et al. [70] employ a “Trustworthy Decision-Making” framework combining
symbolic planning with learning algorithms.

1.2.3 Related Work on Symmetries in Deep Learning

Researchers have been experimenting with different inductive biases in the architec-
tures of neural networks for a long time. We are interested in those connected to the
notion of symmetry and invariance1 [10, 110]. Symmetries have been shown to be
an effective way to improve sample efficiency and generalization of the model [108],
being the perfect compromise between uninformed deep learning and expert feature
extraction. While there exist symmetry-related inductive biases of many different
kinds, they are often implemented using similar techniques, mostly parameter sharing
and aggregation [59].

One particularly known class of symmetries, geometric symmetries, including
rotation, reflection, translation, and many others, was unified in the Geometric
Deep Learning framework [13] following the previous work on Deep Symmetry
Networks [37]. However, the basis for geometrically invariant architectures was
laid out much earlier, e.g., with the (re-)invention of the translation equivariant
CNNs [62], or with the proposal of rotation invariant neural networks [83]. What
started as an attempt to capture basic axial symmetry in Euclidean spaces was

1or equivariance, which can be thought of as a weaker form of invariance

4

....................................... 1.2. Related Work

further extended to capture a much wider range of symmetries [12], e.g., those
related to groups (group equivariance [20], group-action invariance [53], etc.), or to
graphs [52, 112]. Concerning the latter, GNNs are the go-to architecture praised for its
invariance to graph isomorphism [8] and node permutation [73]. Perhaps surprisingly,
transformers are another architecture sharing similar traits with GNNs [49]. Thus,
it has been possible to show different geometric equivariances of transformer-based
architectures [102, 36].

However, symmetry-aware neural architectures do not have to be only invariant to
intuitively recognizable symmetries; they can also be identified based on the methods
used. Using the mentioned weight sharing and a “weight symmetry” [44], recurrent
neural networks and their derivates (GRU, LSTM, etc.) are one such example [101].
The DeepSets architecture [119] is another example, achieving permutation invariance
via representation aggregation.

1.2.4 Related Work on Solving Rubik’s Cube

For the Rubik’s cube problem, we follow up mainly on the original DeepCube sys-
tem [72], later extended for Nature [2], which proposed a new variant of (approximate)
policy iteration in combination with A∗ search. In the spirit of deep reinforcement
learning, the value function, estimating the distance from the solved state, was
represented by a neural network. The architecture in use was rather conventional
feed-forward network with residual layers and batch normalization. Using the same
neural architecture, some improvements in the search strategy have recently been
published [103]. The work was also followed by Johnson [48, 47], who used a similar
approach while translating the problem into a supervised setting. This was done by
starting from the solved state and considering the reverse stepwise evolution through
the state space as a labeled example generator for the value function approximation,
similarly to McAleer et al. [72] (and Sec. 3.1.2). The model in use was again a
standard feed-forward network equipped with dropout layers. A similar work [14]
also explored classic feed-forward networks as the heuristic value learner, together
with several handcrafted features.

Apart from deep learning solutions, there are also well-known algorithms of varying
difficulty for solving the Rubik’s cube, which gave rise to algorithmic solvers [57],
highly optimized through years of development, often making use of large pattern
databases [27]. These explicit approaches often use advanced computational group
theory to analyze the problem space, leading to several interesting insights, including
the insight of geometrically interpretable symmetry-equivalent states.

However, little attention has been devoted to the resulting insights in the deep
learning-based approaches. Works studying some form of invariances in the problem
include Lim et al. [65] who, however, examine the symmetries in moves instead of the
states while attempting to learn the game rules, or Ferraro et al. [34] who introduce
a generative model to analyze the learned symmetries merely after training.

Only a handful of works then use symmetries to improve the actual deep learning
approach to the problem. The works of Corli et al. [24, 23] described an interesting
theoretical approach via quantum formalism, inspired by the Ising model, introducing
a Hamiltonian approach to deep reinforcement learning. Nevertheless, the work is
rather theoretical, and the introduced neural model was again a standard (two-layer)

5

1. Introduction ..
feed-forward network. A more related work of Konen [58] then explored symmetries
generated (merely) by explicit cube rotation in an update of the value function,
represented by a (symmetry-unaware) N-tuple neural network [67]. In particular,
a subset of symmetry-equivalent (rotated) states was explicitly expanded here to
jointly update the value function, yielding a 10− 20% improvement in solving the
cube.

Contrary to these existing works that use symmetries or other group-theoretic
insights in the pre/post-processing stages, this thesis introduces an approach of
building the respective invariants directly into the neural architecture, in the spirit
of geometric deep learning [13]. Moreover, in contrast to the rather descriptive
character of [13], it also provides a concrete and instructive blueprint for applying
the principles in new domains with complex symmetry structures.

6

Chapter 2
Theoretical Background

We start by introducing AI planning and multiple classical planning problems. Then,
we analyze some of their common symmetric features, before delving into one specific
problem – solving the Rubik’s cube.

2.1 AI Planning

Since the beginning of the field of artificial intelligence, researchers have been
interested in solving games and other combinatorial problems. One approach gave
birth to the field of AI planning or, more formally, automated planning and scheduling.
Automated planning is a subfield of symbolic artificial intelligence that is interested
in reasoning about and choosing actions in an environment by creating a strategy
or policy, or using other forms of evaluation of the environment. However, many
real-world environments are very complex and hard to model precisely. Researchers
have, therefore, often resorted to simple game environments with well-defined rules
that mimic at least parts of the real world.

Many application-oriented subfields emerged within AI planning, including plan-
ning for robotics and autonomous vehicles, task scheduling, or resource allocation.
In this thesis, we will not go into application-specific techniques. Instead, we will
refer to general concepts related to classical planning. A classical planning task is
defined by a transition system.
Definition 2.1. Transition system is a tuple T = (S, A, T, I, G) where S is a finite
set of states, A is a finite set of actions, T : S ×A× S is a transition relation, i ∈ S
is the initial state, and G ⊆ S is a set of goal states.

Alternatively, the transitions can be described by a transition function γ : S×A→
S, s.t. γ(s, a) = s′ ⇐⇒ (s, a, s′) ∈ T . The transition system defines a search graph
with the states represented by nodes and transitions represented by edges. Solving
the planning problem then equates to finding a path from the state i to one of the
goal states g ∈ G, which can be done by search algorithms, such as A∗ [40], greedy
best-first search (GBFS), Dijkstra [30], etc.

It is usually infeasible to fully enumerate the whole state space/search graph.
Instead, the properties of states and consequences of actions can be tracked, allowing
for a compact problem representation. Conveniently, the properties can be formalized
in different formal systems based on, e.g., propositional or first-order logic.

7

2. Theoretical Background
2.1.1 Planning Problems

While many real-world problems could be formulated as planning tasks, there are
some well-established problems in the planning community, especially due to the
flagship International Planning Competition (IPC)1. This work further discusses
selected problems previously featured in IPC.

Blocksworld, Transport, Freecell, Sokoban. We selected the following classical
planning problems from the IPC domain repository2 to showcase the symmetry
analysis: Blocksworld, Transport, Freecell, and Sokoban. Blocksworld is a well-known
domain containing N blocks that can sit on top of each other (creating “towers”).
The goal is to rearrange the blocks to achieve the required configuration. It is
one of the simplest domains, yet it can contain symmetries in the form of position
invariance. Transport is a planning domain in which the goal is to transport packages
to prescribed locations by using vehicles with a certain capacity. We are interested
in transport because it involves multiple interchangeable objects which can be the
base of a symmetry-invariant architecture. Freecell is a card game belonging to the
popular family of solitaire games. Its goal is to lay out cards of the same suit into one
of the goal boxes (foundations) in ascending rank, following rules that specify which
card can sit on top of another card in the “cascades”. The user can use multiple
“free cells”, which serve as a temporary storage. On top of other symmetries, Freecell
inherently contains color- and suit-invariance symmetries. Sokoban is a classical
grid-world game with a player pushing stones (or boxes) and the goal of getting
them to specified positions. There are different geometric (directional) symmetries,
such as certain rotations and reflections.

Rubik’s Cube. The Rubik’s cube is a popular game comprising a 3D cube with
6 distinctively colored 2D faces, each divided into a 3× 3 grid of colored squares.
Facilitated by an internal pivot mechanism, each face can be independently rotated,
thereby mixing up the color grids’ arrangements. The objective is to rearrange
the cube so that each face contains squares of a uniform color. It was featured
at IPC in 20233. Despite its apparent simplicity, the problem exhibits a complex
internal structure deeply rooted in group theory. Expanding upon this foundation,
algorithms of varying difficulty have been established for manual solving by human
players, along with highly optimized algorithmic solvers [57], often making use of
large pattern databases [27].

2.2 Planning Problems Analysis

To identify symmetries and invariances that might enhance our neural architecture,
we analyzed the properties of graph representations of problems from Sec. 2.1.1. Even
though the representations do not necessarily rely on formal planning representation,
we start by defining some key terms.

1https://www.icaps-conference.org/competitions/
2https://github.com/AI-Planning/classical-domains
3https://github.com/ipc2023-classical/domain-rubiks-cube

8

https://www.icaps-conference.org/competitions/
https://github.com/AI-Planning/classical-domains
https://github.com/ipc2023-classical/domain-rubiks-cube

................................. 2.2. Planning Problems Analysis

2.2.1 Planning Representations

Some of the most common planning representations include Finite Domain Repre-
sentation (FDR; e.g., SAS), which operates on a grounded level, and STRIPS, which
operates on a lifted level. Finally, there is the Planning Domain Definition Language
(PDDL), a generalization of STRIPS. Both PDDL and STRIPS are a common
starting point for the creation of relational or graph representation structures on
the lifted level.4 The definitions below are based on Chen et al. [15].
Definition 2.2. A STRIPS planning task is defined by a tuple T = (P, A, s0, G),
where P is a set of facts, A is a set of actions, s0 ∈ P is an initial state, and G ⊆ P
are the goal conditions.
Definition 2.3. An action a ∈ A in the STRIPS planning task is a tuple a =
(pre(a), add(a), del(a)) of preconditions, positive effects and negative (delete) effects,
with pre(a), add(a), del(a) ⊆ P and add(a) ∩ del(a) = ∅.

PDDL, compared to STRIPS representation, also allows for negative literals and
(unassigned) variables in preconditions of actions and goals. Both STRIPS and
PDDL can operate with objects, which means that the facts are predicates over the
objects. Further, PDDL allows for (hierarchical) types of objects.

Graph Representation

In this analysis, we started with a PDDL-like representation. There are two funda-
mentally different levels on which we can create graph representations for a planning
task: (i) the search-space level and (ii) the state level. In (i), the nodes of the graph
are states, and the edges correspond to atoms, while in (ii), the nodes and edges
correspond to properties of a single state. We continue with approach (ii), as it fits
the geometric deep learning framework of invariances and equivariances better.

a b
on

on(a, b) on(b, c)
b

a on(a, b)

Figure 2.1: The minimal examples of the object (left), atom (middle), and object-atom
(right) representations for the Blocksworld domain with blocks a, b, and c.

We discuss three state-level representations for which the minimal examples are
depicted in Fig. 2.1. The most straightforward approach, the object representation,
is to treat all objects (and nullary predicates/static facts) as nodes in the graph
and the facts/predicates as edges between objects. For example, in the left part
of Fig. 2.1, the nodes represent blocks a and b, and the edge represents the binary
predicate on(a, b) in Blocksworld. Further, the object types and unary predicates
(facts involving a single object) can be represented either as additional nodes or as
node features. Other representations include the atom representation, which treats
atoms – facts grounded to concrete objects – as nodes and relates atoms that share
an object by an edge (in the middle part of Fig. 2.1, the edge represents that facts

4On the lifted level, it is usually easier to reason about symmetries since they are usually
connected to object types, not concrete object instances.

9

2. Theoretical Background
on(a, b) and on(b, c) share block b), or the object-atom representation, which has
nodes for both objects and atoms and relates an object with an atom by an edge if
the atom includes the object (in the right part of Fig. 2.1, the edge signals that fact
on(a, b) includes block a), creating a bipartite graph [43].

2.2.2 Planning Symmetries

We have identified multiple categories of symmetries that are universally applicable
to representations of planning states based on PDDL (generic symmetries), as well
as a category of domain-specific symmetries. For each category, we give examples
in the selected domains, as well as a suggestion of possible ways to incorporate the
respective symmetries into the design of a graph neural network.

Planning
Symmetries

Generic Domain-Specific

Graph
Isomorphism

Object
Invariance

Fact
Invariance

Feature
Invariance

For feature values
of the same

importance

For facts
1. of same type
2. w/ symmetric
relation to goal

For object
1. of same type
2. w/ symmetric
relation to goal

Two levels:
1. state represent.
2. search graph

Example:
Rubik's cube - Rokicki's

symmetry invariance

Figure 2.2: Our taxonomy of symmetries found in planning problems.

Permutation and Graph Isomorphism Invariance. The permutation and graph
isomorphism invariance is a property that holds for most planning problems. For an
example of the permutation invariance, in Blocksworld, the order of block towers
is arbitrary; in Freecell, it is not necessary to distinguish the order of cascades,
foundations, or free cells. Regarding graph isomorphism, the presented order of
the facts in the domain/state specification and, thus, the resulting form of the
graph does not matter in either Freecell, Sokoban, or Rubik’s cube. Note that
the permutation and graph isomorphism invariance are not necessarily related
just to graph state representations. These properties should also hold for the
(search) graph representation of the state space. As for the incorporation of the
mentioned invariances into a GNN, it is known that a GNN can inherently compress
isomorphic and some permutated graphs into the same (invariant) representation [19].
Thus, these symmetries are automatically accounted for by most standard GNN
architecture, and there is no need to manipulate the model further to achieve the
invariance.

Object and Fact Invariance. Secondly, we want to enforce the equivalence between
objects with the same “behavior”. The simplest reason for an equivalent behavior is
that the objects are of the same type, e.g., stone objects in Sokoban or vehicles in
Transport, and thus, two states that differ only by a permutation of N such equivalent

10

................................. 2.2. Planning Problems Analysis

objects are essentially the same. A generalization of the equivalent behavior can be
observed between objects that are of arbitrary type but play the same role in the
search graph, i.e., they appear in states that are on a symmetric path(s) to the goal.
However, this, in practice, requires the enumeration of a substantial part of the state
space just for the detection of the equivalence. Also, this property of objects might
not be transferable between instances of the same planning problems. Similarly to
object invariance, we can find facts (and corresponding edges) of the same type or
of the same (symmetric) relationship w.r.t. the path(s) to the goal. This symmetry
only applies to graph representations where we differentiate facts by edge features.
A straightforward solution to the invariance of the same-type objects/facts is to
enforce the same features (feature vectors) for such objects/facts. This is, however,
already part of the standard graph object representation (Sec. 2.2.1).

Feature Invariance. Next, there are possible invariances tied to node features,
concretely permutation of their values. The idea is that the possible feature values
need to be treated equally by the representation, but the corresponding nodes still
need to be distinguished. For example, in Freecell, we would like for the suits of
cards to be equal so that if we create a second state S′ by permuting the suits of the
cards in state S, i.e. S′ = Sπsuits , the states are equivalent. A similar idea applies to
Rubik’s cube with the color of the stickers where, intuitively, we care more about
how scattered the colors on the cube are rather than which permutation of colors is
applied to the stickers. As for symmetry-incorporation ideas, we can start with a
similar solution for object invariance. But, if we naively enforce nodes with the same
representation, we effectively remove all information about the node feature. There
are two main fixes: (i) creating an additional aggregation node for each value of
the feature and connecting it by edges to the original nodes with that feature value,
or (ii) adding an extra type of edge for each feature value and fully connecting the
subgraph formed by the respective nodes. In both ways, we distinguish the feature
values using the structure of the graph.

Domain-Specific Invariances. Finally, we can come up with domain-specific
invariances that cannot be defined generally on PDDL-like graph representations.
An example of that is Rokicki’s symmetry-equivalence [80], which is further discussed
in Sec. 2.3.3.

2.2.3 Planning Domain Selection

Now that we have analyzed the taxonomy of planning symmetries, we discuss
choosing a specific planning domain, considering both the symmetry analysis and
the principles of geometric deep learning. From the taxonomy analysis, we have
learned that some of the mentioned symmetries (e.g., graph isomorphism) proved
to be trivially included in any reasonable graph representation, while others are
already incorporated in standard lifted planning representations (e.g., object and
fact invariance). This leaves feature invariance and domain-specific invariances as
the most promising paths.

We have identified multiple candidate domains in these two invariance classes.
However, also considering the 5Gs of Geometric Deep Learning (Sec. 1.1), the Rubik’s

11

2. Theoretical Background
cube problem (which contains both feature invariances as well as rich domain-specific
symmetries) stands out with its highly geometric structure and a connection to
group theory. In the next section, we conclude the planning problems’ analysis by
formally defining Rubik’s cube as a planning problem.

2.2.4 Rubik’s Cube Planning Problem

Solving the Rubik’s cube is defined as a planning problem by the transition system
or using the STRIPS representation:
Definition 2.4. Rubik’s cube transition system is a tuple TRC = (S, R, T, Sinit, S∗)
where S is the set of cube states, R is the set of rotations of cube’s faces, T : S×R×S
is a transition relation, Sinit ∈ S is the initial cube state, and S∗ ⊆ S is the
solved/goal cube state.
Definition 2.5. Rubik’s cube STRIPS planning task is defined by a tuple T =
(C, R, Sinit, S∗), where C is a set of color assignments to positions on the cube, R is
the set of actions, Sinit ∈ C is the initial cube state, and S∗ ⊆ C is the solved cube
state. An action r ∈ R is a tuple r = (pre(r), add(r), del(r)) with pre(r) containing
assignments of colors to all cube positions, and add(r) and del(r)) describing color
changes (which must have a one-to-one correspondence).
Other planning representations have been compiled by Muppasani et al. [74]. For
the rest of this work, we zoom in on the cube problem, analyze it in detail, and
provide experimental results. We start by discussing the cube-specific definitions.

2.3 Rubik’s Cube Analysis

We adopt a largely standard domain-specific representation of the Rubik’s cube
problem [94], as exploited in a number of previous works (Sec. 1.2) for compatibility.

2.3.1 Problem Structure

The standard cube consists of 27 smaller cubes called cubies. The surfaces of cubies
visible to the outside, colored in one of C = (blue, green, yellow, white, orange, red)
colors, are referred to as facelets fi ∈ F . There are 6 cubies with only one (central)
facelet, 12 cubies with two (edge) facelets, 8 cubies with three (corner) facelets, and
1 face-less cubie hidden in the center of the cube. Each of the cube’s faces F1, . . . , F6
is then formed by nine facelets fFi

1 , . . . , fFi
9 ∈ F arranged on a planar 3× 3 grid.

Cube States

With the cube structure introduced, we can define the configuration state of the
Rubik’s cube problem.
Definition 2.6. A cube state S : F → C is defined by assigning faceletes with colors,
given some reference ordering.

The facelet ordering generally depends on the cube’s orientation o : {Fi} ←→ C,
determining the (color) ordering of the faces. Note that, while solving the puzzle,

12

....................................2.3. Rubik’s Cube Analysis

F

D

R

U

BL

f 1
4

Φrot

ΦrefΦrot

Φrot
Φref

Φref

f 1
1

f 4
1

f 3
1f 2

1

f 6
1

f 7
1 f 8

1 f 9
1

f 6
4

f 8
4f 7

4

f 3
4

f 4
4

f 9
4

f 2
4

f 1
2

f 9
2f 8

2

f 6
2

f 3
2

f 7
2

f 4
2

f 2
2

f 1
3

f 1
5f 1

6

f 2
3 f 3

3

f 9
3f 8

3

f 6
3

f 7
3

f 4
3

f 9
5f 8

5

f 6
5

f 7
5

f 3
5f 2

5

f 4
5

f 9
6f 8

6

f 6
6

f 3
6f 2

6

f 4
6

f 7
6

Figure 2.3: A solved cube state in the standard color ordering, with denoted face Fj

views (F, B, D, U, R, L) composed of individual facelets f
Fj

i in a flattened “cube cross”
view (below), and an outline of three rotation and reflection axes in a 3D view (above).

the color of the central facelet fFi
5 on each face Fi never changes.5 This allows to

define a fixed ordering of the faces based on the color of their respective central
facelets, e.g., as

F1 7→ b, F2 7→ g, F3 7→ y, F4 7→ w, F5 7→ o, F6 7→ r

corresponding to a canonical orientation (rotation) of the cube. Such canonical
orientation of the goal/solved state S∗, where all the facelets fi within each face Fj

are of the same color Cj as ∀i, j : f
Fj

i 7→ Cj , is shown in Fig. 2.3.

State Representations

Consequently, a state can be represented simply as an ordered list of facelet colors S :
(fF1

1 , . . . , fF1
9 , . . . , fF6

9) 7→ (C1
i , . . . , C54

j). If we represent the colors with categorical
(one-hot) vectors, the whole cube state can then be seen as a sparse matrix defined
by an indicator value

Xi,j =
{

1 iff the i−th facelet is of j-th color,
0 otherwise,

(2.1)

as shown in Figure 2.4. Note that this representation, as used in DeepCube [2], is
oblivious to any symmetries.6

5Note also that there are no two cubies with the same combination of facelet colors on their
surfaces and, furthermore, the corner facelets can never become edge facelets and vice versa.

6Given the insight about the immutable color of the central facelets, we could reduce the
representation to 48 movable facelets. Even further reduction could be achieved as the cube
does not have 48 degrees of freedom due to the fixed color ordering, and inherent invariants such
as permutation parity of cubie orientations [100]. Nevertheless, to align with [2], we choose to
implement the symmetry-invariance on top of this simple representation.

13

2. Theoretical Background

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

 54 facelets

6 colors

Figure 2.4: The (standard) one-hot encoding of the cube state representation

Move Metrics

A move (turn) is a change from one state to another g : S1 7→ S2 that happens by
rotating 9 cubies, forming one of the cube’s faces Fi, along its central (perpendicular)
axis (Fig. 2.3). There are two types of “move metrics” known as (i) face-turn and
(ii) quarter-turn. While face-turns allow any of the three sensible face rotations
(90°, 180°, and 270°) within one move, the quarter-turns only allow rotations of
90° clockwise and 90° anti-clockwise. In the quarter-turn metric, a move can be
represented by specifying the face Fi and the direction of the rotation – either
clockwise, denoted simply as Fi, or counterclockwise, denoted as F ′

i . Given a
canonical orientation of the cube, these faces can also be referenced relative to the
cube orientation as front, back, down, up, right, left, denoted as F, B, D, U, R, L,
or F ′, B′, D′, U ′, R′, L′, respectively (Fig. 2.3). In the face-turn metric, additional
moves of F2, B2, D2, U2, R2, L2 denote the turn of the respective face by 180°
and do not need their counterclockwise counterparts, as they would represent the
same moves. Depending on the metric, there can thus be 12 or 18 different moves.
Importantly, the two metrics result in two optimization problems that need to be
solved in separation, since the optimal solution in the face-turn metric is not trivially
translatable to the optimal solution in the quarter-turn metric and vice versa (see
Sec. 2.3.1 below). However, our approach to symmetry-invariance in the domain is
independent of the metric.

State Distribution

With the notion of state distance and move metrics, two state distributions – one for
the face-turn (dft) and one for the quarter-turn (dqt) metric, arise by partitioning the
state space into sets of states with an equal optimal goal distance d(S, S∗). Precise
counts are known for dft ≤ 15 and dqt ≤ 18, respectively, while for the remaining
distances, approximations or lower bounds are known, as reported in Tab. 2.1, based
on the sources of [81, 82].7

State Generators

A generator G ∈ G is a sequence of moves g, represented as a space-delimited
sequence of the corresponding symbols (e.g., FU ′FFD′B). The number of moves in
a generator is its length. Each cube state S can then be represented by a generator

7https://cube20.org/ and https://cube20.org/qtm/

14

https://cube20.org/
https://cube20.org/qtm/

....................................2.3. Rubik’s Cube Analysis

d(S, S∗) |S| in dft |S| in dqt

0 1 1
1 18 12
2 243 114
3 3, 240 1, 068
4 43, 239 10, 011
5 574, 908 93, 840
6 7, 618, 438 878, 880
7 100, 803, 036 8, 221, 632
8 1, 332, 343, 288 76, 843, 595
9 17, 596, 479, 795 717, 789, 576
10 232, 248, 063, 316 6, 701, 836, 858
11 3, 063, 288, 809, 012 62, 549, 615, 248
12 40, 374, 425, 656, 248 583, 570, 100, 997
13 531, 653, 418, 284, 628 5, 442, 351, 625, 028
14 6, 989, 320, 578, 825, 358 50, 729, 620, 202, 582
15 91, 365, 146, 187, 124, 313 472, 495, 678, 811, 004
16 ≈ 1, 100, 000, 000, 000, 000, 000 4, 393, 570, 406, 220, 123
17 ≈ 12, 000, 000, 000, 000, 000, 000 40, 648, 181, 519, 827, 392
18 ≈ 29, 000, 000, 000, 000, 000, 000 368, 071, 526, 203, 620, 348
19 ≈ 1, 500, 000, 000, 000, 000, 000 ≈ 3, 000, 000, 000, 000, 000, 000
20 ≈ 490, 000, 000 ≈ 14, 000, 000, 000, 000, 000, 000
21 0 ≈ 19, 000, 000, 000, 000, 000, 000
22 0 ≈ 7, 000, 000, 000, 000, 000, 000
23 0 ≈ 24, 000, 000, 000, 000, 000
24 0 ≈ 150, 000
25 0 ≥ 36
26 0 ≥ 3

Table 2.1: The Rubik’s cube state space decomposed by the goal distances

G, corresponding to a sequence of moves applied to the solved state S∗. The length
of the shortest generator8 then corresponds to the distance of the state d(S, S∗) from
the goal.

2.3.2 Group Theory

With the definition of state generators, we may now view the Rubik’s cube state
space from a group-theoretical perspective.

Rubik’s Cube Group

The set of all possible generators G, equipped with the (non-commutative) binary
operation of composition, forms the Rubik’s group:

RG = (G, ◦), ◦ : G × G → G

with the identity being a “no-action” generator, and the inverse generator G−1

constructed by reversing the order of moves and switching their direction (counter-
8An infinite number of generators leading to a single state exists because, e.g., inserting pairs of

mutually inverse moves does not influence the state generated by the sequence.

15

2. Theoretical Background
/clockwise). The group has infinitely many finite group generators, the simplest one
being the set of the 12 elementary moves.9 It has been found that in the quarter-turn
metric, the diameter of the Rubik’s cube group is 26, i.e., any valid Rubik’s cube
can be solved with up to 26 90◦ face rotations [81], and 20 moves for the face-turn
metric, respectively [82]. Together with a given ordering of the face colors, such as
the canonical one displayed in Fig. 2.3, the Rubik’s group forms a Rubik’s universum.
Definition 2.7. A Rubik’s universum is the set of all cube states S closed under the
valid generators G, given a fixed color ordering C of the faces in the solved state.

Since the colors of the central facelets remain static, there is no valid (non-
destructive) way to transition between distinct universa, each representing a unique
spatial relationship between the colors. A single standard universum is then usually
obeyed by cube manufacturers (Fig. 2.3).10 Assuming the standard universum and
substituting generators with their corresponding cube states, the formalization of
Rubik’s cube is often simplified into G = S (as, e.g., in [81]).

Cayley Graphs

For the purpose of searching through the state space, the cube universum is then
commonly represented by a Cayley graph, in which nodes represent the cube states
and directed edges represent the valid moves. Particularly, for each node Si ∈ S in
the Cayley graph, an outgoing edge Si

g→ Sj is assumed for each move g from the
selected generating set of the group. Thus, with the elementary choice of moves in
the quarter-turn metric, we have a regular graph ∀S ∈ S : δ+(S) = 12. The problem
of solving the Rubik’s cube can then be formalized as finding the (shortest) path
between S and S∗ in the Cayley graph.

2.3.3 Domain symmetries

The Rubik’s cube involves a number of intriguing symmetries.
Definition 2.8. Symmetry of an object S is a transformation ϕ : S → S that
preserves some target property d of S ∈ S.

For instance, it is immediately obvious that arbitrarily rotating the whole cube
does not change any property of its corresponding state (as explored in some previous
works in Sec. 1.2). However, note that this trivial symmetry is already captured by
establishing the canonical orientation (Sec. 2.3.1), mapping all such rotations onto
a single representation (Fig. 2.3). The unique symmetries of this domain, which
we target in this work, are more intriguing in that they combine such, normally
studied, geometric transformations with discrete coloring permutations. Starting
with the latter, following the work of Rokicki [80], we first define the notion of
recoloring-equivalence:
Definition 2.9. We call two cube states S1, S2 recoloring-equivalent S1

π≡ S2 iff there
is an injective mapping π : C → C between the colors C, such that S1 ◦ π = S2.

9There are even smaller group generators, e.g., {F, B, L, R, U}.
10There are actually two common universa with different color neighborhoods, the Japanese and

the Western color schemes, but this choice has no effect as long as it is consistent.

16

....................................2.3. Rubik’s Cube Analysis

π()=
π()=
⋮

π()=

A)

B)

C)

Φrot

Figure 2.5: An original (A), a recoloring-equivalent (B), and a symmetry-equivalent
(C) cube states, originating through a color permutation π and a 90◦ counter-clockwise
geometric rotation ϕ around the front face.

That is, when states Si : F → C, possibly from different universa, are being
equivalent up to a certain permutation π of the colors C, as exemplified in Fig. 2.5
(A-B). With that, again following [80], we may finally define the domain symmetries
we exploit in this work.

Definition 2.10. We call two cube states S1, S2 symmetry-equivalent S1
ϕ
≡
π

S2 iff
there is a geometric transformation ϕ and a recoloring π, such that ϕ ◦ S1 ◦ π = S2.

That is, S1 and S2 are symmetry-equivalent if after applying ϕ to S1 it becomes
recoloring-equivalent to S2, as exemplified in Fig. 2.5 (A-C). The geometric transfor-
mations ϕ in our scope are then rotation and reflection (Fig. 2.3). See Sec. 2.4.3 for
a more detailed explanation of the (alternative) symmetries present in the Rubik’s
cube problem.

Symmetric Sets

Combinations of these two types of transformations then give rise to a symmetry-
transformation group with 48 unique members (including identity), which we form
through a minimal sufficient base of 3 rotations, with axes going perpendicularly
through the centers of the F , L, and U faces, and a single reflection that cuts the
cube in half (out of 3 such reflections), e.g., along the F face (Fig. 2.3). When
applied to the state space S, these induce subsets of symmetry-equivalent states
{Sj | ∀S1, S2 ∈ Sj : S1

ϕ
≡
π

S2}, consisting of up to 48 distinct elements, as also shown
in [42]. We further confirm (Sec. 3.2) that an overwhelming majority have exactly

17

2. Theoretical Background
48 members, with only a few subsets being smaller due to self-symmetries in the
states, i.e., cases where more than one of the 48 symmetries acts as identity.11 These
then shrink the corresponding sets of symmetry-equivalent states into 24, 16, 12, 8,
or 6 members, respectively, depending on the number of the state’s self-symmetries.

Generalized Rubik’s Cube Group

The 48 transformations forming the symmetry-transformation group can then be used
to generalize the definition of the Rubik’s cube group (Sec. 2.3.2) by introducing the
set of generalized generators G+, formed through combinations of the cube generators
and the respective symmetry transformations.

RG+ = (G+, ◦), ◦ : G+ × G+ → G+

The generalized Rubik’s group is then formed analogically, with the (non-commutative)
binary operation of composition, the “no-action” generator serving as identity, and
the inverse generator G−1 constructed by:..1. reversing the order of the moves and the transformations;..2. flipping the direction (counter-/clockwise) of the moves and inverting the

symmetry transformations.

The group generator is then the union of the set of the elementary moves, generating
the Rubik’s cube group, together with the minimal sufficient basis of the symmetry-
transformation group. The generalized group then describes all possible cube
universa in all color orderings, with both the Rubik’s cube group and the symmetry-
transformation group being its subgroups.

2.4 Symmetry-Aware Deep Learning

Each Rubik’s cube universum has an astronomically large configuration space
|S| ≈ 4.3 × 1019 with a single corresponding goal S∗. The complexity of this
task, proven to be NP-complete [29], makes it necessary to resort to heuristic
approaches, and the quality of the heuristic value function f : S → R+

0 , estimating
the distance d(S, S∗) of the current state S from the goal state S∗ in the Cayley
graph, is thus of crucial importance for both reinforcement learning and search-based
techniques (Sec. 1.2), where the task of estimating the distance by a parameterized
model fθ is cast as a regression problem:

min
θ∈Θ

∑
S ∈ S

|fθ(S)− d(S, S∗)|

Praising their universal approximation capability [28], classic feed-forward neural
networks have previously been used in place of fθ (Sec. 1.2), ignoring the structural
properties of the domain. As discussed, we aim to improve upon that front by
exploiting the problem symmetries (Sec. 2.3.3) in the form of invariance of the model
fθ.

11These cube states with highly regular color patterns have been referred to as “symmetric states”
in [80]. However, these are not to be confused with the symmetries exploited in this work.

18

............................... 2.4. Symmetry-Aware Deep Learning

Definition 2.11. Function f is an invariant of S ∈ S with respect to a transformation
ϕ : S → S iff f (ϕ(S)) = f(S).

The crucial property of the symmetries introduced in Sec. 2.3.3 is that they
naturally preserve the inner state configuration and thus the distance d(S, S∗) from
the goal state [80], making them suitable to enhance fθ : S → R+

0 . Following
the analysis from Sec. 2.3.2, we see that, in the quarter-turn metric, each Rubik’s
universum S can be partitioned into 26 subsets (S1, . . . ,S26) of distance-equivalent
states12 w.r.t. d(S, S∗). Thus, theoretically, an ideal maximally-invariant model
would induce exactly these 26 subsets as f∗

θ (S) = i ⇐⇒ d(S, S∗) = i. However, this
is clearly impossible due to the computational complexity of the problem [29]. Instead,
our aim is a more modest compression of the problem complexity by decomposing
the (S1, . . . ,S26) further into their subsets induced by the symmetry-transformation
group (Sec. 2.3.3), giving rise to distance-equivalent symmetry classes:

{Sj
i | ∀S ∈ S

j
i : d(S, S∗) = i ∧ ∀S1, S2 ∈ Sj

i : S1
ϕ
≡
π

S2}

2.4.1 Equivalence Classes

To create these classes, we need to turn the declarative description of the cube
symmetries from Def. 2.10 into a constructive procedure. Since naively examining
all the recolorings π (Def. 2.9) would be computationally infeasible, we design an
efficient procedure described in Alg. 1. Note that the 2nd step essentially performs
a certain color permutation, hence the states are recoloring-equivalent (Def. 2.9)
after the 3rd step, and the geometric transformation from step 4 then forms a
symmetry-equivalent state, matching the Def. 2.10. 13 Finally, we further simplify
the described transformation of ϕ−1 ◦G ◦ ϕ ◦ S∗ into G′ ◦ S∗ by ϕ-transforming the
generator G itself, instead of the cubes, resulting in Alg. 2. Indeed, for each of the
48 transformations ϕ, a mapping ϕG between the moves can be found to match the
purpose, e.g., for the clockwise rotation along the vertical axis of the cube (Fig. 2.3),
it is ϕG

i = {F 7→ L, B 7→ R, L 7→ B, R 7→ F, U 7→ U, D 7→ D}.

Algorithm 1 Construction of Equivalence Classes Sj

Given a cube state S and its generator G, its symmetry-equivalent states
S′

1..48 ∈ Sj can be constructed as follows:

1. Start with the solved S∗ in the canonical orientation.

2. Apply one of the 48 geometric transformations ϕi (Sec. 2.3.3), resulting in S∗′
i .

3. Apply the state’s S generator G to the state S∗′
i .

4. Apply inverse ϕ−1
i of the transformation from step 2.

12There is, of course, also the 27th trivial subset S0 containing the solved state with d(S∗, S∗) = 0,
which we omit for simplicity.

13The usage of a shared generator here hints towards equivalent states sharing the same sets of
facelet patterns (disregarding the color), further elaborated in Sec. 2.4.4

19

2. Theoretical Background
Algorithm 2 Simplified Equivalence Class Sj Construction
Given S and G, the symmetry-equivalent states S′

1..48 ∈ Sj can also be constructed
as follows:

1. Apply ϕG
i to generator G: ϕG

i (G) = G′.

2. Apply the new generator G′ to the solved state S∗.

2.4.2 Conjugacy Classes

The analysis from the constructive algorithms (Alg. 1, Alg. 2) then allows to further
formalize the chosen equivalence classes in group-theoretic terms.
Definition 2.12. A group element T ′ ∈ G is said to be conjugate to element T ∈ G
if there exists an element X ∈ G such that T ′ = X−1 ◦ T ◦X

It was stated that a cube state S = G◦S∗, acquired by applying the generator G on
the solved state S∗, has a symmetry-equivalent state representable as S′ = ϕ−1 ◦G ◦
ϕ ◦S∗ = G′ ◦S∗. Thus, from Def. 2.12 it follows that the elements of the generalized
Rubik’s cube group (Sec. 2.3.3), generalized generators G, G′ = ϕ−1 ◦G ◦ ϕ ∈ G, are
conjugates and thus the sought-after equivalence classes can be seen as conjugacy
classes.

Consequently, from the perspective of geometric deep learning [13], we may
classify the problem of symmetry-invariant learning in the Rubik’s group as that of
conjugation invariance [66]. As such, the symmetries extend beyond the typically
studied spatial invariances, and their incorporation into neural architecture design is
worth further attention, as it has not yet been attempted by previous works, e.g., [66]),
that instead resorted to a precomputed representation via a global coordinate system.

2.4.3 Other Cube Equivalence Classes

Apart from the reported symmetry-equivalence (Sec. 2.4.1), there are a number
of other symmetries of the cube states that might inspire alternative (inferior)
geometric deep learning models. Generally, the equivalence class can comprise
multiple types of symmetric transformations T , with each such transformation
generating at most n equivalent states. However, states can also be (self-)symmetric
w.r.t. T (Sec.2.3.3), resulting in smaller equivalence classes. In addition, T can map
the state to a different universum than S (Def. 2.7), or may not preserve the state’s
distance d(S, S∗). Lastly, some of the transformations are trivially reversable by
the canonical representation (Sec. 2.3). We describe a number of such alternative
symmetry-equivalences w.r.t. these properties in Tab. 2.2.

Firstly, there are simple geometric cube symmetries involving 24 cube rotations
and 9 reflections along the respective planes (Fig. 2.3), which do not involve any
moves. However, the rotations do not change the cube state and are thus nullified
by the selected canonical representation (Sec. 2.3.1). Further, the reflections, even
though they preserve the property of the state’s distance, map cube states into
different universa (Def. 2.7). Nevertheless, these can be extended to the actual

20

............................... 2.4. Symmetry-Aware Deep Learning

Equivalence Class Transformation T Upper Bound ∀S : S ∈ S Preserves d(S, S∗) Reversable

Geometric equivalence Cube rotation 6 · 4 = 24 Yes Yes Yes
Plane reflection 3 + 6 = 9 No Yes No

Symmetry-equivalence Rotation only 24 Yes Yes No
Rotation+reflection 24 Yes Yes No

Inverse-equivalence Generator’s inverse 2 Yes Yes No
Color permutations Bijective mapping 6! = 720 No Yes Some

Table 2.2: Alternative equivalence classes of the Rubik’s cube and their properties.

symmetry equivalences described in Def. 2.10. Thirdly, there is an inverse equivalence,
inspired by [80]. Starting with a position S and its generator G, we arrive at the
inverse-equivalent position S′ by inversing the order of the moves in the generator
and replacing clockwise moves with anti-clockwise moves, and vice versa. However,
this requires knowledge of the actual cube generator, for which it is not possible
to incorporate this equivalence into a learning model designed to do so. Finally,
the overall generic class of all the color permutations actually covers the geometric
symmetries, too, including the symmetry-equivalence and inverse-equivalence classes
(if we allow their combination with the geometric symmetries). However, the cube
universum (Sec. 2.3.2) is not closed under all such color permutations, hence this
class cannot be used in the model design either.

2.4.4 Invariant Neural Architecture Design

Ultimately, should we be able to endow fθ with invariance w.r.t. the symmetry-
equivalence, we would effectively alleviate the (data) complexity of the problem
of learning d(S, S∗) by a factor of up to 48 (Sec. 2.3.3). A straightforward uni-
versal solution to design such an architecture would be to internally expand the
corresponding symmetry class Sj for each input state and aggregate the respective
representations of all its members {S1, . . . , S48} within the computation graph of
the model fθ (see Sec. A.2 for a related CNN-based model). Nevertheless, this naive
solution is rather expensive, and the group expansion, described in Alg. 1, is not
easy to vectorize.14 Instead, building on the insights from Sec. 2.3, we seek to design
a more efficient, compact architecture satisfying the same invariance properties from
the ground up.

Recoloring Invariance

The core insight can be drawn from the recoloring equivalence (Def. 2.9), realizing
that no permutation of the cube colors plays any role in distinguishing the equivalence
classes. Turning around the definition of symmetry-equivalence (Def. 2.10), we know
that some recolorings π, matched with an appropriate transformation ϕ, produce
equivalent states. While other such transformations do not produce these, it is
merely because they lead to different cube universa (Def. 2.7),15 where they form

14Moreover, although it follows a design similar to some of the geometric deep learning models [13]
and related work (Sec. 1.2), it is arguably close in spirit to mere data augmentation.

15It might not be trivial to see why all other combinations of recoloring and rotations/reflection
lead to different universa, but it is simply because the 48 recolorings exhaust the set of color

21

2. Theoretical Background
their own equivalence classes, while still retaining the inner state structure and
distance to their respective goal states. Consequently, our architecture should treat
all the individual colors exactly the same, i.e., remain recoloring invariant.

Color Patterns

Removing the information about specific colors, we are only left with their patterns.
Definition 2.13. A color pattern P is the set of relative positions of facelets
{f1, . . . , f9} of a single color C, disregarding their absolute coordinates, orientations,
and color name.

Note that, following Def. 2.10, each color pattern is an invariant of a cube state
w.r.t. its symmetric transformations. That is, using a fixed cube orientation, a
pattern P can be transformed in one of the ϕ1..ϕ48 ways, followed by recoloring
π w.r.t. the final position of the middle facelet. As these transformations do not
change the relative positions of the facelets, all the symmetry-equivalent states
S′ ∈ Sj necessarily share the same set of color patterns. Consequently, we know
that the architecture should necessarily represent the states of a cube S ∈ S as an
invariant composition of such color-independent ϕ-invariant pattern representations
{P1, . . . , P6}, the parameterization of which should be shared across all the 6 patterns.

Invariant Pattern Representation

We may essentially view each color pattern as a set of 9 3D points lying on a cube
surface. Following that view, we choose to represent these points directly as a
distance-weighted spatial graph, in the spirit of geometric deep learning. This is a
convenient format upon which the existing stack of Graph Neural Networks (GNNs)
can be exploited. Nevertheless, as we disregard both the positions and colors of
the facelets, we are left with no features associated with the nodes. We address
this by seeding the nodes with a modified run of the Weisfeiler-Lehman’s (WL)
color refinement [109], underlying the GNNs [114]. Particularly, each node (facelet)
collects distances to all its neighbors into a set {d1, . . . , d6}, similarly to Li et al. [64].
To turn these into the required feature vectors while avoiding any undesired ordering
of the nodes, we sort them w.r.t. their values, resulting in x⃗i = (d1, . . . , d6). For
further possible WL iterations, the respective neighbor vectors {x⃗1, . . . , x⃗6} can then
again be concatenated in a lexicographic order, or simply aggregated in a standard
GNN fashion, with which the architecture may then continue. The proposed concept
is outlined in Fig. 2.6.

2.4.5 Neural Symmetry Detection

In search for the specific design choices for the final symmetry-invariant neural
architecture fθ, based on the outlined building blocks, there are generally two
competing objectives: (i) compression and (ii) expressiveness. Compression refers
to the decrease of the problem complexity via collapsing the state space into the

permutations maintaining the same color neighborhood, which is a defining factor for the cube
universa.

22

............................... 2.4. Symmetry-Aware Deep Learning

... ...

2.9
2.8

3.1

2.1

2

1

2.8

2.6

1

2.1

2.1
2.8

2.6
2.7

1 1

2.7

2

2x WL2x WL2x WL

[d11, ...]

[d31, ...]

[d41, ...]

[d21, ...]

2.9
2.8

3.1

2.1

2

1

2.8

2.6

1

2.1

2.1
2.8

2.6
2.7

1 1

2.7

2

... ...

[d11, ...]

[d31, ...] [d41, ...]

[d21, ...]
[d11, ...] [d31, ...]

[d41, ...]

[d21, ...]

Figure 2.6: The proposed symmetry-invariant architecture (Sec. 2.4.4).

symmetry-equivalence classes Sj , while expressiveness refers to the ability to distin-
guish the states from the different distance-equivalence classes Sd=i (Sec. 2.4.1). For
instance, a standard feed-forward architecture trivially satisfies the expressiveness
criterion but yields no compression. On the other hand, invariant architectures
that compress the problem space may not be sufficiently expressive. In the case of
Rubik’s cube, introducing any undesired facelet or color ordering in the architecture
would hurt the invariance-induced compression, while compressing too much would
hurt expressiveness and thus the capacity of the model fθ to learn d(S, S∗).

Empirical Procedure

To effectively navigate the specific design choices, we propose the following universal
neural symmetry-detection routine, operating on a given set of labeled samples
S ′ ⊆ S. Firstly, we organize the set into distance-equivalence classes S ′

i, and further
into symmetry-equivalence classes Sj′

i , e.g., following the Alg. 2. Secondly, given
a neural model fθ with randomly initialized parameters θ, we also group the S ′

into new value-equivalence classes Vk induced by their empirical model-evaluations

23

2. Theoretical Background
as Vk = {S | fθ(S) = k}.16 Thirdly, we check intersections between the Vk’s and
Sj′

i ’s. If the model fθ perfectly captures the domain symmetries ϕ, the sets should
coincide, i.e., all the samples S within each given symmetry class Sj′

i should map to
an identical value k = fθ(S) (compression), while no two samples from different Sj′

i

should (expressiveness).
We note that it may happen that evaluations of two samples fθ(S1), fθ(S2) coincide

by chance rather than genuine symmetry-invariance of fθ.17 We effectively mitigate
the probability of such inadvertent value clashes by an “amplification trick” normally
used in the design of randomized algorithms [96]. Specifically, we repeatedly sample
θ to yield a list of predictions

(
fθ1(Si), . . . , fθrep(Si)

)
for each Si ∈ S ′. By hashing

the resulting value lists, the whole procedure can be performed in linear amortized
time, w.r.t. fθ, |S ′| and rep, using hashmaps for both the Sj′

i and Vk partitionings
of S ′.

The generic routine, described in Alg. 3, is then applicable to any symmetry-aware
deep learning architecture, independent of the domain. Different domains might,
however, require different approaches to the partitioning of the samples into the
equivalence classes. There are generally three options to do so, either (i) a full
expansion of each class Sj′

i from a single sample S ∈ Sj′
i (as in Alg. 2 for the

Rubik’s cube domain), (ii) augmentation of the samples S through a given symmetry
transformation ϕ (e.g., in domains where the full expansion would be expensive), or
(iii) by directly matching equivalent states fθ(S1) = fθ(S2) within a dataset (if an
equivalence certificate is easier to compute than the expansion).

Additionally, the requirement for a perfect overlap of the empirically-induced
Vk and theoretically-induced Sj′

i decompositions of S ′ may be relaxed in two ways.
Firstly, it is generally not necessary for evaluations of states from two distinct
symmetry classes S1 ∈ S1

i , S2 ∈ S2
i to be different, i.e., fθ(S1) = fθ(S2) is allowed as

long as they are from the same distance class Si (necessary expressiveness). Such a
model fθ might lead to even higher compression than that induced by the domain
symmetries. Secondly, on the contrary, even if the domain symmetries are only
partially captured, i.e., not all S ∈ Sj′

i map to the same fθ(S), the model fθ might
still be beneficial, as long as it retains at least some compression.

Invariance Error Metrics

Following the outlined reasoning, we further define a fine-grained error measure for
the candidate models fθ failing the strict tests from Alg 3. This can happen either
because (i) there is more than one hash value hS in some Vj

i of the equivalence
classes Sj′

i (insufficient compression ratio; r < 48 for the Rubik’s cube), or because
(ii) different classes Sj′

i share the same (hash) value hS (insufficient expressiveness).

16In practical terms, this means collecting and hashing output activations of a forward pass
through the representation model.

17Generally, the probability of this is rather small if f is continuous in θ. For that purpose,
non-injective functions, such as ReLU, may be replaced with more suitable ones, such as tanh.

18Before hashing, it is advisable to magnify the activations by several orders of magnitude and
round the result to an integer. This is to avoid possible problems with numeric instability of
real/floating point numbers in computers.

24

............................... 2.4. Symmetry-Aware Deep Learning

Algorithm 3 Neural Symmetry-Detection Routine
1: {Sj′

i } = partition(S ′)
2: Initialize fθ1 , . . . , fθrep

3: V ← {}
4: for S ′

i ∈ S ′ do
5: for Sj′

i ∈ S ′
i do

6: Vj
i ← {}

7: for S ∈ Sj′
i do

8: for q = 1, . . . , rep do
9: kq ← fθq (S)

10: end for
11: hS ← hash((k1, . . . , krep))18

12: Vj
i ← V

j
i ∪ {hS}

13: end for
14: V ← V ∪ {Vj

i }
15: end for
16: end for
17: for Vk ∈ V do
18: Check |Vk| = 1 (compression)
19: end for
20: for Vk,Vl ∈ V, k ̸= l do
21: Check Vk ∩ Vl = {} (expressiveness)
22: end for

Note that it only makes sense to report the compression ratio r = |{hS |S∈Sj′
i }|

|Sj′
i |

within

the equivalence classes Sj′
i if these are correctly recognized, i.e., there is no error

of the second type. Thus, to properly report the number of hash value clashes of
the states S′ across the equivalence classes Sj′

i , taking into account their possibly
varying sizes,19 we base the metric on the number of incorrectly matched state pairs.

Definition 2.14. States S and S′ are incorrectly matched, denoted as S ! S′, if they
share the same evaluations hS = hS′ but belong to different symmetry equivalence
classes Sj′

i .

For each cube state S ∈ Sk and a corresponding set of n symmetry equivalence
classes sharing the same hash value {S1, . . . ,Sn | ∀j,∀S′ ∈ Sj : S′ → hSj}, we may
define the set FS = {S′ | S ! S′} of all the states20 from the remaining (j ≠ k)
symmetry classes as FS = ⋃n

j=1
j ̸=k

Sj . The total number of incorrectly matched state

19One could, e.g., report the total number of classes with a non-unique hash value, however, it
would not be clear if they are grouped in pairs, triples, quadruples, etc., which determines the
maximal number of classes distinguishable by the learner.

20or, possibly, patterns for the pattern dataset (Sec. 3.1.1)

25

2. Theoretical Background
pairs for all the states from all the classes is then

|F| =
∑
S

∑
k

|Sk| ·
∑
j ̸=k

|Sj |,

s.t.∀S ∈ S,∀S ∈ Sk, S′ ∈ Sj , ∀θ : fθ(S) = fθ(S′)

2.5 Parameters of GNN Interpretability Methods

In Sec. 2.4.4, we have outlined our target neural architecture as a graph neural
network. Therefore, we return to GNN interpretability methods and discuss the
related methodology and design choices w.r.t. the parameters of the selected post-
hoc21 methods.

Following up on Yuan’s taxonomy [117] described in Sec. 1.2.2, Amara et al. [4]
created a systematic evaluation framework of GNN interpretability techniques
looking at different possible objectives of the user. The user should first decide
the focus of explanation – whether they are more interested in discovering the
phenomena existing in the data or the model’s behavior22. The second aspect
is the mask nature – whether the edge mask ME should be discrete (hard),
ME ∈ {0, 1}M×M , or continuous (soft), ME ∈ [0, 1]M×M . Finally, there is the aspect
of mask transformation/aggregation – the explanation algorithm should output
only the important masks, and the filter can be set, e.g., by specifying the top-k
number of masks or a threshold on the importance value. While the last two aspects
are a matter of parameter tuning, the focus of the explanation is a fundamental
question that should be decided based on the purpose of the explanation.

In Sec. 3.3, we compare the transparency of the interpretations based on the
existing techniques [117], concretely the GNNExplainer [115] and Parameterized
Explainer (PGExplainer) [69], with our own intuitive explanations based on the
understanding of the symmetry-aware architecture. Even though there exist metrics
for evaluating explanations specifically modified for graphs, such as fidelity [117] or
unfaithfullness [1], they are defined for classification tasks, not regression, which is
our task at hand. Thus, in the comparison, we stress the usefulness of the produced
explanations. Especially, we would like the explanation methods to be able to
distinguish representation of inputs with different ground-truth in a way that is
understandable for humans.

21All methods mentioned in Sec. 1.2.2 belong to the category of post-hoc explainability methods.
22Model focus of an explanation is not to be confused with the model-level explanation (e.g.,

the XGNN method in Sec. 1.2.2). The explanation with model focus is still based on dependency
between concrete data and predictions, while model-level methods are independent of data input.

26

Chapter 3
Rubik’s Cube Experiments

With the experiments, we aim to validate the design of the introduced symmetry-
invariant neural architecture blueprint by answering the following questions:

Q1 What is the simplest, sufficiently expressive model design of the color patterns
and their combination?

Q2 What is the real state-space compression factor of the resulting architecture?

Q3 How does it compare to related work in terms of data efficiency and training
generalization?

Q4 How does it compare as a heuristic estimator in terms of searching for (optimal)
solutions?

3.1 Data

The Rubik’s cube has a fully observable state space, but with 43, 252, 003, 274, 489, 8
56, 000 unique configurations, it is impossible to analyze in full, for which we resort
to data generation and sampling techniques.

3.1.1 Color Patterns

Firstly, we generated an artificial, exhaustive dataset, specifically created to navigate
the design of suitable color-pattern representations, addressing the Q1. The dataset
is a collection of all valid single-color facelet configurations, restricted only by the
physical cube properties (Sec. 2.3.2). Specifically, we restrict the configurations to
consist of exactly 4 corner facelets, 4 edge facelets, and 1 middle facelet, yielding(24

4
)
·
(24

4
)
·6 = 677, 471, 256 configurations that were labeled by their symmetry classes

(Sec. 2.4.4), which we further filter out if there are multiple facelets of the same color
on the same cubie, resulting in

(8
4
)
· 34 ·

(12
4

)
· 24 · 6 = 269, 438, 400 configurations.

3.1.2 Reverse Generation

To obtain a suitable dataset for analyzing the whole cube configurations, we, similarly
to the original DeepCube [2] experiments, generated the states by progressing from

27

3. Rubik’s Cube Experiments
the solved configuration S∗ in a reverse manner, through which we exhaustively
generated a dataset of all the Rubik’s cube states with d(S, S∗) ≤ 5. We used
the quarter-turn metric dqt (Sec. 2.3.1) to align with the choice of [2]. With the
exponential growth of the state space, this results in a dataset with ≈ 105 unique
states. In contrast to [2] that sampled also from greater depths, this allows to retain
the exact ground truth optimal distance d(S, S∗) information by keeping a closed
list of visited states, which is necessary for our exact analysis.

3.1.3 Sampling

Finally, to address the lack of distance-labeled configurations from greater depths,
which cannot be reached using the closed list technique, one may resort to sampling in
combination with (optimal) solvers. While running the solvers is relatively expensive,
fortunately, there is a freely available dataset of (another) 105 solved positions due
to [56]. This dataset is available in the face-turn metric dft (Sec. 2.3.1). We further
expanded the dataset using the generation Alg. 1, yielding 4, 800, 000 labeled states,
spanning the distances of d(S, S∗) = [14, . . . , 19].1

3.2 Results

In this section, we report the results of the model design choices (Q1, Q2), learning
performance (Q3), and problem-solving performance (Q4) of the proposed neural
architecture outlined in Sec. 2.4.4. Ablations are then reported in Sec. 3.2.2.

3.2.1 Architecture Design

We tested several specific configurations of the proposed architecture (Fig. 2.6)
w.r.t. the choices of (i) distance metric, (ii) graph connectivity, and (iii) aggregation
operators, and evaluated the resulting model’s expressiveness. Using the symmetry
detection technique (Sec. 2.4.5) on the exhaustive color-pattern dataset (Sec. 3.1.1),
we established that a simple choice of (i) Euclidean distance weighting of a (ii) fully
connected graph of the facelets fi ∈ P (Sec. 2.4.4) is sufficient, if combined with (a
minimum of) k = 2 iterations of the WL-based message-passing updates (WLk) as:

x⃗i
(k) = x⃗i

(k−1) +
6∑

j=1
j ̸=i

||fi − fj ||2 · x⃗j
(k−1)

Similarly, for the (iii) aggregation operator, the simple choice of sum was found
sufficiently expressive, in accordance with the findings in related geometric archi-
tectures [119, 114], despite the existence of more expressive standalone operators
(such as the lexicographic sorting, Sec. 2.4.4). This also applied to the pattern-level
aggregation, where a direct summation of the resulting representations again proved

1The limited span is due to the heavily uneven distribution of the underlying state space, with
an absolute majority of states residing around these depths. Also, none of the states in the set were
self-symmetric. Thus, the expansion factor was exactly 48.

28

.. 3.2. Results

Dataset |S| #Sj |Sj | Err(WL2) |WL2|

dqt = 1 12 1 12.00 0 12.00
dqt = 2 114 5 22.80 0 22.80
dqt = 3 1,068 25 42.72 0 42.72
dqt = 4 10,011 219 45.71 0 45.71
dqt = 5 93,840 1,978 47.44 0 47.44
dft = 14 864 18 48.00 0 48.00
dft = 15 9,456 197 48.00 0 48.00
dft = 16 130,080 2,710 48.00 0 48.00
dft = 17 1,280,304 26,673 48.00 0 48.00
dft = 18 3,220,752 67,099 48.00 0 48.00
dft = 19 158,544 3,303 48.00 0 48.00
patterns 269,438,400 5,617,306 47.9658 0 47.9658

Table 3.1: State space statistics of the 3 datasets, with (expressiveness) error and
compression of the proposed (WL2) model design.

sufficiently expressive, concluding the search for the simplest invariant architecture
delineated in Q1.

Subsequently, using the same technique (Sec. 2.4.5) on the exhaustive and sampled
datasets, we established that the architecture indeed follows the exact symmetry
decomposition induced by the domain symmetries (Sec. 2.3.3), as the partitioning
into the model’s symmetry-equivalence classes matched the theoretical distribution
exactly. Consequently, apart from the few low-depth subsets of the state space that
contain a lot of self-symmetric configurations, the model is indeed able to compress
the data space by the theoretical (upper bound) factor of 48 (Sec. 2.3.3), answering
the Q2.

The results are reported in Tab. 3.1, decomposing the cube state space into the
respective depths d(S, S∗) of the exhaustive (quarter-turn, dqt = [1..5]) and sampled
(face-turn, dft = [14..19]) datasets, extended with the color-pattern (patterns) dataset
(Sec. 3.1). We report the statistics of the number of states (|S|), number of symmetry-
equivalence classes (#Sj), and their average sizes (|Sj |). Finally, we report the
expressiveness errors of the proposed WL2 design, as measured by the number of
incorrectly matched state pairs (Def. 2.14), and its respective compression rates
(Sec. 2.4.5), corresponding to the average sizes of the induced value-equivalence
classes. As outlined, the proposed architecture achieves perfect compression with
zero (expressiveness) error. See Sec. 3.2.2 for comparison with other (inferior) model
designs for further substantiation of the proposed architecture.

3.2.2 Pattern Representation Ablations

Apart from the proposed WL-based pattern invariant design (Sec. 2.4.4), we also
tested a number of different ϕ-invariant features, namely (i) the scalar representing
the volume of the convex hull of the pattern points, (ii) the sorted collection of
distances to the (fixed) middle facelet of the (color) pattern, and (iii) the sorted and

29

3. Rubik’s Cube Experiments
aggregated 2D collection of all pairwise distances of the pattern points. Invariants
(ii) and (iii) were considered in variants with different distance metrics (Euclidean,
Manhattan, and another related (custom) distance, allowing merely surface traversal
across the cube). Recall that a correct pattern invariant must be consistent with
the definition of the color pattern (Def. 2.13), disregarding absolute positions and
orientations of the pattern points. While the (i) volume invariant fulfills this
requirement in a straightforward manner, the (ii) invariant requires sorting the
distance collection so as not to introduce any arbitrary orientation and ordering
of the pattern points. This issue was further amplified in invariant (iii), where
a vector of distances for each pattern point is computed. Thus, the vectors had
to be either aggregated (e.g., summed) into a single vector before sorting, as in
invariant (ii), or the whole 2D collection had to be sorted lexicographically. The
described transformations then ensured compliance of all three invariants with the
color invariance (Sec. 2.4.4). The motivation behind these invariants is that they
(intuitively) naturally reflect the distance d(S, S∗), e.g., the pattern volume in the
solved state is 0, while the volume grows as the facelets become more scattered
across the cube. However, all these invariants eventually proved of insufficient
expressiveness, as reported in the following subsection.

Tested Pattern Invariants

Recall that each color pattern can be viewed as 9 3-dimensional points (Sec. 2.4.4).
Adopting that view, a convex hull can be computed while extracting its volume
(Vol) as an invariant. This is a computationally expensive operation, however, it
can be precomputed and cached, amortizing its computational costs over multiple
experiments. Hashing each color pattern by volume, the expressiveness test (Alg. 3)
from the neural symmetry-detection routine failed. The median number of classes to
which each hash corresponded was 6, 366.5, with a mean of 18, 238.01 classes. There
were 2.91 · 1014 incorrectly matched patterns.

Expanding of the insufficient expressiveness of Vol, several distance invariants
were considered. The first version (L2mid) computed a single vector of Euclidean
distances w.r.t. the middle facelet, proceeding with sorting and hashing of the result.
This invariant also failed the expressiveness test. The median number of classes to
which each hash corresponded was 576, and the mean was 2, 292.78 classes. There
were 6.97 · 1013 incorrectly matched patterns.

The second version (L2N×N) produced a (Euclidean) distance matrix 9× 9, with
the ith row/column representing the distances of all facelets to the ith facelet. The
rows of the matrix were sorted first. After that, the matrix was either (a) sorted
lexicographically or (b) summed along the column dimension, and the result was
hashed. However, the expressiveness test still failed in both cases. For both sum and
sort variants, the median number of classes to which each hash corresponded was 1,
the mean was 1.00001 classes, and there were 97, 344 incorrectly matched patterns.

The third invariant version (L1N×N) adjusted the second version, exchanging the
Euclidean metric of distance for the Manhattan distance. Hashing the distance
matrix similarly with sum (a) and sort (b) variants, both experiments still failed the
expressiveness test. The median number of classes to which each hash corresponded
was 5 for sum and 1 for lexicographic sort, and the mean was 19.56 classes for sum

30

.. 3.2. Results

and 1.78 for sort. There were 1.92 · 1012 incorrectly matched patterns for sum and
9.99 · 109 incorrectly matched patterns for sort.

Besides the pattern dataset, the described pattern invariant ablations were also
tested w.r.t. recognizing the overall cube states. Naturally, none of these invariants
was successful in that either, nevertheless, the most promising Euclidean distance
invariants (L2N×N) remained very close to perfect on both the exhaustive and
sampled datasets,2 reinforcing the concept that most of the model expressiveness
lies in correctly recognizing the patterns themselves.

Similarly to Tab. 3.1 with the main model (WL2) results, we then report the
expressiveness errors and compression rates for the described ablation invariants
(Vol, L2mid, L2+

N×N, L2sort
N×N, L1+

N×N, L1sort
N×N) in Tab. 3.2, and Tab. 3.3, respectively.

Dataset Err(Vol) Err(L2mid) Err(L2+
N×N) Err(L2sort

N×N) Err(L1+
N×N) Err(L1sort

N×N)
dqt = 1 0 0 0 0 0 0
dqt = 2 1,152 0 0 0 0 0
dqt = 3 16,128 6,912 0 0 0 0
dqt = 4 331,776 0 0 0 0 0
dqt = 5 336,384 6,912 0 0 0 0
dft = 14 2,484,864 0 0 0 0 0
dft = 15 24,810,624 0 0 0 0 0
dft = 16 345,217,536 0 0 0 0 0
dft = 17 2,614,694,400 3,456 0 0 3,456 0
dft = 18 2,950,297,344 2,304 0 0 4,608 0
dft = 19 426,272,256 1,152 0 0 1,152 0
patterns 2.9183E+14 6.9748E+13 97,334 97,334 1.9198E+12 9.9933E+9

Table 3.2: Expressiveness errors of the different pattern invariants on the three (distance-
decomposed) datasets.

3.2.3 Learning Performance

Proceeding with the architecture from 3.2.1, we explored how the improved data
efficiency, induced by the symmetry-invariance of the model, translates into its
learning performance. Knowing that the aggregated color-pattern representation
resulting from the message-passing (WL) steps is sufficiently expressive, one can
turn the model fθ into a universal approximator of d(S, S∗) by simply adding a
sufficient number (min=2) of fully-connected (FC) layers, as outlined in Fig. 2.6.

To properly evaluate the effect of symmetry-invariance w.r.t. the state-of-the-art,
we align these layers with the DeepCube architecture [2], consisting of two such FC
layers, followed by additional 2-layer (FC) blocks with residual connections [41]. The
resulting symmetry-invariant architecture, referred to as SymmetryNet, then contains
the same number of parameters as DeepCube, with all their hyperparameters and
training protocols being completely aligned, too. The last choice for the SymmetryNet
architecture is the message-passing scheme. Particularly, we considered (i) the
simplest possible, non-parametric, message-passing leading to SymmetryNet V1, and

2The only error made by this invariant was mistaking 144 equivalence classes from a distance
dqt = 6, which would be allowed under the relaxed version of the symmetry-detection routine.

31

3. Rubik’s Cube Experiments
Dataset |Vol| |L2mid| |L2+

N×N| |L2sort
N×N| |L1+

N×N| |L1sort
N×N|

dqt = 1 12.00 12.00 12.00 12.00 12.00 12.00
dqt = 2 28.50 28.50 22.80 22.80 22.80 22.80
dqt = 3 42.72 80.09 42.72 42.72 42.72 42.72
dqt = 4 49.32 94.41 45.71 45.71 45.71 45.71
dqt = 5 85.70 96.15 47.44 47.44 47.44 47.44
dft = 14 57.60 48.00 48.00 48.00 48.00 48.00
dft = 15 50.84 48.00 48.00 48.00 48.00 48.00
dft = 16 123.65 48.00 48.00 48.00 48.00 48.00
dft = 17 649.57 48.00 48.00 48.00 48.005 48.00
dft = 18 1,427.01 48.002 48.00 48.00 48.003 48.00
dft = 19 142.58 48.00 48.00 48.00 48.00 48.00
patterns 874,800 109974.8571 47.9662 47.9662 938.3390 85.3277

Table 3.3: Compression rates of the pattern invariants on the datasets

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Test size

0.05

0.10

0.15

0.20

0.25

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1

SymmetryNet V2

DeepCube

Figure 3.1: Test-set MAE model performances when generalizing from decreasing
fractions of the exhaustive dataset (dqt = [1 . . . 5]), displayed with a 95% confidence
interval.

(ii) the generalized graph convolutional layer [63] leading to SymmetryNet V2, while
still retaining the exact same number of learnable parameters. Implementation
details of all the architectures are then described in Sec. 3.2.6.

First, we report the learning performances of the three models through mean
absolute error (MAE) against the optimal d(S, S∗). Starting with the exhaustive
dataset (Sec. 3.1.2), Fig. 3.1 depicts the (converged) MAE test-set performances for
varying train-test split ratios, while Fig. 3.2 displays the progress of the performance
when generalizing from 10% of the data, corresponding to the most realistic setting
from the given splits.3 For the full 105-sized sampled dataset (Sec. 3.1.3), the models’

3The real train-set ratio is even (much) lower during the actual search, given the vast size of the
state space.

32

.. 3.2. Results

0 20 40 60 80 100

Training epoch

10−1

100

101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1

SymmetryNet V2

DeepCube

Figure 3.2: The effect of symmetry-invariance demonstrated through the models’ learning
convergences when generalizing from 10% of the exhaustive dataset (dqt = [1 . . . 5]),
displayed with a 95% confidence interval.

0 20 40 60 80 100

Training epoch

100

101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1

SymmetryNet V2

DeepCube

Figure 3.3: The effect of symmetry-invariance demonstrated through the models’
learning convergences on the full 105 sampled dataset (dft = [14 . . . 19]), displayed with
a 95% confidence interval.

test-set MAE convergence is then depicted in Fig. 3.3, with Fig. 3.4 showing the
models’ converged test performances while increasing the train split of the sampled
dataset. The results for both datasets are further summarized in detail in Sec. 3.2.5.

As can be observed, the SymmetryNet models provide substantially better gen-
eralization4 than the symmetry-unaware DeepCube, which is much more prone to
overfitting early in training (Fig. 3.2), resulting in generally worse test errors. This
advantage of SymmetryNet models then grows with the decreasing size of the labeled
fraction of the datasets (Fig. 3.1, Fig. 3.4). This is of particular importance due
to the vast size of the actual state space of which only a tiny fraction can ever be

4Furthermore, performance-wise, SymmetryNet V2 is slightly preferable over SymmetryNet V1
for some of the tasks. The advantage is, however, balanced by the V2 being more computationally
expensive.

33

3. Rubik’s Cube Experiments

101 102 103 104 105

Dataset size before symmetry expansion

0

2

4

6

8

10

12

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1

SymmetryNet V2

DeepCube

Figure 3.4: Models’ learning performances when generalizing to the symmetry-equivalent
states from an increasingly large portion of the sampled dataset (dft = [14 . . . 19]),
displayed with a 95% confidence interval.

used for training during the search. Finally, despite not being very discernible from
Fig. 3.4 (see Sec. 3.2.5 for detail), even on the full 105 established dataset from [56]
both the SymmetryNet architectures end up with a significant performance advantage
over DeepCube. In accordance with the theoretical assumptions (Sec. 2.4), we can
thus confirm the SymmetryNet to yield better data efficiency and generalization,
answering the Q3.

3.2.4 Search Performance

Finally, to directly compare the proposed SymmetryNet architectures with DeepCube,
we used the trained models as heuristic function estimators during the actual problem-
solving. Particularly, we considered two types of search – (i) greedily selecting the
next state following the smallest heuristic value in each iteration, and the A∗ search,
as also used in [2].5 For a more detailed analysis, we also computed an accuracy
metric, measuring the ratio of states in which an optimal successor has correctly
been selected. In [2], the data and labels were bootstrapped starting from the solved
state, and continuing towards larger distances while updating the heuristic model
regularly with a small number of samples. This is analogical to the exhaustive
dataset (Sec. 3.1.2) with a correspondingly small train-test ratio, which we set to
the (generous) 10%.6

We report the accuracy, and the ratio of solved and optimally solved states in
Fig. 3.5. Since, given the relatively generous search space budget for the given
problem size, all the models are able to successfully solve the given instances with
A∗, we additionally report the mean and median numbers of expanded nodes in
Fig. 3.6. As can be observed from the figures, similarly to the MAE performances,

5For practical reasons, we restricted the search to paths l(P ath) ≤ 20, which is a very generous
bound for the dataset.

6This is, again, more than generous, considering that merely a tiny fraction of the actual state
space can ever be visited.

34

.. 3.2. Results

Accuracy Solved
greedy

Opt. solved
greedy

Solved
A*

Opt. solved
A*

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

p
er

fo
rm

a
n

ce
o
n
N

=
1
0

ra
n

d
o
m

se
ed

s
SymmetryNet V1

SymmetryNet V2

DeepCube

Figure 3.5: Model comparison through the problem-solving (search) performance metrics
- (i) accuracy of selecting optimal successor, (ii) solution rates, and (iii) optimal solution
rates (higher is better).

Mean Exp. Nodes in A* Median Exp. Nodes in A*

101

102

103

A
ve

ra
ge

ex
p

an
si

on
on

N
=

10
ra

n
d

om
se

ed
s

SymmetryNet V1

SymmetryNet V2

DeepCube

Figure 3.6: Log-scale comparison of the models’ A∗ search performances as measured
through the average number of expanded nodes (lower is better).

the SymmetryNet architectures are clearly superior during problem-solving too, as
measured through all the accuracy, the solution rates of the greedy search, and the
size of the expanded search space during the A∗ search.

3.2.5 Performance Comparison Tables

Accompanying the mean absolute error (MAE) performance graphs from Sec. 3.2, we
further report the MAE comparisons with standard deviations over N = 10 random
initializations for the exhaustive and the sampled datasets in Tab. 3.4 and Tab. 3.5,
respectively.

For the average search performances and expansion rates with their standard
deviations, see Tab. 3.6.

35

3. Rubik’s Cube Experiments
Exhaustive MAE ± std. dev.
Test Size DeepCube SymmetryNet V1 SymmetryNet V2

0.1 0.0612± 0.0119 0.0778± 0.0694 0.0625± 0.0376
0.2 0.0680± 0.0098 0.1013± 0.0555 0.0619± 0.0378
0.3 0.0894± 0.0148 0.0533± 0.0203 0.0529± 0.0230
0.4 0.1030± 0.0072 0.0914± 0.0421 0.0900± 0.0651
0.5 0.1208± 0.0080 0.0864± 0.0347 0.0887± 0.0315
0.6 0.1322± 0.0086 0.1207± 0.0396 0.1172± 0.0506
0.7 0.1744± 0.0098 0.0919± 0.0284 0.0715± 0.0303
0.8 0.2096± 0.0089 0.1036± 0.0267 0.0876± 0.0247
0.9 0.2617± 0.0044 0.1351± 0.0189 0.1237± 0.0222

Table 3.4: Comparison of the models’ MAE performances across different train-test
ratios of the exhaustive dataset

Sampled MAE ± std. dev.
Dataset Size DeepCube SymmetryNet V1 SymmetryNet V2

10 12.0195± 0.6078 6.5421± 0.8793 6.3418± 0.6854
100 9.4784± 0.5460 6.0905± 0.9017 5.0683± 0.6419
1, 000 7.0128± 0.6516 5.0410± 0.9732 4.5430± 0.7243
10, 000 0.6340± 0.0164 0.4834± 0.0342 0.4839± 0.0304
100, 000 0.5745± 0.0104 0.4913± 0.0208 0.5355± 0.0934

Table 3.5: Comparison of the models’ MAE performances while increasing the (subset)
size of the sampled dataset

Metric DeepCube SymmetryNet V1 SymmetryNet V2

Accuracy 0.5157± 0.0119 0.7710± 0.0415 0.8191± 0.0381
Solvedgr 0.0489± 0.0125 0.7487± 0.0606 0.7995± 0.0494
Opt. solvedgr 0.0484± 0.0127 0.7487± 0.0606 0.7990± 0.0498
SolvedA∗ 1.0000± 0.0000 1.0000± 0.0000 1.0000± 0.0000
Opt. solvedA∗ 0.9992± 0.0023 1.0000± 0.0001 1.0000± 0.0001
Mean exp.A∗ 512.2757± 170.1668 9.5995± 5.8721 7.6210± 3.3123
Median exp.A∗ 268.5500± 102.3094 6.4000± 3.6932 5.4000± 3.5553

Table 3.6: Comparison of the models’ performances in problem solving

3.2.6 Implementation Details and Hyperparemeters

The conceptual structure of our proposed model design is described in Sec. 3.2.3. In
Fig. 3.7, we depict the concrete implementation details.

While the DeepCube architecture assumed a one-hot-encoded representation of
the cube’s state (Fig. 2.4) as an input, the SymmetryNet architectures are based on
the described graph-based representation followed by the (custom) message-passing

36

.. 3.2. Results

Linear(500)

BatchNorm1d

BatchNorm1d

Linear(100)

BatchNorm1d

Linear(100)

BatchNorm1d

Linear(100)

Linear(1)

2x

dθ(S, S*)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

54x6

0 1 4 1 1 3 4 ...54x1

Linear(496)

GENConv(aggr = "add")

BatchNorm1d

BatchNorm1d

Linear(100)

BatchNorm1d

Linear(100)

BatchNorm1d

Linear(100)

Linear(1)

2x

[d21,...][d11,...]

[d31,...]

dθ(S, S*)

Linear(500)

SimpleConv

[d21,...][d11,...]

[d31,...]

OR

V1 V2

Figure 3.7: A detailed depiction of the SymmetryNet V1, SymmetryNet V2, and
DeepCube models (left to right) decomposed into individual layers.

procedure (Sec. 2.4.4).7 From there, however, both the SymmetryNet and DeepCube
architectures continue directly as scaled-down versions of the original DeepCube
architecture from [2]. Particularly, we used 2 residual blocks instead of 4, with 10
times fewer neurons in total. For implementation, we used the PyTorch [77] and
PyTorch Geometric [35] frameworks. All the networks were trained for 100 epochs
using the Adam optimizer [54] with a learning rate lr = 0.001, and a batch size of
1024.

Considered Graph Convolutional Layers

Apart from the message passing layer (SimpleConv) and generalized graph con-
volutional layer (GENConv; [63]), other graph convolutional layers were considered
but yielded worse performance. Notably, we tried out the following state-of-the-art
graph neural layers: the graph convolutional operator (GCNConv; [55]), the principal
neighborhood aggregation graph convolutional operator (PNAConv; [25]), the second
version of the graph attention operator (GATv2Conv; [11]), and the graph transformer

7Technically, SimpleConv corresponds to PyTorch Geometric’s implementation of the WL message-
passing without any learnable parameters, and GENConv is the PyTorch Geometric’s implementation
of the generalized graph convolutional layer from [63]

37

3. Rubik’s Cube Experiments
operator (TransformerConv; [90]).

These layers were tried out and eliminated since they consistently exhibited a
behavior which made successful training difficult: albeit, when inserted into the
architecture described by Fig. 2.6, they formally passed the expressiveness test, the
resulting activations had a very low variance between different equivalence classes
(regardless of their distance from goal), which increased the difficulty of learning
the equivalence-class concepts. The SimpleConv and GENConv did not pose such
problems.

3.3 Interpretability of SymmetryNet

Based on our literature review (Sec. 1.2.2), we concluded that none of the planning-
specific methods match our task, i.e., none of them explains a graph-based neural
network evaluating a planning state. On the other hand, multiple GNN-specific
interpretability methods are relevant. We tested two of them, GNNExplainer and
PGExplainer, which are both implemented in PyTorch Geometric8 and applied them
on the trained SymmetryNet, concretely SymmetryNet V1.

As per the taxonomy from Sec. 2.5, we tested both phenomenon- and model-
based approaches. Furthermore, we used the non-converted soft mask and tried
out different top-k values for the mask transformation threshold strategy before
deciding on k = 10. For both explainers, we produced explanations in the form of
edge importance scores/mask matrices. With GNNExplainer, it is further possible to
calculate node-related scores, concretely feature importance scores. The explanations
were computed on sample cube states from the exhaustive dataset, and for each
explanation, we produced a visualization of the respective important edges and
nodes they are connecting. We report a selected subset of those visualizations.

3.3.1 Distinguishing Different Distances

Comparing explanations for sample cubes of distance from goal d = 1 and d = 3
for different random seeds proved the instability and inconclusiveness of the GNN
explainability methods. For illustration, we include visualizations of phenomenon-
based explanations of GNNExplainer for two cubes of d = 1 in Fig. 3.89 and
visualizations of two cubes of d = 3 in Fig. 3.9.

6 3

04

11

17

18

19

26

22

50 44

39

45

48

46 47

51

3

4 7

12

10 13

15 18

21

27

33

31

32 37

39

40

41

Figure 3.8: Explanations of cube states of distance d = 1 produced by GNNExplainer.

8See https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html
9Note that all cubes of distance 1 share the exact same pattern.

38

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html

............................... 3.3. Interpretability of SymmetryNet

36 2

11

16

45

47

5

22

42

18 19

20

40

37 27

33

46

49 1

2

6

4

27

14

17 53 52 20

39

41

30

34

38

40

2446 28

Figure 3.9: Explanations of cube states of distance d = 3 produced by GNNExplainer.

It is clear that there are no discernible differences that would effectively distinguish
the data of different distances, even though the trained network can do so. Even
more, the graphics show that the explainer sometimes finds bigger differences between
cubes from the same distance than between distances 1 and 3. Similar results were
obtained with other explainer variants, i.e., with PGExplainer and model-based
explanations.

3.3.2 Explaining Single Cube Move with GNNExplainer

Figure 3.10: Comparison of cube states: a solved one on the left side, and one resulting
by clock-wise 90 deg rotation of the right face.

Since the previous explanations were inconclusive, we degress to a simpler setting.
We compare two cube states with the minimal difference of a single move, i.e., the
solved cube state S1 and cube state S2 of distance d = 1, achieved by rotation of the
right face (i.e., applying the generator G = R). The 2D projections of both cubes
are depicted in Fig. 3.10.

1

35

33

6

10

11

14

16

12

17 2

5

22

25 28

32

36

43 4

5

33

31 10 14

18

25 16

17 912 43

37

48

53 49

50

Figure 3.11: Two explanations of a cube state with d = 1: a better explanation on the
left side, highlighting mostly colors of facelets twisted by the move, a worse explanation
on the right side, mixing both twisted and untwisted facelets.

One would expect that, unlike in the solved state, in the state of distance d = 1,

39

3. Rubik’s Cube Experiments
the explanations would highlight either the 4 colors with twisted facelets (blue,
green, yellow, and white) or, on the contrary, the two colors with all facelets in their
original place (orange and red). We observed that for distance d = 1, the explainer
was able to clearly highlight either orange and red or the remaining 4 colors. The
remaining explanations were, however, mixed and not clearly distinguishable from
their d = 0 counterparts. For an example of a better and a worse explanation of
d = 1 cube state, see Fig. 3.11.

3.3.3 Architecture-Based Interpretations

Finally, we offer our own interpretations based on the architecture design as an
alternative to the standard GNN explainers which proved to be not so reliable for
the task. Starting from the last task of explaining a single cube move, we look at
the input representations (equivalent to the first iteration of the Weisfeiler-Lehman
color refinement algorithm) and at the hidden representations (equivalent to the
second iteration of the WL algorithm) of the graph convolutional layer, and consider
two transformations: (i) lexicographic sorting, and (ii) arithmetic mean.

For the first transformation, we get a matrix input and matrix output per each
cube state. Then, inspired by the top-k threshold (Sec. 2.5, if we select the first
k = 10 rows of the matrix (after sorting) corresponding to the solved state S1, we
get:

Rin(S1) =

0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2
0 1 1 1 2 2 2 2 2

Rhid(S1) =

0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02
0 14.71 14.71 14.71 21.54 21.54 28.02 28.02 28.02

with arithmetic means of Rin(S1) = 1.29 and Rhid(S1) = 17.08. While for state S2
in distance d = 1, we get:

Rin(S2) =

0 1 2 2 3 3 3 3 4
0 1 2 2 3 3 3 3 4
0 1 2 2 3 3 3 3 4
0 1 2 2 3 3 3 3 4
0 1 1 1 2 2 3 3 4
0 1 1 1 2 2 3 3 4
0 1 1 1 2 2 3 3 4
0 1 1 1 2 2 3 3 4
0 1 1 1 2 2 2 3 3
0 1 1 1 2 2 2 3 3

Rhid(S2) =

0 23.33 23.33 23.33 37.31 37.31 47.65 55.4 71.32
0 23.33 23.33 23.33 37.31 37.31 47.65 55.4 71.32
0 23.33 23.33 23.33 37.31 37.31 47.65 55.4 71.32
0 23.33 23.33 23.33 37.31 37.31 47.65 55.4 71.32
0 18.49 22.55 22.55 36.39 36.39 39.62 45.57 57.29
0 18.49 22.55 22.55 36.39 36.39 39.62 45.57 57.29
0 18.49 22.55 22.55 36.39 36.39 39.62 45.57 57.29
0 18.49 22.55 22.55 36.39 36.39 39.62 45.57 57.29
0 18.3 19.3 19.3 30.47 30.47 38.79 44.22 57.56
0 18.3 19.3 19.3 30.47 30.47 38.79 44.22 57.56

with arithmetic means of Rin(S2) = 1.50 and Rhid(S2) = 24.29.
We can see from both the top-k matrix as well as from the arithmetic means

of both input and hidden representations that the scalar values in the respective
matrices and arithmetic means have increased (except for the first matrix column,
which represents the 0 distances of the self-loops). Indeed, that is an expected
outcome, as scrambling the cube generally increases the average distances between
facelets of the same color. This stable deterministic (heuristic-like) interpretation

40

............................... 3.3. Interpretability of SymmetryNet

method reliably differentiates the two states, as we have designed the message-passing
architecture to collect distance measurements between the facelets/nodes of the
graph, see Fig. 3.12.

[0.0,2.0,2.5,1.5,1.0]

[2.0, 0.0, 1.0, 3.0, 5.0] [2.5, 1.0, 0.0, 3.5, 1.5]

[1.5, 3.0, 3.5, 0.0, 2.0] [1.0, 5.0, 1.5, 2.0, 0.0]

·2.0
+

·2.5
+

·1.5
+

·1.0
+

1.0

3.0 1.5

2.0

Figure 3.12: An illustrative example of the second message passing of distance-vectors,
which are weighted by the distances before aggregation.

Similarly, for the task of distinguishing cube states of different distances, the
method also succeeds, yielding Rin(Sd1) = 1.50 and Rhid(Sd1) = 24.29 for distance
d = 1, and Rin(Sd3) = 1.72± 0.08 and Rhid(Sd3) = 32.77± 2.60 for distance d = 3.
Note that for distance d = 3, we also report the standard deviation, as (unlike with
d = 1) different sets of color patterns with different representations arise for greater
distances.10

3.3.4 Comparison of Interpretability Techniques

We have seen some of the standard explanation methods for GNNs, as well as custom
interpretations based on the knowledge of the architecture. It is not surprising that
the latter was more successful in distinguishing and reasoning over cube states from
different cost to goal. We believe that this holds true for most applications, i.e., if
possible, it is preferable to utilize symmetry-related knowledge or other inductive
biases during the architecture design, not only to improve the effectiveness but also
to boost the interpretability of the whole model.

10We present only aggregated explanations; matrices can be generated in the explainer.ipynb
Jupyter notebook.

41

42

Chapter 4
Conclusion

In the thesis, we researched symmetry-aware deep learning models for solving
planning tasks, mostly based on graph neural networks and the Weisfeiler-Lehman
style of feature extraction. We discussed approaches toward the interpretability of
such architectures. We have laid out different model-agnostic and model-specific
techniques applicable either to neural networks in general, as well as graph neural
networks, specifically. We have concluded that our approach, interpretability through
built-in symmetry-based inductive biases, is rarely used yet promising. We then
followed the discussion with an analysis of multiple classical planning domains and
the symmetric properties of their graph representations.

Next, we focused on one specific planning problem, the Rubik’s cube. For the
Rubik’s cube problem, we introduced a well-substantiated neural architecture that
exploits the symmetries in the Rubik’s cube group, following a thorough analysis
of the problem. To efficiently navigate the space of specific model design choices,
we also introduced a simple but effective model-symmetry detection procedure that
can also be applied universally to all neural models in any discrete domain. In the
spirit of geometric deep learning, we then demonstrated superior efficiency of the
resulting architecture in both learning generalization and problem-solving over the
previously used state-of-the-art neural model. We argued that this process might
then serve as a blueprint for (geometric) deep learning researchers aiming to expand
to other new intriguing domains and that the resulting architectures are inherently
more transparent and interpretable.

Finally, we employed some of the described interpretability methods for graph
neural networks on the learned networks and compared their conclusions with our
own interpretations, concluding the desirability of inherent interpretability of deep
learning architecture, as opposed to mere post-hoc explanations.

4.1 Future Work

One of the promising paths of further research is generalizing the outlined symmetry-
based invariant architecture design (stemming from the analysis in Sec. 2.2) to all
standard planning tasks. However, there is always a trade-off between the generality
of the method and the possible compression that can be achieved by the symmetry-
aware architecture – domain-specific knowledge is usually needed to achieve greater
compression rates.

43

4. Conclusion...
Another possible avenue is to abandon the idea of graph neural networks and use a

more expressive paradigm, e.g., the Lifted Relational Neural Networks (LRNNs) [98,
97]. The LRNNs can, compared to GNNs, also express relations of arities > 2 and
other logical concepts, which would be hard (or impossible) to express by graphs.
The description language used for LRNN templates is also easier to customize, which
might be crucial for the generality of the method.

Apart from more expressive architectures, extending the discussed principles to
other popular architectures is also a promising direction. We have mentioned that,
e.g., transformers are closely related to graph neural networks [49], and as such, they
compute their own set of equivariances.

Finally, the neural symmetry detection algorithm deserves further attention, as
its automation for different architectures and equivalence classes could significantly
speed up the development of architectures inspired by geometric deep learning.

44

Bibliography

[1] Chirag Agarwal et al. “Evaluating explainability for graph neural networks”.
In: Scientific Data 10.1 (2023), p. 144.

[2] Forest Agostinelli et al. “Solving the Rubik’s cube with deep reinforcement
learning and search”. In: Nature Machine Intelligence 1.8 (2019), pp. 356–363.

[3] Paul Almasan et al. “Deep reinforcement learning meets graph neural net-
works: Exploring a routing optimization use case”. In: Computer Communi-
cations 196 (2022), pp. 184–194.

[4] Kenza Amara et al. “Graphframex: Towards systematic evaluation of explain-
ability methods for graph neural networks”. In: arXiv preprint arXiv:2206.09677
(2022).

[5] Alejandro Barredo Arrieta et al. “Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AI”.
In: Information fusion 58 (2020), pp. 82–115.

[6] Masataro Asai and Alex Fukunaga. “Classical planning in deep latent space:
Bridging the subsymbolic-symbolic boundary”. In: Proceedings of the aaai
conference on artificial intelligence. Vol. 32. 1. 2018.

[7] Masataro Asai et al. “Classical planning in deep latent space”. In: Journal of
Artificial Intelligence Research 74 (2022), pp. 1599–1686.

[8] Waiss Azizian and Marc Lelarge. “Expressive power of invariant and equiv-
ariant graph neural networks”. In: arXiv preprint arXiv:2006.15646 (2020).

[9] Federico Baldassarre and Hossein Azizpour. “Explainability techniques for
graph convolutional networks”. In: arXiv preprint arXiv:1905.13686 (2019).

[10] Etienne Barnard and David Casasent. “Invariance and neural nets”. In: IEEE
Transactions on neural networks 2.5 (1991), pp. 498–508.

[11] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph attention
networks?” In: arXiv preprint arXiv:2105.14491 (2021).

[12] Michael M Bronstein et al. “Geometric deep learning: going beyond euclidean
data”. In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[13] Michael M Bronstein et al. “Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges”. In: arXiv preprint arXiv:2104.13478 (2021).

45

4. Conclusion...
[14] Robert Brunetto and Otakar Trunda. “Deep Heuristic-learning in the Rubik’s

Cube Domain: An Experimental Evaluation.” In: ITAT. 2017, pp. 57–64.
[15] Dillon Z Chen, Sylvie Thiébaux, and Felipe Trevizan. “Learning Domain-

Independent Heuristics for Grounded and Lifted Planning”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 38. 18. 2024, pp. 20078–
20086.

[16] Dillon Z Chen, Felipe Trevizan, and Sylvie Thiébaux. “Return to Tradition:
Learning Reliable Heuristics with Classical Machine Learning”. In: arXiv
preprint arXiv:2403.16508 (2024).

[17] Dillon Ze Chen, Sylvie Thiébaux, and Felipe Trevizan. “GOOSE: Learning
domain-independent heuristics”. In: NeurIPS 2023 Workshop on Generaliza-
tion in Planning. 2023.

[18] Dillon Ze Chen, Felipe Trevizan, and Sylvie Thiébaux. “Graph Neural Net-
works and Graph Kernels For Learning Heuristics: Is there a difference?” In:
NeurIPS 2023 Workshop on Generalization in Planning. 2023.

[19] Zhengdao Chen et al. “On the equivalence between graph isomorphism testing
and function approximation with gnns”. In: Advances in neural information
processing systems 32 (2019).

[20] Taco Cohen and Max Welling. “Group equivariant convolutional networks”.
In: International conference on machine learning. PMLR. 2016, pp. 2990–
2999.

[21] Arthur Conmy et al. “Towards automated circuit discovery for mechanistic
interpretability”. In: Advances in Neural Information Processing Systems 36
(2023), pp. 16318–16352.

[22] Saksham Consul et al. “Improving human decision-making by discovering
efficient strategies for hierarchical planning”. In: Computational Brain &
Behavior 5.2 (2022), pp. 185–216.

[23] Sebastiano Corli et al. “Casting Rubik’s Group into a Unitary Representation
for Reinforcement Learning”. In: vol. 2533. IOP Publishing, 2023, p. 012006.

[24] Sebastiano Corli et al. “Solving Rubik’s cube via quantum mechanics and
deep reinforcement learning”. In: Journal of Physics A: Mathematical and
Theoretical 54.42 (2021), p. 425302.

[25] Gabriele Corso et al. “Principal neighbourhood aggregation for graph nets”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 13260–
13271.

[26] Mark William Craven. Extracting comprehensible models from trained neural
networks. The University of Wisconsin-Madison, 1996.

[27] Joseph C Culberson and Jonathan Schaeffer. “Pattern databases”. In: Com-
putational Intelligence 14.3 (1998), pp. 318–334.

[28] George Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of control, signals and systems 2 (1989), pp. 303–314.

46

.. 4.1. Future Work

[29] Erik D Demaine, Sarah Eisenstat, and Mikhail Rudoy. “Solving the Rubik’s
Cube Optimally is NP-complete”. In: arXiv preprint arXiv:1706.06708 (2017).

[30] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In:
Numerische mathematik 1.1 (1959), pp. 269–271.

[31] Danny Driess et al. “Deep visual heuristics: Learning feasibility of mixed-
integer programs for manipulation planning”. In: 2020 IEEE international
conference on robotics and automation (ICRA). IEEE. 2020, pp. 9563–9569.

[32] Feng-Lei Fan et al. “On interpretability of artificial neural networks: A
survey”. In: IEEE Transactions on Radiation and Plasma Medical Sciences
5.6 (2021), pp. 741–760.

[33] Patrick Ferber, Malte Helmert, and Jörg Hoffmann. “Neural network heuris-
tics for classical planning: A study of hyperparameter space”. In: ECAI 2020.
IOS Press, 2020, pp. 2346–2353.

[34] Stefano Ferraro et al. “Symmetry and complexity in object-centric deep active
inference models”. In: Interface Focus 13.3 (2023), p. 20220077.

[35] Matthias Fey and Jan Eric Lenssen. “Fast graph representation learning with
PyTorch Geometric”. In: arXiv preprint arXiv:1903.02428 (2019).

[36] Fabian Fuchs et al. “Se (3)-transformers: 3d roto-translation equivariant
attention networks”. In: Advances in neural information processing systems
33 (2020), pp. 1970–1981.

[37] Robert Gens and Pedro M Domingos. “Deep symmetry networks”. In: Ad-
vances in neural information processing systems 27 (2014).

[38] Claire Glanois et al. “A survey on interpretable reinforcement learning”. In:
Machine Learning (2024), pp. 1–44.

[39] Edward Groshev et al. “Learning generalized reactive policies using deep neu-
ral networks”. In: Proceedings of the International Conference on Automated
Planning and Scheduling. Vol. 28. 2018, pp. 408–416.

[40] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the
heuristic determination of minimum cost paths”. In: IEEE transactions on
Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[41] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[42] D Hoey. The real size of cube space. http://www.math.rwth-aachen.de/
~Martin.Schoenert/Cube-Lovers/Dan_Hoey__The_real_size_of_cube_
space.html. Accessed: 2023-08-09. 1994.

[43] Rostislav Horcik and Gustav Šír. “Expressiveness of Graph Neural Networks
in Planning Domains”. In: 34th International Conference on Automated
Planning and Scheduling. 2024.

[44] Shell Xu Hu, Sergey Zagoruyko, and Nikos Komodakis. “Exploring weight
symmetry in deep neural networks”. In: Computer Vision and Image Under-
standing 187 (2019), p. 102786.

47

http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers /Dan_Hoey__The_real_size_of_cube_space.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers /Dan_Hoey__The_real_size_of_cube_space.html
http://www.math.rwth-aachen.de/~Martin.Schoenert/Cube-Lovers /Dan_Hoey__The_real_size_of_cube_space.html

4. Conclusion...
[45] Xiaowei Hu et al. “Direction-aware spatial context features for shadow detec-

tion”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.

[46] Sergio Jiménez et al. “A review of machine learning for automated planning”.
In: The Knowledge Engineering Review 27.4 (2012), pp. 433–467.

[47] Colin G Johnson. “Solving the Rubik’s cube with stepwise deep learning”.
In: Expert Systems 38.3 (2021), e12665.

[48] Colin G Johnson. “Stepwise evolutionary learning using deep learned guid-
ance functions”. In: International Conference on Innovative Techniques and
Applications of Artificial Intelligence. Springer. 2019, pp. 50–62.

[49] Chaitanya Joshi. “Transformers are Graph Neural Networks”. In: The Gradi-
ent (2020).

[50] Peter Karkus, David Hsu, and Wee Sun Lee. “Qmdp-net: Deep learning for
planning under partial observability”. In: Advances in neural information
processing systems 30 (2017).

[51] Eoin M Kenny et al. “Post-hoc explanation options for XAI in deep learning:
The Insight centre for data analytics perspective”. In: Pattern Recognition.
ICPR International Workshops and Challenges: Virtual Event, January 10–
15, 2021, Proceedings, Part III. Springer. 2021, pp. 20–34.

[52] Nicolas Keriven and Gabriel Peyré. “Universal invariant and equivariant graph
neural networks”. In: Advances in Neural Information Processing Systems 32
(2019).

[53] Piotr Kicki, Piotr Skrzypczyński, and Mete Ozay. “A new approach to design
symmetry invariant neural networks”. In: 2021 International Joint Conference
on Neural Networks (IJCNN). IEEE. 2021, pp. 1–8.

[54] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[55] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with
Graph Convolutional Networks”. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017.

[56] Herbert Kociemba. Cube explorer. http://kociemba.org/cube.htm. Ac-
cessed: 2023-08-09. 2018.

[57] Herbert Kociemba. Two-phase algorithm details. http://kociemba.org/
math/imptwophase.htm. Accessed: 2023-08-09. 2014.

[58] Wolfgang Konen. “Towards Learning Rubik’s Cube with N-tuple-based Rein-
forcement Learning”. In: arXiv preprint arXiv:2301.12167 (2023).

[59] Martin Krutskỳ. “Základy symetrií v hlubokém učení”. B.S. thesis. České
vysoké učení technické v Praze. Vypočetní a informační centrum., 2021.

[60] Dmitry Laptev et al. “Ti-pooling: transformation-invariant pooling for feature
learning in convolutional neural networks”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 289–297.

48

http://kociemba.org/cube.htm
http://kociemba.org/math/imptwophase.htm
http://kociemba.org/math/imptwophase.htm

.. 4.1. Future Work

[61] Thibault Laugel et al. “The dangers of post-hoc interpretability: Unjustified
counterfactual explanations”. In: arXiv preprint arXiv:1907.09294 (2019).

[62] Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[63] Guohao Li et al. “Deepergcn: All you need to train deeper gcns”. In: arXiv
preprint arXiv:2006.07739 (2020).

[64] Zian Li et al. “Is Distance Matrix Enough for Geometric Deep Learning?”
In: Advances in Neural Information Processing Systems 36 (2024).

[65] Sangho Lim, Eun-Gyeol Oh, and Hongseok Yang. “Learning symmetric rules
with SATNet”. In: Advances in Neural Information Processing Systems 35
(2022), pp. 13251–13262.

[66] Aaron Yi Rui Low, Subhroshekhar Ghosh, and Yong Sheng Soh. “Conjugation
Invariant Learning with Neural Networks”. In: (2021).

[67] Simon M Lucas. “Learning to play Othello with n-tuple systems”. In: Aus-
tralian Journal of Intelligent Information Processing 4 (2008), pp. 1–20.

[68] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems 30 (2017).

[69] Dongsheng Luo et al. “Parameterized explainer for graph neural network”.
In: Advances in neural information processing systems 33 (2020), pp. 19620–
19631.

[70] Daoming Lyu et al. “Tdm: trustworthy decision-making via interpretability
enhancement”. In: IEEE Transactions on Emerging Topics in Computational
Intelligence 6.3 (2021), pp. 450–461.

[71] Andreas Madsen, Siva Reddy, and Sarath Chandar. “Post-hoc interpretability
for neural nlp: A survey”. In: ACM Computing Surveys 55.8 (2022), pp. 1–42.

[72] Stephen McAleer et al. “Solving the rubik’s cube with approximate policy
iteration”. In: International Conference on Learning Representations. 2018.

[73] Peter Meltzer, Marcelo Daniel Gutierrez Mallea, and Peter J Bentley. “Pinet:
A permutation invariant graph neural network for graph classification”. In:
arXiv preprint arXiv:1905.03046 (2019).

[74] Bharath Muppasani et al. “On Solving the Rubik’s Cube with Domain-
Independent Planners Using Standard Representations”. In: arXiv preprint
arXiv:2307.13552 (2023).

[75] Neel Nanda et al. “Progress measures for grokking via mechanistic inter-
pretability”. In: arXiv preprint arXiv:2301.05217 (2023).

[76] Xingang Pan et al. “Spatial as deep: Spatial cnn for traffic scene under-
standing”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 2018.

49

4. Conclusion...
[77] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems 32.
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.
cc/paper/9015- pytorch- an- imperative- style- high- performance-
deep-learning-library.pdf.

[78] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i
trust you?" Explaining the predictions of any classifier”. In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining. 2016, pp. 1135–1144.

[79] Or Rivlin, Tamir Hazan, and Erez Karpas. “Generalized planning with deep
reinforcement learning”. In: arXiv preprint arXiv:2005.02305 (2020).

[80] Tomas Rokicki. “Solving All 164,604,041,664 Symmetric Positions of the
Rubik’s Cube in the Quarter Turn Metric”. In: Gathering 4 Gardner (2014).

[81] Tomas Rokicki. “Towards God’s number for Rubik’s cube in the quarter-turn
metric”. In: The College Mathematics Journal 45.4 (2014).

[82] Tomas Rokicki et al. “The diameter of the rubik’s cube group is twenty”. In:
siam REVIEW 56.4 (2014), pp. 645–670.

[83] Henry A Rowley, Shumeet Baluja, and Takeo Kanade. “Rotation invariant
neural network-based face detection”. In: Proceedings. 1998 IEEE computer
society conference on computer vision and pattern recognition (Cat. No.
98CB36231). IEEE. 1998, pp. 38–44.

[84] Waddah Saeed and Christian Omlin. “Explainable AI (XAI): A systematic
meta-survey of current challenges and future opportunities”. In: Knowledge-
Based Systems 263 (2023), p. 110273.

[85] Rabia Saleem et al. “Explaining deep neural networks: A survey on the
global interpretation methods”. In: Neurocomput. 513.C (2022), pp. 165–
180. issn: 0925-2312. doi: 10.1016/j.neucom.2022.09.129. url: https:
//doi.org/10.1016/j.neucom.2022.09.129.

[86] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. “Interpreting
graph neural networks for NLP with differentiable edge masking”. In: arXiv
preprint arXiv:2010.00577 (2020).

[87] Thomas Schnake et al. “Higher-order explanations of graph neural networks
via relevant walks”. In: IEEE transactions on pattern analysis and machine
intelligence 44.11 (2021), pp. 7581–7596.

[88] William Shen, Felipe Trevizan, and Sylvie Thiébaux. “Learning domain-
independent planning heuristics with hypergraph networks”. In: Proceedings
of the International Conference on Automated Planning and Scheduling.
Vol. 30. 2020, pp. 574–584.

[89] Nino Shervashidze et al. “Weisfeiler-lehman graph kernels.” In: Journal of
Machine Learning Research 12.9 (2011).

[90] Yunsheng Shi et al. “Masked label prediction: Unified message passing
model for semi-supervised classification”. In: arXiv preprint arXiv:2009.03509
(2020).

50

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1016/j.neucom.2022.09.129
https://doi.org/10.1016/j.neucom.2022.09.129
https://doi.org/10.1016/j.neucom.2022.09.129

.. 4.1. Future Work

[91] Avanti Shrikumar et al. “Not just a black box: Learning important features
through propagating activation differences”. In: arXiv preprint arXiv:1605.01713
(2016).

[92] Tom Silver et al. “Planning with learned object importance in large prob-
lem instances using graph neural networks”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 35. 13. 2021, pp. 11962–11971.

[93] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside
convolutional networks: Visualising image classification models and saliency
maps”. In: arXiv preprint arXiv:1312.6034 (2013).

[94] David Singmaster. Notes on Rubik’s magic cube. Enslow Pub Incorporated,
1981.

[95] Julian Skirzyński, Frederic Becker, and Falk Lieder. “Automatic discovery of
interpretable planning strategies”. In: Machine Learning 110 (2021), pp. 2641–
2683.

[96] Gustav Sourek, Filip Zelezny, and Ondrej Kuzelka. “Lossless Compression of
Structured Convolutional Models via Lifting”. In: International Conference
on Learning Representations. 2020.

[97] Gustav Šourek, Filip Železný, and Ondřej Kuželka. “Beyond graph neural
networks with lifted relational neural networks”. In: Machine Learning 110.7
(2021), pp. 1695–1738.

[98] Gustav Šourek et al. “Lifted relational neural networks: Efficient learning of
latent relational structures”. In: Journal of Artificial Intelligence Research
62 (2018), pp. 69–100.

[99] Simon Ståhlberg, Blai Bonet, and Hector Geffner. “Learning general opti-
mal policies with graph neural networks: Expressive power, transparency,
and limits”. In: Proceedings of the International Conference on Automated
Planning and Scheduling. Vol. 32. 2022, pp. 629–637.

[100] Timothy Sun. “Commutators in the Rubik’s Cube Group”. In: The American
Mathematical Monthly 131.1 (2024), pp. 3–19.

[101] Shobhita Sundaram et al. “Recurrent connections facilitate symmetry per-
ception in deep networks”. In: Scientific Reports 12.1 (2022), p. 20931.

[102] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. “Equivariant transformer
networks”. In: International Conference on Machine Learning. PMLR. 2019,
pp. 6086–6095.

[103] Kyo Takano. “Self-Supervision is All You Need for Solving Rubik’s Cube”.
In: arXiv preprint arXiv:2106.03157 (2021).

[104] Otakar Trunda and Roman Barták. “Deep Learning of Heuristics for Domain-
independent Planning.” In: ICAART (2). 2020, pp. 79–88.

[105] Stratis Tsirtsis, Abir De, and Manuel Rodriguez. “Counterfactual explanations
in sequential decision making under uncertainty”. In: Advances in Neural
Information Processing Systems 34 (2021), pp. 30127–30139.

51

4. Conclusion...
[106] Daniel Vale, Ali El-Sharif, and Muhammed Ali. “Explainable artificial in-

telligence (XAI) post-hoc explainability methods: Risks and limitations in
non-discrimination law”. In: AI and Ethics 2.4 (2022), pp. 815–826.

[107] Francesco Visin et al. “Renet: A recurrent neural network based alternative
to convolutional networks”. In: arXiv preprint arXiv:1505.00393 (2015).

[108] Dian Wang et al. “The surprising effectiveness of equivariant models in
domains with latent symmetry”. In: arXiv preprint arXiv:2211.09231 (2022).

[109] Boris Weisfeiler and AA Lehman. “A reduction of a graph to a canonical form
and an algebra arising during this reduction”. In: Nauchno-Technicheskaya
Informatsia 2.9 (1968), pp. 12–16.

[110] Jeffrey Wood. “Invariant pattern recognition: a review”. In: Pattern recogni-
tion 29.1 (1996), pp. 1–17.

[111] Ga Wu, Buser Say, and Scott Sanner. “Scalable planning with deep neural
network learned transition models”. In: Journal of Artificial Intelligence
Research 68 (2020), pp. 571–606.

[112] Ying-Xin Wu et al. “Discovering invariant rationales for graph neural net-
works”. In: arXiv preprint arXiv:2201.12872 (2022).

[113] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In:
IEEE Transactions on Neural Networks and Learning Systems (2020).

[114] Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv
preprint arXiv:1810.00826 (2018).

[115] Zhitao Ying et al. “Gnnexplainer: Generating explanations for graph neural
networks”. In: Advances in neural information processing systems 32 (2019).

[116] Liu Yu, Ryo Kuroiwa, and Alex Fukunaga. “Learning search-space specific
heuristics using neural network”. In: ICAPS Workshop on Heuristics and
Search for Domainindependent Planning. 2020, pp. 1–8.

[117] Hao Yuan et al. “Explainability in graph neural networks: A taxonomic
survey”. In: IEEE transactions on pattern analysis and machine intelligence
45.5 (2022), pp. 5782–5799.

[118] Hao Yuan et al. “Xgnn: Towards model-level explanations of graph neural
networks”. In: Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining. 2020, pp. 430–438.

[119] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information pro-
cessing systems 30 (2017).

52

Appendix A
Other Cube Pattern Representations

We mention other cube pattern representations that we experimented with but did
not make it to the final metric computation and comparison.

A.1 Eliminated Pattern Representation

Apart from the six mentioned ablated invariants, other color pattern invariants were
considered and eliminated after partial results from the symmetry-detection routine.
The most notable of them is the surface-distance invariant.

A.1.1 Surface-Distance Invariant

Similarly to distance invariant (ii) described in Sec. 2.4.4, the surface-distance
invariant has used distances from the middle facelet. However, the choice of distance
metric was different: the shortest Manhattanian path on the cube’s surface. The
rationale of this metric was to approximately mimic a heuristic of the goal distance
function that is given by the shortest surface path P ∗

surf of facelets from their goal
destination, f = ℓ(P ∗

surf)
c , where c ∈ R+ is a constant accounting for a different scale

of the distance compared to move metrics and simultaneous movement of multiple
facelets in one move.

Algorithm 4 Surface-Distance Algorithm
Given indices of a color pattern facelets:

1. Prepare 6 2D cube projections, each with a different center face and different
orientation.

2. For each pattern facelet, calculate distances to the middle facelet on all 6 2D
projections.

3. The surface distance is the minimum of the 6 distances.

The calculation of the heuristic is, however, challenging. We devised a solution
described in Alg. 4, in which the first step can be amortized, and the second step
can be cached.

53

A. Other Cube Pattern Representations
A.2 CNN-based Global Invariant Ablation

Besides the proposed decomposition of the cube into the color pattern representations,
one might attempt to approach the problem more directly with existing (geometric)
deep learning architectures. Indeed, given the regular structure of the problem, using
convolutional neural networks (CNNs) with 2D or 3D filters seems rather natural.
For the purpose, we designed custom 2D convolutions over the flattened cube cross
representations (Fig. 2.3), capturing the characteristic (surface) structure of the cube
(Sec. 2.3.1). Following the requirement of color invariance (Sec. 2.4.4), we utilized
the same convolutional filter across each color dimension in the one-hot-encoded
state representation (Fig. 2.4), using a kernel size of 3× 3.1

Firstly, we tested a simple convolution with a stride of 3, essentially multiplying
each face by the filter. This resulted in an embedding vector for each cube’s face
in each color. These embeddings were then summed over the color dimension to
force color invariance, resulting in a single embedding vector for each face. These
were further concatenated and inputted into a feedforward layer. Naturally, though,
this representation is not invariant w.r.t. rotations and reflections. To address
that, we further computed face embeddings for all the rotations and reflections of
each face, and summed over the respective dimension, too. This follows the spirit
of previous (custom) neural architectures addressing the problem of directionality
of patterns with either convolutional or recurrent networks, such as ReNet [107],
spatial RNNs [45] and CNNs [76], as well as the CNNs with transformation-invariant
pooling [60]. Nevertheless, both our architectures remained dependent on the cube’s
orientation, introduced by the (ad-hoc) ordering of face embeddings during the
concatenation. The requirement of preserving the structural face-neighborhood
relations while aggregating them in an order-invariant manner then led to the
concept of “face cross” CNN filters.

A.2.1 Face Crosses

While regular CNNs assume a single top-down, left-right sliding of the filter, the
structure of the cube (Fig. 2.3) states suggests the need for a custom motion in
multiple directions. Moreover, multiple cross-views from different cube orientations
should be considered to account for all the grid neighborhoods, for which we designed
a custom CNN-based model producing embeddings for all the cube crosses centered
in each of the 6 faces containing its 4 neighboring faces. This meant 6 crosses, each
with 4 possible orientations, hence 24 embedding vectors in total. We tested several
ablations of this CNN-based design, such as directly convolving the filters over the
one-hot-encoded representation of the cross, or firstly reproducing the cross from
the computed face-color embedding, followed by convolving over the cross. None
of these ablations, however, achieved sufficient expressiveness/compression of the
target symmetry-equivalence classes, proving the CNN approach inappropriate, in
contrast to the new, more thoroughly substantiated, concept of the color patterns,
described in the main body of the paper.

1CNNs require rectangular inputs. Thus, we convolved along 3 possible major beams (of size
3 × 9) of the cube’s cross.

54

Appendix B
Learning Performance Plots

Below, we present further learning performance plots from the Rubik’s cube problem.
Unlike in Sec. 3.2.3, here we also include the metric on the training set.

0 20 40 60 80 100

Training epoch

10−1

100

101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1 - test set

SymmetryNet V1 - train set

SymmetryNet V2 - test set

SymmetryNet V2 - train set

DeepCube - test set

DeepCube - train set

Figure B.1: Models’ learning convergences when generalizing from 90% of the exhaustive
dataset.

0 20 40 60 80 100

Training epoch

10−1

100

101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1 - test set

SymmetryNet V1 - train set

SymmetryNet V2 - test set

SymmetryNet V2 - train set

DeepCube - test set

DeepCube - train set

Figure B.2: Models’ learning convergences when generalizing from 50% of the exhaustive
dataset.

55

B. Learning Performance Plots

0 20 40 60 80 100

Training epoch

10−1

100

101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1 - test set

SymmetryNet V1 - train set

SymmetryNet V2 - test set

SymmetryNet V2 - train set

DeepCube - test set

DeepCube - train set

Figure B.3: Models’ learning convergences when generalizing from 10% of the exhaustive
dataset.

0 20 40 60 80 100

Training epoch

101

4× 100

6× 100

2× 101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1 - test set

SymmetryNet V1 - train set

SymmetryNet V2 - test set

SymmetryNet V2 - train set

DeepCube - test set

DeepCube - train set

Figure B.4: Models’ learning convergences on the 103-sized subset of the sampled
dataset.

0 20 40 60 80 100

Training epoch

100

101

M
ea

n
ab

so
lu

te
er

ro
r

SymmetryNet V1 - test set

SymmetryNet V1 - train set

SymmetryNet V2 - test set

SymmetryNet V2 - train set

DeepCube - test set

DeepCube - train set

Figure B.5: Models’ learning convergences on the full 105 sampled dataset.

56

Appendix C
Source Code and Resources

The code used for the Rubik’s cube experiments can be found at https://github.
com/martin-krutsky/rubik-dl-symmetries. Refer to the Jupyter notebooks at
the root level for instructions on how to run the data generation, training, and
evaluation.

The project is structured in the following way:. cube data structures are implemented in folder classes/. data generation and symmetry-equivalence compression is implemented in folder
generate/, Python script utils/compressions.py, and Jupyter notebooks
generate.ipynb and weisfeiler-lehman_compressions.ipynb. PyTorch models and training runners are defined in pytorch_classes/. all scripts run on the cluster are in folder scripts/. analysis of the training and search results can be found in analyzeResults.ipynb,
summarize_accuracies.ipynb, and summarize_search.ipynb Jupyter note-
books. explainability experiments can be found in Jupyter notebook explainer.ipynb

Some additional generated plots can be found separately at Google Drive: https:
//drive.google.com/drive/u/1/folders/14ezlOzEoX2d5CWgkDuFBUcjBHScYstKC.

C.1 Acknowledgments

We acknowledge the support from the European Union’s Horizon Europe Research
and Innovation program under the grant agreement TUPLES No 101070149.

57

https://github.com/martin-krutsky/rubik-dl-symmetries
https://github.com/martin-krutsky/rubik-dl-symmetries
https://drive.google.com/drive/u/1/folders/14ezlOzEoX2d5CWgkDuFBUcjBHScYstKC
https://drive.google.com/drive/u/1/folders/14ezlOzEoX2d5CWgkDuFBUcjBHScYstKC

	Introduction
	Problem Statement
	Related Work
	Related Work on Deep Learning in Planning
	Related Work on Neural Interpretability
	Related Work on Symmetries in Deep Learning
	Related Work on Solving Rubik's Cube

	Theoretical Background
	AI Planning
	Planning Problems

	Planning Problems Analysis
	Planning Representations
	Planning Symmetries
	Planning Domain Selection
	Rubik's Cube Planning Problem

	Rubik's Cube Analysis
	Problem Structure
	Group Theory
	Domain symmetries

	Symmetry-Aware Deep Learning
	Equivalence Classes
	Conjugacy Classes
	Other Cube Equivalence Classes
	Invariant Neural Architecture Design
	Neural Symmetry Detection

	Parameters of GNN Interpretability Methods

	Rubik's Cube Experiments
	Data
	Color Patterns
	Reverse Generation
	Sampling

	Results
	Architecture Design
	Pattern Representation Ablations
	Learning Performance
	Search Performance
	Performance Comparison Tables
	Implementation Details and Hyperparemeters

	Interpretability of SymmetryNet
	Distinguishing Different Distances
	Explaining Single Cube Move with GNNExplainer
	Architecture-Based Interpretations
	Comparison of Interpretability Techniques

	Conclusion
	Future Work

	Bibliography
	Other Cube Pattern Representations
	Eliminated Pattern Representation
	Surface-Distance Invariant

	CNN-based Global Invariant Ablation
	Face Crosses

	Learning Performance Plots
	Source Code and Resources
	Acknowledgments

