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Abstract

We implement and compare three meth-
ods with custom modifications for folli-
cle segmentation and recognition in 2D
ultrasound images and videos of ovaries.
The first method employs a classical re-
gion growing algorithm, further refined
by incorporating the second method - the
Kalman filter. The third method uti-
lizes deep learning techniques, specifically
U-Net architecture. Our dataset com-
prises 110 individual ultrasound images
and 82 videos cut into almost 1400 im-
ages. For training the neural networks,
we applied data augmentations to extend
the dataset profusely. The results of our
experiments indicate the superiority of
the deep learning methods over classical
approaches. The region growing achieved
an average r1 = 0.792 and r2 = 0.804
on the best-quality videos, whereas the
U-Net reached an average r1 = 0.821 and
r2 = 0.839 across all image qualities.

Keywords: follicle segmentation,
ovarian 2D ultrasound, assisted
reproduction, region growing, Kalman
filter, U-Net

Supervisor: prof. Dr. Ing. Jan Kybic

Abstrakt

V této práci implementujeme a porovná-
váme tři metody s vlastními úpravami
pro segmentaci a rozpoznávání folikul v
2D ultrazvukových snímcích a videích va-
ječníků. První metoda využívá klasickou
metodu narůstání oblastí, která je dále vy-
lepšena použitím druhé metody - Kalma-
nova filtru. Třetí metoda využívá technik
hlubokého učení, konkrétně architekturu
U-Net. Náš dataset se skládá ze 110 sa-
mostatných ultrazvukových snímků a 82
videí, které byly rozřezány na téměř 1400
snímků. Pro trénování neuronových sítí
jsme použili augmentaci dat, abychom do-
statečně rozšířili dataset. Výsledky našich
experimentů jasně ukazují převahu metod
hlubokého učení nad klasickými přístupy.
Metoda narůstání oblastí dosáhla průměr-
ného r1 = 0.792 a r2 = 0.804 na videích
nejlepší kvality, zatímco U-Net dosáhl prů-
měrných hodnot r1 = 0.821 a r2 = 0.839
napříč všemi kvalitami snímků.

Klíčová slova: segmentace folikul, 2D
ultrazvuk vaječníků, asistovaná
reprodukce, metoda narůstání oblastí,
Kalmanův filter, U-Net

Překlad názvu: Segementace folikul z
2D ultrazvukových sekvencí obrázků
vaječníků
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Chapter 1

Introduction

Between 48 million couples and 186 million individuals struggle with infertility
globally [30]. Estimates of costs of successful treatment outcomes (delivery
or ongoing pregnancy by 18 months) can climb up to 61, 377 USD in some
countries [17]. An integral part of the treatment is a correct assessment of the
couple’s health, including an ovarian ultrasound examination. Automation
and streamlining some of these tasks could help reduce the physician’s time
spent on repeated tasks and, therefore, bring down the immense price tag of
becoming a parent.

This work replicates two methods done by Potočnik et al. [33] using region
growing for segmentation and identification of follicles in 2D ultrasonography
(USG) images and [34], which utilizes the previous method and employs
Kalman filter (KF) for follicle segmentation in a video (image sequence). We
implemented several adjustments to the method to fit the particulates of our
data better. Furthermore, we reproduced a third method [22], which utilizes
deep learning. Finally, we evaluated the results of each method and compared
their performance.

1.1 Assisted reproduction process

Infertility is described by World Health Organization (WHO) as a disease
of the male or female reproductive system defined by the failure to achieve
a pregnancy after 12 months or more of regular unprotected sexual intercourse

1



1. Introduction .....................................
[30].

When a couple struggling with infertility visits an In Vitro Fertilization
(IVF) centre, both partners undergo copious amounts of tests to determine
the reason for their struggles. The most common treatment, otherwise also
called assisted reproductive technology (ART), in such a situation is an IVF,
meaning that both the female and male gamete cells are combined outside
the woman’s body in a lab setting. To obtain the woman’s gamete - an
oocyte - it is necessary to stimulate her body with hormones, also called
Controlled Ovarian Stimulation (COS), so a mature oocyte(s) can be collected.
A mature oocyte is found inside a follicle sack collected from women’s ovaries.
There should ideally be more than one follicle. The normal response to
the stimulation is 8 to 17 collected follicles [12]. The combined cells are
reinserted into the woman’s uterus as a 3 to 5 day old embryo [29] for further
development.

1.2 Motivation

The prescribed treatment is, among other things, dependent on the woman’s
ovarian reserve. During the examination of the ovarian reserve, two parameters
are considered the golden standard - Antral Follicle Count (AFC) and levels of
anti-Müllerian hormone (AMH) [24]. While AMH can be obtained via a blood
test, which a laboratory does, AFC has to be manually counted by the doctor.
The counting takes around 10 minutes, and with the enormous pressure
on doctors, it is no wonder that they resort to estimation with a verbal
description such as the ovarian reserve is normal, poor, good, excellent and
so on. Although the words used for description can be ordered to some
extent, the intervals behind them differ for each doctor, which then causes
discrepancies in the data.

Apart from AFC as the ovarian reserve marker, it is also considered good
practice to count and measure the follicles during COS. The results are used for
personalizing the treatment - adjusting the dosages of medications to control
the growth of the follicles better and help prevent ovarian hyperstimulation
syndrome (OHSS). Another utilization of follicle monitoring is the timing of
the trigger (a very high dose of hormones administered to release the follicles)
to obtain a higher number of follicles [7] [12].

This work focuses on images and videos obtained using a 2D ultrasound
machine. Although 3D ultrasound machines that can measure the follicles’

2



..................................... 1.2. Motivation

volume are currently state-of-the-art, their cost can climb up to 200, 000 USD,
depending on the age, brand, model, portability and more [41]. This price
tag means that only big hospitals can afford such machines, and the rest of
the IVF centres still use 2D machines.

The dataset was obtained in cooperation with Cognitive IVF 1. Cognitive
IVF is a software company aiming to digitalize the assisted reproduction
process, easing the doctor’s workload and simplifying the patient journey.
One of their products is Leeaf Physician Portal, an Electronic Health Records
(EHR) system. According to their research, one of the features that doctors
consider very useful is the automated monitoring of follicles using ultrasound
images or videos. Hence their motivation for developing this feature.

1http://www.leeaf.life
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Notation

ki,j ki = {ki,j , j = 0, · · · , n − 1} where n is the number of pixels in the
curve and ki,j = [kxi,j , kyi,j ]

p pixel, vector p = [px, py]

zi,j zi = {zi,j , j = 0, · · · , m− 1} where m is the number of pixels in the
curve and zi,j = [zxi,j , zyi,j ]

σ() standard deviation operator

Homi ith homogeneous region

I grey-level image

ki best follicle approximation in the ith image

m() mean value operator

Mi ith auxiliary matrix

O outer boundary of region

Si ith image from the series of images cut from each video

Ti various thresholds used in the algorithm

zi measurement (obtained by region growing algorithm) of selected follicle
in the ith image

Filt two times smoothed image

5
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Acronyms

3D-US 3D ultrasound

AFC Antral Follicle Count

AMH anti-Müllerian hormone

ART assisted reproductive technology

COS Controlled Ovarian Stimulation

EHR Electronic Health Records

FPS frames per second

IVF In Vitro Fertilization

KF Kalman filter

MSR Misidentification Rate

NN neural network

OHSS ovarian hyperstimulation syndrome

PCOS polycystic ovary syndrom

RG region growing

RNN recurrent neural network

RR Recognition Rate

SVM Support Vector Machines
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1. Introduction .....................................
TVUS Transvaginal ultrasound

USG ultrasonography

WHO World Health Organization
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Part I

Theoretical Part
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Chapter 2

Related work

Transvaginal ultrasound (TVUS) is a safe and essential diagnostic tool for
women dealing with infertility [27]. During ART, it allows the physician
to observe and assess the women’s reproductive system, especially the de-
velopment of ovaries and follicles, monitor ovulatory time, and guide the
timing of clinical embryo transfer [11]. The first efforts for automatic follicle
detection in the ultrasound images were done in 1997 by Potocnik et al. [35].
They used thresholding to segment the regions and clinical rules, e.g. size
and proportions of the regions, to accept or refute the region as follicle [4].
They followed up on their work with [33] and [34], where they refined their
first method, used region growing and upgraded from single image to image
sequence. This work follows their later work, which obtained Recognition
Rate (RR)= 0.78 and Misidentification Rate (MSR)= 0.29.

Advanced methods used to tackle this subject include Support Vector
Machines (SVM) [5], [21], K-means clustering [19] and neural networks [22].
RR range from 0.6 (MSR= 0.3) to 0.894 (MSR= 0.074), depending on the
method and research paper. A non-exhaustive list of the methods and their
performance can be found in [22].

Another valuable application of ovarian ultrasound image processing is the
detection of polycystic ovary syndrom (PCOS) - a condition which makes
conception more difficult [39]. One of the signs is a large number of follicular
cysts in the ovary. Works dealing with this topic use filtering, watershed
algorithm and some clinical criteria [6] and in combination with SVM and
other methods [10].

11



2. Related work.....................................
Today, many bigger hospitals have a 3D ultrasound (3D-US) machine at

their disposal and can, therefore, observe the follicles from an extra angle
and estimate their volume. Those machines are pretty expensive and not
common among medical facilities, and they are usually used to observe fetuses
during pregnancy. However, methods segmenting the follicles in 3D-US can
achieve better results than 2D. State-of-the-art works use unsupervised [38],
semi-supervised [46], and supervised deep learning methods [32]. More works
using 3D data were done using the public database USOVA3D 1.

1https://usova3d.um.si/wordpress/
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Chapter 3

Image segmentation and identification
methods

Below, we lay out the key terms for image segmentation and identification
techniques, emphasizing the three methods used in this work: region growing,
Kalman filter, and UNet-based techniques. We differentiate classical computer
vision techniques and techniques based on artificial neural networks (deep
learning).

3.1 Classical methods

Based on Kang et al. [16], the classical methods can be classified as edge-based
and region-based. On the other hand, Raut et al. [36] divide segmentation
algorithms into threshold-based, histogram-based, edge detection, region-
based, and watershed Transformation techniques. Finally, Kaur and Kaur
[18] add along edge-, threshold-, region-, and watershed-based methods
as well as clustering and PDE-based methods. A recurring theme in the
above classifications is the region-based techniques, with the most prominent
example being region growing.

13



3. Image segmentation and identification methods......................
3.1.1 Region Growing

Region growing [13] is a traditional computer vision method for colour seg-
mentation. It groups sub-regions into larger regions, starting with seed points
and merging them with neighbouring pixels with similar properties based on
the chosen criterion [16]. The algorithm stops when all pixels are assigned
to a region. Multiple versions of the algorithm were developed through the
years, varying, e.g., in the seeding method [1, 25], or in speed [42].

3.2 Kalman filter

The Kalman filter [15] is a linear quadratic estimation method originally
used in the navigation domain [44] for estimating unknown variables from
measurements. In image processing, the filter can be used, e.g., for noise
filtering and image restoration [8], or tracking a segmented object on a series
of images/video [45].

3.3 Deep learning methods

As with other computer vision tasks, deep learning has dominated the field of
image processing, including image segmentation. Both Minaee et al. [26] and
Ghosh et al. [9] divide the deep learning segmentation algorithms based on
the type of neural network architecture into 10 categories, including methods
using fully convolutional networks, encoder-decoder models, or recurrent
neural networks.

One of the most frequented categories in image segmentation is the combi-
nation of encoder-decoder-based models with convolutional neural networks,
embodied by models using the U-Net architecture [37]. This U-shaped neural
network combines three deep learning concepts: convolutional layers, bot-
tleneck autoencoders, and residual connections, and allows for a natural
transformation of input images into segmentation masks.

Different improvements over the original U-Net were proposed for image
segmentation. Gradual progress was made with UNet++ [47] and UNet

14



................................ 3.3. Deep learning methods

3+ [14]. Authors replaced the CNN modules with vision transformers in
the Swin-UNet architecture [2]. Finally, other works added more complex
operations to the residual connections: CR-UNet [22] introduced spatial RNN
modules, while its later namesake [23] used channel attention modules.
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Practical Part
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Chapter 4

Data preparation

As data is a vital part of any work, a substantial part of our work was
dedicated to consistent collection and annotation. The following chapter
will present the challenges of ultrasound imaging, our data sources, the
dataset description, annotation methods and the overall description of the
preprocessing. Examples of ultrasound images and their annotation are
provided in 4.1.

4.1 Raw dataset and Challenges

Any task concerning detection and segmentation in ultrasound images is
challenging for several reasons; the most noticeable is probably the low
quality of the images due to the speckle noise and acoustic shadows [3].
Another limitation of the images is imaging artifacts [20].

Ovarian follicles are round or oval sacks filled with fluid and potentially an
oocyte. They are located in the ovaries and are usually observed via a TVUS.
They can also appear slightly irregular if the ovary contains a lot of them
and are squished together. They manifest as dark spots on the ultrasound
images and vary greatly in size and count. There can be anywhere from 4
to 24 follicles for normofollicular and even more than 25 for multifollicular,
with sizes ranging from 2 to 30 mm [28]. Therefore, another challenge is
distinguishing the smaller ones from other bigger veins (which are manifesting
in a similar manner) and the bigger ones from smaller cysts [22]. Illustration

19



4. Data preparation ...................................

Figure 4.1: Example of differences in follicle counts and sizes

of different counts and sizes of follicles in ultrasound images can be seen in
4.1. Those parameters mainly depend on the woman’s age and other health
factors.

Lastly, the annotation can be quite challenging due to all of the factors men-
tioned above. Standardization among physicians is only fair, and consensus
can be lacking in some situations.
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video count total imgs avg imgs min imgs max imgs
82 1396 17.3 4 49

Table 4.1: Statistics regarding the number of images from videos.

4.2 Data sources

There are two data sources - first, an IVF centre in the Czech Republic,
which provided only individual images and no videos. The dataset consists of
images from 94 different patients, each having between 1 to 24 ultrasound
images from one or multiple stimulation cycles; the total count is 582 images.
The women visiting the clinic were struggling with infertility and therefore
undergoing a COS. The images were taken before or during a medical check-up
or before the oocyte pick-up procedure. The time span of the image taking
was two years, from September 2019 to September 2022, using Mindray’s
DC-N3 PRO and DC-40 machines with iClear 2 or 3 Technology. All images
were in BMP format, with resolutions of 800× 600 and 1260× 910 pixels for
DC-N3 PRO and DC-40, respectively.

During the annotation of the images, we found that 110 contained one of
the ovaries containing at least one follicle. The rest were primarily images of
the uterus, endometrium, cysts or free spaces after the cyst puncture.

The second dataset, consisting of videos, was obtained in cooperation with
the General University Hospital in Prague. The ultrasounds were conducted
by prof. MUDr. Jaromír Mašata, CSc. with ethical approval by the hospital’s
internal ethical committee. In total, we obtained 78 videos from 20 patients
who visited the hospital after failed attempts for conception. So, it can be
presumed they were struggling with some degree of infertility. The videos
were done using the Voluson E8 ultrasound machine manufactured by GE
Healthcare and were between 1.5 and 10 seconds long. The videos were
collected in the span of a year from March 2023 to March 2024. The videos
often depicted the same clusters of follicles multiple times, and some of them
did not contain follicles but endometrium. Therefore, we subdivided the
videos into smaller segments to ensure each cluster was shown only once in an
individual video. Some clusters were shown in multiple videos. This process
resulted in 82 videos.

The resulting videos were split into individual sequential images with 7
to 10 frames per second (FPS). Altogether this resulted in 1396 number
of images. The statistics regarding the number of images from videos are
explained in Table 4.1 in detail.
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4.3 Annotation of the dataset

For security reasons, we used an annotation tool that ran on the Leeaf
server. The access was further restricted with a virtual private network. The
annotation tool was custom-developed by a Leeaf employee in coordination
with us to be user-friendly for the annotators and to be connected to the
Leeaf database. A preview is included in 4.2

The image contains visualized annotation - green shapes. According to the doctor,
there are also other dark structures, which are probably veins or intestinal contents.

Figure 4.2: Custom-made annotation tool: Annotai

Medical students in their fifth and sixth year did the first round of annota-
tion. A gynaecologist with more than 20 years of practice then checked them
and, if necessary, edited the annotations. The annotations were exported in
the COCO JSON format 1.

1https://cocodataset.org
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Chapter 5

Region growing method

In the following chapter, we will describe the algorithm for retrieving and
segmenting the follicles in ultrasound images. This work closely follows [33],
so we will often refer to their work in the following chapter. They divided
their algorithm into three parts: 1. Homogeneous region identification, 2.
Region growing, and 3. Follicle extraction. Throughout this work, we will
use the notation described in Notation. Illustrations of differences between
the original method and custom modifications are provided in Section 8.1.

The complete source code for all methods is available at the GitHub
repository at https://github.com/crimsoncress/diploma_thesis and as
an attachment to this thesis.

This region growing (RG) method was used as a baseline for evaluating
more advanced methods and obtaining the initial measurements for Kalman
filter 6. A measured follicle is denoted by zi, where i represents the image
index in the sequence in which the measurement was taken.

5.1 Image preprocessing

After loading the BMP image and its annotation in the COCO JSON format,
several actions needed to be done to proceed with the algorithm itself. Firstly,
we cropped the image so that there would not be any extra parts that could
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5. Region growing method ................................

Figure 5.1: Results of preprocessing part.

potentially undesirably influence the grey scale 5.1. We recognized that there
are four different image types, which require different cropping. The first
partition is according to the position of the narrower part. It is either at the
top or bottom of the image. Both of the image types ("top" and "bottom")
then have an additional image type - "old top" and "old bottom" - those are
images taken with DC-N3 PRO technology and thus have lower resolution.
Secondly, we smoothed the image using the adaptive neighbourhood median
filter with two kernel sizes based on comparing the grey scale of the evaluated
pixel with the selected threshold T1. We set the T1 to the mean of grey-level
values in the original image Ik. A kernel 11× 11 was used for pixels below
the threshold T1, and a kernel 5× 5 was used for pixels above this threshold.
As stated, in ultrasound images, ovarian follicles are dark oval shapes, so
the pixels representing them should have higher grey-scale values than the
average pixel. Thus, this procedure smoothed them more thoroughly than
their neighbourhood. This procedure was repeated twice, and the smoothed
image was denoted as Filt.

5.2 First Part: Homogeneous Region Identification

This first part focuses on finding homogeneous regions of similar grey-level
values in the image, and so obtaining a rough estimation of the follicles. We
introduce three methods for obtaining homogeneous regions using different
thresholds and calculations.

Obtaining the first homogeneous region, denoted as Hom1, constitutes of
two parts. First, we create a binary matrix M1 as follows in 5.1.

M1(p) =
{

1, Filt(p) ≤ T2

0, otherwise
(5.1)

The original paper sets the threshold T2 was set to the m(Filt) − σ(Filt).
Nevertheless, after running the finished algorithm on our dataset, we decided
to set the threshold to m(Filt) − σ(Filt)/1.2 as the homogeneous region

24



............................. 5.3. Second Part: Region Growing

highlights the follicles more precisely. To avoid merging adjacent follicles,
we employ a second part - binary watershed segmentation using a Euclidean
distance map of M1. The result was converted back to a binary matrix and
denoted as Hom1.

For the second homogeneous region Hom2, we introduced a new auxiliary
matrix M2 by calculating one standard deviation of grey levels in the 11× 11
neighbourhood for every pixel in the original image I. The Hom2 is described
in 5.2

Hom2(p) =
{

1, M2(p) ≤ T3 ∧ I(p) ≤ T1

0, otherwise
(5.2)

For the third region Hom3, we constructed an auxiliary matrix M3 as 5.3
and removed all regions touching the image’s border.

M3(p) =
{

1, Filt(p) ≤ T1

0, otherwise
(5.3)

Potocnik et al. merge all three homogeneous regions under Hom in the
original algorithm. However, we empirically found out that due to the nature
of our images, it is better to merge only the first and the third homogeneous
regions to obtain better performance on our dataset. We assumed that the
ovary is located somewhere in the middle of the image and thus deleted all
the regions touching the image border from Hom. Subsequently, we defined
a new threshold T4 and removed all regions smaller than T4. This threshold
corresponded to the minimal size of a follicle of around 220 square pixels.

5.3 Second Part: Region Growing

In the following section, we grow the obtained coarse estimation of the follicles
in Hom. We process the bigger regions first as they are more likely to be the
centres of the follicles. The region-growing procedure consists of iteratively
assessing the outer boundary O of a region R and adding the pixels from the
outer boundary to the region if they fulfil some criteria. We denote the initial
region R0 and then Ri for the ith iteration. This process stops after the nth
iteration when no pixel is added, that is, Rn−1 = Rn.

The outer boundary O is a set of pixels adjacent to the region. However,
for a pixel p to be considered a potential candidate for merging, it needs to
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5. Region growing method ................................
have at least 4 of its neighbours (3× 3 neighbourhood) from the region we
want to grow to control the compactness of the region. Furthermore, p needs
to satisfy two criteria. First - 5.4 assures that the grey levels of the potential
candidate are statistically close to the region.

|Ik(p)−m(R0)| ≤ ασ(R0) (5.4)

Second - 5.7, where grad(p) is calculated using 5.6 and texture statistics
tex(p) as in 5.5 where n11(p) are the grey levels of 11× 11 neighbourhood of
pixel.

tex(p) = m(n11(p))/σ(n11(p)) (5.5)

grad(p) = ||∇Ik(p)||(eG/tex(p) − 1) (5.6)

|grad(p)−m(grad(R0))| ≤ ασ(grad(R0)) (5.7)

If the pixel satisfies all the criteria, we add it to the region. If it is already
a member of another region Pm, we may merge the two regions if they are
statistically similar. This hypothesis is checked using two critical terms 5.8,
5.9 and a threshold T5.

CT1 = |m(R0)−m(P0)|
σ(R0 ∪ P0) (5.8)

CT2 = |m(grad(R0))−m(grad(P0))|
σ(grad(R0 ∪ P0)) (5.9)

As it can be shown, CT1 and CT2 follow the Student’s distribution t, so
the value of T5 is determined by the confidence interval. In our case, it is 0.05
and T5 = 1.66. The regions are merged if both CT1 and CT2 are below T5.
The regions are then checked for any potential holes that have been filled.
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5.4 Third Part: Follicle Extraction

After the second part, we should obtain all the darker round structures in the
image, and we need to decide which of them are follicles based on domain
knowledge. We will remove all regions touching the image’s border or having
an area smaller than 220 pixels - the threshold is calculated from the minimal
size of a follicle. Next, we calculate the ratio b for each follicle as the ratio
between its area and bounding box. If b is higher than 0.5, we remove this
region as we do not consider it compact or round enough. After this step, we
need to determine the most likely follicle. We sort all potential follicles by
their area in descending order and by the b ratio in descending order. We
then add the follicle that scores the best in both categories as the actual
follicles set. Next, we iteratively calculate the centre of gravity of all actual
follicles and add a new one closest to the centre of the actual follicles set.
This process stops when no other potential follicles or the closest follicle is
further than 0.25 ∗max(image width, image height).
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Chapter 6

Kalman filter predictor-corrector application

In the previous chapter, we showed how using the RG method for follicle
segmentation in independent ultrasound images can yield accurate results.
However, most ultrasound machines are able to capture a short ultrasound
video (a sequence of images), which could possibly provide more precision in
determining the follicle positions. Therefore, in this chapter, we will segment
follicles from ultrasound videos and subsequently compare the results with
the independent images method.

After converting the videos to image sequences as described in 4.3, we need
to exploit the property of the image sequence. The consecutive images vary
only slightly as the examiner moves the ultrasound probe around the ovary, so
the follicles appear to be either moving or changing in size. This alternation
will be captured by applying the KF predictor-corrector scheme as similarly
done in [34]. We will apply the filter independently on each of the follicles.

In short, the process adjusts the measurement of an object zi, in our case,
a follicle, according to the best approximation of its position ki−1 in the
previous image Si−1 and estimated shifts along the x and y axes.
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6. Kalman filter predictor-corrector application .......................

Figure 6.1: Overview of the full algorithm run. Detailed Kalman filter is
described in 6.2

6.1 Tracking of a single follicle

After obtaining the images with annotations done by the RG algorithm, the
first step was to follow the follicles throughout the sequence of images and
determine their corresponding follicle matches in subsequent images. A follicle
j from image i− 1 is matched with a follicle kmax from subsequent image i if
they form the biggest (among all follicles in image i) non-zero intersection
with each other.

kmax = max
k
||zj

i−1 ∩ zk
i || (6.1)
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............................... 6.2. Kalman filter application

Moreover, the follicle has to appear in at least two consecutive images to
be considered. It is otherwise discarded as a misidentification by the RG
algorithm. Each follicle then belongs to a so-called one-follicle-sequence, a
set of follicles (following the conditions defined above) found in a subset of
sequential images (one follicle in one image). As one image can contain more
follicles, it will belong to the same number of one-follicle-sequences.

6.2 Kalman filter application

In this work, we applied the Discrete Kalman filter [40], meaning that the
follicles are not tracked as a whole object by tracking their centre of gravity
but by tracking each pixel of the follicle curve separately. After running
the algorithm we will get a curve k0 = {k0,j , j = 0, . . . , n − 1} where n
is the number of pixels in the curve. We will call this curve the best fol-
licle approximation, noting that the "best" notion is with regard to our
algorithm. Each of the pixels corresponds to a process state vector of KF
xi,j = [xi,j , yi,j , ∆xi,j , ∆yi,j ]T where ∆x and ∆y correspond to the shifts of a
pixel over x and y axis, respectively. Horizontal stacking those vectors creates
the process state matrix x̂ of KF.

The process is depicted in 6.1 with a detailed description of KF in 6.2.
The application starts with initializing some variables and then loops the
measurement and time update until the selected follicle’s last image is found.
We save all the best follicle approximations in each image and also x̂ and
P−

0 after the last iteration. Those values will serve as the initial values in
the reverse run of the filter. In the reverse run, the measurements are no
longer obtained from the RG algorithm as they were in the forward run, but
they are substituted with the best approximations from the forward run from
respective images.

6.2.1 Algorithm Initialization

We start with the first image in the sequence S0 and select one of the follicles
in the image. Since we do not have any previous position and shifts, in
other words, the process state matrix, we declare the measurement of the
selected follicle z0 as our best approximation of this follicle k0 in S0. As
initialization of our algorithm, we set the shifts in process vectors to zeros
x̂0,j = [k0,xj , k0,yj , 0, 0]T and the a priori estimate error covariance matrix
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6. Kalman filter predictor-corrector application .......................

Figure 6.2: Overview of Kalman filter [40].

P−
0 = αI4. As done in the [33], we set the α to 1000 and note that any value

higher than 100 should not make a significant difference.

Since we want the model to predict the coordinates of pixels in image i by
adding the shifts from the image i− 1 to the coordinates in the image i− 1,
the Φ matrix for this operation is as follows:

Φ =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (6.2)

According to the KF theory [34]

xi+1,j = Φxi,j + wi, (6.3)

where wi is the noise in the system. We will estimate the initial position for
the same follicle in the following image with

x̂−
1,j = Φx0,j (6.4)
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............................... 6.2. Kalman filter application

(a) : Best follicle approximation from
the previous image ki−1 and its corre-
sponding measurement from following
image zi

(b) : Closest intersection point
|Cki−1,j | ∩ |zi,jzi,j+1|

Figure 6.3: Matching points from corresponding curves

6.2.2 Measurement update ("Corrector")

We iteratively go over the one-follicle-sequence (a subset of the complete
sequence of images 6.1), and for each i, i = 1, . . . , m where m is the number
of images in the sub-sequence, execute the following list of operations/steps.
The equation for this step was resourced from [40].

Firstly, we retrieve the best follicle approximation from the previous image
in the sequence ki−1 and for every pixel ki−1,j of this curve find a corresponding
point from the obtained measurement of the currently-processed follicle
zi,j = [zxi,j , zyi,j ]. Such match is found by firstly aligning centres of mass of
the two follicles and secondly determining intersections of a half-line defined
by the centre of mass C = [cx, cy] = [

∑n
j=1 zxi,j /n,

∑n
j=1 zyi,j /n] and the

matching pixel ki−1,j with lines connecting every two neighbouring pixels
from the current curve. And choose the closest intersection point as the match.
The match is then moved back using the negative value of the translation
vector used for the follicle alignment. Now, the boundary pixels are paired
with their respective matches. Empirically, we found out that it is necessary
at this point to decide the correctness of the follicle annotation from RG
algorithm and, if necessary, exclude it from the one-follicle sequence so it
does not confuse the KF further on. The decision process is described in
6.2.3. After this check, we calculate the measurement update, starting with
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6. Kalman filter predictor-corrector application .......................
the Kalman gain

Ki = P−
i HT

i (HiP−
i HT

i + Ri)−1 (6.5)

where R0 = I2 and H =
[
1 0 0 0
0 1 0 0

]
. The next step is updating the time

estimation with measurement update by

x̂i = x̂−
i + Ki(zi −Hix̂−

i ). (6.6)

Lastly, in the measurement update, we calculate the posterior estimate error
covariance

Pi = (I4 −KiHi)P−
i (6.7)

6.2.3 Follicle exclusion

As mentioned at the end of 6.2.2, we detected that KF was sometimes
misguided by the RG, and this mystification was carried over to the next
follicle in the one-follicle sequence due to the nature of this method. Therefore,
we decided to check the soundness of the follicle measurement from RG by
comparing the minimal and maximal distance between the pair matches. If
this difference exceeds some threshold, we disregard the follicle and continue
with the next one in the sequence. The rationale behind this criterion is
that the follicle grows very disproportionately. We experimentally set the
threshold to 50. One issue arises when we are processing the next follicle
in sequence and need a time update from the previous follicle and also the
previous follicle itself to compute the KF. When such situation occurs we try
to go back to i− 2 follicle and if no such follicle exists we disregard the time
update and only consider the measurement and noise in the current image.

6.2.4 Resampling curve

We resample the curve to have a defined number (k) of points to ensure they
are well-spaced. Let p and q be two neighbouring points in the curve, and
E be a set of all such pairs from a curve. Firstly, we calculate the distance
between every two pairs d(p, q) = |p − q|, where Ei = (p, q) (the length of
their edge) and sum those distances to get the full length of the curve

D =
(

k−1∑
i=0

d(ci, ci+1)
)

+ d(cn, c0), (6.8)

where n is the number of all points and edges and c = (x̂i)r,c, where r =
0, · · · , n and c = 0, 1 representing the first two columns in x̂i i.e. only the
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(a) : Follicle before resampling (b) : Follicle after resampling

Figure 6.4: Illustration of follicle points resampling

coordinates of the points. By dividing the curve length by k, we get the new
edge length snew = D/k. For each of the edge (p, q) we determine the new
point(s) v using linear interpolation

v = [(1− t)px + tqx, (1− t)py + tqy], (6.9)

where t is a parameter that helps determine the number of new points for
each edge. We assign new points the shifts from the closer of the points Ei[0]
or Ei[1]. Vertical stacking the points from V , vertical stacking the shifts from
S and horizontal stacking those two matrices creates the new state process
vector xnew. Therefore, the best follicle approximation in image i is (x̂i)r,c,
where r = 0, · · · , n and c = 0, 1 the first two rows in the process state matrix.
A pseudocode is provided in 1.

Algorithm 1 Curve resampling pseudocode
V ← [E0[0]] ▷ V is a list of the new points
S ← [(x̂i)0,{0,1}] ▷ S is a list of shifts corresponding to the new points
for i = 1, 2, . . . , k do

ft ← d(Ei)/snew

while t + ft ≥ |V | < k do
t← (|V | − t)/ft

v ← [(1− t)px + tqx, (1− t)py + tqy]
V ← V + v
u← arg minj d(v, Ei[j])
S ← S + (x̂i)[u] ▷ Add shifts corresponding to u

end while
t← t + ft

end for
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6. Kalman filter predictor-corrector application .......................
6.2.5 Time update ("Predictor")

As the last part of a single loop, we calculate the time estimate update for
the next one by estimating the position of the follicle in image i + 1

x̂−
i+1,j = Φxi,j , (6.10)

and projecting the error covariance matrix

P−
i+1 = ΦPiΦT + Qi, (6.11)

where Q is set to unit matrix Q0 = I4 and wi is supposedly distributed
according to Gaussian distribution wi ∼ N(0, Qi). The Qi is used as a noise
source. Its choice can improve the performance of the filter. The tuning is
usually performed with the help of another (distinct) Kalman filter. In our
case, Qi is a constant, but it can be changed during the filter operation to
account for different dynamics in the system [40].

6.2.6 Backward run

After finishing the forward run, we initialize the variables for the reverse one
by taking the last update of the process state matrix and reversing the signs
of the shifts for each pixel. So when the follicle is moving to the right or
shrinking, it will do the opposite: moving to the left or increasing in size.
Such modified x̂ and lastly updated P− or P−

m−1 will be the initialization.
The algorithm behaves almost the same, except the iterator i goes from m−2
to 0. After this last part, the algorithm is finished.
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Chapter 7

Deep Learning - UNet-based architectures

The following chapter describes the last and most advanced of the methods
used for follicle recognition in this work. The initial approach was imple-
menting a CR-Unet - a composite network described in [22]. During the
implementation, we discovered that stripping the method of its spatial recur-
rent neural network (RNN) modules and returning to the original, simpler
version - plain U-Net - still yielded great results on our dataset. Nevertheless,
there were some differences in the predictions of the two methods.

7.1 Dataset and Augmentation

The original dataset has 1396 images, for each of which a true annotation
mask was generated; for the train and test set, 80% (1128) and 20% (268) of
the dataset were allocated, respectively. We generated up to 10 augmented
counterparts for each training image and its mask using torchvision image
augmentation transformations and their compositions. We used four different
types of random augmentations - rotation (−30◦ to + 30◦), horizontal and
vertical flip - both with probability p = 0.5 of flipping - and colour jitter
(changing brightness and contrast) with a parameter 0.5, meaning that the
jitter level will be chosen randomly from a uniform distribution [0.5, 1.5] for
both brightness and contrast.
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Figure 7.1: The illustration of the proposed pipeline for ovarian follicle seg-
mentation in CR-UNet. The backbone is a standard U-Net, of which some
customized spatial RNN modules are embedded between the encoder-decoder.
When there are, in total, four spatial RNN modules, the proposed network is
named CR-UNet. Numbers on each module indicate the number of channels
[22].

7.2 CR-UNet

Haoming et al. propose the CR-Unet as a composite network incorporating
the spatial recurrent neural network (RNN) into a plain U-Net. Their solution
is supposed to learn multi-scale and long-range spatial contexts effectively
[22]. The architecture of the neural network (NN) is illustrated in 7.1, and a
spatial RNN module is depicted in 7.2. Unfortunately, the authors did not
provide access to their source code and the exact setting of the NN. Therefore,
our implementation is only based on the information in the research article.
Moreover, they also segmented ovaries as well as follicles, so we altered their
method to segment only follicles.

7.2.1 Experimental setup

As the first model, we implemented the CR-UNet with the base of PyTorch
UNet1 (with fewer channels, matching the CR-Unet paper). We added the
RNN modules and upsampling in between the layers as depicted in 7.1. For
the loss function, we followed the paper and implemented Logarithmic Dice
(LD)

LD = − log
(

2
C∑

c=1

N∑
i=0

ŷc
i yc

i

)
+ log

(
C∑

c=1

N∑
i=0

ŷc
i +

C∑
c=1

N∑
i=0

yc
i

)
, (7.1)

1https://github.com/milesial/Pytorch-UNet/
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Figure 7.2: The Spatial RNN module. Each feature slice of a certain layer in the
encoder is convoluted with 1× 1 kernel to be taken as input of the spatial RNN,
on which four directional operations (up, down, left and right) are implemented.
Their outputs are concatenated and then convoluted with 1 × 1 kernel. The
number of channels is, therefore, the same as the input of the RNN. The process
is repeated once to generate final feature map, as a result each pixel integrates
the global spatial information [22].

where C is the number of classes, N is the number of samples, ŷc
i denotes the

prediction for a pixel belonging to a class c and yc
i is the true label of the

pixel. The paper had three classes - background, ovary and follicle - but we
found it sufficient and straightforward to have only one class for our task (no
ovary recognition).

For loss computation, Haoming et al. used the deep supervision technique
[43] to improve the gradient flow through the network. Outputs of each layer
in the right part of the UNet were up-sampled to the same size as the final
model output and aggregated by a weighted sum to create the final loss. The
loss weights were set the same as in the paper [22] - from top to bottom as
[1.0, 0.8, 0.4, 0.1]. After running the first few experiments, the model favoured
labelling bigger blobs as follicles instead of dissecting them into separate ovals.
We identified this might be happening due to the imbalance in the extent
of background and follicles. We added binary cross-entropy (BCE) 7.2 from
PyTorch [31] to address some of these limitations.

BCE(x, y) = {l1, · · · , lN}T , ln = yn log xn + (1− yn) log(1− xn) (7.2)

where x and y and input and target, respectively, and N is the batch size.
We tested several batch sizes - 1, 4, 8, and16 - with no discernible influence
on the outcome. The learning rate was set to 1× 10−5 and later decreased
to 1× 10−6 as we sometimes encountered problems with gradient explosion.
Depending on the type of training method, 3% or 10% of the train set was
used for validation. The train and validation losses convergence plots can be
seen in 7.3.
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7. Deep Learning - UNet-based architectures ........................

Figure 7.3: Loss convergence plot for the original CR-UNet model with 3387
images, including augmentations, validation was set to 10% of the train set.

As the second model, we implemented the plain PyTorch UNet and also
changed the loss function only to encompass the loss from the last layer
output (with weight of 1) and kept the BCE addition. The rest of the
settings remained the same 7.4, but to boost the performance, we also tried
randomly sampling 2000 from a set of 12408 images for each training epoch
7.5. Both plots show that the models’ training and validation losses are nicely
converging but not over-fitting.

7.2.2 Resource and time specification

The models were trained on a MacBook Air M2 with Apple Silicon chip, and
the average speed was around 1.2s/img, so it took around one hour to train
an epoch or 15 to 20 hours for our specified number of epochs.
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Figure 7.4: Loss convergence plot for the UNet model with 3387 images, including
augmentations. The validation set size was 10% of the train set.

Figure 7.5: Loss convergence plot for the UNet model with a random sampling
of 2000 from a set of 12408 images (including augmentations) for each epoch.
The validation set size was 3% of the train set
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Chapter 8

Performance of Algorithmic Methods

The following chapter will be dedicated to the evaluation of the RG method
described in 5 and KF method as an extension of this method described in 6.
The first part will show how our modification improved the RG method to
perform better for our data, and then we will report on the performance of
both methods on the second part of the data - the video dataset. Finally, we
will compare the methods and discuss their performance differences.

8.1 Images Dataset Predictions Evaluation

We ran the RG algorithm for all of the obtained images, even though the
quality of some of them was deficient, and the doctor was not entirely sure
whether there was a follicle in the image. The comparison between the results
yielded by the original algorithm and the modified we produce can be seen in
8.2 - modified algorithm vs. 8.3 - original algorithm and 8.4 vs. 8.5. It can
be observed how the Hom2 detects many regions which are not follicles. This
confuses region growing and leads to worse results.

After examining all the images annotated by the algorithm, we concluded
that four cases happened and clustered the images accordingly. The groups
were created based on two criteria: how well the algorithm performed on the
image and the quality of the image. The first group contained images on
which the algorithm performed well, and their quality was also good 8.2, 8.4.
In the second group are images on which the region growing performed poorly,
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Figure 8.1: Illustration of r1 and r2 metrics

but their quality was good, so the result is still acceptable 8.6, 8.7. The third
group consists of images where the homogeneous region identification part
of the algorithm identified the regions well. Still, the region growing part
resulted in some misidentifications, so the result is of poor quality 8.8, 8.9.
The last group comprises low-quality images, which also yielded poor results
8.10, 8.11.

We also calculated two ratios for each image - r1 and r2. r1 is the ratio
between the area of the intersection of the detected follicles and actual follicles
and the area of the actual follicles

r1 = V (ki) ∩ V (ti)
V (ti)

, (8.1)

where V notes the ares of the curve. r2 is the ratio between the area of the
intersection and the area of the detected follicles

r2 = V (ki) ∩ V (ti)
V (ki)

. (8.2)

An illustration for those metrics is provided in 8.1.

Due to the varying nature of the image quality, we provide results regarding
those four groups. In Table 8.1 columns "50%", "75%", "90%" denote the
percentage of images from the group where the algorithm recognized at least
50%, 75% and 90% of follicles, respectively. Note that we compare only the
numbers in this part, so the reader has to evaluate this result together with
the rations. When the percentage is high, and the ratios are low, not only
does the algorithm not find the actual follicles, but it also incorrectly marks
other dark structures as follicles.
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Figure 8.2: Annotation of an image 413 from group one. r1 = 0.87, r2 = 0.96

Figure 8.3: Annotation of an image 413 using original method.
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group images avg r1 avg r2 50% 75% 90%
1 20 0.731 0.816 80% 75% 75%
2 18 0.604 0.833 61% 33% 28%
3 14 0.073 0.285 39% 39% 39%
4 36 0.072 0.176 47% 25% 22%

Table 8.1: Results divided into the four groups

Figure 8.4: Annotation of an image 414 from group one. r1 = 0.90, r2 = 0.96
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Figure 8.5: Annotation of an image 414 using original method.

Figure 8.6: Annotation of an image 253 from group two. r1 = 0.87, r2 = 0.88
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Figure 8.7: Annotation of an image 553 from group two. r1 = 0.84, r2 = 0.83

Figure 8.8: Annotation of an image 270 from group three. r1 = 0.06, r2 = 0.98
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Figure 8.9: Annotation of an image 373 from group three. r1 = 0.2, r2 = 0.9

Figure 8.10: Annotation of an image 584 from group four. r1 = 0, r2 = 0
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Figure 8.11: Annotation of an image 590 from group four. r1 = 0, r2 = 0

8.1.1 Conclusion

It can be seen in Table 8.1 that if the image was of good quality, we found
over 90% of follicles in 75% of images. If the quality was at least moderate
(groups one and two), we could identify 75% of follicles in a third of images.
Those results suggest that we managed to recreate the algorithm satisfactorily
with slight modifications. Although the dataset we acquired was not ideal, we
sorted through the images and reported performance, which was acceptable
for group one images.

8.2 Results on Videos Dataset

This section will provide results of both the RG and KF methods on the
sequences of images, which were the result of automatic cuts of the videos
into a specified number of FPS.
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8.2.1 Region growing efficiency

In the previous chapter, we divided the images into four groups based on the
image quality and the algorithm’s performance. This was possible due to
a relatively smaller number of images in the dataset, but the same tedious
approach is not feasible for the video dataset. Therefore, we decided to split
the images into groups based on their recognition rates - r1 and r2. The
thresholds were chosen so the group performances are similar to the previous
distribution.

Table 8.2 shows the different groups of images and their performance. The
criteria for groups 1 to 4 Gj , j = 1, 2, 3 were

Gj = {Si ∈ Gj | r1(Si) ≥ Tj ∧ r2(Si) ≥ Tj}. (8.3)

The thresholds were T1 = 0.7, T2 = 0.5 and T3 = 0.3. Group 4 G4 comprises
the rest of the images. A similar approach for diving into four groups was
taken for the videos as well, the only difference being that the r1 and r2 are
averages over all images in the video.

group images avg r1 avg r2 50% 75% 90%
1 550 0.842 0.826 64% 42% 27%
2 373 0.609 0.890 79% 43% 23%
3 214 0.404 0.832 64% 25% 15%
4 259 0.098 0.360 35% 15% 10%

Table 8.2: Results of RG on individual images divided into four groups based
on the performance.

The video results, composed of the individual images, are shown in table
8.3.

Almost 40% of images were almost perfectly classified as both the recog-
nition rates were over 80%. Over 65% of images had r1 over 50% while
maintaining still high r2 - on average over 85%. This means that the algo-
rithm recognized at least 50% of follicle area and did not misidentify more
than 15% of the area. Differences in the number of actual and predicted
follicles are demonstrated in 8.12. We already established that the RG method
performs satisfactorily on better-quality images, and those results also support
this conclusion.

51



8. Performance of Algorithmic Methods ..........................
group videos avg r1 avg r2 50% 75% 90%
1 14 0.792 0.804 66% 42% 26%
2 43 0.601 0.819 68% 37% 21%
3 23 0.412 0.626 54% 27% 18%
4 2 0.161 0.514 17% 6% 0%

Table 8.3: Results of RG on video dataset divided into four groups based on
the performance.

Figure 8.12: Differences in true and predicted follicle count for Kalman filter
and region growing methods.

8.2.2 Kalman filter addition evaluation

As this method should serve as an enhancement of RG, the results are
presented in a comparative way to highlight the contribution of KF. We
compared the recognition rates r1 and r2 for each image in each video
and calculated different statistical indicators to illustrate the results. The
comprehensive results are in Table 8.4. We evaluated r1 and r2 of each image
based on whether it was better or worse with Kalman (in contrast to only
region growing), hence the naming in Table 8.4. We then calculated statistical
indicators - total count, average, minimum, maximum and median - from sets
of images belonging to a single video. We further aggregated those results
and calculated and reported the average and median from all of the videos.
We can see from the table that a better r2 in images annotated with Kalman
was on average in 8.22 images per video, and the average and median of an
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count min max avg median

r1

better avg 1.74 0.005 0.14 0.009 0.009
median 1 0.001 0.004 0.003 0.003

worse avg 13.7 0.009 0.573 0.182 0.123
median 12.5 0.005 0.552 0.154 0.083

r2

better avg 8.22 0.006 0.218 0.066 0.038
median 7 0.002 0.159 0.049 0.025

worse avg 6.86 0.045 0.474 0.186 0.146
median 6 0.003 0.523 0.11 0.032

Table 8.4: Statistics regarding the comparison of r1 and r2 rates in region
growing and Kalman filter.

average increase in r2 was 0.066 and 0.049, respectively.

The number of images where RG gives better r1 than KF was higher for
all videos. However, the r2 was better for over 62% of videos; in almost 5%
of videos, the majority of images showed no change.

To better understand and make sense of the somewhat ambiguous results,
we will illustrate the most common mistakes KF makes and explain how those
mistakes impact the recognition rates. The first case is when RG already
performs quite well on the image, and therefore, there is not a lot of space
for improvement to be done by KF. In those cases, we can observe marginal
increase or decrease in either r1 - images 8.13 and 8.14 or r2 - images 8.15
and 8.16.

Figure 8.13: Marginal decline in r1 when using Kalman filter. r1(RG) = 0.5718,
r1(KF) = 0.5681, difference of 0.0037.

The second case is when RG misidentifies a follicle. We have taken some
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Figure 8.14: Marginal increase in r1 when using Kalman filter. r1(RG) = 0.7301,
r1(KF) = 0.7443 difference of 0.0142.

precautions to check the correctness in 6.2.3. If the exclusion is correct, it
will result in a much higher r2 score 8.17. Nevertheless, if misidentification
happens over a region in true follicle annotations, the result is a significant
decrease in r1 8.18.

However, to be sure we do not exclude a valid follicle, the exclusion criteria
we introduced were relatively mild. The result is that sometimes a follicle is
not excluded, even though it is not valid 8.19. If no other cases are present,
the recognition rates will only have marginal differences again.

The third case is RG correctly identifying a follicle in the ith image but
omitting it in both images i − 1 and i + 1. This will cause KF to skip the
follicle in image i and result in a considerable decrease in r1. This instance is
illustrated in 8.20 on the bottom right follicle. If a follicle is recognized in
i + 2 again, we could avert this by interpolating the follicle in images i− 1
and i + 1. Nevertheless, this could create a new mistake when the follicle in
i + 2 is, in fact, a different one than the one in i.

8.2.3 Conclusion

In conclusion, we have shown how, in certain situations, the Kalman filter
might advance the region growing method, but also how it is hugely reliant
on the measurements from it. Further improvements might comprise more
cooperation between the methods, as suggested in the third case of the
previous section. A potential increase in the performance of RG on image
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Figure 8.15: Marginal decline in r2 when using Kalman filter. r2(RG) = 0.8654,
r2(KF) = 0.8402, difference of 0.0253.

sequences could be gained by initiating the RG with the previous follicle
segmentation and slightly adjusting for the changes.
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Figure 8.16: Marginal increase in r2 when using Kalman filter. r2(RG) = 0.8867,
r2(KF) = 0.9210, difference of 0.0344.

Figure 8.17: Substantial increase in r2 when using Kalman filter. r2(RG) =
0.3257, r2(KF) = 0.9862, difference of 0.6605.
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Figure 8.18: Substantial increase in r2 when using Kalman filter. r2(RG) =
0.3257, r2(KF) = 0.9862, difference of 0.6605.

Figure 8.19: Misidentified follicle (two follicles merged) by RG, which is (wrongly)
not excluded by KF.

Figure 8.20: Follicle in the right bottom corner is skippingly recognized by
RG. Results in a substantial decrease in r1 in the ith image. r1(RG) = 0.7267,
r2(KF) = 0.4396, difference of 0.2872.
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Chapter 9

Results of Deep Learning Methods

The following chapter is dedicated to evaluating the deep learning methods
for our task of follicle segmentation. We will evaluate three models - CR-UNet
as done by Haoming et al., trained on 3387 images (including augmentations)
and then two UNet models - one trained the same way as CR-UNet and the
second one trained with randomly sampling a subset (2000 images) from a
more extensive train set (12408 images) each epoch.

9.1 Evaluation metrics

Additionally to the recognition rates used in the evaluation of the algorithmic
method, we used the Dice Similarity Coefficient (DSC) 9.1 for the model
evaluation. Similar to recognition rates, it measures the overlap between two
binary masks - the predicted and truth segmentation. A score of 1 indicates
a perfect match, while a 0 signifies no intersection between the segmented
follicles.

DSC = 2
∑N

i=0 ŷiyi∑N
i=0 yi +

∑N
i=0 ŷi

(9.1)
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metric model train method avg min max median

DSC
CR-UNet whole train set 0.834 0 0.952 0.865

UNet whole train set 0.853 0 0.966 0.890
UNet random sampler 0.813 0 0.957 0.857

r1

CR-UNet whole train set 0.835 0 0.993 0.875
UNet whole train set 0.864 0 0.995 0.906
UNet random sampler 0.821 0 0.998 0.855

r2

CR-UNet whole train set 0.851 0 1 0.879
UNet whole train set 0.866 0 1 0.911
UNet random sampler 0.839 0 0.999 0.891

Table 9.1: Performance of different deep learning models on the test dataset (no
augmentation). The whole train set method uses the same train set for every
epoch (3387 images), while a random sampler is randomly sampling a subset
(2000 images) from a larger train set (12408 images).

9.2 Models Testing Outcomes

The statistical indicators regarding the models’ performance are illustrated
in 9.1. The superiority of deep learning over algorithmic methods in "darker
regions" recognition is apparent despite the fact that the test images are not
divided into groups based on image quality. See RG results on images in
Table 8.2 or videos in Table 8.3 for comparison.

To illustrate the differences and similarities in the model performances we
provide several image examples 9.2, 9.3, 9.4, 9.5, 9.6, 9.7. The results of those
images are summarized in Table 9.2.

9.2.1 Follicle counts

However great the recognition rates and DSC were, frequently, the prediction
(mostly plain UNets) included additional small regions, which drove up the
number of follicles in images 9.2. The predicted number of follicles was higher
than the truth for the UNet-whole and UNet-random models in 45% and
69% of images. On average, the increase was 2.5 and 3.5 follicles. In 27%
and 18% of images where the difference was reversed (more true follicles than
predicted), the average of this difference was 2.1 for both. Therefore, the
model got right the exact number of follicles in 28% and 13% of images.

On the other hand, the mistake most common for the CR-UNet model
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image model DSC r1 r2

Fig. 9.2
CR-UNet 0.0.890 0.864 0.919

UNet-whole 0.911 0.897 0.925
UNet-random 0.829 0.750 0.927

Fig. 9.3
CR-UNet 0.857 0.888 0.828

UNet-whole 0.914 0.917 0.911
UNet-random 0.901 0.874 0.929

Fig. 9.4
CR-UNet 0.938 0.952 0.924

UNet-whole 0.949 0.965 0.933
UNet-random 0.949 0.924 0.976

Fig. 9.5
CR-UNet 0.904 0.875 0.935

UNet-whole 0.947 0.918 0.978
UNet-random 0.924 0.872 0.982

Fig. 9.6
CR-UNet 0.944 0.905 0.987

UNet-whole 0.933 0.915 0.951
UNet-random 0.912 0.860 0.971

Fig. 9.7
CR-UNet 0.906 0.929 0.883

UNet-whole 0.899 0.971 0.837
UNet-random 0.915 0.900 0.931

Table 9.2: Performance of deep learning models on specific images with illustra-
tions of different error types.

was merging closely located regions, which resulted in less than the true
number of follicles in 77% of images and only a higher number of follicles in
7%—leaving 16% of images with the correct count of follicles. The average
decrease and increase were 2.5 and 1.4 follicles, respectively. An illustration
of this merge is depicted in 9.3. A scatter plot demonstrating the differences
in follicle counts can be seen at 9.1.

Those differences are not outrageous since the physicians themselves differ
in their counts in ambiguous images. Nonetheless, those inaccuracies could
hold greater value in borderline cases (very few or many follicles).

A well-chosen set of heuristics for follicle exclusion would at least partially
fix the issue with many small misidentified regions. Such heuristics could
be the ones used at the end of RG algorithm 5.4, that is, removing regions
at the border of the image, regions smaller or bigger than some threshold
and regions which are not correctly proportionate (not oval like). To lower
the incentive of the CR-UNet model to segment larger regions, we could add
more weight to the one type of mistake - confusing background for a follicle.
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Figure 9.1: Differences in true and predicted follicle counts for deep learning
models.

9.2.2 Stray lines and Roughness

There are sometimes lines across the follicle or some other disorganized set
of lines in the performance illustration images. Those are the results of the
unevenness of the recognized follicle. The predictions of the UNets usually
have a rough border; on the contrary, CR-Unet predictions usually have very
smooth edges 9.4. Another reason for the lines is the occasional hole inside
the region, which was the case for all of the models 9.3. Such behaviour is
expected due to the challenges of ultrasound images 4.1.

A suitable heuristic applied to the predictions could again correct those
inaccuracies - holes as well as roughness - to some degree.

9.3 Conclusion

The deep learning models undeniably outperform the algorithmic methods
regarding "darker regions" recognition. Although they still have some flaws,
which could be minimized or even mitigated with appropriate heuristics,
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Figure 9.2: Illustration of multiple small misidentified follicles by UNet model.
Results are in Table 9.2

they reach almost state-of-the-art recognition rates for 2D ultrasound images.
Considering no image filtering based on quality was done, those results are
excellent. After adding production finishing touches, the models could assist
the physician (with proper training).
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Figure 9.3: Illustration of a hole in a region and merging closely located regions
by CR-UNet model. Results are in Table 9.2

Figure 9.4: Illustration of border roughness in UNet predictions and relative
smoothness in CR-UNet predictions. Results are in Table 9.2
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Figure 9.5: Illustration of an accordance of all the models. Results are in Table
9.2

Figure 9.6: Illustration of an accordance of all the models. Results are in Table
9.2
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Figure 9.7: Illustration of an accordance of all the models. Results are in Table
9.2
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Chapter 10

Conclusion

In summary, we have successfully implemented and evaluated three computer
vision methods — region growing, Kalman filter, and U-Net-based deep
learning models — for follicle recognition in 2D ultrasound images and videos.
The algorithmic methods achieved average recognition rates between 0.6 and
0.8 for high-quality images. Following data augmentation, the deep learning
models’ predictions averaged over 0.83 across the entire test dataset. These
findings highlight the potential of deep learning to improve, automate and
streamline follicle segmentation in 2D ultrasound images and suggest its
promising applicability in clinical practice.

10.1 Future Work

As the results of deep learning methods were preferable to the algorithmic
ones, future works should take this line of research further. Starting with
the suggested heuristics for follicle exclusion or implementing the additional
ovaries recognition (but this would need new annotations). Using 3D-US
images or videos could also increase the recognition performance, but as we
mentioned in the intro of this work - the machines are not as widespread as
2D ultrasounds.

67



68



Bibliography

[1] Rolf Adams and Leanne Bischof. “Seeded region growing”. In: IEEE
Transactions on pattern analysis and machine intelligence 16.6 (1994),
pp. 641–647.

[2] Hu Cao et al. “Swin-unet: Unet-like pure transformer for medical image
segmentation”. In: European conference on computer vision. Springer,
2022, pp. 205–218.

[3] Terrence Chen et al. “Automatic ovarian follicle quantification from 3D
ultrasound data using global/local context with database guided seg-
mentation”. In: 2009 IEEE 12th International Conference on Computer
Vision. 2009, pp. 795–802. doi: 10.1109/ICCV.2009.5459243.

[4] Zhiyi Chen et al. “Artificial Intelligence in the Assessment of Female
Reproductive Function Using Ultrasound: A Review”. In: Journal of
Ultrasound in Medicine 41.6 (2022), pp. 1343–1353. doi: 10.1002/jum.
15827.

[5] Boris Cigale, Mitja Lenič, and Damjan Zazula. “Segmentation of ovarian
ultrasound images using cellular neural networks trained by support
vector machines”. In: Knowledge-Based Intelligent Information and
Engineering Systems (2006), pp. 515–522. doi: 10.1007/11893011_66.

[6] Yinhui Deng, Yuanyuan Wang, and Ping Chen. “Automated detection
of Polycystic Ovary Syndrome from ultrasound images”. In: 2008 30th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. 2008, pp. 4772–4775. doi: 10.1109/IEMBS.2008.
4650280.

69

https://doi.org/10.1109/ICCV.2009.5459243
https://doi.org/10.1002/jum.15827
https://doi.org/10.1002/jum.15827
https://doi.org/10.1007/11893011_66
https://doi.org/10.1109/IEMBS.2008.4650280
https://doi.org/10.1109/IEMBS.2008.4650280


10. Conclusion .....................................
[7] Michael Fanton et al. “An interpretable machine learning model for

predicting the optimal day of trigger during ovarian stimulation”. In:
Fertility and Sterility 118.1 (2022), pp. 101–108. doi: 10.1016/j.
fertnstert.2022.04.003.

[8] Katerina Fronckova and Antonin Slaby. “Kalman filter employment
in image processing”. In: Computational Science and Its Applications–
ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4,
2020, Proceedings, Part I 20. Springer. 2020, pp. 833–844.

[9] Swarnendu Ghosh et al. “Understanding deep learning techniques for
image segmentation”. In: ACM computing surveys (CSUR) 52.4 (2019),
pp. 1–35.

[10] C. Gopalakrishnan and M. Iyapparaja. “Multilevel thresholding based
follicle detection and classification of polycystic ovary syndrome from
the ultrasound images using machine learning”. In: International Jour-
nal of System Assurance Engineering and Management (2021). doi:
10.1007/s13198-021-01203-x.

[11] Maribel Grande et al. “Antral follicle count as a marker of ovarian
biological age to reflect the background risk of fetal aneuploidy”. In: Hu-
man Reproduction 29.6 (2014), pp. 1337–1343. doi: 10.1093/humrep/
deu055.

[12] ESHRE Reproductive Endocrinology Guideline Group. Ovarian Stim-
ulation for IVF/ICSI. Guideline of the European Society of Human
Reproduction and Embryology. ESHRE. url: https://www.eshre.
eu/Guidelines-and-Legal/Guidelines/Ovarian-Stimulation-in-
IVF-ICSI.

[13] SA Hojjatoleslami and Josef Kittler. “Region growing: a new approach”.
In: IEEE Transactions on Image processing 7.7 (1998), pp. 1079–1084.

[14] Huimin Huang et al. “Unet 3+: A full-scale connected unet for medi-
cal image segmentation”. In: ICASSP 2020-2020 IEEE international
conference on acoustics, speech and signal processing (ICASSP). IEEE.
2020, pp. 1055–1059.

[15] Rudolph Emil Kalman. “A new approach to linear filtering and predic-
tion problems”. In: (1960).

[16] Wen-Xiong Kang, Qing-Qiang Yang, and Run-Peng Liang. “The com-
parative research on image segmentation algorithms”. In: 2009 First
international workshop on education technology and computer science.
Vol. 2. IEEE, 2009, pp. 703–707.

[17] Patricia Katz et al. “Costs of infertility treatment: results from an
18-month prospective cohort study”. In: Fertility and Sterility 95 (3
2011). doi: 10.1016/j.fertnstert.2010.11.026.

[18] Dilpreet Kaur and Yadwinder Kaur. “Various image segmentation
techniques: a review”. In: International Journal of Computer Science
and Mobile Computing 3.5 (2014), pp. 809–814.

70

https://doi.org/10.1016/j.fertnstert.2022.04.003
https://doi.org/10.1016/j.fertnstert.2022.04.003
https://doi.org/10.1007/s13198-021-01203-x
https://doi.org/10.1093/humrep/deu055
https://doi.org/10.1093/humrep/deu055
https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Ovarian-Stimulation-in-IVF-ICSI
https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Ovarian-Stimulation-in-IVF-ICSI
https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Ovarian-Stimulation-in-IVF-ICSI
https://doi.org/10.1016/j.fertnstert.2010.11.026


.................................... 10.1. Future Work

[19] V. Kiruthika and M.M. Ramya. “Automatic Segmentation of Ovar-
ian Follicle Using K-Means Clustering”. In: 2014 Fifth International
Conference on Signal and Image Processing. 2014, pp. 137–141. doi:
10.1109/ICSIP.2014.27.

[20] F. W. Kremkau and K. J. Taylor. “Artifacts in ultrasound imaging”.
In: Journal of Ultrasound in Medicine 5.4 (1986), pp. 183–237. doi:
10.7863/jum.1986.5.4.227.

[21] Mitja Lenic, Damjan Zazula, and Boris Cigale. “Segmentation of ovar-
ian ultrasound images using single template cellular neural networks
trained with support vector machines”. In: Twentieth IEEE Interna-
tional Symposium on Computer-Based Medical Systems (CBMS’07).
2007, pp. 205–212. doi: 10.1109/CBMS.2007.97.

[22] Haoming Li et al. “CR-Unet: A Composite Network for Ovary and
Follicle Segmentation in Ultrasound Images”. In: IEEE journal of
biomedical and health informatics 24.3 (2020), pp. 974–983.

[23] Yang Li. “CRU-Net: A Deep Learning Network for Semantic Segmen-
tation of Pathological Tissue Slices”. In: 2021 IEEE International
Conference on Artificial Intelligence and Industrial Design (AIID).
IEEE. 2021, pp. 46–50.

[24] Antonio La Marca and Sesh Kamal Sunkara. “Individualization of
controlled ovarian stimulation in IVF using ovarian reserve markers:
from theory to practice”. In: Human Reproduction Update 20.1 (2013),
pp. 124–140. doi: 10.1093/humupd/dmt037.

[25] Andrew Mehnert and Paul Jackway. “An improved seeded region grow-
ing algorithm”. In: Pattern Recognition Letters 18.10 (1997), pp. 1065–
1071.

[26] Shervin Minaee et al. “Image segmentation using deep learning: A
survey”. In: IEEE transactions on pattern analysis and machine intel-
ligence 44.7 (2021), pp. 3523–3542.

[27] Suraya Nahlawi and Nedi Gari. Sonography Transvaginal Assessment,
Protocols, and Interpretation. Treasure Island (FL): StatPearls Publish-
ing, 2022.

[28] M. A. Coelho Neto et al. “Counting ovarian antral follicles by ultrasound:
a practical guide”. In: Ultrasound Obstetrics Gynecology 51 (2018),
pp. 10–20.

[29] ESHRE Guideline Group on the Number of Embryos to Transfer et
al. Evidence-based guideline: Number of embryos to transfer during
IVF/ICSI. ESHRE. url: https://www.eshre.eu/Guidelines-and-
Legal/Guidelines/Embryo-transfer.

[30] World Health Organization. Infertility. https://www.who.int/news-
room/fact-sheets/detail/infertility. Accessed: 2022-11-29. 2020.

[31] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

71

https://doi.org/10.1109/ICSIP.2014.27
https://doi.org/10.7863/jum.1986.5.4.227
https://doi.org/10.1109/CBMS.2007.97
https://doi.org/10.1093/humupd/dmt037
https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Embryo-transfer
https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Embryo-transfer
https://www.who.int/news-room/fact-sheets/detail/infertility
https://www.who.int/news-room/fact-sheets/detail/infertility


10. Conclusion .....................................
[32] Božidar Potočnik and Martin Šavc. “Deeply-Supervised 3D Convolu-

tional Neural Networks for Automated Ovary and Follicle Detection
from Ultrasound Volumes”. In: Applied Sciences 12.3 (2022). issn: 2076-
3417. doi: 10.3390/app12031246. url: https://www.mdpi.com/
2076-3417/12/3/1246.

[33] Božidar Potočnik and Damjan Zazula. “Automated analysis of a se-
quence of ovarian ultrasound images. Part I: segmentation of single 2D
images”. In: Image and Vision Computing 20.3 (2002), pp. 217–225.

[34] Božidar Potočnik and Damjan Zazula. “Automated analysis of a se-
quence of ovarian ultrasound images. Part II: prediction-based object
recognition from a sequence of images”. In: Image and Vision Computing
20.3 (2002), pp. 227–235.

[35] Božidar Potočnik, Damjan Zazula, and Danilo Korže. “Automated
Computer-Assisted Detection of Follicles in Ultrasound Images of
Ovary”. In: Journal of Medical Systems 21 (1997), pp. 445–457. doi:
10.1023/A:1022832515369.

[36] Shital Adarsh Raut et al. “Image segmentation–a state-of-art survey for
prediction”. In: 2009 international conference on advanced computer
control. IEEE, 2009, pp. 420–424.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Con-
volutional networks for biomedical image segmentation”. In: Medical
image computing and computer-assisted intervention–MICCAI 2015:
18th international conference, Munich, Germany, October 5-9, 2015,
proceedings, part III 18. Springer. 2015, pp. 234–241.

[38] Diplav Srivastava et al. “Unsupervised Deep Learning based Longitudi-
nal Follicular Growth Tracking during IVF Cycle using 3D Transvaginal
Ultrasound in Assisted Reproduction”. In: 2021 43rd Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). 2021, pp. 3209–3212. doi: 10.1109/EMBC46164.2021.
9630495.

[39] Helena Teede et al. International Evidence-based Guideline for the As-
sessment and Management of Polycystic Ovary Syndrome 2023. Monash
University, 2023. isbn: 978-0-6458209-0-4. doi: 10.26180/24003834.
v1.

[40] The Discrete Kalman Filter. https://homepages.inf.ed.ac.uk/rbf/
CVonline/LOCAL_COPIES/WELCH/kalman.1.html. Accessed: 24-04-10.
1999.

[41] National Ultrasound. How Much Does a Sonogram Machine Cost?
https : / / www . nationalultrasound . com / how - much - does - an -
ultrasound-machine-cost/. Accessed: 2022-12-14. 2021.

[42] Anh-Vu Vo et al. “Octree-based region growing for point cloud segmen-
tation”. In: ISPRS Journal of Photogrammetry and Remote Sensing
104 (2015), pp. 88–100.

72

https://doi.org/10.3390/app12031246
https://www.mdpi.com/2076-3417/12/3/1246
https://www.mdpi.com/2076-3417/12/3/1246
https://doi.org/10.1023/A:1022832515369
https://doi.org/10.1109/EMBC46164.2021.9630495
https://doi.org/10.1109/EMBC46164.2021.9630495
https://doi.org/10.26180/24003834.v1
https://doi.org/10.26180/24003834.v1
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/WELCH/kalman.1.html
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/WELCH/kalman.1.html
https://www.nationalultrasound.com/how-much-does-an-ultrasound-machine-cost/
https://www.nationalultrasound.com/how-much-does-an-ultrasound-machine-cost/


.................................... 10.1. Future Work

[43] Liwei Wang et al. “Training deeper convolutional networks with deep
supervision”. In: arXiv preprint arXiv:1505.02496 (2015).

[44] Greg Welch, Gary Bishop, et al. “An introduction to the Kalman filter”.
In: (1995).

[45] Shiuh-Ku Weng, Chung-Ming Kuo, and Shu-Kang Tu. “Video object
tracking using adaptive Kalman filter”. In: Journal of Visual Commu-
nication and Image Representation 17.6 (2006), pp. 1190–1208.

[46] Xin Yang et al. “Contrastive rendering with semi-supervised learning
for ovary and follicle segmentation from 3D ultrasound”. In: Medical
Image Analysis 73 (2021), pp. 102–134. issn: 1361-8415. doi: 10.1016/
j.media.2021.102134.

[47] Zongwei Zhou et al. “Unet++: A nested u-net architecture for medical
image segmentation”. In: Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support: 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS
2018, Held in Conjunction with MICCAI 2018, Granada, Spain, Septem-
ber 20, 2018, Proceedings 4. Springer. 2018, pp. 3–11.

73

https://doi.org/10.1016/j.media.2021.102134
https://doi.org/10.1016/j.media.2021.102134

	Introduction
	Assisted reproduction process
	Motivation

	Notation
	Acronyms
	Theoretical Part
	Related work
	Image segmentation and identification methods
	Classical methods
	Kalman filter
	Deep learning methods


	Practical Part
	Data preparation
	Raw dataset and Challenges
	Data sources
	Annotation of the dataset

	Region growing method
	Image preprocessing
	First Part: Homogeneous Region Identification
	Second Part: Region Growing
	Third Part: Follicle Extraction

	Kalman filter predictor-corrector application
	Tracking of a single follicle
	Kalman filter application

	Deep Learning - UNet-based architectures
	Dataset and Augmentation
	CR-UNet

	Performance of Algorithmic Methods
	Images Dataset Predictions Evaluation
	Results on Videos Dataset

	Results of Deep Learning Methods
	Evaluation metrics
	Models Testing Outcomes
	Conclusion

	Conclusion
	Future Work

	Bibliography


