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Abstract

This thesis investigates the generation
of high-fidelity 3D animatable clothed
human models from a single monocular
video. Whereas existing machine learn-
ing methods achieve direct reconstruction,
they lack the mesh quality of state-of-the-
art methods for static scenes. This work
tries to solve this issue by: First analy-
sis of leading reconstruction methods in
neural implicit representations for general-
purpose 3D scenes is done. Applying these
methods and fine-tuning them for human
generation. Investigating and applying
rigging on the generated meshes. Imple-
menting a complete pipeline for generat-
ing a rigged human mesh from a video.

This research has the potential to im-
prove the efficiency and accuracy of cre-
ating 3D human models for various ap-
plications, including virtual reality and
animation.

Keywords: 3D-reconstruction, human,
machine learning, automatic-rigging,
NeRF, SDF

Supervisor: Ing. Davide Castellucci
DataVision s.r.o.,

Abstrakt

Tato práce se zabývá generováním kvalit-
ních lidských oblečených 3D modelů z mo-
nokulárního videa. Existují metody strojo-
vého učení které tento problém řeší přímo,
ale nedosahují kvality modelů pro statické
scény. Tato práce se snaží vyřešit tento
problém následujícímy kroky: Prvně, ana-
lýza nejlepších metod strojového učení pro
3D rekonstrukci. Aplikování těchto me-
tod a jejich úprava pro 3D rekonstrukci
člověka. Analýza a aplikace metod auto-
matického mapování kostry na 3D model
člověka. Implementace kompletního pro-
cesu pro generování 3D modelu člověka s
kostrou z videa.

Tento výzkum má potenciál pro zlep-
šení efektivity a přesnosti pro tvorbu 3D
lidkých modelů pro různé aplikace, včetně
virtuální reality a animace.

Klíčová slova: 3D rekonstrukce, člověk,
strojové učení, automatické mapování
kostry, NeRF, SDF

Překlad názvu: 3D rekonstrukce
člověka a automatické mapování kostry z
monokulárního videa

ctuthesis t1606152353 iv



Contents

1 Introduction 1

Part I
3D Human Reconstruction

2 Preliminaries 5

2.1 Neural Radiance Fields NeRFs . . 5

2.2 Neural Signed Distance Function
(SDF) representation . . . . . . . . . . . . . 8

2.3 Multi-resolution hash encoding . 10

3 3D Surface Reconstruction ML
Methods 13

3.1 Neus . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Neuralangelo . . . . . . . . . . . . . . . . . 15

3.2.1 Resolving localities in hash
grids with numerical gradients . . . 15

3.2.2 Coarse to fine optimization . . 16

3.3 Neus-facto . . . . . . . . . . . . . . . . . . . 17

3.4 Mesh generation using Marching
Cubes . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Texturing meshes . . . . . . . . . . . . . 21

3.6 Evaluation . . . . . . . . . . . . . . . . . . . 24

3.6.1 Surface reconstruction . . . . . . 24

3.6.2 Novel view synthesis . . . . . . . . 26

4 Foreground Segmentation
Techniques for Human Subject
Isolation 31

4.1 2D pose keypoints as a
segmentation prompt for initial
mask . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Semi supervised video object
segmentation with X-MEM . . . . . . 34

4.3 Evaluation . . . . . . . . . . . . . . . . . . . 35

Part II
Automatic Rigging

5 Automatic rigging of a mesh 41

5.1 Neural blend shapes . . . . . . . . . . . 43

5.1.1 Envelope deformation branch 46

5.1.2 Residual deformation branch 48

5.1.3 Mesh cleanup and alignment 50

6 End to end pipeline 53

6.1 Web application . . . . . . . . . . . . . . 56

v ctuthesis t1606152353



7 Conclusions 59

Appendices

A Bibliography 63

B Project Specification 69

ctuthesis t1606152353 vi



Figures

2.1 The NeRF volume rendering and
training process. Image sourced from
[35]. (a) shows the casting of two
rays for two specific pixels, with also
the generation of the samples. (b)
shows the computation of densities
and colors at the sampling points
using NeRF MLP(s). (c) is a
graphical representation of the
volume rendering aggregation of the
densities and colors of the rays
samples for computing the rays colors.
(d) illustrates the computation of the
loss between estimated and ground
truth pixel color(s), respectively . . . 7

2.2 Reference image on the left
followed by mesh obtained with NeuS
and lastly by NeRF. The amount of
noise in the NeRF model shows the
disadvantage of using purely
volumetric rendering for surface
reconstruction. Image taken from
[49]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Illustration of the multi-resolution
hash encoding in 2D. Image taken
from [36]. . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Illustration of when using
numerical gradients the update of
hash grid encoding happens beyond
local hash grid. Image taken from
[30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Representation of some possible
cube combinations in the marching
cube algorithm. Image taken from
[12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Illustration of the barycentric
representation for a triangle. Image
taken from
https://www.scratchapixel.com/
lessons/3d-basic-rendering/
ray-tracing-rendering-a-triangle/
barycentric-coordinates.html. 23

3.4 Example of a generated mesh
without textures and of the same
mesh after the texturing process. . 23

3.5 Example of the human scans from
the RenderPeople dataset. . . . . . . . 25

3.6 Visualization of example rendered
views for a single scan. . . . . . . . . . . 25

3.7 Example of the novel view
synthesis capabilities of neus-facto on
the custom dataset, original image
(left), generated image (right). . . . . 29

3.8 The figure shows an image where
outline of a mesh is used as a
foreground over an image. Notice
how the hands do not correspond
with the rest of the outline. . . . . . . 30

3.9 Visualization of artifacts that
appear on meshes generated from the
custom dataset. . . . . . . . . . . . . . . . . 30

4.1 Visual comparison of a
reconstruction of human mesh
without the use of masks 4.1b and
with 4.1c from a video 4.1a . . . . . . 32

vii ctuthesis t1606152353

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/barycentric-coordinates.html


4.2 The original image 4.2a, visualized
keypoints in image 4.2b, SAM mask
generated using 2D human keypoints
as prompts 4.2c . . . . . . . . . . . . . . . . 34

4.3 The issues of using SAM for every
frame include no other people can
appear in the video 4.3a,4.3b,
including reflections 4.3c,4.3d. . . . . 35

5.1 Example of an input human mesh
in T-pose 5.1a following mocap data
of waving 5.1b and dancing 5.1c
respectively. The input mesh was
obtained with the neus-facto
method. . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Illustration of artifacts produced
by LBS (left) and Dual Quaternion
Skinning (right). LBS has loss of
volume in the elbow joint, DQS has a
joint-bulging artifact. Image taken
from [42]. . . . . . . . . . . . . . . . . . . . . . . 44

5.3 The envelope deformation branch
overview. Image taken from [29]. . . 46

5.4 Result of NBS on a custom mesh
producing a T-pose mesh with
associated skeleton and skinning
weights. . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Example of NBS failing for a
non-manifold mesh (right) and a
mesh that has been not aligned
(right). . . . . . . . . . . . . . . . . . . . . . . . . 50

5.6 Illustration of the cleanup process
from the bottom view of the mesh.
Zero volume shape (left) being closed
to produce a tight solid mesh
(right). . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Illustration of the alignment
process. On the left the reference
mesh is in blue and input mesh in
red. On the right the input mesh is
transformed and aligned to the
reference mesh. . . . . . . . . . . . . . . . . . 52

6.1 Home page of the webapp that can
start the end2end pipeline. . . . . . . . 57

ctuthesis t1606152353 viii



Tables

3.1 Evaluation of 3D reconstruction
methods on the synthetic
RenderPeople dataset using Chamfer
distance in mm. . . . . . . . . . . . . . . . . 26

3.2 Evaluation of novel view synthesis
capabilities of the 3D reconstruction
methods using the PSNR and SSIM
metrics. . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Evaluation of different masking
methods on the TikTok dataset . . . 37

ix ctuthesis t1606152353



ctuthesis t1606152353



Chapter 1

Introduction

Reconstructing 3D animatable human models from videos holds immense
potential for virtual reality, animation, and video game development. Whereas
existing methods address parts of this challenge, they often prioritize novel-
view synthesis over mesh quality or struggle to match the performance of
state-of-the-art techniques for static scenes. This thesis proposes a two-step
approach to overcome these limitations.

The first step leverages the neus-facto [59] method for surface reconstruction,
incorporating a custom process to generate masks to isolate the human subject
within the video. Reconstructing surfaces from single-view (monocular) videos
has been a longstanding problem in computer vision and computer graphics.
Recent advancements in neural surface reconstruction have yielded superior
results compared to traditional approaches. This work investigates several
methods, ultimately selecting neus-facto for its performance on the evaluation
datasets. Particular emphasis is placed on generating a precise mask for the
human figure within the video sequence and a custom method is used for this
purpose.

The second step involves automatic rigging and skinning of the generated
mesh by Neural Blend Shapes [29]. Leveraging the technique specializing
in human characters in T-pose can effectively avoid skinning artifacts with
standard general techniques. Using a predefined skeletal structure gives the
models ability to follow mocap data.

An end-to-end pipeline is implemented using a script taking as input a
video of person that stands still in a predefined pose, the video captures the
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1. Introduction .....................................
person from various angles and outputs a rigged mesh of the person in the
video along with an example animation following mocap data.
To enhance user interaction, a web application was developed using the
Python Flask framework. This application offers functionalities such as video
upload, start of the end-to-end pipeline, and final download of the results. The
application is intended for deployment on a powerful remote computer within
the network, ensuring adequate computational resources for the training and
pre-processing stages.

ctuthesis t1606152353 2



3 ctuthesis t1606152353



1. Introduction .....................................

Part I

3D Human Reconstruction
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Chapter 2

Preliminaries

2.1 Neural Radiance Fields NeRFs

Neural Radiance Fields (NeRF) [35] is a recent machine learning method for
novel view synthesis. Given only a set of images of an object it can render
novel views from other directions. Many new methods build upon this as well
as 3D reconstruction methods.
A radiance field is a continuous volumetric function representing the 3d scene.
It takes as an input the 3d position and the 2d viewing direction, and it
outputs the corresponding volume density and directional emitted color.

F (x, d) = (c, σ) (2.1)

where x = (x, y, z) is the spatial location, d = (θ, ϕ) is the viewing direction,
c = (r, g, b) represents the color and σ is the volume density, representing the
probability that this point is occupied by objects in the scene.
NeRF represents this function by approximating this function with two MLPs
a coarse and a fine version.

The training set consists of a collection of images with the corresponding
camera poses. In each training iteration, a batch of pixels is randomly sampled
among all possible pixels of all possible training images.

. For every sampled pixel a ray is created r(t) = o + td where o is the

5 ctuthesis t1606152353



2. Preliminaries .....................................
camera origin position and d is the camera direction. Points are sampled along the ray getting the set of points Nc. With the
stratified sampling approach the interval [tn, tf ], where tn and tf are
near and far bounds, is partitioned into N evenly space bins and then
one sample is drawn uniformly at random from each bin 2.2.

ti U
[
tn + i − 1

N
(tf − tn), tn + i

N
(tf − tn)

]
(2.2)

.These points are mapped to a higher dimensional space via a positional
encoding 2.3. Mapping the inputs to a higher dimensional space using
high-frequency functions before passing them to the network enables
better fitting of data that contains high-frequency variation [35].

γ(p) = (sin(20πp), sin(20πp), ..., sin(2L−1πp), sin(2L−1πp)) (2.3)

The encoding function is applied separately to all values of x the spatial
location and d the direction unit vector. And L is set separately for x
and d.. Every sampled point along the ray is processed by the Coarse MLP,
giving the occupancy for each point 2.1. The color output of the Coarse
MLP is discarded.. Hierarchical sampling is done along the ray with the information of
occupancy from previous sampling. More samples are put where the
occupancy is higher and vice versa The reasoning is that sampling should
be ideally done on space that is occupied by an object. To achieve this
the volume rendering equation 2.5 is rewritten as

Ĉc(r) =
Nc∑
i=1

wici, wi = Ti(1 − exp(−σiδi)) (2.4)

Normalizing these weights as ŵi = wi/
∑Nc

j=i wj produces a piecewise-
constant PDF along the ray. Using inverse transform sampling a second
set is sampled from this distribution. The fine network is evaluated on
the Nf set of samples..The new sampling goes as input to the Fine MLP, which returns the
occupancy and color.. For each pixel/ray r, volume rendering is used for aggregating the densi-
ties and colors of all sampling points sets Nf , Nc into a single RGB color
Ĉ(r) 2.5.

Ĉ(r) =
N∑

i=1
Ti(1 − exp(−σiδi))ci, where Ti = exp(−

i−1∑
j=1

σjδj) (2.5)

where δi = ti+1 − ti is the distance between adjacent samples.

ctuthesis t1606152353 6



............................. 2.1. Neural Radiance Fields NeRFs

Figure 2.1: The NeRF volume rendering and training process. Image sourced
from [35]. (a) shows the casting of two rays for two specific pixels, with also the
generation of the samples. (b) shows the computation of densities and colors at
the sampling points using NeRF MLP(s). (c) is a graphical representation of the
volume rendering aggregation of the densities and colors of the rays samples for
computing the rays colors. (d) illustrates the computation of the loss between
estimated and ground truth pixel color(s), respectively

. Finally, the loss is computed as the Mean Squared Error (MSE) between
computed colors Ĉ(r) and ground truth colors C(r) among all the pixels
in the batch for the coarse and fine network 2.6.

L =
∑
r∈R

[
∥Ĉc(r) − C(r)∥2

2 + ∥Ĉf (r) − C(r)∥2
2

]
(2.6)

where R is the set of rays in each batch and C(r), Ĉc(r) and Ĉf (r) are
the ground truth, coarse volume predicted, and fine volume predicted
RGB colors for ray r respectively.

Minimizing this error across multiple views encourages the network to predict
a coherent model of the scene by assigning high volume densities and accurate
colors to the locations that contain the true underlying scene content. The
overview of the training and rendering process can be seen in figure 2.1.

The training is done per scene, the MLPs learn a specific scene and are
not generalizable to others. And the training for an individual scene with
such an approach can take a long time. The trade-off is between previous
methods is time versus space where NeRF only needs memory space for the
weights of the network which can be even less than the image itself [35],
but methods using voxel grids can take many GBs of memory for a single
scene. On the other hand these 3D voxel grid methods might need only a
few minutes to process a dataset whereas a single optimization with NeRF
typically takes around 100-300k iterations to converge on a single NVIDIA
V100 GPU (about 1-2 days) [35].

7 ctuthesis t1606152353



2. Preliminaries .....................................

Figure 2.2: Reference image on the left followed by mesh obtained with NeuS and
lastly by NeRF. The amount of noise in the NeRF model shows the disadvantage
of using purely volumetric rendering for surface reconstruction. Image taken
from [49].

NeRF is not a great solution when task is 3D reconstruction. A problem
of NeRF and its variants, however, is the question of how an isosurface of
the volume density could be defined to represent the underlying 3D geometry.
Current practice often relies on heuristic thresholding on the density values.
Due to insufficient constraints on the level sets, however, such surfaces are
often noisy and may not model the scene structures accurately [38].

2.2 Neural Signed Distance Function (SDF)
representation

The previous section discussed limitations of Neural Radiance Fields (NeRF)
for high-quality surface extraction due to its reliance solely on a volumetric
density field. This chapter explores NeuS: Learning Neural Implicit Surfaces
by Volume Rendering for Multi-view Reconstruction[49], which addresses this
challenge.

Neus incorporates the volume rendering approach 2.1 to learn a neural
Signed Distance Function (SDF) representation. This approach combines the
strengths of both methods: achieving accurate surface representation with a
neural SDF and enabling robust network training even for scenes with sudden
depth changes (a benefit of volume rendering). Figure 2.2 visually compares
the two methods. Unlike in novel-view synthesis, the goal in this approach is
to reconstruct the surface S of a 3D object from a set of images capturing
the object from different viewpoints. NeuS accomplishes this by representing
the scene with two functions:

. f : R3 :→ R This function maps a 3D spatial position (x) to its signed
distance from the object’s surface. Positive values represent points

ctuthesis t1606152353 8



.................. 2.2. Neural Signed Distance Function (SDF) representation

outside the object, while negative values indicate points inside.. c : R3 × S2 → R3: This function encodes the color associated with a
specific point x in 3D space and a viewing direction v ∈ S2.

Both f and c are implemented using Multi-Layer Perceptrons. The surface S
of the object is ultimately defined by the zero-level set of the SDF function
f(x). Points where f(x) equals zero represent the exact surface of the 3D
object.

S = {x ∈ R3|f(x) = 0} (2.7)

With a probability density function ϕs(f(x)), called S-density, where f(x),
x ∈ R3, is the signed distance function and ϕs(x) = se−sx/(1 + e−sx)2,
commonly known as the logistic density distribution. Intuitively, the main
idea of NeuS is that, with the aid of the S-density field ϕs(f(x)), volume
rendering is used to train the SDF network with only 2D input images as
supervision. Upon successful minimization of a loss function based on this
supervision, the zero-level set of the network-encoded SDF is expected to
represent an accurately reconstructed surface S, with its induced S-density
ϕs(f(x)) assuming prominently high values near the surface.

To this goal the volume rendering is done similarly as in NeRF see equation
2.4. Choosing the appropriate weight function w is crucial as to build an
appropriate connection between the output colors and SDF. The requirements
for the weight function are that it must be unbiased and occlusion aware. An
unbiased weight function w(t) guarantees that the intersection of the camera
ray with the zero-level set of SDF contributes most to the pixel color. The
occlusion-aware property ensures that when a ray sequentially passes multiple
surfaces, the rendering procedure will correctly use the color of the surface
nearest to the camera to compute the output color.
The weight function that satisfies these properties is defined as,

w(t) = T (t)ρ(t), where T (t) = exp(−
∫ t

0
ρ(u)du) (2.8)

where ρ is the opaque density, which is the standard counterpart to volume
density in classic volume rendering. The opaque density function is defined as

ρ(t) = max

(
−dϕs

dt (f(p(t)))
ϕs(f(p(t))) , 0

)
(2.9)

With similar approximation as in NeRF the pixel color of a ray with n sampled
points pi = o + tiv|i = 1, ..., n, ti < ti+1 is computed as

Ĉ =
n∑

i=1
Tiαici, where Ti =

i−1∏
j=1

(1 − αj) (2.10)

9 ctuthesis t1606152353



2. Preliminaries .....................................
and αi is the discrete opacity values defined by

αi = max

(
ϕs(f(p(ti))) − ϕs(f(p(ti+1)))

ϕs(f(p(ti)))
, 0
)

(2.11)

With this it’s possible to minimize the difference between the ground truth
colors and rendered colors without any 3D supervision while having a connec-
tion between the rendered colors and the SDF. Detailed derivation of all the
formulas in this section can be found in the original paper [49].

2.3 Multi-resolution hash encoding

A significant drawback of NeRF and neural Signed Distance Function (SDF)
methods is their lengthy training times per scene. This arises from the com-
putational cost of training and evaluating fully connected neural networks,
the core architecture used in these techniques.
Recent research presented in "Instant Neural Graphics Primitives with a Mul-
tiresolution Hash Encoding" [36] tackles this inefficiency challenge for NeRF
and other related methods. This approach significantly reduces the number
of floating-point operations and memory accesses required during training by
introducing a novel type of input encoding. This innovation improves training
efficiency without compromising output quality to a significant degree.
The key aspect of this method lies in selecting an appropriate hash table
size. This size dictates the trade-off between performance, memory usage,
and final reconstruction quality. Larger hash tables generally lead to higher
quality reconstructions but come at the cost of slower performance.

A small neural network is augmented by a multiresolution hash table
of trainable encoding parameters θ whose values are optimized through
stochastic gradient descent. These are arranged into L levels, each containing
up to T feature vectors with dimensionality F. Each level is independent and
conceptually stores feature vectors at the vertices of a grid. The resolution of
which is chosen to be a geometric progression between the coarsest and finest
resolutions [Nmin, Nmax]:

Nl = ⌊Nminbl⌋, b = exp

( ln Nmax − ln Nmin

L − 1

)
(2.12)

In a single level l the input x ∈ Rd is scaled to the resolution of the level Nl

before being rounded down and up. These rounded values of x represent a
voxel with 2d integer vertices in Zd. Each corner of the voxel is mapped to
an entry in the given feature array for the level. For coarse levels with fewer

ctuthesis t1606152353 10



.............................2.3. Multi-resolution hash encoding

than T parameters the mapping is 1:1. For finer levels a hash function is
used to index into the feature array, basically being treated as a hash table.
A spatial hash function is used:

h(x) =
(

d⊕
i=1

xiπi

)
mod T (2.13)

where
⊕

represents the bit-wise XOR operation and πi are unique large prime
numbers.
Lastly the feature vectors at each corner are d-linearly interpolated according
to the relative position within the voxel, the interpolation weight is wl =
xl − ⌊xl⌋.

This process is done independently for each level making parallelization
of this process easier. The interpolated feature vectors are concatenated
along with auxiliary inputs ξ ∈ RE which produces the final encoded input
y ∈ RLF +E . See the visual representation of this process in 2D in figure 2.3.
This new encoding replaces the positional encoding 2.3 seen in the NeRF
section.

A hash collision occurs when two different 3D coordinates map to the same
index in the hash table. While "Instant Neural Graphics Primitives with
a Multiresolution Hash Encoding" [36] does not explicitly address collision
resolution, the approach demonstrates the ability to represent scenes faithfully
even with collisions.
There are no hash collisions in coarse levels of the hash tables where there are
fewer than T parameters, but in fine levels hash collisions happen progressively
more frequently.
However, the paper argues that these collisions are:

. Randomly scattered: Collisions are distributed randomly throughout the
space, minimizing the chance of simultaneous collisions at all levels for a
specific pair of points.. Statistically unlikely to impact all samples equally: Collisions tend to
involve points with varying importance. Points on the object’s surface
with visible colors likely contribute more significantly to the table entries
compared to empty space points that collide with them. This means
"important" samples tend to dominate collisions, minimizing the impact
of collisions on overall quality.

In essence, the averaging effect and varying sample importance help mitigate
the impact of hash collisions in this multiresolution approach.

11 ctuthesis t1606152353



2. Preliminaries .....................................

Figure 2.3: Illustration of the multi-resolution hash encoding in 2D. Image taken
from [36].

ctuthesis t1606152353 12



Chapter 3

3D Surface Reconstruction ML Methods

In this section we will compare machine learning methods for 3D surface
reconstruction of static scenes, where the methods share many or modified
versions of parts discussed in the preliminaries section 2. This work tries to
reconstruct 3D human meshes from a monocular video.

In this method the human subject in the video does not move and stays still
in a specified pose. Therefore, we shall consider the person as a static object.
Even if it might be impossible for a person to achieve complete stillness, this
method intentionally tries to take a different approach from other methods
which try to reconstruct a moving person in a video [17], [22], or perform
novel view synthesis of a person from a video [24], [52], [31].
These methods try to take a moving person and transfer them to a canonical
space and most try to approximate them to a parametric human model. This
can cause issues where the transferring the human to and from the canonical
space can introduce artifacts and trying to approximate clothed people or
people with long hair to a parametric human model like skinned multi-person
linear model SMPL [32], which is bald and nude often leads to deterioration
of the clothing and hair and being merged with the skin surface of the model.
Some methods can animate the model only to a pose seen in the video and
those that can to arbitrary do so by either driving the model with a template
mesh like SMPL or actually using a learned skinned deformation field to
transform the model from a canonical pose to a non-canonical pose. However,
none of these methods produces a rigged mesh as the output. This approach
addresses these limitations by prioritizing the creation of a high-quality mesh
followed by automatic rigging. This strategy allows for greater flexibility in
using the final model across various software applications.

13 ctuthesis t1606152353



3. 3D Surface Reconstruction ML Methods.........................
3.1 Neus

In this section the NeuS [49] method is briefly described. Main idea of NeuS
has been already described in detail at 2.2 where the connection between the
SDF and volume rendering has been made.
Just like NeRF, NeuS also uses two MLPs:

. SDF head. Instead of the volume density head.

f(x) = MLPθ1(x) (3.1)

. Color head. Just like NeRF.

c(x, d) = MLPθ2(x, d) (3.2)

The same training procedure as in NeRF is applied (see section 2.1). Given a
ray r(t) = o + td the same discretized volume rendering formula 2.10 is used,
similar to NeRF.
Let rk(t)k=1..M be the batch of pixels/rays. In each ray, let r(ti)i=1..N be the
sequence of samples. The overall loss L is computed as a weighted sum of
three components.

. Color loss. The average of the MSE between ground truth and predicted
ray colors.

Lcolor = 1
M

M∑
k=1

∥Ĉ(rk) − C(rk)∥2
2 (3.3)

. Regularization loss. Term for the regularization of the SDF.

Lreg = 1
NM

M∑
k=1

N∑
i=1

(∥∇f (rk(ti))∥2 − 1)2 (3.4)

.Mask loss. This loss is optional, can be added if ground truth masks are
provided.

Lmask = 1
M

M∑
k=1

BCE(Mk, Ôk), Ôk =
N∑

i=1
Tk,iαk,i (3.5)

Ôk is the sum of weights along the camera ray and Mk ∈ 0, 1 are the
mask values, BCE stands for binary cross entropy.
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Figure 3.1: Illustration of when using numerical gradients the update of hash
grid encoding happens beyond local hash grid. Image taken from [30].

3.2 Neuralangelo

This section briefly describes the novel state-of-the-art method Neuralangelo
[30] for 3D surface reconstruction.
In a way Neuralangelo builds on top of Neus 3.1. It consists of an SDF
head and color head as well. What Neuralangelo adds is using numerical
gradients to compute higher-order derivatives, such as surface normals for
the eikonal regularization [16] and a progressive optimization schedule for
the hash encoding. Both of these techniques improve the hash encoded
reconstruction.

3.2.1 Resolving localities in hash grids with numerical
gradients

Authors of Neuralangelo propose an alternative method to computing the
gradients of the hash grids. Instead of using analytical gradients which update
only the local hash grids the new method of computing numerical gradients
updates beyond the local hash grids which improves the detail between the
regions such as smoothness. Example of this operation can be seen in figure
3.1.

A special property of SDF is its differentiability with a gradient of the
unit norm. The gradient of SDF satisfies the eikonal equation ||∇f(x)||2 = 1
(almost everywhere). To enforce the optimized neural representation to be a
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valid SDF, the eikonal loss is typically imposed on the SDF predictions:

Leik = 1
N

N∑
i=1

(||∇f(xi)||2 − 1)2 (3.6)

where N is the total number of sampled points. To allow for end-to-end
optimization, a double backward operation on the SDF prediction f(x) is
required. Notice the eikonal loss being essentially the regularization loss in
Neus 3.4.

The de facto method for computing surface normals of SDFs ∇f(x) is
to use analytical gradients [49], [58]. Analytical gradients of hash encoding
w.r.t. position, however, are not continuous across space under trilinear
interpolation. The feature vectors of the hash encoding of a grid size Vl for a
sampled point xi are

γl(xi,l) = γl(⌊xi,l⌋) · (1 − (xi,l − ⌊xi,l⌋)) + γl(⌈xi,l⌉) · (1 − (xi,l − ⌊xi,l⌋)) (3.7)

This corresponds to the description of feature vectors in 2.3. The derivative
of hash encoding w.r.t. the position can be obtained as

dγl(xi,l)
dxi

= γl(⌊xi,l⌋) · (−Vl) + γl(⌈xi,l⌉) · Vl (3.8)

When xi moves to a different voxel in the grid the derivative changes resulting
in the eikonal loss 3.6 suffering from localities. With numerical gradients the
surface normals will be computed using additional 6 sampled points for xi 2
on each axis within a step size ϵ. Resulting in the x-component of the surface
normal being computed as:

∇xf(xi) =
[

f(γ(xi + ϵx)) + f(γ(xi − ϵx))
2ϵ

]
(3.9)

Where ϵx = [ϵ, 0, 0]. Other component are computed in similar fashion with
appropriate ϵi, i ∈ x, y, z vector.

3.2.2 Coarse to fine optimization

In contrast to other methods, Neuralangelo utilizes a progressive optimization
scheme for surface reconstruction. This approach gradually incorporates finer
details into the generated surface.

. Numerical gradients are used for optimization. The step size ϵ controls
how much the model updates its parameters in each iteration.
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.A high ϵ value ensures consistency across larger surface areas during
the initial optimization stages. This helps establish the overall shape
effectively.. Conversely, a lower ϵ value focuses on smaller areas, preventing excessive
smoothing and allowing for the preservation of fine details.

The step size ϵ is not constant throughout training. It is reduced exponentially
as the optimization progresses. This reduction schedule aligns with the
activation of progressively finer hash grids in the model.
Neuralangelo does not activate all hash grids at the beginning of training.
Instead, they are gradually activated as the step size ϵ reaches a value
corresponding to their spatial resolution.
If all hash grids were active from the start, the finer grids would need to
"unlearn" their initial contributions as the step size shrinks. This could lead
to the loss of valuable geometric details captured at finer scales during the
early stages of optimization where larger features are being established.

The total loss of the method is defined as:

L = LRGB + weikLeik + wcurvLcurv (3.10)

where LRGB is equivalent to 3.3, Leik is defined in 3.6 and Lcurv is the
curvature loss. Curvature loss is meant to further encourage smoothing by
regularizing the mean curvature.

Lcurv = 1
N

N∑
i=1

|∇2f(xi)| (3.11)

3.3 Neus-facto

The neus-facto model is the custom model of SDFstudio [59]. SDFStudio is
a unified and modular framework for neural implicit surface reconstruction,
built on top of the nerfstudio framework [47]. The starting point of this
method is NeuS 3.1 and Mip-nerf 360 [6].
Mip-nerf 360 model is NeRF variant that focuses on handling unbounded
scenes. The method approaches this problem by tackling three main problems.

. Parametrization. Unbounded 360 degree scenes can occupy an arbitrarily
large region of Euclidean space, but mip-NeRF requires that 3D scene
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coordinates lie in a bounded domain. The proposed solution is scene
contraction.. Efficiency. Large and detailed scenes requires bigger and slower models
and more samples. The proposed solution are proposal networks..Ambiguity. The problem of reconstructing the 3d model from 2d images
is inherently ambiguous and can produce various artifacts. The proposed
solution is distortion loss.

Scene contraction. The 3d space is re-parametrized, in order to constraint
the space to a bounded domain. Such operation is called "scene contraction".
The following scene contraction function f : R3 → R3 is used

f(x) =
{

x ||x||2 ≤ 1(
2 − 1

∥x∥2

) (
x

∥x∥2

)
∥x∥2 ≥ 1 (3.12)

The points inside the unit sphere remain unaffected and points outside it
are mapped to a sphere of radius 2. When sampling a ray, the sequence of t
values is generated in order to be distributed linearly in disparity, meaning
that the higher is the depth then the fewer the generated samples are.

Proposal networks. The standard coarse-to-fine NeRF (see 2.4) approach
utilizes two separate NeRF networks: a "coarse" one and a "fine" one. While
the "coarse" NeRF predicts both RGB colors and weights (volume densities),
only the weights are ultimately used for training. This strategy has an
inefficiency:

.The "coarse" NeRF is unnecessarily large and computationally expensive
because it predicts colors that are ultimately discarded..The model is trained using color information, even though only the
weights are relevant for the final reconstruction.

Mip-NeRF proposes a more efficient two-network architecture that overcomes
these limitations:

. Proposal Network: This network acts like a lightweight NeRF, focusing
solely on predicting weights (densities). Given an initial sample t̂, it
outputs the corresponding weight ŵ.. NeRF Network: This network remains similar to the original NeRF,
predicting both weights (densities) and colors (c).
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Sampling strategy.

. Initial Sample Distribution: The process starts with generating initial
samples t̂ distributed linearly in disparity..The proposal network takes these initial samples t̂ and predicts weights
ŵ along with their probability density function (PDF).. Based on this PDF, new samples t are generated using inverse transform
sampling..The NeRF network takes the refined samples t and predicts both the
final weights w and colors c.

The training strategy for the proposal network differs from the NeRF network.
Instead of using color information, it leverages the knowledge from the larger
NeRF network through a technique called online distillation. This approach
involves training the two networks simultaneously. The well-trained NeRF
network acts as a "teacher," transferring its knowledge to the smaller proposal
network, which acts as a "student." The proposal network is trained to predict
a probability density function distribution ŵ that closely resembles the PDF
distribution w produced by the NeRF network. This essentially teaches the
proposal network to predict weights (densities) in a way that aligns with the
final NeRF predictions. The proposal loss function measures the difference
between the two predicted PDF histograms using bins.

Lprop =
∑

i

1
wi

max(0, wi − bound(t̂, ŵ, Ti)) (3.13)

where bound(t̂, ŵ, T ) is a function that computes the sum of all proposal
weights that overlap with interval T:

bound(t̂, ŵ, T ) =
∑

j:T ∩T̂j ̸=∅

ŵj (3.14)

By minimizing this loss, the proposal network learns to generate weight
distributions that are more consistent with those of the NeRF network. This
online distillation approach allows the proposal network to become more
effective at predicting weights, even though it’s a smaller and less complex
network compared to the NeRF network.

The scene contraction and proposal networks are both used in the neus-
facto method. The differences being that the NeRF networks are replaced
by their neural SDFs as in 2.2, the scene contraction uses the L1 norm and
space is therefore contracted to cubes and not spheres and proposal networks
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also utilize hash encodings.
The overall loss for neus-facto consists of the color loss LRGB , eikonal loss Leik

and an optional mask loss Lmask which are practically equal to the losses in
Neus 3.1. Lastly the additional proposal loss from Mip-nerf 360 for proposal
networks is added as well.

3.4 Mesh generation using Marching Cubes

This chapter discusses the marching cubes algorithm [33], a technique used
to generate a polygonal mesh representing the surface of an object defined by
an iso surface in this case a Signed Distance Function (SDF) field.

. Discretizing the SDF: The SDF is divided into a 3D grid with N x N x
N points. Each point’s value represents the distance from that point to
the object’s surface..Analyzing Cubes: The algorithm iterates through the grid, processing
eight neighboring points at a time (forming a cube).. Classifying Vertices: Each vertex of the cube is treated as a binary value:. 1: If the SDF value is positive (inside the surface).. 0: If the SDF value is negative (outside the surface).. Combinations and Triangles: With 8 vertices, there are 28 (256) possible
configurations for a cube. Each configuration corresponds to a predefined
set of triangles that represent the portion of the surface intersecting the
cube..Mesh Assembly: Finally, all the triangles generated from individual cubes
are merged into a single, unified mesh surface. Figure 3.2 illustrates
some of these cube configurations.

To determine the precise vertex location along a cube edge, the algorithm
performs linear interpolation between the two SDF values at the edge’s
endpoints.
The normal vector for each generated vertex is calculated by interpolating
the gradient (slope) of the SDF at the surrounding grid points.

This work utilizes a multi-resolution version of the marching cubes algorithm
within SDFstudio. Since the NeuS SDF is a continuous function, the algorithm
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Figure 3.2: Representation of some possible cube combinations in the marching
cube algorithm. Image taken from [12].

can be applied at different resolutions with varying N x N grids. This approach
generally produces a finer and more detailed mesh compared to a single
resolution.
The marching cubes algorithm is not limited to SDFs. It’s a general-purpose
method applicable to any isosurface function, where a specific threshold value
defines the surface (in the case of SDFs, the threshold is zero). While the
marching cubes algorithm can also be used with the NeRF volume density
function (σ), an appropriate threshold value (iso-value) needs to be carefully
chosen.

3.5 Texturing meshes

This section discusses how to add textures to meshes generated by SDFStu-
dio’s Marching Cubes algorithm. SDFStudio [59] does not inherently create
textured meshes. To achieve this, the software utilizes the model’s color
rendering capabilities.

The texturing process: Input and Output

.The process takes an existing mesh as input.

21 ctuthesis t1606152353



3. 3D Surface Reconstruction ML Methods.........................
. It outputs a new mesh with identical geometry but including texture

information.

UV mapping

.Texture information is defined as a mapping between mesh vertices and
a specific region of a texture image. This mapping is called UV mapping.. Each mesh vertex is assigned a pair of UV coordinates (between 0 and
1). These coordinates represent the location of a corresponding pixel
(texel) within a 2D texture image..The texture image essentially serves as a 2D representation of the 3D
object’s surface. This process was done using the xatlas [2] software.

Coloring the Texture Image

.The goal is to determine a color for each texel (pixel) in the texture
image based on the provided color rendering of the model.. Find the 3D point p and normal vector n corresponding to the texel t.
This is achieved using barycentric interpolation with the inverse of the
UV mapping.. Cast a ray through point p with the negative normal vector -n as the
viewing direction.. Utilize the model’s color rendering to determine the color c that would
be observed along this ray. And set this color to the queried texel.

Computing the 3D point can be done by identifying the triangle in the
texture image that encompasses the texel t. Employing the inverse UV
mapping to retrieve the 3D coordinates of the triangle’s vertices in the mesh.
Apply barycentric interpolation to calculate the 3D location p within the
triangle that corresponds to the texel t. This essentially reverses the operation
performed during rendering.
Barycentric interpolation is a mathematical technique used for interpolation
within triangles. In this context, it’s used to find both the 3D point and
normal vector associated with a specific texel based on its UV coordinates
and the surrounding triangle’s properties. Visualization of the barycentric
representation can be seen in figure 3.3, which consists of a triangle defined
by its three vertices: A, B, and C, a point P located inside the triangle,

ctuthesis t1606152353 22



...................................3.5. Texturing meshes

Figure 3.3: Illustration of the barycentric representation for a
triangle. Image taken from https://www.scratchapixel.com/
lessons/3d-basic-rendering/ray-tracing-rendering-a-triangle/
barycentric-coordinates.html.

Figure 3.4: Example of a generated mesh without textures and of the same
mesh after the texturing process.

barycentric coordinates for each vertex (u, v, w). These coordinates represent
the weights given to each vertex in the interpolation process. They range
between 0 and 1, and their sum must always equal 1 (u + v + w = 1).
Calculating these weights for a texel t inside a triangle we can use the same
weights to get the point P in the triangle in 3D space and other way around.
The ray cast through the point P is defined as r(t) = o + td, where d = −n,
o = P − sd s is a scalar multiplier, this because we want the origin of the
ray to lie outside the mesh and direction of the ray to face towards the mesh
while passing through the point P. The near plane is set as zero, while the far
plane is set as double the scalar factor s. The texturing process essentially
performs the inverse of what happens during rendering. It takes information
from the 3D model and uses it to determine the appropriate colors for the 2D
texture image. A visual comparison of the non textured mesh can be seen in
Figure 3.4.
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3.6 Evaluation

This section compares the methods described in this chapter for 3D human
reconstruction and novel-view synthesis. For 3D reconstruction the evaluation
is done on the RenderPeople dataset [1] and for the novel-view synthesis com-
parison a custom dataset was created, the dataset is available for download on
https://drive.google.com/file/d/1awDaKDnSu0qn6C43eUsNPk0XFUpLYqi8/
view?usp=sharing.
The used implementations of the models are from the SDFstudio framework
[59]. The models share the same hyperparameters for all the trainings. The
exception being the number of iterations where for surface reconstruction
on the synthetic dataset it is 50k and for novel-view synthesis it is 200k.
The more important parameters that are shared are the number of levels
for the hash tables L = 16 where the maximum resolution of a hash grid is
Nmax = 2048, number of rays per batch 2048. The models are optimized
using the Adam optimizer [27]. For all hyperparameters used in the training
such as the learning rates or size of the MLPs, can be found in the file
default_config.yml in the attachments.

3.6.1 Surface reconstruction

To compare different methods on human mesh generation the requirement is
that dataset has the ground truth mesh of the clothed human and a monocular
video or image sequence of the person in a still pose from different views.
For this purpose a partially synthetic dataset is created where high quality
textured human scans are used to render the mesh from different views. With
the rendered views as inputs the accuracy of 3D reconstruction methods
between the generated and ground truth meshes can be evaluated.

The human scans are taken from the Render People dataset [1], we use
10 different human scans of various genders, skin tones and ages. Meshes
are also in various poses but most of them are in the default T-pose also
used in our custom videos. Example of the textured meshes can be seen in
Figure 3.5. The synthetic dataset is created by normalizing the meshes, by
setting them to the center of the coordinate system and scaling them to fit
into a unit sphere. Then 100 different views are rendered around the mesh at
a fixed position along with their masks, example of the rendered views can
be seen in Figure 3.6. Camera positions are transferred to the Nerfstudio
coordinate system and bounding box and initialization sphere are calculated
from the vertices of each mesh individually. Each of the methods runs for
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Figure 3.5: Example of the human scans from the RenderPeople dataset.

Figure 3.6: Visualization of example rendered views for a single scan.

50k iterations on each mesh. Results can be seen in the table 3.1 from which
we can see that the neus-facto achieves the best results in terms of Chamfer
distance. Chamfer distance is a measure to evaluate similarity between shapes.
To calculate Chamfer distance for a set of shapes A and B, for each point
in set find the closest point in the other set, measure distance between all
pairs and average them. In this case the sets of points are vertices of the
ground truth mesh V =

{
Vi ∈ R3|Vi is a vertice of mesh V

}
where N is the

number of vertices in the ground truth mesh and vertices of the predicted
mesh V̂ =

{
V̂i ∈ R3|V̂i is a vertice of mesh V̂

}
where M is the number of

vertices in the predicted mesh. The Chamfer distance can be defined as:

CD(V, V̂ ) = 1
N

N∑
i

min
k

d(Vi, V̂k) + 1
M

M∑
i

min
k

d(V̂i, Vk) (3.15)
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Aliyah Carla Claudia Dennis Eric

Neus 0.073253 0.124543 0.131229 0.094924 0.124431
Neuralangelo 0.067635 0.127798 0.132934 0.089336 0.122494

neus-facto 0.067269 0.127463 0.131135 0.091416 0.123004
Percy Manuel Mei Nathan Sophia Mean

0.078438 0.100412 0.126827 0.124126 0.116659 0.109484
0.066369 0.100675 0.131113 0.123846 0.115012 0.107721
0.068347 0.098791 0.118981 0.120181 0.112117 0.105870

Table 3.1: Evaluation of 3D reconstruction methods on the synthetic Render-
People dataset using Chamfer distance in mm.

3.6.2 Novel view synthesis

This section introduces the evaluation of the neus-facto, Neus and Neuralan-
gelo models for novel-view synthesis on videos containing a human subject.
The models go beyond just mesh creation, it also possesses color rendering
capabilities. This functionality is crucial for texturing the reconstructed
meshes. Color information is also essential during training for the RGB loss
function.
Compared to 3D reconstruction, creating a dataset for novel view syn-
thesis is generally simpler. A custom real-world dataset is utilized for
this purpose. The dataset consists of 5 videos capturing a human sub-
ject in a canonical T-pose while the camera rotates around them. The
dataset is available for download on https://drive.google.com/file/
d/1awDaKDnSu0qn6C43eUsNPk0XFUpLYqi8/view?usp=sharing. On average,
300 frames are extracted from each video, and 10% are used as a validation
set. Each model is trained for 200k iterations on each video.

The validation set is used to calculate PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index Measure) metrics, which evaluate the
quality of the synthesized novel views.

PSNR stands for Peak Signal-to-Noise Ratio. It’s a metric commonly
used in image processing and reconstruction tasks to assess the quality of a
reconstructed image compared to an original reference image.
Peak Signal: Refers to the maximum possible value (intensity) a pixel in
the image can represent. This value depends on the number of bits used to
encode the image (e.g., 255 for 8-bit images).
Signal-to-Noise Ratio (SNR): This ratio compares the actual signal (the
original image data) to the background noise introduced during reconstruction
or transmission. A higher SNR indicates a better quality image with less
noise.
PSNR calculates the difference between the corresponding pixels in the original
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and reconstructed images. These differences are squared, averaged across all
pixels, and then converted to the logarithmic decibel (dB) scale.

PSNR(I, J) = 10 ∗ log10

(
max(I)2

MSE(I, J)

)
(3.16)

where I is the original image, J is the predicted image and MSE is the mean
squared error.

MSE(I, J) = 1
mn

m∑
1

n∑
1

∥I(i, j) − J(i, j)∥2 (3.17)

where m represents the numbers of rows of pixels of the images and n represents
the number of columns of pixels of the images.
A higher PSNR value generally indicates a better reconstruction quality,
with perfect fidelity resulting in a PSNR of infinity (in theory). In practical
scenarios, PSNR values typically range between 30 dB and 50 dB for good
quality reconstructions.

SSIM stands for Structural Similarity Index Measure [51] is a quality
metric to measure quality between two images. The metric is considered to
be correlated with the quality perception of the human visual system, where
PSNR focuses primarily on pixel-wise differences and does not necessarily
reflect how well the reconstructed image preserves human-perceived details
or visual quality.
SSIM compares three image characteristics of the original and reconstructed
images.

. Luminance. Measures the overall brightness or intensity of the image.

l(x, y) = 2µxµy + C1
µ2

x + µ2
y + C1

(3.18)

where µx is

µx = 1
N

N∑
i=1

xi (3.19)

where N is the number of pixels in the image.. Contrast. Assesses the level of distinction between different brightness
levels in the image.

c(x, y) = 2σxσy + C2
σ2

x + σ2
y + C2

(3.20)

where σx is

σx =

√√√√( 1
N − 1

N∑
i=1

(xi − µx)2

)
(3.21)
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apartment office1 office2 living

room
kitchen Mean

PSNR
Neus 32.9830 26.2393 24.7268 27.5688 30.2017 28.3439
Neuralangelo 34.3220 26.3180 24.7370 27.6153 30.1058 28.6196
neus-facto 34.3535 26.2080 24.8047 27.5919 30.2121 28.6340

SSIM
Neus 0.9586 0.8035 0.7456 0.8689 0.9139 0.8581
Neuralangelo 0.9639 0.8040 0.7435 0.8698 0.9114 0.8585
neus-facto 0.9640 0.8031 0.7411 0.8701 0.9147 0.8586

Table 3.2: Evaluation of novel view synthesis capabilities of the 3D reconstruction
methods using the PSNR and SSIM metrics.

. Structure. Evaluates how the pixels within a local neighborhood are
arranged spatially.

s(x, y) = σxy + C3
σxσy + C3

(3.22)

where σxy is the covariance between x and y

σxy = 1
N − 1

N∑
i=1

(xi − µx)(yi − µy) (3.23)

The positive constants C1, C2 and C3 are used to avoid a null denominator
and x, y are the reference and generated image, the order does not matter
since S(x, y) = S(y, x). Each comparison (luminance, contrast, structure) is
transformed into a separate similarity score between 0 (no similarity) and 1
(perfect similarity). These individual similarity scores are then combined into
a single SSIM value, typically ranging between 0 and 1. A higher SSIM value
indicates a greater structural similarity between the original and reconstructed
images.

S(x, y) = f(l(x, y), c(x, y), s(x, y)) (3.24)

The evaluation of the custom dataset on the validation data using the
above described PSNR and SSIM metrics can be seen in Table 3.2. From the
results it can be seen that the methods achieve very similar results for all the
videos in the dataset, however the neus-facto method performs slightly better
in both metrics than the other approaches. An example of the novel-view
synthesis capabilities of the models can be seen in figure 3.7.

While the models achieve high-quality novel view synthesis, the extracted
meshes from the custom dataset training exhibit some noticeable errors. These
artifacts primarily manifest as protrusions on the hands and occasionally the
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Figure 3.7: Example of the novel view synthesis capabilities of neus-facto on
the custom dataset, original image (left), generated image (right).

face. Example of these errors can be seen in the Figure 3.9.
Several factors can contribute to mesh errors:

. Camera Pose Estimation: Inaccurate camera positions estimated by
COLMAP can lead to reconstruction inconsistencies..Masking Issues: False negatives (missing mask regions) can introduce
holes in the mesh, while false positives (including irrelevant areas) can
add unwanted surface details..T-Pose Constraint: Requiring the subject to maintain a T-pose through-
out the video likely contributes to these artifacts. Holding a T-pose for
an extended period is unnatural, and hand drift is often observed (Figure
3.8 clearly shows hand drop at the video’s end).

One of the potential improvements might be utilizing a more natural pose for
the subject in the video recordings could alleviate hand and face deformation
issues. However, this introduces a challenge: the current rigging pipeline re-
quires a T-pose mesh as input. The extracted meshes from the custom dataset
and the results of the rest of the pipeline are available for download at https:
//drive.google.com/file/d/1leXTQgjrBjYtDzsKYiA4FLD3YArQr9Wh/view?
usp=sharing.
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Figure 3.8: The figure shows an image where outline of a mesh is used as a
foreground over an image. Notice how the hands do not correspond with the
rest of the outline.

Figure 3.9: Visualization of artifacts that appear on meshes generated from the
custom dataset.
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Chapter 4

Foreground Segmentation Techniques for
Human Subject Isolation

Several computer vision techniques leverage binary masks as additional input
to separate foreground objects from the background scene. In the context
of this thesis, such masks are crucial for isolating the human subject from
the scene for subsequent 3D reconstruction and achieving improved quality
by allowing the model to focus purely on the human subject, see figure 4.1
for visual comparison. Human segmentation approaches of a video can be
broadly categorized into two main paradigms: frame-wise segmentation and
segmentation with temporal information.

Frame-wise segmentation methods process each video frame independently,
generating a separate mask for each frame. While computationally efficient,
these methods may struggle with handling rapid motion or occlusions across
frames. Conversely, temporally coherent segmentation techniques leverage
temporal information from adjacent frames to produce more consistent masks.
This can be particularly beneficial for handling dynamic scenes with motion
blur or partial occlusions.

The selection of an appropriate segmentation technique is critical for this
work due to the sensitivity of the chosen surface reconstruction method (NeuS-
Facto and its variants) to inaccurate masks. Errors in the segmentation
process can readily introduce artifacts into the final reconstructed mesh,
compromising its quality.
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(a) : First frame (b) : Mesh not masked (c) : Mesh masked

Figure 4.1: Visual comparison of a reconstruction of human mesh without the
use of masks 4.1b and with 4.1c from a video 4.1a

4.1 2D pose keypoints as a segmentation prompt
for initial mask

Obtaining mask of humans can be done in a variety of ways. Inspired by the
recent work of InstantAvatar [23] where the creation of a human avatar for
3D novel-view synthesis needs to segment the human subject from the video.
For InstantAvatar this was achieved by frame-wise segmentation with the
Segment Anything model (SAM) [28].

SAM is a promptable model for image segmentation tasks, given a segmen-
tation prompt a segmentation mask is returned. The ability to prompt the
model gives it the option to adapt to a large variety of different image seg-
mentation tasks. It provides competitive or improved results over supervised
methods [28]. The types of prompts it can be given are points, bounding
boxes, text or masks. SAM has three main components, the image encoder
that gets the image embedding from the image. Prompt encoder handles
differently sparse (points, boxes, text) and dense (masks) prompts, points and
boxes are handled via a positional encoder [46], text with the text encoder
CLIP [40] and masks are embedded using convolutions. Finally, the mask
decoder takes the image and prompt embedding and maps them to a mask.
Three masks are outputted along with their confidence score to handle the
ambiguity of the prompts.
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InstantAvatar [23] uses 2D human keypoints estimates as point prompts
to the SAM model. The 2D human keypoints are estimated with OpenPose
[8]. OpenPose is an open-source real-time system for multi-person 2D pose
detection. The system takes a color image and outputs 2D locations of
anatomical keypoints for each person as well as confidence scores for each of
the keypoints. This approach works well for the InstantAvatar dataset where
the subject in the video is always in full view and rotates in front of the
camera. Another reason for the use of SAM for human segmentation is the
SAM dataset includes a high number of high quality human segmentations
and performs well across many different groups. Certain groups of people have
been underrepresented based on gender, skin tone and age. More precisely
these groups are females, people with darker skin tones and young and old
people [60, 56]
In this method’s approach the human keypoint estimation is done with
MMPose [14] a pose estimation toolbox using the HRNet [9] method for
bottom up human pose estimation.

This approach gives high quality segmentation masks even compared to
the state-of-the-art methods for segmentation like Detectron [15, 53] using
the famous Mask R-CNN method [20] for object detection and instance
segmentation. An example visualization of the image, keypoints and mask
can be seen in figure 4.2. However, there are issues when using this approach
for our dataset. Unlike in the InstantAvatar dataset in ours the subject does
not rotate in front of the camera but instead the camera rotates around the
subject in a manner where for some frames the subject is only partially visible.
In these special cases the keypoint estimation won’t return anything and then
the SAM segments the image without a prompt generating a mask that’s
not necessarily focused on a person causing large discrepancies between the
frames where this occurs. An example of these failed segmentation can be
seen in figure 4.3. One of main issues appears when another person appears in
the video, even if for a moment the keypoints can be detected and used as a
segmentation prompt. This could be resolved by restricting the video to never
contain more than one person. However, this can prove quite challenging
when even a momentary reflection of the subject or cameraman can fail the
segmentation.

To solve this issue we propose to move from frame-wise segmentation to
video object segmentation using the temporal information to make the gener-
ated masks more robust. Semi-supervised methods for video segmentation
often outperform the unsupervised methods [57], but they often require an
additional input such as an initial mask. We’ll use the SAM prompted by
human pose estimation on the first frame of the video and use it as the initial
mask for semi-supervised video object segmentation method.
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(a) : Original image (b) : Keypoints (c) : SAM mask

Figure 4.2: The original image 4.2a, visualized keypoints in image 4.2b, SAM
mask generated using 2D human keypoints as prompts 4.2c

4.2 Semi supervised video object segmentation
with X-MEM

Many semi supervised video object segmentation methods require an initial
mask that they will track for the rest of the video [57]. These semi supervised
methods often outperform unsupervised methods, but getting a high quality
initial mask can be time consuming if done manually. For our purposes we
need to get a high quality mask of the human subject in the first frame. This
can be done easily with the above mentioned method of the Segment Anything
Model with estimated human 2d keypoints as segmentation prompts.

Then for our method we can use the state-of-the-art method XMem: Long-
Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model
[10]. The main difference between other video segmentation methods is that
XMem uses three deeply connected feature memory stores instead of one. The
Atkinson-Shiffrin memory model is a psychological model of memory that
proposes that memory consists of three stores: a sensory register, short-term
memory and long term memory. Inspired by this psychological model XMem
incorporates multiple independent yet deeply-connected feature memory
stores: a rapidly updated sensory memory, a high-resolution working memory,
and a compact thus sustained long-term memory. XMem also avoids use
of excessive amount of memory for long videos by adding frequently used
working memory to long-term memory.
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(a) : Image 1 (b) : Mask 1 (c) : Image 2 (d) : Mask 2

Figure 4.3: The issues of using SAM for every frame include no other people
can appear in the video 4.3a,4.3b, including reflections 4.3c,4.3d

Overview of how XMem works: for the initial mask the feature memory is
initialized then for every subsequent frame the memory is read from sensory,
short-term and long-term memory. The readout features are used to generate
a segmentation mask. Each of the feature memories is updated at different
frequencies.
Long term memory gets features when the working memory reaches a pre-
defined threshold and memory consolidation is performed. Potential candi-
dates are the most frequently used features from the working memory, and
they will be converted to long-term memory representations and are then
added to the long term memory. When the long-term memory is full, obsolete
features are discarded to bound the maximum GPU memory usage.
Working memory gets features from the sensory memory every r-th frame.
Working memory is similar to many other feature memories in other video
object segmentation methods, in this case employing a STCN network [11].
Number of frames in working memory is limited with a predefined threshold
and when reached consolidating the extra frames to the long-term memory.
Sensory memory is updated at every frame and stores low-level information
such as object location. The sensory memory is updated with features of
a decoder. Every r-th frame a deep update is performed. Refreshing the
sensory memory and discarding redundant information.

4.3 Evaluation

The TikTok dataset [21], consisting of 340 short videos featuring various
people performing dances, is chosen for evaluating the performance of dif-
ferent segmentation methods. This dataset offers several advantages for our
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evaluation purposes. Firstly, each video contains only one person, satisfying
a prerequisite for our 3D human reconstruction approach. Secondly, while
the dataset primarily focuses on people in motion and a static camera, not
directly relevant to our method with a static subject and a moving camera,
the inherent motion within the videos provides an opportunity to assess
the segmentation methods’ ability to handle partially occluded or blurred
subjects often in fast motion, in a more difficult scenario than ours. This
evaluation will allow us to identify a segmentation technique that offers a
robustness to dynamic scene elements, ultimately leading to higher human
mesh reconstruction on the custom dataset.

The methods compared are from frame-wise segmentation: Detectron2
[15, 53] which is a platform for object detection, segmentation, IsNet [25] and
U2-Net [39] which are state-of-the-art methods for foreground segmentation
techniques. From the video object segmentation methods is the previously
described 4.2 keypoint guided SAM + XMem.

The evaluation metrics used are Precision, Recall, Dice Similarity Coeffi-
cient (DICE) score in case of single object segmentation equivalent to the F1
score and Intersection over Union (IoU) also known as the Jaccard index.

IoU(A, B) = A ∩ B

A ∪ B
(4.1)

DICE(A, B) = 2(A ∩ B)
A + B

(4.2)

The results can be seen in table 4.1 where the means for every metric have been
calculated over all the ground truth and predicted masks. There is no method
that seems obviously better than all the others as no method dominates all
the metrics. In this method’s use case it is important that there are no large
discrepancies between the estimated mask and ground truth, since for the
reconstruction with SDF methods only one completely wrong mask can put
undesired artifacts in the resulting mesh. Larger error in the segmentation
needs to be penalized heavily and this is what IoU emphasizes. High Recall
ensures all relevant parts of the object are included for accurate classification.
It is perhaps not surprising that for this metric a video object segmentation
method performs better than a frame-wise segmentations approaches. Keeping
the temporal information of previous frames helps XMEM with initial mask
from SAM with human keypoints as segmentation prompts to be more robust
than the other methods. This is why we’ll choose this approach for human
segmentation in our case.
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(a) :
Original

(b) : GT (c) :
Detectron2

(d) : U2net (e) : IsNet (f) : XMEM

Method / Metric Precision Recall DICE IoU
Detectron2 0.9603 0.9358 0.9470 0.9090
Isnet 0.9851 0.9258 0.9504 0.9130
U2net 0.9893 0.9379 0.9604 0.9286
SAM + XMEM 0.9737 0.9423 0.9562 0.9358

Table 4.1: Evaluation of different masking methods on the TikTok dataset

37 ctuthesis t1606152353



ctuthesis t1606152353 38



Part II

Automatic Rigging
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Chapter 5

Automatic rigging of a mesh

In this chapter an overview of automatic rigging and animation methods is
presented and chosen. While there are many methods on how to possibly
animate a clothed human from a video, such as driving a human avatar from
sparse RGB-D inputs [54] or a single RGB sequence [24], mesh pose transfer
[48] [45] in which the pose of a source mesh is applied to a target mesh. These
methods can achieve impressive results, but in our case the method has a
single RGB input such as a video or image sequence, the person is in a still
canonical pose, the output has to be a rigged, skinned human mesh. For these
reasons we cannot consider these methods for our own use or comparison.
The rigging process traditionally requires an animator to create an anima-
tion ’skeleton’ and bind it to an input mesh. The skeleton represents the
articulation structure of the character, and skeletal joint rotations provide an
animator with direct hierarchical control of character pose. Skinning is the
process of binding the input mesh to the joint setup. A rig may consist of
many joints and most should only influence certain parts of the mesh, i.e. a
wrist joint should control only the wrist part of the mesh.

Automatic rigging is a long-standing problem in computer graphics. The
pioneering work Pinnochio [5] proposes a template based method that au-
tomatically fits a user-provided skeleton to a target mesh and creates an
animation ready rig. The method works as follows:

. It packs spheres inside the mesh and constructs a graph on their centers.. Finds the embedding of the given skeleton into the graph.. Refinements of the positions of the skeleton joints within the character.
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. Computes the bone weights for skeleton subspace deformation.. Use of online motion retargeting to eliminate footskate.

The requirements are to give the mesh and input template skeleton in roughly
the same position and orientation. Making no differentiation between mate-
rials on the mesh makes every part of the mesh move in a ’similar’ fashion,
which can lead to a ’rubbery’ motion. Pinnochio is an essential work in
automatic rigging, but many others have followed up on this task since then,
and more recently also methods using machine learning approaches.

One of the most recent state-of-the-art machine learning approaches for
automatic rigging is RigNet [55]. Given an input 3D model representing an
articulated character, RigNet predicts a skeleton that matches the animator
expectations in joint placement and topology. It also estimates surface skin
weights based on the predicted skeleton. One of the main advantages of
RigNet is that it can be used for any articulated character not only bipedal
human like characters. RigNet is not restricted by a predefined skeletal
structure, but on the other hand the user cannot specify the amount of joints
or guide their positions, which also means that generated rigs can not follow
motion capture data for animation of the mesh if the structure does not
match. The RigNet architecture consists of several modules:

. Skeletal joint prediction: A weight function is learned over the input
mesh representing the mesh attention. This attention is clustered, and
the final joint locations are extracted.. Skeleton connectivity prediction. This module takes as input the pre-
dicted joints from the previous step, including a learned shape and
skeleton representation, and outputs a probability representing whether
each pair should be connected with a bone or not. The bone probabilities
are used as input to a Minimum Spanning Tree algorithm that prioritizes
the most likely bones to form a tree-structured skeleton.. Skinning prediction. Given a predicted skeleton, the last module of our
architecture produces a weight vector per mesh vertex indicating the
degree of influence it receives from different bones

RigNet also allows optional user input in the form of a single parameter to
control the level-of-detail, or granularity, of the output skeleton, however this
still does not solve the problem of not being able to specify the amount of
joints. Another disadvantage of this approach is that custom meshes should
have between 1k to 5k vertices, which can be solved for some meshes with
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their simplification but for complex meshes reducing the number of vertices
will inherently lead to loss of detail and geometry information.

For the disadvantages listed for the above methods the choice of our rigging
and skinning method will be Neural Blend Shapes (NBS) [29].

5.1 Neural blend shapes

NBS [29] presents a neural technique that learns rigging, skinning and blend
shapes for an input mesh in a T-pose. Using a prescribed skeletal structure
makes the generated model compatible with mocap. Aside from rigging
and predicting skinning weights the method additionally computes a set of
corrective, pose-dependent shapes that improve the deformation quality in
joint regions, coined neural blend shapes. An example of taking an input
mesh rigging and skinning it with NBS and the following mocap data can be
seen in Figure 5.1. The NBS method is trained on the SMPL dataset [32].
This dataset provides a rich set of blend shapes, including ten shape (pose-
independent) and 207 pose-dependent shapes. These shapes enable generating
a wide variety of human body types (e.g., height, weight, proportions) and
high-quality deformations based on joint rotations provided by the SMPL
model. However, the SMPL shapes represent relatively anatomically simple
characters (nude and hairless). An additional dataset of clothed humans is
used from the Multi Garment Network [7]. This dataset focuses on clothed
human characters, which is particularly relevant for our goal of rigging
clothed human characters. The Multi Garment Network dataset is also used
for ’garment augmentation’, which extracts garments and adds them to other
SMPL models. This approach allows the NBS method to learn how clothing
interacts with the underlying body during various poses, leading to more
realistic character animation with clothing.

While Pinnochio could also fit the same skeletal structure as neural blend
shapes, the skinning can contain notorious Linear Blend Skinning [34] (LBS)
artifacts. This method computes the deformation of the mesh as a weighted
sum of the character’s bone transformations. LBS is a popular skinning
method due to its speed and simplicity and due to that it can be easily
parallelized to fully utilize modern GPUs’ high performance, making the
method an essential technique for real-time applications, such as games. For
the same reasons Dual Quaternion Skinning [26] (DQS) is a popular choice.
These methods require as input the skinning weights per vertex which are
either interactively painted and edited [4], or automatically estimated based
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(a) : Input mesh. (b) : Wave mocap (c) : Dance mocap

Figure 5.1: Example of an input human mesh in T-pose 5.1a following mocap
data of waving 5.1b and dancing 5.1c respectively. The input mesh was obtained
with the neus-facto method.

Figure 5.2: Illustration of artifacts produced by LBS (left) and Dual Quaternion
Skinning (right). LBS has loss of volume in the elbow joint, DQS has a joint-
bulging artifact. Image taken from [42].

on hand-engineered functions of shape geometry and skeleton [4] [5].
It is difficult for such geometric approaches to account for any anatomic

considerations implicit in input meshes, such as the disparity between animator
and geometric spines, or the skin flexibility/rigidity of different articulations.
An example of these artifacts for a human mesh can be seen in Figure 5.2.
NBS tries to overcome these issues by learning neural blend shapes, a set of
corrective pose-dependent shapes which improve the deformation quality in
the joint regions.

The NBS framework addresses the challenge of animating characters with
potentially different underlying deformation models used during training. The
framework consists of two main branches:

. Envelope Deformation Branch: this branch focuses on learning pose-
invariant parameters that define the character’s rigging and skinning.
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These parameters essentially create a "skeleton" that controls the overall
articulation of the character. The learned skeleton is then bound to the
character’s initial geometry using estimated skinning weights. Combining
these weights with joint rotations allows for pose-based articulation of
the character’s shape.. Residual Deformation Branch: this branch learns pose-dependent residual
displacements that refine the overall character shape based on specific
poses.

The framework outputs three main components.

. Rigging: this defines the underlying skeletal structure that controls the
character’s articulation. The number of degrees of freedom and the
hierarchy of the skeleton are pre-defined within the network architecture.. Skinning: this defines how the skeleton influences the deformation of the
character’s mesh. Skinning weights determine how much each bone in
the skeleton affects specific vertices on the mesh.. Blend Shapes: Inspired by SMPL [32], these are neural network-generated
representations of shape variations used to further refine the character’s
pose. Unlike SMPL, however, the NBS approach allows for a variable
number of blend shapes to be learned.

The network is trained without directly accessing the ground truth rigging,
skinning, and blend shapes of the training characters, instead, it leverages
indirect supervision. The network observes the relationship between provided
joint rotations and the resulting articulated vertex positions. By analyzing
this relationship, the network learns to represent the articulation of each
character using the pre-defined envelope model, even if the training data
utilized is different from the underlying deformation models.
The network can handle characters with potentially different underlying
deformation models used during training. The network automatically gener-
ates a smaller set of compact and localized blend shapes that are inherently
pose-dependent. This eliminates the need for pre-defined, pose-specific blend
shapes as training data.

This framework offers an approach to rigging and animating characters
that adapts to variations in underlying deformation models without requiring
explicit supervision for rigging, skinning, or blend shapes.
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Figure 5.3: The envelope deformation branch overview. Image taken from [29].

5.1.1 Envelope deformation branch

This section dives into the details of the envelope deformation branch within
the network architecture. This branch focuses on predicting two key compo-
nents for character animation: rigging and skinning.
The network receives a triangle mesh as input. This mesh is represented by
its vertices V ∈ RV ×3, where V is the number of vertices and each vertex has
3D coordinates. Additionally, the mesh’s faces (triangles) are defined by the
set F.
The outputs of this method are skeletal offsets O ∈ RJ×3 and a skinning
weight matrix W ∈ RV ×J . The network predicts offsets O for each joint rela-
tive to its parent joint within a predefined skeletal hierarchy. This hierarchy
defines the character’s skeletal structure and has J total joints. The skinning
matrix W defines how the skeleton influences the mesh deformation during
animation. Each entry in the matrix represents the weight of a specific joint
in affecting a particular vertex on the mesh.
The overview of the envelope deformation branch can be seen in Figure 5.3.

The skinning parameters are obtained with a series of three mesh convolu-
tion blocks using the MeshCNN [18] operators. Analogously to classic CNNs,
MeshCNN combines specialized convolution and pooling layers that operate
on the mesh edges of triangular meshes. Convolutions are applied on edges
and the four edges of their incident triangles (in a manifold mesh an edge
belongs to two faces/triangles, except the shared edge four additional edges
are part of the two triangles), and pooling is applied via an edge collapse
operation that retains surface topology, thereby, generating new mesh con-
nectivity for the subsequent convolutions. MeshCNN assumes it operates on
a manifold mesh so that each edge is incident to two faces (triangles) at most,
and is therefore adjacent to either two or four other edges. The input edge
feature is a 5-dimensional vector for every edge: the dihedral angle, two inner
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angles and two edge-length ratios for each face. The edge ratio is between the
length of the edge and the perpendicular line for each adjacent face. However,
the input features used by the NBS methods differ. For each edge the average
positions of its two adjacent vertices are calculated. Furthermore, one out
of five of the output channels in each hidden layer are max pooled, then the
procedure is repeated, and the result is concatenated along the edge axis to
extend the receptive field. After a forward pass, in order to predict per-vertex
values, the adjacent edge features of the corresponding vertex based on the
mesh connectivity are averaged (similar to Point2Mesh [19]) to get the skin
matrix W.

The rigging parameters are O ∈ RJ×3 of a specific skeleton hierarchy that
consists of J offsets. These parameters are learned from a triangular mesh
in T-pose as input. Intuitively, each offset Oj of the character’s rig can be
inferred from its surrounding mesh vertices. To learn a vertex representation
that fits that task, we first pass the edge representation of V (similar to
the skinning block) through several MeshCNN blocks to obtain a learned
deep vertex representation V ′ ∈ RV ×K with K channels. Then, the output
skinning matrix is used to apply a skinning based pooling on the deep vertices,
which collapses the V features into a set of J deep offsets using the relative
skinning weight via

O
′
j =

∑V
i=1 WijV

′
i∑V

i=1 Wij

(5.1)

where O
′
j ∈ RK represents a deep feature corresponding to the j-th offset,

and Wij is the skin weight that ties vertex i to offset j. This operation is
similar to attention based pooling, and ensures that each offset is calculated
only as a function of the vertices that are bound to it.
With the predicted deep offsets O

′ ∈ RJ×K the explicit skeleton offset to
predict the rig can be estimated. The explicit offset O ∈ RJ×3 is predicted
using a block of skeletal aware operators [3]. These operators are skeleton-
aware, meaning that they explicitly account for the skeleton’s hierarchical
structure and joint adjacency, and together they serve to transform the
original motion into a collection of deep temporal features associated with
the joints of the primal skeleton. A primal skeleton is a common skeleton
for different skeletons after reducing them with a sequence of edge merging
operators. Retargeting can be achieved simply by encoding to, and decoding
from this latent space. Since the skeletal topology is fixed in the network, we
can exploit joint connectivity, such that each offset is calculated only by its
corresponding deep offset and its close neighbors.

During each training iteration, a random pose is injected into the network.
This pose is represented by a set of local joint rotations Ri, where each Ri

is a 3x3 rotation matrix. These joint rotations guide the deformation of the
input character mesh based on the network’s predicted rigging and skinning
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parameters. The network performs a two-step conversion process to translate
the local joint rotations and offsets into a format suitable for deforming the
mesh.
Forward Kinematics: Local rotations and offsets are accumulated along the
kinematic chain (starting from the root joint) for each joint. This step essen-
tially calculates the global transformation for each joint based on its local
rotation and the relative positions of its parent joints.
A differential LBS layer calculates a global transformation for each vertex
based on the predicted skinning weight matrix W and the global joint trans-
formations Ti ∈ R4×4.

TRj =
∑

i

WjiTi (5.2)

Once the per-vertex global transformations TRj are calculated, they are
applied to the input mesh vertices V using a per-vertex operation.

V̂R = TR ⊙ V (5.3)

This operation essentially deforms the mesh based on the predicted rigging
and skinning and the injected pose. An l2 loss function is used to measure
the difference between the predicted deformed mesh V̂R and the ground truth
mesh in the target articulated pose VR. This loss guides the network to refine
its predictions for rigging and skinning parameters during training.

LV = ∥V̂R − VR∥2 (5.4)

Overall, the training process iteratively injects random poses, converts local
rotations and offsets to global transformations, deforms the mesh, and com-
pares the predicted deformation with the ground truth to guide the network
in learning accurate rigging and skinning parameters.

5.1.2 Residual deformation branch

This section introduces the residual deformation branch, which builds upon the
concept of blend shapes to further enhance the character’s deformation quality
during animation. Blend shapes are pre-defined variations of a character’s
mesh used to capture subtle details and improve animation realism. This
method’s approach leverages a neural network to predict a set of fixed
residual shapes that are combined with pose-dependent coefficients to refine
the character’s deformation.

The branch takes the input character’s vertex positions V and connectivity
information F as input. It utilizes pre-trained skinning and geometry blocks
(with fixed weights) obtained from the envelope deformation branch.
The output skinning weight matrix W from the pre-trained blocks is combined
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Figure 5.4: Result of NBS on a custom mesh producing a T-pose mesh with
associated skeleton and skinning weights.

with the deep vertex representation V
′ along the channel dimension. This

creates a richer feature representation (V ′
, W ∈ RV ×(K+J)) that incorporates

both vertex information and their relationship to the skeleton. This informa-
tion is crucial for generating effective blend shapes.
Similar to the envelope branch, mesh convolutions are applied to the edge
feature representations of the combined features (V ′, W ). This process results
in a set of N residual shapes denoted as Bi where i ranges from 1 to N, and
each Bi is a matrix of size RV ×3 representing a specific residual shape.
In parallel to the residual shape generation, a separate small neural network
predicts pose-dependent coefficients. This network consists of J MLP blocks
(one for each joint) that each process a single joint rotation. The output of
this network is a set of coefficients αij for each residual shape i and each joint
j. These coefficients determine the contribution of each residual shape to the
final deformation based on the pose.
The final deformed mesh V̂ is computed by:

V̂ = V +
J∑

j=1

N∑
i=1

αijmjBi (5.5)

Where mj is a binary mask to each joint. This mask ensures that only
vertices associated with that specific joint (based on the skinning matrix) are
influenced by the corresponding residual shapes. This enforces localization
and prevents unwanted deformations in areas controlled by static joints.
The loss function, similar to the envelope branch, measures the difference
between the predicted deformed mesh and the ground truth mesh in the
target articulated pose 5.4. This guides the network to refine its predictions
for residual shapes and pose-dependent coefficients during training.

The example outputs of NBS on a custom mesh can be seen in Figure 5.4.
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Figure 5.5: Example of NBS failing for a non-manifold mesh (right) and a mesh
that has been not aligned (right).

5.1.3 Mesh cleanup and alignment

NBS requires as input a mesh that does not contain non-manifold geometry
and is aligned with an example mesh to match its orientation, position and
scale. Meshes generated with neus-facto don’t guarantee this. For this reason
we’ll have to preprocess the meshes before they are ready as input for Neural
Blend Shapes. Examples of failures due to not satisfying the conditions for a
mesh can be seen in Figure 5.5.

Generated meshes can include floating artifacts not connected to the main
mesh. This can be due to the fact that estimated masks, camera positions
contain some errors. The surface reconstruction methods themselves don’t
have a requirement to reconstruct a single object. For this reason the potential
floaters have to be dealt with. With a simple assumption that the human
object is the one with the largest amount of vertices this problem can be
trivial. If this assumption is not true then that would imply bigger problems,
such as complete failure of the human segmentation part of the pipeline.
With this knowledge only a simple script that keeps the largest connected
component as the final mesh is necessary.

Good connectivity means that the mesh should not have non-manifold
geometry. A non-manifold geometry is a 3D shape that cannot be unfolded
into a 2D surface with all its normals pointing the same direction. Non-
manifold geometry can be caused by various means, such as self intersection
of faces, vertices occupying the same space, inner faces, edges sharing more
than two faces, surfaces connected to a single vertex, zero volume shapes. In
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Figure 5.6: Illustration of the cleanup process from the bottom view of the mesh.
Zero volume shape (left) being closed to produce a tight solid mesh (right).

this case the most often encountered problem is of the zero volume shape
that is caused by holes appearing in the surface of the mesh and since the
generated mesh has no thickness it does not have a volume. These holes
most often appear in the soles of the feet since in the input video the person
is standing still in the T position and the soles of the feet are not directly
observable. The proposed fix is creating a script for the Blender [13] a 3D
modeling and rendering software. Blender includes helpful functions for our
use case such as selecting non-manifold vertices and edges, filling holes and
more. A script is created that deletes loose geometry, ..., fills holes in mesh in
order to help remove non-manifold geometry. Example result of this cleanup
process can be seen in Figure 5.6.

Neural Blend Shapes requires the input mesh to be spatially aligned with
a reference mesh. They should be approximately in the same orientation, po-
sition and scale. Generated meshes we cannot assume any of these properties
to be satisfied by default. This problem is solved by finding the appropri-
ate scale, translation and rotation parameters that minimize the Chamfer
distance between the source and target mesh. The parameters are T ∈ R3

which is the translation vector, s ∈ R the scale factor and θx, θy, θz ∈ R which
represent the rotation around individual axes. For vertices V ∈ RN×4 where
N is the number of vertices, we want to find vertices V ′ ∈ RN×4 using the
same parameters for all vertices which have the minimal Chamfer distance
to the reference mesh with vertices U ∈ RM×4 where M is the number of
vertices in the reference mesh. V ′ is obtained by this order of operations:

V ′ = V MRxRyRz (5.6)

Where V =

x1 y1 z1 1
. . . .

xN yN zN 1

 , M =


s 0 0 0
0 s 0 0
0 0 s 0

Tx Ty Tz 1

 where M scales and

moves the mesh. Rx =


1 0 0 0
0 cos θx sin θx 0
0 − sin θx cos θx 0
0 0 0 1

 is the rotation around the
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Figure 5.7: Illustration of the alignment process. On the left the reference mesh
is in blue and input mesh in red. On the right the input mesh is transformed
and aligned to the reference mesh.

x-axis, Ry and Ry are the rotations around their respective axes. Chamfer
distance is computed for V ′ and U see section 3.15. An optimization loop
is run minimizing the Chamfer distance based on the parameters using the
Adam optimizer [27] with default parameters. Configurable parameters for
the scripts are a number of initial guesses for the parameters and number of
iterations per guess. An example of this process can be seen in Figure 5.7.

With these preprocessing steps done the mesh is ready to be automatically
rigged, skinned and animated with Neural Blend Shapes.
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Chapter 6

End to end pipeline

This chapter describes the process and implementation of the end to end
pipeline for 3D human reconstruction and automatic rigging presented in this
thesis.

The pipeline is implemented as a script that takes as an input a video where
the camera moves around a person that stands still in the T-pose position, and
outputs a rigged 3D model of that person along with an example animation.
The pipeline steps are:

. Pre-processing steps. Extracting frames from the video. Since during the training all
of the extracted frames are loaded into memory, this could cause
memory issues for a longer video. The frames are downsampled
keeping every n-th frame where n is a parameter. Images can be
downscaled as well.. Estimating camera positions. To estimate camera position COLMAP
[43], [44] is used. COLMAP is a general-purpose Structure-from-
Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graph-
ical and command-line interface..Keypoint estimation for the first frame of the video. Ideally the
person in the first frame is mostly visible and facing the camera.
Keypoint estimation is done using the MMPose library [14].. Segmentation with the Segment Anything Model [28]. The person
in the first frame is segmented using the keypoints as segmentation
prompts for the SAM model.
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6. End to end pipeline ..................................
. Predicting the rest of the frames in the video. Using the first mask

obtained with SAM the rest of the frames are estimated with a semi
supervised video object segmentation method XMEM [10]..Training the neus-facto model to learn the SDF rpresentation of the

person in the video taking the frames, estimated camera positions and
masks as input.. Post-processing steps.Mesh extraction from the SDF representation of the model using

the Marching Cubes [33] algorithm..Mesh cleanup. Deleting all except the largest connected component
in the mesh to remove floating artifacts.. Filling holes and fixing non-manifold geometry. The mesh extraction
doesn’t guarantee to produce a manifold mesh. The custom script
tries to fill the holes in the mesh, delete loose geometry and etc. to
try and fix this problem..Texturing the mesh. Unwrapping the mesh and filling an empty
texture image using the color head of the neus-facto model..Mesh alignment. The rigging and skinning process requires the
mesh to be aligned with a reference mesh. Meshes are aligned using
an optimization loop to find parameters of scale, translation and
rotation by minimizing the Chamfer distance between meshes.. Rigging and skinning. The rigging and skinning parameters are estimated

using the Neural Blend Shapes method producing a skeleton and skinning
weights from the model.. Using the rigged model an example animation is produced where the
model follows the mocap data.

Extending on the pipeline steps.
For the frame extraction it might be unintuitive how many frames are needed
for the training. A good value is 300 frames which SDFStudio [59] uses by
default. Downscaling of the images should only really be used when the
frames can’t fit into memory.
Using COLMAP to estimate camera positions on a custom video is the de
facto method for neural reconstruction [49], [50], [30] and novel view synthesis
with NeRF [35], [24], [52]. COLMAP can reconstruct the scene as well and
the sparse point cloud produced can be used to visualize and set the bounding
box and the initial sphere around the subject of interest. The bounding box
is to determine from where the points on a ray should be sampled. The
sphere is set as the initialization of the SDF field. For our use case a unit
bounding box and sphere at the center of SDFStudio’s coordinate center have
been found to be sufficient and manual alignment of the bounding box is
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not necessary. Also using COLMAP puts some limitation on the kinds of
videos that are appropriate. Videos taken should avoid texture-less images
(e.g., a white wall or empty desk) a more varied background is preferred. The
video should not have too much variation in illumination conditions. Keeping
to these guidelines might help COLMAP extract features from images and
match them more easily, therefore reducing the potential of camera position
estimation failing.
The new process of human video segmentation starting with the human
keypoint estimation, followed by using the keypoints as segmentation prompts
for SAM for the first frame and lastly predicting the rest of the frames with
XMEM is described in greater detail in chapter 4.
The training of the neus-facto model can be modified by many parameters.
For our use case we use a default configuration that was used on the custom
real world datasets. The main configuration parameters are the number of
iterations (200k as default), usage of foreground mask (true), number of rays
per batch (2048), loss coefficients, learning rates and etc. The default config
file can be found in the supplementary material.
The marching cubes resolution parameter is 512. Which defines that the
cubes that the algorithm is going to process are 512 · 512 · 512.
Removing the floating artifacts is simple under the assumption that the
largest connected component is the human subject.
Repairing non-manifold geometry for the mesh is not easy. The scripts delete
loose geometry and removes doubled vertices, edges with no length, faces
with no areas, filling holes in the mesh. All these operations are done with
the blender software. A blender add on Blender 3D kit is used as well to help
clean the mesh, which is standardly used to help fix non-manifold meshes for
3D printing, as non-manifold geometry is a common problem for 3D printing
software.
The texturing process is well described here in section 3.5. The texture quality
is dependent on the mesh unwrapping and the color head of the neus-facto
model.
The mesh alignment process randomly initializes the scale, rotation and
translation parameters and minimizes the loss starting those parameters. By
default, the process takes 10 guesses and give 100 iterations to each. The
best loss and its parameters are saved and then applied to the source mesh
to get the final result.
For the NBS part the chosen mocap data animation is a simple greeting
animation where the model raises one hand and waves. The output can either
be a sequence of obj files or single fbx file. By default, the fbx output for the
animation is used by default.

The script can be launched from any part by specifying a step parameter.
This is useful when trying to restart from a specific point in the script with
different parameters or modifying the output mesh and running the rest of
the script to see a comparison.
Most of the scripts called by the main pipeline and others are Python scripts
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using the PyTorch [37], PyTorch3D [41] libraries among others such as numpy,
scipy, matplotlib. Additionally, bash scripts are provided when multiple var-
ious system commands need to be called such as the end to end pipeline
script.
Although using neural SDF representation allows the data to be captured eas-
ily with any device which can be used for video recording such as smartphones
and rids us of a need for more complex setups of synchronizing multiple cam-
eras for a multi view setup or having access to expensive high quality scanning
equipment. There are still some hardware requirements. The training can be
especially time-consuming and memory intensive depending on the amount of
frames used and their resolution. SDFstudio utilizes libraries that depend on
the CUDA framework. For these reasons a machine equipped with a higher
end Nvidia GPU is required.
The complete pipeline and experiments were tested on machine containing a
GPU NVIDIA GeForce GTX 1080 with 12 GB of RAM and CPU 4x Intel(R)
Core(TM) i7-10700KF and another machine equipped with a GPU NVIDIA
GeForce RTX A600 with 51.5 GB of RAM and CPU 4x Intel(R) Core(TM)
i7-10700KF.
The complete pipeline script can be found in the attachments as demo.sh
as well as the other scripts for the pipeline and experiments on the datasets.
Additionally, README files in the attached materials explain the minimal
environment setup as well as how to prepare the datasets for the experiments.
Lastly, an implementation of a simple web application is provided for an
easier user interaction.

The custom dataset is available for download at https://drive.google.
com/file/d/1awDaKDnSu0qn6C43eUsNPk0XFUpLYqi8/view?usp=sharing and
the outputs of the pipeline on the custom dataset are available for download at
https://drive.google.com/file/d/1leXTQgjrBjYtDzsKYiA4FLD3YArQr9Wh/
view?usp=sharing

6.1 Web application

In this section a simple web application for easier user interaction is presented.
The application consists of the server and client part. The Flask web server
is hosted on a machine that can handle the training process. The web part is
accessible on the local network.

The web application consists of a login page and a home page. The users
can login with username and password, these can be set when starting the
web server. After the login the user is redirected to the home page. On
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Figure 6.1: Home page of the webapp that can start the end2end pipeline.

the home page the user can create a new project and upload a video to be
processed. The server creates a folder identical with the project name and
saves the video there. Then the user can start the training which spawns
a thread that runs the end to end pipeline script on the uploaded video.
User can check on status of the process and get either of NONE when no
training was started, ERROR if the training finished in error, FINISHED
if the training finished successfully and results are to be downloaded and
IN_PROGRESS when the end to end pipeline script is still in execution.
Finally, the user can download the results which is a zip file containing the
rigged human mesh with its skeleton, texture and example animation. The
home page can be seen in Figure 6.1.
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Chapter 7

Conclusions

This thesis successfully developed an end-to-end pipeline for reconstructing
and rigging 3D clothed human characters from monocular videos. The pipeline
takes a single video of a person in a predefined pose as input and outputs a
rigged mesh capable of following motion capture data, along with an example
animation.

A custom process of human video segmentation was introduced to improve
the 3D reconstruction step by separating the person from the scene. The cus-
tom process consists of estimating human pose keypoints from the first frame
of the video and using those as an input to a promptable segmentation model.
The mask obtained for the first frame is used as an input to semi supervised
video object segmentation method, which produces masks for the rest of the
frames. Evaluation of this approach was done on the TikTok dataset and
compared with state-of-the-art methods for frame-wise segmentation. The
proposed approach achieved high performance and was ultimately chosen as
the segmentation method for this thesis’s approach.
Machine learning methods for 3D reconstruction were evaluated on their
capabilities on a human dataset. Specifically neural SDF approaches evolved
from NeRF such as Neus, Neuralangelo and neus-facto. Evaluation of the
mesh reconstruction quality was done on the RenderPeople dataset where
renders of the high quality mesh scans were used as input to the methods
and then the mesh quality was evaluated using the Chamfer distance.
To evaluate their novel-view synthesis capabilities the models were evaluated
on a custom dataset. The created dataset consists of five videos that have
a person standing still while the camera rotates around them. Using the
PSNR and SSIM metrics the models were evaluated. However, the meshes
extracted from these trainings contain visually notable errors, mainly pro-
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trusions around the hands and head. Holding still in a T-pose position for a
prolonged time is unnatural and forces a drop of the arms over time.
A rigging and skinning process is added to the pipeline. Using Neural Blend
Shapes (NBS) on the meshes generated on the custom dataset, the meshes
were animated and rigged. Using a predefined skeleton the meshes are able
to follow motion capture data creating animations. Custom pre-processing
steps of mesh cleanup and alignment were implemented to prepare the recon-
structed mesh for the rigging process.
And end-to-end pipeline was successfully implemented alongside a web appli-
cation for easier user interaction. However, we notice that this approach is
highly sensitive to the quality of the input video, mainly in the subject being
able to stand still in the predefined position. Due to this sensitivity other
3D human reconstruction approaches from a video might be more suitable,
which even allow for the subject to move in the video, however this approach
still has benefits such as the resulting output is already in a format readily
usable by many 3D software applications and putting minimal constraints on
the shape of the human body other than being able to stand in the T-pose.

Potential improvements and further work. Modifying the NBS process so
that it can take a model in a more natural pose than the T-pose, such as the
A-pose. Or using an alternative rigging process to alleviate this issue.
Evaluation of using additional inputs for the reconstruction method, such as
depth maps or using a reference human mesh for the SDF field initialization.
Adding a more detailed template skeleton to allow the model to follow and
perform more complex animations, since the current skeleton does not contain
any detail for the fingers or face.
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