
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Integrating FelSight into FEL.HUB

Tomáš Hauser

Thesis supervisor: Ing. Miroslav Baĺık, Ph.D.

Department of Computer Science

May 2024

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492159 Personal ID number: Hauser Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Integrating FelSight into FEL.HUB

Master’s thesis title in Czech:

Integrace aplikace FelSight do FEL.HUB

Guidelines:

The aim of this thesis is to integrate the core functionalities of FelSight into the FEL.HUB integration platform. In particular,
the implementation is expected to include timetable viewing, tools for timetable creation, and searching for courses.
The backend will be based on the work from the bachelor's thesis of Ladislav Svoboda who split the FelSight backend
into microservices. The UI designs are provided by Lucie Baronová, who created them based on UX research in her
bachelor's thesis.
1. Describe the motivations behind the project.
2. Conduct a software design analysis.
3. Implement the front-end interface based on the provided UI designs.
4. Adapt and fit the provided microservices into the FEL.HUB ecosytem.
5. Develop and analyze an algorithm to help students pick an optimal set of time slots in a timetable.
6. Describe what improvements were made over the existing system.
7. Demonstrate the resulting algorithm for timetable optimization on a few practical examples of real timetables.
8. Compare the actual frontend implementation with the UI designs from Lucie Baronová.

Bibliography / sources:

1. Ladislav Svoboda. Migration of felsight application to microservice architecture. Bachelor’s thesis, CzechTechnical
University in Prague, 2023. URL https://dspace.cvut.cz/handle/10467/109283.
2. Gardner, Micah. Frontend Architecture for Design Systems: A Modern Blueprint for Scalable and Sustainable Websites.
O'Reilly Media, 2016. ISBN 978-1491926783.
3. Blazewicz, Jacek, Klaus Ecker, Erwin Pesch, Guenter Schmidt, a Jan Węglarz. 2001. Scheduling Computer and
Manufacturing Processes. https://doi.org/10.1007/978-3-662-04363-9.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Miroslav Balík, Ph.D. Department of Theoretical Computer Science FIT

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 07.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Miroslav Balík, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date

Acknowledgements

I am deeply grateful to my family for their unwavering support during my academic
journey. I would also like to extend my sincere thanks to my advisor, Ing. Miroslav Baĺık,
Ph.D., for his guidance and support throughout the writing of this thesis.

i

Abstract

This thesis addresses the migration of essential functionalities from the
web application FelSight to the modern integration platform FEL.HUB,
leveraging the backend and user interface designs produced in prior
works. FelSight is introduced, highlighting the components targeted for
migration and discussing its limitations along with the corresponding
metrics. Introduction of FEL.HUB follows with a description of its pur-
pose and technologies, concluding with a list of the motivations behind
this project. The analytical part dissects the problem domain into use
cases that are subsequently elaborated in detail. A comprehensive over-
view of the backend implementation requirements is also presented. The
frontend implementation is showcased via annotated screenshots, which
are then compared to the original designs. Additionally, a dedicated
chapter addresses the development and evaluation of an algorithm de-
signed to help students in creating their timetables. This includes a re-
view of the algorithm’s complexity and performance metrics, concluding
with a practical application of the algorithm on an actual timetable.

Keywords: FelSight, FEL.HUB, timetable optimization

Abstrakt

Tato práce se zabývá migraćı základńıch funkcionalit z aplikace FelSight
na moderńı integračńı platformu FEL.HUB za využit́ı backendové im-
plementace a návrh̊u uživatelského rozhrańı z předcházej́ıćıch praćı. Ap-
likce FelSight je představena společně s identifikaćı komponent určených
k migraci a diskuźı o jeho nedostatćıch podloženou př́ıslušnými met-
rikami. Představeńı platformy FEL.HUB následuje popisem jeho záměru
a technoloǵı́ı a je zakončeno seznamem motivaćı za t́ımto projektem.
Analytická část je věnována rozčleněńı problému do př́ıpad̊u užit́ı, které
jsou následně rozebrány do detailu. Spolu s t́ım je také prodiskutováno,
co je potřeba implementovat na backendu. Samotná implementace je
představena senznamem komentovaných sńımk̊u obrazovky, které jsou
nakonec porovnány s p̊uvodńım návrhem. Jedna kapitola je věnována
návrhu algoritmu, který má student̊um pomoci s plánováńım rozvrhu,
což zahrnuje analýzu jeho složitosti a výkonu. Výsledný algoritmus je
demonstrován na reálném rozvrhu.

Kĺıčová slova: FelSight, FEL.HUB, optimalizace rozvrh̊u

ii

Contents

List of abbreviations vii

1 Introduction 1

1.1 Goals . 1

1.2 Outline of the Thesis . 2

2 FelSight 3

2.1 Content . 4

2.1.1 Timetable . 4

2.1.2 Timetable Planner . 5

2.1.3 Building Plans . 6

2.1.4 Food Menus . 6

2.1.5 Study Rooms . 7

2.1.6 Semester Overview . 7

2.1.7 Summary . 7

2.2 Technologies . 8

2.2.1 Preface . 8

2.2.2 Example . 8

2.2.3 Architecture . 11

2.3 Issues . 12

2.3.1 Complexity . 12

2.3.2 Size . 13

2.3.3 Performance . 14

2.3.4 Personal . 15

iv Contents

3 FEL.HUB 17

3.1 General Idea . 17

3.2 Technologies . 19

3.2.1 SPA and PWA . 19

3.2.2 React . 20

3.2.3 GraphQL . 23

3.2.4 Java, SpringBoot, DGS . 25

3.3 Architecture . 25

3.4 Motivations Behind The Project . 26

4 Analysis 27

4.1 Use Cases . 28

4.1.1 Timetable Views . 29

4.1.2 Timetable controls . 29

4.1.3 Searching . 29

4.1.4 User Events . 30

4.1.5 Timetable Irregularity . 30

4.1.6 Details . 30

4.2 Backend . 31

4.2.1 Timetable Service . 32

4.2.2 Course Semester Service . 34

4.2.3 Room Service . 36

4.2.4 User Service . 36

5 Frontend Implementation 37

5.1 Timetable Views . 40

5.1.1 Weekly Timetable View . 40

5.1.2 Collision Management . 42

5.1.3 Monthly Timetable View . 43

5.1.4 Timetable Views On Phones . 44

5.2 Timetable Controls . 45

5.2.1 Switching Time . 45

5.2.2 Timetable Page Controls . 46

Contents v

5.2.3 Timetable Planner Controls . 47

5.2.4 Timetable Controls On Phones . 48

5.3 Search . 49

5.3.1 Grouped Search . 49

5.3.2 Advanced Search . 49

5.4 User Events . 52

5.5 Timetable Irregularity . 53

5.6 Details . 53

5.6.1 Event Card Detail . 53

5.6.2 Person Detail . 54

5.6.3 Room Detail . 55

5.6.4 Course Detail . 56

5.7 Comparison With Designs . 57

6 Timetable Optimization 59

6.1 Initial Solution . 59

6.2 Complexity . 62

6.3 Implementation . 63

6.4 Example . 66

7 Conclusion 67

7.1 Improvements . 69

vi Contents

List of abbreviations

Table 1 contains abbreviations used in this thesis.

Abbreviation Meaning
CZM Center for Knowledge Management
JSF Java Server Faces
EL Expression Language
TTFB Time To First Byte
UI User Interface
UX User Experience
HTML Hypertext Markup Language
XHTML Extensible HTML
CSS Cascading Style Sheets
CI/CD Continuous Integration, Continuous Development
API Application Programming Interface
SPA Single Page Application
MPA Multi-Page Application
PWA Progressive Web Application
JSX JavaScript Syntax eXtension
GQL GraphQL
REST Representational State Transfer
DB Database
AMQP Advanced Message Queuing Protocol
T O Timetable Optimization algorithm

Table 1: List of abbreviations

viii Chapter 0. List of abbreviations

Chapter 1

Introduction

Contents
1.1 Goals . 1

1.2 Outline of the Thesis . 2

1.1 Goals

FelSight1 is a web application developed by Center for Knowledge Management2.
It provides a suite of tools, including timetable viewing, planning, room reservation, and
searching for rooms, people, and courses. Although FelSight has served well throughout
the years, it is in need of renovation for the reasons that will be elaborated upon.

FEL.HUB is an integration platform whose goal is to integrate and unify a broad
range of faculty systems under one roof. It offers tools for teachers such as managing
doctoral theses, semester projects, employee evaluation, as well as for students – room
navigation and room reservation. It is a relatively young project that employs the latest
technologies and is designed with scalability and long-term sustainability at its core.

The objective of this thesis is to transfer certain essential components of FelSight into
the FEL.HUB integration platform. The user interface (UI) should be developed following
Lucie Baronová’s designs as outlined in her thesis [1]. The backend will be based on the
work by Ladislav Svoboda who has split some of the core functionalities of FelSight into
microservices [2].

Another objective is to develop an optimization algorithm that will help students
with creating their timetables.

1Available at https://felsight.fel.cvut.cz/
2More information at https://czm.fel.cvut.cz/cs/

https://felsight.fel.cvut.cz/
https://czm.fel.cvut.cz/cs/

2 Chapter 1. Introduction

1.2 Outline of the Thesis

In chapter 2, FelSight is introduced. To give a comprehensive overview of its function-
alities and facilitate comparisons with subsequent implementations, the chapter includes
screenshots accompanied by concise descriptions. A table 2.1 then summarizes the mi-
gration status of the individual sections. Technologies with which FelSight was built are
presented on simple examples with a commentary on their downsides. The entire architec-
ture is depicted in the diagram 2.9. A list of issues is presented, accompanied by relevant
metrics.

Chapter 3 introduces FEL.HUB. Its technologies and architecture are explained in a
manner similar to the previous chapter. The chapter concludes with a list of motivations
behind the project, building upon the knowledge established thus far.

Since the frontend implementation takes basis on the provided designs, the analysis
chapter 4 focuses on identifying the use cases – actions that user can take in the system.
This provides a comprehensive checklist of features, allowing for each feature to be ticked
off as it is implemented, ensuring that no detail is overlooked. Backend implementation,
on the other hand, requires creating a GraphQL schema and implementing logic for its
queries. The backend analysis, therefore, consists of describing the relevant services and
specifying queries that need to be implemented.

Since the implementation of the backend simply entails linking the queries outlined
in the analysis stage with the service layer, there are no developments or complications to
highlight or discuss. In contrast, the frontend implementation warrants its own dedicated
chapter (5), where screenshots of the frontend are showcased, and both implementation de-
tails and complications are thoroughly explored. One section (5.7) is dedicated to outlining
the deviations from the original designs.

The design of the timetable optimization algorithm is detailed in a separate chapter
(6) that includes its own introduction, analysis, and implementation sections. This chapter
revisits the previous solution, highlighting its shortcomings. The algorithm itself is de-
scribed and placed within a complexity class. Initially, a general brute force algorithm is
implemented and later optimized for enhanced performance. The chapter concludes with
a demonstration of the algorithm on a real timetable.

Finally, the conclusion chapter (7) summarizes the results of this project and high-
lights the improvements that have been made (7.1).

Chapter 2

FelSight

Contents
2.1 Content . 4

2.2 Technologies . 8

2.3 Issues . 12

As previously stated in the introduction, FelSight is a web application designed to
assist students with their academic pursuits. It is focused on providing useful information
via gathering, transforming and presenting data from various faculty APIs. The objective
of this chapter is to provide a brief overview and demonstration of the key features of
FelSight, identifying those that will be the focus of this thesis. In order to understand the
reasons behind this project, a brief and simple example will serve to describe the nuance of
the technologies in use. Subsequently, the architecture is described. Following the provision
of all essential information, the challenges confronting FelSight are addressed.

4 Chapter 2. FelSight

2.1 Content

2.1.1 Timetable

The view of the weekly timetable occupies the main page of FelSight.

Figure 2.1: Timetable page on FelSight

The cards in the timetable represent events such as lectures, tutorials and user events.
The arrows located above the timetable are utilized for navigating between different weeks.
The rectangles with the room code and username above the timetable represent the owners
of the individual timetables. Each group is marked by a color that is also visible in the
strip on the cards. Using the search at the top (2.2, 2.3), new owners can be added.

Figure 2.2: Search component Figure 2.3: Advanced search component

2.1. Content 5

2.1.2 Timetable Planner

The timetable planner offers a convenient method to easily experiment with possible
new timetables.

Figure 2.4: Timetable planner page on FelSight

For a student, planning a timetable for the next semester consists of choosing courses
to meet their credit, time and interest demands. Subsequently, the student has to choose a
parallel for each course. If a course has non-standard time slots, a notification will appear
(2.5), and either a week parity switch (5.26) or a full week switch (2.6) will be displayed
accordingly.

Figure 2.5: Course card with warning

Figure 2.6: Week switch

6 Chapter 2. FelSight

2.1.3 Building Plans

In order to navigate through the different CTU buildings, students can use the build-
ing plans section.

Figure 2.7: Building plans on FelSight

It was built as a plugin that can be easily imported into any website on CTU network
[3]. For that reason, it is already available at FEL.HUB as well. The main difference from
the official building plans is the interactivity. The user selects an origin and a destination,
and the system will show the most efficient route between the two locations. The application
is also running on a stanionary device near the entrance to Dejvice kampus and Karlovo
Náměst́ı.

2.1.4 Food Menus

This section provides users with a convenient way to access information about the
various food choices available at all the relevant canteens in one place. There is a dedicated
service1 in the FelSight stack that fetches data about the food menus from an official
Agata2 API. Incorporating food menus into FEL.HUB is currently in the planning phase.
The UI designs for this feature were aimed primarily at smartphones. FelSight did not
use to support displaying the food menus on desktop, and later simply scaled the mobile
version up.

1https://gitlab.fel.cvut.cz/czm/hub/jidelnicky/food-menu-service
2https://agata.suz.cvut.cz/jidelnicky/

https://gitlab.fel.cvut.cz/czm/hub/jidelnicky/food-menu-service
https://agata.suz.cvut.cz/jidelnicky/

2.1. Content 7

2.1.5 Study Rooms

Every room at CTU FEL follows a schedule. While some rooms can be booked for
studying during specific times, others cannot. The study rooms section provides features
that help in identifying available rooms and making reservations. Unfortunately, there is
no dedicated API for this, therefore, a raw HTML lookup of a live table on the faculty
intranet3 is done.

2.1.6 Semester Overview

One of the less utilized functions is the semester overview. It is presented as a timeline
featuring significant events at the faculty level, such as semester applications and gradu-
ation ceremonies. This functionality has been deprecated and will not be transferred.

2.1.7 Summary

The following table provides a summary of the migration status for each section.

Feature Not included Considered Implemented now Done

� Timetable ✓

 Study rooms ✓

 Timetable Planner ✓

 Building plans ✓

� Food menu ✓

 Semester overview ✓

Table 2.1: Overview of the state of the FelSight migration into FEL.HUB

Implementing the scheduling features–timetable and timetable planner–is the primary
goal of this thesis. As discussed in section 2.1.3, building plans have been successfully
integrated into FEL.HUB thanks to their adaptability. The semester overview will not be
implemented, reflecting its low usage statistics. Food menus are under consideration and
primarily require new UI designs since the backend can be reused. Study rooms are also
being considered; however, this feature will likely require significant redevelopment.

3https://intranet.fel.cvut.cz/cz/education/studovny-samostudium.html

https://intranet.fel.cvut.cz/cz/education/studovny-samostudium.html

8 Chapter 2. FelSight

2.2 Technologies

2.2.1 Preface

FelSight utilizes the Java Server Faces (JSF) framework in conjunction with a Java
Enterprise backend. To begin with, JSF is a web framework that streamlines development
through its component-based methodology [4]. The components are defined within .xhtml
documents and their state is managed by dedicated Java classes on the server side. These
documents act as a template and are converted into HTML on the server upon client’s
request.

2.2.2 Example

To demonstrate the internal mechanisms and limitations of the technology in use,
consider a basic component designed to switch between even and odd weeks (2.8). Its
implementation using XHTML is shown in the listing 2.1. Below is a brief description of
the operations performed, organized by the range of lines in the code.

• 4–9: Declaration of used libraries.

• 10–15: Specification of the parameters necessary for this component.

• 17–46: Declaration of the component itself. It consists of two buttons labeled Even
and Odd.

• 18, 30: Declaration of a button from the Primefaces library.

• 19: Server-side action to be taken upon clicking. A changeParityToEven method is
called.

• 20: Client-side action to be taken upon clicking. A timetable loading icon is displayed.

• 21: Ids of elements that need to be updated after the action takes place.

• 22: Client-side action to be taken at the end of JSF processing cycle.

• 23–29: References to CSS classes to be used to style the button. The ternary operator
expression within the curly braces utilizes EL4 for branching.

Figure 2.8: Week switch component

4EL (Expression Language) is a mechanism that facilitaces communication between the presentation
and application layer. EL expressions are enclosed in curly braces and prefixed with a hash symbol. [5]

2.2. Technologies 9

� �
1 <?xml version=’1.0’ encoding=’UTF-8’ ?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

4 <html xmlns="http://www.w3.org/1999/xhtml"

5 xmlns:cc="http://java.sun.com/jsf/composite"

6 xmlns:p="http://primefaces.org/ui"

7 xmlns:h="http://xmlns.jcp.org/jsf/html"

8 xmlns:a="http://xmlns.jcp.org/jsf/passthrough"

9 >

10 <cc:interface>

11 <cc:attribute name="controller"

12 type="felsight.beans.interfaces.WeekswitchController"

13 required="true"/>

14 </cc:interface>

15
16 <cc:implementation>

17 <h:form styleClass="timetable-controls-week-switch time-controls">

18 <p:commandLink value="#{lang[’timetable.create.value.EvenWeek’]}"

19 action="#{cc.attrs.controller.changeParityToEven}"

20 onclick="$(’.timetable-loader’).show();"
21 update="@form :timetable:timetable-days"

22 oncomplete="refreshTimetable();"

23 class="timetable-controls-parity-button

24 timetable-controls-even

25 #{

26 cc.attrs.controller.weekEven ?

27 ’timetable-controls-selected’ :

28 ’timetable-controls-not-selected’

29 }"/>

30 <p:commandLink value="#{lang[’timetable.create.value.OddWeek’]}"

31 action="#{cc.attrs.controller.changeParityToOdd}"

32 update="@form :timetable:timetable-days "

33 onclick="$(’.timetable-loader’).show();"
34 oncomplete="refreshTimetable();"

35 class="timetable-controls-parity-button

36 timetable-controls-odd

37 #{

38 cc.attrs.controller.weekEven ?

39 ’timetable-controls-not-selected’ :

40 ’timetable-controls-selected’

41 }"/>

42 </h:form>

43 </cc:implementation>

44 </html>
� �
Listing 2.1: JSF component example

10 Chapter 2. FelSight

Listing 2.2 shows the mentioned controller. It is in a form of a simple Java interface
that defines the necessary methods.� �

1 public interface WeekSwitchController {

2 boolean isWeekEven();

3 void changeParityToEven();

4 void changeParityToOdd();

5 }
� �
Listing 2.2: Controller for a JSF component

Controllers of this type are subsequently implemented using Java beans, which are special-
ized classes that adhere to specific conventions. The crucial aspect is that they manage the
state of the user interface elements and execute the necessary logic within them. Because
the server maintains the state and the user interface operates on the client machine, there
needs to be ongoing communication between them. This delay in reacting to state changes
slows down the response time, as the message needs to travel to the server and back for
the UI to respond accordingly. This ultimately hampers responsiveness, user experience,
and leads to higher data throughput.� �

1 @Named

2 @ViewScoped

3 public class TimetableBean implements WeekSwitchController {

4 // ... some code

5 private WeekParity weekParity;

6 public boolean isWeekEven() {

7 return this.weekParity.equals(WeekParity.EVEN);

8 }

9 public void changeParityToEven() {

10 // Some logic goes here

11 this.weekParity = WeekParity.EVEN;

12 }

13 public void changeParityToOdd() {

14 // Some logic goes here

15 this.weekParity = WeekParity.ODD;

16 }

17 }
� �
Listing 2.3: Java Bean

Styles and JavaScript functions are stored in separate files and, upon request, are bundled
into a single file that is sent to the client.

2.2. Technologies 11

2.2.3 Architecture

FelSight gathers data from several external APIs. The figure 2.9 illustrates the ar-
chitecture in detail. The arrows represent a “uses” relationship. The text adjacent to the
arrows explains the purpose of using the service, while the text enclosed in parentheses
specifies the communication protocol or type. The services are organized into two categor-
ies: the external category on the right, which includes services outside the management of
CZM, and the internal on the left.

ExternalFelSight services

FelSight

«website»
Study rooms

website

«website»
CourseWare

FoodMenuAPI

KosAPI

TimetableOptimizationAPI

MoodleEvaluationAPI

UsermapAPI

SiriusAPI

 SQL
databse

Floor plans

AgataAPI

MoodleAPI

Scheduled database updates for
courses, semesters...

(HTTP/XML)

Fresh data about events and parallels
(HTTP/REST)

Data about users
(HTTP/REST)

Fresh info about the current food
menus (HTTP/REST)

(JDBC)

Uses as an
embedded
component

Reads info about
studyrooms (parsing raw

HTML)

Executes timetable optimization
algorithm (RPC/RabbitMQ)

Moodle grades
(HTTP/REST)

Checks CourseWare page
existence (HTTP/ ping)

Figure 2.9: Detailed view on FelSight’s architecture

Although the architecture seems rather modular, the internal services simply fetch
data from external APIs, combine them, and expose them at convenient endpoints5. They
do not store any data and they cover only a small portion of the FelSight’s domain.

Most of the logic is contained inside the monolithic Java backend and all data are
stored in a single database. The stored data are periodically refetched to remain up to date,
whereas data that need to be fresh, such as parallel availability, are fetched directly from
the data source. The database currently consists of almost 50 tables and often requires
manual maintenance due to frequent migration issues.

5This is referred to as API composition pattern [6].

12 Chapter 2. FelSight

2.3 Issues

Firstly, the complexity of JSF is addressed with an in-depth exploration of its intric-
ate processing lifecycle. Following that, the size of the project is discussed, accompanied
by measurements including the number of files, lines, and other relevant statistics. Sub-
sequently, the project’s performance is measured and the challenges associated with hiring
new developers are discussed.

2.3.1 Complexity

Building a complex reactive frontend using JSF comes at a cost. For example, in
the code 2.1, notice the update property – it is required to manually specify the ids
of elements that require updating. Moreover, when an action takes place, the request
processing lifecycle comes into play. The process is quite intricate and involves several
stages that commence when JSF needs to handle a client request. That in and of itself
would not necessarily be an issue, however, the programmer has to keep the individual
stages in mind during developement. They need to know in what order will the individual
actions take place. For example, on the 18th line in the code example 2.1, the order of the
actions will be onclick, action, update, oncomplete. There are also other attrbutes that
can be fit in between these actions. To elaborate on this, the diagram in the figure 2.10
demonstrates the specific stages as outlined by [4].

Restore
ViewStart

Apply
Request
Values

Process
Events

Process
Validations

Process
Events

Update
Model
Values

Process
Events

Invoke
Application

Process
Events

Render
Response

Direct render

Validation or
conversion error

(skip other phases)

Direct render

Validation or
conversion error

(skip other phases)

Direct render

Validation or
conversion error

(skip other phases)

Figure 2.10: JSF request processing lifecycle

2.3. Issues 13

2.3.2 Size

This point is closely related to complexity, readability, and also plays part in the
architectural issues. FelSight has been in development for almost a decade now. As the
codebase grows, it becomes more and more difficult to develop.

To get the idea of how large FelSight really is, the following charts show actual
numbers. The bubble chart on the left (2.11) shows the numbers of files by file extensions.
The bar chart on the right (2.12) shows the numbers of lines6 categorized by languages.

.java (988)
67%

.js (79)
5%

.less (146)
10%

.xhtml (277)
18%

Figure 2.11: Numbers of files by extension

Ja
va

Les
s

X
H
TM

L

Ja
va

Sc
rip

t
0

20

40

60

68

20 17

5

T
h

ou
sa

n
d

s
of

li
n

es

Figure 2.12: Number of lines by languages

In total, the project comprises 1,490 files, which together account for 110 thousand
lines of code, predominantly written in Java. The fact that XHTML files outnumber LESS
files while containing fewer lines of code suggests that there is greater modularity in the
JSF components compared to the styling files.

Using SourceMonitor7 an overview of the Java backend has been compiled. Some
interesting points are:

• 16% of the code consists of comments

• There are 1002 classes

• On average, there are 7.36 calls per method

• There is a total of 55 thousand statements

• There are over 23 thousand method calls

6Counted by an open source cloc app, excluding comments and blank lines.
7https://www.derpaul.net/SourceMonitor/

https://github.com/AlDanial/cloc
https://www.derpaul.net/SourceMonitor/

14 Chapter 2. FelSight

The following is an overview of the challenges that were observed as the project size
increased.

• Slower development and deployment – the build time got longer and the memory
and CPU demands increased8.

• Increased risk of failure – issues in a single module frequently affect the rest of
the application.

• Difficulties in CI/CD – the build, test, and deployment in CI/CD pipelines became
more time-consuming and very demanding on the runners9.

• Version control – merging conflicts became more common, larger, and more difficult
to resolve.

• Reduced agility – the ability to implement new features or adapt to changing
demands quickly was hindered.

2.3.3 Performance

One notable problem with FelSight is its performance, with the main issue being the
loading times. The figure 2.13 displays the loading times that have been measured on 23rd
March 2024 at 4:00 AM on a clean install of Google Chrome browser with cleared cache.

0s 2s 4s 6s 8s 10s 12s 14s

·104

index.xhtml

study plans.xhtml

timetables.xhtml

building plan.xhtml

food menu.xhtml

semester overview.xhtml Redirect
Time To First Byte

DOM Processing

Figure 2.13: Measured times

8The build and execution typically require around 90 seconds, while refreshing it to observe modifica-
tions takes about 30 seconds, although this duration can vary significantly depending on the machine.

9Depending on the stages run, pipeline may take up to 10 minutes to finish.

2.3. Issues 15

The Time To First Byte (TTFB) measures the delay between sending a page request
and receiving the first byte of the response [7]. DOM Processing refers to the steps a web
browser takes to construct the UI and thus the additional time user has to wait before they
can use the website. The time required for index.xhtml to load includes the login process,
so the duration to redirect to FelSight from the login page was factored in.

Although JSF is not the sole reason for the performance issues, it contributes greatly.
Performance of JSF can be influenced by subtle and not readily apparent factors that
were not taken into concideration when developing FelSight [8]. Selecting the appropriate
component library can have a significant influence as well [9]. In spite of this, JSF is limited
by its inherent nature as it prioritizes full server-side rendering, going against the current
trend in web development. It needs to maintain the state of the UI component tree between
requests and also needs to regularly interact with the server, leading to a notable increase
in network traffic.

2.3.4 Personal

Apart from issues with the technologies and architecture, there are also issues in-
volving hiring new interns and retaining the current ones. Below is a list of problems
related to this.

• Steep learning curve – Several articles mention JSF’s steep learning curve [10],
[11]. It is a common experience in CZM that junior interns take a comparatively long
time to become proficient in the technology.

• Career Development Concerns – JSF’s market share in Web Application Frame-
works is in 2024 below 0.1% [12], therefore, interns may feel that their skills are
becoming less marketable as they spend their time with it. In a rapidly evolving tech
landscape, there is a strong desire to work with cutting-edge technologies that will
enhance a developer’s resume and future job prospects. Persisting with JSF might
lead to concerns about a lack of advancement and decreased competitiveness in the
job market.

• Lack of mentorship – over time, CZM has been facing a shortage of mentors
capable of introducing incoming interns to JSF. Moreover, the ecosystem around
JSF, including third-party libraries, tools, and community support, is diminishing as
its first release has been well over 20 years ago.

• Need for Full-Stack Expertise – JSF, being a server-side framework that integ-
rates closely with the Java ecosystem for web applications, necessitates developers
to have full-stack expertise. Every intern needs to know Java, JavaScript, CSS and
XHTML.

16 Chapter 2. FelSight

Chapter 3

FEL.HUB

Contents
3.1 General Idea . 17

3.2 Technologies . 19

3.3 Architecture . 25

3.4 Motivations Behind The Project 26

FEL.HUB is an integration platform with the aim of integrating various faculty sys-
tems into a single unified system. This chapter presents an overview of FEL.HUB, focusing
on its architecture, technologies, and concept.

3.1 General Idea

FEL.HUB was developed as a solution to the problem of a growing number of dif-
ferent faculty systems and the complexity within. Users, i.e. students and teachers, had to
orient themselves in a broader and broader range of different systems that were developed
independently of one another. FEL.HUB’s aim is to integrate all of those systems under
one roof and offer their functionalities in terms of modules called agendas. It also wants
to offer a modern, accessible, scalable, and long-lasting system built on solid foundations.
[13]

The distinction between the current system and the vision of a new one from the
perspective of FEL.HUB is illustrated in the figure 3.1.

18 Chapter 3. FEL.HUB

Current System FEL.HUB System

Website 1

User

Website 2

Website N

External
API 1

External
API 2

External API
N

User

FEL.HUB

External
API 1

External
API 2

External
API N

FEL.HUB
backend

.

.

.

.

.

.

.

.

.

Figure 3.1: Comparison between the current and the FEL.HUB system

When a visitor accesses FEL.HUB, they can view all the agendas that they have
authorization to access. There are also links to external systems below the main agendas.

Figure 3.2: Main page of FEL.HUB

3.2. Technologies 19

3.2 Technologies

This section introduces the technologies used in FEL.HUB and puts them in contrast
with those of FelSight.

3.2.1 SPA and PWA

The frontend of FEL.HUB implements a so-called Single Page Application (SPA).
SPAs are JavaScript-driven web applications requiring only a single page load. When the
user enters the site, all essential files are loaded, and JavaScript takes control of the nav-
igation from that point forward [14]. Thanks to the lack of abrupt page reloads, the UI
feels smoother and resembles a native application1. FEL.HUB leverages that by meeting
the necessary standards of PWAs2, enabling the website to be downloaded and used as a
native application on a phone.

Figure 3.3: Browser prompting to download FEL.HUB

Although FelSight includes support for PWAs as well, it is an MPA (Multi Page
Application) and consequently lacks the native-like experience that HUB provides. FelSight
does not meet the browser requirements to provide it as a PWA out-of-the-box; instead, it
is available for download on Google Play and the App Store.

1Native applications are built for use on a particular platform or device [15].
2PWAs (Progressive Web Applications) are browser based web applications. They are typically run

in a separate browser window without the address bar and are therefore visually and functionally near-
indistinguishable from native applications [16]

20 Chapter 3. FEL.HUB

3.2.2 React

The frontend is developed using React. It is a JavaScript library that, similar to JSF,
is designed to build the user interface through reusable components [17]. Let us revisit a
specific example to highlight the distinctions between the two technologies. The listing 3.1
shows a code for the week parity switch component that was used to introduce JSF (2.1).� �

1 export type WeekParitySwitchType = WeekParity.EVEN | WeekParity.ODD;

2
3 type Props = {

4 onParityChange: (newParity: WeekParitySwitchType) => void;

5 currentParity: WeekParitySwitchType;

6 };

7
8 export const WeekParitySwitch = (props: Props) => (

9 <div>

10 <StyledParityButton

11 parityType={WeekParity.EVEN}

12 isSelected={props.currentParity === WeekParity.EVEN}

13 onClick={() => props.onParityChange(WeekParity.EVEN)}>

14 {t‘Even week‘}

15 </StyledParityButton>

16 <StyledParityButton

17 parityType={WeekParity.ODD}

18 isSelected={props.currentParity === WeekParity.ODD}

19 onClick={() => props.onParityChange(WeekParity.ODD)}>

20 {t‘Odd week‘}

21 </StyledParityButton>

22 </div>

23);
� �
Listing 3.1: React component example

As can be seen by the type definitions above the component declaration, the project uses
React in conjunction with TypeScript3. The component accepts the value of current week
parity and a function to be run upon clicking a button that changes it. These arguments
are used in the returned JSX 4. The StyledParityButton comes from the use of a Styled
Components library5 which allows the use of the CSS-in-JS styling technique. The definition
of button styles can be seen in the listing 3.2.

3TypeScript is an open-source, high-level programming language that enhances JavaScript by intro-
ducing static typing through optional type annotations [18].

4JSX is a JavaScript extension that enables the creation of HTML elements using the well-known XML
syntax [19].

5https://styled-components.com/

https://styled-components.com/

3.2. Technologies 21

� �
1 const StyledParityButton = styled.button<{

2 parityType: WeekParitySwitchType;

3 isSelected: boolean;

4 }>‘

5 background: ${({ isSelected }) => (isSelected ? ’#a6a2b2’ : ’#f2f5fc’)};

6 color: ${({ isSelected }) => (isSelected ? ’#fafafa’ : ’unset’)};

7 border: none;

8 padding: 0.35em 0.75em;

9 font-size: 1.8rem;

10 cursor: pointer;

11
12 &:hover {

13 background: ’#d9dce1’;

14 }

15
16 --border-radius: 0.25em;

17 ${({ parityType }) =>

18 parityType === ’ODD’

19 ? css‘border-bottom-right-radius: var(--border-radius);

20 border-top-right-radius: var(--border-radius);‘

21 : css‘border-bottom-left-radius: var(--border-radius);

22 border-top-left-radius: var(--border-radius);‘

23 }

24 ‘;
� �
Listing 3.2: Styled component example

Styled Components offer a way to modularize the CSS and bring it closer to JavaScript, thus
increasing cohesion. In addition, it also provides a robust method for directly manipulating
styles using JavaScript.

In the first line, it is specified that the styled component is a button HTML element.
The following two lines define the parameters which can then be worked with using the
notation in the 3rd line. The code inside the dollar with curly braces is JavaScript. It is
usually used for branching and working with the component’s arguments.

In line 12, a standard CSS selector is used to specify a hover color. The rest of the
code features an example of using a standard CSS variable within the library to define a
border radius.

22 Chapter 3. FEL.HUB

The following list summarizes the key advantages of the frontend technologies of
FEL.HUB.

• Resource Efficiency – The client-side houses the entirety of the UI logic, while
the backend is tasked mainly with data delivery and executing operations unsuit-
able for JavaScript. This approach significantly reduces bandwidth and data transfer
requirements.

• Technology Choice – The project employs React, currently the leading framework
in popularity [20]. React’s prominence in the job market makes it easier to recruit
both experienced developers and enthusiastic interns eager to acquire this sought-
after skill.

• Community Support – React benefits from unparalleled community support, dis-
tinguishing itself from JSF with a vast number of developers actively enhancing its
ecosystem [21].

• Rich Ecosystem and Libraries – With access to an extensive range of third-party
libraries, tools, and frameworks, React enables seamless expansion and integration of
additional functionalities into applications [22].

• Optimized Performance – Through the use of virtual DOM and sophisticated diff
algorithms, React significantly optimizes performance by minimizing unnecessary
DOM manipulations [23].

• Enhanced Developer Experience – FEL.HUB emphasizes high cohesion6, ad-
dressing a notable challenge within the FelSight codebase. By integrating HTML,
CSS, JavaScript, and core logic within the same component, it simplifies navigation
and maintenance of the codebase as it expands, in contrast to FelSight’s segregated
approach.

6Cohesion refers to how closely related the components within a module are, regarding their function-
ality [24].

3.2. Technologies 23

3.2.3 GraphQL

The frontend communicates with the backend using GraphQL. It is a data query and
manipulation language that also ships with its runtime engine. It enables for a declarative
way of fetching data in which a client specifies exactly what data they need. The server
exposes a single endpoint to which the client sends an HTTP POST request with the list of
the required data. The runtime engine decodes the message and uses the available services
to obtain the data, and returns it in JSON format. [25]

The diagram 3.4 captures this process.

Client

Server

Service layerGrapQL runtime

Parses the
request and
transforms it
so that the
service layer
can use it.

Retrieves the
data and
potentially
performs
some backend
logic.

Data source

Requests data in plain text

Returns the data in JSON format

Figure 3.4: GraphQL communication path

Instead of individual endpoints, GraphQL APIs use a simple schema language to
express the possible queries and types which can be fetched from them. The listing 3.3
shows what the schema may look like.� �

1 type Query {

2 getCourseInfo(code: String!): Course

3 }

4 type Course {

5 name: String!

6 credits: Int!

7 students: [Person!]!

8 }

9 type Person {

10 username: String!

11 email: String

12 }
� �
Listing 3.3: GraphQL schema example

24 Chapter 3. FEL.HUB

There are two types defined – Course and Person. The Query types define a query to
retrieve information about a course given its code. If the type ends with an exclamation
mark, it means that it is not nullable.

The listing 3.4 shows the plain text that would be sent in the POST request to
specifically retrieve the name of the course and usernames of its students.� �

1 query {

2 getCourseInfo(code: "B0B01LAG") {

3 name

4 students {

5 username

6 }

7 }

8 }
� �
Listing 3.4: GraphQL query example

To fully leverage the potential of GraphQL with its out-of-the-box schema definitions,
the Apollo Federation is used. It is an architecture that enables combining schemas from
multiple GraphQL APIs into one through which the frontend can interact using a single
request [26]. This insulates the frontend from needing to know about the individual backend
services.

Instead of directly interacting with individual services, the frontend communicates
exclusively with a GraphQL gateway. This service dynamically orchestrates a unified super-
schema by aggregating GraphQL schemas from the individual services. Incoming requests
are routed to the corresponding services. This process is illustrated in the diagram 3.5.

type Course {
 code: String!
 teachers: [Person]
 students: [Person]
}

type Person {
 username: String!
 email: String
}

Person
service

Room
service

Course
service

type Person {
 username: String!
 fullName: String!
 email: String
}

type Room {
 code: String!
 locality: String
}

GraphQL
gateway

type Person {
 username: String!
 fullName: String!
 email: String
}
type Course {
 code: String!
 teachers: [Person]
 students: [Person]
}
type Room {
 code: String!
 locality: String
}

Client

Figure 3.5: GraphQL federation example

3.3. Architecture 25

3.2.4 Java, SpringBoot, DGS

When it comes to backend, most7 of the services at the moment use Java with Spring-
Boot. It is a development platform within the Java ecosystem designed to streamline the
configuration and deployment of web applications by abstracting and automating boiler-
plate setup processes. Fundamentally, Spring provides a container that is responsible for
the creation and management of application components. These components, also known
as beans, are interconnected within the Spring application context to form a comprehensive
application [27].

The services use Netflix’s DGS library to manage the GraphQL workflow by providing
annotations for data fetchers, error handling, and testing [28].

3.3 Architecture

From a broad perspective, the architecture of FEL.HUB adheres to the straightfor-
ward diagram shown in the schema 3.1.

Microservices within the FEL.HUB ecosystem follow a standard three-layer archi-
tecture. It is a software architecture pattern in which the user interface (presentation),
business logic, and data storage and access are developed as autonomous components [29].
The diagram 3.6 shows an architecture that a FEL.HUB microservice generally follows.

Microservice

Data access layerBusiness layerPresentation layer

Data Fetcher

Controller

Data
Repository

Service

External API

Client

Mapper

Data available in
external data

sources

Calls

CallsGraphQL
endpoint Calls

REST
endpoint

Data available
in the databse

Fetches
Uses

Calls

Figure 3.6: Architecture of a FEL.HUB microservice

While the frontend and backend exclusively communicate via GraphQL, interservice
communication continues to utilize REST protocols. When a request targets the GraphQL
endpoint, it is handled by a component known as data fetcher within the DGS frame-
work. Conversely, REST requests are managed by controllers maintained by Spring. Both
component types delegate to specialized services within the business layer.

7There are several services whose developers chose to use Kotlin instead of Java.

26 Chapter 3. FEL.HUB

These services are tasked with executing business logic. In addition to services, there
could be other elements like mappers or certain utility classes.

The data access layer is made up of repositories responsible for retrieving data, either
from a database or an external API, if available. These repositories are tasked with format-
ting requests or queries, incorporating elements such as pagination, limits, and offsets to
ensure efficient data handling and retrieval.

3.4 Motivations Behind The Project

Let us summarize the motivations behind the project given what has been said in
the chapters 2 and 3.

• Increase scalability – FelSight has scalability issues that would require extensive
remodeling of the whole architecture. FEL.HUB is built with scalability in mind and
is thus suitable to cover the demands for the features that FelSight provides.

• Improve performance – FelSight is becoming increasingly slower due to the tech-
nological and architectural decisions made at its inception. FEL.HUB leverages the
most up-to-date technologies that are suitable for building highly performant applic-
ations.

• Reduce development cost – Given the size of the project and the implications
of its monolithic architecture, adding new features, fixing bugs, and maintaining the
application overall has become more time consuming. FEL.HUB effectively mitigates
these challenges by modularizing its functionality and logic, maintaining a nearly
constant development cost per feature despite the project’s growth.

• Ease developer hiring – FelSight’s technology stack has a steep learning curve
resulting in substantial amount of time of the incoming developers being delegated
to mastering it. Moreover, motivation for learning the technology is lacking due to its
obsolescence. FEL.HUB employs a technology stack that is both profitable to learn
and highly sought after, ensuring that interns’ considerable time investment is not
wasted.

• Improve functionality – Lastly, the functionality of FelSight has been revised and
improved during the creation of the UI styles [1]. Features that were not used will
not be reimplemented, while those that were will be refined and prioritized.

Chapter 4

Analysis

Contents
4.1 Use Cases . 28

4.2 Backend . 31

This chapter attempts to provide a comprehensive analysis of the project, outlining
the essential elements that need to be implemented.

Initially, a series of use cases are delineated and categorized based on their association
with the individual pages. Due to the large number of these use cases, they were further
divided into six distinct categories. For each of these categories, a list of associated use
cases is provided together with a detailed description.

The backend is presented in great detail with an overall description of what needs to
be done. The functionalities of each service are elaborated thereupon, detailing the specific
work required. An outline1 of the GraphQL schema is presented in each of the services.

The frontend component is not covered in this analysis, as it primarily focuses on
creating a user interface that adheres closely to the specified designs. The design from
Lucie Baronová’s thesis [1] did not encompass all the use cases discussed in this chapter.
Consequently, ongoing collaboration with the UI/UX team of CZM has been initiated to
ensure that the remaining functionalities are accurately captured and implemented.

1Presenting the whole schema including the specific types and enums would be impractical. Moreover,
the diagrams of the databases that will be presented shortly closely resemble the GQL types.

28 Chapter 4. Analysis

4.1 Use Cases

The diagram 4.1 presents use cases that were created with the goal of capturing the
functionalities of FelSight in the timetable and the planner page together with the new
ideas from the UI designs of Lucie Baronová.

User

Switch between
time units in

timetable

Grouped search

Search people

Search courses

Search rooms

Advanced
search

Switch between
time units using

arrows

Switch between
time units via

calendar

Add timetable
owner

Add room to
timetable

Add person to
timetable

Add course to
timetable

Show course
detail

Show room
detail

Show person
detail

Advanced room
search

Advanced
course search

Advanced
people search

Go back to
today

Remove
timetable

owner

Toggle visibility of
timetable owner

Optimize
timetable

Switch between
irregular weeks

Find courses by
time period

Choose a
parallel

Remove course
card

Toggle visibility of a
course card

Switch timetable
view

Switch to daily
timetable

Switch to weekly
timetable

Switch to
monthly
timetable

Manage user
events

Switch between odd
and even weeks

Switch between
weeks using week

picker

Toggle timetable
orientation

Show timetable
owner detail

Add a course
card

Timetables Page Timetable Planner Page

Manage user
event labels

Expand event
card

Navigate to
the room

«extend»

«include»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»
«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«extend»

«include»

«extend»

«extend»

«extend»

«include»

«extend»

«extend»
«extend»

«extend»

«extend»

«extend»

Figure 4.1: Use case diagram

The left circle represents the boundary of the timetable page and the right circle
contains the use cases that belong to the timetable planner page. The use cases at the
intersection of the two boundaries are related to both pages. The core component of both
pages is a timetable that contains items called events.

Later, in the implementation stage, these use cases are linked to individual compon-
ents that fulfill their scope. Because there are quite a lot of use cases, they were divided
into six categories and further specified thereafter.

4.1. Use Cases 29

4.1.1 Timetable Views

Use cases: Switch timetable view, Switch to weekly/monthly/daily timetable,
Toggle timetable orientation

There are several views of the timetable that are based on time range or orientation.
On desktop, users have the option to view the timetable horizontally, with time displayed
along the x-axis, or vertically, with time along the y-axis. They can also switch between
a weekly and a monthly view of the timetable. The monthly view is similar to a google
calendar and helps users to plan further ahead. There is also a daily view which is a default
view on phones.

4.1.2 Timetable controls

Use cases: Switch between time units (calendar / arrows), Add/remove timetable
owner (person / room / course), Add/remove course card, Choose a parallel

Timetable presents events within a specified time range, be it a day, week or a month.
In order to switch between these time ranges, there are arrows that move by a corresponding
time unit forward or backwards, as well as a calendar that allows the user to select a specific
date.

Regarding the choice and visibility of the events in the timetable, there is a side panel
with cards and a search bar through which they can be searched. In the timetabple page,
these cards are referred to as owner cards. They represent a timetable of a room, person
or a course. Timetable planner’s cards, on the other hand, are simply called course cards
and they allow the user to select parallels.

4.1.3 Searching

Use cases: Grouped search (people, rooms, courses), Advanced search (people,
rooms, courses)

As mentioned in the previous section, the cards representing events in the timetable
can be searched in a dedicated search bar. In the timetable page, the search is grouped. In
the timetable planner only courses are searched.

Both search bars also contain an option of an “advanced search”. Clicking on the
option reveals a modal with a more thorough search allowing advanced filtering, sorting,
etc.

30 Chapter 4. Analysis

4.1.4 User Events

Use cases: Manage user events

In the timetable page, users can manage their user events. This feature is aimed at
creating a more personalized experience for the user as they can merge their own affairs
with their school schedule. The user events will have the same parameters as in FelSight –
there are timed and whole-day events, as well as one-time and repeated ones. Additionally,
users can organize these events under customizable labels. These labels function similarly
to timetable owners, meaning they can be collectively viewed, hidden, or removed.

4.1.5 Timetable Irregularity

Use cases: Switch between irregular weeks (using week picker / odd, even weeks)

In timetable planner, a situation can occur in which some courses have irregular
parallels. For example, physics labs may be taught every other week, or there might be a
safety training microcourse that consists only of a few lectures in the first two weeks of
the semester. Users need to be properly informed about these irregularities in their future
timetable.

There are two components to tackle this. The first is a week-parity switch (2.8), which
is used to alternate between even and odd weeks. In case of higher-order irregularities, there
is a week picker (2.6) in which users can choose a specific week to look at.

4.1.6 Details

Use cases: Show timetable owner detail, Expand event card

Upon clicking on a search result, a detail modal is shown. It is also possible to get
into the owner detail by clicking on a teacher’s name or the room code in the expanded
event card.

In the case of rooms, the detail contains a navigation button that is linked to the
building plans page (2.7) with a prefilled destination. The floor projection is also displayed
with a dynamically generated sentence describing the room.

Person detail displays a photo of the user (if available and public) and additional
information such as the user’s department and a list of emails. What is unique here are the
translated roles – UserMap roles are fetched in a unified code string like B-13000-SUMA-
STUDENT-MAGISTR which is difficult to present in a user-friendly way. FelSight has
made an attempt to translate about fifty most used and important roles such as Student,
full-time master’s degree or Vice dean for foreign relations. These translations will be
copied over to FEL.HUB.

Course detail just shows more information about a given course such as the required
literature or a full description.

4.2. Backend 31

4.2 Backend

The backend (initially crafted to modularize FelSight’s architecture) from Ladislav
Svoboda consists of four microservices as depicted in the diagram 4.2.

Timetable service provides fresh data for timetable viewing and planning using Sirius
API. It also enables creating, updating, and fetching data for user events. Finally, it serves
as storage for saved timetable planner selections.

Course semester service provides highly filtrable data that can be used for searching
courses and parallels. It also stores and exposes data on semesters and departments, as
well as detailed information about courses. Its database is the largest and is periodically
updated via scheduled jobs using KOS service.

Room service also periodically updates its database using KOS service, however, the
data are only concerned with rooms.

The KOS service was created to translate the XML responses of KOS API into REST.

FEL.HUB backend

Svoboda's APIs

External APIs

Timetable service

Course semester
service

Room service Kos service Kos API

Sirius API

Usermap APIUser service

Mongo
 DB

Postgre
SQL DB

Postgre
SQL DB

Rest of the
FEL.HUB
services

GraphQL gateway Client

REST

REST

GraphQL

REST

REST

GraphQL

REST

XML

GraphQL

GraphQL

Figure 4.2: Diagram of the FEL.HUB backend

The Svoboda’s services as well as user service only contain REST endpoints. As
indicated by the red arrows, they need to expose a GraphQL schema to GraphQL gateway
in order for the backend to be complete.

32 Chapter 4. Analysis

4.2.1 Timetable Service

The timetable service ensures that users have access to the latest information about
events and sessions in both the timetable viewer and planner. This is essential because
both events and sessions are subject to frequent updates, and users need to stay informed
about these changes.

Moreover, together with the current events for a given time range, it needs to package
possible user-defined events with the response. Since the user events also need to be linked
with labels, there need to be options to create, delete and retrieve them as well.

In order to save the courses and parallels user has selected in timetable planner, there
needs to be a way of saving the current selection as well as retreiving it if available.

In GraphQL, mutations are used to modify data on the server, such as creating,
updating, or deleting data. The listing 4.1 shows the queries and data mutations that need
to be implemented in the Timetable service.� �

1 type Query {

2 eventMany(from: Date, to: Date,

3 usernames: [String],

4 courseCodes: [String],

5 roomCodes: [String]): [TimetableSlot]

6 timetableForCourses(semesterCode: String,

7 courseCodes: [String]): [PlannerTimetableCourse]

8
9 getUsersPlannerSelection: PlannerSelection!

10
11 userEventOneById(id: String!): UserEvent

12 userEventMany: [UserEvent]

13
14 userEventLabelMany: [UserEventLabel]

15 }

16
17 type Mutation {

18 savePlannerSelection(selection: PlannerInput): PlannerSelection!

19
20 saveUserEvent(userEventInput: UserEventInput): UserEvent

21 deleteUserEvent(id: String): String

22
23 saveUserEventLabel(userEventLabel: UserEventLabelInput): String

24 deleteUserEventLabel(labelName: String): String

25 }
� �
Listing 4.1: Timetable service queries

4.2. Backend 33

The eventMany fetches the events for the given timetable owners (rooms, people,
courses). In case of users, it also appends any user events of that user.

The timetableForCourses query is designed to gather the essential data needed for
constructing the timetable planner component. This includes information on the number of
credits, course parallels, the times at which these parallels are taught, and any irregularities,
among other details.

There are also queries for managing user events and user-event labels as well as saving
and retreiving the user’s planner selection.

Regarding the database, the entities for planner selection saving are already present;
however, there are no user events. The diagram 4.3 outlines a design of the completed
MongoDB data model.

Planner Selection Saving

User Events

PlannerSelection

- courses: Map<String, PlannerCourse>
- username: MongoId<String>

PlannerCourse

- laboratoryCode: int
- tutorialCode: int

«enumeration»
RepetitionType

 NEVER
 DAILY
 WEEKLY

UserEvent

- end: LocalDateTime
- id: MongoId
- label: UserEventLabel
- location: String
- repetitionType: RepetitionType
- start: LocalDateTime

User

- events: List<UserEvent>
- labels: List<UserEventLabel>
- username: MongoId<String>

UserEventLabel

- color: String
- id: MongoId
- name: String

1..*

0..1

0..*

0..*

0..*

Figure 4.3: Data model for timetable service database

The User entity was created in order to make the queries for user events more effective
as well as to make the database itself clearer. When verifying the feasibility of creating a
user event, it is essential to have access to all of the user’s labels and events. This makes
it easy to check whether an event with the same name already exists, or if there is a label
sharing the same color. The existence of User alleviates the need to join or having to
perform additional queries.

34 Chapter 4. Analysis

4.2.2 Course Semester Service

In order to be able to offer highly specific and advanced data filtering, Course semester
service stores data about Courses in an SQL database and periodically updates it through
KOS service. Thanks to the fact that the data is inside an SQL database, it can be efficiently
filtered through using Spring’s query-building APIs.

Given the relatively invariant nature of semester data, it is also stored within the
database. Updates are required only on a bimonthly basis, facilitating rapid query execution
without the necessity of invoking the KOS service.

The entire data model is depicted in the diagram 4.4. Several simple modifications
have been implemented in the model relative to its original configuration.

Course

- classesLanguage: LanguageType
- code: String
- credits: int
- departmentCode: int
- externalKosId: String
- homepage: String
- lectures: LanguageField
- name: LanguageField
- objectives: LanguageField
- range: String
- state: CourseState
- transliteration: String
- tutorials: LanguageField

Parallel

- capacity: int
- capacityOverfill: PermissionEnum
- code: String
- courseCode: String
- enrollment: PermissionEnum
- note: String
- parallelType: ParallelType
- semesterCode: String
- teacherUsernames: List<String>

Period

- endsAt: LocalDate
- periodType: PeriodType
- semester: Semester
- startsAt: LocalDate

Semester

- code: String
- endsAt: LocalDate
- externalId: String
- name: LanguageField
- startsAt: LocalDate
- teachingEndsAt: LocalDate

TimetableSlot

- day: int
- duration: int
- endTime: Time
- firstHour: int
- roomCode: String
- startTime: Time
- weeks: List<Integer>

Week

- endsAt: LocalDate
- number: int
- startsAt: LocalDate
- teaching: boolean

«enumeration»
CourseCompletionEnum

 CLASSIFIED_CREDIT
 CREDIT
 CREDIT_EXAM
 DEFENCE
 EXAM
 NOTHING
 UNDEFINED

«enumeration»
CourseStateEnum

 PROPOSED
 APPROVED
 OPEN
 CLOSED
 UNDEFINED

«enumeration»
ParallelType

 LABORATORY
 LECTURE
 TUTORIAL
 UNDEFINED

«enumeration»
PeriodType

 TEACHING
 HOLIDAY
 EXAMS
 UNDEFINED

«enumeration»
PermissionEnum

 ALLOWED
 DENIED
 UNDEFINED

«enumeration»
SemesterPeriodType

 WINTER
 SUMMER
 BOTH
 UNDEFINED

«enumeration»
WeekParity

 EVEN
 ODD
 BOTH
 UNDEFINED

0..1

1

1 0..* 1 0..*

1

1

1

0..*

1 0..*

1

11

1

1

2

Figure 4.4: Data model for course semester service database

4.2. Backend 35

The listing 4.2 shows the GraphQL queries that need to be implemented.� �
1 type Query {

2 courseOne(code: String, language: LanguageCode): Course

3
4 semesterOneByDate(date: Date): Semester

5
6 courseMany(language: LanguageCode,

7 pagination: PagedCourseRequestInput,

8 search: String): [Course]

9
10 advancedCourseMany(language: LanguageCode,

11 pagination: PagedCourseRequestInput,

12 filter: AdvancedCourseInput,

13 search: String): AdvancedCourseManyResult

14 }
� �
Listing 4.2: Course semester service queries

The list below details the utilization of the queries within the system.

• courseOne will be used to fetch data needed to display the course detail. It will
simply look up the course in the database and return it.

• semesterOne will return information needed to display the correct semester code in
the timetable given the currently selected date.

• courseMany will retrieve data from the courses database table. It will be called in
advanced grouped search as shown in 5.19.

• advancedCourseMany will provide a highly filterable API for advanced timetable
searching.

While the first three queries primarily involve straightforward lookups into the database,
the advancedCourseMany requires a sophisticated use of query-building APIs. This is ne-
cessary to construct highly complex queries that can accommodate the detailed filtering
options.

36 Chapter 4. Analysis

4.2.3 Room Service

Room service also stores the data in the database and frequently updates them
through KOS service.

Similarly to courseOne and courseMany, the Room service requires the implement-
ation of roomOne and roomMany queries. The roomOne query is designed to retrieve the
necessary data to display detailed information about a specific room, while roomMany fa-
cilitates the retrieval of room data for the room tab within the advanced grouped search
interface.� �

1 type Query {

2 roomMany(pagination: PagedRoomRequestInput, search: String):[Room]

3 roomOne(code: String): Room

4 }
� �
Listing 4.3: Room service queries

Although the Room service currently encompasses only a small fraction of the backend
logic, it is anticipated to expand in the future to include the logic for room reservations.

4.2.4 User Service

Similarly to the Room service, the User service also requires two key implementations:
one query to fetch detailed information for individual user profiles, and another query for
populating the people tab in the advanced grouped search. However, a distinct aspect of
the User service is that it does not store user data locally in a database. Instead, it retrieves
this information dynamically from the UserMap API.� �

1 type Query {

2 personMany(search: String,

3 searchBy: PersonTableColumn,

4 pagination: PagedPersonRequestInput!): [UmPerson!]!

5 personOne(username: String): UmPerson

6 }
� �
Listing 4.4: User service queries

The User service falls outside the scope of this thesis and beyond the control of its author.
The changes made to it will be tested locally and subsequently submitted for review to its
administrators.

Chapter 5

Frontend Implementation

Contents
5.1 Timetable Views . 40

5.2 Timetable Controls . 45

5.3 Search . 49

5.4 User Events . 52

5.5 Timetable Irregularity . 53

5.6 Details . 53

5.7 Comparison With Designs . 57

This chapter details the frontend implementation through annotated screenshots of
the components, organized according to the categories used in the discussion of the use
cases (4.1).

Figure 5.1 provides a comprehensive overview of all React components included in the
implementation, excluding common FEL.HUB components like buttons. The arrangement
of the packaged components mirrors the directory structure within the project. Arrows
indicating a connection from component A to component B signify that component A uses
component B.

The components are delineated by dashed rectangles representing distinct boundaries;
these boundaries correspond to the timetable page and the planner page. Components
within the hatched region are shared between both pages.

The implementation consists of approximately 50 components and to maintain clarity
and readability, efforts were made to limit their size to under 200 lines, excluding import
statements. The core logic for each component resides in its primary file where it is defined.
Styles are specified below the component definition using the styled-components library (see

38 Chapter 5. Frontend Implementation

3.2). Minor parts of a component’s logic are incorporated inline, while more substantial
sections are organized into separate functions and placed in a corresponding file within the
same folder, from which they are then imported.

Styling constants that were often referenced, such as width of the timetable row, were
aggregated into a configuration object and moved into a separate file from which they can
be exported. This gave a better overview of which styles are applied where.

3
9

CourseCard

AdvancedTimetableSearch

AdvancedCourseSearch

Course Info CourseSearchFilters CreditsSlider MultiRangeSlider

PeopleSearch SemesterPeriodPicker TimePeriodFilters WeekDaySelect

CoursesTab

PeopleTab

RoomTab

ParallelSelect

CourseDetail

PersonDetail

RoomDetail

EventCard

EventCardDetail

NewEventForm

UserEventLabel

AddLabelButton

PhoneTimetableControls

Timetable

TimetableCalendar

MiniEventCard

TimetableControlPanel

CalendarButton DayPicker TimetableArrows

OrientationSwitch

ViewSwitch WeekParitySwitch WeekText

TimetableFilters

TimetableGroupTag

TimetableLegend

PlannerContolPanel

SearchOverlayButton

CreditsText

ResetButton

SemesterText

WeekPicker

TimetableSearch

TimetableSearchCategory

TimetableSidebarToggleButton

WeeklyTimetable

WholeDayUserEvents

ArrowButton

DayTag

EventGapButton

NowLine

TimetablePage

TimetablePlannerPage

Timetable Planner Page

Timetable Page

Figure 5.1: React components

40 Chapter 5. Frontend Implementation

5.1 Timetable Views

5.1.1 Weekly Timetable View

Figure 5.2 depicts the adaptation of the traditional vertical weekly timetable format,
familiar to users from the FelSight application. Contrary to the final designs by Lucie
Baronová, this specific layout was developed based on initial designs during the Software
Project course. Given that students are accustomed to this horizontal view, retaining it
in the project was deemed beneficial. This inclusion not only preserves continuity and
familiarity for the users but also enhances user choice, offering them the flexibility to select
between layout presentations according to their personal preferences.

Figure 5.2: Horizontal weekly timetable

Figure 5.3 presents a vertical view of the weekly timetable, which more closely re-
sembles a conventional calendar layout. Despite the apparent complexities stemming from
the two distinct orientations, both views are integrated within the same component. The
variations between these orientations are facilitated through modifications in the styles and
functions responsible for accurately calculating the event positions.

For the positioning of events, it is essential to employ units that are relative to the
container’s size. This approach ensures that when the dimensions of the container are ad-
justed, the events maintain their appropriate placement along the time axis. Specifically,
in the horizontal view, the horizontal offset of events is calculated using percentage units,
which scale dynamically with changes in width. Conversely, in the vertical view, the ver-
tical offset is calculated using vh (viewport height)1 units, ensuring that the events align
correctly as the container’s height varies.

1The ’vh’ unit in CSS represents 1% of the viewport’s height [30].

5.1. Timetable Views 41

Figure 5.3: Vertical weekly timetable

42 Chapter 5. Frontend Implementation

5.1.2 Collision Management

To properly style overlapping events and ensure clear visualization, they must be
grouped. This is achieved using a 3-dimensional array. The first dimension of this array
represents the days of the week, while the second dimension contains arrays of elements
that overlap, referred to as collision slots. If an event does not overlap with others, it is
the sole member of its collision slot. For instance, in the figure 5.3, the array for Tuesday
would be [[MAS, NVS], [NVS], [PAG, SPE], [MAS], [SEP]].

As illustrated in Figures 5.4 and 5.5, the management of collisions involves adjusting
the width or height of an event’s display proportionally. The determination of appropriate
styles for handling these collisions is governed by two parameters: collision cardinality and
collision offset. The collision cardinality denotes the count of event cards that overlap with
the current one, including the card itself. In the examples provided, the cardinalities are
3, 1, and 2. Collision offset, on the other hand, defines the sequence in which the cards are
arranged, which is dictated by the starting time of the events; for instance, the Golf event
takes place earliest and is therefore positioned as first.

The event card component computes the offset using these parameters to ensure
precise alignment with other cards, especially since these elements are absolutely positioned
rather than relying on flexbox or similar tools. This calculation is intricate due to minimal
spacing between events.

Efforts have been made to preserve readability up to the third level of collision. Since
collisions involving more than three cards are exceedingly rare, adaptations are made to
accommodate up to three simultaneous events. For instance, in the horizontal timetable,
padding is minimized when three events collide. Conversely, in the vertical timetable, read-
ability is maintained even with three overlapping events by abbreviating the course code
to its essential form.

Figure 5.4: Collisions in horizontal timetable

Figure 5.5: Collisions in
vertical timetable

5.1. Timetable Views 43

5.1.3 Monthly Timetable View

Figure 5.6 features a monthly view of the timetable, which aligns with the familiar
format of popular calendar applications like Google Calendar. This layout is designed to
provide an overarching perspective of scheduled events over the course of a month. In
instances where the volume of events exceeds the display capacity of a single cell, a button
marked with three dots is introduced (as observed in the cell labeled with nine). Interaction
with this button triggers an expansion of the cell, revealing all events scheduled for that
particular day.

To improve navigation between timetable views, clicking on a cell in the monthly
view automatically transitions the user to the corresponding week’s view.

The monthly view’s date range is determined by identifying the first Monday of the
month and extending the range based on the calendar’s dimensions, while excluding week-
ends. Calendar applications typically align the calendar this way to maintain a consistent
and predictable grid layout across all months.

Figure 5.6: Monthly timetable view

44 Chapter 5. Frontend Implementation

5.1.4 Timetable Views On Phones

The timetable views for phones are presented in the figures 5.8, 5.9, 5.7. Apart from
the discussed weekly and monthly views, which were adapted to smaller screens using CSS,
there is also a daily view which is chosen on default. Thanks to that, user will immediately,
upon arriving to the website, see their schedule for the day.

Contrary to what one might expect, the daily view is not a standalone component.
It is in fact just a zoomed-in weekly view component. Thanks to that, it was possible to
implement a smooth animation for transitioning between days.

Apart from using the day picker above the component, it is also possible to navigate
between days by swiping left or right. A custom hook was built that detects a left or
right swipe motion and triggers given functions. This interaction leverages the inherent
interaction patterns of mobile device users to improve user experience.

Figure 5.7: Daily
timetable view for
phones

Figure 5.8: Weekly
timetable view for
phones

Figure 5.9: Monthly
timetable view for
phones

5.2. Timetable Controls 45

5.2 Timetable Controls

5.2.1 Switching Time

Adjusting the time of the timetable can be accomplished using various methods.
In the daily timetable view, a menu displays the days of the week, as illustrated in the
screenshot (5.7). To navigate the timetable by weeks or months, users can utilize the
forward and back arrow buttons (5.10). To select a specific date, particularly one that is
not immediately forthcoming, there is a calendar button (5.11) that opens a native calendar
interface, allowing users to easily choose any date.

Figure 5.10: Arrow
buttons

Figure 5.11: Calendar button with week
information

HTML lacks built-in support for displaying a standalone calendar interface. Instead,
when using an <input type="date"> element, a box with the selected date is displayed.
Since the design is custom, this default box has been hidden using CSS and upon clicking
on the “fake” calendar button, the calendar interface is displayed programatically by call-
ing a showPicker() function. The appearance of the calendar interface is unforutnately
inconsistent across different browsers, necessitating the use of browser-specific prefixes in
CSS for proper styling and adjustments.

Figure 5.12: Calendar interface in Mozilla Figure 5.13: Calendar interface in Chrome

46 Chapter 5. Frontend Implementation

5.2.2 Timetable Page Controls

Tools for managing what events are displayed in the timetable are located in the
retractable sidebar called Filters. Owners (people, rooms, or courses) can be added to
the timetable through the search component (5.18) at the top. Once selected, owners are
displayed in the sidebar, each accompanied by a checkbox and a remove button. If the
checkbox is unchecked, the events for that owner are hidden. Hovering over an owner’s
name highlights their events, aiding in quick identification.

For easy identification, each owner is assigned a unique color. This color appears as
a stripe on the event cards and in the corresponding checkbox. The UI/UX team provided
a palette of 12 visually distinct colors to be used for the event owners. These colors are
currently chosen based on the owners order.

In the screenshot 5.14, three owners are selected: the timetable user labeled as
personal, a user with the username gruncdam, and a room T2:C3-56, which is unchecked
and therefore its events are not displayed in the timetable. In addition, there are two cat-
egories of user events: Sports and Errands. Since personal is being hovered over, all other
events are temporarily dimmed.

Figure 5.14: Timetable filters with a hovered owner

5.2. Timetable Controls 47

5.2.3 Timetable Planner Controls

The sidebar for timetable planner consists of a series of course cards, each containing
a select menu with available parallels to choose from. A search bar is also available there
under the plus icon; however, this time only courses can be searched and added. Similar to
the timetable page, hovering on a course card highlights the corresponding events. Hovering
on a specific parallel in the select menu highlights that parallel in the timetable. The cards
can be retracted or expanded by clicking on the arrow in the bottom right corner.

The timetable only shows the selected parallels. If no parallels are chosen, all available
options are displayed. Parallel numbers are indicated at the bottom of each card, except
for lectures. The parallels 109, 101, and 108 of the course B0B01LGR are faded, indicating
that they are fully occupied.

At the bottom, there is information about the total number of credits. While the
total number of credits for the courses sums up to 20, only courses for 15 credits have a
selected parallel. In case the course has both tutorials and laboratories, both have to have
a parallel selected in order to count as being selected.

Under the credits text is a button that restarts the planner. In the default state, the
planner displays courses that the user is enrolled in for the upcoming semester. After the
user alters that configuration and leaves the page, the selection is saved. By clicking on the
restart button, the planner will reset to the default state.

Figure 5.15: Timetable planner page

48 Chapter 5. Frontend Implementation

5.2.4 Timetable Controls On Phones

The sidebar’s inherent horizontal layout made it unsuitable for phone views in its
original form. Instead, a design similar to a bottom sheet2 was chosen in the UI designs.
This transformation of the sidebar was achieved solely by modifying the component’s CSS.

Figure 5.16: Timetable filters on a phone Figure 5.17: Planner filters on a phone

2A bottom sheet is a sliding panel that emerges from the bottom of the screen, providing additional
content, options, or controls without leaving the current view [31].

5.3. Search 49

5.3 Search

5.3.1 Grouped Search

The grouped search component depicted in figure 5.18 is designed to facilitate the ad-
dition of new timetable owners. This component retrieves individual owner types (courses,
people and rooms) using distinct asynchronous queries. In the event of a failure, an error
message is displayed, but successfully retrieved owner types continue to be shown. The
same component is utilized in the timetable planner pages, although there it exclusively
displays the course category.

Typing into the search will result in a grouped search across all three owner types.

Figure 5.18: Grouped search component

5.3.2 Advanced Search

Clicking on the Advanced search button on the timetables page opens a modal with
three tabs, each representing a different owner type, as shown in 5.19. Similar to the
standard grouped search component, typing in the search bar initiates a search across all
three tables3. This search is multirange, using the entered text to search both the codes and
the names of the owners. The tables provide additional information about the timetable
owners. Users can sort the data in ascending or descending order by clicking on the column
titles. Each entry also features an Add to timetable button.

3The tables load lazily, reducing the number of queries required to be refetched on each keystroke.

50 Chapter 5. Frontend Implementation

Figure 5.19: Advanced grouped search modal

The Advanced search button in the planner page opens a different modal that spe-
cializes in searching courses. In the figure 5.20, there are advanced filters on the right
side which control the content displayed inside the table on the left. In addition to the
functionalities provided by FelSight, students can pick the exact times that tutorials and
lectures take place separately. Furthermore, users can conveniently pick a credits range
using the custom dual range slider. Searching a teacher is also more convenient because of
an autocomplete feature which helps in finding the teacher even if the student only knows
a part of their name for example.

In terms of implementation, the entire right side with filters is treated as a form with
the Apply button serving as its submit button. The search above the table is also in the
query. The response to submitting the form is presented as a table on the left. The input
field for days of the week is a custom component, as well as the dual range slider. Since
there is no native HTML element for the dual range slider, a custom one was created taking
inspiration from [32]. The slider was created by appending two native single-range HTML
sliders and using CSS to hide the fact that they are separate, and JavaScript to override
their default behavior.

5.3. Search 51

Figure 5.20: Advanced course search

An alternative way of accessing the advanced course search is by clicking on gaps
between events in the timetable planner. These gaps, represented as buttons, only appear if
the interval between consecutive events exceeds 90 minutes4. During the rendering process,
events are analyzed to identify these gaps, which are then stored in an array. For each
identified gap, an EventGapButton component is generated. The placement of these buttons
varies depending on the timetable’s orientation, as illustrated in figures 5.21 and 5.22.
Clicking on the button opens the advanced course search modal with preselected values
for start and end times.

Figure 5.21: Horizontal event gap button

Figure 5.22: Vertical event gap button

4This duration was selected because it matches the typical length of a lecture or tutorial.

52 Chapter 5. Frontend Implementation

5.4 User Events

Clicking the plus button on the left panel of the timetable page opens a modal for
creating new user events, as depicted in figure 5.23. Users are prompted to select a specific
date and time. If the “Whole day” option is checked, as shown in Figure 5.24, users must
select a date range. There are options to set the event to repeat daily, weekly, or monthly.
Each event must be associated with a label, and new labels can be created by clicking the
plus button next to the label list. Deleting a label and all associated events using the cross
icon triggers a confirmation pop-up that informs the user about the consequences of this
action.

Figure 5.23: User event form Figure 5.24: Whole-day user event form

There is dedicated row in the timetable for whole-day user events while time-bound
user events are treated as regular events, having their own event card with a detail. In the
detail that is open for the Golf user event in the figure 5.25, user can remove a specific
event or update it. Updating an event is implemented using the same form as for the event
creation; however, the values are pre-filled there.

Figure 5.25: User events in timetable

5.5. Timetable Irregularity 53

5.5 Timetable Irregularity

The presence of courses with irregular parallels is detectable by simply checking
whether they have a defined weeks field. In case an irregularity is detected, it is further
inquired whether it is of parity type. That is, if the timetable is characterized by alternating
between two configurations each week. In that case a week parity switch is displayed (5.26).
If the irregularity is not characterizable by week parity, a switch with the irregular weeks
is displayed (figure 5.27).

Figure 5.26: Week parity switch Figure 5.27: Week switch

5.6 Details

5.6.1 Event Card Detail

When a user clicks on an event card in a timetable, the details of the event appear,
providing specific information based on the user’s current page. Figures 5.28 and 5.29
illustrate the details displayed on the timetable and planner pages, respectively. Each
detail view includes the full course name, room code with a navigation option, time, and a
list of teachers. The planner page detail additionally presents the occupancy of the parallel,
which is particularly useful during timetable planning. It also features options to remove
a course, cancel a parallel selection, and add a parallel to the planner. All titles in blue
are interactive; clicking on the course name, room code, or teacher’s name opens a detail
modal for the corresponding entity.

Figure 5.28: Event card detail
Figure 5.29: Planner event card detail

54 Chapter 5. Frontend Implementation

The event card details, which are designed to appear adjacent to the absolutely
positioned event cards, extend beyond the original card when opened. The detail features
a left-pointing triangle created using a CSS border trick5. As this triangle is a distinct
shape, it cannot seamlessly share the box shadow with its neighboring rectangle without
creating a visible separation. Therefore, the shadow cast by the entire detail is intentionally
directed to the right to maintain a cohesive appearance.

5.6.2 Person Detail

Initially, it was planned to display a photograph of individuals in the person detail
view if certain conditions were met; however, this approach was later adjusted to show
only a placeholder image due to privacy concerns. The detail6 (5.30) includes the person’s
full name along with their academic titles. As outlined in the analysis (4.1.6), the codes
representing academic positions are parsed, and the most prevalent ones are translated.
The departments and rooms associated with the person are listed if applicable. Email
addresses are also displayed, with the preferred email highlighted. Clicking on an email
address initiates the mailto link7, launching an email client (if available) to facilitate direct
communication.

Figure 5.30: Person detail

5The CSS border trick involves using the border property to create triangles or other shapes by
manipulating the width and transparency of different sides of an element’s border [33].

6Ing. Matěj Dostál, Ph.D has kindly agreed with presenting the person detail using his information.
7A “mailto” link is a type of hyperlink used on websites to automatically open the user’s email client

with a new message window, pre-filled with information such as the recipient’s email address [34].

5.6. Details 55

5.6.3 Room Detail

The room detail includes a top-down view of the floor where the room is situated, with
the appropriate image selected by parsing the room code. If the floor is not identifiable,
a placeholder image is used. Currently, these images are raster screenshots, but there are
plans to replace them with high-quality SVGs in the future.

In addition, the details feature a dynamically generated sentence that describes the
room based on its floor, building, address, and block. This description is crafted by parsing
the room code and analyzing its components according to established naming conventions.

Figure 5.31: Room detail

56 Chapter 5. Frontend Implementation

5.6.4 Course Detail

The course detail provides additional information about the course, including re-
commended literature, a description, and the requirements. However, the individual fields
within this detail are not standardized, making it challenging to reformat the content into
a more structured presentation, such as bullet points.

Figure 5.32: Course detail

5.7. Comparison With Designs 57

5.7 Comparison With Designs

Although the general goal of the frontend implementation was to remain as close to
the UI designs as possible, some changes were made. All the modifications listed below were
reviewed and approved in consultation with the UI/UX team and the thesis supervisor.

• Timetable Views

– The new designs did not incorporate the horizontal timetable at all. For that
reason a timetable orientation switch was added.

– The designs use a select menu to switch between timetable views. This is in
contradiction with the design system guidelines which state that for 2-4 items,
radio buttons are to be used.

– Unlike in designs, the timetable components do not display weekends. This
is to significantly decrease the implementation complexity as well as increase
readability on small devices (without including weekends, the event cards are
almost 30% wider, which increases readability significantly).

– Collision management was not defined in the UI designs. The padding adjust-
ments, course code shortening, etc. all went beyoned the provided designs.

– In case of vertical overflow, the scrollbar is bound to the timetable component
itself in the designs. This setup fails because some actions such as opening an
event detail may also trigger an overflow. In addition, there have been numer-
ous responsiveness issues with the component, necessitating a comprehensive
redesign of the entire implementation.

• Timetable Controls

– While the designs contain a custom implementation of a calendar widget, a
native HTML component has been used instead. This is to increase accessibility
and decrease implementation complexity.

– In the UI designs, the cards in Filters sidebar (5.14) are divided into categories
based on the event type – lecture, tutorial, laboratory, etc. This was changed
to be the same as in FelSight where the events are filtered by their owner – a
person, course or room.

– In the monthly timetable view (5.6), some interactions were added. For example,
clicking on a day will redirect user to a weekly view of a particular week this day
is in. Clicking on a button with three dots results in showing all of the events of
that day by making the cell taller. Both of these interactions were improvised
and may be subject to change in the future.

58 Chapter 5. Frontend Implementation

• Search

– Designs for the regular search component (5.18) were not delivered and were
therefore improvised to look similar to FelSight’s search components while re-
maining within FEL.HUB design guidelines.

– A column with a button to redirect user to a course’s homepage was added to
the tab with courses of the advanced grouped search (5.19). This column was
present in FelSight’s grouped search (2.3) and was thus included in order to not
deviate from the original data presentation.

– The EventGapButton (5.21, 5.22) was not a part of the UI design. It is based
on the same feature that is available in FelSight’s planner.

• User Events

– The way labels are added was not included in the designs. It was implemented
as a miniature form with one text box and a native color input so that the user
can enter any color.

• Timetable Irregularity

– Because UI/UX team did not deliver the designs for the necessary components,
they were improvised. As a result, their functionality is limited because the
direction of the final designs remains unclear.

• Details

– Unbeknownst to UI/UX team, some items in the data types of the detail subjects
are lists. For example, a person can have multiple rooms, multiple emails and
be asssociated with multiple departments. These fields were therefore pluralized
and the items therein listed vertically (5.30).

– Since the data type of a person includes their preferred email, it was highlighted
in the listing of emails (5.30).

Chapter 6

Timetable Optimization

Contents
6.1 Initial Solution . 59

6.2 Complexity . 62

6.3 Implementation . 63

6.4 Example . 66

6.1 Initial Solution

FelSight gives users a helping hand when creating a timetable for the next semester
by providing a functionality that aims to find the “ideal” timetable algorithmically.

In timetable planner, users choose a set of courses they wish to attend for the next
semester. Then, for each of the courses, they have to choose a parallel. Timetable optim-
ization refers to finding a set of parallels that together form a timetable with the highest
score.

In FelSight, when the user clicks on “Optimize timetable” button, a specialized service
is called. This service runs a genetic algortihm1 on the given set of courses and parallels
using Optaplannner’s2 planning engine. The criteria for finding the optimal timetable are
defined using constraints. These constraints use advanced data structures provided by
Optaplanner to access and quickly iterate over the intermediate solution and give it a score

1Evolutionary algorithms are a class of optimization algorithms that simulate the process of natural
selection by using techniques like mutation, crossover, and selection to generate solutions to optimization
and search problems [35].

2OptaPlanner is an open-source optimization engine primarily aimed at tackling scheduling optimiza-
tion problems [36].

60 Chapter 6. Timetable Optimization

based on the function’s purpose. For example, there might be a function that subtracts
100 from the total score for each day in the timetable that has events in it. This makes the
timetables with fewer days in the week have a higher score and thus are more likely to be
picked as optimal. The following list showcases all of the constraints.

• penalizeEventGaps – penalizes each gap between events by the length of the gap in
seconds.

• penalizeDays – penalizes each day with at least one event

• penalizeParallelsOverlaps – penalizes each occurrence of two events overlapping.

• penalizeMultipleBuildingsPerDay – penalizes for each day having at least two
events in different buildings.

• penalizeInsufficientTimeToCommute – penalizes each day having at least two
events in different buildings with a longer duration between them than COMMUTE TIME.

• penalizeLunchTimeIntersection – penalizes each occurrence of an event intersect-
ing with preselected lunch time.

FelSight interacts with the timetable optimization service using RabbitMQ, a message
broker that adheres to the AMQP3 specification [38]. This setup provides a standardized
method for executing potentially time-consuming algorithms without the constraints and
timeout issues associated with the HTTP protocol. By leveraging RabbitMQ, requests
for timetable optimization are efficiently queued and managed, ensuring that they are
processed systematically and without delay, thereby enhancing the system’s performance
and reliability.

The constraints presuppose certain preferences regarding student timetables. For in-
stance, it is assumed that students would favor a configuration of parallels that minimizes
the number of days spent on campus. Although this seems like a plausible assumption,
preferences may vary; some students might prefer attending two parallels over three days,
rather than three across two days. These constraints do not adequately account for the
diverse range of personal preferences that students may have. To address this issue, it is
important to provide students with the flexibility to select which constraints they wish to
apply to their timetables. This approach would allow for a more personalized scheduling
experience that accommodates individual preferences and requirements.

In the preliminary phase of the analysis, prior to defining the scope of this thesis, it
was hypothesized that the deployment of OptaPlanner may be superfluous. This stems from
the fact that the dimensions of realistic timetable problem instances seem to be sufficiently
modest to permit efficient resolution via brute force methods on modern computers. To

3AMQP stands for Advanced Message Queuing Protocol. It is an application layer protocol designed
for sending messages between systems in a reliable and standardized way [37].

6.1. Initial Solution 61

be specific, consider a scenario where the instance size is restricted to eight courses, each
with ten parallels, an atypically large configuration, but feasible in theory. In such a case, a
brute force algorithm, devoid of any optimization or pruning techniques, would be required
to evaluate 108 permutations. This quantity, while substantial, appears to be manageable
within computational limits.

Should the reliance on a specialized optimization solver be successfully eliminated,
there would be no need for the feature to be implemented on backend. Consequently, a
naive solution could be implemented directly in JavaScript. This approach would not only
simplify the architecture, but would also reduce the operational complexities and associated
overheads.

In conclusion, the objective is to develop a brute force algorithm in JavaScript that
enables users to select the constraints they wish to apply. If its performance meets expecta-
tions, it would eliminate the need for the timetable optimization service, thereby reducing
the strain on infrastructure. Furthermore, the new algorithm should provide users with
a more personalized experience by letting them have more control over the optimization
process.

62 Chapter 6. Timetable Optimization

6.2 Complexity

For this section, let us denote the discussed timetable optimization problem as T O.
To get an idea of how fast T O can be, it is good practice to try to fit it into a corres-
ponding complexity class. In this section, it will be shown that T O belongs to a class of
NP-complete problems. This can be done by constructing a polynomial reduction from a
problem that is already known to be NP-complete [39].

A scheduling problem 1 | rj, d̃j |Cmax was chosen for the reduction. There are n tasks
such that the task j has a release time rj, a deadline d̃j and a processing time pj. The goal
is to find a schedule such that the the last task ends before Cmax. Specifically, its decision
version, which is also NP-complete [40], will be used. It asks whether a timetable of size
at most Cmax exists.

The 1 | rj, d̃j |Cmax problem has been proven to be strongly NP-complete [41]. This
means that it remains NP-complete even when all numerical parameters are limited to
values that are polynomially bounded by the length of the input [42]. The conversion will
leverage this fact and work with the assumption that the parameters rj, d̃j and pj are
integers bounded by O(n). Let us show that 1 | rj, d̃j |Cmax can be converted into T O in
polynomial time.

For each task j create a new course with d̃j − rj − pj + 1 parallels such that the i-th
parallel starts at the time rj + i and ends at rj + i + pj.

For example, for a task with r = 4, d̃ = 10, and p = 3 the start and end times of
the corresponding parallels would be (4, 7), (5, 8), (6, 9), (7, 10). This symbolizes all the
possible choices of placing the task within its release time and deadline.

Set the T O parameters in the following way:

• Let all parallels take place on the same day in order to establish a single timeline.

• Let all parallels take place in the same building so that the penalization for different
buildings does not interfere.

• Set the penalization for colliding parallels to∞ to simulate having only one processing
element.

• Set lunchtime intersection penalization to ∞ and lunchtime to occur at the interval
[Cmax,∞) so that the Cmax bound is respected.

Run the T O algorithm on the new problem. The timetable of size at most Cmax exists
if and only if T O algorithm finds a timetable with a finite score.

There are n courses, each with the number of parallels that is polynomially bounded
as assumed, which makes size of the newly created T O instance polynomial. T O is therefore
NP-complete.

6.3. Implementation 63

6.3 Implementation

The implementation employs a brute force approach, characterized by the generation
of permutations of potential parallel choices. Upon generation of each permutation, its
corresponding score is evaluated by a scoring function. The best score and permutations are
then updated accordingly. To facilitate the management of the best score and its associated
permutations, the function described in algorithm 1 is incorporated within a class, where
these elements are maintained as class attributes. The function is designed to track not
only the highest score, but also the top N scores (lines 8-10). This approach provides users
with several choices, accommodating the possibility that the optimal permutation might
not always meet their specific requirements. Also, in the beginning, the user is prompted
to select the constraints they wish to be applied. That is reflected in the line 35 where it
is checked whether the current constraint is allowed.

An important aspect of the score calculation is its impact on the addition of parallel
elements. Except for penalizeEventGaps, all components of the score calculation are de-
signed to ensure that adding another parallel will invariably decrease the score. This is
because inserting a new parallel between two existing ones decreases the sum of the gaps
between them, consequently increasing the score. By adjusting this constraint to penalize
based on the length of the timetable rather than by summing all the gaps, we guarantee
the preservation of the score decreasing invariant. This adjustment allows for significant
pruning of the decision tree by halting the process if the interim score is worse than the
best score found (lines 14 to 16). This mechanism operates on the assurance that once the
score becomes worse than the best score, it cannot improve further. Extensive testing has
confirmed that the algorithm yields the same timetable regardless of whether pruning is
applied.

In order to measure the performance of the algorihtm, let us define its parameters
and, subsequently, derive the time complexity.

Let m denote the number of courses such that the i-th course has ni parallels. Let
n = max{n1, . . . , nm}. The upper bound for the number of permutations the perm function
would have to go through would therefore be O(nm). The getScore function adheres
to the constraints outlined in section 6.1. Initially, it maps parallels from the current
permutation to appropriate days in O(mn). It then organizes the events for each day by
start time, requiring O(mn log(mn)) steps. The function proceeds by iterating over each
day and its events, applying the relevant penalizations to the permutation score. The
penalizations take at most O(mn) time, so the overall time complexity of evaluating the
score is O(mn log(mn)). The total time complexity of the algorithm is O(nmmn log(mn)).

While the initial algorithm exceeded one second at m = n = 6, the pruned version
handles up to m = 8, n = 9 instances until it reached a second which is more than
satisfactory for the real life use cases. The graph 6.1 shows the comparison between the
original (red) and pruned (blue) version of the algorithm. Due to significant variations in
individual measurement times, the graph displays the average times over 100 runs.

64 Chapter 6. Timetable Optimization

Algorithm 1 Pseudocode for the T O algorithm

1: procedure perm(courses, indices = [], depth = 0)
2: if depth = length of courses then
3: score← getScore(courses, indices)
4: if score > this.bestScore then
5: this.bestScore← score
6: this.currentBestPerm← indices
7: this.bestPerms.push(indices)
8: if length of this.bestPerms > this.numberOfBest then
9: this.bestPerms← this.bestPerms[1 : this.numberOfBest]
10: end if
11: end if
12: return
13: end if
14: if getScore(courses, indices) > this.bestScore then
15: return
16: end if
17: for i← 0 to length of courseT imetables[depth].parallels− 1 do
18: perm(courses, indices + [i], depth + 1)
19: end for
20: end procedure
21: procedure getScore(courses: array of CourseTimetable, indices: array of indices)
22: Initialize slotsByDays to array of 5 empty arrays
23: for i = 0 to min(length of courses, length of indices)− 1 do
24: parallelSlots← courses[i].parallels[indices[i]].timetableSlots
25: for each timetableSlot in parallelSlots do
26: Append timetableSlot to slotsByDays[timetableSlot.weekDay − 1]
27: end for
28: end for
29: for each day in slotsByDays do
30: Sort day by start time
31: end for
32: penalization← 0
33: for each day in slotsByDays do
34: for each constraint in constraints do
35: if constraint is allowed then
36: penalization← penalization + constraint(day)
37: end if
38: end for
39: end for
40: return −penalization
41: end procedure

6
.3
.

Im
p
le
m
e
n
ta
tio

n
6
5

5

6

7

8

9

4

5

6

7

8
0

200

400

600

800

1,000

n [# of parallels]m [# of courses]

ti
m

e
[m

s]

Figure 6.1: Performance of T O with and without pruning

66 Chapter 6. Timetable Optimization

6.4 Example

To illustrate the way T O can be used, let us consider an example4 timetable (6.2).
The green cards are the tutorials that the students is expected to choose from.

Figure 6.2: Timetable with parallels to choose

For SWA and ESW T O has selected the only permutation of parallels that minimizes
gaps while accommodating capacity. For KO on Tuesday, the only sufficiently large parallel
is impractically distant from the lecture. Conversely, scheduling KO with MKR on Tuesday
results in a more favorable configuration. For TAL, the only viable option is the parallel
before MKR, as all others are either too distant or conflicting with MKR.

Figure 6.3: Chosen timetable

4The figure depicts a real timetable a student may face in the second semester of Open Informatics
with a specialization in software engineering.

Chapter 7

Conclusion

Contents
7.1 Improvements . 69

Following the description of the general goals of the project (1.1) and outlining its
structure (1.2), FelSight application was introduced (2). The individual pages of FelSight
were presented with a brief description. In the table 2.1, the features of FelSight were clas-
sified according to their migration status. The description of technologies was thorough
and included actual code examples (2.1, 2.2, 2.3). This was followed by a detailed examin-
ation of FelSight’s challenges (2.3), such as complexity (6.2), size (2.3.2), and performance
(2.3.3), supported by relevant metrics.

Subsequently, the concept of FEL.HUB was introduced (3), detailing its technologies
(3.2) and architectural design (3.3). The key advantages of FEL.HUB’s technologies are
presented in the list 3.2.2. Finally, a comprehensive list of motivations behind the project
was presented, discussing how migration of FelSight to FEL.HUB solves the previously
mentioned issues (3.4).

Since the frontend implementation is based on UI designs, the analysis chapter (4)
focuses mainly on the backend part (4.2). The individual services are presented with a brief
description of their purpose. Importantly, for each service, a listing of the GraphQL queries
that need to be implemented is provided. An extensive use case diagram (4.1) outlines the
general requirements, with use cases grouped and described by categories.

The backend implementation builds on previous work by Ladislav Svoboda ([2]), ori-
ginally intended for FelSight and REST communication. The work that needed to be done
on the backend services is discussed in the chapter 4.2. Details of the backend implement-
ation are omitted as they involve standard practices and do not add substantial scholarly
value.

68 Chapter 7. Conclusion

The frontend implementation (5) is organized by categories identified during the ana-
lysis of use cases (4.1). Screenshots of components fulfilling these use cases are shown under
each category, with detailed discussions of the components’ behaviors and key implementa-
tion decisions. Where the implementation deviates from the original designs, these changes
are cataloged separately (5.7).

The algorithm for timetable optimization, denoted as T O, is comprehensively covered
in its own chapter (6). Firstly, the initial solution is presented (6.1). T O is then classi-
fied as NP-complete (6.2) by constructing a polynomial reduction from 1 | rj, d̃j |Cmax.
Implementation details are discussed thereupon, introducing the solution in a pseudocode
(1). A powerful pruning technique was discovered, significantly accelerating the algorithm.
This enhancement enables it to handle instances far larger than those typically considered
practical. The chapter concludes with an example of T O applied to an actual timetable
(6.4).

The source code for the frontend went through a thorough code review and is now in
the stage of manual testing in the development environment. Locations of the codebases of
the frontend1, Timetable service2, Course semester service3, and Room service4 are listed
in the corresponding footnotes.

1https://gitlab.fel.cvut.cz/czm/hub/frontend/frontend-base
2https://gitlab.fel.cvut.cz/czm/hub/rozvrhy/timetable-service
3https://gitlab.fel.cvut.cz/czm/hub/rozvrhy/course-semester-service
4https://gitlab.fel.cvut.cz/czm/hub/rozvrhy/room-service

https://gitlab.fel.cvut.cz/czm/hub/frontend/frontend-base
https://gitlab.fel.cvut.cz/czm/hub/rozvrhy/timetable-service
https://gitlab.fel.cvut.cz/czm/hub/rozvrhy/course-semester-service
https://gitlab.fel.cvut.cz/czm/hub/rozvrhy/room-service

7.1. Improvements 69

7.1 Improvements

Let us get back to the limitations of FelSight discussed in the chapter 2. Namely, let
us compare the complexity (2.3.1), size (2.3.2) and performance (2.3.3) between the two
projects.

During the development process, considerable emphasis was placed on minimizing the
code complexity. Efforts were concentrated on ensuring the cohesion and modularity of
the codebase. As illustrated in the component diagram 5.1, the system is comprised of over
fifty distinct components. Each component is designed to fulfill a specific function, closely
aligned with a corresponding use case as shown in the use-case diagram 4.1. To facilitate
readability and maintain proper modularity, each component was intentionally restricted
to no more than 200 lines of code. Moreover, the timetable optimization algorithm was
kept as simple as possible while still achieving its practical purpose.

Size of the project is difficult to compare – the exact number of lines of code used to
develop timetable and planner pages is unclear. Moreover, the code is now split between
frontend and backend. There are approximately 10000 lines of code on the frontend (count-
ing only lines from this project) and 4000-6000 lines on the backend. That is approximately
15% of the size of FelSight while capturing its most essential functionalities. That seems to
be a significant improvement, although it is challenging to fairly compare the two systems
in this regard.

The performance of FEL.HUB significantly surpasses that of FelSight. Logging in
itself has improved dramatically from nearly 14 seconds (2.13), to 400 milliseconds. The
initial loading time of the site is approximately 100 milliseconds, during which, owing to
its architecture as a single page application, all essential frontend components are loaded.
Subsequent interactions involve only data retrieval. Since the loading times are much smal-
ler now, the measured values are greatly influenced by the user’s geographic location and
the development environment in which FEL.HUB runs. In the development environment,
queries are completed within a maximum of 100 milliseconds. In the production environ-
ment, additional security measures can extend response times to up to 500 milliseconds.
This proves to be a significant improvement.

Other improvements such as reduced development cost and increased scalability are
inherent properties of the new system and are detailed in section 3.4.

70 Chapter 7. Conclusion

AI Acknowledgment

I acknowledge the use of artificial inteligence during the development and writing of
this thesis. This usage was in accordance with the Methodological guideline No. 5/2024 5.
The software used and the purposes for its application are detailed below.

ChatGPT6 aided in text stylization, rephrasing and also assisted with data
transformations and provided answers to simple coding questions.

Writefull7 assisted with spell checking and offered valuable grammatical and
stylistic suggestions.

GitHub Copilot8 provided autocompletion for repetitive and straightforward
code snippets.

JetBrains AI9 assistant delivered answers to more specialized and code-heavy
questions.

In the figure 7.1, the relative usage of the mentioned AI tools is estimated.

ChatGPT

60%
Writeful

20%

Copilot

15%
JetBrains AI

5%

Figure 7.1: AI tool usage distribution

5https://intranet.fel.cvut.cz/cz/rozvoj/MP-pouzivani-ui.pdf
6https://chatgpt.com/
7https://www.writefull.com/
8https://github.com/features/copilot
9https://www.jetbrains.com/ai/

https://intranet.fel.cvut.cz/cz/rozvoj/MP-pouzivani-ui.pdf
https://chatgpt.com/
https://www.writefull.com/
https://github.com/features/copilot
https://www.jetbrains.com/ai/

72 Chapter 7. Conclusion

Bibliography

[1] L. Baronová, “Analysis and design of an application to support students during their
studies at university,” Bachelor’s thesis, Czech Technical University in Prague, 2024.
[Online]. Available: https://dspace.cvut.cz/handle/10467/113410

[2] L. Svoboda, “Migration of FELsight application to microservice architecture,”
Bachelor’s thesis, Czech Technical University in Prague, 2023. [Online]. Available:
https://dspace.cvut.cz/handle/10467/109283

[3] A. Kohout, “The architecture transformation of FelSight faculty application,”
Master’s thesis, Czech Technical University in Prague, 2022. [Online]. Available:
https://dspace.cvut.cz/handle/10467/101696

[4] K. D. Mann, JavaServer Faces in Action. Manning Publications, 2005, p. 58.

[5] A. Leonard. (2014) Mastering JavaServer Faces 2.2.

[6] C. Richardson, Microservices Patterns: With examples in Java. Manning, 2018, p.
225.

[7] K. T. Jeffrey Hassan, Performance Tuning and Optimizing ASP.NET Applications.
Apress, 2008, p. 255.

[8] R. Frohn, “JSF components optimization,” Bachelor’s thesis, Masaryk University,
2014. [Online]. Available: https://is.muni.cz/th/ubrc9/?predmet=674645

[9] D. Palacios, “Análisis del rendimiento de libreŕıas de componentes Java Server
Faces en el desarrollo de aplicaciones web,” Revista Digital Novasinergia, vol. 1, pp.
54 – 59, 2018. [Online]. Available: http://scielo.senescyt.gob.ec/scielo.php?script=
sci arttext&pid=S2631-26542018000200054&nrm=iso

[10] K. Srinivasan. (2008) Advantages and disadvantages – JSF. [Online]. Available:
https://javabeat.net/advantages-and-disadvantages-jsf/

[11] A. Majhi. (2023) Overview of JSF. [Online]. Available: https://www.codingninjas.
com/studio/library/overview-of-jsf

https://dspace.cvut.cz/handle/10467/113410
https://dspace.cvut.cz/handle/10467/109283
https://dspace.cvut.cz/handle/10467/101696
https://is.muni.cz/th/ubrc9/?predmet=674645
http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2631-26542018000200054&nrm=iso
http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2631-26542018000200054&nrm=iso
https://javabeat.net/advantages-and-disadvantages-jsf/
https://www.codingninjas.com/studio/library/overview-of-jsf
https://www.codingninjas.com/studio/library/overview-of-jsf

74 Bibliography

[12] (2024) Technology usage statistics. [Online]. Available: https://webtechsurvey.com/
technology/javaserver-faces

[13] A. Kovář, “Integration platform FEL Hub,” Master’s thesis, Czech Technical
University in Prague, 2023. [Online]. Available: https://dspace.cvut.cz/handle/
10467/109462

[14] D. Flanagan, JavaScript: The Definitive Guide, 7th Edition, 5th ed. O’Reilly Media,
2006, p. 497.

[15] A. S. Gillis. (2022) What is a native app? [Online]. Available: https://www.
techtarget.com/searchsoftwarequality/definition/native-application-native-app

[16] B. Hilchenbach. (2023) Definition of progressive web app (PWA). [Online]. Available:
https://techradar.softwareag.com/technology/progressive-web-apps/

[17] C. Minnick, Beginning ReactJS Foundations Building User Interfaces with ReactJS:
An Approachable Guide. John Wiley & Sons, Inc, 2022, ch. 2, p. 11.

[18] P. Bright. (2012) Microsoft TypeScript: the JavaScript we
need, or a solution looking for a problem? [On-
line]. Available: https://arstechnica.com/information-technology/2012/10/
microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/

[19] Facebook. (2022) JSX. [Online]. Available: https://facebook.github.io/jsx/

[20] StackOverflow. (2023) 2023 developer survey. [Online]. Available: https://survey.
stackoverflow.co/2023/#most-popular-technologies-webframe-prof

[21] S. Surve. (2021) Why you should use React.js for web development. [Online]. Avail-
able: https://www.freecodecamp.org/news/why-use-react-for-web-development#
react-has-broader-community-support-too

[22] A. Olawale. (2023) What is React? [Online]. Available: https://www.freecodecamp.
org/news/front-end-javascript-development-react-angular-vue-compared#
what-is-react

[23] A. Ioffe. (2023) Deep dive into React’s virtual DOM and reconciliation. [Online]. Avail-
able: https://borstch.com/blog/deep-dive-into-reacts-virtual-dom-and-reconciliation

[24] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices, 1st ed.
Pearson, 2021, ch. 8, p. 95.

[25] S. Buna, GraphQL in Action. Manning, 2021, ch. 1, p. 3.

[26] (2024) Introduction to Apollo Federation. [Online]. Available: https://www.
apollographql.com/docs/react/

https://webtechsurvey.com/technology/javaserver-faces
https://webtechsurvey.com/technology/javaserver-faces
https://dspace.cvut.cz/handle/10467/109462
https://dspace.cvut.cz/handle/10467/109462
https://www.techtarget.com/searchsoftwarequality/definition/native-application-native-app
https://www.techtarget.com/searchsoftwarequality/definition/native-application-native-app
https://techradar.softwareag.com/technology/progressive-web-apps/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://arstechnica.com/information-technology/2012/10/microsoft-typescript-the-javascript-we-need-or-a-solution-looking-for-a-problem/
https://facebook.github.io/jsx/
https://survey.stackoverflow.co/2023/#most-popular-technologies-webframe-prof
https://survey.stackoverflow.co/2023/#most-popular-technologies-webframe-prof
https://www.freecodecamp.org/news/why-use-react-for-web-development#react-has-broader-community-support-too
https://www.freecodecamp.org/news/why-use-react-for-web-development#react-has-broader-community-support-too
https://www.freecodecamp.org/news/front-end-javascript-development-react-angular-vue-compared#what-is-react
https://www.freecodecamp.org/news/front-end-javascript-development-react-angular-vue-compared#what-is-react
https://www.freecodecamp.org/news/front-end-javascript-development-react-angular-vue-compared#what-is-react
https://borstch.com/blog/deep-dive-into-reacts-virtual-dom-and-reconciliation
https://www.apollographql.com/docs/react/
https://www.apollographql.com/docs/react/

Bibliography 75

[27] C. Walls, Spring in Action, 6th ed. Manning, 2021, ch. 1.1, p. 4.

[28] Netflix. (2024) Getting started. [Online]. Available: https://netflix.github.io/dgs/
getting-started/

[29] W. W. Eckerson, “Three tier client/server architecture: Achieving scalability, perform-
ance, and efficiency in client server applications,” Open Information Systems, vol. 10,
no. 1, pp. 3–20, January 1995.

[30] T. A. Powell, HTML & CSS: The Complete Reference, 5th ed. McGraw-Hill, 2010,
ch. 6, p. 621.

[31] P. Laubheimer. (2023) Bottom sheets: Definition and UX guidelines. [Online].
Available: https://www.nngroup.com/articles/bottom-sheet/

[32] P. Davidovic. (2022) Native dual range slider. [On-
line]. Available: https://medium.com/@predragdavidovic10/
native-dual-range-slider-html-css-javascript-91e778134816

[33] A. Montoro. (2023) Drawing a triangle with CSS. [Online]. Available: https:
//alvaromontoro.com/blog/67970/drawing-a-triangle-with-css

[34] C. Coyier. (2010) Mailto links. [Online]. Available: https://css-tricks.com/snippets/
html/mailto-links/

[35] J. S. A.E. Eiben, Introduction to Evolutionary Computing, 2nd ed. Springer, 2015,
ch. 3.1, p. 25.

[36] I. Red Hat. (2024) OptaPlanner. [Online]. Available: https://www.optaplanner.org/

[37] J. O’Hara, “Toward a commodity enterprise middleware,” Queue, vol. 5, no. 4, p.
48–55, 2007. [Online]. Available: https://doi.org/10.1145/1255421.1255424

[38] G. Roy, RabbitMQ in Depth. Manning, 2018, ch. 1.1, p. 4.

[39] D. S. J. Michael R. Garey, Computers and Intractability: A Guide to the Theory of
NP-Completeness, 1979, ch. 1.5, p. 13.

[40] M. Demlová, “Theorem 4.1.8,” Course Materials, p. 32, 2024. [Online]. Available:
https://math.fel.cvut.cz/en/people/demlova/tal/tal-doh.pdf

[41] J. B lażewicz, Scheduling Computer and Manufacturing Processes, 2nd ed. Springer-
Verlag Berlin Heidelberg, 2001, p. 74.

[42] M. R. Garey and D. S. Johnson, “Strong NP-completeness results: Motivation,
examples, and implications,” J. ACM, vol. 25, no. 3, p. 499–508, 1978. [Online].
Available: https://doi.org/10.1145/322077.322090

https://netflix.github.io/dgs/getting-started/
https://netflix.github.io/dgs/getting-started/
https://www.nngroup.com/articles/bottom-sheet/
https://medium.com/@predragdavidovic10/native-dual-range-slider-html-css-javascript-91e778134816
https://medium.com/@predragdavidovic10/native-dual-range-slider-html-css-javascript-91e778134816
https://alvaromontoro.com/blog/67970/drawing-a-triangle-with-css
https://alvaromontoro.com/blog/67970/drawing-a-triangle-with-css
https://css-tricks.com/snippets/html/mailto-links/
https://css-tricks.com/snippets/html/mailto-links/
https://www.optaplanner.org/
https://doi.org/10.1145/1255421.1255424
https://math.fel.cvut.cz/en/people/demlova/tal/tal-doh.pdf
https://doi.org/10.1145/322077.322090

76 Bibliography

Bibliography 77

	List of abbreviations
	Introduction
	Goals
	Outline of the Thesis

	FelSight
	Content
	Timetable
	Timetable Planner
	Building Plans
	Food Menus
	Study Rooms
	Semester Overview
	Summary

	Technologies
	Preface
	Example
	Architecture

	Issues
	Complexity
	Size
	Performance
	Personal

	FEL.HUB
	General Idea
	Technologies
	SPA and PWA
	React
	GraphQL
	Java, SpringBoot, DGS

	Architecture
	Motivations Behind The Project

	Analysis
	Use Cases
	Timetable Views
	Timetable controls
	Searching
	User Events
	Timetable Irregularity
	Details

	Backend
	Timetable Service
	Course Semester Service
	Room Service
	User Service

	Frontend Implementation
	Timetable Views
	Weekly Timetable View
	Collision Management
	Monthly Timetable View
	Timetable Views On Phones

	Timetable Controls
	Switching Time
	Timetable Page Controls
	Timetable Planner Controls
	Timetable Controls On Phones

	Search
	Grouped Search
	Advanced Search

	User Events
	Timetable Irregularity
	Details
	Event Card Detail
	Person Detail
	Room Detail
	Course Detail

	Comparison With Designs

	Timetable Optimization
	Initial Solution
	Complexity
	Implementation
	Example

	Conclusion
	Improvements

