
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Web Media Content Aggregator

Bc. Petr Cipra

Supervisor: Mgr. Miroslav Blaško, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2024

ii

Acknowledgements

I would like to thank Mgr. Miroslav
Blaško, Ph.D. for his helpful, valuable ad-
vice, consultation and above all his help-
fulness and willingness while writing this
thesis.

Declaration

I hereby declare I have written this Mas-
ter’s thesis independently and quoted all
the sources of information in accordance
with methodological instructions on eth-
ical principles for writing an academic
thesis. I state that this thesis has neither
been submitted nor accepted for any other
degree.

In Prague, 24. May 2024

iii

Abstract

This thesis deals with designing and imple-
menting a Semantic web compliant web
application for extracting information of
media content on the web, including its
quality, available languages and source
URLs, and presenting it to users. The ap-
plication uses Java for the backend tech-
nology and ReactJS for the frontend tech-
nology. The resulting application pro-
vides the extracted data to a user through
REST API enhanced to support Linked
data principles.

Keywords: Media content, Semantic
web, Web scraping, JSON-LD

Supervisor: Mgr. Miroslav Blaško,
Ph.D.
Praha, Resslova 307/9, E-305

Abstrakt

Tato práce se zabývá návrhem a imple-
mentací webové aplikace kompatibilní se
sémantickým webem pro získávání infor-
mací o mediálním obsahu na webu, včetně
jeho kvality, dostupných jazyků a zdrojo-
vých adres URL, a k jejich prezentací uži-
vatelům. Aplikace využívá Java pro bac-
kend technologii a ReactJS pro frontend
technologii . Výsledná aplikace poskytuje
extrahovaná data uživateli prostřednic-
tvím rozhraní REST API rozšířeného o
podporu principů Linked data.

Klíčová slova: Mediální obsah,
Sémantický web, Extrakce dat z webu,
JSON-LD

Překlad názvu: Agregátor webového
mediálního obsahu

iv

Contents

Project Specification 1

1 Introduction 3

1.1 Document structure 4

2 Background 5

2.1 Semantic web 5

2.2 RDF . 5

2.3 JSON-LD . 6

2.4 SPARQL . 6

2.5 GraphDB . 6

3 Selected websites 7

3.1 TV Nova . 7

3.1.1 Data to extract 7

3.2 iPrima . 8

3.2.1 Data to extract 8

3.3 Česká televize 8

3.3.1 Data to extract 9

3.4 TV Markíza 9

3.4.1 Data to extract 9

3.5 TV JOJ . 10

3.5.1 Data to extract 10

4 Analysis 11

4.1 Used terms 11

4.2 Existing websites 11

4.3 Selected websites 12

4.3.1 TV Nova - Nova Voyo 12

4.3.2 TV Nova - Main website 16

4.3.3 iPrima - Prima+ 18

4.3.4 iPrima - Prima ZOOM 23

4.3.5 Česká Televize - iVysílání . . . 25

4.3.6 TV Markíza - Markíza SK . . 30

4.3.7 TV JOJ - JOJ Play 32

4.4 Analysis of web scraping tools . . 40

4.4.1 Services 41

4.4.2 Software 44

v

4.4.3 Libraries 46

4.4.4 Conclusion 48

4.5 Data models for media content . 49

4.5.1 Selected websites 49

4.5.2 TV Nova 49

4.5.3 iPrima . 51

4.5.4 Other websites 53

4.5.5 Schema.org 56

4.5.6 Summary 60

5 Application design 67

5.1 Software requirements 67

5.1.1 MoSCoW method 67

5.1.2 Users . 68

5.1.3 Functional requirements 68

5.1.4 Non-functional requirements . 74

5.1.5 Model . 75

5.1.6 Use cases 77

5.1.7 Graphical user interface 83

6 Implementation 95

6.1 Architecture 96

6.2 Application extensibility 97

6.2.1 Plugins 97

6.3 Geolocation blocking 97

6.4 Data normalization 99

6.5 Credentials 99

6.6 Model . 99

6.7 API . 100

6.8 Design . 100

6.8.1 Homepage, TV Series page and
Movies page 100

6.8.2 Detail pages 101

6.9 CRON . 103

6.10 Searching and filtering 103

6.11 Extraction process 103

6.12 Order of extraction 104

vi

7 Testing 107

7.1 User testing 107

7.2 Feedback 108

7.3 Proposed modifications 109

7.4 Retesting 110

7.5 Feedback 110

7.6 Conclusion 111

8 Conclusion 113

8.1 Future development 114

8.2 Serving images 114

8.3 User customization 115

8.4 User experience 115

A Bibliography 117

vii

Figures

5.1 Data model diagram: Program,
Movie, TVShow, TVSeason, Episode
are from schema.org 76

5.2 Class model diagram 77

5.3 Use case: Register a new account 78

5.4 Use case: Find a program by
name . 78

5.5 Use case: Find a program by
properties . 79

5.6 Use case: Show episodes of a TV
series . 79

5.7 Use case: Show properties of an
episode . 80

5.8 Use case: Visit the official webpage
of a program 80

5.9 Use case: Enable email
notifications for a TV series 81

5.10 Use case: Disable email
notifications for a TV series 81

5.11 Use case: Add support for a new
website . 82

5.12 Use case: Remove support for a
website . 82

6.1 Architecture of the application . 96

6.2 Detail page of a movie 101

6.3 Detail page of a movie 102

6.4 Detail page of a TV series 102

viii

Tables

4.1 Summary of analysis of services 43

4.2 Summary of analysis of software 45

4.3 Summary of analysis of libraries 47

ix

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483692 Personal ID number: Cipra Petr Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Web media content aggregator

Master’s thesis title in Czech:

Agregátor webového mediálního obsahu

Guidelines:

The aim of the project is to design and implement a web application in Java and React framework for aggregating web
media content, i.e., series and movies, from at least 5 selected websites. The application will regularly extract information
from the chosen websites and provide users with the ability to search, filter, and display this information in the user interface.
The extracted information will be provided by the application for machine processing using Semantic Web technologies.
1) Familiarize with Semantic Web technologies for representation (OWL, RDF, JSON-LD), querying (SPARQL), and
knowledge persistence (GraphDB).
2) Analyze relevant models for representation and tools for extracting information from websites.
3) Select at least 5 websites with relevant media content.
4) Analyze requirements for the application and define application scenarios.
5) Design and implement a prototype of the application.
6) Test the prototype on selected scenarios with at least 3 users.

Bibliography / sources:

1) Ledvinka, Martin, and Petr Křemen. "JOPA: accessing ontologies in an object-oriented way." International Conference
on Enterprise Information Systems. Vol. 2. SciTePress, 2015.
2) Tomaszuk, Dominik, and David Hyland-Wood. "RDF 1.1: Knowledge representation and data integration language for
the Web." Symmetry 12.1 (2020): 84.
3) JSON for Linking Data, online at https://json-ld.org/
4) Schema.org, online at https://schema.org/

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Mgr. Miroslav Blaško, Ph.D. skupina znalostních softwarových systémů

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 15.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Mgr. Miroslav Blaško, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Chapter 1

Introduction

Today, there are many websites that provide media content, such as TV shows,
TV series, movies or documentaries. Websites such as imdb.org or csfd.cz
aggregate media content in a single place, but their purpose is to provide
information about the movies or TV shows themselves, not on what website
or in what format or language they are actually available to be watched and
even whether they require a subscription to a service.

There exist standards for representing such data, most notably schema.org,
which is used by most websites today due to it being used in search engines.
For obtaining the needed information there exist many services, applications
and libraries that are made to be used for this exact purpose.

The goal of this project is to create a web application that provides
information about available TV shows, TV series, movies and documentaries
from various websites, such as their genre, actors, media qualities, audio
languages and where to watch them. The user of the application should
be able to search and filter the provided information and possibly do more
actions, such as enabling notifications for when an episode of a TV series is
released.

Furthermore, the whole process of obtaining the needed information should
be automated as much as possible, and the processed information by the ap-
plication should be machine readable. For the purpose of machine readability
Linked data technologies were chosen.

3

1. Introduction
1.1 Document structure

Since there are many media content websites available, five major websites
are selected. In the first chapter, these websites are analyzed in terms of the
media content they provide and how to obtain the information about it. Also,
it should shed some light on what is needed in order to implement it all.

In the second chapter, an analysis of available services, software and libraries
takes place to get to know some tools which may be used when implementing
the application.

In the third chapter I discuss a possible data model that may be used
to represent the extracted data and what data model the selected websites
themselves publicly present.

Finally, the design of the application is developed to closely define what
should be implemented and how it could be done.

4

Chapter 2

Background

In this chapter I will provide some background information and introduce
terms and technologies that will be used in this project and document.

2.1 Semantic web

Semantic web1 is an extension of the World Wide Web which provides appli-
cations with metadata that can be more easily parsed and interpreted. This
allows computers to make meaningful interpretations of the data, similarly to
the way humans process information.

In the semantic web ecosystem there are many technologies that may be
used for representing or storing data. In the following sections I will mention
those that may be used in this project.

2.2 RDF

RDF2 stands for Resource Description Framework, it is used for describing
information about resources. Resources may be anything, such as documents,

5

2. Background
websites, people, abstract concepts, etc. Particularly, RDF may also be used
for publishing and interlinking data on the Web.

The RDF data model is made of statements represented as triples, each
consisting of subject, predicate and object. Subject and object are resources
and predicate represents the relationship between them. A predicate is also
called a property.

RDF may also use a schema that is used to specify the vocabulary for
the data. Each schema may provide classes for resources (i.e. subjects and
objects) and properties for predicates. For example, one such vocabulary is
schema.org.

2.3 JSON-LD

JSON-LD3 is one of the serialization formats that may be used for RDF. It
is based on JSON4 and is specifically used to serialize Linked Data. Linked
Data5 are used to link some data to some other, related, data.

2.4 SPARQL

SPARQL6 is the standard query language for databases that store RDF
triples. In its syntax it is similar to SQL, a query language that is used for
relational databases. SPARQL was designed to be used for Linked Data on
the Semantic web.

2.5 GraphDB

GraphDB7 is a graph database that supports RDF and SPARQL. A graph
database8 consists of graphs which are made of nodes, edges and properties.
RDF triples may be represented as a graph, each triple as two nodes connected
by an edge.

6

Chapter 3

Selected websites

This section specifies what websites were selected for this project and what
exactly is to be extracted from them.

3.1 TV Nova

TV Nova is a Czech TV channel. It has many sub-channels, each targeting
different types of audiences, such as Nova Cinema, Nova Fun, Nova Action,
and more.9 Its biggest sources of media content are Voyo,10 which is a
subscription-based service providing a large selection of media content for a
price, and the main website of TV Nova11 that provides more limited content
but for free. There are also non-free videos present on the main website of
TV Nova but they are just redirects to the Voyo website. In conclusion, since
most of the media content is on these two websites, we select both.

3.1.1 Data to extract

The goal is to extract the following data from both the Nova Voyo website
and the main TV Nova website:

7

3. Selected websites
. Information about all TV shows, movies, and documentaries.. Information about all episodes (and seasons) of TV shows, movies and

documentaries.. Information about available media sources for all episodes, movies and
documentaries.

3.2 iPrima

iPrima is a Czech TV channel. Same as TV Nova, it has many sub-channels,
each targeting different types of audience, such as Prima ZOOM, Prima Cool,
Prima Action and more.12 Its biggest sources of media content are Prima+,13

which is a subscription-based service providing a large selection of media
content for a price, and the website of Prima ZOOM14 that provides some
documentaries for free. However, some documentaries are redirected to the
Prima+ website.

3.2.1 Data to extract

The goal is to extract the following data from both the Prima+ website and
the Prima ZOOM website:

. Information about all TV shows, movies and documentaries.. Information about all episodes (and seasons) of TV shows, movies and
documentaries.. Information about available media sources for all episodes, movies and
documentaries.

3.3 Česká televize

Česká televize is a public television broadcaster in the Czech Republic. It has
many sub-channels that provide different types of content. On the web, there

8

..................................... 3.4. TV Markíza

are sub-websites for these sub-channels - ČT24, Sport, iVysílání, Déčko, Art,
Edu. However, in the present all of the media content is broadcasted from
the iVysílání website.15 All videos are free to watch, but may not always be
available, some cannot be played due to licensing restrictions and some are
available only for a limited time.

3.3.1 Data to extract

The goal is to extract the following data from the iVysílání website:

. Information about all TV shows, movies and documentaries.. Information about all episodes (and seasons) of TV shows, movies and
documentaries.. Information about available media sources for all episodes, movies and
documentaries.

3.4 TV Markíza

TV Markíza is a Slovak TV channel. Its main media-providing websites are
the main website of TV Markíza16 and Markiza Voyo.17

The websites are very similar to those of TV Nova. Creating and managing
extractors for both of these websites would be more time consuming, therefore
only the extractor for Markiza SK will be considered.

3.4.1 Data to extract

The goal is to extract the following data from the Markiza SK website:

. Information about all TV shows.. Information about all episodes (and seasons) of TV shows.

9

3. Selected websites
. Information about available media sources for all episodes.

3.5 TV JOJ

TV JOJ is a Slovak TV channel. They have multiple websites that provide
media content, mainly JOJ Videoportál18 and JOJ Play.19 Since the JOJ
Play website provides the most media content it will be selected. The JOJ
Videoportál website will not be considered in the scope of this project because
it would increase the time required to implement all its sub-websites.

3.5.1 Data to extract

The goal is to extract the following data from the JOJ Play website:

. Information about all TV shows, movies and documentaries.. Information about all episodes (and seasons) of TV shows, movies and
documentaries.. Information about available media sources for all episodes, movies and
documentaries.

10

Chapter 4

Analysis

This chapter covers all of the analysis in order to decide what would be
necessary for the project to work properly, how the selected websites are im-
plemented, how to extract data from them and what to use for the extraction.

4.1 Used terms

In the rest of this document I will refer to TV shows, TV series, movies,
and documentaries as programs (programmes)20 to group them and to keep
the text shorter, if not writing specifically about only one of them. All are
captured in the meaning of the word program (programme) since they are
broadcasted, however not in the television but on the internet.

4.2 Existing websites

For Netflix exclusively there exists a website called uNoGS.com21 that ag-
gregates information about what TV show or movie is available in what
country. Another existing website is called Trakt,22 it targets more services
than just Netflix and even contains some popular Czech TV shows. However,
the advanced filter is included only in the VIP features, which are not free.

11

4. Analysis
Both of these websites present additional information, such as the number of
series, the number of episodes in them, actors, genres and more. But they are
lacking in information like what video qualities are available and, particularly
for episodes of Czech TV shows, there is no direct link to where to watch
them.

4.3 Selected websites

This section dives into the analysis of the selected websites to determine what
tools or libraries would be required to implement the extraction process for
them.

The following analysis describes the extraction processes as of 20. 05.
2024. The websites may change at any time and thus some processes may be
different after this date.

4.3.1 TV Nova - Nova Voyo

Nova Voyo is a paid service that requires a user account and an active
subscription to watch the available content. Therefore, the information about
the media itself, such as quality or audio languages, will be unavailable
without an active account. However, the list of TV shows and episodes is
freely available.

Programs

Nova Voyo does not provide a single page that displays all available programs
therefore we must obtain it another way. It splits the programs into TV
shows, TV series, Movies, Sports, and Kids.10 Except for Sports each of them
also has a picker for genre. That is a lot of pages to scrape. Luckily, the
website itself uses an API when loading more items on a page, for example
when viewing some genre of available TV shows.

An API call consists of an HTTP GET request to the endpoint https:
//voyo.nova.cz/api/v1, where in the URL path we specify what type of

12

https://voyo.nova.cz/api/v1
https://voyo.nova.cz/api/v1

...................................4.3. Selected websites

information we want to obtain and in the query arguments we specify the
filtering of that information. The response is an HTML content.

For example the URL https://voyo.nova.cz/api/v1/shows/genres?c
ategory=voyo-3&genre_id=16&sort=title__asc&limit=24&page=2&pag
eId=16 obtains the second page of Krimi TV shows sorted by title in the
ascending order. The meaning of the URL query arguments:

. category - Describes what kind of content it is: voyo-3 = TV series,
voyo-4 = TV shows, voyo-5 = Movies, voyo-6 = Kids.. genre_id - We can ignore this argument since we want to obtain all
items in no genre in particular. Omitting this argument causes no issues.. sort - Can be kept to at least have the items somewhat ordered.. limit - Specifies how many items per page we should obtain, it can be
an arbitrary positive integer.. page - Specifies the offset of the data, so for limit=24 and page=0
the request contains data from index from page*limit (inclusive) to
(page+1)*limit (exclusive).. pageId - An important argument and without it the request returns
an error. From observation alone it is paired to the category argument.
Each of the mentioned categories has its pageId: 17 = TV shows, 16 =
TV series, 18 = Movies, 20 = Kids.

The returned HTML content consists of regular div elements with an anchor
(link) and a title of the program. We can extract this information by parsing
the HTML and selecting the elements with CSS selectors. More precisely,
each program item can be obtained by the selector .c-video-box, inside the
item the title by .title (and getting the inner text) and the link to the
program by .title > a (and getting its href attribute). Each program also
has a program ID, which we will actually need later, it can be obtained from
the div element’s data-resource attribute value and by stripping the show.
prefix.

Episodes

To obtain episodes of a TV series, we can reuse the API. The URL path for
this is show/content and its arguments are:

13

https://voyo.nova.cz/api/v1/shows/genres?category=voyo-3&genre_id=16&sort=title__asc&limit=24&page=2&pageId=16
https://voyo.nova.cz/api/v1/shows/genres?category=voyo-3&genre_id=16&sort=title__asc&limit=24&page=2&pageId=16
https://voyo.nova.cz/api/v1/shows/genres?category=voyo-3&genre_id=16&sort=title__asc&limit=24&page=2&pageId=16

4. Analysis
. showId - The program ID we obtained when getting all programs.. type - For TV shows always episodes, since we want to obtain episodes.. season - The ID of a season. This is not a simple number, such as 1 for

season one, but a numerical ID which we first need to obtain somehow.. orderDirection - The ordering of items, either asc (ascending order)
or desc (descending order).. offset - The offset of items. The items returned are from index from
offset (inclusive) to offset+count (exclusive).. count - The number of items.. url - The URL path of the program.

The returned content is also HTML. The CSS selectors to use:

. Episode item: article.. Inside the episode item - URL: .title > a.. Inside the episode item - Title: inner text of .title > a.

As mentioned above, we also require a season ID, not just a simple number.
The ID can be obtained by getting the HTML content of a program’s detail.
More particularly, by calling the API with page/detail-url as the path and
the following arguments:

. layout_parts

- The layout of the detail, always 40-10.. url - The URL path of the program.

In the returned HTML content, we can extract the seasons from the
dropdown menu, again by CSS selectors:

. Season item: #episodesDropdown + .dropdown-menu .dropdown-item.

14

...................................4.3. Selected websites

. In a season item - Season ID: The value of attribute data-season-id.

By getting all the seasons ID and then looping through all offsets of episodes
till the returned HTML content is empty (or if the number of items does
not equal the specified limit), we are able to obtain all the episodes of a TV
series. For movies and documents it is simpler since they do not have episodes.
Therefore no episode loop is required and we can return the program as is.

The episodes have their episode number in the title and the season o
them is already known when obtaining them. Therefore, there is no need for
backpropagation of information from the episode page itself.

Media sources

The video is displayed by an iframe having CSS selector .js-detail-player
.iframe-wrap iframe. This iframe points to a page with a video player
whose settings are directly specified in the HTML in a script element.

The script element contains a JavaScript code but there is actually no need
to parse it as JavaScript. First, we find the text Player.init and then find
the first opening curly brace. From this position we find the closing curly
brace related to the opening curly brace we found earlier, i.e. by counting
opening and closing braces and ignoring them in strings. This way between
the curly braces we actually obtain a JSON string, which we can parse by a
JSON parser.

In this JSON there is an object called tracks in which there are the media
sources specified. It contains the URL of the source, its language and whether
it is protected by DRM and its “DRM token” that is later sent to the license
server.

However, this whole process actually requires the script to be authenticated
first. For this we need a user account with a subscription plan active. Then,
before the first request to the episode’s or movie’s URL, we must authenticate
by doing the authentication process.

15

4. Analysis
Authentication process

The following steps are needed to successfully log in to the account:

. POST request to https://voyo.nova.cz/prihlaseni. Body (application/x-www-form-urlencoded):. email - The user’s email. password - The user’s password. login - The string Přihlásit. _do - The string content186-loginForm-form-submit. Headers:. Referrer - The string "https://voyo.nova.cz/prihlaseni". Result:. Should redirect to the URL https://voyo.nova.cz/muj-pro
fil with valid credentials.. We must save the received PHPSESSID cookie.

For DRM-protected content a device token cookie is required, otherwise
the sources won’t be in the HTML content. We can find this device token
in the cookie votoken, that is returned in the response when logging in. We
can reuse this device token for later since each authentication would create a
new one and the number of active devices is limited to 5.23

4.3.2 TV Nova - Main website

Programs

In the case of the main TV Nova website, it is actually simpler. All the
programs exist on a single page: https://tv.nova.cz/porady Also, they
are already in the HTML content, so there is no need to call any API.

To extract them, we can once again use CSS selectors:

. Each program item: :not(.tab-content) > .c-show-wrapper > .c-show.

16

https://voyo.nova.cz/prihlaseni
https://voyo.nova.cz/prihlaseni
https://voyo.nova.cz/muj-profil
https://voyo.nova.cz/muj-profil
https://tv.nova.cz/porady

...................................4.3. Selected websites

. Inside the program item - URL: The value of attribute href.. Inside the program item - Title: The inner text of element .title.

Episodes

The episodes exist either on the Celé díly page (videa/cele-dily) or on
the Reprízy page (videa/reprizy) in the case of some TV series. The items
on these pages are either static, i.e. there are less than 6 items, or loaded
dynamically by JavaScript, i.e. by doing an HTTP request. In both cases,
the HTML content is structurally the same.

For the dynamic case, we have to send an HTTP request to the URL https:
//tv.nova.cz/api/v1/mixed/more This URL must have the content
URL query argument that can be obtained only from a button for loading
more items. This button is present only in the case there are more than
5 items in total. Therefore, we first send an HTTP request to obtain the
HTML content of the page with static items, i.e. videa/cele-dily or
videa/reprizy, if it exists. The load more button can be obtained by CSS
selector .js-article-load-more .c-button and the URL is in the value of
its attribute data-href. From this URL we can then extract the value of the
content argument.

Further, we then use the value of the content argument in the following
URL https://tv.nova.cz/api/v1/mixed/more?page=0&offset=OFFSET&
content=CONTENT, where:

. page - The page number, must be present, but is actually useless, there-
fore can be the constant 0.. offset - The offset of items, may be negative or positive.. content - The content ID whose items to obtain, i.e. the value of the
content argument.

Some episodes have the episode number in their titles, some do not, because
either the episodes are not being numbered, or they are identified by a date and
time. In either case we have to use backpropagation of data from JSON-LD
on an episode’s page.

17

https://tv.nova.cz/api/v1/mixed/more
https://tv.nova.cz/api/v1/mixed/more
https://tv.nova.cz/api/v1/mixed/more?page=0&offset=OFFSET&content=CONTENT
https://tv.nova.cz/api/v1/mixed/more?page=0&offset=OFFSET&content=CONTENT

4. Analysis
Media sources

There is an iframe on the video’s page that embeds the video player with the
video. It can be selected by the CSS selector iframe[data-video-id]. Its
data-src attribute then points to the URL in whose HTML content there is
the information about media sources. In the content we have to find a script
element that contains the string player:, then get the following opening
curly brace, get the respective closing curly brace and extract the content
between those curly braces. This content is actually a JSON string and when
parsed, on the path lib.source.sources there is the information about
media sources. Each object contains the URL, the type (HLS/DASH) and
DRM protection, if present.

4.3.3 iPrima - Prima+

Programs

The programs are separated into categories of TV shows, Movies and Kids.
Category page displays so called strips that contain the program items. Each
strip has its unique ID using which we can obtain all its items without actually
visiting the page itself. For this we may use the API that the website also
uses.

Since I don’t know any way of listing all strip IDs, I needed to obtain
some manually to actually get the items. From purely observing the website,
reading through the source code and analyzing its networking (HTTP requests
and responses), I found the following strips to include the most items without
actually using tens of them:

. 8ab51da8-1890-4e78-8770-cbee59a3976a - Seriály. 1d0e2451-bcfa-4ecc-a9d7-5d062ad9bf1c - Seriály (Nejnovější). 82bee2e2-32ef-4323-ab1e-5f973bf5f0a6 - Pořady z TV. 8138baa8-c933-4015-b7ea-17ac7a679da4 - Filmy (Doporučené). 3a2c25d8-4384-4945-ba37-ead972fb216d - Filmy (Nejnovější). 7d92a9fa-a958-4d62-9ae9-2e2726c5a348 - Filmy (Nejsledovanější)

18

...................................4.3. Selected websites

The Prima API uses JSON-RPC24 under the hood, its endpoint is https:
//gateway-api.prod.iprima.cz/json-rpc/ JSON-RPC request is just an
HTTP request with specific headers and JSON content. The headers must
include a request ID (id), the JSON-RPC version (jsonrpc) and the method
(method). The ID may be constant, i.e. 1. for our purposes and the version
used by Prima is 2.0. In terms of parameters Prima requires to have at least
the params.profileId parameter set, for our case we can use null. Other
parameters rely on what request is being sent. All responses are in the JSON
format.

For obtaining the programs, the required parameters are:

. method - The string strip.strip.bulkItems.vdm. params. deviceType - The string WEB.. stripIds - Array of the strip IDs.. limit - The number of items per page.. filter - Additional filter for filtering the items.

Important parts of the response has the following format:

. result.data. recommId - The recommendation ID, for profileId=null it should
be the same ID for all requests.. isNextItems - true or false whether there are more items.. items - The items themselves.. id - The ID of the program. title - The title of the program. type - movie for movies and series for TV series.. additionals.webUrl - The URL of the program

We can then loop each strip till isNextItems is false. In this way we
obtain all the programs.

19

https://gateway-api.prod.iprima.cz/json-rpc/
https://gateway-api.prod.iprima.cz/json-rpc/

4. Analysis
Episodes

From the section above we know there are only two types of programs - movies
and TV series. For movies we do not consider episodes. For TV series we use
the API again.

Firstly, we are actually required to be authenticated at this point. Therefore,
we must login before making any other requests. See Authentication process
for more information.

Secondly, we obtain the HTML content of the program’s page. Prima
uses the Nuxt.js framework,25 so on each page that uses it, there is a script
element with the ID __NUXT_DATA__ with JSON-like content, but with a
more special format based on object substitution. How the format is parsed
may be obtained from the source code Prima uses (https://dwl2jqo5jww9m.
cloudfront.net/_nuxt/entry.8c888bb8.js Search for "__NUXT_DATA__"
to see how it works. The code is minimized. Or see it in the source code of
the application.), it is actually a little cumbersome process. However, in the
end we are able to parse the content and obtain a JSON that contains all the
information we need.

The JSON has objects in the root object, only those objects that have the
property title are useful to us. We obtain the first such object and from
title.id obtain the program ID.

Using the program ID we can then get all the seasons by sending the
following RPC request of method vdm.frontend.season.list.hbbtv and
the following parameters:

. _accessToken - The access token of a user.. id - The program ID.. pager. limit - The number of items, we can use the constant 999.. offset - The offset of items, we can use the constant 0.

Important parts of the response are in the format:

20

https://dwl2jqo5jww9m.cloudfront.net/_nuxt/entry.8c888bb8.js
https://dwl2jqo5jww9m.cloudfront.net/_nuxt/entry.8c888bb8.js

...................................4.3. Selected websites

. result.data. id - The season ID.. seasonNumber - The season number.

With the seasons obtained, we can continue obtaining episodes for each of
them. This can be accomplished by sending the following RPC request with
method vdm.frontend.episodes.list.hbbtv and the following parameters:

. _accessToken - The access token of a user.. id - The season ID.. pager. limit - The number of items, we can use the constant 999.. offset - The offset of items, we can use the constant 0.. orderding. field - The string episodeNumber. direction - The string desc

Important parts of the response are in the format:

. result.data.episodes. title - The title of the episode.. additionals. webUrl - The URL of the episode.. pisodeNumber - The episode number.

Media sources

For obtaining the media sources we have to be authenticated. We first obtain
the HTML content of the movie or episode page. Again, in the content there
is Nuxt data we have to parse. From it we get the first object that has the
property content and from it we obtain the video play ID by getting the

21

4. Analysis
value of content.additionals.videoPlayId. Then we send an HTTP GET
request to https://api.play-backend.iprima.cz/api/v1/products/p
lay/ids-PLAY_ID, where PLAY_ID is the play ID. From the JSON response
we can extract all sources by looping all parent objects and from each of
them getting the array streamInfos. Each of the items in this array contains
information about a single source, such as its URL, audio language, type
(HLS/DASH) and information about the DRM protection, if present.

Authentication process

Prima uses OAuth226 to authenticate its users. The login process is as follows:..1. Send HTTP GET request to https://auth.iprima.cz/oauth2/login:..a. Obtain the value of the CSRF token, it is in an input with the name
_csrf_token...2. Send HTTP POST request to https://auth.iprima.cz/oauth2/logi

n:..a. With valid credentials this will redirect to the profile selection page.
Here we may select any profile, so we choose the first one. There
should always be at least one profile available...3. Send HTTP GET request to https://auth.iprima.cz/user/profil

e-select-perform/%%7Bprofile_id%7Ds?continueUrl=/user/logi
n, where PROFILE_ID is the ID of the previously chosen profile...a. With a valid profile ID this will redirect to a URL that in its query

arguments has the code argument. We save its value for the next
step...4. Send HTTP POST request to https://auth.iprima.cz/oauth2/toke

n:..a. Body (application/x-www-form-urlencoded):
(i) scope=openid+email+profile+phone+address+offline_access
(ii) client_id=prima_sso
(iii) grant_type=authorization_code
(iv) code=CODE (the code from the previous step)
(v) redirect_uri=https://auth.iprima.cz/sso/auth-check..b. The response is JSON with access_token and refresh_token
properties. We need just the access token and the whole response
string.

22

https://api.play-backend.iprima.cz/api/v1/products/play/ids-PLAY_ID
https://api.play-backend.iprima.cz/api/v1/products/play/ids-PLAY_ID
https://auth.iprima.cz/oauth2/login
https://auth.iprima.cz/oauth2/login
https://auth.iprima.cz/oauth2/login
https://auth.iprima.cz/user/profile-select-perform/%%7Bprofile_id%7Ds?continueUrl=/user/login
https://auth.iprima.cz/user/profile-select-perform/%%7Bprofile_id%7Ds?continueUrl=/user/login
https://auth.iprima.cz/user/profile-select-perform/%%7Bprofile_id%7Ds?continueUrl=/user/login
https://auth.iprima.cz/oauth2/token
https://auth.iprima.cz/oauth2/token

...................................4.3. Selected websites..5. Send HTTP GET request to https://auth.iprima.cz/oauth2/auth
orize?response_type=token_code&client_id=sso_token&token=T
OKEN, where TOKEN is Base64-encoded string of the response from the
previous step. The JSON being encoded must contain the access token
and the refresh token...a. The response will contain JSON with code property. We save this

value for the next step...6. Send HTTP GET request to https://www.iprima.cz/sso/login?au
th_token_code=CODE, where CODE is the code from the previous step...a. If the response status code is 302, we have been successfully logged

in.

4.3.4 iPrima - Prima ZOOM

Programs

The API for Prima+ cannot be used in this case, since it is solely for Prima+.
However, programs can be obtained by sending an HTTP GET request to
https://prima.iprima.cz/iprima-api/ListWithFilter/TYPE/Content
?filter=all&channel_restriction=zoom, where TYPE is either Series for
TV series or Movies for movies. The response is a JSON object with property
content that has HTML content of the program items. The information may
be extracted by using these CSS selectors:

. Program item - .component--scope--cinematography > a.. Inside the program item - URL - The value of attribute href.. Inside the program item - Title - The value of attribute title.. Inside the program item - ID - Parse the value of attribute data-item-json
as JSON and get the value of the integer property id.

Episodes

First, we send an HTTP GET request to the program’s URL. There we have
to find a content ID for the program. This can be done by looking for a script

23

https://auth.iprima.cz/oauth2/authorize?response_type=token_code&client_id=sso_token&token=TOKEN
https://auth.iprima.cz/oauth2/authorize?response_type=token_code&client_id=sso_token&token=TOKEN
https://auth.iprima.cz/oauth2/authorize?response_type=token_code&client_id=sso_token&token=TOKEN
https://www.iprima.cz/sso/login?auth_token_code=CODE
https://www.iprima.cz/sso/login?auth_token_code=CODE
https://prima.iprima.cz/iprima-api/ListWithFilter/TYPE/Content?filter=all&channel_restriction=zoom
https://prima.iprima.cz/iprima-api/ListWithFilter/TYPE/Content?filter=all&channel_restriction=zoom

4. Analysis
element that contains an instantiation of InfiniteCarousel object, where
in the constructor arguments there is the ID (this can be done using a regular
expression), or by looking for a script element that contains a dataLayer.push
method call, where in its object argument there is the ID. Each of these
methods have also a different so-called snippetType, videos-episode for
the first method and programme_episodes for the second one. The ID may
actually be multiple IDs separated by comma, but that is fine.

After obtaining the ID, we send an HTTP GET request to https://zoom
.iprima.cz/_snippet/TYPE/COUNT/OFFSET/PROGRAM_IDS, where:

. TYPE - The snippet type.. COUNT - The number of items.. OFFSET - The offset of items.. PROGRAM_IDS - The extracted ID.

By looping and changing the offset till the response is not empty, we can
obtain all the episodes.

Media sources

For getting the media sources we need a so-called productId. There are
few methods how to obtain it (at least one should always work):..1. There is an iframe that embeds the video player. It can be obtained by

CSS selector iframe.video-embed. In its src attribute there is an URL
argument of name id, that is the productId...2. Look up all script elements of type text/javascript, in one of them there
should be a variable called productId, its value is the productId...3. Look up all script elements that are not of type text/javascript, in one of
them there should be a variable called videos, its value is the productId.

After obtaining the productId, we send an HTTP GET request to https:
//api.play-backend.iprima.cz/api/v1/products/play/ids-PRODUCT_I
D,where PRODUCT_ID is the productId. For this to work for all availablemedia

24

https://zoom.iprima.cz/_snippet/TYPE/COUNT/OFFSET/PROGRAM_IDS
https://zoom.iprima.cz/_snippet/TYPE/COUNT/OFFSET/PROGRAM_IDS
https://api.play-backend.iprima.cz/api/v1/products/play/ids-PRODUCT_ID
https://api.play-backend.iprima.cz/api/v1/products/play/ids-PRODUCT_ID
https://api.play-backend.iprima.cz/api/v1/products/play/ids-PRODUCT_ID

...................................4.3. Selected websites

we have to be authenticated. In the JSON content of the response of this
request there is an array streamInfos where each of its children objects
represents a single media source, for which there is information about its
URL and audio language.

4.3.5 Česká Televize - iVysílání

API

The iVysílání website uses a GraphQL API. This kind of API works on the
principle of sending a POST request to the API endpoint with a body that
contains the operation name of what we want to get and some additional
arguments, all in the JSON format. The response of such a request is also
in the JSON format. The endpoint of this API for iVysílání website is
https://api.ceskatelevize.cz/graphql/ We will use this API to obtain
all the wanted information.

Programs

The iVysílání website shows programs based on a category, each of which has
an internal ID. There are these categories available (the internal ID in the
parenthesis): Seriály (3976), Filmy (3947), Dokumenty (4003), Zpravodajství
(4124), Sport (4142), Zábava (4068), Historie (4079), Pro děti (4118), Kultura
(4029), Rady a recepty (4055), Společnost (4093), Příroda (4106), Spiritualita
(4191).

For each category we then send a GraphQL request with these arguments:

. operationName - The string GetCategoryById. query - The GraphQL query GetCategoryById (See the section GraphQL
queries, subsection GetCategoryById). variables. categoryId - The internal ID of the category

25

https://api.ceskatelevize.cz/graphql/

4. Analysis
. length - The number of items per page (there is a maximum limit

of 40). offset - The offset of the items. order - The string asc. orderBy - The string alphabet

The response is in the this format:

. data.showFindByGenre. totalCount - The total number of items. items - The items themselves. id - The internal ID of the program. slug - The URL of the program. title - The title of the program

We can iteratively increase the offset till it reaches the total number of
items. This way we obtain all the available programs from the category. Then
just do the whole procedure for each of the categories.

Episodes

To obtain episodes of a TV series, we must first obtain its IDEC, which is
effectively just an internal ID. It may be obtained from the source code of
the program’s page.

The iVysílání website uses Next.js,27 therefore there is a script tag with
id=__NEXT_DATA__, whose content may be parsed with a JSON parser. That
will be useful in extracting the seasons of a TV series, however the easiest
way to obtain just the IDEC is to search for it using the following regular
expression: "idec":"(?<idec>[ˆ"]+)", the IDEC is then in the named
group idec.

To obtain the seasons of a TV series, we must first parse the content of the
Next.js data, as stated in the previous paragraph. The format is as follows:

26

...................................4.3. Selected websites

. props.pageProps.data.show.seasons. child collection. id - The ID of the season

Finally, if the program is a movie, we define that it has just a single season
of ID null.

After we obtain the seasons, we may use the API again to obtain the
episodes. For each of the seasons, we send the following GraphQL request:

. operationName - The string GetEpisodes. query - The GraphQL query GetEpisodes (See the section GraphQL
queries, subsection GetEpisodes). variables. idec - The internal ID of the program. limit - The number of items per page (there is a maximum limit

of 40). offset - The offset of the items. orderBy - The string oldest. seasonId - The season ID

The response is in the this format:

. data.episodesPreviewFind. totalCount - The total number of items. items - The items themselves. id - The internal ID of the episode. title - The title of the program. playable - Whether the episode can be played. This may be
false when the episode or movie is not already or yet available
or there are some licensing restrictions.

27

4. Analysis
In the response there is no URL of the episode, but it may be obtained by

concatenating the program’s URL and the ID of the episode: PROGRAM_URL
+ ID + "/".

Again, as with obtaining the programs, we iteratively increase the offset
till we reach the total count.

Media sources

Given a URL of an episode, a movie, a documentary or a video, we first have
to extract its IDEC. This may be done the same way as extracting the IDEC
of a program when obtaining its episodes. Then we use the VOD API v1.

The VOD API is a simple API where we just send a GET request and
receive a response with information about the available sources of the video.

Given a video with its IDEC, we send a GET request to https://api.ce
skatelevize.cz/video/v1/playlist-vod/v1/stream-data/media/exte
rnal/IDEC, where IDEC is the IDEC of the video. The response is in the
following format:

- streams

- url - The URL of the video stream, mostly to a MPD file.
- subtitles (optional)

- language - The language of the subtitles
- child collection

- files
- child collection

- url - The URL of the subtitles file, often a VTT file.

GraphQL queries

This section explicitly defines all GraphQL queries used when extracting the
wanted data.

28

https://api.ceskatelevize.cz/video/v1/playlist-vod/v1/stream-data/media/external/IDEC
https://api.ceskatelevize.cz/video/v1/playlist-vod/v1/stream-data/media/external/IDEC
https://api.ceskatelevize.cz/video/v1/playlist-vod/v1/stream-data/media/external/IDEC

...................................4.3. Selected websites

GetCategoryById.

query GetCategoryById(
$limit: PaginationAmount!,
$offset: Int!, $categoryId: String!,
$order: OrderByDirection,
$orderBy: CategoryOrderByType

) {
showFindByGenre(

limit: $limit
offset: $offset
categoryId: $categoryId
order: $order
orderBy: $orderBy

) {
items {

...ShowCardFragment
__typename

}
totalCount
__typename

}
}

fragment ShowCardFragment on Show {
id
slug
title
__typename

}

GetEpisodes.

query GetEpisodes(
$idec: String!,
$seasonId: String,
$limit: PaginationAmount!,
$offset: Int!,
$orderBy: EpisodeOrderByType!,
$keyword: String

) {
episodesPreviewFind(

29

4. Analysis
idec: $idec
seasonId: $seasonId
limit: $limit
offset: $offset
orderBy: $orderBy
keyword: $keyword

) {
totalCount
items {

...VideoCardFragment
__typename

}
__typename

}
}

fragment VideoCardFragment on EpisodePreview {
id
playable
title
__typename

}

4.3.6 TV Markíza - Markíza SK

The markiza.sk website is very similar to the main website of TV Nova,
however there are some small differences.

Programs

All programs are available on a single page https://www.markiza.sk/rel
acie and their information exists in the HTML content statically.

To extract the programs, we may use CSS selectors:

. Each program item: :not(.tab-content) > .c-show-wrapper > .c-show.. Inside the program item - URL: The value of attribute href.. Inside the program item - Title: The inner text of element h3.

30

https://www.markiza.sk/relacie
https://www.markiza.sk/relacie

...................................4.3. Selected websites

Episodes

The episodes exist on the Celé epizody page (videa/cele-epizody). The
items on this page are either static, i.e. there are less than 6 items, or loaded
dynamically by JavaScript, i.e. by doing an HTTP request, if there are more
episodes in total. In both cases, the HTML content is structurally the same.

For the dynamic case, we have to send an HTTP request to the URL
https://www.markiza.sk/api/v1/mixed/more?page=0&offset=OFFSET&
content=CONTENT This URL must have the content URL query argument
that can be obtained only from a button for loading more items. This button
is present only in the case there are more than 5 items in total. Therefore,
we first send an HTTP request to obtain the HTML content of the page
with static items, i.e. videa/cele-epizody. The load more button can be
obtained by CSS selector .js-article-load-more .c-button and the URL
is in the value of its attribute data-href. From this URL we can then extract
the value of the content argument.

We then use the value of the content argument in the following URL
https://www.markiza.sk/api/v1/mixed/more?page=0&offset=OFFSET&
content=CONTENT, where:

. page - The page number, must be present, but is actually useless, there-
fore can be the constant 0.. offset - The offset of items, may be negative or positive.. content - The content ID whose items to obtain, i.e. the value of the
content argument.

Some episodes have the episode number in their titles, some do not, because
either the episodes are not being numbered, or they are identified by date and
time. In either case we have to use backpropagation of data from JSON-LD
of media sources back to their respective episodes.

Media sources

There is an iframe on the video’s page that embeds the video player with
the video. It can be selected by the CSS selector iframe[data-video-id].

31

https://www.markiza.sk/api/v1/mixed/more?page=0&offset=OFFSET&content=CONTENT
https://www.markiza.sk/api/v1/mixed/more?page=0&offset=OFFSET&content=CONTENT
https://www.markiza.sk/api/v1/mixed/more?page=0&offset=OFFSET&content=CONTENT
https://www.markiza.sk/api/v1/mixed/more?page=0&offset=OFFSET&content=CONTENT

4. Analysis
Its src attribute then points to the URL in whose HTML content there is
the information about media sources. In the content we have to find a script
element that contains the string player:, then get the following opening
curly brace, get the respective closing curly brace and extract the content
between those curly braces. This content is actually a JSON string and when
parsed, on the path lib.source.sources there is the information about
media sources. Each object contains the URL, the audio language and DRM
protection details, if any protection is present.

4.3.7 TV JOJ - JOJ Play

JOJ Play uses Firebase (Firestore) as its database, thus communication
with the Firestore API may be used. This way we can extract all required
information using just a single method of communication.

Firebase

To communicate with the firebase database, we first need to open the so-called
Firebase channel. It is a simple GET request to the endpoint https://firest
ore.googleapis.com/google.firestore.v1.Firestore/Listen/channel
This request is open for 60 seconds and is then closed, if more communication
is needed, the GET request may be repeated. Subsequently we send POST
requests with specific content with what we want to obtain. In the response
of the GET request there is the content of these POST requests. The
POST request itself just returns a meta information about where in the GET
response’s content the data may be found.

A Firebase channel communication is made of regular requests and re-
sponses. However, there is also a concept of targets. Since there may be
many concurrent requests to the singular endpoint, the responses must be
able to convey what context we are currently in. This is done using so-called
targets, where the basic operations are add and remove. To add a target we
send a addTarget request, to remove a target we send a removeTarget request.
The target may change at any time during the reading of responses from the
Firebase channel. There are also so-called documents that, similar to targets,
may change at any time during the response reading. Documents are not
really targets, they are stored data records.

Each Firebase channel request is made of a URL, headers and a query.

32

https://firestore.googleapis.com/google.firestore.v1.Firestore/Listen/channel
https://firestore.googleapis.com/google.firestore.v1.Firestore/Listen/channel

...................................4.3. Selected websites

Headers are used only when authenticating. The URL is made of the base
URL https://firestore.googleapis.com/google.firestore.v1.Fires
tore/Listen/channel and its query arguments (various arguments are sent
during various operations):

. database - The string projects/tivio-production/databases/(def
ault). Always present.. VER - The version, currently the constant 8. Always present.. gsessionid - The Google session ID. Obtained during authentication.
Present for authenticated requests.. SID - The other session ID. Obtained during authentication. Present for
authenticated requests.. RID - Monotonically increasing integer value for the authentication re-
quest and regular requests. The string rpc for the opening request.. AID - Monotonically increasing integer value. Present for the opening
request and regular requests.. zx - Random string of length 12. Always present.. t - The constant 1. Always present.. CVER - The client version, currently the constant 22. Only sent during
the authentication request.. X-HTTP-Session-Id - The string gsessionid. Only sent during the
authentication request.. $httpHeaders - The headers in HTTP-like format. Only sent during
the authentication request.. CI - The constant 0. Present only for the opening request.. TYPE - The string xmlhttp. Present only for the opening request.

Each Firebase channel request is in the following format:

. count - The number of requests in the body.. ofs - Monotonically increasing integer value.. reqN___data__ - The query string, where N is the index of the query.

33

https://firestore.googleapis.com/google.firestore.v1.Firestore/Listen/channel
https://firestore.googleapis.com/google.firestore.v1.Firestore/Listen/channel

4. Analysis
There are two main types of query strings:

. addTarget. database - The string projects/tivio-production/databases/
(default).. addTarget - The object with target data. targetId - The target ID. Must be present.. query.structuredQuery - The object with the data of a struc-

tured query. Present during regular queries.. query.parent - The parent reference of the query. Present
during regular queries.. documents.documents - The array of document references to
be obtained. Only present during the document query.. removeTarget. database - The string projects/tivio-production/databases/

(default).. removeTarget - The target ID

The structured query is the specific query of what we would like to obtain
and is encoded into a JSON string. It consists of a parent and its data that
may include the following:

. from - From what source to obtain the data.. where - The filter criteria, either composite or simple. Composite Where
clause is just a collection of simple or composite Where clauses and a
logical operation between them, i.e. AND or OR. Simple Where clause
may be either a field to constant value comparison, search in an array
for a constant value and more.. orderBy - The sort criteria, i.e. by what field to sort.. limit - The maximum number of items to return.

After a POST request is sent, the server sends a response to the POST
request with meta information in a specific format, but also sends the actual
data to the open GET request.

34

...................................4.3. Selected websites

The response to the POST request is in the following format: LENGTH
n[1,EVENT_ID,7]
n, where LENGTH is the length of the JSON array, i.e. from the character [
to the character
n, and the EVENT_ID is the event ID which we need to get the actual data.

With the event ID from the POST response we may find the respective
data in the response of the GET request. The format of a single response in
the GET request’s response is as follows: LENGTH
n[EVENT_ID,[CONTENT], where LENGTH is the length of the JSON array, i.e.
from the outer character [to the last character], EVENT_ID is the event ID
from the POST response and CONTENT is the actual content of the requested
data.

Using the Firebase channel, open request, authentication request, regular
requests, target changes, document changes and structured queries we are
able to obtain all the required data we want.

Authentication process

To open the Firebase channel for JOJ Play we have to have an authentication
token first. It is just a simple POST request to the URL https://www.goog
leapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=
AIzaSyB02udgMkNLADkLJ_w5YNBMR2VR1WHfusI with this JSON content:

. tenantId - The string XEpbY0V54AE34rFO7dB2-i9m04. email - The account email address. password - The account password. returnSecureToken - The boolean value true

The response is in the following format:

. idToken - The authentication token

After obtaining the authentication token, we open a new session in the
Firebase channel. We have to send an authentication request with the
following:

35

https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyB02udgMkNLADkLJ_w5YNBMR2VR1WHfusI
https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyB02udgMkNLADkLJ_w5YNBMR2VR1WHfusI
https://www.googleapis.com/identitytoolkit/v3/relyingparty/verifyPassword?key=AIzaSyB02udgMkNLADkLJ_w5YNBMR2VR1WHfusI

4. Analysis
. URL:. https://firestore.googleapis.com/google.firestore.v1.F

irestore/Listen/channel. query arguments:. database - The string projects/tivio-production/databa
ses/(default).. VER - The constant 8.. CVER - The constant 22.. RID - The constant 0.. X-HTTP-Session-Id - The string gsessionid.. $httpHeaders - The string X-Goog-Api-Client:gl-js/fire
/8.10.1Content-Type:text/plainX-Firebase-GMPID:1:10
06888934987:web:60408b1ce75bfb5f8cb7ceAuthorization:
BearerID_TOKEN, where ID_TOKEN is the authentication token.. zx - A random string of length 12.. t - The constant 1.. Structured query. parent - projects/tivio-production/databases/(default)/d

ocuments. from - Collection videos. orderBy - By field __name__, direction Ascending. limit - 1

The response’s body of this request is as follows: [0,["c","SID","",8,1
2,30000]]], where SID is the Session ID we need. And from the response’s
header x-http-session-id we obtain the Google session ID. With the Session
ID and the Google Session ID we may now send regular requests.

Programs

Internally all programs are either a TV show or a movie. To obtain programs
we have to send a two regular requests:

. For TV shows:.We send the following query:

36

https://firestore.googleapis.com/google.firestore.v1.Firestore/Listen/channel
https://firestore.googleapis.com/google.firestore.v1.Firestore/Listen/channel

...................................4.3. Selected websites

. parent - projects/tivio-production/databases/(default
)/documents/organizations/dEpbY0V54AE34rFO7dB2. from - tags.And filter the items by the following:. An item is considered a TV show only if it has the value tvProfiS-
erialId in its metadata. I.e.: There exists such a collection in
fields.metadata.arrayValue.values that has the string tvProfiSe-
rialId on the path mapValue.fields.key.stringValue..And then map them as follows:. URL - https://play.joj.sk/series/SLUG, where SLUG is
the string after the last forward slash in the name property.. Title - The value of the fields.name property.. Reference - The value of the name property.. For movies:.We send the following query:. parent - projects/tivio-production/databases/(default
)/documents. from - videos. where (AND relation)

. contentType = FILM

. externals.tvProfiType IN (movie, film, dokument).And filter the items by the following:. An item is considered a movie only if

. it has the property fields.urlName, and

. it does not have the property fields.originalVideoRef
or have the property fields.originalVideoRef.nullVa
lue, and

. it does not have property fields.externals.mapValue.f
ields.tvProfiSeriesName..And then map them as follows:. URL - https://play.joj.sk/videos/SLUG, where SLUG is

the string after the last forward slash in the name property.. Title - The value of the fields.name property.. Reference - The value of the name property.

Episodes

Given a program and its reference:

37

https://play.joj.sk/series/SLUG
https://play.joj.sk/videos/SLUG

4. Analysis
- If the program is a movie:

- Get its document using the document query.
- And construct the result:

- URL - https://play.joj.sk/player/SLUG, where SLUG is
the string after the last forward slash in the name property.

- Title - The program’s title.

- If the program is a TV show:

- Get its document using the document query and extract seasons
from it. They are present on the path fields.metadata.arrayVa
lue.values in a child collection which has the value of mapValue.
fields.type.stringValue equal to AVAILABLE_SEASONS.

- Loop through the seasons
- Get the episodes of the season using a regular request:

- parent - projects/tivio-production/databases/(defa
ult)/documents

- from - videos
- where (AND relation)

- tags ARRAY_CONTAINS_ANY REF, where REF is the pro-
gram’s reference

- publishedStatus = PUBLISHED
- transcodingStatus = ENCODING_DONE
- seasonNumber = SEASON_NUMBER, where SEASON_NUMBER

is the current season’s number
- And for each episode construct the result:

- URL - https://play.joj.sk/player/SLUG, where SLUG
is the string after the last forward slash in the name property.

- Title - The value of the fields.name property.

Media sources

Given a URL of an episode or a movie, we have to obtain its document. First,
get its slug as the string after the player/ string in its URL path. Then
obtain its document using a regular query:

. parent - projects/tivio-production/databases/(default)/docume
nts. from - videos

38

https://play.joj.sk/player/SLUG
https://play.joj.sk/player/SLUG

...................................4.3. Selected websites

.where. urlName.sk ARRAY_CONTAINS SLUG, where SLUG is the slug of the
episode or movie.. orderBy. By field __name__, direction Ascending. limit - 2

From the document obtain the video ID as the value after the last forward
slash in the name property.

Then send a POST request to the URL https://europe-west3-tivio-p
roduction.cloudfunctions.net/getSourceUrl with the following JSON
content:

. data. id - The video ID. documentType - The string video. capabilities (JSON array). For DASH:
. codec - The string h264
. protocol - The string DASH
. encryption - The string none. For HLS:
. codec - The string h264
. protocol - The string HLS
. encryption - The string none

If the video is monetized an Authentication HTTP header must be spec-
ified with the following value: Bearer ID_TOKEN, where ID_TOKEN is the
authentication token from the authentication process.

In the response to this request the URL of the media source can be found
in the property result.url.

39

https://europe-west3-tivio-production.cloudfunctions.net/getSourceUrl
https://europe-west3-tivio-production.cloudfunctions.net/getSourceUrl

4. Analysis
Conclusion

From the analyses above, it can be concluded that the application requires at
least these functionalities to support the selected websites:..1. Functionality to send HTTPS requests with the support of GET and

POST methods and cookie management...2. Functionality to parse an HTML content, select elements in it by CSS
selectors (or at least by traversing the elements in some other way) and
the textual content of an element and the values of its attributes...3. Functionality to parse a JSON content, traverse its objects, arrays,
properties and items...4. Functionality to do basic string operations and use regular expressions.

The following solution may be chosen to fulfill those requirements:..1. Java 11 has added java.net.HttpClient that can send HTTPS requests...2. Any HTML parsing library may be used, such as Jsoup.28..3. Any JSON parsing library may be used, such as JSON-java.29..4. Java can do basic string functions and supports regular expressions.

4.4 Analysis of web scraping tools

In the previous chapter websites were selected and analyzed to provide the
information about what is required to implement the application. This chapter
focuses on finding out whether there already exist solutions for extracting
information from the web that may be used for this project. A search was
conducted to find them. It targeted third-party services, software or similar
tools to be used externally by the application and Java libraries to be used
internally in the source code of the application.

40

............................. 4.4. Analysis of web scraping tools

4.4.1 Services

A service in this context is any third-party service that provides web-scraping
abilities, such as sending HTTP requests, extracting HTML content, etc.
Ideally, a single service should be used, therefore it should provide all of the
required functionality.

The search for services was conducted on search engines, such as Google,
targeting any web-scraping service available, no special keywords were used
to filter them by specific functions.

List of relevant services that were found:

. Apify - Limited free tier. AvesAPI - Limited free tier. Bright Data - No free tier. Dexi - Free trial. Diffbot - No free trial.Grepsr - No free trial. Import.io - No free trial.Mozenda - Free trial. Nanonets Web Scraping Tool - Free is just a tool for converting website
to text.OctoParse - Free trial.Oxylabs Scraper API - Free trial. ParseHub - Limited free credit, user-friendly interface for selecting what
to scrape. Scrape-It.Cloud - Limited free credit, API. Scrape.do - Free trial only. Scraper API - Limited free credit, API. Scrapestack - Limited free credit. ScrapingBee - Limited free credit

41

https://apify.com
https://avesapi.com/
https://brightdata.com/
https://www.dexi.io/
https://www.diffbot.com/
https://www.grepsr.com/
https://www.import.io/
https://www.mozenda.com/
https://nanonets.com/website-scraper
https://www.octoparse.com/
https://oxylabs.io/products/scraper-api/web
https://www.parsehub.com/
https://scrape-it.cloud/
https://scrape.do/
https://www.scraperapi.com/
https://scrapestack.com/
https://www.scrapingbee.com

4. Analysis
. ScrapingBot - Limited free credit. Scrapingdog - Limited free credit. Smartproxy - No free option.Web Scraper - Free option is for local-only use. ZenRows - Free trial, API

42

https://www.scraping-bot.io/
https://www.scrapingdog.com/
https://smartproxy.com/
https://webscraper.io/
https://www.zenrows.com/

.. 4.4. Analysis of web scraping tools

Web interface extractors
Name Free trialFree credit Paid Supported websites

Apify Yes (Free monthly
credit)

Yes ($49/m - Starter) Any website

AvesAPI Yes (First time credit) Yes ($50/m - Starter) Any website
Bright Data Yes (Free trial) Yes ($3.40/CPM - cost

per mil.)
Any website

Dexi Yes (Free trial) Unspecified Any website
Diffbot No Yes ($899/m (Plus) Any website
Grepsr No Yes ($299/m - Special

offer, then $599/m)
Any website

Import.io No Yes ($399/m) Any website
Mozenda Yes (Free trial) Unspecified Any website
Nanonets Web Scraping
Tool

Yes (Free tool) Yes ($499/m - Pro) Any website

OctoParse Yes (Free plan) Yes ($75/m - Standard) Any website
Oxylabs Scraper API Yes (Free trial) Yes ($50/m - Micro) Any website
ParseHub Yes (Free plan) Yes ($189/m - Stan-

dard)
Any website

Scrape-It.Cloud No Yes ($29/m - Individ-
ual)

Any website

Scrape.do No Yes ($29/m - Hobby) Any website
Scraper API No Yes ($49/m - Hobby) Any website
Scrapestack Yes (Free plan) Yes ($19.99/m - Basic) Any website
ScrapingBee No Yes ($49/m - Freelance) Any website
ScrapingBot Yes (Free plan) Yes (€39/m - Freelance) Any website
Scrapingdog No Yes ($30/m - Lite) Any website
Smartproxy Yes (Free plan) Yes ($2/1k requests -

25k requests plan)
Any website

Web Scraper Yes (Browser extension) Yes ($50/m - Project) Any website
ZenRows No Yes ($49/m - Devel-

oper)
Any website

Table 4.1: Summary of analysis of services

43

4. Analysis
4.4.2 Software

A software in this context is any application that may be run alongside the
application as an external process that provides web-scraping functionality.
Ideally, only a single software should be used to not have to include many
software alongside the application.

The search for software was conducted on search engines, such as Google,
targeting any software that provides web-scraping abilities. No special key-
words were used to further filter them by specific functionality.

List of relevant software that were found:

. Apache Nutch - Java-based web crawler. Heritrix - Java-based web crawler. Norconex HTTP Collector - Web crawler. StormCrawler - Java-based web crawler.WebSPHINX - Customizable web crawler

44

https://nutch.apache.org/
https://github.com/internetarchive/heritrix3
https://github.com/Norconex/collector-http
https://stormcrawler.net/
https://www.cs.cmu.edu/~rcm/websphinx/

.. 4.4. Analysis of web scraping tools

Software extractors
Name Programming

language
Supports

command line
Documentation

available
Output format

Apache Nutch Java Yes Yes Segments and
Database*

Heritrix Java No (Web inter-
face)

Yes In web Interface

Norconex HTTP
Collector

Java Yes Yes XML files

StormCrawler Java Yes Yes Database
WebSPHINX Java No (GUI) Yes HTML files

Table 4.2: Summary of analysis of software

45

4. Analysis
* Apache Nutch creates so-called segments that contain the actual content

of the pages. It also uses a database to store the URLs.

4.4.3 Libraries

A library in this context is any Java library that may be used in the source code
of the application to provide web-scraping functionality. The functionalities
of a single library is often limited to a single function, such as HTML parsing
or JSON parsing, therefore multiple libraries may be used.

The search for software was conducted on search engines, such as Google,
targeting any Java libraries that are often used by others for web-scraping.
Keywords like HTML parsing, JSON parsing, web scraping, etc. were used.

List of relevant libraries that were found:

.Gecco - Java-based web crawler library. Htmleasy - Java-based HTML parsing library. HtmlUnit - Java-based framework, GUI-less browser. Jaunt - Java-based web scraping library. Jauntium - Java-based library for web scraping. Jsoup - Java-based HTML parser. Selenium - Java-based library for extracting data and automation.Web-Harvest - Java-based web extraction library.WebMagic - Java-based web crawler framework

46

https://github.com/xtuhcy/gecco
https://github.com/voodoodyne/htmleasy
https://htmlunit.sourceforge.io/
https://jaunt-api.com/
https://jauntium.com/
https://jsoup.org/
https://www.selenium.dev/
https://sourceforge.net/projects/web-harvest/
https://webmagic.io/en/

.. 4.4. Analysis of web scraping tools

Library extractors
Name Static/Dynamic Documentation available

Gecco Static (HTML Parser) No (Only Quick start)
Htmleasy Static (HTML Parser) No (Only Usage with examples)
HtmlUnit Dynamic (Headless browser) Yes
Jaunt Dynamic (Headless browser,

based on Jauntium)
Yes

Jauntium Dynamic (Headless browser) Yes
Jsoup Static (HTML Parser) Yes
Selenium Dynamic (Headless browser) Yes
Web-Harvest Static (HTML Parser) No (Only Usage with examples)
WebMagic Static (HTML Parser) Yes

Table 4.3: Summary of analysis of libraries

47

4. Analysis
4.4.4 Conclusion

There exist many extractors or web scrapers for extracting information from
the web. Some provide extracting as a service through a web interface or
by an API, some provide extraction as an application with the user defining
a configuration file that is then used by the application, and the others are
targeted for developers in the form of libraries to be used in a custom software.

No service was found that is free and since the services are priced per
request, it would cost money to use them. Therefore they are not suitable
for this project. Moreover, introducing additional requests might also cause
unnecessary delays.

Many extractors exist in the form of an application. They have the ad-
vantage over services that they are local, therefore no additional requests
to a third party API is required. They may even provide multiple required
functionalities at once. However, none of the software found supports function-
alities such as communication with a Firebase database that would simplify
some things. Therefore more than one would have to be chosen to do all
of the required functionality. This would mean including multiple software
with the application. Moreover, working with additional processes is more
resource intensive and requires creation of configuration files or passage of
arguments to the binary file of the software.

Libraries often provide a single functionality, such as just HTML parsing,
therefore multiple libraries might have to be used by the application. They
are used directly in the source code, removing the need to communicate with
an external process or handling external files, etc.

In conclusion, libraries provide a lightweight internal solution to the required
functionalities. No need to handle any external APIs using HTTP requests,
no need to handle communication between processes or creation and deletion
of external files (temporarily) created by an external application. Therefore
using libraries is the preferred method and will be chosen for this project.

48

.............................4.5. Data models for media content

4.5 Data models for media content

In this chapter we look at what data the selected websites publicly present
on different pages, such as the page of a program or an episode. From this,
we may be able to decide what data model to use in the application.

4.5.1 Selected websites

On each of the selected websites various media-related pages were examined
to look for data they provide about either a program, an episode or an actor
(if available).

4.5.2 TV Nova

Both the main website and Voyo website use Linking data in the JSON-LD
format with schema from Schema.org.

TV Show

{
"@context": "http://schema.org",
"@type": "TVSeries",
"name": "TV_SHOW_NAME",
"headline": "TV_SHOW_SHORT_DESCRIPTION",
"url": "TV_SHOW_URL",
"thumbnailUrl": "THUMBNAIL_IMAGE_URL",
"image": {

"@type": "ImageObject",
"url": "IMAGE_URL",
"width": IMAGE_WIDTH,
"height": IMAGE_HEIGHT

},
"numberOfEpisodes": NUMBER_OF_EPISODES,
"description": "TV_SHOW_DESCRIPTION",
"countryOfOrigin": {

49

4. Analysis
"@type": "Country",
"name": "COUNTRY_NAME"

},
"actor": [

{
"@type": "Person",
"name": "ACTOR_NAME"

},
// ... Other actors

]
}

Episode

{
"@context": "http://schema.org",
"@type": "TVEpisode",
"name": "EPISODE_NAME",
"description": "EPISODE_DESCRIPTION",
"url": "EPISODE_URL",
"thumbnailUrl": "EPISODE_THUMBNAIL_IMAGE_URL",
"image": {

"@type": "ImageObject",
"url": "IMAGE_URL",
"width": IMAGE_WIDTH,
"height’’: IMAGE_HEIGHT

},
"episodeNumber": EPISODE_NUMBER,
"partOfSeason": {

"@type": "TVSeason",
"name": "SEASON_NAME",
"seasonNumber": SEASON_NUMBER,
"numberOfEpisodes": SEASON_TOTAL_NUMBER_OF_EPISODES

},
"partOfSeries": {

"@type": "TVSeries",
"name": "TV_SHOW_NAME",
"url": "TV_SHOW_URL",
"numberOfEpisodes": NUMBER_OF_EPISODES,
"thumbnailUrl": "THUMBNAIL_IMAGE_URL",
"image": {

"@type": "ImageObject",
"url": "IMAGE_URL",

50

.............................4.5. Data models for media content

"width": IMAGE_WIDTH,
"height": IMAGE_HEIGHT

},
"description": "TV_SHOW_DESCRIPTION",

},
"video": {

"@type": "VideoObject",
"name": "EPISODE_NAME",
"description": "EPISODE_DESCRIPTION",
"thumbnailUrl": "EPISODE_THUMBNAIL_IMAGE_URL",
"uploadDate": "UPLOAD_DATE_ISO_FORMAT",
"url": "EPISODE_URL",
"width": EPISODE_THUMBNAIL_IMAGE_WIDTH,
"height": EPISODE_THUMBNAIL_IMAGE_HEIGHT,
"duration": "VIDEO_DURATION_ISO_FORMAT",
"embedUrl": "VIDEO_EMBED_URL"

}
}

Actor

{
"@context": "http://schema.org",
"@type": "Person",
"name": "ACTOR_NAME",
"description": "ACTOR_DESCRIPTION",
"image": {

"@type": "ImageObject",
"url": "ACTOR_IMAGE_URL",
"width": ACTOR_IMAGE_WIDTH

}
}

4.5.3 iPrima

Both Prima+ website and Prima ZOOM website use Linking data in the
JSON-LD format with schema from Schema.org.

51

4. Analysis
TV Show

{
"@context": "https://schema.org",
"@type": "TVSeries",
"url": "TV_SHOW_URL",
"name": "TV_SHOW_NAME",
"description": "TV_SHOW_DESCRIPTION",
"dateCreated": "TV_SHOW_YEAR",
"genre": [

"GENRE_NAME",
// ... Other genres

],
"image": "TV_SHOW_IMAGE_URL",
"countryOfOrigin": [

"COUNTRY_ABBREVIATION",
// ... Other countries

],
"containsSeason": [

{
"@type": "TVSeason",
"name": "SEASON_NAME",
"episode": [

{
"@type": "TVEpisode",
"name": "EPISODE_NAME",
"datePublished": "EPISODE_PUBLISH_DATE",
"episodeNumber": EPISODE_NUMBER

},
// ... Other episodes

]
},
// ... Other seasons

]
}

Episode

{
"@context": "https://schema.org",
"@type": "TVEpisode",
"url": "EPISODE_URL",

52

.............................4.5. Data models for media content

"name": "EPISODE_NAME",
"image": "EPISODE_IMAGE_URL",
"description": "EPISODE_DESCRIPTION",
"episodeNumber": EPISODE_NUMBER,
"partOfSeason": {

"@type": "TVSeason",
"name": "SEASON_NAME"

},
"partOfSeries": {

"@type": "TVSeries",
"name": "TV_SHOW_NAME"

},
"datePublished": "EPISODE_PUBLISH_DATE",
"genre": [

"GENRE_NAME",
// ... Other genres

],
"countryOfOrigin": [

"COUNTRY_ABBREVIATION",
// ... Other countries

],
"duration": "EPISODE_DURATION_ISO_FORMAT"

}

4.5.4 Other websites

It may be useful to also look to other websites than those that were selected.
In this section a foreign websites will be analyzed to see how they publicly
present the data about programs and episodes.

Netflix

Netflix also provides Linked Data in the source code of pages of TV shows
and movies. The following paragraphs show the structure of the data. It can
be seen that they are very similar to those on the Czech websites.

53

4. Analysis
TV Show.

{
"@context": "http://schema.org",
"@type": "TVSeries",
"url": "TV_SHOW_URL",
"contentRating": "TV_SHOW_RATING",
"name": "TV_SHOW_TITLE",
"description": "TV_SHOW_DESCRIPTION",
"genre": "TV_SHOW_GENRE",
"image": "TV_SHOW_THUMBNAIL_IMAGE",
"dateCreated": "TV_SHOW_CREATED_DATE",
"actors": [

{
"@type": "Person",
"name": "ACTOR_NAME"

},
// ... Other actors

],
"creator": [

{
"@type": "Person",
"name": "CREATOR_NAME"

},
// ... Other creators

],
"numberOfSeasons": TV_SHOW_SEASONS_COUNT,
"startDate": "TV_SHOW_START_DATE"

}

Movie.

{
"@context": "http://schema.org",
"@type": "Movie",
"url": "MOVIE_URL",
"contentRating": "CONTENT_RATING",
"name": "MOVIE_TITLE",
"description": "MOVIE_DESCRIPTION",
"genre": "MOVIE_GENRE",
"image": "MOVIE_THUMBNAIL_URL",
"dateCreated": "MOVIE_CREATED_DATE",

54

.............................4.5. Data models for media content

"actors": [
{

"@type": "Person",
"name": "ACTOR_NAME"

},
// ... Other actors

],
"director": [

{
"@type": "Person",
"name": "DIRECTOR_NAME"

},
// ... Other directors

]
}

55

4. Analysis
4.5.5 Schema.org

This section deals with schema of entities for media content. The structure
and information were obtained from https://schema.org/. It does not list
all possible properties but only those that were deemed important for this
project.

TVSeries

Represents a TV show with seasons and episodes.

Property name Type Description
countryOfOrigin Country The country of ori-

gin of the series.
numberOfSeasons Integer The number of sea-

sons in the series.
startDate Date or DateTime The start date and

time of the series
(in ISO 8601 date
format).

endDate Date or DateTime The end date and
time of the series
(in ISO 8601 date
format).

actor Person or List of
Person

An actor or actors
in the series.

genre Text or URL Genre of the series.
image ImageObject or

URL
A thumbnail image
of the series.

description Text or TextObject A description of
the series.

name Text The title of the se-
ries.

url URL The URL of the se-
ries.

56

https://schema.org/

.............................4.5. Data models for media content

TVSeason

Represents a season of a TV show.

Property name Type Description
numberOfEpisodes Integer The number of

episodes in the
season.

seasonNumber Integer or Text Position of the sea-
son within an or-
dered group of sea-
sons.

partOfSeries CreativeWorkSeries The series to which
the season belongs.

startDate Date or DateTime The start date and
time of the season
(in ISO 8601 date
format).

endDate Date or DateTime The end date and
time of the season
(in ISO 8601 date
format).

image ImageObject or
URL

A thumbnail image
of the season.

description Text or TextObject A description of
the season.

name Text The title of the sea-
son.

url URL The URL of the
season.

57

4. Analysis
Episode

Represents an episode in a season of a TV show.

Property name Type Description
episodeNumber Integer or Text Position of the

episode within an
ordered group of
episodes.

duration Duration The duration of the
episode in ISO 8601
date format.

partOfSeason CreativeWorkSeason The season to
which this episode
belongs.

partOfSeries CreativeWorkSeries The series to which
this episode be-
longs.

datePublished Date or DateTime Date of first broad-
cast/publication.

image ImageObject or
URL

A thumbnail image
of the season.

description Text or TextObject A description of
the season.

name Text The title of the sea-
son.

url URL The URL of the
season.

58

.............................4.5. Data models for media content

Movie

Represents a movie. Differs from TV series in that there are no seasons.

Property name Type Description
countryOfOrigin Country The country of ori-

gin of the movie.
duration Duration The duration of the

movie in ISO 8601
date format.

datePublished Date or DateTime Date of first broad-
cast/publication.

actor Person or List of
Person

An actor or actors
in the movie.

genre Text or URL Genre of the movie.
image ImageObject or

URL
A thumbnail image
of the movie.

description Text or TextObject A description of
the movie.

name Text The title of the
movie.

url URL The URL of the
movie.

Person

In the context of a TV show or movie it represents an actor.

Property name Type Description
name Text The name of the ac-

tor.

59

4. Analysis
4.5.6 Summary

The selected websites and major websites, such as Netflix, use JSON-LD
with schema from Schema.org, therefore it should be sufficient to also use the
schema from Schema.org in this application.

In the following sections all important properties that may be used by the
application are presented.

60

.............................4.5. Data models for media content

TVSeries

Property
name

Type Description Optional

countryOfOrigin Country The country of
origin of the TV
show.

Yes

numberOfSeasons Integer The number of
seasons in the
TV show.

No

startDate Date or Date-
Time

The start date
and time of the
TV show (in ISO
8601 date for-
mat).

Yes

endDate Date or Date-
Time

The end date
and time of the
TV show (in ISO
8601 date for-
mat).

Yes

actor List of Actor An actor or ac-
tors in the TV
show.

Yes

genre Text or URL Genre of the TV
show.

Yes

image URL A thumbnail im-
age of the TV
show.

No

description Text A description of
the TV show.

Yes

name Text The title of the
TV show.

No

url URL The URL of the
TV show.

No

season List of TVSea-
son

The list of avail-
able seasons of
the TV show.

No

61

4. Analysis
TVSeason

Property
name

Type Description Optional

numberOfEpisodes Integer The number of
episodes in the
season.

No

seasonNumber Integer or Text Position of the
season within an
ordered group of
seasons.

No

startDate Date or Date-
Time

The start date
and time of the
season (in ISO
8601 date for-
mat).

Yes

endDate Date or Date-
Time

The end date
and time of the
season (in ISO
8601 date for-
mat).

Yes

image URL A thumbnail im-
age of the sea-
son.

Yes

description Text A description of
the season.

Yes

name Text The title of the
season.

No

url URL The URL of the
season.

No

62

.............................4.5. Data models for media content

Movie

Property
name

Type Description Optional

countryOfOrigin Country The country of
origin of the
movie.

Yes

duration Duration The duration of
the movie in ISO
8601 date for-
mat.

Yes

datePublished Date or Date-
Time

Date of first
broadcast/pub-
lication.

Yes

actor List of Actor An actor or
actors in the
movie.

Yes

genre Text or URL Genre of the
movie.

Yes

image URL A thumbnail im-
age of the movie.

Yes

description Text A description of
the movie.

Yes

name Text The title of the
movie.

No

url URL The URL of the
movie.

No

63

4. Analysis
Episode

Property
name

Type Description Optional

episodeNumber Integer or Text Position of
the episode
within an or-
dered group of
episodes.

No

duration Duration The duration of
the episode in
ISO 8601 date
format.

Yes

season TVSeason The season
to which this
episode belongs.

No

series TVShow The series to
which this
episode belongs.

No

datePublished Date or Date-
Time

Date of first
broadcast/pub-
lication.

Yes

image URL A thumbnail im-
age of the sea-
son.

Yes

description Text A description of
the season.

Yes

name Text The title of the
season.

No

url URL The URL of the
season.

No

Person

Property
name

Type Description Optional

name Text The name of the
person.

No

64

.............................4.5. Data models for media content

65

66

Chapter 5

Application design

5.1 Software requirements

Software requirements are separated into functional and non-functional re-
quirements in the following sections. Requirements, either functional or
non-functional, are grouped by a specific category or area in the application.
Each group has a unique identification in the form a prefix FR, for functional
requirement, or NFR, for non-functional requirement, and a number of the
group. Each individual requirement is then prioritized using the MoSCoW
method.30

5.1.1 MoSCoW method

The MoSCow method is a prioritization technique used in project management
or software development to provide a common understanding in terms of
priority of each requirement. It consists of the following priorities:

.M (Must have). Requirements with this priority are critical to the software. In the
end, if the software is delivered without them, it may not be usable
at all.

67

5. Application design
. S (Should have). Requirements with this priority are important but not deemed

necessary. The requirements may be of the same importance as the
Must have ones, but are not time-critical..C (Could have). Requirements with this priority are desirable but also not neces-
sary. The software is fine to be delivered without them, but user
experience may suffer due to the lack of them..W (Won’t have). Requirements with this priority are the least-critical ones. They
may never be delivered in the software and are agreed to be not
appropriate at the time of writing of the requirements.

5.1.2 Users

For the application there are three types of users - casual (regular) user, API
user and host user. The casual user is a normal visitor of the frontend of
the application, they browse the pages of the application to read the content.
The API user is any entity that uses the API of the application, such that
it calls the various endpoints and reads the responses. The host user is the
user that provides the application as a self-hosted service for other types of
users to use. The host user is also able to extend the application however
they want, for example by adding support for another website that other host
users do not provide.

5.1.3 Functional requirements

This section mentions all functional requirements that should be taken into
account while implementing the application.

FR1: Frontend - Programs listing

. [M] FR1.1: The listing displays an item for each TV show and movie.. [M] FR1.2: The listing displays items using pagination.

68

.................................5.1. Software requirements

.There exist many TV shows and movies. Loading them all on a
single page will cause slow page loads. Thus, either using a normal
pagination with pages, or infinite-scrolling, is a must to provide
better user experience.. [M] FR1.3: Item displays an image or a placeholder for each TV show

and movie.. [M] FR1.4: Item displays a title and type, either TV show or movie,
for each TV show and movie.. [M] FR1.5: The listing provides a search input.. [M] FR1.6: The listing provides filter controls.. Filter controls may for example include genre selector, published

year selector, and more.. [S] FR1.7: The listing displays items in a more space-efficient manner.. For viewports where horizontal space is not a problem, such as the
desktop viewport, the use of a grid or other form of container where
there are multiple items on a single row, will result in better user
experience.. [C] FR1.8: Item displays additional information about the TV show or

movie..The presence of information such as the published year or genre
may provide better ability to distinguish between multiple entities
with the same name, or just provide better user experience.

FR2: Frontend - TV show detail

. [M] FR2.1: System displays the title of the TV show.. [M] FR2.2: System displays the thumbnail or placeholder of the TV
show.. [M] FR2.3: System displays the description of the TV show.. [M] FR2.4: System displays for TV shows their seasons and episodes.. [S] FR2.5: System displays additional information about the TV show..Additional information may include the published year, genre, actors

and more.. [C] FR2.6: System displays the latest episode as highlighted.

69

5. Application design
FR3: Frontend - Movie detail

. [M] FR3.1: System displays the title of the movie.. [M] FR3.2: System displays the thumbnail or placeholder of the movie.. [M] FR3.3: System displays the description of the movie.. [M] FR3.4: System displays links to the actual movie page.. Links that redirect the user to the actual page on the website from
which the movie was extracted. This page commonly contains a
video player. However, since some movies may not be available for
free, it might require authentication in the form of logging in using
user credentials.. [M] FR3.5: System displays available media source qualities.. For example, it may be displayed as a list of tags with contents like
720p, 1080p, etc.. [S] FR3.6: System displays available subtitles.. For example, it may be displayed as a list of tags with contents like
CS, SK, EN, etc.. [S] FR3.7: System displays additional information about the movie..Additional information may include the published year, genre, actors
and more.

FR4: Frontend - Episode detail

. [M] FR4.1: System displays the title of the episode.. [M] FR4.2: System displays the season and episode numberof the
episode.. [M] FR4.3: System displays links to the actual episode page.. Links that redirect the user to the actual page on the website from

which the episode was extracted. This page commonly contains a
video player. However, since some episodes may not be available
for free, it might require authentication in the form of logging in
using user credentials.. [M] FR4.4: System displays available media source qualities.

70

.................................5.1. Software requirements

. For example, it may be displayed as a list of tags with contents like
720p, 1080p, etc.. [S] FR4.5: System displays available subtitles.. For example, it may be displayed as a list of tags with contents like
CS, SK, EN, etc.. [S] FR4.6: System displays the description of the episode.. [S] FR4.7: System displays additional information about the movie..Additional information may include the release date, genre, actors
and more.

FR5: Frontend - Registration

. [C] FR5.1: System displays registration form.. [C] FR5.2: System displays error messages for invalid registration
attempts.. [C] FR5.3: System displays a success message for a successful registra-
tion attempt.. [W] FR5.4: Users may register using a third-party account.. Such as Google, Apple, Facebook, etc.

FR6: Frontend - Login

. [C] FR6.1: System displays login form.. [C] FR6.2: System displays error messages for failed login attempts.. [C] FR6.3: For a successful login attempt the user is redirected to the
account dashboard.. [W] FR6.4: Users may login using a third-party account.. Such as Google, Apple, Facebook, etc.

FR7: Frontend - Account dashboard

71

5. Application design
. [C] FR7.1: Regular user and host user can change its password. [C] FR7.2: System displays account preferences form.. [C] FR7.3: System displays a logout button.. [C] FR7.4: System allows changing of preferred TV shows and movies.. Preferred TV shows and movies will be displayed in the listings in

the top positions.. [C] FR7.5: System allows changing of email notifications.. Email notifications are sent in cases, such as when a new episode of
a TV show is available.

FR8: API

. [M] FR8.1: The API provides information about extracted TV shows
and movies.. [M] FR8.2: The API provides information about extracted episodes of
TV shows.. [M] FR8.3: The API provides information about media sources of
episodes.. Information such as quality, format, whether they are protected

using DRM (Digital Rights Management), etc.. [S] FR8.4: The API provides information about subtitles of episodes.. [M] FR8.5: The API uses predefined schema for entities..This schema uses common schema, such as from schema.org, for
specific entities, such as TVSeries, Movie, etc. Each entity has its
own properties which are then shown in the API.. [M] FR8.6: The API uses REST-like URIs for entities to display

information.. [S] FR8.7: The API is functionally separated from the frontend.. If the frontend is not functional (offline), the API is still functional
(online) and vice-versa.

FR9: Extractor

72

.................................5.1. Software requirements

. [M] FR9.1: The extractor works independently of the frontend and the
API.. [M] FR9.2: The extractor crawls the selected websites for TV shows
and movies.. [M] FR9.3: The extractor crawls the TV shows for their seasons and
episodes.. [M] FR9.4: The extractor crawls the movies and episodes for informa-
tion about available media sources.. [M] FR9.5: The extractor periodically updates the extracted informa-
tion..The extractor runs periodically and either adds new entities and

information, or updates an existing one.. [C] FR9.6: The extractor does not remove previously present but now
absent information.. Not removing currently absent information is better in terms of

already existing URIs in the API not being removed, thus always
existing. Marking the entity as removed should be sufficient. The
downside may be that due to this approach the amount of data in
the database only ever grows. Also, there may be an issue with
normalization of data and merging of two or more entities that are
semantically equivalent to each other.. [M] FR9.7: The extractor is extensible for new websites.. Experienced users may be able to add a new website that will be
then extracted using a module or plugin that is loaded upon starting
the extractor. This should allow extraction from a simple website
with static content to a more complex one that requires API calls
for example.. [C] FR9.8: The extractor notifies the other parts of the system of

failure.. Since websites may change, that website extractor may stop working.
In that case at least a notification that the extraction process failed
for that website should be conveyed to the other parts of the system.. [M] FR9.9: The extractor does not stop its work when a failure of

extraction occurs..When a specific extractor fails to extract information from its
website, for example when extracting episodes from a TV show
page, it should not stop processing other TV shows, movies or other
websites.

73

5. Application design
FR10: Frontend - Movie detail, Episode detail, TV show detail

. [S] FR10.1: System contains JSON-LD snippet.. JSON-LD snippet is a code snippet in the script HTML tag that
contains structured data for search engines, such as Google (for
more information, see: https://developers.google.com/search
/docs/appearance/structured-data/intro-structured-data)

5.1.4 Non-functional requirements

This section mentions all non-functional requirements that should be taken
into account while implementing the application.

Accessibility

. [S] NFR1: The website is navigable using a keyboard.

Localization

. [M] NFR2: The website is localized in the English language.. [S] NFR3: The website is localized in the Czech language.

Compatibility

. [M] NFR4: The website works on the latest versions of major browsers.. Latest versions of major browsers (as of Q1/2024) - Google Chrome
(Windows), Mozilla Firefox (Windows), Google Chrome (Android),
and optionally Safari (Mac OS) and Safari (iOS).. [M] NFR5: The website displays correctly on devices with width 320px

or bigger.

74

https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data
https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data

.................................5.1. Software requirements

.Most mobiles are of width 320px or bigger.31

Maintainability

. [M] NFR6: The frontend is tested using user testing.

. Should be tested on at least 3 users.

. [S] NFR7: The application provides an extension mechanism to add
extractions of new websites.

5.1.5 Model

The application should use various entities to provide the required functional-
ity:

. For representing data there are TVShow, Movie, TVSeason and Episode.
Each consists of important attributes that are specified in the summary
of the analysis section. Since there are more than a few attributes, a
builder may be used when constructing these entities. This should result
in a cleaner approach because some attributes are optional or may not
be available at all.

. For the extraction process itself there are Plugin, Extractor and Crawler.
Plugin is conceptually any collection of Java classes that may be dy-
namically loaded at startup of the application and provide instances of
Extractors. These Extractors are registered to an ExtractorRegistry and
are later used by the Crawler to extract data from websites.

. For additional functionality there is a User entity that apart from storing
the email address and password of an application’s user, it also stores
their preferences and most importantly notifications. These notifications
are then used by a Notifier to notify the user to their email address about
various events, such as a new episode of their subscribed TV show.

75

5. Application design

Figure 5.1: Data model diagram: Program, Movie, TVShow, TVSeason, Episode
are from schema.org

76

.................................5.1. Software requirements

Figure 5.2: Class model diagram

5.1.6 Use cases

In this section diagrams of use cases can be found. They represent common
actions that may be carried out in the application either as a casual user or a
host user.

77

5. Application design
Register a new account

Figure 5.3: Use case: Register a new account

Find a program by name

Figure 5.4: Use case: Find a program by name

78

.................................5.1. Software requirements

Find a program by properties

Figure 5.5: Use case: Find a program by properties

Show episodes of a TV series

Figure 5.6: Use case: Show episodes of a TV series

79

5. Application design
Show properties of an episode

Figure 5.7: Use case: Show properties of an episode

Visit the official webpage of a program

Figure 5.8: Use case: Visit the official webpage of a program

80

.................................5.1. Software requirements

Enable email notifications for a TV series

Figure 5.9: Use case: Enable email notifications for a TV series

Disable email notifications for a TV series

Figure 5.10: Use case: Disable email notifications for a TV series

81

5. Application design
Add support for a new website

Figure 5.11: Use case: Add support for a new website

Remove support for a website

Figure 5.12: Use case: Remove support for a website

82

.................................5.1. Software requirements

5.1.7 Graphical user interface

The application’s graphical user interface will be primarily used for browsing
programs and information about them. Therefore, it should most importantly
consist of the following pages:

.A page that displays a list of all programs in some way with search and
filtering options..A page that displays information about a TV show, i.e. its details and
list of its seasons and their episodes..A page that displays information about a movie or an episode, e.g.
available qualities, languages, subtitles, etc.

Additionally, since the application may provide a way of notifying users
of some events, such a new episode of a program, it may also provide the
following pages:

.A registration page with a registration form..A login page with a login form..An account dashboard page with account settings, such as a form for
managing notifications.

For the general layout and the visual design of the pages, we can look at
the selected websites themselves. They all share a similar layout and look, so
it probably works well.

Programs listing page

As seen on the Nova Voyo and Prima+ websites, we can display the items
beside each other with an image of the program and its title. Since it should
be a proper listing with pagination or infinite scrolling, we can display the
items in a grid, instead of a carousel as seen on the mentioned websites. This

83

5. Application design
grid should probably be displayed below a search and filter form, that itself
is placed below the website title.

The search and filter form may have two variants, a simple one and an
advanced one. The simple one displays just the search input field, a search
button and a button to display the advanced variant. The advanced variant
should display advanced filtering options underneath the search input field,
such as an input for a year or year range, genre and actor input, etc. The
switch from a simple variant to the advanced one should only display the
additional fields and hide them in reverse.

The items in the grid may be dynamically updated when a change happens
in the form, or may be updated only after clicking on the Search button.

Clicking on an item in the grid should show the details of the program to
the user. Additional information may be revealed when hovering over the
item with a mouse or focusing it using a keyboard.

TV show detail page

A TV show is a special case of program, since it does not have any media-
related information, such quality or subtitles, but consists of TV series
that themselves have episodes, which have the media-related information.
Therefore, the TV show detail page should display the general program
information (image, title, year, genre, etc.) about the program with a listing
of its TV shows. Either as a list or a grid. Each season item in a list or a
grid should consist of its season number, additionally its title, if it has any,
and by selecting the item it should display the episodes themselves. Each of
the episodes should then display the information about it.

The layout of the page may be a header with the TV show image and its
title, with the other information below the image, followed by the seasons
listing.

Movie and episode detail page

A movie has general program information and media-related information,
such as quality or subtitles, therefore it should display this information. An

84

.................................5.1. Software requirements

episode does not have the general program information so it should display
only the media-related ones with the addition of the episode-specific ones
(e.g. episode number).

The layout of the page may be similar to the one of the TV show detail
page with the addition of the media-related information.

Registration and login page

The registration and login page should consist of a simple registration and
login form respectively. The form itself consists of fields and a submit button.
Error messages may be displayed either above the form or above the submit
button.

Account dashboard

The page should display the username of the currently logged in user and a
section dedicated to managing notifications.

The notification section may display all active notifications as a list. Each
item in the list represents a single notification and displays the name of the
program, the type of notification and a disable button.

Notifications

Notifications are used for notifying the user of some event. The first version
of the application may at least support the notification of the event when a
specific program has a new episode added. A new episode may be either the
latest episode or an older one that was added to the website as a replay. The
user should be able to choose whether they want to be notified of the latest
episode or a replay one.

When any such event occurs, the system should send an email to the user
with information about the event. In the case of the latest episode it may
include information such as the title of the program, the season and episode

85

5. Application design
number of the episode and its title, the direct link to the original website and
the direct link to the episode detail page in this application. The email itself
may either be a plain text, or may use HTML for the direct links or visual
display.

A user should be able to activate notifications for a program by visiting
its page and by clicking the notification button. When having notifications
active for a program, the notification button should then function as a button
to disable notifications for that program. Also, a user should be able to
view all of their active notifications and disable them from a single place for
convenience.

Data normalization

Two websites may contain the same program or may reference the same actor.
On each of those two websites the name of the program or actor may be in
a different format or may include additional characters or words. However,
as such they should still be considered the same and should be merged in
the application. Also, these two names should then be considered as aliases
to the final name. Therefore there has to be some normalization process to
ensure that.

An external normalization is a normalization that uses a third-party service
that is not necessarily used just for normalization. The main concept is
that for a given name or title we find a normalized name or title, i.e. its
canonical form, by searching or looking up the name or title. This way the
external normalization is just a black box that for the alternative names
returns their normalized form. Websites such IMDB or CSFD may be used,
more specifically their search function.

An internal normalization is a normalization that is done by the application
itself. Some basic normalization is trivially done in modern programming
languages, such as trimming a text of white space characters (in Java using
the String::strip method) or transforming a text to its normalization forms
(either NFD - Canonical decomposition - or NFC - Canonical decomposition
followed by canonical composition32). However this is just the first step that
simplifies further processing. A name may be a single word but more often it
is a sequence of words. In the case of an actor’s full name, we don’t know
on the first glance, whether it is in the order of last name first and then the
first name or the other way around. There may also be many formats for the
names themselves, such as "Last name, First name" (with a comma) or "Last

86

.................................5.1. Software requirements

name First name" (without the comma). In essence it is not trivially done
without some help, such as a set of possible first names, but even in that case
there exist last names that are also first names.

For the internal normalization we can simplify the problem a bit to just
specify a format for a field, such as an actor’s name, and a website. For
example, we can specify that the TV Nova website uses the format "First
name Last name". There may also be some hints in the HTML source code
or even better, in the Linked data themselves, if they are present.

This, however, still does not solve the problem of normalizing the names of
TV shows and movies. To normalize them we can use a database of them, use
the aforementioned external normalization, or just simply use the name itself
with just the basic normalization applied (trimming, normalization forms).

The issue with using a third-party tool is that the requests may be blocked
due to the total amount of them, it causes the third-party server load to
increase, uses more bandwidth, and may even be slower due to latency and
other factors, such rate-limiting, retries, etc.

Finally, there exists yet another option in the form of user-managed content.
That is, that users themselves check and possibly edit the names and merge
two programs that should be the same but are not in the application. However,
this option is against the goal of this application, i.e. to minimize the need
for user intervention when aggregating the media content, and would also
require quite a lot of additional work.

Extraction process

From performed tests it took 6-8 hours just to obtain all programs and their
episodes from the Česká televize website. At the time of the test there were
around 12000 programs and the number will surely grow in the future. This
amount of time is not feasible to be spent just to extract from a single website
since it would be beneficial to do the extraction process at least once a day.
Also, it would put a strain on the server and on the website itself. Therefore
a strategy where not all programs and episodes are always extracted should
be devised.

To define some terminology that will be used, an extraction iteration is the
process of going through all supported websites and extracting all relevant

87

5. Application design
information. The goal of an extraction strategy is to not spend many hours
just doing one extraction iteration since it will be run at least once a day.
From the goal and the performed tests it may be concluded that in a single
extraction iteration it is not feasible to visit everything and therefore always
have the most recent information. Therefore there should be some logic on
what to extract and when to extract it.

To ease the logic behind a extraction strategy, types of programs may be
defined, and that is as follows:

.An active program is a program that has had a recent change made to
it. For a TV show it may be either a new season or a new episode in a
season. For a movie, it may be a change to its media sources. For any
program it may be when any information about it, such as list of actors,
description, etc. has been changed..An inactive program is simply not an active program, meaning that
nochange has been made to it recently.

This terminology should help the overall extraction strategy in the following
way:

.An active program should be extracted more often, since it may have
another change in the near future. Think of it as an ongoing TV show
releasing a new episode every week or even every day..An inactive program may be extracted less often to save computation
power and especially time. Think of it as a TV show not having any new
episodes or seasons in the last year, there may still be some probability
that it will have a new season in the near future but it is not changing
often.

If a program is inactive it does not mean that the program will never be
extracted again. If the program is a TV show it will have its seasons probed
to switch to the active state. If the program is a movie it may take a longer
time to detect a change to its media sources or a description, but it will still
be probed once in a while.

To specify what "while" actually is, there is probably no exact metric to
be chosen from. However, a reasonable period should be chosen, i.e. once a
week.

88

.................................5.1. Software requirements

To further cut down the time it takes to do a full single extraction iteration,
the inactive programs may be split in multiple groups. Every active program
is probed once a day and may some time later become an inactive one. This is
the work that will be done every day. However, to actually visit the inactive
programs as well, we have to add the inactive programs to this constant work
at some point. To do it all at once is not feasible since that would mean
we would do the whole full single extraction iteration in one go. As was
mentioned we can split the inactive programs in multiple groups, for example
based on the time they became inactive. This way we may probe the recently
inactive programs more often than those that have been inactive for a year.

From all of this we have:

.G is a group of programs. GA is a group of active programs, Gi, where i
is a number, is a group of inactive programs. Two groups do not contain
the same program, i.e. each program is only in one group.. P (G) is a period for group G. We have a relationship that binds them
all together: P (GA) < P (G1) < P (G2) < ... < P (Gn)..We are choosing periods and they are mathematically a multiplication,
therefore there will be a day D where G1 and G2 should be both visited.
Trivially the day is D = P (G1) ∗ P (G2). More specifically the day is
D = lcm(P (G1), P (G2)), where lcm is the Least Common Multiple of
its arguments..When such a day occurs, the group of a lower number should be visited,
i.e. if G2 and G4 should be visited on a day D, then G2 should be visited..There will be some days Dk, where Dk ≠ m ∗ P (Gi) for any i and any
m. On these days the group that was visited further in the past should
be visited, i.e. if G2 has not been visited in a week and G3 in a month,
G3 should be visited.. If there are multiple groups Gi1 , Gi2 , ..., Gik

that have the same time of
visitation that is the furthest in the past, we simply choose the one with
the lowest number. If i1 < i2 < ... < ik, then we choose Gi1 .

Using these rules each day all active programs plus a group of inactive
programs will be visited, groups with smaller periods will be visited more
often than groups with longer periods, and all groups will be eventually
visited.

To provide an example of how to split and then how to visit inactive

89

5. Application design
programs, we have to first choose the period and the number of groups. The
groups may be as follows:..1. Inactive programs having inactive time less than a week...2. Inactive programs having inactive time less than a month...3. Inactive programs having inactive time less than half a year...4. Inactive programs having inactive time less than a year...5. Other inactive programs.

The periods themselves should have minimal collision. It was stated that
a collision occurs on day D = lcm(P (Gi), P (Gj)) for some groups Gi, Gj .
LCM can be computed as follows: lcm(A, B) = (A ∗ B)/gcd(A, B), where
the maximum of the lcm function is when gcd(A, B) = 1. This means that
A, B must be relatively prime. Therefore P (G1), P (G2), P (G3), P (G4) and
P (G5) must be all relatively prime. P (GA) is always equal to 1.

To fulfill this condition we can simply choose the primes: P (G1) =
2, P (G2) = 3, P (G3) = 5, P (G4) = 7, P (G5) = 11. For this configuration
there will be, for example, day D = 13 on which none of the groups should
be visited, but from the rules above, the group that was not visited in the
longest time is selected, specifically group G3. There is also the day D = 1,
where no group should be visited, in this case we choose the group G2.

At the beginning all programs will be in the active group, however, over
time they will be separated to the other previously mentioned groups. We
can speed up this process with setting the changed date of a program to a
changed date of information on its page. However, it may not always be
available.

Application extensibility

The application must be extensible in terms of extraction. This can be
achieved using plugin or modules that will be either dynamically or statically
loaded to the application. Or it can also be achieved by using external files
written in some programming, scripting or markup language. These files may
just contain definitions that specify how to extract the data.

90

.................................5.1. Software requirements

Plugins. A plugin is a collection of Java classes that are loaded using a
ClassLoader to the application. They can be loaded either dynamically at
runtime or statically during startup. The dynamic approach allows not to
stop the application just for loading or unloading a plugin, defer the loading
of plugins, filter the plugins based on a condition, manage them at runtime
and more. It is a more flexible approach than the static one and will be
preferred to it. Either way this collection of classes is often contained in a
JAR file that is then loaded.

To recognize that a JAR file is a plugin for the application, there must
exist some indicator. This may be done using an annotated class. First,
we define an annotation that may contain additional information about the
plugin, such as its author, version, etc, and annotate a single class in the JAR
file with it. This class should also implement a specific interface such that
when the application finds this class, it can call a specific method to initialize
the plugin so that the plugin may register its extractors to the application.

This is an example of how it may look like:

@Plugin(
name="plugin.website_name",
author="The author",
version="1.0"

)
public class ThePluginClass extends PluginInterface {

@Override
public void initialize() throws Exception {

// Do initialization, i.e. register an Extractor
}

@Override
public void dispose() throws Exception {

// Do disposal, i.e. unregister an Extractor
}

}

This class and possibly other classes in the JAR must be compiled with
the application’s source code to have the required classes available. This
approach is the most flexible one, because the author of the plugin has all
Java/application classes available and can write their own logic in any way
they can.

91

5. Application design
Using this approach there may be some security concerns since an external

class file is loaded to the JVM and its code is run. However, this is an inherent
issue of this method and should be taken into account. Only trusted plugins
should be loaded to the application.

Scripting files. Another method to make the application extensible is to allow
host users to execute an external file that is written in another programming
or scripting language, such as Lua, Python, etc. The application reads this
file and interprets it. In the contents of the file there are calls to provided
functions and provided data types are used. This allows to limit the usage
of specific functions that are otherwise available in plugins written in Java.
However, since an actual interpreter of the language will probably be used,
it can still call potentially dangerous functions that are provided by the
language itself.

A custom language can be also used to provide this functionality, however
this requires more work to implement a parser and evaluator.

Definition files. More restricted method that may be used for simpler
websites is the usage of definition files. A definition file is a file that contains
definitions or simple procedures of how to obtain the data that are wanted.
This may be done in any language, format or form, even in plain text. This
is possibly the most restrictive method since a custom interpreter must be
created for it to work. This interpreter has only a limited "instruction set"
that may be used in definition files. However, the file may become rather
long and verbose due to this.

This method may not be suitable for websites where custom logic or
more complex operations are required since it is dependent on the available
"instructions".

Authentication

All of the selected websites do not require any kind of authentication to obtain
the TV shows, movies and episodes, but some of them (iPrima, Nova Voyo,
JOJ Play) require authentication to obtain the available media sources for
episodes and movies.

The process of authentication itself is straightforward to implement using

92

.................................5.1. Software requirements

HTTP requests, HTTP headers and cookies, however care should be taken in
terms of storing the credentials used for the authentication.

Passwords should not be present in the code of the plugins themselves
for security concerns. They may be stored in an environmental variable,
database or a special storage. Since the plugins may be loaded dynamically,
it must be possible to load the credentials dynamically. Purely in Java the
environment variables cannot be changed for an already running process33

and the database should be used solely for storing the entities. Therefore
the only other option is to use a special storage. For this purpose the Java’s
KeyStore API may be used.

A password may be chosen to secure the key stores where actual credentials
to the websites are stored. The password is set as an environment variable
and later on, when the key store is being read dynamically, it is used to
decrypt it. This way the credentials are never stored as a plain text and are
not mixed with the extracted data.

Geolocation blocking

Some content on the selected websites is blocked for other than specific
geographical locations. This is called geolocation blocking, geoblocking or
geolocking.34 The server that is running the application is located in some
country, this country may not be present in the list of the countries that are
whitelisted for a specific movie or episode. Therefore a care should be taken
before requesting the media sources.

One way to fake the location to the server is to use a VPN. There are
many available VPNs that may be used,35 but a good-enough free option is
preferred. One of the options is to use OpenVPN and select a specific country
before carrying out the request to obtain the media sources.

Assume that the country of the server is not the same as the country that
is required to access the media sources of a specific movie. Other movies
on the website may be obtained successfully because the server’s country
is fine but changing it to the previously required country may result in not
obtaining the media sources for those movies. Therefore we cannot route
all network traffic through the VPN for all items and since there may be
concurrent requests present in the application, we cannot route it just for
some time period. Thus a special network proxy must be created to use the
VPN exclusively only for specific requests.

93

5. Application design
Request-exclusive VPN may be done using a Docker image where the

VPN is running. This Docker image has an HTTP proxy opened with which
we may route specific requests. This way we can still do requests in the
application itself as if no proxy exists but select which requests are actually
routed through the VPN and which are not.

There are already existing Docker images for this exact purpose which may
work, e.g. https://github.com/kizzx2/docker-openvpn-client-socks.

Speed of extraction

If there is a desire to quickly obtain at least basic information about new
programs, episodes or media sources, an alternative order of execution during
the extraction process may be used. Instead of obtaining additional infor-
mation, such as description or thumbnail image, during the processing of a
program or episode, it is possible to delay it to a next "wave". The extraction
iteration is therefore split into two "waves", where in the first one we obtain
just the basic information, e.g. URI, and after everything in the "wave" is
processed, the next "wave" begins, such that it processes everything again
but it only obtains the additional information.

Additionally, threads can be used to further speed up the extraction process.
For example, it may be used when obtaining multiple categories of programs
so that it is done in parallel for some websites. This cuts down the required
time to obtain the list of programs or episodes. However, it causes more load
to the server, it may cause the connections to timeout or be rejected by the
server, and in the overall time that is required to obtain everything, the time
saved would probably not be really significant.

94

https://github.com/kizzx2/docker-openvpn-client-socks

Chapter 6

Implementation

The application consists of backend, that provides the API endpoints and
runs the extraction process, frontend, that provides the user interface and
uses the API to obtain extracted data, and lastly the database, that stores
the extracted data.

The backend is implemented using Java programming language, specifically
Java 17. It uses Maven to generate sources, compile the source code and
build the final JAR file. It is also split into modules:

.The core module - provides the base classes that may be used in every
other module, most notably the various utility classes (Web, Net, HTML,
etc.)

.The backend module - provides the API and interacts with the database.

.The plugins - Each of the previously specified websites is its own module
that uses the core module.

The frontend uses ReactJS, specifically Vite, to render the user interface.
It requests data from the API using the JavaScript fetch function.

95

6. Implementation....................................
6.1 Architecture

The application consists of three main parts - the backend with API, the
frontend and the database. Additionally, there are proxies that are used
during the extraction process, by default for the Czech Republic and Slovakia.
They may be turned off but it must be done before running the backend
module of the application.

Figure 6.1: Architecture of the application

96

................................ 6.2. Application extensibility

6.2 Application extensibility

Based on the analysis of selected websites from previous sections there is
an actual need for more complex operations and logic than the definition
files may provide. Also, using the scripting may result in a longer and more
verbose file that may not be maintainable in the future. Therefore the better
approach is to use plugins. However, it may be desirable to also implement
one of the other methods to ease the process of adding a custom website to
the application and should be considered.

6.2.1 Plugins

Plugins are loaded during the application initialization. This is done after the
Spring boot itself is initialized. Plugins directory is scanned in the current
working directory of the application for JAR files. Each JAR file is first
probed for the Plugin annotation that is used to represent the main class
of a plugin. This process is done using the library Annotation detector by
INFOMAS ASL. It reports the class that has this annotation. If such a class is
found in the JAR file, the JAR file itself is loaded by its own URLClassLoader.
Finally, the class that has the Plugin annotation is instantiated. Because the
class has to extend the PluginBase class, the initialization method therefore
exists and this method is called immediately after instantiation. In this
method the plugin may register the website it provides.

6.3 Geolocation blocking

To solve the problem of geolocation blocking a proxy is used. When a website
extractor requires a specific country to be in, it sends requests using this
proxy. This proxy is an HTTP proxy and there exist multiple proxies, each
for a single country. To ensure that the proxy is in a specific country, a VPN
provider is used.

The implementation uses multiple Docker containers for each proxy. They
consist of a WireGuard container and a Squid proxy container. It is then
combined using Docker compose. The WireGuard container uses a predefined
WireGuard configuration that is obtained from the VPN provider. This

97

6. Implementation....................................
configuration sets the traffic to be exited in the specific country so that it
seems as if the application itself is running in that country. The Squid proxy
container then runs the proxy itself that acts on the network interface that
uses the WireGuard configuration. It exposes a port to the host system that
then can be used as an HTTP proxy to any application that wishes to use it.
Each country proxy has uses its own port.

In the application it is then possible to simply choose a port on the local
system as an HTTP proxy. The traffic is then routed through it, through the
Squid proxy and the WireGuard network interface in the container. Using
this setup we are able to selectively route any specific request through a proxy
that acts as if the application was running in a specific country, but other
requests may be routed normally.

To be more specific, using this setup we are able to route only those requests
for TV Markiza or TV JOJ websites that actually require it, such as when
obtaining media sources for a movie or an episode. All other requests are
routed normally, such as obtaining the list of programs.

This should also help with some internal rate limiting at the VPN provider
itself or to not be blocked by their filters that may be present for some of
them.

This solution stems from the compose-wireguard-squid (https://github
.com/master-hax/compose-wireguard-squid) project on GitHub. It was
revised and optimized to use only 2 containers instead of 3.

The WireGuard Docker container requires the Linux kernel to support
CONNMARK, which may not always be available, for example in the case of
the stock WSL2 Linux kernel. To solve this issue it is required to compile a
custom kernel image and set it as the default one for the WSL2. Instructions
on how to do this are in the project’s ReadMe file.

Lastly, there may be an issue with using the WireGuard in a Docker
container due to the connection shutting down after some time. This may
be due to the NAT/Firewall mapping being dropped. This can be solved by
setting the PersistentKeepalive peer property in the WireGuard configuration
to some non-zero value36 manually.

98

https://github.com/master-hax/compose-wireguard-squid
https://github.com/master-hax/compose-wireguard-squid

.................................. 6.4. Data normalization

6.4 Data normalization

In the current implementation the only normalization that is done to titles
and names is a text normalization. It mostly uses Unicode normalization
forms, more specifically the NFKD - Normalization Form KD (Compatibil-
ity Decomposition).? Additionally it also removes non-base glyphs when
normalizing the names of countries, people, languages and genres. These
normalized names are then used in their identifiers and are also URL encoded.
Finally, the normalized text or name is stripped of whitespace characters
from the beginning and from the end. Finally, for possible HTML input, such
as descriptions, the HTML tags are stripped and only the text itself is kept.
This is done using the Jsoup library.

6.5 Credentials

In the current implementation the credentials are handled by a single Cre-
dentials file (.credentials). This file simply contains multiple key-value
properties that are then loaded by the application and later used when a
website requests them. The Credentials file is in the same format as Spring’s
properties file.

All of the implemented plugins use two properties each, one for a username
and one for a password. Each such property has a common prefix for the
website it is used for and then a suffix that represents the name of the property,
such as username or password.

6.6 Model

The final model differs from the model specified in the application’s design.
The biggest difference is in representing the media sources.

The media sources of a movie or an episode are represented using the
schema.org’s VideoObject type. The type itself holds information about the
video itself but also contains the embedded audio of type AudioObject. This

99

6. Implementation....................................
way it is possible to map internal representation of media sources (the Media
class) to these types, that are then shown in the API’s output.

Some other properties were added or removed to better support available
data.

Lastly, in the final class model there is only a single extractor and all
website’s extraction functionality is handled by the Website class.

6.7 API

The API is specified using the OpenAPI specification, where the API endpoints
and used entities are described. Java sources for the API are generated using
Maven by the openapi-generator Maven plugin. The generated sources are
then used for implementing the actual procedures for each of the endpoints.

The API specification follows the schema of schema.org so that the results
may be read and parsed by another software.

6.8 Design

The final design was mostly inspired by the websites that were selected.
However, some components are implemented in a different way.

6.8.1 Homepage, TV Series page and Movies page

All of Homepage, TV Series and Movies display a list of programs in a
grid with a list filter. The list filter allows to filter the list. There is also
a pagination present to limit the number of results per page, otherwise it
would cause performance issues. The filtering and searching, including the
pagination is all dynamic and done using the Vite framework.

100

....................................... 6.8. Design

Items in the grid consist of their image and their title. The title is displayed
after focusing or hovering the item.

Figure 6.2: Detail page of a movie

6.8.2 Detail pages

Detail pages all display a header with the item’s image and title, followed
by common information, such as URL, description, etc. After the common
information, specific information is display in a textual form. For movie and
episode it is its media sources, duration, etc., for TV series it is its seasons
and episodes.

101

6. Implementation....................................

Figure 6.3: Detail page of a movie

Figure 6.4: Detail page of a TV series

102

....................................... 6.9. CRON

6.9 CRON

The extraction process is executed every day at midnight. If a previous
extraction process is still running at the time when the next should already
be run, it waits for the previous run to finish and then it is executed.37

The application uses the Spring’s @Scheduled annotation to enable this
CRON-like functionality.

6.10 Searching and filtering

The search uses a simple regex filter by using the SPARQL’s FILTER and
REGEX functions, and it is able to search programs by their titles.

The filter simply filters the searched (or all results) by applying the settings
chosen by the user. It filters the results in the following way:

. Different types of settings (e.g. genre, year) are in the AND relationship.
That is, if the user selects both a genre and a year then the final results
have both the selected genre and the selected year..Values of a single type of setting (e.g. multiple genres) are in the OR
relationship. That is, if the user selects multiple genres then the final
results have any of (at least one of) the selected genres.

6.11 Extraction process

The extraction process is done using an Extractor that is based on Nodes.
A Node is just an abstraction where all required parameters are passed to
the Node during its creation, then when it is time to process the Node, it is
simply executed in the context of an Extractor. Nodes are saved in a queue
that is sequentially processed, no multi-threading is involved. Although, it
would be possible to implement multi-threading on either the Website or
Node level.

103

6. Implementation....................................
At the beginning there is just a list of websites from which the Extractor

should extract. Then each of them is processed as such that its programs
are obtained. Each program creates a Node that is saved to the queue. This
program’s Node then creates more Nodes for each of its episodes and finally,
each episode’s Node processes its media sources. If a program’s Node is a
movie Node, then it directly processes its media sources. The processing
of media sources uses an internal media source representation to create a
representation that is used in the database and the API. This is done due to
the fact that not all information is actually preserved in the database and
available in the API and thus in the user interface of the application.

An additional logic is present for the extraction process to be more efficient
in the form of speed of the overall process. That means that not everything
is processed every time. As specified in the application design section, there
exists an extraction strategy with the groups of programs are as follows:

.GA: Active entities.G1: Entities changed in the last week at most.G2: Entities changed in the last month at most.G3: Entities changed in the last year at most.G4: Other entities

6.12 Order of extraction

The order in which the nodes are processed is important due to the fact
that each node in the queue consumes some memory. Since a media source
node (video or audio) has much more information than any other node and
there are many movies and episodes that each has multiple media sources the
amount of these nodes may result in consumption of a lot of memory. That
can lead to out of memory errors.

To solve this issue we may simply change the location to which we insert
new nodes. Therefore instead of treating the queue as a queue we may treat
it as a stack. New node is therefore inserted to the head of the queue and
processed next. This will lead to a short queue because every time a new node
is inserted to it, it is expanded and all its child nodes are then immediately
processed.

104

................................. 6.12. Order of extraction

However, this means that each program is expanded to either its episodes,
if it is a TV series, or its media sources, if it is a movie. Then each of these
expanded nodes are processed leading to more child nodes. This results in
the next program after the currently processed one to be processed much
later and therefore not being added to the list of all programs quickly.

In conclusion, it is up to the host user which order is better, but the
overall less memory consumption, that may otherwise lead to gigabytes of
memory being used, is probably worth it at the expense of delayed addition
of programs and episodes.

105

106

Chapter 7

Testing

Testing of the program was done throughout the development of the program.
During the implementation, the program was continuously tested on selected
browsers, namely Firefox 125, Google Chrome 125, Microsoft Edge 125. More
specifically, it was checked whether all actions (e.g. button clicks, form
submits, etc.) works and whether it displays correctly on multiple viewports:
1920px - desktop, 991px - tablet, 767px - smartphone and 560px - minimal.

Further testing was carried out at the end of the development using user
testing.

7.1 User testing

The program was given to three users, each with a different level of experience
with such applications. One of them uses Firefox, the other two use Google
Chrome.

The users were given the task of going through the application and trying
to find some information about a program and an episode. The whole testing
process was under supervision and the shortcomings of the application and
the comments of the users were written down in individual lists. The received
feedback was processed and a list of suggested modifications was created.
After implementing some of the modifications, the final feedback was received

107

7. Testing
and the user testing was concluded.

7.2 Feedback

User 1, Google Chrome browser (version 125).

.Missing indicator when searching or filtering..The filtering takes too long..The main menu should be placed beside the logo to save some vertical
space..The images of programs should be smaller in the grid..Missing country selection.. Filter selection boxes have too many items.. Pagination should be displayed above so that there is no requirement to
scroll down.

User 2, Firefox browser (version 125).

.Missing indicator when searching or filtering.. Slow response times.. Big program images in the grid.. No country selection present..Missing information about the source of the program.

User 3, Google Chrome browser (version 125).

. Long wait time when filtering or searching..Genres at a TV series or movie are harder to read.

108

................................ 7.3. Proposed modifications

.Missing information about about the source of the program..The media sources are harder to read..The duration and date of a program is hard to read.

7.3 Proposed modifications

As it can be seen from the feedback, all of the lists contain some repeating
issues with the user interface of the application. From these lists almost all
of the feedback notes were selected. The only feedback notes that were not
considered after time estimation and time constraints were the issue that the
media sources are harder to read and the duration and date of a program
being harder to read. The first issue would require some better designing to
be done to actually solve the issue, and the second one has not been done
due to time constraints.

.Missing indicator when searching or filtering
Solution: When a change happens, such as updating the text in the
search field, selecting a new genre, etc., display a loading indicator at
the list. The position of the indicator was chosen to be an overlay and
centered graphics in the shape of a circular sector in the theme color.
The indicator is hidden after the request is finished and the results are
displayed in the list.. Slow response times when searching or filtering
Solution: The slowness was caused by sending requests every time a
change is made to the filter, most notably when a search text is updated.
To solve this throttling was added such that there is a timeout of 250ms
and when it times out, it does the request. However, if another change is
done before the 250ms time out, the timeout is cancelled and a new one
is created. This means that the request is done only after no change is
made for at least 250ms, i.e. when user stops writing to the search filed..No country selection
Solution: Since the extractor was already extracting and saving countries,
the work done was to just add it in the same way as the selection for
genres.. Filter selection boxes have many items
Solution: The selection box was reworked to allow searching by typing.
This is just a mitigation of the issue and there may be a better solution.

109

7. Testing
.Big program images in the grid

Solution: Changed the number of items per row in the grid to be greater,
i.e. 5 instead of 3..Missing information about the program’s source
Solution: A new property called "source" was added to programs. The
contents of this property is currently just a non-translated prefix of
"web.*", where * is a website’s name (e.g. tvnova, iprima). It would be
better to display it as an icon, for example..The main menu should be placed beside the logo to save some
vertical space.
Solution: The main menu was placed into the center of the header to
the right of the logo..Pagination should be displayed above so that there is no re-
quirement to scroll down.
Solution: Pagination was moved from below the list to above it.

7.4 Retesting

The retesting was conducted after implementing the proposed modifications
and it was done in the same way as the first user testing.

7.5 Feedback

User 1, Google Chrome browser (version 125).

.The detail page of an episode is rather confusing.

User 2, Firefox browser (version 125).

. No major issue was provided.

110

..................................... 7.6. Conclusion

User 3, Google Chrome browser (version 125).

.The media sources are still hard to read..The duration and date of a program are still hard to read.

As can be seen from the list above, the issues that have not been imple-
mented are still present.

7.6 Conclusion

Due to the time it took to collect the feedback and time constraints, no
further user testing was concluded. The remaining issues are major issues
that should be solved in the future. However, thanks to the feedback, the
application was improved considerably.

111

112

Chapter 8

Conclusion

In this document I specified the goal of this project as a web application that
aggregates information about media content on various websites. Following
with the selection of websites from which to extract the information and
how to obtain it. I also did analysis of existing tools that may be used for
this project, and provided an application design. Finally, the project was
implemented and tested using user-testing.

From the analysis of the selected websites and the analysis of available tools
for web scraping it was decided to just use Java libraries and not external
third-party services or applications, since it would suffice to implement all
required functionality.

From the analysis of what the selected websites publicly use to repre-
sent various data and from analyzing schema.org, it was determined that
schema.org is sufficient to represent the extracted data.

For the application extensibility plugins in the form of JAR files were
chosen. This option provides the most functionality when implementing a
website extractor since everything is done in code. Also, it only requires
implementing a plugin loader that loads these files, no parsing of external
files or custom scripting languages are required.

OpenAPI was chosen to specify the application’s API, and Maven plugins
were chosen to automatically generate files related to the API. This simplifies
the whole process of implementing an API.

113

8. Conclusion......................................
The extraction process was designed and implemented from scratch with a

custom strategy on how to handle many programs over time. This should
allow not having to spend time on programs that may not update frequently
and thus speeding up the extraction process itself.

The frontend was implemented using Vite and it uses the API the backend
provides to access the extracted data.

In the overall implementation most of the functions have been implemented
with the exception of user-specific functions due to the limited time and many
problems during implementation of more important functions.

Finally, the application was user-tested with three users on different
browsers. The result of this testing was a feedback from which a list of
proposed modifications was constructed. Some of these modifications were
then implemented in the application. This helped the application to be more
user friendly.

In conclusion, the application fulfilled its important requirements and
provides the core functionality to the users.

8.1 Future development

The application can surely be improved in many ways and the missing
functionalities can be implemented. In this chapter I would like to mention
some improvements that may be done in the future.

8.2 Serving images

The application in the current version displays images directly from the origin
server. That means that the user’s browser sends requests to a third-party
server that contain the user’s IP address, user agent and more. This behavior
may not be desirable.

The solution to this is to use a proxy such that the actual request to obtain

114

.................................. 8.3. User customization

the image from the origin server will be done by the application itself. Using
this solution there is also the advantage that the image may be cached and
served directly without contacting the origin server, furthermore the images
may also be scaled to better fit the dimensions in which they are displayed
in the application’s user interface. The issues with this approach may be
that we are storing the image, and therefore most probably a copyrighted
material, on the server, and that the image itself has some size and thus the
available disk space may fill just by caching images. However, it is still a
possible solution that prevents the user’s information from leaking.

8.3 User customization

More user customization may be added, for example, the option to customize
the listings. This may be helpful if the user does not want to show particular
programs or episodes in the lists. They can simply hide them and the hidden
items will be filtered out from the lists.

The ability to add TV series or movies to favorites may also be implemented.
This may be useful when the user wants to access those programs or episodes
quickly, or if they just want to save them for later. This may be expanded to
allow users to create multiple lists instead of just being able to add items to
the favorites list. For example, the user may create lists Favorites and Watch
later. These lists may also be used during filtering or searching such that the
user may search in a list or may exclude all items from a list from the listing.

There are surely many more customization options and functionalities that
may be implemented, are useful to the user and improve the user experience.

8.4 User experience

The website may also be improved in terms of user experience. Currently,
it is a barebone application that displays the data textually without much
styling. It would also help to reorganize the website to be easier to navigate,
and to provide more of the extracted data.

115

116

Appendix A

Bibliography

1 What is semantic web. https://www.ontotext.com/knowledgehub/fund
amentals/what-is-the-semantic-web/.

2 Rdf primer. https://www.w3.org/TR/rdf11-primer/.
3 Json-ld. https://www.w3.org/TR/json-ld/.
4 Json main website. https://www.json.org/.
5 Linked data. https://www.w3.org/DesignIssues/LinkedData.html.
6 What is sparql. https:
//www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/.

7 Graphdb documentation.
https://graphdb.ontotext.com/documentation/.

8 What is graph database. https://www.oracle.com/cz/autonomous-dat
abase/what-is-graph-database/.

9 List of tv channels of tv nova. https://tv.nova.cz/program.
10 Voyo tv nova. https://voyo.nova.cz/.
11 The main website of tv nova. https://tv.nova.cz.
12 iprima programs. https://www.iprima.cz/tv-program.
13 Prima+. https://www.iprima.cz/.
14 Prima zoom. https://zoom.iprima.cz/.
15 Česká televize ivysílání. https://www.ceskatelevize.cz/ivysilani/.

117

https://www.ontotext.com/knowledgehub/fundamentals/what-is-the-semantic-web/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-the-semantic-web/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/json-ld/
https://www.json.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://graphdb.ontotext.com/documentation/
https://www.oracle.com/cz/autonomous-database/what-is-graph-database/
https://www.oracle.com/cz/autonomous-database/what-is-graph-database/
https://tv.nova.cz/program
https://voyo.nova.cz/
https://tv.nova.cz
https://www.iprima.cz/tv-program
https://www.iprima.cz/
https://zoom.iprima.cz/
https://www.ceskatelevize.cz/ivysilani/

A. Bibliography.....................................
16 The main website of markiza sk. https://www.markiza.sk/.

17 Voyo markiza sk. https://voyo.markiza.sk/.

18 Joj videoportál. https://videoportal.joj.sk/.

19 Joj play. https://play.joj.sk/.

20 The meaning of the word program (us spelling of programme). https:
//dictionary.cambridge.org/dictionary/english/programme.

21 unogs.com. https://unogs.com/.

22 Trakt. https://trakt.tv/.

23 Faq voyo pro správu zařízení. https://voyo.nova.cz/faq/24-na-kolik
a-zarizenich-mohu-sledovat-voyo.

24 Json-rpc. https://www.jsonrpc.org/.

25 Nuxt.js framework. https://nuxt.com/.

26 Oauth2. https://oauth.net/2/.

27 Next.js. https://nextjs.org/.

28 Jsoup java library. https://jsoup.org/.

29 Json-java. https://github.com/stleary/JSON-java.

30 Moscow method. https://www.agilebusiness.org/dsdm-project-fra
mework/moscow-prioririsation.html.

31 Bootstrap 5.0 - breakpoints.
https://getbootstrap.com/docs/5.0/layout/breakpoints/.

32 Unicode normalization forms.
https://www.unicode.org/reports/tr15/.

33 Java documentation - process class. https://docs.oracle.com/en/jav
a/javase/17/docs//api/java.base/java/lang/Process.html.

34 What is geo-blocking.
https://nordvpn.com/blog/what-is-geoblocking/.

35 List of vpn providers.
https://www.saasworthy.com/list/vpn-software.

36 Wireguard quick start guide.
https://www.wireguard.com/quickstart/.

37 Scheduling in spring framework. https://docs.spring.io/spring-fra
mework/reference/integration/scheduling.html.

118

https://www.markiza.sk/
https://voyo.markiza.sk/
https://videoportal.joj.sk/
https://play.joj.sk/
https://dictionary.cambridge.org/dictionary/english/programme
https://dictionary.cambridge.org/dictionary/english/programme
https://unogs.com/
https://trakt.tv/
https://voyo.nova.cz/faq/24-na-kolika-zarizenich-mohu-sledovat-voyo
https://voyo.nova.cz/faq/24-na-kolika-zarizenich-mohu-sledovat-voyo
https://www.jsonrpc.org/
https://nuxt.com/
https://oauth.net/2/
https://nextjs.org/
https://jsoup.org/
https://github.com/stleary/JSON-java
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html
https://getbootstrap.com/docs/5.0/layout/breakpoints/
https://www.unicode.org/reports/tr15/
https://docs.oracle.com/en/java/javase/17/docs//api/java.base/java/lang/Process.html
https://docs.oracle.com/en/java/javase/17/docs//api/java.base/java/lang/Process.html
https://nordvpn.com/blog/what-is-geoblocking/
https://www.saasworthy.com/list/vpn-software
https://www.wireguard.com/quickstart/
https://docs.spring.io/spring-framework/reference/integration/scheduling.html
https://docs.spring.io/spring-framework/reference/integration/scheduling.html

..................................... A. Bibliography

38 Petr Cipra. Media downloader application.
https://github.com/sunecz/Media-Downloader.

39 Petr Cipra. Media downloader default plugins.
https://github.com/sunecz/Media-Downloader-Default-Plugins.

40 Ledvinka, Martin, and Petr Křemen. JOPA: accessing ontologies in an
object-oriented way. SciTePress, 2015.

41 Tomaszuk, Dominik, and David Hyland-Wood. RDF 1.1: Knowledge
representation and data integration language for the Web. Symmetry, 2020.

119

https://github.com/sunecz/Media-Downloader
https://github.com/sunecz/Media-Downloader-Default-Plugins

	Project Specification
	Introduction
	Document structure

	Background
	Semantic web
	RDF
	JSON-LD
	SPARQL
	GraphDB

	Selected websites
	TV Nova
	Data to extract

	iPrima
	Data to extract

	Česká televize
	Data to extract

	TV Markíza
	Data to extract

	TV JOJ
	Data to extract

	Analysis
	Used terms
	Existing websites
	Selected websites
	TV Nova - Nova Voyo
	TV Nova - Main website
	iPrima - Prima+
	iPrima - Prima ZOOM
	Česká Televize - iVysílání
	TV Markíza - Markíza SK
	TV JOJ - JOJ Play

	Analysis of web scraping tools
	Services
	Software
	Libraries
	Conclusion

	Data models for media content
	Selected websites
	TV Nova
	iPrima
	Other websites
	Schema.org
	Summary

	Application design
	Software requirements
	MoSCoW method
	Users
	Functional requirements
	Non-functional requirements
	Model
	Use cases
	Graphical user interface

	Implementation
	Architecture
	Application extensibility
	Plugins

	Geolocation blocking
	Data normalization
	Credentials
	Model
	API
	Design
	Homepage, TV Series page and Movies page
	Detail pages

	CRON
	Searching and filtering
	Extraction process
	Order of extraction

	Testing
	User testing
	Feedback
	Proposed modifications
	Retesting
	Feedback
	Conclusion

	Conclusion
	Future development
	Serving images
	User customization
	User experience

	Bibliography

