S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

4 N
Student's name: Beckert Adam Personal ID number: 478386
Faculty / Institute:  Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics
Specialisation: Artificial Intelligence
G J
Il. Master’s thesis details
4 N
Master’s thesis title in English:
Multi-agent Path Finding with kinodynamic constraints

Master's thesis title in Czech:
Multi-agentni planovani s kinodynamickymi omezenimi

Guidelines:
Multi-Agent Path Finding is an NP-hard task widely studied by both the robotics and artificial intelligence communities.
Especially in recent years, many approaches have been proposed that differ in the quality of the solution found and the
computational requirements. One of the methods is the MAPF-LNS2 metaheuristic, which generates an initial solution
and subsequently improves it iteratively. In each iteration, a part of the solution is deleted and then the solution is repaired.
The aim of the work is to modify the MAPF-LNS2 algorithm in such a way that it takes into account the kinodynamic
properties of robots. It will be done in the following steps.
1. Familiarize yourself with the MAPF-LNS2 method [1] and its freely available implementation [2].
2. Get acquainted with the Safe Interval Path Planning (SIPP) method [3], its variant taking into account the kinodynamic
properties of robots (SIPP-IP) [4] and the freely available implementation of SIPP-IP [5].
3. Design and implement a modification of MAPF-LNS2 taking into account kinodynamic properties of robots.
4. Experimentally verify the properties of the developed method and compare it with the SIPP-IP method.
5. Describe the proposed method and discuss obtained experimental results.

Bibliography / sources:
[1] https://ojs.aaai.org/index.php/AAAl/article/view/21266
[2] https://github.com/Jiaoyang-Li/MAPF-LNS2
[3] https://iwww.cs.cmu.edu/~maxim/files/sipp_icrall.pdf
[4] https://arxiv.org/pdf/2302.00776.pdf
[5] https://github.com/pathplanning/sipp-ip

\\ J

CVUT-CZ-ZDP-2015.1 Page 1 from 2

© CVUT v Praze, Design: CVUT v Praze, VIC



4 )

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D. Intelligent and Mobile Robotics CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 09.02.2024 Deadline for master's thesis submission: 24.05.2024

Assignment valid until: 21.09.2025

RNDr. Miroslav Kulich, Ph.D. Head of department's signature prof. Mgr. Petr Pata, Ph.D.
k Supervisor's signature Dean'’s signature

[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC




Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Multiagent path planning with kinematic
constraints

Adam Beckert

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Supervisor—specialist: Ing. David Zahradka
Field of study: Open informatics

Subfield: Artificial intelligence
May 2024



ctuthesis t1606152353

ii



Acknowledgements

I would like to express my sincere grati-
tude to my supervisor, RNDr. Miroslav
Kulich, Ph.D., for his great leadership,
profound knowledge, and tireless patience
with me throughout the whole year.

iii

Declaration

Prohlasuji, Ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

V Praze, 24. May 2024

ctuthesis t1606152353



Abstract

This thesis addresses the complex prob-
lem of Multi-agent path finding in envi-
ronments with dynamic objects and kine-
matic constraints of robots, a challenge
central to the field of autonomous systems.
We introduce "Safe Interval Path Planning
with Soft Constraints and Interval Pro-
jection" (SIPPS-IP), a novel algorithm
that combines elements of two existing
algorithms to enhance the coordination
of multiple agents in these environments.
We then combine the SIPPS-IP with adap-
tive LNS, to find a solution to our prob-
lem. This integration ensures efficient,
collision-free navigation while adhering
to the kinematic limitations of the robots.
We validate the efficacy and correctness of
SIPPS-IP through extensive simulations
in varied and dynamic scenarios.

Keywords: MAPF, dynamic objects,
kinematic constraints, autonomous
systems, Safe Interval Path Planning
(SIPP), soft constraints, SIPPS-IP,
adaptive LNS, collision-free navigation,
autonomous navigation, autonomous
logistics
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Abstrakt

Tato diplomova prace se zabyva multi-
agentnim pldnovanim v prostredich s dy-
namickymi objekty a kinematickymi ome-
zenimi robotl, coz je vyzva, kterd je
klicova v oblasti autonomnich systémii.
Predstavujeme "Safe Interval Path Plan-
ning with Soft Constraints and Inter-
val Projection" (SIPPS-IP), novy algorit-
mus, ktery kombinuje prvky dvou stava-
jicich algoritmt za 1céelem zlepseni koor-
dinace vice agentl v téchto prostredich.
Poté kombinujeme SIPPS-IP s adaptiv-
nim LNS, abychom nasli feseni pro tento
problém. Tato integrace zajistuje efektivni
a bezkolizni navigaci pti dodrzeni kinema-
tickych omezeni robott. Uéinnost a sprav-
nost SIPPS-IP ovérujeme prostiednictvim
rozsahlych simulaci v riznych scénarich.

Klicova slova: MAPF, dynamické
objekty, kinematickd omezeni, autonomni
systémy, SIPP, SIPP-IP, SIPPS-IP,
adaptivni LNS, navigace bez kolizi,
autonomni navigace, autonomni logistika

Preklad nazvu: Multi-agentni planovani
s kinodynamickymi omezenimi
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Chapter 1

Introduction

Multi-Agent Path Finding (MAPF) is a complex problem crucial to au-
tonomous systems. This chapter outlines the challenges in MAPF, especially
those involving kinematic constraints, and sets the stage for integrating
pathfinding algorithms with re-planning methods.

B 1 Background

MAPF takes part in robotics, computer science, and artificial intelligence,
playing an important role in fields like logistics, vehicle navigation, and general
robotics. MAPF focuses on navigating multiple agents through a shared space
efficiently and without collisions. The problem can be approached in various
ways depending on the simplifications made regarding the search space and
the agents’ mobility.

The performance of MAPF algorithms is critical, particularly in complex
and dynamic environments. Efficient path planning affects resource manage-
ment, cost efficiency, and system capacity. Enhancing MAPF algorithms can
significantly improve the performance of autonomous systems. This thesis
aims to improve MAPF solutions by focusing on scenarios involving kinematic
constraints and dynamic conditions.

1 ctuthesis t1606152353



1. Introduction

B2 Objective

This thesis addresses the challenge of MAPF with kinematic constraints, an
area rarely covered by traditional MAPF algorithms. As we consider non-
holomic robots, these constraints involve agents’ physical limitations, such
as varying speeds, acceleration and deceleration, orientation, and navigation.
The primary goal is to refine MAPF algorithms to account for these kinematic
aspects, ensuring safe, efficient, and realistic navigation.

We propose a new solution called Safe Interval Path Planning with Soft
Constraints and Interval Projection (SIPPS-IP) to deal with this issue. This
solution aims to integrate realistic kinematic constraints into the pathfinding
process, bridging the gap between theoretical models of Safe Interval Path
Planning (SIPP) and practical applications in real-world environments.

Our approach builds on existing methods that extend the original SIPP
algorithm to handle kinematic constraints such as acceleration, deceleration,
and collisions in between agents. By combining these it allows us to find a
solution in reasonable time, by finding solution with collisions which are then
iteratively optimized ending in a collision-free plan.

. 1.3 Research Contributions

This research makes several key contributions to the field of MAPF and
algorithm development:

# Introduction of SIPPS-IP: Developed and introduced the SIPPS-
IP algorithm, which improves upon the existing SIPP-IP algorithm
by incorporating interval projections and better handling kinematic
constraints.

# Implementation and Evaluation: Conducted a comprehensive evalu-
ation using established benchmarks. Compared to the SIPP-IP in MAPF,
which has not been shown so far.

® Implementation: Successfully implemented the SIPPS-IP and SIPP-
IP algorithm into the MAPF codebase, where it could be further tested.

ctuthesis t1606152353 2



1.4. Scope and Limitations

# Handling Kinematic Constraints: Addressed the challenge of kine-
matic constraints in MAPF, providing solutions that are applicable to
real-world scenarios where agent movements are subject to physical
constraints.

® Heuristic Development: Developed new heuristics for SIPPS-IP that
considers node expansion limit, contributing to more efficient pathfinding.

B4 Scope and Limitations

This research focuses on integrating SIPPS-IP and adaptive LNS algorithms
within dynamic, grid-based environments. The scope includes:

® Agents and Dynamic Obstacles: The study will consider scenar-
ios involving multiple agents and dynamic, hard obstacles within the
environment.

8 Environment Modeling: The environment is represented as a grid,
where each agent can have one of four orientations and move at speeds
ranging from zero to a defined maximum speed. Benchmarks include
environments of various sizes, from simple to maze-like configurations.

The study has certain limitations and assumptions:

# Kinematic Constraints: Agents are assumed to follow predefined
kinematic constraints like speed limits and acceleration/deceleration
capabilities, with all agents limited by the same constraints.

® Predictability: There is an assumption of predictability in agent be-
havior and environmental conditions, meaning no uncertainties such as
delays in robot actions.

B Scalability: The focus is on smaller-scale scenarios involving dozens of
agents, acknowledging potential limitations in scalability for very large
or dense environments.

3 ctuthesis t1606152353
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Chapter 2

Related Work

This chapter presents a short overview of the literature on MAPF, with a
particular focus on approaches that incorporate kinematic constraints and
collision handling, as these are central to the thesis. The most important
papers, SIPP-TP [AY23] and MAPF-LNS2 [LCHT22|, for this thesis are only
discussed here from a broad perspective and in the theoretical part Sections

4.4, and are described in detail.

We do not formulate this section as an overview of all approaches, but
only cover a few broadly, because there exists a recent overview of MAPF
|GLL*23|, so we would like to direct a reader there for a more comprehensive
and detailed overview of the various methods used in solving MAPF problem.

B 2.1 A review of graph-based multi-agent
pathfinding solvers: From classical to beyond
classical

As MAPF encompasses multiple sub-tasks it is critical to identify different
solutions for various problems, and possibly utilize their advantages to our
issue. The paper discusses various MAPF solvers, ranging from
classical approaches like optimal, bounded sub-optimal, and unbounded sub-
optimal solvers. These advanced solvers address real-world complexities such
as task assignment, heterogeneous agents, execution delay, mechanical failures,

5 ctuthesis t1606152353



2. Related Work

and kinematic constraints. The review also highlights the transition from
classical MAPF approaches, which often involve simplified motion models and
discretized environments, to more sophisticated methods that attempt to align
more closely with real-world scenarios in a trade-off for the computational
time.

The paper underscores the importance of adaptability, computational
efficiency, and multi-objective optimization in MAPF solvers and points out
current challenges and directions for future research. It also establishes
foundational concepts and definitions used across the field.

. 2.2 SIPP: Safe Interval Path Planning for Dynamic
g y
Environments

The paper [PL11] introduces the Safe Interval Path Planning algorithm,
a significant advancement in path-finding algorithm that addresses dynamic
obstacles in real-time planning scenarios. SIPP is built on the concept of ’safe
intervals’, periods during which a robot can occupy a space without colliding
with any moving obstacles. This approach allows the planner to efficiently
handle dynamic environments by reducing the computational complexity

typically associated with time dimension in path planning. The algorithm is
described in detail in Section [4.1.3

B 23 Multi-Agent Pathfinding with Continuous Time

The paper extends path planning algorithm so it can work in a
continuous time framework, and adapts the conflict based search based on
this. It uses problem formulation MAPFR, where the subscript R denotes real-
valued non-uniform edge weights, therefore it does not rely on discretization
of state space.

The main parts this paper introduces are:

® Continuous-Time Algorithms: The introduction of |(Continuous-time|
Conflict-Based Search (CCBS)|and Satisfiability Modulo Theories;CCBS|
SMT-CCBS)| allows to move from discrete to continuous time modeling.

ctuthesis t1606152353 6



2.4. Multi-Agent Path Finding with Kinematic Constraints

® Handling of Complex Movements: These algorithms are specifically
designed to handle scenarios with variable action durations, a feature
not typically accommodated in traditional MAPF algorithms.

8 Enhanced Path Optimization: By operating in a continuous domain,
these algorithms optimize path planning with a finer granularity.

The two algorithms CCBS - Continuous-time Conflict-Based Search and
SMT_CCBS - SAT Modulo Theory CCBS are the two algorithms developed

and they both utilize collision detection mechanisms, that is used in further
path planning CSIPP (Constrained SIPP).

This paper showed promise and could have been applied to our problem, but
as several comparisons have demonstrated, other suboptimal solver methods
perform better, especially on a larger scale. An example of this is seen in
Figure 2.1.

B 24 Multi-Agent Path Finding with Kinematic
Constraints

The paper [HKC™16] introduces MAPF-POST, a novel approach that uses a
simple temporal network to post-process the output of a MAPF solver. This
approach ensures that the resultant plan can be executed on robots with
non-holonomic constraints, taking into account their maximum translational
and rotational velocities and providing a guaranteed safety distance between
them.

The MAPF-POST approach works in three main steps:

® Initial MAPF Solution -First, a traditional MAPF solver is used
to find an initial set of collision-free paths. These solvers are capable
of handling hundreds of agents in cluttered environments efficiently.
However, the resultant paths do not consider the kinematic constraints.

® Temporal Plan Graph (TPG) Construction - The output from the
MAPF solver is converted into a Temporal Plan Graph (TPG), which is
a directed acyclic graph representing the sequence of events where each
event corresponds to an agent entering a location. Temporal precedences

7 ctuthesis t1606152353



2. Related Work

are enforced between events, ensuring that an agent enters locations
in the specified order and maintaining the sequence in which different
agents enter the same location.

® Simple Temporal Network (STN) Transformation - The TPG is
then transformed into a Simple Temporal Network (STN). Each edge
in the STN represents a temporal constraint between events, annotated
with bounds that correspond to the kinematic constraints of the robots.
Specifically, the lower bound is determined by the minimum time required
to move between locations based on the maximum velocity limits. This
transformation ensures that the resultant plan execution schedule main-
tains a guaranteed safety distance between agents and accommodates
slack to absorb imperfect executions.

The results show that MAPF-POST is capable of generating execution
schedules in polynomial time, ensuring safe and efficient navigation for multi-
ple robots. The approach has been validated through extensive simulations
and real-world experiments, highlighting its potential for applications in
warehouse automation, airport ground traffic management, and more.

While this closely relates to our thesis, we decided to go with a different
approach. Here the solution is found with a simplified solver and the results
are transformed to account for kinematic constraints, meaning that the path
planning is not aware of this transformation, therefore the quality of the
solution is not guaranteed.

M 25 Lifelong Path Planning with Kinematic
Constraints for Multi-Agent Pickup and Delivery

The work [MHK™19] deals with a variation of the Multi-Agent Pickup and
Delivery (MAPD) problem, a more specialized MAPF, which makes the
problem more difficult. The authors expand on Token Passing method
which replans agents based on considering other agent paths in replanning.
Previously the path finding algorithm was space-time A*, however, they
introduced a new algorithm Safe Interval Path Planning with Reservation
Tables (SIPPwRT). It handles continuous forward movements and utilizes a
reservation table, where it maintains efficiently safe intervals for cells.

The reservation table with SIPP is also present in our work as they have

ctuthesis t1606152353 8



2.6. Safe Interval Path Planning With Kinodynamic Constraints

also been utilized in MAPF-LNS2, and the reservation table is described in
Section 4.1.1L

B 2.6 Safe Interval Path Planning With Kinodynamic
Constraints

The [Safe Interval Path Planning with Interval Projection (SIPP-IP)|algorithm,
as described in the paper [AY23], extends the SIPP algorithm by incorporating
interval projection. This enhancement is created to be able to work with
kinematic constraints. As this algorithm is used for our solution, we describe
it in more detail in Section 4.3l

B 2.7 MAPF-LNS2: Fast Repairing for Multi-Agent
Path Finding via Large Neighborhood Search

The paper presents the MAPF-LNS2 algorithm, it introduces
SIPPS, which allows collisions between agents. These collisions are temporary
as Large neighborhood search (LNS) iteratively optimizes this solution until
we get to a collision-free plan.

® Large Neighborhood Search: The core innovation of is
its use of a large neighborhood search (LNS) strategy. This approach
enables the algorithm to efficiently handle collisions in a set of paths by
iteratively replanning for a subset of agents.

® Enhanced Collision Handling: is designed to reduce
collisions and achieve collision-free paths more efficiently. It starts with
a set of paths that contain collisions and systematically reduces these
through iterative replanning.

8 Dominance of SIPPS Nodes: introduces weak and strong dominance
on SIPPS Nodes to limit the number of nodes to be expanded.

MAPF-LNS2| represents a significant step forward in as it out-

performs the previous algorithms significantly, both in terms of speed and
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2. Related Work

success rate. The Figure shows a comparison on the benchmark (on all
33 maps) [SSET19a), against other MAPF solvers: PPS, EECBS, EECBS*,
PPR where it outperforms all of them and with the 5-minute time limit it
can solve 80 % of problems, compared to the second best 63 %.

1.0
L 0.8- PPS
18] ——
® 06 EECBS
2 o EECBS*
‘g ‘ |-ee PPR
o 02711 —— MAPF-LNS2
0.0 :
0 1 2 3 4 5

Runtime limit (min)

Figure 2.1: Success rates of LNS2 compared to PPS, EECBS, EECBS*, PP,

Source: [LCHT22]

This work is the starting point for our approach and both the adaptation
of SIPP and LNS are discussed in detail in the Theoretical Part.
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Part |

Theoretical Part
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Chapter 3

Problem specification

MAPF is a critical area of study that poses complex challenges, especially
when agents must interact within dynamic environments. This chapter dives
into the core aspects of MAPF, setting the stage for a deeper exploration of
how agents navigate spaces crowded with obstacles and other agents.
Definition 3.1 (Classical MAPF). The classical MAPF problem is defined by
the following elements:

1. Agent Set: A set A = {1,2,...,k} representing k agents.

2. Graph: An undirected graph G = (V, E), where V denotes the node
set and E denotes the edge set. Nodes represent possible agent locations,
while edges represent the connections between them.

3. Starting Locations: A mapping s : A — V that assigns each agent to
its starting point.

4. Target Locations: A mapping t : A — V that assigns each agent to
its target point.

Time Assumption: The classical MAPF problem assumes discrete time
steps, with each agent performing one action per time step. The actions
include:

8 Wait Action: The agent remains at its current node.

13 ctuthesis t1606152353



3. Problem specification

® Move Action: The agent moves to an adjacent node v, given that v’
is different from the current node v and adjacent to it.

An action can be formally defined as a function a : V-— V', where a(v) = o/

represents moving from node v to node v’, or remaining at node v if v = .
Each action a also incurs a cost, denoted by c(a), which quantifies the
resources or effort required to perform the action. This cost can vary based
on factors such as distance, time, or other relevant metrics, depending on the

environments.

Plans: Agents follow sequences of actions to move from their starting to
target locations. The sequence of actions performed by agent ¢ is denoted by
m = (a1,a2,...,a,) and is known as a plan. If agent ¢ starts at location
s(4) and reaches target (i) using plan 7;, it is considered a single-agent plan.
The actions must follow temporal and spatial consistency, ensuring that each
action starts immediately after the preceding one ends, and their respective
vertices are the same.

Solution: A valid solution to the MAPF problem is a set of k single-agent
plans (one per agent), ensuring that the plans are collision-free. Once an
agent reaches its target, it may remain at that location or disappear.

The cost of a plan, denoted by c¢(m;), is the sum of the costs of the
individual actions within the plan. The cost of the overall solution can
be evaluated using different metrics. The makespan is the maximum time
taken by any agent to complete its plan. This metric emphasizes the time
efficiency of the slowest agent. Alternatively, the Sum of Costs (SOC) is the
total sum of the costs of all agents’ plans, reflecting the overall resource usage
of the solution. A valid solution to the MAPF problem aims to minimize
these costs while ensuring that all plans are collision-free. The definition
follows the one from paper [SSET19b].

B 31 Approaches to Solving MAPF

While there are different approaches to solving the MAPF problem, we focus
on Prioritized Planning (a decoupled approach). Other approaches include
coupled planning, where all agents are planned together in a single search
process.

ctuthesis t1606152353 14



3.1. Approaches to Solving MAPF

B 3.1.1 Prioritized Planning

Prioritized Planning is a sequential approach used to solve the MAPF problem
by giving each agent a specific priority. The idea is to plan paths for agents
one by one in the order of their assigned priority. The agents with higher
priorities plan their paths first, and subsequent agents plan theirs while
avoiding collisions with paths already planned.

The solution is found such that agents are sorted based on their priority,
which is usually assigned randomly'. Each agent plans its path from its
starting point to its target using a single-agent pathfinding algorithm while
treating the paths of higher-priority agents as dynamic obstacles to avoid
them.

Advantages: The approach is simple and easy to implement, requiring
only a good pathfinding algorithm and effective priority assignment. Being a
decoupled approach, it can still yield partial solutions, meaning that even if
a complete solution isn’t found, it can at least provide plans for a subset of
the agents.

Limitations: The solution may not be optimal, and agents with lower
priorities might end up with infeasible paths, even if simpler alternatives are
available.

Despite these limitations, Prioritized Planning provides a practical balance
between computation speed and solution quality. In this work, we will focus
on this method as a basis for developing robust solutions.

B 3.1.2 Typical MAPF example

We start our journey into the world of MAPF with Figure 3.1, which illustrates
a typical scenario in an 8 by 8 grid, where eight agents successfully navigate
without conflict, picturing an ideal case of MAPF. The paths here lead from
the starting position (green circle), denoted as s;, and goal positions g; (red
circle). The plan is optimal as for each agent we have the shortest path,
meaning that we cannot even simplify the solution further.

!The priorities are typically assigned randomly, but alternative initial priorities can be
established based on heuristic values specific to each agent. An interesting approach to
learning these priorities is discussed in Paper |ZLH"22|.
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3. Problem specification

Figure 3.1: Example of regular MAPF| with 8 agents

The chapter progresses to introduce practical examples that gradually
reveal more complex interactions. These scenarios show different interactions
between dynamic objects—agents and obstacles—that influence pathfinding.
As we move forward, we will discuss how kinematic constraints affect agent
movement.

Special attention is given to the pathfinding algorithm SIPP (Safe Interval
Path Planning) and its extensions |[SIPP-IP|and [SIPPS| which are designed
to address the intricacies of dynamic pathfinding. These algorithms are the

foundation of our approach in creating |SIPPS-IP.

B 3.1.3 Collision-Prone MAPF Scenario

In the preceding section, we introduced the concept of MAPF using an example
with eight agents navigating without collisions (see Figure|3.1). However, such
ideal conditions are rare in practical applications. Real-world scenarios often
involve dynamic interactions where agents’ paths cross, leading to potential
conflicts or collisions. Understanding these challenges is crucial for applying
MAPF to complex environments like robotics, autonomous navigation, and
logistics.
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3.1. Approaches to Solving MAPF

B Example with Collisions

To illustrate the complexity introduced by collisions, consider the scenario
depicted in Figure|3.2l This example contrasts two different planning outcomes
based on the sequence in which agents plan their routes:

® Collision-Free Scenario (Figure 3.2a) Here, Agent S3 is planned
first, followed by Agents S1 and S2. This sequence allows S3 to navigate
through the space unobstructed by the others, who adjust their paths
to accommodate S3. This example demonstrates how prioritizing one
agent’s path over others can lead to a collision-free outcome.

® Collision Scenario (Figure [3.2b]) Conversely, when Agent S3 is
planned last, its path conflicts with the routes of Agents S1 and S2, who
have already established their paths. This arrangement leads to two
collisions involving S3, highlighting how the order of planning significantly
affects the feasibility of the final paths.

(b) : Collision forced scenario

Figure 3.2: Two scenarios of MAPF with 3 agents.

This comparison shows the crucial role of the order of agents in which we
plan the paths of the agents. The order in which agents are scheduled can
dramatically influence the effectiveness and feasibility of the solution. By
analyzing collision scenarios, we can not only identify potential pitfalls in
MAPF implementations but also explore strategic approaches for optimizing
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agent sequencing. Note that to get from the collision scenario in Fig[3.2|to
collision-free we would have to re-plan all 3 agents together and in order,
where S3 is the first one planned, otherwise the path will be obstructed by
the other agents.

. 3.2 MAPF with Kinematic Constraints

The traditional MAPF problem is significantly limited in considering kine-
matic constraints, which reflect the physical capabilities and limitations of
agents, such as their velocities, accelerations, orientation, and ability to
maneuver in a given space.

Kinematic constraints introduce a layer of complexity to MAPF by imposing
restrictions based on the physical properties of agents. These constraints
affect how agents can start, stop, and change their velocities, requiring more
sophisticated solutions than standard pathfinding algorithms provide. We
define these constraints formally as follows:

Definition 3.2 (Kinematic Constraints). A kinematic constraint for an agent
covers limitations on its ability to modify its state of motion, encapsulated
by parameters such as maximum speed vyax, maximum acceleration apax,
maximum deceleration api,, and maximum angular velocity wpax. The
kinematic state of an agent at any specific time is represented as a tuple
comprising its position, linear velocity, and angular velocity (x,v,w), where x
denotes position, v represents linear velocity, and w denotes angular velocity.

Definition 3.3 (Configuration). The configuration of an agent in the context of
MAPF with kinematic constraints represents all possible kinematic states that
the agent can assume within the operational environment. This is formally
modeled as a graph G = (V, E), where each vertex v € V' corresponds to
a kinematic state of the agent, capturing both position and velocity. Each
edge (u,v) € E within this graph signifies a feasible kinematic transition from
state u to state v, adhering to the agent’s kinematic constraints.

While configurations can be various for the purposes of this thesis, the
configuration of an agent is defined as a three-tuple encompassing location,
speed, and orientation, which will be denoted as (I, s,6). Here, [ represents
the specific location of the agent within the environment. The speed s is from
the domain < 0,1 >, where 0 indicates a stop (zero velocity), and 1 indicates
maximum speed. The orientation 6 takes values in {1,2, 3,4}, corresponding
to the four cardinal directions: North, South, West, and East, respectively.
Throughout this thesis, when referring to a 'node’, it is to be understood

ctuthesis t1606152353 18



3.2. MAPF with Kinematic Constraints

as this specific configuration tuple unless specified, (I, s, ), representing a
discrete state within the state space graph G = (V, E).

These configurations are simplifications that are used together with the
actions as motion primitives. They use the kinematic constraints to efficiently
represent all reasonable movements of the robot. More information on motion
primitives can be found in Section [4.3.2l

B Path Representation with Time Intervals

Addressing the pathfinding problem with kinematic constraints requires that
each agent’s path be detailed not only in terms of spatial traversal but also in
terms of the temporal occupation of each location. We represent the path of
an agent as a sequence of tuples, where each tuple consists of a configuration
and a corresponding time interval during which the agent occupies that
location.

For simplicity, consider an agent moving through two cells at a constant
speed, taking 10 timesteps per cell. This results in a path representation as
follows:

{(cellp, [0,10)), (celly, [0,20)), (cellz, [10,20]) }

In this model, as the agent begins moving, it immediately starts to partially
occupy the next cell while still occupying the previous one. This results in the
middle cell being occupied for the entire duration of the movement: initially
shared with celly for the first 10 timesteps and then with celly for the next
10 timesteps.

Figures [3.3b] and (3.3 illustrate the agent’s capability to accelerate to max-
imum speed. The first case demonstrates starting from speed 0, accelerating
to maximum, and then decelerating back to speed 0. The latter case shows
acceleration from speed 0 continuing until the final cell is reached.

B Definition of Path

Definition 3.4 (Path). Let G = (V,E) be a state-space graph where
V represents the configurations of an agent and F represents the feasible
transitions (edges) between these configurations under kinematic constraints.
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Movement by 3 cells Movement by 6 cells

20.0 ®
60
17.5
50
15.0
40
30 I

20
5.0

10
25
0.0 [ ] o

1
Cells Cells

Time Interval
=
o
°

Time Interval

(a) : Simple 2-cell movement (b) : 5 cell movement primitive
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(c) : Only accelerating primitive

Figure 3.3: Example of primitives

A timed path 7 for agent a can be formally defined as a sequence of tuples:

7 = {(e1,t1),(e2,t2),...,(er,tr)}

where:

B e; = (vj_1,v5) € E is an edge representing the motion from configura-
tion vj_1 to v;, adhering to the agent’s kinematic constraints.

m ¢; = [lbj,ubj) € ZT x Z" is the time interval during which the agent

occupies the configurations v;_; and v;. Here, Ib; and ub; denote the
lower and upper bounds of the time interval, respectively.

The path is feasible if and only if for all consecutive edges e; and ej;1, the
following conditions hold:

® ub; = [bj;1 ensuring temporal continuity and consistency.
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® The transitions respect the kinematic constraints imposed by the agent’s
capabilities, such as speed limits, acceleration bounds, and angular
velocities.

B Cost of the Path

Definition 3.5 (Cost of a Timed Path). Let m; = {(e1,t1), (e2,t2),...,(er,tr)}
represent the timed path of agent a;, where e; = (v;_1,v;) are edges repre-
senting the transitions under kinematic constraints from configuration v;_; to
configuration v; and t; are the respective time intervals of these transitions.
The cost of the path, denoted as C(m;), is defined by the total time span
from the start of the first transition to the completion of the last transition.
Formally, the cost is calculated as follows:

C(?Tl) = ubL—lbl

where:

B yby, is the end timestep of the last transition in the path, indicating
when this transition is completed.

® [b; is the starting timestep of the first transition in the path, marking
the commencement of the agent’s journey.

This calculation ensures that the cost reflects the total duration from the
initial movement to the conclusion of the last activity, encompassing any
intermediate waiting times inherently between transitions.

Path example. Let’s consider a simple scenario where an agent has to find
a path from cell [5,2] to [0,0], such that there is an obstacle at a goal location
at an interval [60,103). In Figure 3.5/ the intervals in the lattice show intervals
when the agent occupies the given cell. In the bottom image, we can see that
the path consists of 4 actions each labeled with a different color. The blue
one is moving by 5 cells, initially, the intervals are quite wide, in the midpoint
of this motion much shorter as the agent picks up speed and again widens as
the agent slows down. The red action is turning to the left, which takes 10
timesteps. Next, we are facing the goal and we can reach it, however, if we
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take immediately 2 steps to we will end up in a collision with an obstacle,
therefore the yellow action is waiting until we can perform this motion. Lastly,
the 2-step motion is the green action, with which we reach the goal position
immediately after the dynamic obstacle leaves the cell (black interval).

The path is then represented as in the grid, where for each cell we have the
corresponding interval so that it can be used for planning of other agents.

Visited Cells with Occupation Duration

2| 10,201 | 0,291 | [20,34] | (29,431 | [34,63] | [43,93]

1 [73,113]

0 [93,113]
5 4 3 2 1 0
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0 1
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Location (Coordinates)

Figure 3.5: Intervals of the path

B 3.2.1 Collisions

Firstly, we need to identify two types of objects that we deal with in this
framework: soft objects (agents) and hard objects (dynamic obstacles), the
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set of agents denoted by A (or O°) and the set of hard objects as H (or O"),
with O describing the set of all objects. Paths for both types of objects are
defined as described in the previous section.

Definition 3.6 (Collision and Number of Collisions). A collision occurs between
two distinct objects, an agent a; € A and another object a; € O where a; # a;
if their paths lead to occupying the same location at overlapping time intervals.
Formally, a collision between two paths m; = {(e;1,ti1),...,(€ir,ti0)}
and m; = {(ej1,tj1),---,(ejm,tjn)} is defined if there exists at least
one location p such that p € {vjr,vix—1} Ap € {vj1,vj;—1} for some k
and [, where v;;, and v;; are endpoints of the edges e;;, = (vjr—1,vik)
and e;; = (vj;-1,v;;), and the time intervals ¢;, = [lb;},ub;) and
tiz = [lbj, ubj;) overlap:

[1bi 1, ubi ) O [Ibj 1, ubjp) # 0.

We distinguish between two types of collisions:

® Vertex Collision: A vertex collision occurs if two agents meet at the
same location at the same time. Formally, a vertex collision between
paths m; and 7; occurs if there exists a location v and times t; 5, and t;;
such that:

V= Uik = U5y and [lbi7k,ubi7k)ﬂ[lbj,l,ubﬂ) #@

® Edge Collision: An edge collision occurs if two agents traverse the
same edge in opposite directions at the same time. Formally, an edge
collision between paths 7; and 7; occurs if there exist edges e; , and e;;
such that:

eir = (Vig—1,vik) and e = (vji-1,v51),

and the agents traverse these edges in opposite directions with overlapping
time intervals:

Vik = Vji-1 and Vik—1 = Ujl and [lbi,k,ubi,k)ﬂ[lbﬂ,ubj,l)75@.

The number of collisions between paths 7; and 7, denoted as c¢(m;, 7j), is
given by the sum of all colliding edges between the paths:

L M
clmivmy) = 3 1 (g ot} 0 (w10} £ 0)
=1

k=1

A (i, ubs i) 0 [lby, ubyy) # @)) (3.1)
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where 1(condition) is the indicator function that evaluates to 1 if the condition
is true and 0 otherwise.

B Total Number of Collisions for an Agent

Now that we have collisions between two paths we can extend it to apply to
the whole set of agents and dynamic obstacles.

Definition 3.7 (Total Number of Collisions). The total number of collisions ¢;
for agent a; with the set of all other agents O is defined as:

c; = Z C(7T¢,7Tj)

0j#a;,0;€0

where ¢(m;, ;) is the number of colliding edges between paths as defined
previously and m; and 7; are paths of the objects.

To quantify the total number of collisions among all agents in the set A,
we can define:

The total number of collisions among all agents in A is given by:

1 1A 1Al Al |H]|
Ctotal = 52 Z C(Wz',ﬂj)-i-zzc(mﬂfj)
i=1 j#i,j=1 i=1j=1

Since we do not plan the dynamic obstacles, it is expected that those are
collision-free and even if they were not, it should not affect the total number
of collisions as we would not be able to change it?.

Example Collisions. Consider a scenario Figure 3.6 with three agents where:

® Agent ay’s path is m = {((1,2),[0,2)),((2,3),[2,4)),((3,4),[2,4))}.
® Agent ag has my = {((2,1),[0,2)),((1,2),[2,3))}.

® Dynamic obstacle ag’s path: m3 = {((4,3),[0,3)),((3,4),[3,5))}

2The factor of 1 /2 is used to ensure that each pair of collisions is only counted once, as
c(mi, m;) and ¢(mj, ;) would otherwise both contribute to the count for each pair of agents
¢ and j.
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Each tuple in the paths of the agents and the dynamic obstacle now accu-
rately represents the transitions between locations and the specific intervals
for these transitions. This update ensures that the paths reflect the actual
movement dynamics, including the beginning and end of each transition,
crucial for determining potential collisions based on shared locations and
overlapping time intervals.

Agents Movement Intervals by Location

5 [} —— Agent 1l
—8— Agent 2
—8— Obstacle 3

Locations

Figure 3.6: Example of collisions for 3 objects

In this scenario, agent a; experiences:

B8 Two soft-collisions with agent ao at locations 1 and 2, for 2 timesteps

8 One hard-collision with obstacle as at location 3 during the overlapping
interval [2,4) interval.

While we distinguish between the two types of collisions, if we talk about
number of collisions we mean either sum of soft-collisions and hard-collisions
or just the sum of soft-collisions, if it is obvious. (the obstacles are already
accounted in the state-space) So in this context we can say that agent 1 has
3 collisions, and agent 2 has 2 soft-collisions with agent 1.

B 3.2.2 Collision-Free Paths

Collision-free paths are ones where agents and obstacles do not share the
same space at overlapping time intervals. We can formalize this concept using
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the collision metrics defined previously.

Definition 3.8 (Collision-Free Paths). A set of paths for agents in the set A
and obstacles in the set H is considered collision-free if the total number of
collisions ¢t among all pairs of agents, and between agents and obstacles,
is zero. Formally, this is defined as:

Ctotal = 0
This implies that:
Vi,je Aji# j:C(m,m;) = 0 and Vie A,Voe H:C(m,m) = 0

B 3.2.3 Definition of MAPF with Kinematic Constraints

Let us consider a set of dynamic obstacles H and a set of agents A = {aj,as,...,an},
each with unique starting s; and target positions g; on a graph G = (V, E)
representing the environment. Each agent a; has associated kinematic con-
straints that define its movement capabilities. The task is to find paths m;

for all agents such that:

B 7; is a valid path in G from s; to g;,
m All paths are collision-free,

m All paths are feasible under the kinematic constraints of agents.

B Optimization Objective - Sum of costs 1}

In our MAPF problem, we aim to minimize the total cost for all agents to
reach their respective goals, thereby optimizing the sum of the costs of all
agents.

So the optimization objective, that we are interested in is:
n
min Z (cost(m;))
i=1

with respect to the MAPF with Kinematic Constraints formulation. [

3The MAPF can have other various objectives, such as minimizing the makespan,
computation time, or total success rate on the subset, neither of which will be discussed
here, however their solutions can be found in MAPF overview ﬂQLL—iﬁﬂ
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B 3.2.4 Sources of Complexity in MAPF

MAPF presents several intrinsic challenges that significantly contribute to its
computational complexity. The task involves coordinating multiple agents to
ensure that each reaches its destination efficiently without collisions, under
the constraint of minimizing the sum of costs. Below, we outline the key
factors that complicate MAPF:

® High-Dimensional Search Space: The search space for MAPF is
exponentially large due to the number of agents. Each agent introduces
additional dimensions to the problem’s state space, representing its
possible locations at each time step. The growth of the state space is
exponential to the number of agents, which severely complicates the
search process for feasible and optimal paths.

® Inter-Agent Collision Avoidance: One of the central complexities
in MAPF is ensuring that no two agents collide. Each agent must
be aware of not only static obstacles within the environment but also
the dynamic trajectories of other agents. Planning paths that prevent
collisions involves considering the current and future states of multiple
agents, which adds a significant layer of complexity, especially as the
number of agents increases.

8 Dynamic Environments: In many practical applications, the agents
operate in environments where obstacles or layout configurations may
change dynamically. Adapting to such changes in real-time further
complicates the pathfinding problem as it requires agents to continuously
update their paths in response to the environment’s evolution.

# Kinematic Constraints: imposing limitations on the agents’ move-
ment capabilities such as maximum speed, acceleration, and turning
capabilities. These constraints require that the path-planning algorithms
consider not only the position but also the velocity and orientation of
agents at each step. Unlike usual MAPF formulations where transitions
are well-defined and often just relate to neighboring locations in space,
we have to consider continuous movements. This is later simplified to
motion primitives. 4.3.2

B 3.2.5 Why MAPF is NP-hard

A problem is classified as NP-hard if solving it is at least as difficult as the
hardest problems in NP (nondeterministic polynomial time). An NP-hard
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problem does not necessarily have a known algorithm that can solve it in
polynomial time, and it is as difficult as any problem to which an NP problem
can be reduced in polynomial time.

Reduction from Known NP-hard Problems: MAPF can be reduced
from well-known NP-hard problems such as the "3-SAT" problem [SFSB16].
These reductions show that solving MAPF is at least as difficult as these
classical NP-hard problems. Specifically, the complexity in MAPF arises
because ensuring that multiple agents navigate from their start positions to
their destinations without collision involves solving multiple, interdependent
pathfinding problems simultaneously. Each agent’s path potentially affects
every other’s, creating a problem structure similar to solving multiple "Vertex
Disjoint Paths Problems" concurrently.

Computational Intractability: Optimal solvers for MAPF, which aim
to find collision-free paths with the minimal possible cost (makespan or sum-
of-costs), face the challenge of searching through an exponentially growing
state space as the number of agents increases. This growth results in a
combinatorial explosion of potential solutions, making the search computa-
tionally intractable, especially in environments densely populated with agents.
The complexity is further compounded by the need to account for dynamic
changes in the environment and agent interactions, which continually alter
the feasible solution space.

These factors collectively underscore the inherent difficulty in devising
efficient, optimal algorithms for MAPF and justify its classification as an
NP-hard problem.
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Chapter 4

Solution Approach

The solution, that we propose, involves integrating techniques for solving
the MAPF problem with pathfinding methods that address kinodynamic
constraints. Specifically, we leverage MAPF-LNS2, which incorporates the
SIPPS algorithm for pathfinding alongside an effective re-planning strategy
known as LNS2 (adaptive LNS). Additionally, we utilize SIPP-IP, a method
focused on path planning with kinematic constraints. As both approaches
are based on we have devised a unified strategy that merges these
methodologies. This integrated solution maintains the same re-planning
process as MAPF-LNS2, while introducing a novel algorithm, [SIPPS-IP), for
enhanced pathfinding.

This chapter is divided into two main sections. The first section describes
the pathfinding methods for agents, specifically focusing on how SIPPS and
SIPP-IP handle the challenges of navigating agents through environments
where obstacles and conditions can change. The second section explains
finding the solution to the MAPF problem. This part introduces the MAPF-
LNS2 approach and how we find a solution.

B a1 Pathfinding with Dynamic Objects

Classical pathfinding algorithms such as Depth-First Search (DFS), Breadth-
First Search (BFS), and Dijkstra’s algorithm are designed primarily for
static environments [RN16]. In such settings, these algorithms perform
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optimally by assuming that obstacles and paths remain constant throughout
the navigation process. However, this assumption limits their applicability
in dynamic environments where the state of obstacles and paths can change
unpredictably over time. These changes necessitate algorithms that can adapt
to evolving conditions to maintain path validity and optimality.

To effectively address these limitations in dynamic scenarios, advanced
algorithms such as Space-Time A* (STA*) [Sil05] and [Safe Interval Path
Planning (SIPP) [PL11] have been developed. STA* incorporates time as an
explicit dimension in its search strategy, allowing the algorithm to consider
both spatial and temporal variables in pathfinding. This integration enables
STA* to anticipate and adapt to changes in the environment, enhancing its
utility in dynamic settings. Conversely, SIPP on the other hand works splits
time dimension into intervals, which are then used instead during the search,
thus reducing computational overhead.

B 4.1.1 Space-Time A* Algorithm

Space-Time Ax (STAx) extends the classic A* search algorithm by incorpo-
rating a time dimension into the search space resulting in a three-dimensional
grid. Each node in this space-time grid represents a state defined by its
spatial coordinates and a specific time step. This section summarizes a
document/!| [Sil20].

Definition 4.1 (Space-Time Node). A space-time node in STA* is defined as
a tuple (p,t), where p = (z,y) are the spatial coordinates on the grid and ¢
represents the time step at which the node is evaluated.

Node Expansion. Node expansion considers not only the spatial neighbors
of the current node but also how these neighbors change over time. The
algorithm evaluates potential paths based on both their spatial and temporal
viability.

1. Temporal Consistency: Ensures that transitions between nodes are
possible not only spatially but also at appropriate times.

2. Dynamic Obstacle Avoidance: Each node must be checked against
the trajectories of moving obstacles to avoid collisions at the next step.

The online document| (https://www.davidsilver.uk/wp-content /uploads/2020,/03/coop-
path-ATWisdom.pdf) describes the Space-Time A* more in-depth really well concepts used
in planning, I recommend the reader to follow there to get more information there.
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B Heuristic Function

The heuristic function in STA* is adapted to estimate the cost from a node to
the goal considering both distance and time. It typically combines a spatial
heuristic, such as the Manhattan distance, with a temporal component that
estimates the minimal time required to reach the goal safely.

h((z,y),t) = D((x,9),9) +T((z,y),1) (4.1)

Here, D((z,y), g) represents the spatial distance from the current position
(z,y) to the goal g, and T'((z,y),t) denotes the estimated time delay as a
function of time ¢.

The f-value in STA* is the total estimated cost from the start node to the
goal, passing through the given node. It combines the actual cost from the
start to the current node (g-value) and the heuristic estimate of the cost from
the current node to the goal (h-value). Mathematically, it is expressed as:

f(n) = g(n)+h(n)

In this equation, g(n) is the cost from the start node to the current node n,
typically the timestep we enter the current node, and h(n) as define earlier

(n = ((z,9),1)).

Estimating the time delay T'((x,y),t) accurately in a space-time context
is challenging. Unlike the spatial distance, which can be relatively straight-
forward to calculate using methods like the Manhattan distance, estimating
the time delay must account for various dynamic factors such as potential
future conflicts with other agents, varying speeds, and the need to synchronize
movements. This complexity makes the time delay estimate highly non-trivial
and prone to inaccuracies, further complicating the search process and poten-
tially leading to suboptimal paths. Various algorithms, such as SIPPS and
SIPP-IP, have different approaches to dealing with this challenge, but some
may choose to simplify or ignore the time delay component, as the heuristic
remains admissible.
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B Algorithm

The STA* is very similar to traditional A*, therefore the main part of
the Algorithm (1| is basically identical to the A*. The algorithm begins by
initializing the cost of the start state sgart to zero (line 1). The OPEN list,
which stores nodes to be explored, is initially empty (line 2). The start state
is inserted into the OPEN list with an f-value equal to its heuristic estimate
h(start) (line 3).

The main loop of the algorithm runs until the goal state sgoa1 is expanded
(line 4). Within the loop, the algorithm selects the node s with the smallest
f-value from the OPEN list (line 5) and generates its successors using the
getSuccessors function (line 6).

For each successor s', the algorithm checks if it has been visited before (line
8). If not, the initial cost g(s’) and f(s’) are set to infinity (line 9). If the
newly computed cost to reach s’ via s is lower than the previously known cost
g(s’), the costs g(s') and f(s’) are updated (lines 11-13), and s’ is re-inserted
into the OPEN list with its new f-value (line 14).

Algorithm 1 space-time A*

g(sstart) <~ 0
OPEN « ()
insert Sgart into OPEN with f(sgtart) = h(start)
while sg4, is not expanded do
s < remove node with the smallest f-value from OPEN
successors < getSuccessors(s)
for each s’ in successors do
if s’ was not visited before then
£() e g(s) o0
if g(s') > g(s) + ¢(s,s') then
9(s) < g(s) +c(s, )
1() « g(s)) + h(s')
insert s’ into OPEN with f(s’)

[
L 29

The function getSuccessors, shown in Algorithm [2| generates valid successor
states for a given state s. The function starts by initializing an empty set of
successors (line 2) and retrieves the current time and node from the state s
(lines 3-4). For each possible action, it computes the resulting next node and
the time required to perform the action (lines 5-6).

The validity of the next state, combining the next node and time, is checked
(line 7). If valid, a new state is created, incorporating the updated node and
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time (line 8). The costs g and f for the next state are calculated (lines 9-10),
and the next state is added to the set of successors (line 11). Finally, the
function returns the set of valid successors (line 13).

Algorithm 2 Function getSuccessors

1: function GETSUCCESSORS(s)

2 successors < )

3 current__time < s.time

4 current__node < s.node

5: for each action in possible__actions do

6 next__node < apply(action, current__node)

7 next_time <— current_time + cost(action)

8 if isValid(next_node, next_time) then

9 next__state < createState(next_node, next_time)

10: next__state.g < s.g + cost(action)

11: next_state.f < next_state.g + h(next_state, sgoa1)
12: successors <— successors U {next__state}

13: return successors

B Reservation Table

A reservation table is a crucial data structure in cooperative pathfinding. Its
primary purpose is to prevent path conflicts among multiple units navigating
in the same environment. Each cell in a space-time map is represented within
this table, with each entry indicating whether the cell is available or reserved.
Once a path is chosen by a unit, it marks the cells along this path in the
reservation table. These marked cells act as transient obstacles, ensuring no
other unit can occupy the same space at the same time, effectively reserving
the trajectory for the moving unit.

The reservation table is not being presented in the pseudocode, but it affects
the neighbors selected. The part where it is used is function isValid (line
8), where we check whether the action can be applied and we do not collide
with another object. The implementation is straightforward yet effective.
It involves marking each cell in the space-time map that corresponds to
the planned path of a unit. This marking process creates a reservation for
each step of the unit’s path, blocking those cells for specific time steps. To
manage the potentially large size of space-time maps (for example, 256 x 256
x 256), the data structure is optimized for sparsity. The reservation table, is
typically implemented through the hash map, which allows efficient handling
of reservations as they can be quite sparse.
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B 4.1.2 Theoretical Properties

® Completeness: STA* is complete, meaning it will find a path if one
exists, as long as the dynamics of the obstacles are predictable and the
environment is discretely and accurately modeled.

® Optimality: The path found by STA* is optimal with respect to the
defined cost function, provided that the heuristic used is admissible and
consistent.

Even though STA* is quite a flexible and efficient algorithm, for the dynamic
environments SIPP outperforms it in computation time and especially memory.
The STA* is a precursor to the following algorithms and has quite a lot in
common, we use this as an entry point and pseudo-codes of other algorithms
will be compared to this one (marked by yellow color).

B 4.1.3 Safe Interval Path Planning (SIPP)

SIPP is an innovative approach designed for dynamic environments [PL11]
where the agent must avoid collisions with moving obstacles. It extends
the classical path planning techniques by incorporating the time dimension
effectively, thus enabling the prediction and avoidance of potential collisions
with dynamically moving objects. Compared to STA*, it splits the time into
intervals and operates with them instead leading to faster search.

B Safe Interval Table

The core concept of SIPP involves the use of a Safe Interval Table, which
is a structured way to manage the safe intervals during which a robot can
occupy certain configurations without collisions with dynamic obstacles. A
safe interval for a configuration is defined as a continuous segment of time
during which the configuration remains collision-free, meaning if extended by
one timestep in either direction, the configuration would result in a collision.

Definition 4.2 (Safe Interval). A safe interval [tsiart, tend) for a configuration
is a time period during which the agent can safely remain in or pass through
a configuration without colliding with any moving obstacles. The interval
is bounded by the first safe time step tst+ and the first unsafe time t.,q
immediately after the safe period.
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4.1. Pathfinding with Dynamic Objects

In Figure 4.1 we have an object moving within 4 cells, it takes 1 timestep
to move from one cell to the neighboring one and moves through cells in this
order [1, 2, 3, 4, 4, 3, 2]. The overlap of intervals is caused by a continuous
movement of the agent and by the space representation, therefore when the
object starts at timestep 1 in cell 1 it occupies both cell 1 and 2 simultaneously
until it is in the middle of cell 2.

Resulting safe intervals
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Figure 4.1: Example of safe intervals for 4 cells when dynamic object is added.

B Graph Construction

The SIPP algorithm begins by constructing a timeline for each spatial config-
uration. This is done by iterating through each point along the trajectory of
each dynamic obstacle and updating the timelines for all the configurations
within collision distance of the point. So we end up with a safe interval table
that already covers all dynamic obstacles and all we need to do is search for
a path within these safe intervals?,

2While we could use dynamic obstacles of various sizes and update the safe-intervals
accordingly, for the evaluation we simply work with obstacles of same size as the robot.
(occupying single space point)
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B SIPP Algorithm

SIPP modifies the traditional A* search algorithm by incorporating the safe
intervals. The only difference between space-time A* is how we get the
neighbors in getSuccessors, the main loop stays the same so we can reuse
pseudo-code in Algorithm [1, however at the start of the algorithm we create
the safe interval table, which was described earlier.

The function getSuccessors, as detailed in Algorithm [3 is responsible for
generating valid successor states for a given state s. The function begins
by initializing an empty set of successors (line 2). It then iterates over each
possible motion m that can be applied to the current state s (line 3), M(s)
provides all possible motions at the current state. For each movement m, the
resulting configuration cfg is determined , and the time required to execute
the movement myine is calculated (line 4-5). The start and end times for this
movement are then computed based on the current state’s time and interval
(lines 6-7).

Next, the function iterates over each safe interval ¢ in the resulting con-
figuration cfg (line 8). It checks if the interval i is valid by ensuring that
its start time is not after the movement’s end time and its end time is not
before the movement’s start time (lines 9-10). If the interval 7 is valid, the
function computes the earliest arrival time ¢ at the configuration cfg during
the interval ¢ without collisions (line 11). If no valid arrival time exists, the
function skips to the next interval (lines 12-13), otherwise if a valid arrival
time t is found, a new state s’ is created with the configuration cfg, the
interval ¢, and the arrival time ¢, this new state s’ is then added to the set
of successors ((lines 14-15)). After processing all possible movements and
intervals, the function returns the set of valid successors (line 16).

B Theoretical Guarantees

SIPP provides strong theoretical guarantees, including completeness and
optimality under certain conditions. It ensures that if a path exists, the
algorithm will find it, and the path will be optimal with respect to the
shortest time to traverse while avoiding collisions. The guarantees are under
the assumption that the heuristic function used is admissible and consistent.
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Algorithm 3 getSuccessors

1: function GETSUCCESSORS(s)

2 successors < )

3 for each m in M(s) do

4 cfg < configuration of m applied to s

5: Miime < time to execute m

6 start; < time(s) + Mgime

7 end; < endTime(interval(s)) + Mtime

8 for each safe interval i in ¢fg do

9 if startTime(i) > end; or endTime(i) < start; then

10: continue

11: t < earliest arrival time at ¢fg during interval ¢ with no collisions
12: if ¢ does not exist then

13: continue

14: s’ « state of configuration cfg with interval 7 and time ¢

15: insert s’ into successors

16: return successors

B 42 sipps

SIPPS builds upon SIPP by focusing on soft collisions among agents. Although
SIPPS permits some collisions in its initial planning phase, potentially leading
to an infeasible plan, this approach is strategically chosen. It assumes that
subsequent replanning sessions will more readily resolve these conflicts, and
iteratively simplify the path towards feasible solutions.

With this in mind, safe intervals are defined a bit differently for SIPPS:

Definition 4.3 (Safe Interval). A safe interval for a vertex in a graph is a
continuous period during which the vertex remains unobstructed by any hard
obstacles. It is represented as a tuple [a,b) where a and b denote the start
and end of the interval, respectively. Within this interval, the vertex may be
intermittently affected by soft obstacles that do not entirely block passage
but may influence path optimality. For each interval, we hold whether it has
soft-collision or not.

SIPPS integrates the concept of safe intervals to navigate around both
permanent and soft obstructions, calculating paths that either avoid or
minimize interactions with these obstacles.
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B 4.2.1 SIPPS Graph Node

Definition 4.4 (SIPPS Node). A SIPPS node n within the search tree of

the SIPPS algorithm encompasses five primary elements:

A vertex n.v, representing the current position within the graph.

A safe interval [n.lb,n.ub) where n.lb is also known as the earliest arrival
time, and this interval denotes the time during which the vertex n.v is
navigable without interference from hard obstacles.

® An index n.id that correlates the node to a specific safe interval within
the safe interval table T'[n.v], indicating that the node’s safe interval is a
subset of the id-th interval listed for vertex n.v.

® A Boolean flag n.is__goal, which is set to false by default and indicates
whether the node represents a goal state.

B n.c, = 1 - if the safe interval includes soft obstacles and 0 otherwise
B ¢, = 1 - if the edge leading to n is collision with agent in O® and 0
otherwise.

The computational utility of a SIPPS node is derived from its f-value,
which is the sum of its g-value and h-value:

® The g-value is defined as g(n) = n.lb, positioning the node based on
the earliest feasible arrival time.

® The h-value is a heuristics estimate, calculated as a lower bound on the
minimum travel time from n.v to the goal vertex g.

Moreover, each SIPPS node maintains a c-value, which quantifies the
underestimated number of soft collisions encountered along the path from
the root node to node n. This value is computed as:

c(n) = e(n') + ey + ce,
where n’ is the parent node.

The underestimation comes from the c¢,, where we do not count how many
soft-collisions occurred, but instead whether it happened within that interval.
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The edge collisions (c.) when the agents would "swap places" meaning that
one agent would be leaving the first cell and entering the second cell, while
the second agent would go in reverse order at the same time.

Moreover, we need this c-value for the priority queue, where nodes with
the lowest c-value are selected first. This ensures that paths with fewer soft
collisions are prioritized during the search process.

B 4.2.2 Main Algorithm of SIPPS

The Algorithm 4] begins by initializing the OPEN, CLOSED lists, the safe
interval table T, the start state sgart is initialized with the first safe interval
from the table T', and its cost g(Sstart) i set to zero. The maximum time Tiax
is determined based on the presence of any hard obstacles at the goal. If such
obstacles exist, Tiax is set to one more than the maximum time associated
with these obstacles (lines 1-8).

In each iteration of the main loop, the node s with the smallest f-value
is removed from the OPEN list (line 12). If s is at the goal vertex g and
its low interval value is at least Tiyax (line 13), the algorithm calculates the
number of future soft collisions at the goal (line 14). If no future soft collisions
are detected, the path is extracted and returned (lines 15-16). Otherwise, a
copy of s and its cost is updated with the future collision count, this is then
inserted into the OPEN list (lines 17-21). This new state is then inserted
into the OPEN list (line 21).

The expandSuccessors function is called to generate potential successor
nodes (line 23). Finally, the current node is moved to the CLOSED list to
prevent re-exploration (line 24).

B Node expansion in SIPPS

The expandSuccessors function, shown in Algorithm |5, is responsible for
generating potential successor nodes for the given node n. The function
begins by iterating over each possible edge from the current node’s vertex
n.v to a neighboring vertex v, identified by id (line 2). For each safe interval
(Ib,ub) associated with vertex v in the safe interval table T'[v][id] (line 3),
the function calculates the earliest arrival time low at v within the interval
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Algorithm 4 SIPPS

OPEN <« ()
CLOSED <
T + buildSafelntervalTable(V, O", O%)
Sstart < Node(s, T'[s][1], 1, false)
g(sstart) 0
Tinax < 0
if 3t : (g,t) € O" then

Tiax <+ max{t|(g,t) € O"} +1
insert ssart into OPEN with f(sgiart) = h(start)
while OPEN is not empty do

s <~ OPEN.pop()

if sv = gAs.lb>Thax then

13: Cfuture < \{(g,t) S 08"5 > Slb}‘

_ = =
Y =2

14: if cryture = 0 then

15: return extractPath(s)

16: s’ < a copy of s

17: c(s") « c(s) + cruture

18: f(s") « g(s') + h(s)

19: insert s’ into OPEN with f(s')

20: successors < expandSuccessors(s)
21: CLOSED.insert(n)

22: return "No Solution"

[Ib,ub), ensuring no collisions with hard obstacles O", if not found continue
with next interval (lines 4-6).

Next, the function computes low’, the earliest arrival time at v within the
interval [Ib, ub) without colliding with both hard and soft obstacles O U O*
(line 7). If low’ exists and it is different from low, the function creates two
new nodes: ny for the interval [low,low’) and ny for the interval [low’, ub)
(lines 8-12). If low’ does not exist or they are the same with low, a single
new node ng is created for the entire interval [low,ub) (line 14-15).

The function continues this process for all neighboring vertices and their
associated safe intervals, ensuring that all valid successor nodes are generated
and inserted into the successor list.

ctuthesis t1606152353 40



4.2. SIPPS

Algorithm 5 expandSuccessors (in original paper EXPANDNODE)

1: function EXPANDSUCCESSORS(n)

2 for each (v,id) such that (n.v,v) € E do

3 for each [lb,ub) in T'[v][id] do

4 low < tearliest at v within [Ib, ub) without colliding O";
5: if low does not exist then

6 continue;

7 low" < tearliest at v within [Ib, ub) without colliding O;
8 if low’ exists Alow’ > low then

9: n1 < Node(v, [low, low"), id, false);

10: ng2 < Node(v, [low’, ub), id, false);

11: insertNode(n1);

12: insertNode(nz);

13: else

14: n3 < Node(v, [low, ub), id, false);

15: insertNode(ns);

B Node Insert

Nodes within the SIPPS framework are identified and compared based on
their position, safe interval, and goal status:

Definition 4.5 (Node Identity). Two nodes n; and ng are said to have the
same identity, denoted as ni ~ ne, if and only if ny.v = ns.v, n1.id = no.id,
and ni.is_goal = mno.is__goal.

Definition 4.6 (Node Dominance). We denote node similarity, n; ~ ng, if fol-
lowing conditions are true: n1.v = no.v,ny.id = na.id, andny.isgoal = ng.iszoal
meaning that they are at the same position, of the same interval, and they
both are or aren’t goals.

A node ny weakly dominates another node ns, denoted as nqy > no, if ny ~
ng, the interval [ny.lb, ni.ub) encompasses [na.lb, no.ub), and c(ny) < c¢(na2).
Dominance implies that node n; can replace ng without loss of pathfinding
completeness or correctness.

In practice, dominance is used to avoid redundant path evaluations in the
path search:

8 When a new node n is considered for insertion into the OPEN list, all
nodes in OPEN and the CLOSED list that share the same identity with
n are examined.
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® If an existing node ¢ dominates n, then n is not added to OPEN since
its path is already represented by gq.

® Conversely, if n dominates ¢, then g is removed from OPEN and CLOSED,
as n provides a more optimal or equally optimal path with a shorter or
same-length interval.

® If n and ¢ have overlapping intervals but neither dominates the other,
the search interval of the node with the higher starting point is ad-
justed to avoid overlap, thus preventing duplicate efforts and reducing
computational overhead.

The insertNode function, shown in Algorithm |6, calculates the g, h, f,
and c-values for the new node n (line 1). It then identifies all nodes in the
OPEN and CLOSED lists that are similar to n (i.e., nodes that share the
same position, interval, and goal status) (line 2). For each similar node ¢, the
function checks if ¢ dominates n or vice versa (lines 3-12). If ¢ dominates n,
the new node n is not added to the OPEN list, avoiding redundancy (lines
4-5). Conversely, if n dominates ¢, the existing node ¢ is removed from both
the OPEN and CLOSED lists, as n offers a more optimal or equally optimal
path (lines 6-7). If n and ¢ have overlapping intervals but neither dominates
the other, their intervals are adjusted to eliminate overlap (lines 8-12). This
process ensures that only the most promising and non-redundant nodes are
retained, thereby optimizing the pathfinding efficiency. Finally, the adjusted
new node n, is inserted into the OPEN list.

Algorithm 6 insertNode

1: Compute g, h, f, and c-values of n;
2: N+ {q€ OPENUCLOSED | g~ n}; > Nodes identical to n
3: for each ¢ € N do

4: if ¢.lb <n.lb & ¢(q) < ¢(n) then

5: return; > No need to generate n
6: else if n.lb < q.lb & ¢(n) < ¢(q) then

T: delete g from OPEN and CLOSED; > Prune ¢
8: else if n.lb < q.ub & ¢.lb < n.ub then

9: if n.lb < ¢.Ib then

10: q.ub < n.lb;

11: else

12: n.ub < q.lb;

13: insert n into OPEN;
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B 4.2.3 Heuristics used in SIPPS

Typically, most MAPF algorithms utilize the distance d(n.v, g) — the length
of the shortest path from a node n.v to the goal g — as the heuristic value
h for a node n during path planning. This distance is calculated during a
preprocessing step and serves as an estimate to guide the search towards the
goal efficiently.

Adaptation in SIPPS. However, in environments characterized by frequent
and unpredictable changes, the standard heuristic requires adjustments:

8 Influence of Hard Obstacles: The presence of hard obstacles can
significantly alter the feasible travel time from n.v to g, denoted as T,
making it potentially much larger than d(s, g).

= Consideration of Soft Obstacles: Similarly, 77 = max{t|(g,t) €
o U O*®} + 1, which represents a lower bound on the path’s duration
when there are no collisions, may also exceed d(s,¢g). This factor needs
to be incorporated into the heuristic calculation for non-goal nodes to
ensure that paths avoiding soft collisions are favored where possible.

Given these factors, the heuristics h for a non-goal node n is computed as:
h(n) = max{d(n.v,g),T" —g(n)}, ife(n) = 0

h(n) = max{d(n.v,g),T —g(n)}, ifec(n)>1

where ¢(n) represents the estimated number of soft collisions.

SIPPS is introduced in [LCH'22| together with adaptive LNS (ALNS])
which then helps to plan all the agents, this is described in Section |4.4

B 23 sippp

The main disadvantage of the standard (SIPP) in addressing complex scenarios
is its inability to carry forward information about potential waiting actions
from one node to the next. For example, when an agent arrives at a search
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node labeled as (B,vel = 1),[0,00), the standard SIPP fails to recognize
that the agent might wait at a previous node and then move anytime during
that node’s safe period. This is not an issue in simpler cases where agents can
pause at any point, but it causes problems in more dynamic situations. To
resolve this, an adaptation called Safe Interval Path Planning With Interval
Projection (SIPP-IP) has been created [AY23]. In SIPP-IP, instead of using
just the safe interval to identify a search node, we use a ‘waiting interval’.
This interval, which is part of the vertex’s safe interval, contains all possible
wait-and-move actions from the node’s predecessor. This waiting interval is
then extended to successors as nodes are expanded, ensuring that information
about potential actions is consistently propagated throughout the search tree.

Mechanism of Interval Projection. The essence of interval projection in
SIPP-IP lies in its ability to carry forward the wait-and-move capabilities of
an agent through the pathfinding process. This is accomplished by projecting
time intervals along the edges of the graph, ensuring that the temporal aspects
of agent movement are maintained from one node to the next. Specifically,
the projection operation takes a node n = (v, [t;,t,)), where the interval
[t1,t,) lies within a safe interval of v, and an edge e = (v,v’). The outcome
is a set of time intervals TI = {t; = [lb;,ub;)}, where:

® Each t; is contained within a safe interval of the destination vertex v/,
ensuring that all resultant intervals are viable for the agent to enter.

® The intervals do not overlap, maintaining clear, distinct paths through
the graph.

® For any valid transition along edge e that starts at any timestep within
[t1, 1), the ending timestep of this transition falls within one of the
projected intervals, provided the transition does not lead to a collision.

Operational Benefits. The introduction of interval projection in SIPP-IP
ensures that information about possible wait-and-move actions is not lost as
the search progresses from the start node towards the goal. This approach
not only enhances the completeness of the search—addressing scenarios
that standard SIPP might fail to resolve—but also improves the algorithm’s
efficiency by reducing redundant calculations and maintaining a more compact
search tree. The interval projection operation is especially pivotal in scenarios
where agents have limited ability to halt, necessitating a careful consideration
of movement dynamics over time. Section [4.5.1] provides a more detailed
description with examples as well.
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B 43.1 Algorithm

The main loop of the SIPP-IP (Algorithm [7)) is more or less identical to that
of SIPP. The only difference is that we set the starting node interval to be
matching the safe interval (lines 3-6) when the velocity at the starting node
is 0, which for our purpose it is every time. For the g-value, we use the lower
bound of the node (line 14). The main differences are in how we acquire the
neighbors in the function getSuccessors.

Algorithm 7 SIPP-IP algorithm

1: function FINDPATH(Vstart, tstart, Ugoal, G(V, E), ST)

2 OPEN < (), CLOSED <« 0

3 i < [tstart7 tstart}

4 if vgiart.vel = 0 then

5: ti.typ < upper bound of ST (vstart, t7)

6 insert Sgart into OPEN with f(sgart) = h(start)
7 while OPEN not empty do

8 n < remove node with the smallest f-value from OPEN
9 if n.v = vgou then
10: return 7 < ReconstructPath
11: succ < getSuccessors(n)
12: for each n' in succ do
13: if n’ was not visited before then
14: f(n') < n' .ty + h(n'v)
15: Add n’ to OPEN
16: CLOSED.insert(n)
17: return ()

The getSuccessors function, shown in Algorithm [8, generates successor
nodes for a given node n. It starts by initializing an empty set SUCC to store
the successors (line 2). For each edge e = (n.v,v’) in the set of available
motions M (n) (line 3), the function projects intervals from the current node
n to the neighboring node v’, using the safe interval table ST (line 4). If the
velocity of v’ is zero (line 5), meaning the agent can wait, the upper bound of
each interval in v’ is adjusted based on matching safe interval in ST (lines 6-8).
Finally, the function inserts each valid interval ¢; for v/ into the successor set
SUCC (lines 9-10). The function returns the set of successors SUCC (line
11).

The Algorithm [9] describes function projectIntervals, which projects safe
intervals from the current node n through the edge e = (n.v,v’) using the
safe interval table SI. It begins by initializing time_ints with the current
interval and setting the time ¢ to zero (lines 2-3). For each cell in e’s cells,
it initializes new_ints as an empty set and calculates the time difference A
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Algorithm 8 SIPP-IP getSuccessors

1. function GETSUCCESSORS(n, ST)

2 SUCC «+ 0

3: for eache = (n.v,v')in M(n) do
4

intruls < projectIntervals(n, e, ST)

5: if v.vel = 0 then

6: for each t; in intrvls do

7: ti.tup < upper bound of ST(v',t;)
8: for each t; in intrvls do

9: Insert (v/,¢;) to SUCC

10: return SUCC

between the lower bound of the cell and the current time ¢, time ¢ is updated
to the cell’s lower bound (lines 4-7).

Afterward, for each interval ¢i in time_ints, the function iterates over each
safe interval si and computes the earliest and latest times teartiest and tiatest
for the interval to be valid (lines 8-11). If tearliest is less than or equal to taest,
the interval [tearliest, tlatest] 1S added to new__ints (lines 12-13). This way we
project the current interval to the next cell in the motion, and at each cell
we update time__ints to new_ints (line 14).

After iterating through all cells, the function initializes succ as an empty
set (line 15). For each interval ¢i in time_ ints, it retrieves the last cell for
that motion, calculates the time adjustment A based on the cost of e and the
last cell’s lower bound (lines 16-18), and updates ti.t; and ti.t, accordingly
(lines 19-20). The interval (v, ti) is then added to successors (line 22). In the
end, yielding a set of available projected intervals for the given motion.

B 4.3.2 Motion primitives

The motion primitives, described in [PK11], provide a structured way to
explore the state space by defining permissible transitions between states
that account for the kinematic and dynamic constraints of the agent. Unlike
traditional motion primitives, which may be densely packed in the state space
and lead to redundancy, state lattice primitives ensure that each path leading
to a region in the state space corresponds to a unique state value. This
uniqueness is critical for optimizing the search process and improving the
computational efficiency of planning algorithms.
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Algorithm 9 SIPD-IP

1: function PROJECTINTERVALS(n,e = (n.v,v’),SI)
2 time__ints « {[n.t;,n.t,]}

3 t<+0

4 for each cell in e.cells consecutively do

5: new ints + 0

6 A=y —t

7 t < IbS.y

8 for each ti in time__ints do

9 for each si in Safelntervals(cell) do
10: tearliest <— max(ti.t; + A, lb(si))
11: tlatest < min(ti.t, + A, ub(si) — (ubcen — 1bSy))
12: if Zearliest < tlatest then
13: Insert [tearliests tlatest] 1Nt0 new__ints
14: time__ints < new__ints
15: suce < 0
16: for each ti in time__ints do
17: last__cell < the last cell in e
18: A < cost(e) — b, cenl

19: tity < ti.t; + A
20: tity, < tit, + A
21: Insert (v/,ti) into succ
22: return succ

Examples of primitives can be found in Figure [3.3l In SIPP-IP, these
motion primitives are used to get the neighbors, which correspond to the
last cell, while also ensuring that no collision happens during the transition.
Because of using these primitives, we essentially allow only certain movements,
that should be good enough for the agent’s movements.

For the purpose of this thesis, we consider 5 types of motion primitives:

8 Turning: When an agent is at a location with zero speed, it is allowed
to turn. This motion primitive enables the agent to change its direction
while remaining stationary.

8 Speed-Up: This motion primitive describes the process of accelerating
from a standing position (velocity = 0) to maximum speed. The duration
of this action depends on the agent’s maximum acceleration capability
and typically requires several timesteps to achieve full speed.

® Slow-Down: This primitive involves decelerating from maximum speed
to a complete stop. Similar to speeding up, the time required for this
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action is governed by the agent’s maximum deceleration rate and spans
multiple timesteps.

# Continue at Max Speed: Once the agent reaches maximum velocity, it
can maintain this speed and move to the next cell. This motion primitive
ensures that the agent travels in a straight line at a constant speed.

B Move n Cells: This set of motion primitives allows the agent to move
from a stopped position to another stopped position over a distance of
n cells. It is designed to fill gaps of the previous motions. During this
motion, the agent accelerates and decelerates without reaching maximum
speed, but reaching the final cell as fast as possible.

It is important to note that except for the turning primitive, all actions
involve straight-line motion. Motion primitives discretize the kinematic
constraints into the most desirable motions. While there are many scenarios
where we would not be able to find the path, such as a corridor requiring
us to go at a constant speed of half the maximum speed, the situations are
considered to be rare.

Figure 4.2: Kinematic constraints example similar to the one to the SIPP-IP
paper

B a4 Optimizing the Solution

Assuming that we can find such a solution for agents using Prioritized planning,
how do we make it better? A common technique is to improve specific parts
of the solution, known as neighborhoods.

Large Neighborhood Search (LINS)), originally proposed in [Sha9§],
is a well-known local search technique for enhancing solution quality in
combinatorial optimization. From a given solution, it destroys part of it (a
neighborhood) and repairs the solution. If the repaired solution is better, it
replaces the old one. This process is repeated until a stopping criterion is
met. In MAPF-LNS2, LNS iteratively selects a subset of agents and replans
their paths [PR19].
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Adaptive LNS (ALNS):. MAPF-LNS2 employs ALNS, a variant that uses
multiple neighborhood selection methods, adapting based on their relative
success. ALNS records the success of each neighborhood selection method
and uses those metrics to prioritize future selections. Weights are adjusted
iteratively to reflect the most effective methods.

Each neighborhood selection method 7 has an associated weight w; repre-
senting its relative success in reducing the number of colliding pairs (CP).
Initially, all w; values are set to 1. At each iteration, a method 7 is selected

Wy

with a probability S w to generate a neighborhood and replan the paths.
3

Once the paths are replanned, the weight w; is updated as follows:

w; +v-max (0,¢” —c") + (1 —7)-w;

where:

® ¢~ is the CP count before replanning.
® ¢" is the CP count after replanning.

B v is a reaction factor, empirically set to 0.1, controlling the weight
adjustment speed.

Neighborhood Selection. is critical for the success of LNS. MAPF-LNS2
employs three methods: Collision-Based Neighborhoods, Failure-Based Neigh-
borhoods, and Random Neighborhoods. Neighborhoods are also parametrized
by neighborhood size, which usually depends on how costly the replanning of
agents is, but typically smaller neighborhoods (not exceeding 10) are chosen.

B 4.4.1 Collision graph

To be able to select collision-based neighborhoods we need to be able to
represent the dependencies between the agents.

Definition 4.7. Let the current plan of agents is represented by P = {7q,...,m},
A as the set of agents, the neighborhood as Ag, and the neighborhood size
|As] = N.
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Collision graph G. = (V., E.) is a graph, where V, corresponds to index
of agent from A, and E. = (i,7)| if ¢(m;, m5) > 0. The number of edges for
a vertex is denoted as deg(i).

Collision-Based Method. To select a neighborhood using collision-based
methods, the process begins by selecting a random vertex v from the collision
graph where deg(v) > 0 (indicating that the agent associated with v is involved
in a collision). The algorithm identifies the largest connected component
G, C G, containing the selected node v. From this point, there are two
possible cases:

1. Case 1: If the connected component |V/| contains less than or equal
to N vertices, all agents associated with vertices in V! are placed into
the neighborhood set A;. Additional agents that might collide with any
of the agents already in A, are also added until [As] = N. At each
iteration, a random agent from A performs a random walk starting
from a random point on its path and stops when it collides with another
agent, which is then added to Aj.

2. Case 2: Otherwise, if |V/| contains more than N vertices, a random
walk is performed on G, starting from vertex v. The algorithm selects N
vertices from G/, and adds the corresponding agents to the neighborhood
set As.

B 4.4.2 Failure-Based Method

The failure-based neighborhood method examines why collision-free paths
could not be found for some agents in previous LNS iterations. In the
Prioritized Planning approach, finding a path for an agent a; that avoids
conflicts with existing paths of agents. There are two primary scenarios where
failures occur:

® Scenario A: Agent a; is blocked by other agents who are already situated
at their target vertices surrounding a;. This makes all paths from s; to
gi inaccessible due to the presence of these target obstacles.

® Scenario B: Agent a; is "run over" by other agents’ paths at (or near)
s; in the early time steps, leaving no way forward.
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The failure-based method begins by selecting agent a; from the set A
proportionally to deg(i) (number of agents a; collides with) and adding it to
As. It then gathers two sets of agents:

8 As: Agents whose paths visit s;.

8 Ag: Agents whose target vertices are on a path from s; to g;.

The selection process follows these steps:

1. If |[AsU Ag| = 0, terminate and return As, as a; can safely wait at s;
until other agents reach their targets, then proceed to g; via the path p.

2. If |[AsU Ag| < N — 1, add all agents from As and Ag to As. Continue
to add agents whose targets are visited by other agents in As until
|As| = N.

3. Otherwise, follow this rule to add N — 1 agents to As:

If |As| = 0, add N — 1 random agents from Ag to As.

b. If |Ag| > N — 1, add the agent from As who first visits s;, and then
add N — 2 random agents from Ag.

¢. Otherwise, add all agents in Ag and fill the remaining slots in As
from agents in ascending order of timesteps visiting s;.

This selection rule prioritizes agents from Ag slightly over those from As
since Scenario A is empirically more common than Scenario B [CNKS15].

B 4.4.3 Random Neighborhoods

In the random neighborhood approach, N agents are selected randomly, with
each agent a; having a probability proportional to deg(i) + 1. The additional
increment ensures that agents with no collisions also have a chance to be
selected. This method provides a diverse set of neighborhoods to explore,
allowing the algorithm to adaptively identify paths that minimize collisions.

51 ctuthesis t1606152353



4. Solution Approach

B 4.5 Solution Idea - SIPPS-IP

Now that we have both SIPP-IP and SIPPS defined, we can proceed to our
proposed solution: Safe Interval Path Planning with Soft Constraints and
Interval Projection (SIPPS-IP)). To find some solutions even if early collisions

occur, we begin with SIPPS and incorporate the interval projection principles
of SIPP-IP.

B 4.5.1 Differences between SIPPS and SIPP-IP

Despite their shared precursor algorithm, the main parts of the algorithms
have a few differences, that do not make combining these algorithms easy.
The pseudocode for SIPP-IP - Algorithm [7, and SIPPS - Algorithm {4l

B Initialization

Initialization involves constructing the safe interval table and creating the root
node. In SIPPS; the intervals are constructed differently due to the varying
effects of soft and hard obstacles. As a result, the safe intervals are tailored
specifically for SIPPS. For the root node, both algorithms establish the first
safe interval aligning with the starting timestep. Although this interval might
involve a collision, it aligns with the nature of the SIPPS algorithm, requiring
no major adjustments. The value T_max remains consistent with SIPPS,
following the nature of MAPF, where agents wait until all others reach their
goals. This ensures feasible plans and is not directly relevant to SIPP-IP,
which is focused on single-path planning.

B Main Loop

In the main loop, agents must reach their goal after other agents have
passed, maintaining the behavior set in the initialization stage and T_max
management.

The goal condition differs slightly, in SIPPS, the future soft collisions are
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accounted for, and the node is reinserted into the open priority queue with
the additional future collisions, meaning that if no better path exists, with
fewer collisions, then this is the final goal node.

B Neighbor expansion

The last part is handling the neighbors, both algorithms get their neighbors
and then they expand them in terms of adding to the open list. This section
is where the two algorithms differ the most.

The SIPP-IP works with the motion primitives and projecting the intervals.
On the other hand, SIPPS works with weak and strong dominance of nodes as
well as safe intervals with collisions. To be able to merge these two algorithms
we need to be able to do these projections considering both the kinematic
constraints, while also allowing to create nodes that have collisions with other
agents.

B Node Dominance

Both weak and strong dominance in SIPPS involves three key pieces of
information: collisions, position, and interval. Although these elements are
present here as well, the configuration now includes speed and orientation.
For instance, consider two nodes that are similar but differ in speed. Their
neighbors will vary significantly, so one node cannot eliminate the other. The
same applies to orientation.

To apply SIPPS dominance, we must define the similarity between two
nodes, denoted as n1 ~ no. In our terms:

ny~ng < (N1.0 = N2.0AN1.V = N2.VANL.S = N2.S)
Ani.id = no.id
Amni.is_goal = ng.is_goal (4.2)

where we have simply added n.o (orientation) and n.s (speed) to represent
the agent’s state.
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B Interval Projection - applyPrimitive

Since we use motion primitives to represent agent movements, we use them to
identify the neighboring nodes. Motion primitives are precomputed motions
accessible using two key attributes: orientation and speed. Applying a
motion primitive involves iterating through cells along the given direction
and generating intervals that avoid collisions while leading to a final position.
This process may result in multiple safe intervals, which account for obstacles
along the primitive’s path.

In SIPP-IP, only the final node was of interest, whereas here we also expand
the intermediate positions. These positions serve as temporary nodes that
store values and are automatically closed. They are not expandable because
their velocities are not within the usual <0,1> range.

To illustrate this, consider a simplified example where an agent moves across
four cells. Ignoring specific acceleration characteristics for now, Figure 4.3
demonstrates how intervals would appear if such a primitive were used.

In the diagram, we see different types of intervals. The blue intervals
represent safe periods where no collisions occur within the scope of the
current primitive. As the agent traverses through cells, extra time is required
to transition between them. The red intervals, on the other hand, are the
complement of the total safe interval and describe periods when an agent
arriving at a cell would be collision-free but unable to reach the next cell
in time. The green intervals represent valid periods in which an agent can
perform the primitive, reaching the final cell successfully. Black boxes indicate
dynamic obstacles.

The orange lines represent the projections of the green interval across
the cells. The Algorithm [12| creates these intervals, where the forward pass
generates intervals at the final location, and the backward pass projects
corresponding intervals for the other cells.

Now, if we replace the dynamic obstacle (occupying the [9-10) interval)
with an agent moving through cell 2 during the interval [5,10) (orange dots),
as shown in Figure 4.4, SIPP-IP would treat this as an obstacle, thus not
producing the first projected interval at all. In our approach, however, two
intervals will still exist: the first with one collision and the second collision-free.

Notice that in this scenario, where cell 4 has a safe interval of [0-20], the
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Safe, Collision, Projected Intervals, Obstacles, and Transitions
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Figure 4.3: Projecting intervals

node could be dominated. However, since the first interval contains a collision
while the second does not, they are treated separately. Conversely, if the
intervals were reversed (the first interval being collision-free and the second
having a collision), node n; (first interval) would weakly dominate node ng
(second interval), because ny ~ ng and ni1.lb < na.lbAc(ng) < c(nz). If for the
last cell, we had an obstacle in between those two intervals, the dominance
would not occur once again, as nj ¢ na, because of the same interval id
condition?.

B SIPPS-IP Algorithm

In the main part of Algorithm [10, not much is changed from STPPS algorithm.
The initialization are combined trivially (lines 1-9), and goal handling is
according to the conditions of SIPPS.

The expandSuccessors function, shown in Algorithm [11], generates successor
nodes for a given node n. It starts by iterating over each potential successor
(v,id) of n.v (line 2), which are generated by the projecting intervals. After-
ward, we handle the nodes in the same manner as the SIPPS; creating both
low and low’, which then affects, what nodes will be added to the OPEN list.

3For both of these examples, the final intervals would be shifted by a sweeping time, as
we need to finish the motion (be at the middle of the cell) to start a new motion.
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Algorithm 10 SIPPS-IP

OPEN « ()
CLOSED <«
T < buildSafelntervalTable(V, O", O%)
Sstart < Node(s, T'[s][1], 1, false)
g(sstart) 0
Thax < 0
if 3t : (g,t) € O" then

Tiax < max{t|(g,t) € O"} +1
insert Sgart into OPEN with f(sgtart) = h(start)
while OPEN is not empty do

s <— OPEN.pop()

if sv = gAs.db> Tha then

Cruture < |{(g,t) € O°|t > s.1b}|

14: if cfyture = 0 then

—_ =
L 29

15: return extractPath(s)

16: s’ < a copy of s

17: C(Sl) A C(S) + Cfuture

18: f(s') < g(s') + h(s)

19: insert s’ into OPEN with f(s’)
20: successors < expandSuccessors(s)
21: CLOSED.insert(n)

22: return "No Solution"

Algorithm 11 expandSuccessors

1: function EXPANDSUCCESSORS(n)

2 for each (v,id) such that (n.v,v) € getSuccessors(v, SI) do
3 for each [lb,ub) in T'[v][id] do

4: low < tearliest at v within [Ib, ub)

5: without colliding with O";

6 if low does not exist then

7 continue;

8 low' < tearliest at v within [Ib, ub)

9 without colliding with O" U O%;
10: if low’ exists Alow’ > low then

11: ny + Node(v, [low, low"), id, false);
12: ng  Node(v, [low’, ub), id, false);

13: insertNode(n;);

14: insertNode(nz2);

15: else

16: n3 < Node(v, [low, ub), id, false);

17: insertNode(n3);
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Safe, Collision, Projected Intervals, Obstacles, and Transitions
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Figure 4.4: Projecting intervals with soft-collision

The getSuccessors function, shown in Algorithm (12, generates potential
successor nodes for a given node n by considering all feasible primitive
movements based on the current node’s speed and orientation. The function
initializes an empty set neighbours to store the successors (line 2). It then
iterates over each primitive movement in M (n.speed, n.orientation), using
the projectInterval function to determine the valid intervals for each movement
based on the safe intervals SI, the results are inserted into the neighbours
set (lines 3-4). The function then returns the set of successors.

The projectInterval function, projects the safe intervals from the current
node n through the primitive p = (v,v’) to determine valid successor states.
It initializes an empty set succ to store the successors and performs a forward
pass to compute the intervals intrvls using the forwardPass function (lines
2-3). For each interval ti obtained, we iterate over each move in primitive p,
adjusting the intervals based on the time differences § and the position shifts
move.dyos, these intermediate nodes are inserted into the CLOSED list (lines
4-9). Finally, the function adjusts the intervals for the last cell by sweeping
time and inserts the valid successor states into succ (lines 10). The function
returns the set of successors succ.

The forwardPass function, described in Algorithm [13] calculates the initial
time intervals for the given node n moving through the primitive p = (n.v,v’).
It starts with the initial interval [n.t;,n.t,p] and the corresponding safe
interval collisions from SI(n) (line 2). For each move in the primitive, the
function updates the intervals by considering the time difference A and the
earliest time ¢ the move touches the new position (lines 5-8). It computes the
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Algorithm 12 SIPPSIDP

1. function GETSUCCESSORS(n, ST)

2 neighbours < ()

3: for each primitive in M (n.speed,n.orientation) do

4 neighbours.insert(projectInterval(n, primitive, SI))
5 return neighbours

1: function PROJECTINTERVAL(n,p = (v,v’), ST)

2 suce <+ ()

3 intrvls <— forwardPass(n,p,ST)

4 for ti in intrvls do

5: for each move in p do

6 & <+ move.touch — pjast.touch

7 POS <— N.pos + move.dpos

8 if move not last then

9 CLOSED.insert([ti.lb+ 0, ti.ub + 4], pos)

10: succ.insert([ti.lb + piast-swt, ti.ub + prase.swt], v')

11: return succ

earliest and latest times for valid transitions (including intervals with soft
collision) and adjusts the intervals accordingly (lines 10-12). If the interval is
valid it is inserted to the new intervals (line 14). The function continues this
process for all moves in the primitive p and iteratively updates the intervals
(line 15). After the last cell we have all the projected intervals.

B Reconstructing path

The paths we generate are similar to those in SIPP-IP, so reconstruction
is done by iterating backward through the nodes. However, since SIPP-IP
is designed for a single agent and doesn’t require occupation intervals, we
instead extract paths as intervals for each position. This involves iterating
through the parents of the final node and aligning the times based on the
lower bound and sweeping time.

The reconstructPath function, in Algorithm [14], reconstructs the path from
the goal node to the start node by tracing back through each node’s parent.
The function starts by initializing an index and setting the current node n to
the goal (lines 2-3). It then iterates through the nodes, counting the total
number of distinct positions by checking if the current node’s location differs
from the previous location (lines 4-9). This total count is used to resize the
path array to the correct length (line 10).
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Algorithm 13 SIPPS-IP Forward

1: function FORWARDPASS(n,p = (n.v,v’), ST)

2 introls < {[n.tp, n.ty), SI(n).c}

3 t+0

4 for each move in p primitive do

5: new_intrvls < ()

6 A < move.touch —t

7 t < move.touch

8 POS < N.U + move.dpos

9: for each ti in intrvls do
10: for each si in SI(pos) do
11: tearliest < max(ti.lb+ A, si.lb)
12: Hatest < min(ti.ub+ A, si.ub — move.swp)
13: if tearliest < Tlatest then

14: new__intruls.insert([tearliest tatest, Si-C + ti.c))
15: intruls < new __intruls

16: return introls

Next, the function iterates through the nodes again to fill the path array
with the correct locations and their corresponding entry and wait times (lines
12-27). For each node, if the location is the same as the previous one, it
accumulates the wait time (lines 14-17), however specific case when the entry
and sweeping time do not align with the previous node needs to be adjusted
for the wait action (lines 14-15). When the location changes, it updates the
path array with the previous location and its associated time interval, then
resets the entry time and wait time for the new location (lines 20-24). Finally,
the last location and its time interval are updated in the path array, and the
complete path is returned (lines 28-29).

B 4.5.2 Heuristics

As we follow the T},4; usage and SIPP-IP is only using Manhattan distance,
we take the approach defined in SIPPS. That is:

Given these factors, the heuristics h for a non-goal node n is computed as:
h(n) = max{d(n.v,g), T —g(n)}, ifec(n) = 0

h(n) = max{d(n.v,g),T —g(n)}, ife(n)>1

where ¢(n) represents the estimated number of soft collisions, T" last timestep
an hard obstacle occupies the position and 77 = max{t|(g,t) € O"UO*} +1
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Algorithm 14 reconstructPath

1: procedure RECONSTRUCTPATH(goal)

2 index < 0

3 n < goal

4: while n do > total number positions
5: if n.location # location then

6 index < index + 1

7 location < n.location

8 n < n.parent

9: resize(path, index)

10: n < goal

11: wait_ time, entry < 0

12: while n do

13: if n.location == location then > waiting
14: if n.timestep + n.swt # entry then

15: wait_ time <— wait_ time + (entry - (n.timestep + n.swt))
16: entry <— n.timestep

17: wait time < wait_time + n.swt

18: else > updating the path
19: path[index] < (location, (entry, entry + wait_ time)
20: index < index - 1
21: location < n.location
22: entry <— n.timestep
23: wait_ time < n.swt
24: n < n.parent
25: path[index].location <+ (location, (entry, entry + wait_ time)
26: return path

B 46 Proposed Solutions

Now that we have all the SIPPS-IP defined and also underlying foundational
concepts we can now introduce the solution proposed by this thesis.

B 4.6.1 Combination of LNS + SIPP-IP

The simplest solution involves combining SIPP-IP with LNS. However, due to
SIPP-IP’s inability to handle collisions, it cannot leverage the main strengths
of LNS2. Therefore combining these two is one approach, however, this turned
out to lead to a failed solution even for smaller examples.
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B 4.6.2 Reserved intervals

We begin with a comparison of LNS + SIPP-IP with and without reserved
intervals as they both use the same algorithm. The difference is that for one
of them, we define a path at the starting position so that other agents try
to avoid it when planning. The interval that is chosen for the reservation
is for the agent to leave the start from any configuration and leave at any
configuration, so the agent has to be able to turn and also be able to use the
slowest move action, Therefore, the interval upper bound for interval I, can
be expressed as:

Iub = 2% Tturn + maX(Tsweep,O)

where:

8 Tiun represents the time required to complete a turning maneuver by 45
degrees.

B Tiweep,i denotes the sweep time of the i-th cell for the ¢-th motion
primitive.

® max(Tsweep,0) is the maximum first step sweep time across all motion
primitives.

In our case these values are Tyyn = 10 and max(Tgweep,0) = 30

Thus we propose another solution, using a reservation system for agents,
ensuring that each agent reserves its starting position and can leave in any
direction. The reservation is enforced by temporarily assigning a path where
each agent remains at the starting cell for a specified period, and during path
planning, the currently active agent’s path is removed and substituted by the
new one. Although this might seem like we are making the solution worse,
in the later phase (destroy-repair), the solution is iteratively improving, and
the initial higher cost decreases soon by optimizing these initial reservations.
We will describe this solution as LNS + SIPP-IP with reservation intervals
(SIPP-IP-ri)
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B 4.6.3 Combination of LNS2 + SIPPS-IP

Now finally the idea we have been converging to. Since SIPPS-IP, like SIPPS,
allows and records collisions, we can use adaptive LNS with SIPPS-IP and
hopefully achieve promising results as well. This application is straightforward
because the outer algorithm (ALNS) remains the same, with the exception of
using a different pathfinding algorithm.

ctuthesis t1606152353 62



63

ctuthesis t1606152353



4. Solution Approach

Part ||

Practical Part
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Chapter 5

Implementation

The implementation of our project involved combining and extending two
existing frameworks for MAPF. These frameworks are the MAPF-LNS2 and
SIPP-IP, both of which are implemented in C++.

The source code for MAPF-LNS2 is available on GitHub and provides
a robust foundation for local search techniques in path planning together
with the implementation of several path planning algorithms. This can be
accessed at MAPF-LNS2 Repository| [Li21]. Similarly, the SIPP-IP algorithm,
designed for safe interval path planning for individual agents, is hosted on
GitHub and can be found at |SIPP-IP Repositoryl This algorithm provides the
necessary tools for managing dynamic obstacles and safe intervals [Yak21].

As the first repository has both parts (neighborhoods as well as path
searching algorithms), we decided to use it as a starting point. The main
additions that had to be implemented were algorithms SIPP-IP and SIPPS-IP.
Our C++ implementation can be found in the attached files.

B 51 Implementation Details

The MAPF-LNS2 code base uses various structures to store paths, nodes,
and constraints. The most important structures for SIPPS-IP in the codebase
are:
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5. Implementation

® Open List:

Implemented as a pairing heap.

Uses a custom comparator for prioritizing nodes.

Focal List:

Used as Open List for SIPPS-IP to sort nodes based on collisions
first, also a pairing heap.

Uses a secondary custom comparator for tie-breaking.

Closed List:

Implemented as a hash table.

Efficiently stores and retrieves nodes to prevent redundant process-
ing.

Constraint Table:

Manages constraints related to paths.

Interfaces with PathTable and PathTableWC (with collisions).
® Reservation Table:

Works with the ConstraintTable.

Ensures adherence to kinematic constraints by reserving space-time
slots.

Pairing heap is a type of heap data structure that supports efficient
priority queue operations. It consists of a collection of multiway trees, where
each tree is a heap-ordered tree. This structure is used for both the OPEN
list and the FOCAL list.

B 5.1.1 Motion primitives

The motion primitives used for this thesis deviate a bit from the implementa-
tion of [Yak21], by introducing Move by n cells. However as it is used for both
algorithms SIPP-IP and SIPPS-IP, it should not change from the original
paper [AY23], where they do not specify a set of motion primitives. These
are all the actions available for all agents:

® Turning: The turning speed is 10 timesteps.
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® Speed-Up: The agent occupies cells at these intervals (implementation
follows [Yak21]), [[0, 20), [0, 29), [20, 35), [28, 40), [34, 40)], this primitive
can be seen in Figure 3.3c).

8 Slow-Down: This primitive mirrors the speed-up sequences but in
reverse order.

# Continue at Max Speed: The agent maintains its maximum velocity
for a duration of 5 timesteps, so the intervals are for cell 0 - [0, 5) and
cell 1 -0, 5].

8 Move n Cells: Similarly to speed-up we define ranges for each cell,
however, we end up with 0 velocity. The sequences for movement over
various distances are:

Move 1 cell: [[0,29),0,29)]

Move 2 cells: [[0,20),]0,40),[20,40)], Figure |3.3a

Move 3 cells: [[0,20),]0,30),[20,50),[29,50)]

Move 4 cells: [[0,20),[0,29),[20,38), [28,67)., [38, 67)]

Move 5 cells: [[0,20),[0,29),[28,44) , [34,63) , [43, 63)], Fig[3-3b
Move 6 cells: [[0,20),[0,29),[20,35), [34,49) , [40, 69) , [49, 69)]

Move 7 cells: [[0,20),[0,29),[20,35),[28,40), [34,46), [40,55) ,
[46,75) , [55, 75)]

. 5.2 Software and Tools

In our research, we developed a proof of concept implementation in Python
first, which allowed us to identify potential issues early in the development
process. The Python implementation was primarily based on pseudo code
from the SIPP-IP and SIPPS papers.

We then explored the codebases from the research papers and learned to
work with them, specifically the [SIPP-IP Repository and the MAPF-LNS2
Repositoryl. Based on these implementations, we adjusted the MAPF-LNS2
source code to implement the SIPP-IP and SIPPS-IP algorithms.

For the program development, I used two IDEs: Visual Studio Code
(VSCode)[Micl5] for C++ and PyCharm [Jet10] for Python. C++ was used
for the main algorithms, while Python was used for minor scripts, creating
examples, or evaluating the data. Both IDEs had Github Copilot [Git21]
extension enabled, during development.
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5. Implementation

5.3 Program Configuration

The program configuration involves several parameters that allow for fine-
tuning the performance and behavior of the solution. Below is a list of these
parameters along with a brief description of each:

-k [ -agentNum ] arg: Number of agents (10, 25, 50)

-t [ -cutoffTime ] arg (=300): Cutoff time in seconds
-m [ -map ]: input file for map

-a [ -agents ]: input file for agents (scenes)

-solver arg (=LNS): Solver to be used (e.g., LNS - Large Neighborhood
Search)

-sipp-ip arg (=1): Choose between SIPPS-IP (0) or SIPP-IP (1)
-seed arg (=0): Random seed for reproducibility
-c [ -constraintFile ] arg: Input file for constraints

-initLNS arg (=1): Use LNS to find initial solutions if the initial solver
fails

-neighborSize arg (=3): Size of the neighborhood for LNS
-maxIterations arg (=1000): Maximum number of iterations

-initAlgo arg (=PP): MAPF algorithm for finding the initial solution
(PP - Priority Planning)

-reserved-intervals (=0): Whether we should add reserved intervals
on starting positions

-replanAlgo arg (=PP): MAPF algorithm for replanning (PP - Priority
Planning)

-destoryStrategy arg (=Adaptive): Heuristics for finding subgroups
(e.g., Random, RandomWalk, Intersection, Adaptive)

-initDestroyStrategy arg (=Adaptive): Initial heuristics for finding
subgroups (e.g., Target, Collision, Random, Adaptive)
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Fixed parameters. We have decided to fix some of the parameters at these
values neighborSize = 3, cutoffTime = 100, maxIterations = 1000. The
values were selected this way to have a reasonable amount of experiments in
our limited timel.

To change to different solution approaches we need to adjust these parame-
ters: initLNS, maxIterations, sipp-ip, reserved-intervals (reserved in
table), our different setups can be seen in Table 5.1}

’ Approach H initLNS | maxIterations | sipp-ip ‘ reserved
SIPP-IP 0 0 1 0
LNS+SIPP-IP 0 1000 1 0
LNS+SIPP-IP-RI 0 1000 1 1
LNS24-SIPPS-1P 1 1000 0 0

Table 5.1: Configuration of various MAPF approaches for the program.

B 5.4 Evaluation

The benchmarks used for evaluation were sourced from work [SSFT19b].
These benchmarks consist of open-source MAPF instances that include maps
and scenes with several predefined agents. Although these benchmarks are not
specifically designed for problems with kinematic constraints, they proved to
be sufficient for our purposes. Additionally, we used scenes that were evenly
distributed across the maps. Each map was evaluated using 20 different scenes
to ensure the robustness of the results. More details about the benchmarks
can be found at Moving AI MAPF Benchmarks?.

B 55 Setup

The evaluation was conducted on the following hardware setup:

® Model Name: MacBook Pro

!Around 1500 results were used for evaluation, which took around 5 days of runtime,
also excluding runs not used for evaluation as result of not interesting cases (no difference
in number of solutions, or very little to no solutions)

*Website to access benchmarks is at https://movingai.com/benchmarks/mapf.html
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#® Chip: Apple M2
® Total Number of Cores: 8 (4 performance and 4 efficiency)

® Memory: 16 GB

The program was running single-threaded and it is important to add that
the computer was actively used during the evaluation runs. This concurrent
usage may have potentially impacted the performance and execution times of
the algorithms being tested.

. 5.6 Results

B 5.6.1 Performance Metrics

To evaluate implemented algorithms, we utilized the following performance

metrics:

® Success Rate: The percentage of instances where the algorithm suc-
cessfully found a solution.

# Sum of Costs: The total sum of costs for all agents.

® SOC Gap: Comparison of SOC values between two methods.

B Gap Analysis

Gap analysis is a method used to quantify the relative difference in perfor-
mance between two algorithms based on the SOCs. Let Cy represent the sum
of costs associated with the first algorithm (main method) and Cp represent
the sum of costs for the second algorithm (reference method). The gap is
then defined as the normalized difference of the cost of the main method with
the reference method, computed using the formula:

Car—CB

Gapgoc (A, B) = cn
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This analysis provides a relative measure of how much more or less costly
one algorithm is over the other. A positive gap value indicates that the first
algorithm is more costly and the second is cheaper, whereas a negative value
suggests the first one is more cost-effective.

Bl 5.6.2 Comparative Analysis

In Figure 5.1, we present a typical result of running LNS+SIPP-IP, LNS+SIPP-
IP-RI, LNS2+SIPPS-IP methods on the empty-32-32 map with 50 agents and
a 100-second time limit. Figure shows real-time progression, while Figure
shows a solution cost for each iteration. Altogether we can see that the
best plan was in the end found by SIPP-IP without reserved intervals, closely
followed by SIPP-IP with reserved intervals, and lastly SIPPS-IP with a bit
higher SOC.

Sum of Costs over Runtime Collisions during initLNS

L o sipp-ip 14 initLNS Collisions.
11000 \ e
10500 'S sipp-ip-reserved
°8

Sum of Cost:
Number of Colliding Pairs

]
)
°
8000
7500
o 2 4 6 8 10 12 14 16 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Runtime (s) Runtime (s)

(a) : Cost over runtime (b) : Collisions during iterations

Sum of Costs over Iterations

® © sipp-ip
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85001 W
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80001 H
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(c) : Costs over iterations

Figure 5.1: Example run of methods on empty-32-32 map with 50 agents and
scene 19.

Initially, SIPPS-IP increases its SOC until the dotted line, where the initial
collision-free plan is found for it. The collisions during the initial LNS can be
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seen in Figure [5.1b], it starts with a high number of collisions and iteratively
removes the collisions by repeating the search. After that, LNS is utilized to
optimize the collision-free solution.

SIPP-IP on the other hand takes longer to find the initial solutions for
reserved intervals, and even longer without reserved intervals, This is a result
of the restart of the entire search, meaning that we scratch the current
solution and replan the paths for all agents with different priorities (different
permutation) in case SIPP-IP does not find a valid solution for current
permutation.

B 5.6.3 Comparison of success rates

Figure 5.2| shows the success rates for seven different maps, each tested
with varying numbers of agents. This comparison highlights the perfor-
mance differences between our proposed solutions. The green bars represent
LNS2+SIPPS-IP, the orange bars represent LNS+SIPP-IP-RI, and the blue
bars represent LNS+SIPP-IP. The y-axis labels indicate the map and the
corresponding number of agents (the last number). Each evaluation was
conducted over 20 scenarios with a 100-second time limit. If there is a column
missing for some scenario it means that the methods did not yield any results
there.

The results show that LNS24+SIPPS-IP achieves the highest success rate in
almost all cases. The only exception is maze-32-32-4 with 50 agents. Manual
investigation shows, that for 4 scenes the last iterations have 1 collision,
suggesting that LNS2 does not seem to be able to optimize the last collision,
where I suspect that the neighborhood of 3 is too small for it to be able to
resolve the conflict. In the other failed cases, the number of last collisions
was around 5. I suspect, that the algorithm has not converged yet or it could
be the same issue as before, unable to resolve the conflict with the current
neighborhood size.

The LNS+4SIPP-IP-RI performs better than LNS+SIPP-IP in all cases
and even can find solutions for all scenarios, where LNS+SIPP-IP finds
none (empty-32-32 with 100 agents). Suggesting that most collisions for
LNS+SIPP-IP occur in fact at the starting positions.

The overall success rates, over all the scenarios depicted in Figure 5.2 are
shown in Table 5.2, Notably, both SIPP-IP and LNS+SIPP-IP share an
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Success Rates by Map and Agents (out of 20 scenes)

Algorithm
Il LNS-SIPP-IP

LNS-SIPP-IP-RI
. [ NS2-SIPPS-IP

empty-16-16 - 50 |
empty-16-16 - 60
empty-16-16 - 75
empty-32-32 - 50 | | |
empty-32-32 - 75 | i |
empty-32-32 - 100
empty-32-32 - 150
maze-32-32-4 - 50 | .
maze-32-32-4 - 75
random-32-32-20 - 50 | | |

random-32-32-20 - 75 | H !

Map + Number of Agents

random-32-32-20 - 100
room-32-32-4 - 50 i i |
room-32-32-4 - 75

warehouse-10-20-10-2-1 - 50 | | !

warehouse-10-20-10-2-1 - 75 | | |
warehouse-10-20-10-2-1 - 200

warehouse-20-40-10-2-2 - 50 ! ' 1

warehouse-20-40-10-2-2 - 75

0 20 40 60 80 100
Success Rate (%)

Figure 5.2: SOC gap analysis of individual maps between LNS+SIPP-IP-RI
and LNS2+SIPPS-IP.
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identical success rate of 44.47 %. This is because if LNS+SIPP-IP successfully
finds a solution, then SIPP-IP must inherently do so too, the LNS part is
only initiated after we find the initial solution the same way. Following
these two is LNS+SIPP-IP-RI, which achieves a success rate of 65.26 %,
and LNS2+SIPPS-IP 86.58 %, which clearly shows improvement in terms of
finding more solutions, in these settings.

Algorithm Total Success Rate (%)
SIPP-IP 44.47
LNS-+SIPP-IP 44.47
LNS+SIPP-IP-RI 65.26
LNS2+SIPPS-IP 86.58

Table 5.2: Total Success Rates of Algorithms

Comparison of gap. To evaluate the enhancements to the discovered solution,
we reference Figure |5.3, which compares the costs between SIPP-IP and
LNS+SIPP-IP. Typically, the improvements are within a 0-10 % range, with
LNS+SIPP-IP having lower SOC. The least significant improvement occurs
on the warehouse map, which rarely exceeds 1 %.

Gap Analysis between SIPP-IP and LNS-SIPP-IP
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Figure 5.3: SOC gap analysis of individual maps SIPP-IP with reference algo-
rithm LNS+SIPP-IP.

Comparing LNS+SIPP-IP and LNS+SIPP-IP-RI, Figure gives us mean
gap values closer to zero but favoring SIPP-IP a bit. This aligns with our

assumption that we worsen the initial solution slightly at the beginning and
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iteratively optimize it.

Gap Analysis Distribution (LNS-SIPP-IP vs. LNS-SIPP-IP-RI)
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Figure 5.4: SOC gap analysis of individual maps of LNS+SIPP-IP with reference
method LNS+SIPP-IP-RI

Figure depicts a boxplot analysis of the SOC gap distribution across
various densities of maps. The densities are calculated as %, the
number of agents divided by the number of free cells for the given map. At
nearly 0 density, the ranges are close to zero, and with increasing density, the
mean is approaching the 40 % gap. Afterward, the gap seems to decrease a

bit to 30 % gap.

Please note that the gap analysis only includes cases where both algorithms
have successfully found solutions. Although analyzing the differences in
performance is important, finding a solution remains the primary goal, even
if it results in a larger gap. This approach ensures that we prioritize effective
outcomes over purely optimizing performance metrics.

B 5.6.4 Summary of results

The analysis reveals that the LNS2+SIPPS-IP plans are generally more
costly compared to both LNS+SIPP-IP-RI and LNS+SIPP-IP. This increased
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SQOC Gap Analysis by Agent Density SIPP-IP and LNS2-SIPPS-IP
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Figure 5.5: SOC gap by density with main method SIPP-IP and with reference
method LNS2+4-SIPPS-IP.

expense could stem from insufficient solver iterations or the potential benefits
of implementing early resets when we have early collisions. Despite the cost
increase in LNS+SIPP-IP-RI compared to LNS+SIPP-IP due to interval
reservation, this turns out to increase also quite significantly the number
of found solutions. Even though LNS2+SIPPS-IP yields higher costs, it
significantly increases the number of found solutions, especially in densely
packed environments where the other methods fall short, which we consider
a great result for our method.

. 5.7 Future Work

The findings of this study indicate that LNS+SIPPS-IP offers significant
improvements over SIPP-IP for MAPF in terms of finding feasible solutions.
However, the current implementation has several limitations that need to
be addressed. Future research should focus on several areas to enhance the
performance and applicability of SIPPS-IP:

® Optimization of Interval Projections: Reducing the redundancy in
interval projections to minimize computational overhead and improve
efficiency. As we did forward and backward passes, there should be a
way to speed this, by projecting all primitives at once.
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® Handling Dynamic Obstacles: Extending the evaluation and in-
vestigating how the approaches perform when dynamic obstacles are
present.

8 Improved Heuristics: Developing better heuristics considering factors
such as orientation, speed, iteration, and runtime, and exploring state
space optimizations.

® Node dominance: While we were utilizing node dominance, there is a
possibility of optimizing nodes generated by motion primitives, such that
they might be dominated by each other in certain cases, thus removing
some branches early.

® Intermediate nodes: for the reconstruction of the path, we created
intermediate nodes along the interval projection, this could be imple-
mented more efficiently by storing which primitive was used and the
intermediate steps would be created only from the knowledge of primitive
in reconstructing the path. This could at least lower memory utilized.

8 Adjusting parameters of program: Extending evaluation by adjust-
ing parameters of the program for different algorithms - these could be
runtime, neighborhood size, destroy strategy, or number of iterations.

® Adaptive neighborhood size: As we found cases where the LNS2-
SIPPS-IP could not optimize collisions anymore, it might be interesting
to increase the neighborhood size improving the adaptive LNS.

8 SIPPS-IP-RI: Improving the LNS2+SIPPS-IP with reservation inter-
vals for start position, the same way as we did for SIPP-IP.

Addressing these areas will not only enhance the performance of our
methods but also broaden its applicability to more complex environments.

. 5.8 Conclusion

This thesis successfully developed and evaluated algorithms to solve the MAPF
with kinematic constraints. We introduced LNS2+SIPPS-IP, LNS+SIPP-
IP, and LNS+SIPP-IP-IR, which showed strengths in handling different
environmental densities and agent counts.

Overall, our work demonstrated that integrating these algorithms finds a
solution in dynamic environments. However, there is still room for improve-
ment in the scalability and cost of the plan. Future research should focus on
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optimizing these algorithms for cost and scale. This research lays a strong
foundation for future advancements in MAPF with kinematic constraints.
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Appendix A

Acronyms

ALNS Adaptive LNS.
CCBS Continuous-time Conflict-Based Search.
LNS Large Neighbourhood Search.

MAPF Multi agent path find.

MAPF-LNS2 Multi agent path find{Large Neighbourhood Search (LNS).

SIPP Safe Interval Path Planning.
SIPP-IP Safe Interval Path Planning with Interval Projection.

SIPP-IP-ri Safe Interval Path Planning with Interval Projection and with
Reserved Intervals.

SIPPS-IP Safe Interval Path Planning with Soft Constraints and with
Interval Projection.

SMT Satisfiability Modulo Theories.

SMT-CCBS [Satisfiability Modulo Theories!CCBS.

SOC Sum of Costs.

STA* Space-Time A*.

81 ctuthesis t1606152353



ctuthesis t1606152353

82



Appendix B

Bibliography

[AY?23]

[AYS+22]

[CNKS15]

Git21]
[GLL*23]

[HKC'16]

[Jet10]
[LCHT22]

Zain Alabedeen Ali and Konstantin Yakovlev, Safe interval path
planning with kinodynamic constraints, Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, 2023, pp. 12330—
12337.

Anton Andreychuk, Konstantin Yakovlev, Pavel Surynek, Dor
Atzmon, and Roni Stern, Multi-agent pathfinding with continuous
time, Artificial Intelligence 305 (2022), 103662.

Michal Cap, Peter Novak, Alexander Kleiner, and Martin Selecky,
Prioritized planning algorithms for trajectory coordination of

multiple mobile robots, IEEE transactions on automation science
and engineering 12 (2015), 835-849.

GitHub, Github copilot, 2021, Accessed: 2024-05-22.

Jiangi Gao, Yanjie Li, Xinyi Li, Kejian Yan, Ke Lin, and Xinyu
Wu, A review of graph-based multi-agent pathfinding solvers: From
classical to beyond classical, Knowledge-Based Systems (2023),
111121.

Wolfgang Honig, TK Kumar, Liron Cohen, Hang Ma, Hong Xu,
Nora Ayanian, and Sven Koenig, Multi-agent path finding with
kinematic constraints, Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 26, 2016, pp. 477—
485.

JetBrains, Pycharm, 2010, Accessed: 2024-05-22.

Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J Stuckey, and Sven
Koenig, Mapf-Ins2: fast repairing for multi-agent path finding via

83 ctuthesis t1606152353



B. Bibliography

large neighborhood search, Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 36, 2022, pp. 10256-10265.

[Li21] Jiaoyang Li, Mapf-ins2: Multi-agent path finding with large neigh-
borhood search, https://github.com/Jiaoyang-Li/MAPF-LNS2,
2021, Accessed: 2024-05-12.

[MHK*19] Hang Ma, Wolfgang Honig, TK Satish Kumar, Nora Ayanian, and
Sven Koenig, Lifelong path planning with kinematic constraints
for multi-agent pickup and delivery, Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 7651-7658.

[Mic15] Microsoft Corporation, Visual studio code, 2015, Accessed: 2024-
05-22.

[PK11] Mihail Pivtoraiko and Alonzo Kelly, Kinodynamic motion plan-
ning with state lattice motion primitives, 2011 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, IEEE,
2011, pp. 2172-2179.

[PL11] Mike Phillips and Maxim Likhachev, Sipp: Safe interval path
planning for dynamic environments, 2011 IEEE international
conference on robotics and automation, IEEE, 2011, pp. 5628—
5635.

[PR19] David Pisinger and Stefan Ropke, Large neighborhood search,
Handbook of metaheuristics (2019), 99-127.

[RN16] Stuart J Russell and Peter Norvig, Artificial intelligence: a mod-
ern approach, Pearson, 2016.

[SFSB16] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski, Ef-
ficient sat approach to multi-agent path finding under the sum
of costs objective, Proceedings of the twenty-second european
conference on artificial intelligence, 2016, pp. 810-818.

[Sha9s] Paul Shaw, Using constraint programming and local search meth-
ods to solve vehicle routing problems, International conference
on principles and practice of constraint programming, Springer,
1998, pp. 417-431.

[Sil05] D Silver, Collaborative pathfinding, Proceedings of AIIDE (2005),
23-28.
[Sil20] David Silver, Cooperative pathfinding, 2020, Accessed: 2023-04-29.

[SSFT19a] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig,
Hang Ma, Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron
Cohen, T. K. Satish Kumar, Eli Boyarski, and Roman Bartak,
Multi-agent pathfinding: Definitions, variants, and benchmarks,
Symposium on Combinatorial Search (SoCS) (2019), 151-158.

ctuthesis t1606152353 84


https://github.com/Jiaoyang-Li/MAPF-LNS2

[SSF+19b)]

[Yak21]

[ZLH*22]

B. Bibliography

, Multi-agent pathfinding: Definitions, variants, and bench-
marks, Symposium on Combinatorial Search (SoCS) (2019), 151
158.

Konstantin Yakovlev, Sipp-ip: Safe interval path planning for in-
dividual agents, https://github.com/pathplanning/sipp-ip)
2021, Accessed: 2024-05-12.

Shuyang Zhang, Jiaoyang Li, Taoan Huang, Sven Koenig, and
Bistra Dilkina, Learning a priority ordering for prioritized plan-
ning in multi-agent path finding, Proceedings of the International
Symposium on Combinatorial Search, vol. 15, 2022, pp. 208-216.

85 ctuthesis t1606152353


https://github.com/pathplanning/sipp-ip

ctuthesis t1606152353

86



Appendix C

Attachment Content

evaluation__source__code/ — Contains evaluation scripts and script
to run tests

input__data/ — Maps and scenes for evaluation
program__source__code/ — This directory contains developed program
latex/ — Source files for this thesis

results/ — Results from the program used for evaluation

supporting__ scripts/ — Scripts to create examples or simple graphs
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