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Abstrakt / Abstract

Tato práce se zabývá využitím tech-
nologie RAG (retrieval-augmented
generation) pro zlepšení odpovědí v
rozhovorech mezi adiktology a jejich
klienty v aplikaci vyvíjené pro Ná-
rodní linku pro odvykání, kterou vyvíjí
náš výzkumný tým na Fakultě elek-
trotechnické Českého vysokého učení
technického v Praze.

Teoretická část této práce zahrnuje
analýzu stávajících technik zpracování
přirozeného jazyka v oblasti medicíny
se zaměřením na jejich silné stránky a
omezení. Podrobně je zkoumán proces
RAG, včetně získávání, předzpracování,
vkládání a vyhledávání dat.

V praktické části je nejprve imple-
mentováno a testováno proof-of-concept
řešení RAG s různými soubory dat,
aby se vyhodnotila jeho výkonnost při
generování smysluplných a kontextově
relevantních odpovědí. Poté je prove-
den návrh a implementace microservice
RAG řešení, přičemž je podrobně po-
psán technologický soubor, architektura
a nasazení.

Výsledky při použití interní příručky
Národní linky pro odvykání jako zna-
lostní báze ukazují, že systém rozšířený
o RAG poskytuje relevantnější odpovědi
v 70% případů. Mezi možná budoucí
vylepšení patří přenesení embedding
modelu na externího poskytovatele
GPU pro zvýšení efektivity, kombi-
nace více souborů dat, doladění modelů
vyhledávání a generování, a zavedení
rozpoznávání a propojování entit.

Klíčová slova: umělá inteligence,
zpracování přirozeného jazyka, velké
jazykové modely, retrieval-augmented
generation, Python, Llama 2, Claude 3
Sonnet, adiktologie, microservice.

This thesis explores the application of
retrieval-augmented generation (RAG)
technology to enhance responses in con-
versations between addiction specialists
and their clients in an application de-
veloped for Národní linka pro odvykání
(The National Quitline), which is being
developed by our research team at the
Faculty of Electrical Engineering of the
Czech Technical University in Prague.

The theoretical part of this the-
sis involves analyzing existing natural
language processing techniques in the
medical field, focusing on their strengths
and limitations. An examination of the
RAG process is conducted, including
data acquisition, preprocessing, embed-
ding, and retrieval.

In the practical part, first, a proof-of-
concept RAG solution is implemented
and tested with different datasets to
evaluate its performance in generating
meaningful and contextually relevant
responses. Then the design and imple-
mentation of a microservice-based RAG
solution is done, detailing the technol-
ogy stack, architecture, and deployment
considerations.

The results while using an inter-
nal guideline of The National Quitline
as a knowledgebase indicate that the
RAG-enhanced system provides more
relevant responses in 70% of cases.
Possible future improvements include
offloading the embedding model to an
external GPU provider for increased
efficiency, combining multiple datasets,
fine-tuning the retrieval and genera-
tion models, and implementing entity
recognition and linking.

Keywords: artificial intelligence, nat-
ural language processing, large language
model, retrieval-augmented generation,
Python, Llama 2, Claude 3 Sonnet, ad-
diction research, microservice.
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Chapter 1
Introduction

In the field of natural language processing (NLP) in medicine, there has been a surge
in the development of new methods aimed at extracting valuable insights from medical
texts and facilitating better communication between healthcare providers and patients.
One innovative approach involves leveraging advanced language models (LM). These
models excel at understanding context and nuances in medical documents, aiding in
tasks such as information extraction from clinical notes, medical entity recognition, and
improving the overall efficiency of medical text analysis. By usage of these language
models, medical professionals can enhance their ability to extract meaningful informa-
tion from vast amounts of textual data, ultimately contributing to improved healthcare
decision-making processes.[1]

Additionally, language models, particularly large language models (LLM) pre-trained
models like OpenAI’s GPT4o or Meta’s Llama 3, have found applications as powerful
tools for enhancing chat applications in various domains, including medicine. These
language models can be fine-tuned in medical dialogues to understand and generate
contextually relevant responses in healthcare chatbots. The fine-tuning process tailors
the language model to better comprehend medical jargon, context, and patient queries,
thereby enabling more accurate and informative interactions. Improved chat applica-
tions driven by large language models can enhance patient engagement, provide timely
information, and potentially assist healthcare professionals in managing routine queries,
allowing them to focus on more complex aspects of patient care.[1]

As a part of a research team developing a system for communication between addic-
tion specialists and their clients for Národní linka pro odvykání (The National Quitline),
I was focusing on using retrieval-augmented generation (RAG) to enhance possible re-
sponses in a conversation.

RAG has emerged as a promising approach in the machine-learning field, offering a
unique blend of information retrieval and natural language generation. By retrieving
relevant content from a database of current medical research, work guidelines, and
educational materials, and then generating tailored responses, RAG can provide better
results than a simple LLM usage, without the need to retrain the model on every single
piece of new data.[2][3]

The main aim of this thesis was to explore the use of NLP in medicine, analyze RAG
techniques, and design and implement RAG solution that can be incorporated into the
main application for communication between addiction specialists and their clients that
is being developed by the rest of our research team.
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Chapter 2
Natural language processing in medicine

There are many branches of artificial intelligence (AI) field as shown in figure 2.1,
with NLP being only one of them. In this chapter, I describe NLP in general, and its
main applications, strengths and limitations in medicine. I do not go over the internal
workings of NLP, as that is not the aim of this thesis.

Figure 2.1. Illustrative AI subfields tree, upscaled from [4]. In practice, a lot of the subfields
are overlapping.

NLP is an AI technique that enables the analysis of natural human language. Its pri-
mary objective is to process text or speech inputs and outputs not merely as sequences
of characters or sentences, but as intricate syntactic and phonological structures. This
approach enables models to extract concepts or meanings and produce quantitative
outputs. A model encompasses a series of algorithms and assumptions essential for
making inferences about unobserved data based on observed data. In contrast to hu-
mans, AI can analyze significantly larger datasets in a fraction of the time and condense
a lifetime’s worth of experience into a shorter timeframe, facilitating dynamic learning
or training processes.[1]

Natural Language Processing involves building machines capable of understanding
and generating human language or data that resembles human language. It encompasses
natural language understanding (NLU), which focuses on understanding the meaning of
text, and natural language generation (NLG), which focuses on generating text. NLP is
crucial in various applications such as sentiment analysis, machine translation, named
entity recognition, and chatbots.[5]

NLP models work by analyzing the constituent parts of language, including letters,
words, and sentences. Data preprocessing techniques such as stemming, lemmatiza-

2
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tion, sentence segmentation, stop word removal, and tokenization are used to pre-
pare text data for analysis. Feature extraction methods such as Bag-of-Words, TF-
IDF, Word2Vec, and GLoVE are employed to create numerical representations of text.
Modeling techniques including traditional machine learning methods like logistic regres-
sion, naive Bayes, decision trees, and deep learning methods like convolutional neural
networks (CNNs), recurrent neural networks (RNNs), autoencoders, encoder-decoder
sequence-to-sequence models, and transformers are utilized to accomplish various NLP
tasks.[5]

Some notable NLP models include Eliza, BERT, GPT-4 and LaMDA. Programming
languages such as Python, R, and libraries/frameworks like NLTK, spaCy, TensorFlow,
and PyTorch are commonly used for NLP tasks.

2.1 Applications in medicine
NLP finds diverse applications in medicine, spanning research, patient care, diagnostics,
and more. In research, NLP aids in searching clinical trials and streamlining drug
discovery processes. It predicts hospital admissions from the Emergency Department,
improves triage and assists in diagnostic settings by classifying radiology reports. NLP
also helps process free text in medical records, aiding in treatment evaluation and
intervention analysis.[1]

In patient care NLP facilitates more efficient interfaces through chatbots like Baby-
lon Health and Health Tap, offering personalized healthcare and easing information
overload, especially evident during events like the Covid-19 pandemic [6]. There are
also chatbots specifically trained for psychiatric counseling [7]. In critical care, NLP
enhances Electronic Health Records (EHRs), predicts patient outcomes, and identifies
suitable candidates for clinical trials, significantly improving patient safety and resource
utilization [1].

2.2 Strengths

2.2.1 Analysis of linguistic features

NLP enables the development of user-friendly medical applications by understanding
and processing natural language input, allowing patients to communicate through free-
text or speech [6]. This facilitates medical triage, assists in answering patient queries
through mobile applications, and can even analyze voice recordings to detect early signs
of diseases like Alzheimer’s or cognitive decline [8].

Figure 2.2 shows a screenshot of an interactive demo of a medical chatbot developed
by QliqSOFT, which is designed to ease communication with patients and supports
EHR integration [9].

2.2.2 Unlocking unused electronic health record information

NLP is adept at analyzing unstructured data in EHRs, converting them into struc-
tured data for easier analysis. This helps in extracting valuable insights from medical
records, including chief medical complaints, diagnostic information, and drug reactions.
It also reduces the risk of errors compared to traditional administrative coding methods,
making it particularly useful in fields like palliative care.[10]

3
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Figure 2.2. QliqSOFT medical chatbot interactive demo showcase, accessible at [9].

2.2.3 Utilization of alternative information sources
NLP extends beyond EHRs to analyze data from sources like social media and blogs.
This allows for a deeper understanding of patient experiences, symptoms, and med-
ication effects, aiding in personalized healthcare and guiding drug development pro-
cesses [10].

For instance, Cook et al. (2019) conducted a study wherein they gathered posts
concerning dry eye disease from platforms like Twitter, blogs, news outlets, and fo-
rums. Employing NLP, they analyzed these posts to produce valuable insights into the
experiences of patients coping with the condition.[11]

2.2.4 Improving the e�ciency of healthcare systems
NLP contributes to the efficiency of healthcare systems through various means such as
personalization of interview questions on first contact with the patient, generating dif-
ferential diagnoses to allow doctors to prioritize particular patients, creation of reports
of the patient interview, chatbots for patient queries, automation of triage systems, and
predicting hospital re-admissions.[12][13]

It can also detect early signs of diseases or relapse from transcribed patient speech,
enabling early intervention and reducing the burden on healthcare resources. This could
be significant in identifying patients who may require intervention before symptoms
escalate, thereby extending the treatment window for potentially improved outcomes
and reduced adverse effects.[14]

4
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2.3 Limitations

2.3.1 Biases and overfitting in machine learning training
NLP models are susceptible to biases present in training data, which can lead to in-
accurate predictions, especially for underrepresented patient groups [15]. Overfitting,
where models learn noise instead of signal, is a challenge with limited training data,
but methods like transfer learning can help mitigate this issue [16].

2.3.2 Training on outcomes
NLP models require clear outcome definitions for effective training and validation.
While useful for acute outcomes like hospital readmissions, challenges arise in analyzing
less categorical outcomes, particularly in chronic diseases where temporal relationships
in clinical notes are crucial.[17]

2.3.3 Inconsistencies in medical notes
Variations in writing styles and structure across medical specialties and healthcare
professionals pose challenges for training NLP models on EHRs, as research and quality
improvement on the other hand is best conducted using highly structured, clean data
that allows the application of quantitative statistics [1]. Standardized terminology like
SNOMED-CT helps reduce noise in free text, but balancing descriptive detail with
structured vocabulary remains a challenge [18].
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Chapter 3
Analysis of retrieval-augmented generation

3.1 What is RAG
Retrieval-augmented generation is an AI method that enhances the quality of re-
sponses generated by LLMs by incorporating external knowledge sources [19]. This
approach supplements the model’s internal information with additional context from
these sources. This can result in the generation of much more relevant responses to
the particular field of usage while being much less expensive than fine-tuning the LLM
used for generation.

As shown in diagram 3.1, there are 2 main parts of a RAG pipeline: data preparation
and the retrieval-augmented generation itself. In the data preparation step, we find,
process and embed data into a vector database which serves as a knowledgebase. In
the RAG part, we query the created knowledgebase and based on the retrieved data we
then query an LLM to use this data for generating a response.

Figure 3.1. General RAG pipeline diagram, upscaled from [20].

The complete list of basic steps RAG can be therefore summarized as follows:

1. Gathering and preprocessing of data relevant to the specific field of use.
2. Embedding of the gathered data into a knowledge base.
3. Querying the knowledge base for the most relevant data to the LLM query.
4. Construction of an LLM prompt containing retrieved knowledge.

6
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5. Generating LLM response using the prepared prompt.
The following sections of this chapter explain these steps in a little bit more depth.

While there are RAG techniques that can work even with images, audio or video, we
will focus on text, as the main sources of information usable for the project are text
files.

3.2 Data acquisition
The first step is to decide on which data should be used for RAG. In the best case, we
want to have data that can be directly cited in the generation (work guidelines for a
specific company, usage manuals, etc.), but any other relevant data can be useful too.

This means we have to decide on the data requirements based on the specific task
at hand, ie. determine the types of documents, articles, or content that are relevant
to the target domain. This step ensures that the dataset encompasses the necessary
information for effective retrieval and generation.

3.2.1 Source selection
We need to identify and select appropriate sources for data collection. These sources
may include online databases, websites, academic publications, or any repositories con-
taining information relevant to the task. It is best to choose sources that cover a wide
range of topics and perspectives to ensure diversity in the dataset.

3.2.2 Data gathering
Finally, we have to gather the data from the selected sources. Some sources can be
accessed through APIs (application programming interface), others can be requested
from private companies or scraped from publicly accessible research journals, etc. While
gathering the data we must ensure that the data scraping process complies with relevant
laws and regulations.

3.3 Data preprocessing
The next step is preprocessing the acquired data so that it can be efficiently used.

3.3.1 Text extraction and cleaning
Extract text from gathered data and clean the data to remove irrelevant information,
noise, or inconsistencies. This may involve extraction of clear text from PDF or DOCX
files, removing HTML tags and special characters, or performing text normalization to
standardize the format of the text.

3.3.2 Data chunking
Break down large documents or pieces of information into smaller, more manageable
segments or chunks. This approach is particularly relevant in scenarios where the input
to the retrieval-augmented generation system is extensive, such as when dealing with
long documents, articles, or passages.

3.3.2.1 Motivation

Large documents or passages can pose challenges for both retrieval and generation
models. Retrieval models may struggle to identify the most relevant information within
a lengthy text, and generation models might find it difficult to produce coherent and
contextually relevant responses when dealing with extensive input.

7
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3.3.2.2 Segmentation into chunks

The original document or passage is divided into smaller, more manageable chunks or
segments. The segmentation can be based on various criteria, such as fixed word or
token count, paragraphs, logical breaks, or topic shifts in the content. In conversational
settings each turn or message in the conversation can be treated as a chunk, allowing
the retrieval and generation components to focus on relevant portions of the dialogue.
Each chunk becomes a unit of input that the retrieval and generation components can
process more effectively.[21]

To account for potential context loss at chunk boundaries, overlapping segments may
be considered. This means that some information is shared between adjacent chunks,
helping the model maintain context and coherence across the segmented input.

3.3.3 Annotation and Labeling
If applicable, we should annotate the dataset with relevant labels or annotations that
can be used for supervised learning. For instance, in question-answering tasks, label the
data with question-answer pairs. This annotated data helps in training the generation
model and evaluating its performance. While annotating the data set allows for precise
result evaluation, it may be skipped in some cases, as it is a very time-consuming task.

3.4 Embedding & Storage
A vector embedding is a numerical representation of data that captures semantic rela-
tionships and similarities, enabling mathematical operations and comparisons for tasks
such as text analysis and recommendation systems. Essentially, a vector embedding rep-
resents data as a mathematical equation, positioning data as points in n-dimensional
space where similar points cluster together.[22]

By using vector embedding we can easily search for relevant data in a knowledge base
by similarity to the query. Vector embeddings are computed using pre-trained language
models such as BERT [23], Word2Vec [24], or ELMo [25].

The computed embeddings are represented as vectors in an n-dimensional space
(where n depends on the embedding model used, usually from a hundred to thou-
sands [26]), where semantically similar tokens, words or phrases are close together.
Because of this we can quite easily compare the query vector with the vectors in the
knowledgebase by cosine similarity or the dot product and find the most relevant re-
sult.[27]

Diagram 3.2 showcases an example of embedding words into a 7-dimensional space
with visual representation (in 2-dimensional space).

To store embedded data vector databases (DB) are used, such as Pinecone [29] or
Chroma [30]. These databases store the vector representation along with the raw data
and specified metadata, allowing for similarity search with filtering based on stored
metadata.

3.5 Data retrieval
To retrieve relevant data from a vector database a query vector is created to represent
the information of interest. This query vector is typically derived from user input,
a search query, or another form of representation specific to the task. The retrieved
vectors are often ranked based on their similarity to the query vector. Additional
filtering may be applied based on metadata or relevance criteria, ensuring that the
most relevant data points are presented as results.
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Figure 3.2. Diagram showcasing word embedding into a 7-dimensional vector space, with
graphical representation in 2-dimensional space, upscaled from [28], with the following
annotation: “For illustration purposes, dimension d1 in the figure has a high positive
correlation with living beings. A properly tuned word embedding model will map words
with similar semantic or syntactic roles to adjacent regions in vector space. This property
can be visualized through dimensionality reduction techniques such as t-SNE or PCA
(see upper right quadrant of the figure). Cultural concepts are also apparent in vector
space as consistent offsets between vector representations of words sharing a particular
relationship. For instance, in the bottom right of the figure, the dotted vector represents

a gender regularity that goes from masculinity to femininity.“

3.6 Prompting LLM with a context-augmented prompt
After relevant information is retrieved, it is incorporated into the prompt that will
be used to instruct the LLM. The prompt generation process involves combining the
retrieved data with additional context or instructions to create a comprehensive prompt.
This prompt serves as the input to the LLM for further language understanding and
generation.

This can either be done by manually combining the results in a custom pipeline, or
using a framework like LangChain, an open-source library, which is used in chaining
together LLMs, embedding models, and knowledge bases [31].
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Chapter 4
Basic RAG usage

Before creating a final implementation I first needed to test different approaches to
the previously explained RAG steps, while creating a Proof-of-Concept (PoC) RAG
solution for the generation of possible responses in a conversation between addiction
specialists and their clients. This PoC solution can be then used as a basis for the main
implementation.

In this chapter, I discuss my approach to creating such a PoC RAG solution with its
pros, cons, and possible improvements.

GPU-heavy parts of the PoC implementation were tested in Google Colab as it was
possible to run the tests for free on the NVIDIA Tesla T4 GPU.

4.1 Data acquisition

Before acquiring more relevant data from The National Quitline, I needed some data
to use as a knowledge base for testing RAG. While the best usage of RAG is to have a
smaller amount of the most relevant documents as a knowledge base, it is also possible
to use a larger amount of documents with general knowledge from the relevant field.

I have decided to test RAG with 2 different sets of data:

. Transcripts of anonymized conversations between addiction specialists and their
clients.. Relevant research articles from freely accessible research journals.

The dataset containing transcripts of anonymized conversations was a result of the
thesis “Processing of dialogue data from the field of addiction counselling practice“
by Patrik Jankuv [32], a colleague from the same research team. I have focused on
obtaining the research journal data.

The first step was finding suitable research journals to scrape the articles from. I
have used the Journal Search portal provided by the National Library of Technology [33]
to search for relevant journals. Multiple research journals were used as a source: Ad-
dictology Journal [34] operated by First Faculty of Medicine of Charles University, and
multiple journals available operated by United States National Library of Medicine [35]:
Addiction & Health, International Journal of High Risk Behaviors & Addiction, Addic-
tion Science & Clinical Practice, Journal of Addiction, Addictive Behaviors Reports,
Journal of Behavioral Addictions, and ISRN Addiction.

As different journals used different webpage technologies I decided to use a semi-
automatic scraping approach combining multiple easy-to-use tools. Link Gopher Firefox
extension [36] to gather all links to periodical journal release pages containing related
papers in PDF format, and JDownloader download manager [37] to download all PDF
files from gathered links in bulk. This resulted in 3546 gathered research article files.
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4.2 Data preprocessing
The dataset containing anonymized conversation transcripts was already cleaned and
preprocessed. For the research journal dataset, I have tested multiple different tools to
obtain clear text from the scraped articles.

As PDF is a format that doesn’t require the data to be logically structured and
the page content is represented by a multitude of content containers, different tools
had variable rates of success. I have run tests with the following python packages
for processing PDFs: PyPDFLoader [38], pdftotext [39], PyMUPDF [40], pdfminer [41],
pdfplumber [42], unstructured [43].

The main problem was processing multi-column documents and getting rid of noise
data, such as headers, footers with page numbering, badly detected characters, etc.
Since every single file can be formatted differently, a simple approach of ignoring content
containers in specified parts of a page often removes too much data from the main
article text. I have also tested the approach of querying LLMs (Llama-2-13b, Mistral,
Zephyr) with raw clear text data with the query to remove unnecessary elements but
this approach was too slow and unstable to be used.

Out of all the tested libraries, unstructured achieved the best results, being able to
correctly process multiple columns of text on a single page and categorize text in each
content container. By using only the text from content containers which were classified
as narrative text I was able to extract the main text of the articles with minimum noise.
While there are more nuanced options, this was enough for a PoC solution.

4.3 Data segmentation
For the PoC I decided to use a basic approach based on text paragraph structure, which
while not as effective as the more advanced techniques (such as using summarization,
extraction, and multi-modal chunking [44]), is much easier to implement while also being
more precise than chunking based on word or token count. As each of the datasets has
a completely different type of content, they require slightly different approaches.

4.3.1 Research journal dataset
This dataset consists of clear text files with distinct paragraphs. Logical chunks of
information are represented by the paragraphs so I decided on chunking by paragraphs
with overlap of 2 last sentences from the previous chunk and 2 first sentences from the
next chunk.

4.3.2 Anonymized conversations dataset
This dataset consists of clear text files with conversations between 2 speakers, alter-
nating between them on each line. Logical chunks of information are much harder to
determine in this case so I decided on chunks of 4 lines with quite a big overlap of 3
last lines from the previous chunk and 3 first lines from the next chunk.

4.4 Embedding & Storage
As a vector database store, we have been deciding between two different vector database
systems, Pinecone and Chroma. While Pinecone has the advantage of easy setup due
to being cloud-based, we have decided on Chroma, as it is open-source and can be run
on a dedicated server allowing us to have direct oversight and control over the storage,
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processing, and management of sensitive data. This allows to implement and enforce
strict data governance policies following legal and regulatory requirements in the future.

Chroma uses all-MiniLM-L6-v2 free embedding model by default, which maps sen-
tences & paragraphs to a 384-dimensional dense vector space and can be used for tasks
like clustering or semantic search [45]. This embedding model was sufficient for the
PoC solution and can be switched by re-embedding the data again with a different
model if needed. Chroma can work with separate collections of data which can even
be embedded by different models, this allows for using different collections for each
dataset.

Because of the added size of embedding vectors, metadata, and chunk overlaps, the
163MB of clear text data resulted in a vector database of 3.41GB, which is about
21 times more than the original clear text, but considering nowadays storage options
it shouldn’t pose a problem even if we embed a lot more data. The embedding and
chunking took about 12 hours on a computer with NVIDIA GeForce GTX 1050 which
was enough to run the embedding model. Usually, there are not so many documents
to embed at once so the runtime is not an issue, and even if the need arises it can be
improved by running the embedding on a stronger setup and parallelizing the job in a
better way.

4.5 Data retrieval
Since LangChain provides a highly customizable pipeline for RAG [46], I have decided
to use it as a framework for constructing LLM prompt based on input query and vector
DB data and then querying the LLM itself.

As the result should be a suggestion for the reply in a conversation I had to test
multiple different ways of constructing the prompt to determine which one could yield
the best results. The main issue is finding the most ideal query to use.

Since we are dealing with conversations the most straightforward solution is to query
with the last messages in the conversation, for example, 3 last messages. This is prob-
lematic because the most similar thing in the knowledge base would be a similar con-
versation, and the dataset with articles doesn’t have many conversations in it.

Another solution would be generating a summary of the conversation and then query-
ing with that, but when tested with Llama-2-13b, it yielded worse results than the
previous solution.

4.5.1 Example results
Example results were generated by Llama-2-13b LLM running directly in Google Colab,
with a remote connection to Chroma running locally.

Example conversation used as a base for the prompt:

[Patient] Hey, how are you? I have been drinking again…
[Addiction Expert] I’m sorry to hear that. It’s important to remember
that recovery is a journey and it’s okay to slip up sometimes. It’s
important to reach out for support and seek help if you need it. Is
there anything specific you need help with right now?
[Patient] I appreciate your understanding. It just feels like I take one
step forward and two steps back sometimes, you know? I want to quit, but
it’s like this never-ending cycle.
[Addiction Expert] I hear you. Recovery can be challenging, and setbacks
are a part of the process. What do you think triggered this relapse?
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Understanding the underlying causes can help us work towards a more
sustainable recovery plan.
[Patient] I guess stress at work has been getting to me. The pressure’s
been overwhelming, and it feels like the easiest escape is turning to
alcohol.

LLM generated response without RAG:

That makes sense. Stress is a common trigger for many people in recovery.
Have you considered reaching out to your HR department or supervisor
about finding ways to manage stress in the workplace? Additionally,
we could explore some healthier coping mechanisms together.

LLM generated response with RAG using research articles collection:

Hi there! Sorry to hear that you’ve been drinking again. It’s completely
normal to experience setbacks during the recovery process, and it doesn’t
mean that you’ve failed or that you’re not capable of achieving long-term
sobriety. It’s important to recognize what triggers your desire to drink,
as you mentioned stress at work. Once we identify these triggers, we can
work together to develop strategies to manage them in healthier ways.
Additionally, it might be helpful to explore other coping mechanisms
besides alcohol to better handle work-related stress. Remember that
recovery is a journey, and it’s okay to take things one day at a time.
Please feel free to share any other concerns or challenges you’re facing
so we can address them together.

LLM generated response with RAG using anonymized conversations collection:

That makes sense. Stress and anxiety are common triggers for many people
struggling with addiction. Let’s talk about ways we can manage these
feelings without turning to alcohol. Have you tried any coping mechanisms
or strategies before? Maybe we can explore those together and see what
might work best for you.

4.5.2 Results comparison

While more testing with an exact evaluation procedure is needed, using qualitative
analysis we can determine that using research article data for RAG results in a quite
long and more nuanced response, while the result when using anonymized conversation
data resulted in a slightly more nuanced response which is more to the point.

This is probably because searching in the conversations yields more similar results
because the query into the database is a conversation too.

4.6 Possible improvements

4.6.1 Combining multiple datasets and metadata filtering

By querying multiple dataset collections from vector DB and using the best result from
each in a single LLM query we can combine completely different types of relevant data
at once. Filtering the semantic search inside a single collection by specific metadata
tags can also result in more specific results.
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4.6.2 Precise RAG pipeline evaluation

When evaluating an RAG pipeline, we should evaluate both retriever and generator
components separately and together to understand if and where the RAG pipeline
still needs improvement. Additionally, to understand whether a RAG application’s
performance is improving, we need to evaluate it quantitatively. For this, we need to
determine an evaluation metric and an evaluation dataset.

There are multiple already established methods of RAG evaluations, such as the
RAG Triad of metrics, ROUGE, ARES, BLEU, and RAGAs [47]. RAG evaluation is
troublesome in general as it usually requires a manually labeled dataset.

Based on the results of such evaluation we could identify which components need
improvement the most.

4.6.3 Data augmentation
To enhance the retriever component we could use data augmentation techniques to cre-
ate multiple versions of embedded chunks, which would provide different phrasings for
the same information. This could improve the retrieval of the most relevant information
from vector DB.

4.6.4 Entity recognition and linking
Enhancing the retrieval process with entity recognition and linking techniques by iden-
tifying and linking entities in the retrieved content can contribute to a more precise
and informative generation. Entity linking is the task of assigning a unique identity to
entities (such as famous individuals, locations, companies, drug names, etc.) mentioned
in the text. For example, given the sentence “Paris is the capital of France“, the idea
is to determine that “Paris“ refers to the city of Paris and not to Paris Hilton or any
other entity that could be referred to as “Paris“ [48].

4.6.5 Fine-tuning
Fine-tuning both the retrieval and generation models on domain-specific data would
help the models better understand the nuances and intricacies of the subject matter,
leading to more accurate and contextually relevant results.

We could either fine-tune each model separately or use an existing framework like
Self-RAG, which enhances an LM’s quality and factuality through retrieval and self-
reflection. This framework trains a single arbitrary LM that adaptively retrieves pas-
sages on-demand, and generates and reflects on retrieved passages and their generations
using special tokens, called reflection tokens. Generating reflection tokens makes the
LM controllable during the inference phase, enabling it to tailor its behavior to diverse
task requirements [49].
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Chapter 5
Application design and implementation

In this chapter, I discuss the requirements, architecture, design, implementation, and
deployment of a RAG solution that can be integrated into the main application.

5.1 Use-case analysis
Use case analysis is a technique used to identify the requirements of a system and the
information used to define processes used and classes that will be used both in the
use case diagram and the overall use case in the development or redesign of a software
system or program. The use case analysis is the foundation upon which the system will
be built.[50]

A UML use case diagram serves as the primary means of detailing system or software
requirements for a new software program under development. Use cases describe the
expected behavior of the system (what it should do) without specifying the exact imple-
mentation methods (how it should be done). Once defined, use cases can be represented
both textually and visually through use case diagrams. A fundamental principle of use
case modeling is that it aids in designing a system from the end user’s perspective. This
technique effectively communicates system behavior in terms that users can understand
by outlining all externally visible actions and interactions of the system.[51]

A use case diagram is typically straightforward and high-level. It does not delve into
the specifics of each use case but rather provides an overview of the relationships be-
tween use cases, actors, and the system. It highlights the interactions without detailing
the sequence of steps required to achieve the goals of each use case. This simplicity
makes use-case diagrams effective for summarizing key interactions and providing a
clear, concise view of system functionality from the user’s perspective. However, for
a comprehensive understanding, additional documentation is required to capture the
detailed steps and workflows involved in each use case.

Diagram 5.1 shows use cases that are relevant to using RAG from the user’s perspec-
tive, not a complete use-case analysis of the whole main system. Tables 5.1 and 5.2
contain descriptions of these individual use cases for specific actors.

ID Name Actor Description
UC01 Obtain LLM-

generated sug-
gestions while
typing

Regular
user

Regular user will receive suggestions generated
by LLM based on his previously typed mes-
sages and knowledgebase.

UC02 Rate obtained
LLM-generated
suggestions

Regular
user

Regular user can rate suggestions.

Table 5.1. Use-cases - Regular user
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Figure 5.1. Use-case diagram

UC03 Insert document to
knowledgebase

Manager Manager can upload text (PDF, DOCX, TXT)
document to knowledgebase.

UC04 Display documents
in knowledgebase

Manager Manager can display a list of documents cur-
rently embedded in the knowledgebase.

UC05 Remove a document
from knowledgebase

Manager Manager can delete one of the listed docu-
ments from the knowledgebase.

Table 5.2. Use-cases - Manager

5.2 Requirements specification

A software requirements specification is a description of a software system to be de-
veloped. It is modeled after the business requirements specification. The software
requirements specification lays out functional and non-functional requirements, and it
may include a set of use cases that describe user interactions that the software must
provide to the user for perfect interaction. Software requirements specifications estab-
lish the basis for an agreement between customers and contractors or suppliers on how
the software product should function.[52]

By specifying the functional and non-functional requirements of the developed RAG
solution we can specify which functionalities should be implemented and discern which
functionalities are essential and which are nice to have.
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5.2.1 Functional requirements
Functional requirements show the main functions that an application must provide to
perform its function [53]. These may be, for example, user functions, authentication or
authorization requirements, or data collection.

Some functional requirements are already based on the specification, others on anal-
ysis of the problem, use cases and discussion with the rest of our team. I list the
functional requirements of the RAG solution in table 5.3. Each requirement contains
an ID (unique identifier), a name, and a description.

ID Name Description
FR01 Add new collection New collection for documents can be added with its

metadata.
FR02 List all existing

collections
All document collections can be listed.

FR03 View details of an ex-
isting collection

Details and metadata of an existing collection can
be viewed.

FR04 Delete existing
collection

An existing collection and documents embedded in
it can be deleted.

FR05 Query existing
collection

An existing collection can be queried with a query
text, number of results, and custom filter.

FR06 Embed document into
an existing collection

New document can be embedded into an existing
collection with multiple chunk overlap settings and
custom metadata.

FR07 Delete document from
existing collection

All chunks of a document embedded in a collection
can be removed from it.

FR08 Rate RAG outputs Solution will allow reting of RAG outputs to gather
data which can be used to improve the RAG
pipeline. Nice to have feature.

Table 5.3. Functional requirements.

5.2.2 Non-functional requirements
Non-functional requirements are qualitative attributes of an application and do not
relate directly to its functions [53]. These are usually requirements for availability,
performance, usability, security, or regulatory compliance.

I list the non-functional requirements of the RAG solution in table 5.4. Each require-
ment contains an ID, a name, and a description.

ID Name Description
NR01 Local data storage Vector database data will be stored locally to

achieve regulatory compliance.
NR02 Security Vector DB or its management won’t be accessible

directly without proper authorization.
NR03 Compatibility Solution will be directly compatible to use with the

main application.

Table 5.4. Non-functional requirements.
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5.3 Architecture
After specifying the use cases and requirements it is necessary to decide on the proper
architecture for the RAG solution.

There are two main types of software architecture, a monolithic application is built
as a single unified unit while a microservices architecture is a collection of smaller,
independently deployable services.[54]

5.3.1 Monolithic

A monolithic architecture is a traditional model of a software program, which is built
as a unified unit that is self-contained and independent from other applications. A
monolithic architecture is a singular, large computing network with one code base
that couples all of the business concerns together. To make a change to this sort of
application requires updating the entire stack by accessing the code base and building
and deploying an updated version of the service-side interface. This makes updates
restrictive and time-consuming.[54]

This would mean implementing RAG workflow directly into the main application,
which is a less time-consuming task, but changing the vector DB provider or any other
parts of this flow would be harder. There is also the possibility of using a framework like
LangChain to make the Chroma integration even more straightforward as previously
discussed in section 3.6.

Even with a monolithic architecture, there are 2 ways of deployment of the vector
DB (Chroma) itself.

5.3.1.1 Managing Chroma directly in the main application

This is the most straightforward solution, Chroma can be run directly from code in
persistent mode [55]. While this approach is really fast to implement, it is difficult to
manage the running database as only one single application can be connected to it at
a single time.

5.3.1.2 Calling separately deployed Chroma from the main application

Chroma can be also run in headless mode [55], which allows better DB management,
a different location of DB than the application server itself, and multiple application
connections at once. Connection to Chroma in headless mode is still pretty straightfor-
ward but the deployment is more complicated because the service or container running
the DB needs to be deployed separately.

5.3.2 Microservice

A microservices architecture, also simply known as microservices, is an architectural
method that relies on a series of independently deployable services. These services have
their own business logic and database with a specific goal. Updating, testing, deploy-
ment, and scaling occur within each service. Microservices decouple major business,
domain-specific concerns into separate, independent code bases. Microservices don’t
reduce complexity, but they make any complexity visible and more manageable by
separating tasks into smaller processes that function independently of each other and
contribute to the overall whole.[54]

This would mean implementing and deploying an API that would provide vector DB
querying, embedding, and management functions for the main application, while the
main application could control the embedding parameters (overlap etc.). While this
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approach is the most time-consuming to implement, it allows for great flexibility while
updating or even completely changing the RAG workflow. Such microservice can be
also maintained completely separately from the main application which decreases the
required knowledge of maintainers.

5.3.3 Chosen architecture
After discussing different pros and cons with the rest of our research team, we concluded
that microservice architecture would be more beneficial for our use case, as it will
provide us with the greatest flexibility and ease of maintenance. It also allows us to
deploy the vector DB on a completely different machine with a GPU dedicated just for
the embedding model if needed.

Specifically, the microservice should provide an API that will expose endpoints to
manage and query the vector DB and allow embedding of documents into it. There
are 2 most used standards for APIs: REST (representational state transfer) and SOAP
(simple object access protocol). Figure 5.2 showcases the differences between them, as
discussed next.

Figure 5.2. Comparison of the structure of SOAP and REST standards, upscaled from
[56].

5.3.3.1 REST

REST allows the use of nearly any programming language and supports various data
formats. To qualify as a RESTful API, it must adhere to six key design principles,
known as architectural constraints [57]:

. Uniform Interface: Ensures a standardized way to interact with the API, promoting
simplicity and decoupling.. Client-Server Decoupling: Separates client and server concerns, allowing them to
evolve independently.. Statelessness: Each request from the client to the server must contain all necessary
information, as the server does not store client context between requests.. Cacheability: Responses must be explicitly marked as cacheable or non-cacheable,
improving performance by reducing unnecessary interactions.. Layered System Architecture: The API can be composed of multiple layers, each
with a specific function, which can enhance scalability and manageability.. Code on Demand (optional): Servers can temporarily extend or customize client
functionality by transferring executable code.
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5.3.3.2 SOAP

SOAP is a messaging protocol designed for exchanging data in decentralized and dis-
tributed environments. It is versatile, functioning with various application layer proto-
cols including HTTP, SMTP, TCP, and UDP. SOAP transmits data in XML format,
ensuring a standardized method for communication. The protocol inherently supports
security, authorization, and error handling, providing robust features for reliable data
exchange.[58]

Client-server communication in SOAP relies on WSDL (Web Service Description Lan-
guage) contracts, which establish a defined interface and strict communication rules,
leading to tight coupling between client and server. Consequently, SOAP is not rec-
ommended for loosely coupled applications because it necessitates the use of a formal
contract between the communicating parties, reducing flexibility and adaptability.[58]

5.3.3.3 Chosen API protocol

The RAG microservice will use REST, as it is ideal for loosely coupled microservice
architecture and the main application already uses REST as a standard for its API.

5.4 Technology stack
The next step after choosing the architecture is the choice of the technology stack used to
implement and deploy the application. The primary question is the used programming
language, the secondary is choosing the proper libraries, deployment tools, etc.

5.4.1 Programming language
Chroma has native support for Python and JavaScript programming languages [59].
Chroma running in headless mode also exposes its internal API which allows for im-
plementing a custom management library in any programming language at the cost
of highly increased implementation time and complexity. Another option is to use
a third-party implementation in a different language, for example, ChromaClient for
.NET [60].

Implementing a management library from scratch in a different language is not needed
for our use case. Using third-party implementations for different languages can be
problematic because AI tools evolve and can get obsolete quite fast. This leaves us to
choose from Python and JavaScript.

5.4.1.1 Python

Per official documentation: “Python is an interpreted, object-oriented, high-level pro-
gramming language with dynamic semantics. Its high-level built-in data structures,
combined with dynamic typing and dynamic binding, make it very attractive for Rapid
Application Development, as well as for use as a scripting or glue language to connect
existing components. Python’s simple, easy-to-learn syntax emphasizes readability and
therefore reduces the cost of program maintenance. Python supports modules and pack-
ages, which encourages program modularity and code reuse. The Python interpreter
and the extensive standard library are available in source or binary form without charge
for all major platforms and can be freely distributed.“[61]

Python API development can be done using libraries like Flask [62], FastAPI [63],
Django [64], Tornado [65], and Pyramid [66], each with its strengths.

Flask is simple and modular, ideal for smaller projects. FastAPI offers modern tech-
niques for scalable APIs. Django provides comprehensive support for various functions
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and it is favored for its robustness, scalability, and broad application range. Tornado
handles real-time applications efficiently, and Pyramid offers flexibility and speed.[67]

Python is also the most prominent language used for AI-related development [68],
which eases implementing any more advanced AI functionalities into the application.

5.4.1.2 JavaScript

Per official documentation: “JavaScript is a multi-paradigm, dynamic language with
types and operators, standard built-in objects, and methods. Its syntax is based on
the Java and C languages — many structures from those languages apply to JavaScript
as well. JavaScript supports object-oriented programming with object prototypes and
classes. It also supports functional programming since functions are first-class objects
that can be easily created via expressions and passed around like any other object.“[69]

JavaScript (JS) applications can be run outside of a web browser by using Node.js,
which is an open-source and cross-platform JavaScript runtime environment. Node.js
runs the V8 JavaScript engine, the core of Google Chrome, and it runs in a single
process, without creating a new thread for every request. Node.js provides a set of
asynchronous I/O primitives in its standard library that prevent JavaScript code from
blocking and generally, libraries in Node.js are written using non-blocking paradigms,
making blocking behavior the exception rather than the norm.[70]

Many different frameworks can be used to develop an API in JS. Express stands
out for its versatility in building web and mobile applications, with robust integra-
tion capabilities for various databases, though it grapples with callback issues and
scalability limitations. FeathersJS specializes in real-time applications, offering good
documentation and database flexibility but may face challenges with certain authen-
tication methods and scalability in larger projects. LoopBack shines in its support
for proprietary databases and SOAP services but has a steep learning curve and lim-
ited community support. Nest.js adopts modern JavaScript features and functional
programming principles for high-performance applications, yet debugging complexities
and feature gaps compared to other language frameworks may arise. Moleculer excels
in microservices development with tools for fault tolerance and recovery, though it lacks
extensive documentation and community support, and may not offer as many features
as other frameworks.[71]

5.4.1.3 Chosen programming language

While Python and JavaScript can be used, the existing main application back-end is
also written in Python, which facilitates the exchange of knowledge between maintain-
ers in the project development team. Python is also much more used for AI-related
development. The PoC solution created in chapter 4 is implemented in Python too so
it can be reused quite easily. Because of these reasons, I decided to develop the RAG
API in Python.

5.4.2 Libraries

5.4.2.1 API framework

For the main API framework library, I have decided on Flask. As mentioned in sec-
tion 5.4.2, Flask is simple and modular, ideal for smaller projects. This is ideal for a
simple API providing RAG capabilities.

Flask itself is very minimalistic, so a WSGI (Web Server Gateway Interface) server
is needed to run the Flask application in production [72]. Flask official documenta-
tion recommends one of the following WSGI servers: Gunicorn, Waitress, mod wsgi,
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uWSGI, gevent, eventlet, or ASGI. I decided to use Gunicorn, as its usage with Flask is
well documented and it is easy to install as it does not require additional dependencies
or compilation. Gunicorn is a pure Python WSGI server with simple configuration and
multiple worker implementations for performance tuning [72].

To properly work with data structures received and sent through the Flask API I
am using Werkzeug, which is a comprehensive WSGI web application library. It began
as a simple collection of various utilities for WSGI applications and has become one of
the most advanced WSGI utility libraries.[73]

With Flask being a minimalistic framework without any integrated data validation
or auto-documenting REST APIs, it needs another library to do such things. These
libraries come and go fast, so there is a large number of outdated or unmaintained
ones, and the ones that are maintained each offer a slightly different set of features. I
tried to find one that would provide me with all the required features (data validation,
REST API auto-documenting, Swagger specification autogeneration) without needing
any additional libraries. Flask-RESTX [74] is a library that meets these requirements
and is easy to set up.

Minimalistic API definition in Python using Flask-RESTX [74]:
from flask import Flask
from flask_restx import Resource, Api

app = Flask(__name__)
api = Api(app)

@api.route(’/hello’)
class HelloWorld(Resource):

def get(self):
return {’hello’: ’world’}

if __name__ == ’__main__’:
app.run(debug=True)

5.4.2.2 Vector database

Vector database library is Chroma, because as discussed in section 4.4 Chroma is a vec-
tor DB that meets our requirements, as it can run and store data locally, which is ideal
for complying with any regulations or client requirements concerning the embedded
data. This library is needed to connect to Chroma running in headless mode.

To run the embedding model for Chroma SentenceTransformers and Instruc-
torEmbedding libraries are needed. SentenceTransformers is a Python framework for
state-of-the-art sentence, text and image embeddings [75]. InstructorEmbedding is
an instruction-finetuned text embedding model that can generate text embeddings
tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and
domains (e.g., science, finance, etc.) by simply providing the task instruction, without
any finetuning [76].

5.4.2.3 Data extraction

As discussed in section 4.2, unstructured library does a great job of extracting data
from file formats, so I have decided to use it in the microservice implementation too.

5.4.2.4 Logging

For logging Python has its standard library module called logging, which allows all
Python modules to participate in logging, so the application log can include its messages
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integrated with messages from third-party modules [77]. This library is easy to set up
and fulfills all needs for logging in a small microservice.

5.4.2.5 Environmental variables

To change the microservice configuration easily environmental variables need to be
stored and loaded automatically. Python-dotenv reads key-value pairs from a .env file
and can set them as environment variables [78]. Since configuration in .env file can
be easily read into a docker-compose file for deployment too I have decided to use
python-dotenv.

5.5 Design
In this section, I describe the design of the developed microservice. Design means how
the components in the application will be placed, how components will talk to each
other, how the data will flow, if a new requirement will come application will scale, and
on-demand traffic will be taken care of and a lot more [79].

5.5.1 Application layers
For the microservice itself, I have decided to use a three-layer architecture.

The three-layer architecture delineates an application’s structure into distinct layers
for better manageability and abstraction. As seen in figure 5.3, the layers comprise the
presentation Layer, where the user interface resides and CRUD (create, read, update
and delete) operations commence; the business Logic Layer, housing most application
logic without direct access to data models; and the data access Layer, responsible for
interfacing with the data source, typically a database.[80]

Figure 5.3. Three layer architecture, upscaled from [81].

Therefore the microservie will be divided into 3 abstraction layers: API layer, logical
layer and data layer. API layer will provide the API endpoint specifications, and data
validation, and will make calls to the logical layer to process requests and get response
data. The logical layer receives and processes data from the API layer and calls the
vector database through the data layer. The data layer manages the calls to the vector
database without any processing logic.
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5.5.2 Endpoints

Based on the requirements specified in section 5.2 the following endpoints need to be
implemented, nice to have features were omitted and will be implemented in the future.
For the API to be considered RESTful it should not only comply with architectural
constraints as defined in section 5.3.3, but the endpoint structure should also conform
to specific rules.

REST is based on resources or nouns rather than actions or verbs. This means that
the URI of a REST API should always end with a noun. For instance, /api/users is
a proper example, while /api?type=users is not. HTTP verbs are used to specify the
action to be performed. Common HTTP verbs include GET, PUT, POST, DELETE,
and PATCH. A web application should organize its structure around resources, such as
users, and use HTTP verbs like GET, PUT, POST, and DELETE to interact with these
resources. The endpoint and HTTP method used should clearly convey the intended
action.[82]

In this section, I specify all the endpoints with their description, routes, HTTP
methods, ok response codes, request parameters and response attributes. A list of
endpoints and their response models is displayed in figure 5.4 as appearing in Swagger
UI documentation, which is explained in more detail in section 5.5.3.

Figure 5.4. The documentation of listed endpoints and response models in Swagger UI.
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5.5.2.1 Heartbeat

. Description: Provides a nanosecond heartbeat of the microservice for health check
purposes.. Route: /api/heartbeat. HTTP method: GET. OK response code: 200. Request parameters: None. Response attributes: Nanosecond heartbeat

5.5.2.2 List collections

. Description: Lists all existing collection names.. Route: /api/collection. HTTP method: GET. OK response code: 200. Request parameters: None. Response attributes: List of dictionary objects for each collection, each containing
the respective collection name

5.5.2.3 Get collection info

. Description: Gets details of an existing collection by name.. Route: /api/collection/<string:collection name>. HTTP method: GET. OK response code: 200. Request parameters: Name of collection to get details of. Response attributes: Collection ID, name, and metadata dictionary

5.5.2.4 Create collection

. Description: Creates new collection with the specified name.. Route: /api/collection/<string:collection name>. HTTP method: POST. OK response code: 201. Request parameters: Name of collection to create. Response attributes: Created collection ID, name, and metadata dictionary

5.5.2.5 Delete collection

. Description: Deletes an existing collection by name.. Route: /api/collection/<string:collection name>. HTTP method: DELETE. OK response code: 204. Request parameters: Name of collection to delete. Response attributes: None

5.5.2.6 Query collection

. Description: Queries collection with query parameters from the request body. Offers
filtering by a custom where filter.
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. Route: /api/collection/<string:collection name>/query. HTTP method: POST. OK response code: 200. Request parameters: Name of collection to query, query text, number of top results

to return, optionally custom where filter dictionary. Response attributes: Query result dictionary with the most similar results, their
similarity score, metadata, and other information

5.5.2.7 Embed document

. Description: Embeds document from form data into a collection. Offers multiple
chunk overlap settings and a custom metadata field.. Route: /api/collection/<string:collection name>/document. HTTP method: PUT. OK response code: 201. Request parameters: Collection name to embed into, file to embed, count of para-
graphs to use as a main chunk, overlap type, front and backward overlap count,
custom metadata dictionary. Response attributes: Embedded document ID

5.5.2.8 Delete document

. Description: Deletes document from a collection by ID.. Route:
/api/collection/<string:collection name>/document/<string:document id>. HTTP method: DELETE. OK response code: 204. Request parameters: Name of collection to use, ID of the document to delete. Response attributes: None

5.5.3 OpenAPI specification
To easy integration with the main application extensive documentation of all the end-
points is needed. OpenAPI Specification is an API description format for REST APIs.
An OpenAPI file allows you to describe your entire API, including available endpoints
and operations on each endpoint, operation parameters, input and output for each op-
eration, authentication methods, contact information, license, terms of use and other
information. Swagger is a set of open-source tools built around the OpenAPI Specifi-
cation that can help you design, build, document and consume REST APIs.[83]

Swagger API specification is distributed in a JSON file. Either the specification file
can be created first (and the endpoint structure autogenerated by the appropriate tool
for the used API framework) or the endpoint structure can be created first (and then the
specification file can be autogenerated from the code). Flask-RESTX library which I use
for data validation and endpoint documentation (as discussed in section 5.5) allows for
Swagger specification autogeneration from code. It also exposes Swagger UI (Swagger
User Interface, which renders OpenAPI definitions as interactive documentation [83])
at a specified endpoint.

Integration of Flask-RESTX is quite straightforward and well-documented, each re-
source is represented by a class and can contain definitions of multiple HTTP methods.
Endpoint description, input validation parser, response models etc. are defined in an-
notations of the resource class or HTTP method.
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Example of Flask-RESTX annotations of the document embed endpoint from the
finished microservice:

@api.route(’/collection/<string:collection_name>/document’)
@api.doc(params={’collection_name’: ’Collection name’})
class CollectionDocuments(Resource):

@api.doc(description="Embeds document from form data into
collection.")

@api.response(model=res_models.embedResponse, code=201, description=
’OK’)

@api.response(model=res_models.error, code=400, description=’Bad
model’)

@api.response(model=res_models.error, code=404, description=’Resource
not found’)

@api.response(model=res_models.error, code=500, description=’Server
error’)

@api.expect(req_parsers.embed_parser)
def put(self, collection_name: str):

# Endpoint logic

Input parameters documentation and validation are defined as a RequestParser ob-
ject, as seen below for the same document embed endpoint as before:

embed_parser = reqparse.RequestParser(bundle_errors=True)
embed_parser.add_argument(’file’, location=’files’, type=FileStorage,
required=True)
embed_parser.add_argument(’overlap_type’, location=’form’, type=str,
choices=(common_models.OverlapType.SENTENCE.name,
common_models.OverlapType.PARAGRAPH.name), required=True)
embed_parser.add_argument(’main_chunk_count’, location=’form’,
type=inputs.positive, required=True)
embed_parser.add_argument(’overlap_back_count’, location=’form’,
type=inputs.natural, required=True)
embed_parser.add_argument(’overlap_front_count’, location=’form’,
type=inputs.natural, required=True)
embed_parser.add_argument(’custom_metadata’, location=’form’,
type=object, required=False)

The response model is documented by creating a response marshalling model, which
provides an easy way to control what data is rendered in the response and is expected
in the payload. As you can notice from the endpoint annotations from before, each
response code can have a different response model defined. Document embed endpoint
response model is defined as follows:

embedResponse = api.model(
’EmbedResult’,
{

’document_id’: fields.String(description="Internal ID of the
embedded document.")

}
)

Figure 5.5 shows the autogenerated response model documentation of the embed
endpoint in Swagger UI, and figure 5.6 shows full interactive documentation of the
endpoint, which can be therefore tested right in the browser.
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Figure 5.5. The documentation of document embed response model in Swagger UI.

Figure 5.6. The embed endpoint documentation in Swagger UI.

The final autogenerated JSON file containing the OpenAPI specification is attached
to the source code files and contains the specific request and response format and all
HTTP response status codes (including error codes).
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5.6 Implementation
In this section, I describe the implementation of parts of the microservice based on
the requirements analysis and application design. I focus on the main steps in the
implementation process and try not to go into unnecessary detail.

5.6.1 Development environment
For efficient development of the application, I used IDE (integrated development envi-
ronment) Visual Studio Code [84]. It is a multi-platform open-source IDE developed by
Microsoft, supporting JavaScript, TypeScript and Node.js at the base, while support
for many other languages and runtime environments can be added using plugins (such
as C++, C#, Java, Python, PHP, Go, or .NET) [85].

In addition to Visual Studio Code I occasionally used Notepad++ for simple text
manipulation. Notepad++ is a free source code editor and Notepad replacement that
supports several languages [86].

5.6.2 Project structure
Since the microservice project is small all source files are stored in a single directory.
This allows for easy access to all required files and if the need for a more complicated
structure ever arises it is quite straightforward to change it.

List of all project files:

vector_store_provider
|- Dockerfile
|- README.md
|- base_provider.py
|- chroma_connector.py
|- common_models.py
|- common_util.py
|- configuration_provider.py
|- docker-compose.yml
|- file_processor.py
|- gunicorn.conf.py
|- main.py
|- request_parsers.py
|- requirements.txt
|- response_models.py

Next, I describe all the project files grouped by their function.

5.6.2.1 Python microservice files

. Common parts:
. common models.py - Definitions of common data classes that are used across the

whole microservice, most notably enum definitions and common wrapper data
class which is used to convey additional processing information between layers in
addition to the processed data itself. Referenced across the entire project.

. common util.py - Definitions of common functions that can be used across the
whole microservice, for example, a memory-efficient file hashing function. Refer-
enced across the entire project.
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. API layer:

. main.py - Main microservice project file. Contains the setup of environmental
variables and logging, Flask startup procedure, and Flask endpoint definitions.
The main part of the API layer.

. request parsers.py - Definition Flask RESTX request parsers which are used to
validate and document endpoint inputs. Referenced by main.py.

. response models.py - Definition Flask RESTX response models which are used to
document endpoint outputs. Referenced by main.py.

. Logical layer:
. base provider.py - Definition of business logic methods, the main part of the logical

layer. Called by the API layer, calls the data layer.
. file processor.py - Definition of data extraction from files. Referenced by

base provider.py.

. Data layer:
. chroma connector.py - The main part of the data layer, contains the implementa-

tion of connection to the Chroma database and runs the embedding model. Called
by the logical layer.

. Other:
. configuration provider.py - Logic for loading environmental variables. Called by

main.py.
. gunicorn.conf.py - Configuration to load environmental variables correctly while

the application is being managed by Gunicorn WSGI HTTP Server. Called inter-
nally by Gunicorn.

. .env - File storing environmental variables, loaded by configuration provider.py
and Gunicorn.

. requirements.txt - Python requirements definition, used to install the correct ver-
sion of all dependencies (libraries) at once.

5.6.2.2 Containerization files

. Dockerfile - Docker container image building specification for the microservice. Ex-
plained in detail in section 5.9.1.. docker-compose.yml - Docker Compose specification to run the microservice Docker
container with its dependencies. Explained in detail in section 5.9.1.

5.6.2.3 Other files

. README.md - Contains basic information about the microservice and the steps for
its deployment. Written in Markdown.

5.6.3 Components
Logical splitting of the application into layers creates the main components of the
application in addition to configuration, Chroma and embedding model components.
Component diagram 5.7 shows the interconnection between the components and other
working aspects of the microservice.
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Figure 5.7. Microservice component diagram

5.7 Chosen embedding model

Many embedding models can be used, both small and large, runnable on the CPU or
meant strictly for the GPU. It would be a really large task to compare them all, luckily a
large number of them was ranked in MTEB: Massive Text Embedding Benchmark [87],
and updated results are available on HuggingFace [26].

These embedding models range from millions to billions of parameters, from tens of
MBs to tens of GBs of required runtime memory. Different models are also trained on
different languages, and can only sometimes be used generally. This makes choosing
the best model quite a hard task.

For the microservice, it would be ideal to have a single small embedding model that
would decently embed both English and Czech text. This is because of lower available
funds for running the model and the fact that the first language that needs to be
supported is Czech, with English being the secondary. If the model is quite small it
could also be run on the CPU at first, and only upgraded to a larger model running
on a GPU if needed (which would mean re-embedding all the previously embedded
documents).

Chroma uses all-MiniLM-L6-v2 model by default, which is a really small model with
22.7M (million) parameters, that needs about 90MB of memory, and is trained only
on English data [45], and ranks at place 99 (out of 220) [26]. I have tried to find a
similarly small model that is multilingual in the MTEB leaderboard, ideally a better-
ranked one. Model multilingual-e5-small ranks at place 72 (out of 220) [26], has 118M
parameters, needs about 440MB of memory, and supports 94 languages including Czech
and English [88]. While this is about 5 times larger model it should still run decently
on a CPU.
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To determine whether the models could be run decently on the CPU for the initial

deployment, I have decided to benchmark the embedding time on CPU vs GPU. Only
the time for creating the embedding vector was measured, not the model initialization,
warm-up time, clean-up time, or computing of results. For the embedded text I have
used the first 186 tokens of Shakespeare’s Hamlet, available from the Massachusetts
Institute of Technology webpage [89]. I created a Python script that first loads the
model to be run on the CPU, does 10 warm-up embedding iterations, computes mean
and deviation from 10000 iterations, cleans up the model, and then does the same for
the GPU. This benchmarking script is a part of the source files.

First I tried benchmarking all-MiniLM-L6-v2 to gather data for comparison, and
then multilingual-e5-small. Benchmark was run locally on Intel Core i5-7300HQ CPU,
NVIDIA GeForce GTX 1050 GPU, and 24GB of DDR4 RAM. Results rounded to 2
decimal places are shown in table 5.5.

Model Architecture Mean runtime Deviation
all-MiniLM-L6-v2 CPU 30.18ms 1.52ms
all-MiniLM-L6-v2 GPU 8.5ms 0.3ms
multilingual-e5-small CPU 70.95ms 2.57ms
multilingual-e5-small GPU 15.33ms 0.44ms

Table 5.5. Embedding model benchmark - CPU/GPU runtime.

From the results, we can see that running both models on CPU is about 4 times slower
than on GPU, but since it still takes only tens of ms, with all-MiniLM-L6-v2 running
about 2 times faster than multilingual-e5-small, which is 5 times larger. Based on these
observations I have decided to use multilingual-e5-small, as it has better ranking all-
MiniLM-L6-v2, supports multiple languages, and runs decently on CPU which decreases
running costs.

5.8 Security
The microservice is designed to be run without being exposed to the internet publicly.
While more advanced authentication and authorization can be used, the first version
will be running on the same server as the main application (as specified in section 5.9.2),
so the API itself can be run without any security features as long as its port is opened
only locally and not to the internet.

In the future, if there is the need to deploy the microservice to a different server
and be publicly accessible, there are many tools how to achieve this. For example,
Flask-Security is a library, that allows quickly adding common security mechanisms to
a Flask application, including session-based authentication, role and permission man-
agement, password hashing, basic HTTP authentication, token-based authentication,
and more [90].

5.9 Deployment
While the microservice could be manually deployed as directly to a server, containerizing
it and deploying it in a container is a better approach for a microservice. A container
has everything needed to run the app and can be easily spun up or down for testing.
This is how container deployment saves resources like storage, memory and processing
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power and speeds up the CI/CD pipeline. Docker container deployment is a popular
technology that gives developers the ability to construct application environments with
speed at scale.[91]

5.9.1 Containerization
A container is a standard unit of software that packages up code and all its dependencies
so the application runs quickly and reliably from one computing environment to another.
A Docker container image is a lightweight, standalone, executable package of software
that includes everything needed to run an application: code, runtime, system tools,
system libraries and settings.[92]

5.9.1.1 Dockerfile

To create a docker container, a Dockerfile containing the build instructions needs to
be created. A Docker build consists of a series of ordered build instructions, each
instruction in a Dockerfile roughly translates to an image layer [93].

Dockerfile:

FROM pytorch/pytorch:2.2.1-cuda12.1-cudnn8-runtime
RUN apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
WORKDIR /app
COPY ./requirements.txt requirements.txt
RUN pip install --no-cache-dir --upgrade -r requirements.txt
COPY . .
CMD ["gunicorn", "--bind", "0.0.0.0:5000", "--timeout", "300",
"main:app"]

The first instruction (FROM) in the Dockerfile specifies which base image should be
used for the container, in this case, it is a pytorch image, which is based on Ubuntu
22.04 and contains all dependencies needed to run the embedding model on a GPU
inside of the container.[94]

In the next layer, we install dependencies that are needed for the proper function of
required Python libraries, specifically cv2 and its dependencies, which are needed for
the unstructured library.

Then we create a working directory and install all required Python packages. After-
ward, we can copy all application files into the working directory.

Finally, we create an entrance point for the container, which is running the Gunicorn
WSGI server to serve the Flask application. The default parameters can be later
overridden in a Docker Compose specification, as described in the following section.

5.9.1.2 Docker compose

Having the microservice itself containerized isn’t enough as we still need to deploy
Chroma in headless mode somewhere and store its data. Since the microservice itself
is containerized, it is logical to run Chroma in a container too. Multiple dependent
Docker containers can be managed with Docker Compose.

Docker Compose is a tool for defining and running multi-container applications. It
is the key to unlocking a streamlined and efficient development and deployment experi-
ence. It simplifies the control of the entire application stack, making it easy to manage
services, networks, and volumes in a single, comprehensible YAML configuration file
(docker-compose.yml). Then, with a single command, it is possible to create and start
all the services from the configuration file.[95]
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Docker Compose configuration file:

version: ’3.9’
services:

app:
build: .
command: "gunicorn --bind ${APP_HOST}:${APP_PORT} --timeout

${APP_TIMEOUT} main:app"
ports:

- "${APP_PORT}:${APP_PORT}"
depends_on:

chromadb:
condition: service_healthy

environment:
- CHROMA_HOST=chromadb

chromadb:
image: chromadb/chroma:0.4.24
volumes:

- chromadb:/chroma/chroma
environment:

- IS_PERSISTENT=TRUE
- ANONYMIZED_TELEMETRY=${ANONYMIZED_TELEMETRY:-TRUE}
- CHROMA_HOST_PORT=${CHROMA_PORT}

ports:
- "${CHROMA_PORT}:${CHROMA_PORT}"

healthcheck:
test: [ "CMD", "/bin/bash", "-c", "cat < /dev/null >

/dev/tcp/localhost/${CHROMA_PORT}" ]
interval: 10s
timeout: 5s
retries: 12

volumes:
chromadb:

The created configuration file specifies 2 containers: the microservice one (which is
built according to the Dockerfile), and a Chroma container. Environmental variables
for both these containers are automatically loaded from the .env configuration file.
The Chroma container has a custom health check that needs to be met before the
microservice starts, as the microservice is dependent on an already running Chroma
instance. Chroma data is stored in a Docker persistent storage.

5.9.2 Microservice deployment

The deployment of the finished containerized microservice can be done either manually
(by building the container and running Docker Compose) or via continuous integration
and continuous delivery/deployment (CI/CD) pipeline. Continuous integration refers
to the practice of automatically and frequently integrating code changes into a shared
source code repository. Continuous delivery and/or deployment is a 2 part process that
refers to the integration, testing, and delivery of code changes.[96]

While the application source codes themselves are maintained in a GitHub repository
for CI purposes, the CD pipeline is planned for the future and the first release of the
microservice was done by manually building and deploying the container to a VPS
(virtual private server).
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The main application and other services are hosted on a VPS provided by Forpsi,
which is a Czech hosting provider. Since the chosen embedding model will be running
on a CPU (as explained in section 5.7) and the embedded data will need to be handled
according to Czech regulations the microservice can be run on the same server. If the
need arises to move the microservice to a different server it can be done quite easily
because of the containerization.

The VPS to which the microservice is deployed has the following specifications [97]:

. Operating system: Debian 11. CPU: 8 vCPU AMD. RAM: 16 GB. Storage: 160 GB NVMe SSD. Traffic: 100 TB/month

As mentioned in the section 5.8, the microservice is not supposed to be exposed to
the internet. The VPS is running Uncomplicated Firewall (ufw), which is a frontend
for iptables and is particularly well-suited for host-based firewalls [98]. It is set up to
allow connections only to the ports of the main application (80, 443) and SSH (22).

5.10 Finished microservice
In the end, the finished microservice is running on a VPS, only locally accessible to the
main application and not exposed to the internet.

The microservice provides management of vector database collections and documents,
embedding of new documents and querying the collections.

For embedding, 2 different chunking overlap methods are currently implemented.
Both can have from 1 to n paragraphs as the main text of the chunk, with sentence
overlap taking a specified number of last sentences from the previous chunk and/or
first sentences from the next chunk (or more chunks, if one doesn’t contain enough
sentences), and paragraph overlap taking the specified number of paragraphs from
before/after the main chunk text.

Both the microservice and Chroma are currently using logging into the default out-
put, with plans to aggregate the logs onto a Syslog server from all the running con-
tainers and then use a log management and visualization tool (such as Graylog [99] or
Grafana [100]) to allow easy access to the logs.

5.10.1 Integration with the main application
At the time of writing, the integration of the microservice to the workflow of the main
application is not finished yet, full integration is planned in Q3 of 2024. The diagram 5.8
shows simplified services architecture, ie. the interconnection between implemented
microservice, main application, and external connections of the project.

5.10.2 Future improvements
Since the microservice is not yet integrated with the main application there might be
some changes required for easier integration.

In addition to that, there are already some features planned for the future, the
most important one being offloading vector computation for document embedding to
an external GPU, which would make it much faster, especially if more documents are
needed to be embedded. The current plan is to create a minimalistic docker image with
an embedding model and a singular API endpoint, which would compute and return
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Figure 5.8. Services architecture diagram

vectors of send text. This container would be loaded on-demand on a GPU hosted by
Vast.AI, which is a market-based cloud computing platform focused on reducing the
costs and friction of compute-intensive workloads and enabling anyone to easily leverage
large-scale GPU liquidity [101].

This would rapidly speed up the embedding of multiple large documents while keeping
the GPU processing time cost down, as this model would be loaded only when needed.

Next, we would like to focus on improving our RAG pipeline results by evaluating
its efficiency and making appropriate changes as discussed in section 4.6. This is both
a time and resource-consuming task so it was not done as a part of this thesis. One of
the easier changes could be the specification of the similarity threshold, if the thresh-
old wouldn’t be met by any context retrieved from the vector store, then the context
wouldn’t be used at all.

There is also the possibility of using different embedding models specifically trained
for each language, which would greatly enhance the retrieval accuracy, at the cost of
having to run multiple models at once.
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Chapter 6
Comparison of LLM generation results with
and without RAG

In this chapter, I show and compare LLM-generated outputs with and without RAG.
Since the main application doesn’t integrate the implemented RAG microservice yet,
the process for obtaining the results was as follows:

1. Embed the document into the vector database using the finished microservice.
2. Use custom Python script to generate results using Claude 3 Sonnet. Context from

the microservice is obtained by calling its API. The Jupyter Notebook with this
testing implementation is part of the source files.

3. Perform qualitative analysis of the results.

Claude 3 Sonnet is a multimodal AI LLM model developed by Anthropic, balancing
skills and speed, excelling in reasoning, multilingual tasks, and visual interpretation. It
is the middle ground between their other Claude 3 models (Haiku and Opus), better
and only slightly slower and pricier than Haiku, cheaper and faster but slightly worse
than Opus.[102]

While Llama-2-13b was decent for testing the PoC solution, Sonnet is much more
powerful even though it is still in beta and there are limits to the number of processed
requests per minute. There is a discussion in our research team about whether to use
it as the primary model for the main application.

For embedding, I have used 1 paragraph as a main chunk size, the front overlap
consisting of the previous 3 sentences, and the back overlap consisting of the next 3
sentences. As a dataset, I have used an internal guideline of The National Quitline,
which was provided for this project.

The guideline provided by The National Quitline is in the Czech language, so the
conversation samples to query the vector database should be in Czech too because
even though the embedding model is multilingual, measuring semantic similarity across
multiple languages will yield worse results. This problem can be solved by translat-
ing either the embedded document into a general language like English and querying
everything in English, or by translating the vector store query into the language of
the document collection. Because the provided guideline is quite long, manual trans-
lation into English would take a lot of time, and machine translation is problematic
because it is intended only for internal use within The National Quitline and shouldn’t
be distributed elsewhere.

In the end, I decided to use the following mix of conversations for comparison:

. 3 LLM generated sample conversations in English. Generated by GPT-4o, the LLM
query will be in English, the vector store search query will be translated into Czech
by Deepl and the result will be passed directly into the English LLM query because
the large model shouldn’t have a problem with multilingual processing.. 5 LLM generated sample conversations in Czech. Generated by GPT-4o, the LLM
query and vector store search query will be both in Czech.
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. 2 pieces of real conversations in Czech, which were selected from the anonymized

transcripts of the conversations dataset created by Patrik Jankuv, as explained in
section 4.1. The quality of these anonymized transcripts varies (there are many
misspellings and other issues), which represents a real conversation better than the
LLM-generated samples. The LLM query and vector store search query will be both
in Czech.

Since the guideline was provided to our team for internal use only I will not be
showing the context retrieved from the vector store microservice.

While qualitative analysis can be subjective, using quantitative metrics (such as the
RAG Triad of metrics, ROUGE, ARES, BLEU, or RAGAs) to measure RAG effectivity
is difficult and requires manually labeled dataset, as described in section 4.6.

I show only one result of each category in this chapter, a complete list of all results
is available in appendix A.

6.1 LLM prompts
In this section, I define the prompts used to query the LLM. The exact model version is
“claude-3-sonnet-20240229“ with maximum generated tokens set to 512. I used message
format for the prompt, meaning the LLM generation context is written as a dialogue
between the user and the AI assistant, with the response being the next message to be
written by the assistant.

For RAG I have used only the first and most similar result obtained from the vector
store query.

In addition to the dialogue prompt, a detailed description of the task to achieve can
be sent to the model as a system prompt. I use this to specify what to do and to include
the RAG context retrieved from the microservice.

English system prompt without RAG:

You’re an addiction specialist who answers to the patient in
conversation. Answer the conversation in English in 2-3 sentences.

English system prompt with RAG context:

You’re an addiction specialist who answers to the patient in
conversation. Answer the conversation in English in 2-3 sentences.
You may use the following context: {context}

Czech system prompt without RAG:

Jste adiktolog, který odpovídá pacientovi v rozhovoru. Odpovězte na
konverzaci v češtině ve 2-3 větách.

Czech system prompt with RAG context:

Jste adiktolog, který odpovídá pacientovi v rozhovoru. Odpovězte na
konverzaci v češtině ve 2-3 větách. Můžete použít následující
kontext: {context}
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6.2 Sample English conversation, GPT4o generated
Conversation text A.1.3:

Patient: I’ve been gambling a lot, and I’m losing more money than I can
afford. It’s putting a strain on my family.
Specialist: Gambling can be very consuming. How often do you find
yourself gambling, and how much time and money are you spending?
Patient: Almost every day, and I’ve lost thousands in the past few
months. I keep thinking I’ll win it back, but it never happens.

Response generated without RAG:

I understand the urge to chase losses and try to win back the money
you’ve lost through gambling. However, this tends to lead to an even
deeper hole of debt and problems. Gambling addiction is a real issue
that requires professional help to overcome. I would strongly
encourage you to reach out to a gambling addiction hotline or counselor
to get support in stopping this destructive cycle before it causes
further financial and familial strain.

Response generated with RAG:

I understand the urge to try to win back losses, but continuing down that
path often leads to digging the hole deeper. Gambling addiction is a real
issue that can have severe financial and personal consequences. The fact
that it is straining your family relationships is a major red flag.
You’ve taken an important first step by being honest about the struggle.
I would strongly encourage you to seek professional help from a gambling
addiction counselor or program. They have strategies to help you regain
control and repair the financial and relationship impacts. You don’t
have to fight this alone - there is support available.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

6.3 Sample Czech conversation, GPT4o generated
Conversation text A.2.4:

Patient: Dobrý den, jsem závislý na marihuaně. Kouřím denně a mám pocit,
že už to nezvládám bez ní.
Specialist: Dobrý den, děkuji, že jste přišel. Jak dlouho už takto
kouříte?
Patient: Asi tři roky. Začalo to občas, ale teď už je to každý den.
Specialist: Jak se cítíte, když si marihuanu nedáte?
Patient: Jsem nervózní, nemůžu spát a mám problémy s jídlem.

Response generated without RAG:

Chápu, že pro vás odvykání marihuaně bude náročné, zejména kvůli fyzickým
přízrakům. Je však možné se závislosti zbavit s odbornou pomocí.
Doporučil bych vám kontaktovat nejbližší adiktologickou ambulanci nebo
kliniku, kde vám poskytnou podporu během odvykacího procesu a naučí vás
copingové strategie pro zvládání chutí. Se správným přístupem a podporou
se dá závislost překonat. Nejste na to sám.
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Response generated with RAG:

Rozumím, denní užívání marihuany může vést k závislosti a abstinenčním
příznakům. Je dobře, že jste to rozpoznal a přišel pro pomoc. Společně
můžeme pracovat na léčbě závislosti a zvládání odvykacích příznaků.
Existují osvědčené metody jako kognitivně-behaviorální terapie, náhradní
léčba a svépomocné skupiny, které vám mohou pomoci dosáhnout abstinence.
Nejdůležitější je vaše odhodlání změnit svůj životní styl. Jsem tady,
abych vás při tom podpořil a poskytl potřebné nástroje. Uděláme vše
pro to, abyste se zbavil závislosti.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

6.4 Sample Czech conversation, real
Conversation text A.3.1:

Patient: Dobrý den.
Specialist: Dobrý den. Národní linka pro odvykání.
Patient: My na [Date] máme domluvenou konzultaci. Máte, jakou chvilku
čas.
Specialist: [Patient name]? Ano? Povídejte, co je nového teda o tý? Nebo
jsme se neslyšeli.
Patient: No, novýho od spolucující ohledně toho kouření nebo ostatní
ještě.
Specialist: Ohledně toho kouření. Povídejte.
Patient: Ohledně kouření teda vlastně nic, no, to může prát stejně asi
zhruba.
Specialist: To znamená teda těch 10 cigaret, jak jste kouřil jako 40,
protože vlastně vy jste říkal minule, že, že jste vykouřil těch cca 10.
Patient: Ne, ne, krabičku, když jste měl nápla, tak jsem vykouřil
krabičku, první den ho v kopce, [Date] [Date] jsem vykouřil zase půl
kapku a půl a jsem si náplastí už radši nedával, protože to nemělo efekt
žádnej, takže teďkon cítil náplasti. Beru, jenom, když jedu na nějakou
dlouhou cestu, ale třeba za psychiatrem nebo nakoupit autem nebo za
psychologem prostě na delší cestu autem třeba, tak si dám, ale stejně.
Kouřim, jo, tak si vás jdu, já poslal, stejně kouřím, takže.

Response generated without RAG:

Chápu, situace s kouřením se zatím příliš nezlepšila. Je dobře, že jste
upřímný a popisujete mi realitu tak, jak opravdu je. Náhradní terapie s
náplastmi vám zřejmě nevyhovovala. Pojďme se společně zamyslet, co by
mohlo být efektivnější strategie pro snižování počtu vykouřených cigaret.
Například postupné omezování, hledání náhradních činností nebo podpůrné
metody jako je kognitivně-behaviorální terapie. Hlavně neztrácejme
motivaci, odvykání je opravdu běh na dlouhou trať, kde jsou drobné
neúspěchy naprosto normální. Pojďme hledat cesty, které vám budou
nejvíce vyhovovat.

Response generated with RAG:

Chápu, situace se zatím moc nezměnila. I když náplasti krátkodobě
pomáhaly, stále kouříte zhruba krabičku denně. Je dobré, že jste si
uvědomil, že náplasti samy o sobě nejsou řešením a potřebujete kombinaci
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více postupů. Neztrácejte motivaci, odvykání je proces, který chvíli
trvá. Důležité je vytrvat a využít všechny možné cesty - náhradní
terapii, behaviorální techniky i psychoterapeutickou podporu. Společně
na tom můžeme dále pracovat a hledat cesty, které vám budou nejvíce
vyhovovat. Hlavní je neztrácet naději a vydržet.

Response comparison: Both results are too similar to discern the better one.

6.5 Results discussion
In responses to both LLM-generated samples (6.2 and 6.3), we can see that using RAG
increased the specificity of the response by better expression of the real approach that
should be taken.

Sample 6.4 is inconclusive and nearly the same as without RAG.
Sample A.3.2 (which is based on an anonymized transcript of a real conversation)

shows that the worse quality of the transcribed conversation combined with more data
from RAG caused the LLM to hallucinate and the response is not relevant to alcohol
addiction as it should be, but to prescription drug addiction instead.

In the end, 70% of the samples yielded better results with RAG when compared
to LLM-only generation, except samples 6.4 (inconclusive), A.2.5 (inconclusive),
and A.3.2 (hallucination).

Based on this observation we can conclude that the qualitative analysis shows im-
provement when using RAG when compared to direct LLM generation. Using quanti-
tative metrics in the future will provide more insight into the specific improvements.
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Chapter 7
Conclusion

This thesis has successfully demonstrated the theoretical knowledge, microservice de-
sign, and implementation required to leverage Retrieval-Augmented Generation tech-
nology for enhancing responses in addiction counseling scenarios. Through rigorous
analysis and practical implementation, the study provided a comprehensive overview of
RAG, from its foundational concepts to its application in a real-world setting, specifi-
cally focusing on conversations between addiction specialists and their clients.

Firstly, the thesis showcased an understanding of RAG technology. The literature
review and theoretical framework covered the intricacies of natural language process-
ing, large language models, and the benefits and challenges of integrating RAG into
existing systems. This solid theoretical base was crucial in guiding the design and
implementation phases of the project.

The design and implementation of the RAG-based microservice highlighted microser-
vice architecture principles - the decision to utilize a microservice approach, as opposed
to a monolithic architecture, ensuring flexibility, scalability, and ease of maintenance.
The microservice was developed to manage vector database collections and documents,
embed new documents, and query collections effectively. These capabilities are essential
for the robust functioning of the RAG system within the broader application context.

The results discussion section provided an evaluation of the implemented RAG sys-
tem. The analysis of LLM-generated responses, both with and without RAG, indicated
significant improvements in specificity and relevance when RAG was employed. This
qualitative assessment was supported by concrete examples, demonstrating the practical
benefits of RAG in enhancing conversational AI applications in addiction counseling.

The thesis also acknowledged the limitations and potential future improvements for
the RAG system. These include the offloading of vector computation to an exter-
nal GPU to enhance processing speed, refining the RAG pipeline for better efficiency,
and implementing more advanced data augmentation techniques. These future im-
provements are vital for further optimizing the performance and applicability of the
implemented RAG system.

The successful completion of this project underscores the importance of integrating
advanced AI technologies into specialized fields such as addiction counseling. By con-
tinually refining and improving these technologies, there is significant potential to offer
more personalized, accurate, and supportive interactions, ultimately contributing to
better outcomes for individuals seeking help.

In conclusion, this thesis has contributed to the field of AI and NLP by demonstrating
the practical benefits of RAG technology. It provides a clear pathway for future research
and development, highlighting the ongoing need for innovation and improvement in
small AI-driven conversational systems. The implementation of the RAG microservice
provided an example of an RAG application in a real-world setting.

42



References

[1] Locke, Saskia, Anthony Bashall, Sarah Al-Adely, John Moore, Anthony
Wilson, and Gareth B. Kitchen. Natural language processing in medicine: A
review. Trends in Anaesthesia and Critical Care. 2021, Vol. 38, pp. 4-9. ISSN 2210-
8440. Available from DOI https://doi.org/10.1016/j.tacc.2021.02.007.
https://www.sciencedirect.com/science/article/pii/S2210844021000411.

[2] Lewis, Patrick, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-Augmented Gen-
eration for Knowledge-Intensive NLP Tasks.

[3] Gao, Yunfan, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi
Dai, Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-Augmented Genera-
tion for Large Language Models: A Survey.

[4] Medium - Difference between AI, Machine Learning, NLP and Deep Learning [on-
line]. [cit. 2024-05-18]. Available from
https://becominghuman.ai/difference-between-ai-machine-learning-nlp-and-
deep-learning-9f63066087f1.

[5] DeepLearning.AI - Natural Language Processing [online]. [cit. 2024-05-15]. Avail-
able from
https://www.deeplearning.ai/resources/natural-language-processing/.

[6] Lin, Steven Y., Megan R. Mahoney, and Christine A. Sinsky. Ten Ways Artificial
Intelligence Will Transform Primary Care. Available from DOI 10.1007/s11606-
019-05035-1. Available from
http://dx.doi.org/10.1007/s11606-019-05035-1.

[7] Oh, Kyo-Joong, Dongkun Lee, Byungsoo Ko, and Ho-Jin Choi. A Chatbot for
Psychiatric Counseling in Mental Healthcare Service Based on Emotional Dialogue
Analysis and Sentence Generation. Available from DOI 10.1109/mdm.2017.64.
Available from
http://dx.doi.org/10.1109/MDM.2017.64.

[8] Beltrami, Daniela, Gloria Gagliardi, Rema Rossini Favretti, Enrico Ghi-
doni, Fabio Tamburini, and Laura Calza. Speech Analysis by Natural Language
Processing Techniques: A Possible Tool for Very Early Detection of Cognitive De-
cline? Available from DOI 10.3389/fnagi.2018.00369. Available from
http://dx.doi.org/10.3389/fnagi.2018.00369.

[9] Qliq - The Healthcare Chatbot [online]. [cit. 2024-05-18]. Available from
https://www.qliqsoft.com/introducing-the-healthcare-chatbot-what-you-need-
to-know-and-why.

[10] Wang, Jing, Huan Deng, Bangtao Liu, Anbin Hu, Jun Liang, Lingye Fan, Xu
Zheng, Tong Wang, and Jianbo Lei. Systematic Evaluation of Research Progress
on Natural Language Processing in Medicine Over the Past 20 Years: Bibliometric

43

http://dx.doi.org/https://doi.org/10.1016/j.tacc.2021.02.007
https://www.sciencedirect.com/science/article/pii/S2210844021000411
https://becominghuman.ai/difference-between-ai-machine-learning-nlp-and-deep-learning-9f63066087f1
https://becominghuman.ai/difference-between-ai-machine-learning-nlp-and-deep-learning-9f63066087f1
https://www.deeplearning.ai/resources/natural-language-processing/ 
http://dx.doi.org/10.1007/s11606-019-05035-1
http://dx.doi.org/10.1007/s11606-019-05035-1
http://dx.doi.org/10.1007/s11606-019-05035-1
http://dx.doi.org/10.1109/mdm.2017.64
http://dx.doi.org/10.1109/MDM.2017.64
http://dx.doi.org/10.3389/fnagi.2018.00369
http://dx.doi.org/10.3389/fnagi.2018.00369
https://www.qliqsoft.com/introducing-the-healthcare-chatbot-what-you-need-to-know-and-why
https://www.qliqsoft.com/introducing-the-healthcare-chatbot-what-you-need-to-know-and-why


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Study on PubMed. Available from DOI 10.2196/16816. Available from
http://dx.doi.org/10.2196/16816.

[11] Cook, Nigel, Anmol Mullins, Raju Gautam, Sharath Medi, Clementine
Prince, Nishith Tyagi, and Jyothi Kommineni. Evaluating Patient Experiences
in Dry Eye Disease through Social Media Listening Research. Adis Journals, 2019.
Available from DOI 10.6084/M9.FIGSHARE.8108912.
https://link.springer.com/article/10.1007/s40123-019-0188-4.

[12] Ni, Lin, Chenhao Lu, Niu Liu, and Jiamou Liu. MANDY: Towards a Smart Pri-
mary Care Chatbot Application. Available from DOI 10.1007/978-981-10-6989-5 4.
Available from
http://dx.doi.org/10.1007/978-981-10-6989-5 4.

[13] Rumshisky, A, M Ghassemi, T Naumann, P Szolovits, V M Castro, T H
McCoy, and R H Perlis. Predicting early psychiatric readmission with natu-
ral language processing of narrative discharge summaries. Available from DOI
10.1038/tp.2015.182. Available from
http://dx.doi.org/10.1038/tp.2015.182.

[14] He, Qiwei, Bernard P. Veldkamp, Cees A. W. Glas, and Theo de Vries. Auto-
mated Assessment of Patients’ Self-Narratives for Posttraumatic Stress Disorder
Screening Using Natural Language Processing and Text Mining. Available from
DOI 10.1177/1073191115602551. Available from
http://dx.doi.org/10.1177/1073191115602551.

[15] Gianfrancesco, Milena A., Suzanne Tamang, Jinoos Yazdany, and Gabriela
Schmajuk. Potential Biases in Machine Learning Algorithms Using Electronic
Health Record Data. Available from DOI 10.1001/jamainternmed.2018.3763. Avail-
able from
http://dx.doi.org/10.1001/jamainternmed.2018.3763.

[16] Salman, Shaeke, and Xiuwen Liu. Overfitting Mechanism and Avoidance in Deep
Neural Networks.

[17] Sheikhalishahi, Seyedmostafa, Riccardo Miotto, Joel T Dudley, Alberto
Lavelli, Fabio Rinaldi, and Venet Osmani. Natural Language Processing of
Clinical Notes on Chronic Diseases: Systematic Review. Available from DOI
10.2196/12239. Available from
http://dx.doi.org/10.2196/12239.

[18] Wikipedia: The Free Encyclopedia - SNOMED CT [online]. [cit. 2024-05-15]. Avail-
able from
https://en.wikipedia.org/wiki/SNOMED_CT.

[19] IBM - What is retrieval-augmented generation? [online]. [cit. 2024-01-20]. Available
from
https://research.ibm.com/blog/retrieval-augmented-generation-RAG.

[20] Gradient Flow - Techniques, Challenges, and Future of Augmented Language Mod-
els [online]. [cit. 2024-05-18]. Available from
https://gradientflow.com/techniques-challenges-and-future-of-augmented-
language-models/.

[21] Medium - Retrieval-Augmented Generation (RAG) from basics to advanced [on-
line]. [cit. 2024-05-22]. Available from
https://medium.com/@tejpal.abhyuday/retrieval-augmented-generation-rag-from-
basics-to-advanced-a2b068fd576c.

44

http://dx.doi.org/10.2196/16816
http://dx.doi.org/10.2196/16816
http://dx.doi.org/10.6084/M9.FIGSHARE.8108912
https://link.springer.com/article/10.1007/s40123-019-0188-4
http://dx.doi.org/10.1007/978-981-10-6989-5unhbox voidb@x kern .06em vbox {hrule width.3em}4
http://dx.doi.org/10.1007/978-981-10-6989-5unhbox voidb@x kern .06em vbox {hrule width.3em}4
http://dx.doi.org/10.1038/tp.2015.182
http://dx.doi.org/10.1038/tp.2015.182
http://dx.doi.org/10.1177/1073191115602551
http://dx.doi.org/10.1177/1073191115602551
http://dx.doi.org/10.1001/jamainternmed.2018.3763
http://dx.doi.org/10.1001/jamainternmed.2018.3763
http://dx.doi.org/10.2196/12239
http://dx.doi.org/10.2196/12239
https://en.wikipedia.org/wiki/SNOMED_CT 
https://research.ibm.com/blog/retrieval-augmented-generation-RAG
https://gradientflow.com/techniques-challenges-and-future-of-augmented-language-models/ 
https://gradientflow.com/techniques-challenges-and-future-of-augmented-language-models/ 
https://medium.com/@tejpal.abhyuday/retrieval-augmented-generation-rag-from-basics-to-advanced-a2b068fd576c
https://medium.com/@tejpal.abhyuday/retrieval-augmented-generation-rag-from-basics-to-advanced-a2b068fd576c


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[22] DataStax - Vector Embeddings: The Foundation of Data Representation [online].

[cit. 2024-01-20]. Available from
https://www.datastax.com/guides/what-is-a-vector-embedding.

[23] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.

[24] TensorFlow - word2vec [online]. [cit. 2024-01-21]. Available from
https://www.tensorflow.org/text/tutorials/word2vec.

[25] Allen Institute for AI - ELMo [online]. [cit. 2024-01-21]. Available from
https://allenai.org/allennlp/software/elmo.

[26] Hugging Face - Massive Text Embedding Benchmark (MTEB) Leaderboard [online].
[cit. 2024-05-12]. Available from
https://huggingface.co/spaces/mteb/leaderboard.

[27] deepset - The Beginner’s Guide to Text Embeddings [online]. [cit. 2024-05-18].
Available from
https://www.deepset.ai/blog/the-beginners-guide-to-text-embeddings.

[28] Rozado, David. Wide range screening of algorithmic bias in word embedding mod-
els using large sentiment lexicons reveals underreported bias types. Available from
DOI 10.1371/journal.pone.0231189. Available from
http://dx.doi.org/10.1371/journal.pone.0231189.

[29] Pinecone [online]. [cit. 2024-01-20]. Available from
https://www.pinecone.io/.

[30] Chroma [online]. [cit. 2024-01-20]. Available from
https://www.trychroma.com/.

[31] LangChain - Introduction [online]. [cit. 2024-01-20]. Available from
https://python.langchain.com/docs/get_started/introduction.

[32] Jankuv, Patrik. Processing of dialogue data from the field of addiction counselling
practice. Available from
https://dspace.cvut.cz/handle/10467/113293.

[33] National Library of Technology - Journal Search [online]. [cit. 2024-01-20]. Avail-
able from
https://sfx.techlib.cz/sfxlcl41/journalsearch/ntk.

[34] Addictology journal [online]. [cit. 2024-01-20]. Available from
https://adiktologie-journal.eu.

[35] National Institutes of Health - National Library of Medicine [online]. [cit. 2024-01-
20]. Available from
https://www.nlm.nih.gov/.

[36] Firefox Addons - Link Gopher [online]. [cit. 2024-01-20]. Available from
https://addons.mozilla.org/en-US/firefox/addon/link-gopher/.

[37] JDownloader [online]. [cit. 2024-01-20]. Available from
https://jdownloader.org/.

[38] LangChain - PyPDFLoader [online]. [cit. 2024-01-20]. Available from
https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf.

[39] Github - pdftotext [online]. [cit. 2024-01-20]. Available from
https://github.com/jalan/pdftotext.

[40] Github - PyMuPDF [online]. [cit. 2024-01-20]. Available from
https://github.com/pymupdf/PyMuPDF.

45

https://www.datastax.com/guides/what-is-a-vector-embedding
https://www.tensorflow.org/text/tutorials/word2vec
https://allenai.org/allennlp/software/elmo
https://huggingface.co/spaces/mteb/leaderboard 
https://www.deepset.ai/blog/the-beginners-guide-to-text-embeddings 
http://dx.doi.org/10.1371/journal.pone.0231189
http://dx.doi.org/10.1371/journal.pone.0231189
https://www.pinecone.io/
https://www.trychroma.com/
https://python.langchain.com/docs/get_started/introduction
https://dspace.cvut.cz/handle/10467/113293
https://sfx.techlib.cz/sfxlcl41/journalsearch/ntk
https://adiktologie-journal.eu
https://www.nlm.nih.gov/
https://addons.mozilla.org/en-US/firefox/addon/link-gopher/
https://jdownloader.org/
https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf
https://github.com/jalan/pdftotext
https://github.com/pymupdf/PyMuPDF


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[41] Github - pdfminer [online]. [cit. 2024-01-20]. Available from

https://github.com/euske/pdfminer.
[42] Github - pdfplumber [online]. [cit. 2024-01-20]. Available from

https://github.com/jsvine/pdfplumber.
[43] Github - unstructured [online]. [cit. 2024-01-20]. Available from

https://github.com/Unstructured-IO/unstructured.
[44] LangChain - Chunking Best Practices for RAG Applications [online]. [cit. 2024-01-

20]. Available from
https://www.youtube.com/watch?v=uhVMFZjUOJI.

[45] Hugging Face - all-MiniLM-L6-v2 [online]. [cit. 2024-01-20]. Available from
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

[46] Chroma - Integrations - Langchain [online]. [cit. 2024-05-05]. Available from
https://docs.trychroma.com/integrations/langchain.

[47] Medium - Evaluating RAG Applications with RAGAs [online]. [cit. 2024-01-21].
Available from
https://towardsdatascience.com/evaluating-rag-applications-with-ragas-
81d67b0ee31a.

[48] Wikipedia: The Free Encyclopedia - Entity linking [online]. [cit. 2024-01-21]. Avail-
able from
https://en.wikipedia.org/wiki/Entity_linking.

[49] Asai, Akari, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi.
Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

[50] Art, Taylor . J2EE and Beyond: Design Develop and Deploy World-Class Java
Software. Hoboken New Jersey U.S: Prentice Hall, 2002. ISBN 978-0-13-141745-8
.

[51] Visual Paradigm - What is Use Case Diagram? [online]. [cit. 2024-05-07]. Available
from
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-
is-use-case-diagram/.

[52] Wikipedia - Software requirements specification [online]. [cit. 2024-05-07]. Available
from
https://en.wikipedia.org/wiki/Software_requirements_specification.

[53] The App Solutions - Functional vs Non-functional Requirements: Main Differences
& Examples [online]. [cit. 2024-05-07]. Available from
https://theappsolutions.com/blog/development/functional-vs-non-functional-
requirements/.

[54] Atlassian - Microservices vs. monolithic architecture [online]. [cit. 2024-05-05].
Available from
https://www.atlassian.com/microservices/microservices-architecture/
microservices-vs-monolith.

[55] Chroma - Usage Guide [online]. [cit. 2024-05-05]. Available from
https://docs.trychroma.com/usage-guide.

[56] LinkedIn - Pulse - SOAP vs REST: All you need to know [online]. [cit. 2024-05-18].
Available from
https://www.linkedin.com/pulse/soap-vs-rest-all-you-need-toknow-luis-soares-
m-sc-.

46

https://github.com/euske/pdfminer
https://github.com/jsvine/pdfplumber
https://github.com/Unstructured-IO/unstructured
https://www.youtube.com/watch?v=uhVMFZjUOJI
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://docs.trychroma.com/integrations/langchain
https://towardsdatascience.com/evaluating-rag-applications-with-ragas-81d67b0ee31a
https://towardsdatascience.com/evaluating-rag-applications-with-ragas-81d67b0ee31a
https://en.wikipedia.org/wiki/Entity_linking
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/ 
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-use-case-diagram/ 
https://en.wikipedia.org/wiki/Software_requirements_specification 
https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/ 
https://theappsolutions.com/blog/development/functional-vs-non-functional-requirements/ 
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://docs.trychroma.com/usage-guide
https://www.linkedin.com/pulse/soap-vs-rest-all-you-need-toknow-luis-soares-m-sc-
https://www.linkedin.com/pulse/soap-vs-rest-all-you-need-toknow-luis-soares-m-sc-


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[57] IBM - What is a REST API? [online]. [cit. 2024-05-08]. Available from

https://www.ibm.com/topics/rest-apis.
[58] Raygun - SOAP vs REST vs JSON - a 2023 comparison [online]. [cit. 2024-05-08].

Available from
https://raygun.com/blog/soap-vs-rest-vs-json/.

[59] Chroma - Getting started [online]. [cit. 2024-05-05]. Available from
https://docs.trychroma.com/getting-started.

[60] Microsoft - Learn - ChromaClient [online]. [cit. 2024-05-05]. Available from
https://learn.microsoft.com/en-us/dotnet/api/microsoft.semantickernel.
connectors.chroma.chromaclient.

[61] Python - What is Python? Executive Summary [online]. [cit. 2024-05-05]. Available
from
https://www.python.org/doc/essays/blurb/.

[62] Flask [online]. [cit. 2024-05-05]. Available from
https://flask.palletsprojects.com/en/3.0.x/.

[63] FastAPI [online]. [cit. 2024-05-05]. Available from
https://fastapi.tiangolo.com/.

[64] Django [online]. [cit. 2024-05-05]. Available from
https://www.djangoproject.com/.

[65] Tornado [online]. [cit. 2024-05-05]. Available from
https://www.tornadoweb.org/en/stable/.

[66] Pyramid [online]. [cit. 2024-05-05]. Available from
https://trypyramid.com/.

[67] freeCodeCamp - Python Back-End Development – Handbook for Beginners [online].
[cit. 2024-05-05]. Available from
https://www.freecodecamp.org/news/python-back-end-development-the-beginners-
guide/.

[68] Fortune - Education - AI programming languages power today’s innovations like
ChatGPT. These are some of the most popular [online]. [cit. 2024-05-05]. Available
from
https://fortune.com/education/articles/ai-programming-languages/.

[69] MDN Web Docs - JavaScript language overview [online]. [cit. 2024-05-08]. Available
from
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_overview.

[70] Node.js - Introduction to Node.js [online]. [cit. 2024-05-08]. Available from
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs.

[71] Moesif - Top 5 Node.js REST API Frameworks [online]. [cit. 2024-05-08]. Available
from
https://www.moesif.com/blog/api-product-management/api-analytics/Top-5-
NodeJs-REST-API-Frameworks/.

[72] Flask - Deploying to Production [online]. [cit. 2024-05-08]. Available from
https://flask.palletsprojects.com/en/3.0.x/deploying/.

[73] Werkzeug [online]. [cit. 2024-05-08]. Available from
https://werkzeug.palletsprojects.com/en/3.0.x/.

[74] Flask-RESTX [online]. [cit. 2024-05-08]. Available from
https://flask-restx.readthedocs.io/en/latest/.

47

https://www.ibm.com/topics/rest-apis 
https://raygun.com/blog/soap-vs-rest-vs-json/ 
https://docs.trychroma.com/getting-started
https://learn.microsoft.com/en-us/dotnet/api/microsoft.semantickernel.connectors.chroma.chromaclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.semantickernel.connectors.chroma.chromaclient
https://www.python.org/doc/essays/blurb/
https://flask.palletsprojects.com/en/3.0.x/
https://fastapi.tiangolo.com/
https://www.djangoproject.com/
https://www.tornadoweb.org/en/stable/
https://trypyramid.com/
https://www.freecodecamp.org/news/python-back-end-development-the-beginners-guide/
https://www.freecodecamp.org/news/python-back-end-development-the-beginners-guide/
https://fortune.com/education/articles/ai-programming-languages/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Language_overview 
https://nodejs.org/en/learn/getting-started/introduction-to-nodejs 
https://www.moesif.com/blog/api-product-management/api-analytics/Top-5-NodeJs-REST-API-Frameworks/ 
https://www.moesif.com/blog/api-product-management/api-analytics/Top-5-NodeJs-REST-API-Frameworks/ 
https://flask.palletsprojects.com/en/3.0.x/deploying/
https://werkzeug.palletsprojects.com/en/3.0.x/ 
https://flask-restx.readthedocs.io/en/latest/ 


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[75] SentenceTransformers [online]. [cit. 2024-05-08]. Available from

https://sbert.net/.
[76] InstructorEmbedding [online]. [cit. 2024-05-08]. Available from

https://github.com/xlang-ai/instructor-embedding.
[77] Python - Logging [online]. [cit. 2024-05-08]. Available from

https://docs.python.org/3/library/logging.html.
[78] GitHub - python-dotenv [online]. [cit. 2024-05-08]. Available from

https://github.com/theskumar/python-dotenv.
[79] DEV Community - What is Application design? [online]. [cit. 2024-05-08]. Available

from
https://dev.to/hellonehha/what-is-application-design-53fa.

[80] Medium - The Three Layered Architecture [online]. [cit. 2024-05-08]. Available from
https://medium.com/@deanrubin/the-three-layered-architecture-fe30cb0e4a6.

[81] Canarys - 3 Layered Architecture [online]. [cit. 2024-05-18]. Available from
https://ecanarys.com/3-layered-architecture/.

[82] GeeksforGeeks - REST API Architectural Constraints [online]. [cit. 2024-05-08].
Available from
https://www.geeksforgeeks.org/rest-api-architectural-constraints/.

[83] Swagger - About [online]. [cit. 2024-05-08]. Available from
https://swagger.io/docs/specification/about/.

[84] Visual Studio Code [online]. [cit. 2024-05-10]. Available from
https://code.visualstudio.com/.

[85] Visual Studio Code - Getting Started [online]. [cit. 2024-05-10]. Available from
https://code.visualstudio.com/docs.

[86] Notepad++ - What is Notepad++ [online]. [cit. 2024-05-10]. Available from
https://notepad-plus-plus.org/.

[87] Muennighoff, Niklas, Nouamane Tazi, Löıc Magne, and Nils Reimers. MTEB:
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Appendix A
RAG results

A.1 English conversations generated by GPT4o

A.1.1 Conversation 1
Conversation text:

Patient: I think I might have a problem with alcohol. I drink almost
every night, and it’s starting to affect my work and relationships.
Specialist: Thank you for sharing that. Can you tell me more about your
drinking habits? For example, how much do you typically drink in a night?
Patient: Usually a bottle of wine, sometimes more. It helps me relax,
but lately, it feels like I need more to get the same effect.

Response generated without RAG:

It sounds like you are developing a tolerance to alcohol, which is a
common sign of alcoholism or alcohol use disorder. Drinking every night
and needing to increase the amount to feel the desired effect are red
flags that your alcohol use has become problematic. I would recommend
speaking to an addiction counselor or your doctor for an assessment and
to get support in cutting back or quitting drinking. Early intervention
can help prevent further negative impacts on your work, relationships
and health.

Response generated with RAG:

I’m sorry to hear that alcohol has started impacting important areas of
your life like work and relationships. Developing a tolerance and
needing to drink more to achieve the desired effects are signs of alcohol
dependence. However, there is help available. As an addiction specialist,
I would recommend speaking to your doctor or a counselor about getting
support to cut back or quit drinking. With the right treatment plan and
support system, many people are able to regain control over alcohol use.
You’ve taken an important first step in acknowledging there may be an
issue. Recovery is possible, one day at a time.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.1.2 Conversation 2
Conversation text:

Patient: I’ve been taking painkillers ever since my surgery last year,
and I can’t seem to stop. I’m worried I’m addicted.
Specialist: It’s good that you’re reaching out. Painkillers can be very
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addictive, especially after long-term use. How often are you taking them
now?
Patient: Almost daily. I tried to stop, but the withdrawal symptoms were
too intense.

Response generated without RAG:

I understand this is a difficult situation. Daily use of painkillers and
experiencing withdrawal symptoms when trying to quit are signs of
physical dependence and addiction. It’s important to seek professional
help to taper off painkillers safely and receive support for managing
withdrawal. With medical supervision and a structured treatment plan,
overcoming painkiller addiction is possible. Please don’t try to quit
cold turkey on your own as that can be dangerous.

Response generated with RAG:

I understand this is a difficult situation. Developing a dependence on
painkillers after surgery is quite common. It’s wise to seek professional
help to safely manage withdrawal symptoms and treat the addiction. I
would recommend speaking to an addiction specialist or your doctor about
a medically supervised detox program. They can provide support and
medications to ease the withdrawal process. Overcoming painkiller
addiction is challenging, but very possible with the right treatment
plan and support system in place. The most important first step is
reaching out for help, which you’ve already taken.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.1.3 Conversation 3
Conversation text:

Patient: I’ve been gambling a lot, and I’m losing more money than I can
afford. It’s putting a strain on my family.
Specialist: Gambling can be very consuming. How often do you find
yourself gambling, and how much time and money are you spending?
Patient: Almost every day, and I’ve lost thousands in the past few
months. I keep thinking I’ll win it back, but it never happens.

Response generated without RAG:

I understand the urge to chase losses and try to win back the money
you’ve lost through gambling. However, this tends to lead to an even
deeper hole of debt and problems. Gambling addiction is a real issue
that requires professional help to overcome. I would strongly
encourage you to reach out to a gambling addiction hotline or counselor
to get support in stopping this destructive cycle before it causes
further financial and familial strain.

Response generated with RAG:

I understand the urge to try to win back losses, but continuing down that
path often leads to digging the hole deeper. Gambling addiction is a real
issue that can have severe financial and personal consequences. The fact
that it is straining your family relationships is a major red flag.
You’ve taken an important first step by being honest about the struggle.
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I would strongly encourage you to seek professional help from a gambling
addiction counselor or program. They have strategies to help you regain
control and repair the financial and relationship impacts. You don’t
have to fight this alone - there is support available.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.2 Czech conversations generated by GPT4o

A.2.1 Conversation 1
Conversation text:

Patient: Dobrý den, pane doktore, myslím, že mám problém s alkoholem.
Piju každý den a už to nezvládám kontrolovat.
Specialist: Dobrý den, rozumím. Jak dlouho už pijete takto pravidelně?
Patient: Asi tak poslední dva roky. Ze začátku to bylo jen občas, ale teď
už je to denně.
Specialist: Chápu. Jaký máte pocit, když se pokusíte nepít?
Patient: Jsem nervózní, podrážděný a mám problém se soustředit. Je to,
jako by mi něco chybělo.

Response generated without RAG:

To, co popisujete, zní jako tělesná závislost na alkoholu. Je dobře, že
jste si tohoto problému vědom a přicházíte pro pomoc. Léčba závislosti na
alkoholu zahrnuje řadu kroků, jako je detoxikace, terapie a svépomocné
skupiny. Bude to vyžadovat trpělivost a odhodlání, ale s správnou
podporou je vážně možné závislost překonat a vrátit se k životu bez
alkoholu. Nechci na vás naléhat, ale doporučil bych vám zvážit léčbu.

Response generated with RAG:

Je zřejmé, že u vás už došlo k závislosti na alkoholu. Nedostatek
alkoholu v těle vám působí odvykací příznaky jako je nervozita,
podrážděnost a nesoustředěnost. Přestat pít najednou po delší
závislosti může být zdravotně rizikové, proto bych doporučil
podstoupit odbornou ústavní léčbu. Tam vám zkušení odborníci pomohou
bezpečně detoxikovat organismus a následně vám nabídnou vhodný způsob
dlouhodobé léčby závislosti, ať už formou doléčovacích pobytů,
terapií nebo svépomocných skupin. S jejich pomocí a vaší motivací je
zvládnutí závislosti reálné. Není třeba se stydět a nepodcenit váš
problém.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.2.2 Conversation 2
Conversation text:

Patient: Dobrý den, mám pocit, že jsem závislý na hazardních hrách.
Skoro každý den hraju a dělám dluhy.
Specialist: Dobrý den, to je vážný problém. Jak dlouho už máte pocit,
že vás hazardní hry ovládají?
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Patient: Asi poslední rok. Nejdřív to bylo jen pro zábavu, ale teď už to
nemůžu přestat dělat.
Specialist: A jaké to má dopady na váš každodenní život a vztahy?
Patient: Kvůli dluhům se hádám s rodinou a začínám mít problémy v práci.

Response generated without RAG:

Je důležité, abyste si závislost na hazardních hrách přiznal a vyhledal
odbornou pomoc. Bez ní bude velmi obtížné se z tohoto bludného kruhu
dostat sám. Můžeme vám doporučit kontakty na organizace, které se na
léčbu patologického hráčství specializují. Najít správnou motivaci a
oporu v rodině vám může hodně pomoci překonat tuto závislost. Nebojte
se o podporu požádat, rozhodně na to nejste sám.

Response generated with RAG:

Chápu, že je to pro vás velmi obtížná situace. Závislost na hazardních
hrách může mít vážné následky, ale s odbornou pomocí se dá překonat.
Důležité je si přiznat problém a rozhodnout se něco s tím udělat.
Mohl bych vám doporučit kontaktovat některou z organizací, které se
specializují na léčbu návykového chování. Tam vám mohou poskytnout
potřebnou podporu a terapii, abyste se dokázal ze závislosti dostat.
Nejste v tom sám a není pozdě věci změnit k lepšímu. Hlavně
nevzdávejte úsilí a věřte, že to zvládnete.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.2.3 Conversation 3
Conversation text:

Patient: Dobrý den, mám problém se závislostí na lécích na předpis.
Užívám je denně, i když už bych neměl.
Specialist: Dobrý den, chápu. Které léky užíváte a jak dlouho?
Patient: Jsou to hlavně léky na bolest. Užívám je asi dva roky. Začalo to
po operaci, ale teď už je potřebuji pořád.
Specialist: A co se stane, když se pokusíte léky nevzít?
Patient: Mám silné bolesti a nemůžu se soustředit na nic jiného.
Taky jsem velmi podrážděný.

Response generated without RAG:

Rozumím, že jde o závažnou závislost, která vážně ovlivňuje váš život.
Byl bych velmi opatrný s náhlým vysazením léků, mohlo by to být pro vás
nebezpečné. Doporučil bych vám vyhledat odbornou pomoc v nějaké léčebně
závislostí nebo alespoň poradit se s lékařem. Detoxifikace pod lékařským
dohledem a následná léčba vám mohou velmi pomoci získat závislost pod
kontrolu a předejít zdravotním komplikacím. Nemusíte to zvládnout sám,
existují účinné léčebné postupy. Nebojte se požádat o pomoc.

Response generated with RAG:

Rozumím, že jde o složitou situaci. Vzhledem k délce užívání těchto léků
a příznakům při jejich vynechání se pravděpodobně vyvinula závislost.
Pokračování v tomto režimu však může vést k dalšímu prohlubování
problémů. Pomoct vám může odborná léčba závislosti, kde vám odborníci
pomohou bezpečně léky vysadit a zvládnout abstinenční příznaky.
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Současně vám nabídnoupodporu při hledání jiných cest ke zmírnění
bolestí. Není nutné se stavu vzdávat, existují cesty jak se závislostí
pracovat pod odborným vedením. Můžeme vám doporučit vhodné adiktologické
služby ve vašem okolí.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.2.4 Conversation 4
Conversation text:

Patient: Dobrý den, jsem závislý na marihuaně. Kouřím denně a mám pocit,
že už to nezvládám bez ní.
Specialist: Dobrý den, děkuji, že jste přišel. Jak dlouho už takto
kouříte?
Patient: Asi tři roky. Začalo to občas, ale teď už je to každý den.
Specialist: Jak se cítíte, když si marihuanu nedáte?
Patient: Jsem nervózní, nemůžu spát a mám problémy s jídlem.

Response generated without RAG:

Chápu, že pro vás odvykání marihuaně bude náročné, zejména kvůli fyzickým
přízrakům. Je však možné se závislosti zbavit s odbornou pomocí.
Doporučil bych vám kontaktovat nejbližší adiktologickou ambulanci nebo
kliniku, kde vám poskytnou podporu během odvykacího procesu a naučí vás
copingové strategie pro zvládání chutí. Se správným přístupem a podporou
se dá závislost překonat. Nejste na to sám.

Response generated with RAG:

Rozumím, denní užívání marihuany může vést k závislosti a abstinenčním
příznakům. Je dobře, že jste to rozpoznal a přišel pro pomoc. Společně
můžeme pracovat na léčbě závislosti a zvládání odvykacích příznaků.
Existují osvědčené metody jako kognitivně-behaviorální terapie, náhradní
léčba a svépomocné skupiny, které vám mohou pomoci dosáhnout abstinence.
Nejdůležitější je vaše odhodlání změnit svůj životní styl. Jsem tady,
abych vás při tom podpořil a poskytl potřebné nástroje. Uděláme vše
pro to, abyste se zbavil závislosti.

Response comparison: The RAG result is more nuanced and specific than the LLM-
only one.

A.2.5 Conversation 5
Conversation text:

Patient: Dobrý den, myslím, že jsem závislý na sociálních médiích.
Trávím tam celé dny a zanedbávám ostatní věci.
Specialist: Dobrý den, to může být vážný problém. Jak dlouho už trávíte
tolik času na sociálních médiích?
Patient: Asi poslední dva roky. Cítím se tam dobře, ale pak si uvědomím,
že jsem ztratil celý den.
Specialist: A jaký vliv to má na vaše každodenní aktivity a vztahy?
Patient: Zanedbávám práci, školu a dokonce i přátele. Jsem často
podrážděný, když nemám přístup k telefonu.

Response generated without RAG:
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Chápu, že sociální média pro vás představují určitý únik, ale jejich
nadměrné používání může mít vážné negativní důsledky. Je dobré, že jste
si toho vědom. Abychom se s tím mohli vypořádat, bylo by vhodné stanovit
si nějaká pravidla ohledně času stráveného on-line, najít si nějaké
další zájmy a aktivity offline a případně vyhledat odbornou pomoc,
například formou poradenství nebo terapie. Je důležité včas začít se
závislostí pracovat, aby nenarušovala váš život.

Response generated with RAG:

Je dobré, že si uvědomujete negativní dopady nadměrného užívání
sociálních médií. Závislost na nich může skutečně narušovat každodenní
fungování a vztahy. Můžeme se společně zaměřit na strategie, jak čas
strávený online více omezit. Pomoci může například časové omezení,
blokování aplikací nebo nahrazení nutkání jinou aktivitou. Hlavně to
nevzdávejte, s trochou úsilí se dá závislost překonat. Jsem tu pro vás,
abych vám poskytl podporu.

Response comparison: Both results are too similar to discern the better one.

A.3 Czech conversations from the anonymized
transcript dataset

A.3.1 Conversation 1
Conversation text:

Patient: Dobrý den.
Specialist: Dobrý den. Národní linka pro odvykání.
Patient: My na [Date] máme domluvenou konzultaci. Máte, jakou chvilku
čas.
Specialist: [Patient name]? Ano? Povídejte, co je nového teda o tý? Nebo
jsme se neslyšeli.
Patient: No, novýho od spolucující ohledně toho kouření nebo ostatní
ještě.
Specialist: Ohledně toho kouření. Povídejte.
Patient: Ohledně kouření teda vlastně nic, no, to může prát stejně asi
zhruba.
Specialist: To znamená teda těch 10 cigaret, jak jste kouřil jako 40,
protože vlastně vy jste říkal minule, že, že jste vykouřil těch cca 10.
Patient: Ne, ne, krabičku, když jste měl nápla, tak jsem vykouřil
krabičku, první den ho v kopce, [Date] [Date] jsem vykouřil zase půl
kapku a půl a jsem si náplastí už radši nedával, protože to nemělo efekt
žádnej, takže teďkon cítil náplasti. Beru, jenom, když jedu na nějakou
dlouhou cestu, ale třeba za psychiatrem nebo nakoupit autem nebo za
psychologem prostě na delší cestu autem třeba, tak si dám, ale stejně.
Kouřim, jo, tak si vás jdu, já poslal, stejně kouřím, takže.

Response generated without RAG:

Chápu, situace s kouřením se zatím příliš nezlepšila. Je dobře, že jste
upřímný a popisujete mi realitu tak, jak opravdu je. Náhradní terapie s
náplastmi vám zřejmě nevyhovovala. Pojďme se společně zamyslet, co by
mohlo být efektivnější strategie pro snižování počtu vykouřených cigaret.
Například postupné omezování, hledání náhradních činností nebo podpůrné
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metody jako je kognitivně-behaviorální terapie. Hlavně neztrácejme
motivaci, odvykání je opravdu běh na dlouhou trať, kde jsou drobné
neúspěchy naprosto normální. Pojďme hledat cesty, které vám budou
nejvíce vyhovovat.

Response generated with RAG:
Chápu, situace se zatím moc nezměnila. I když náplasti krátkodobě
pomáhaly, stále kouříte zhruba krabičku denně. Je dobré, že jste si
uvědomil, že náplasti samy o sobě nejsou řešením a potřebujete kombinaci
více postupů. Neztrácejte motivaci, odvykání je proces, který chvíli
trvá. Důležité je vytrvat a využít všechny možné cesty - náhradní
terapii, behaviorální techniky i psychoterapeutickou podporu. Společně
na tom můžeme dále pracovat a hledat cesty, které vám budou nejvíce
vyhovovat. Hlavní je neztrácet naději a vydržet.

Response comparison: Both results are too similar to discern the better one.

A.3.2 Conversation 2
Conversation text:

Patient: Dobrý den.
Specialist: Národní linka pro odvykání. Prosím.
Patient: Dvě voziky já jsem měl vůbec. My jsme vám dneska volali, jo,
před.
Adiktolog: [Patient name].
Patient: Jasně, my jsme vám volali, protože jsme měli domluvený s vámi
hovor na. Předpokládám, že na [Date].
Adiktolog: Neměli.
Patient: Neměli, zněli, tak já teda mám namřené, že, že máme domluvený
hovor na [Date]. V [Date], ale pokud se vám to nehodí, tak se můžeme
domluvit na jiné. Ne? Pohodí se to, že si promluvit.
Adiktolog: Dobře, dobře, tak jak se vám daří?
Patient: No, to je tak někde na opase třeba [Date] pij, už se lidé, ne?
Nebo zase čtyři piju, tři dny ne? A furt to jde. Doch, ale nikomu
neshodím, nikomu nevadím. Takhle se, když vám vypijte, tak se se mnou
mu tak nebaví.

Response generated without RAG:
Rozumím, že pití alkoholu pro vás představuje problém, se kterým si
nevíte rady. Je dobře, že jste se rozhodl vyhledat odbornou pomoc.
Alkoholismus je nemoc, kterou lze léčit, ale vyžaduje to velkou vůli
a podporu okolí. Navrhuji, abychom se nejprve společně zaměřili na
pochopení vašich důvodů k pití a rizikových situací, které k němu
vedou. Postupnými kroky pak můžeme pracovat na změně životního stylu
a zvládání chutí na alkohol. Hlavně neztrácejte naději, s odhodláním
a trpělivostí se dá problém zvládnout.

Response generated with RAG:
Rozumím, že užívání léků bez lékařského předpisu a ve větším množství
pro vás představuje problém, se kterým si nevíte rady. Je dobré, že jste
se rozhodl situaci řešit. Přesto bych vám doporučil obrátit se nejprve na
svého praktického lékaře nebo přímo na odborníky v některém z
adiktologických poraden nebo stacionářů. Tam vám pomohou nastavit vhodný
odvykací režim a zajistí potřebnou péči a podporu během celého procesu.
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Na naší lince bohužel nemáme dostatečné kapacity na vedení dlouhodobé
odvykací terapie. Mohu vám ale poskytnout kontakty na nejbližší zařízení,
kde vám odborně poradí.

Response comparison: LLM-only is correct, while the RAG one is incorrect, because
of model hallucination and subsequently irrelevant response.
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Appendix B
List of abbreviations

RAG Retrieval-augmented generation
NLP Natural language processing
PoC Proof-of-concept
LM Language model

LLM Large language model
AI Artificial intelligence

NLU Natural language understanding
NLG Natural language generation
CNN Convolutional neural network
RNN Recurrent neural network
EHR Electronic health record
API Application programming interface
DB Database
ID Unique identifier

REST Representational state transfer
SOAP Representational state transfer
HTTP Hypertext transfer protocol

JS JavaScript
WSGI Web server gateway interface
CRUD Create, read, update and delete

UI User interface
IDE Integrated development environment

CI Continuous integration
CD Continuous delivery/deployment

VPS Virtual private server
ufw Uncomplicated firewall
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Appendix C
List of attachments

The attachments of this thesis are divided into the following folders:

. model benchmark - Scripts used for benchmarking performance of embedding models
when running on CPU in comparison to running on GPU. poc solution - Scripts used as a part of the PoC solution. results comparison - Scripts used for the generation of final results. swagger specification - Final autogenerated Swagger OpenAPI specification of the
microservice. vector store provider - Source codes of the microservice
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Appendix D
List of used software

. Python - Programming language. Visual Studio Code - IDE (integrated development environment). Notepad++ - Text editor. Enterprise Architect - Diagrams. Draw.io - Diagrams. Docker - Deployment. Postman - Endpoint testing. Deepl - Translation, AI tool. Grammarly - Text correction, AI tool. QuillBot - Plagiarism check, AI tool. GPT3, GPT4o - Text restructuring, generation of sample conversations, AI tool. Upscayl - Image upscaling, AI tool. Llama-2-13b-hf - AI model used for PoC implementation. Claude 3 Sonnet - AI model used for generating responses for results comparison
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