
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Geolocalized procedural generation of
biomes in real time

Bc. Michal Mráz

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
Field of study: Open Informatics
Subfield: Software Engineering
May 2024

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457055 Osobní číslo:​Michal Jméno:​Mráz Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:​

Softwarové inženýrství Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

Geolokalizované procedurální generování biomů v reálném čase

Název diplomové práce anglicky:​

Geolocalized Procedural Generation of Bioms in Real-Time

Pokyny pro vypracování:​
Zmapujte existující metody pro procedurální generování modelů různých biomů. Soustřeďte se na metody umožňující​
generování terénu a vegetace zvoleného typu biomu v reálném čase. Navrhněte metodu umožňující geolokalizované​
generování biomů na základě volně dostupných dat o dané lokalitě jako jsou data z Open Street Maps, digitální elevační​
mapy, satelitní snímkování nebo meteorologická data.​
Implementujte aplikaci umožňující generování geolokalizovaných biomů v reálném čase. S využitím této aplikace navrhněte​
a implementujte jednoduchou geolokalizovanou hru. Pro implementaci využijte herní engine Unity nebo Unreal. Cílovou​
platformou pro aplikaci budou přenosná zařízení jako jsou mobilní telefony a tablety. Vyhodnoťte rychlost generování​
biomů v závislosti na jejich vizuální komplexitě a použitém hardwaru. Vyhodnocení proveďte v nejméně třech různých​
lokalitách. Vytvořenou hru podrobte základnímu uživatelskému testu.​

Seznam doporučené literatury:​
[1] Niese, T., Pirk, S., Albrecht, M., Benes, B., & Deussen, O. (2022). Procedural Urban Forestry. ACM Transactions on​
Graphics (TOG), 41(2), 1-18.​
[2] Ecormier-Nocca, P., Cordonnier, G., Carrez, P., Moigne, A. M., Memari, P., Benes, B., & Cani, M. P. (2021). Authoring​
consistent landscapes with flora and fauna. ACM Transactions on Graphics (TOG), 40(4), 1-13.​
[3] Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M.-P., Benes, B., & Gain, J. (2019). A Review of Digital Terrain​
Modeling. Computer Graphics Forum, 38(2), 553–577.​
[4] Pirk, S., Benes, B., Ijiri, T., Li, Y., Deussen, O., Chen, B., & Měch, R. (2016). Modeling Plant Life in Computer Graphics.​
ACM SIGGRAPH 2016 Courses, 18:1–18:180.​
[5] Smith, G. (2017). Procedural content generation: An overview. Level Design Processes and Experiences, 159-183.​
[6] Emilien, A., Bernhardt, A., Peytavie, A., Cani, M. P., & Galin, E. (2012). Procedural generation of villages on arbitrary​
terrains. The Visual Computer, 28(6), 809-818.​
[7] Kybartas, B., Bidarra, R., & Meyer, J. J. C. (2016). Procedural generation of populations for storytelling. In Proc. PCG​
2015-Workshop on Procedural Content Generation for Games, co-located with the Tenth International Conference on the​
Foundations of Digital Games (IKBC15), 2015.​
[8] Tuncel, M. Procedural Content Generation for Video Games using Open Data. Master Thesis, MFF UK, 2019.​
[9] Gasch, C., Sotoca, J.M., Chover, M. et al. Procedural modeling of plant ecosystems maximizing vegetation cover.​
Multimed Tools Appl 81, 16195–16217 (2022).​
[10] Rapp, Daniel, Niebling, Florian, Latoschik, Marc. The Impact of Pokémon Go and Why It's Not about Augmented​
Reality - Results from a Qualitative Survey. In proceedings of the International Conference on Virtual Worlds and Games​
for Serious Applications, 2018.​
[11] Kati Alha, Elina Koskinen, Janne Paavilainen, Juho Hamari. Why do people play location-based augmented reality​
games: A study on Pokémon GO. Computers in Human Behavior, Volume 93, Pages 114-122,.2019.​
[12] Petr Nahodil. Procedural Scene Generation for Train Simulator. Bachelor Thesis, Czech Technical University in​
Prague, 2023.​
[13] Ondřej Kyzr. Procedural generation of outdoor scenes. Bachelor Thesis, Czech Technical University in Prague, 2023.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:​

doc. Ing. Jiří Bittner, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: _____________​Datum zadání diplomové práce: 14.08.2023

Platnost zadání diplomové práce: 16.02.2025

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​doc. Ing. Jiří Bittner, Ph.D.​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor
for supporting me and providing me
with valuable advice and guidance.
I would also like to thank my family
and friends for supporting me.

Declaration
I declare that I created the presented
work independently and that I have
listed all information sources in ac-
cordance with the Methodological
Guideline on Adherence to Ethical
Principles in Preparation of Gradua-
tion Theses.

I created the thesis with the help
of the AI tools Writefull, ChatGPT,
and GitHub Copilot.

In Prague, May 2024

v

Abstract
This work deals with research, de-
sign, and implementation of a system
that automatically generates game
environment around user’s physical
position in real time. For that, it
uses representation of real terrain,
streets, and buildings combined with
automatically generated biomes and
vegetation. The work also deals with
the design and implementation of a
prototype game, which is used to test
the system with real users and gather
their feedback.

Keywords: procedural generation,
biomes, vegetation, game
environment, pervasive game,
location-based game, mobile game,
gps

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Karlovo Namesti 13,
121 35 Praha 2,
Czech Republic

Abstrakt
Tato práce se zabývá výzkumem,
návrhem a implementací systému,
který automaticky generuje herní
prostředí kolem uživatelovy fyzické
polohy v reálném čase. K tomu vy-
užívá reprezentaci reálného terénu,
silnic a budov, které kombinuje s au-
tomaticky generovanými biomy a ve-
getací. Práce se také zabývá imple-
mentací herního prototypu, který je
využit pro testování systému s reál-
nými uživateli a pro získání jejich
zpětné vazby.

Klíčová slova: procedurální
generování, biomy, vegetace, herní
prostředí, pervazivní hra,
location-based game, mobilní hra,
gps

Překlad názvu: Geolokalizované
procedurální generování biomů v
reálném čase

vi

Contents
1 Introduction 1
1.1 Biomes 1
1.2 Location-based games 4
2 Related work 9
2.1 Why do people play

location-based games? 9
2.2 Why Pokémon GO is not

mainly about augmented reality
(AR) . 10

2.3 Physics based approach to
biome generation 10

2.4 Ecosystem simulation 11
2.5 Who and when should

generate the environment? . . . 11
2.6 Player searching in the

environment 12
2.7 Urban forestry 13
2.8 Digital terrain modeling . . . 13
2.9 Modelling plant life 15
2.10 Overview of procedural

content generation 16
2.11 Generation of villages 16
2.12 Procedural generation of

populations 17
2.13 Generating plants

maximizing vegetation cover . 18
2.14 Dynamic generation of

terrain chunks 19
2.15 Terrain adjustment under

roads . 19
3 Procedural generation of
biomes 21
3.1 Design 21
3.2 Implementation 24

3.2.1 Division of Earth surface
into chunks 24

3.2.2 Terrain 24
3.2.3 Converting between GPS

and Unity coordinates 25
3.2.4 Streets and buildings . . . 26
3.2.5 Biomes 27
3.2.6 Generating vegetation . . 29
3.2.7 Terrain textures 30
3.2.8 Terrain smoothing under

streets 31

3.2.9 Chunk terrain normals
stitching 31

4 Game prototype 33
4.1 Using and simulation GPS

data . 33
4.2 Chunk generating and

unloading 33
4.3 Camera control 34
4.4 Quest 35
4.5 Settings 36
5 Results 39
5.1 Screenshots 39
5.2 User Testing 41

5.2.1 Testing with the first user 41
5.2.2 Testing with the second

user . 41
5.2.3 Testing with the third

user . 42
5.2.4 Testing with some other

users . 43
5.2.5 User testing results

discussion 43
5.3 Performance 44

5.3.1 Profiling 53
6 Conclusion and Future Work 55
6.1 Conclusion 55
6.2 Future work 55
Bibliography 57
A Content of electronic
appendix 61
B User manual 63
B.1 Installation 63
B.2 Using the app 63
B.3 Settings 63
C User testing document 65
C.1 Introduction 65
C.2 What we will observe during

the testing phase 65
C.3 Questionnaire 65

vii

Figures
1.1 Some of the biomes in

Minecraft. From left to right,
top to bottom: Lush Caves,
Dripstone Caves, Basalt Deltas,
Frozen Peaks, Badlands, Plains,
Jagged Peaks, Sparse Jungle,
The End [29]. Source: Mojang
Studios [23] 2

1.2 Some of the biomes in
Terraria. From left to right, top
to bottom: Forest, Underground
Mushroom, Undeground Jungle,
Corruption [32]. Source:
Re-Logic . 3

1.3 Some of the biomes in
Subnautica. From left to right,
top to bottom: Mushroom
Forest, Grassy Plateaus, Grand
Reef, Kelp Forest [30]. Source:
Unknown Worlds Entertainment 3

1.4 The surface biomes from the
game Subnautica. Each biome
acts as a small-scale ecosystem
reflecting those found in real
world. Every biome offers
unique flora and fauna to
explore and various resources to
gather [6]. Source: Subnautica
Wiki [5] . 4

1.5 An overview of Earth biomes
and how they change depending
on changing moisture and
temperature. Source: Mellisa A.
[7] . 5

1.6 Generated planet in
RimWorld with different biomes
visible. Source: Ludeon Studios 5

1.7 Some of the biomes in
RimWorld. From left to right,
top to bottom: Temperate
Forest, Boreal Forest, Cold Bog,
Tropical Rainforest [31]. Source:
Ludeon Studios 6

1.8 Pokémon Go screenshots.
From left: catching Pokémon,
taking photos of Pokémon in
augmented reality, walking on
the world map. Source: Niantic
[33] . 6

1.9 Ingress screenshots. Grey
portals are unclaimed, green
and blue portals are claimed by
the green and blue player
factions. The orange circle
repesents the player’s area of
influence. The blue area is the
are claimed by the blue faction.
In the last screenshot the user is
selecting a resonator to put on a
portal to claim it or to upgrade
it. Source: Niantic [33] 7

2.1 An example of the result
terrain and biome distribution
of AutoBiomes. Source: Fischer
et al. [15] 11

2.2 Animal trails were generated
using a graph that maps
resources and species-specific
accessibility of the environment.
Source: Ecormier-Nocca et al.
[14] . 12

2.3 Vegetation placement
strategies. Source: Niese et al.
[4] . 14

2.4 Types of terrain
representation. Source: Galin et
al. [9] . 15

2.5 Subdivision scheme, Faulting,
and Noise. Source: Galin et al.
[9] . 15

2.6 A generated highland
settlement. Source: Emilien et
al. [11] . 16

2.7 A generated world with
population. We can see mining
settlements, farming settlements,
military settlements, fishing
settlements, and relatios.
Source: Veld et al. [12] 17

viii

2.8 Plant distribution. From left:
initial seed distribution, plant
species assigned, and sizes
adjusted so that the sizes are
maximum. Source: Gasch et al.
[24] . 18

2.9 Chunks in a circle around the
camera. Light green are the
generated chunks, dark green
are the chunks that are being
generated, and red are the
chunks that are too far away
and are being destroyed. Source:
Nahodil P. [27] 19

2.10 A generated road where the
surrounding terrain is adjusted,
either moved up or down.
Source: Kyzr O. [12] 20

3.1 Example of our generated
environment. In the image we
can see orange streets, blue
buildings, the knight chess piece
represents the player character.
We implemented 4 different
biomes and the system could
easily work with more in the
future. The closest biome to the
camera is the Desert, behind it
is the Oasis, next is Plains and
behind it Forest. 22

3.2 A Voronoi diagram with input
points visible and a Voronoi
diagram distorted using a noise
function. Source: Stadnik V.
[25], Rudi dev [13] 23

3.3 Visualization of the result of
our implementation of the
Variable Radii Poisson-Disc
Sampling. The radii of the red
spheres correspond to the radii
of the circles used in the
sampling. 24

3.4 Integer Geohash area id
creation visualized. Source:
Whelan P. [20] 25

3.5 Visualization of adding new
vertices to terrain. The red
points are the input points, the
green points are the interpolated
points. 25

3.6 Visualization of how our GPS
to Unity coordinates conversion
works. The red point is the
reference point, the green point
is the one we are converting.
The green line is a part of a
latitude circle, the blue line is a
part of the longitude circle
projected onto a cylinder. We
move on the green line using
longitude or x coordinate and
on the blue line using latitude or
z coordinate. The orange circles
are the latitude circles at the
latitude of the reference point. 26

3.7 Biome centers, represented
using yellow balls, before and
after being randomly offset. We
can see one chunk and its four
biome centers. This chunk also
generates biomes centers of its
neigbors so it can independently
generate its biomes without the
other chunk having to be
loaded. 28

3.8 Biome centers visualized using
yellow balls. The chunk shown
in previous figures is now
selected, its borders are orange
and its triangles and cells (made
of 2 triangles) are visible. 28

3.9 Visualization of the result of
our implementation of the
Variable Radii Poisson-Disc
Sampling. The radii of the red
spheres correspond to the radii
of the circles used in the
sampling. 30

3.10 Example of terrain with
blending biome textures. 31

ix

4.1 Joystick UI and the player
character in a forest biome. . 34

4.2 Screenshots from early
prototype. The white circles are
the places where the user
touches the screen. (Left) The
user is zooming in the view
using a two finger gesture.
(Right) The user is rotating the
view using a one finger gesture. 35

4.3 Screenshot from early
prototype. Here we can see
terrain, buildings and streets
without biomes. The buildings
are placed on top of the
terrain. 36

4.4 Quest window 37
4.5 From left: enabled building

heights, settings window. 38
4.6 Quest objectives UI 38

5.1 From left: Barrandov
Terraces, Charles Square. 39

5.2 From left: Central Park,
Santo Domingo. 40

5.3 The buildings and streets in
the game Dragon Quest Walk
are represented as textures.
Source: Square Enix [21] 44

5.4 Test case: Default
configuration with Vegetation
density = 0%. 47

5.5 Test case: Default
configuration with Vegetation
density = 50%. 47

5.6 Test case: Default
configuration with Vegetation
density = 100%. 48

5.7 Test case: Default
configuration with Device =
PC . 48

5.8 Test case: Default
configuration with Device =
OnePlus Nord 2 5G 49

5.9 Test case: Default
configuration with Device =
Xiaomi Redmi 6 49

5.10 Test case: Default
configuration with Location =
Charles Square 50

5.11 Test case: Default
configuration with Location =
Barrandov Terraces 50

5.12 Test case: Default
configuration with Location =
Central Park 51

5.13 Test case: Default
configuration with Chunk
generation distance = 250 m . 51

5.14 Test case: Default
configuration with Chunk
generation distance = 700 m . 52

5.15 Test case: Default
configuration with Chunk
generation distance = 1000 m 52

5.16 Test case: Default
configuration with Chunk
generation distance = 1000 m
and Device = OnePlus Nord 2
5G . 53

5.17 Profiling result, each
function has its percentage of
total computation time. The
function hierachy is visualized
using indentation. 53

5.18 Deep profiling result, each
function has its percentage of
total computation time. The
function hierachy is visible from
the indentation. 54

x

Tables
5.1 The default configuration . . 45
5.2 Variable domains 45
5.3 Location details 45
5.4 Device specifications 45
5.5 Measurements of average FPS

in different testing cases after
environment generation
completed. The FPS on mobile
is capped at 30 by Unity. 46

xi

Chapter 1
Introduction

The goal of this work is to explore methods for procedurally generating a
geolocalized virtual game environment with biomes and vegetation, which
could be used as a basis for a location-based mobile game. We want to
find what options are available, how these options are suitable for real-time
generation, and what existing solutions are there. Then we are going to
design and implement a procedural biome generation system, create a simple
mobile game prototype, test it with users, and gather their feedback. We will
also profile the prototype so that we can find out where the bottlenecks of
our current solution are and what to focus on in the future.

The word geolocalized here means that we are using the user’s real-time
location to determine his location in the game environment.

A location-based game is a category of game in which the player’s
physical location drives the game’s progression. These games are commonly
played on smartphones that utilize GPS to determine the player’s location.
Procedural generation is a way to create data algorithmically instead of
manually. Using it, we can create a vast environment that combines manually
created content with randomness. Procedural content generation (PCG) has
the ability to enhance the replayability and adaptability [1] of the game
environment. In our case we use PCG because of it’s adaptability, to provide
game environment adjusted to the geographic location of the user.

Biomes are areas with particular environmental conditions that support
the survival of a specific group of flora and fauna. In games biomes contribute
to a more varied environment, they serve as natural landmarks and also can
be connected to gameplay.

In the context of this work, real-time computation refers to the continu-
ous updating of the game’s state and visual representation of the game while
the player interacts with it. This is often referred to as soft real-time [22],
meaning that the system performance would be degraded if results were not
produced in a timely manner.

1.1 Biomes

Different biomes can have different content, challenges, and variations of
gameplay. Examples of biomes can be forests, deserts, jungles, oceans, or

1

1. Introduction ..
mountains, or they can be also entirely fictional. Biomes can differ in the
vegetation that grows in them, in weather, available resources, or animals
that live there, etc.

Here are a few examples of how biomes have been used in computer games
in recent years.

Minecraft (2011) [39] is a sandbox survival game featuring a procedurally
generated 3D world where players collect resources and craft items. Minecraft
uses biomes to create environments that differ in their flora, fauna, resources,
generated houses, shapes of terrain, enemies, audio, and sky color. Biomes
separate the world into parts that offer distinct gameplay.

Figure 1.1: Some of the biomes in Minecraft. From left to right, top to bottom:
Lush Caves, Dripstone Caves, Basalt Deltas, Frozen Peaks, Badlands, Plains,
Jagged Peaks, Sparse Jungle, The End [29]. Source: Mojang Studios [23]

Terraria (2011) [38] is an RPG sandbox game which uses biomes similarly
to Minecraft, but it takes place in a 2D world. The biomes contain different
enemies and resources that are critical for progression.

No Man’s Sky (2016) [40] is a survival game with procedurally generated
planets. Each planet has one biome, and that encourages the player to explore
the other planets too. The biomes influence how dangerous each planet is
and what flora and fauna are there. Different terrain variations influence the
appearance of the planet; the types are, for example, pangean, continental,
swamp, archipelago, island chains, oceanic, and reef. Each biome has unique
resources that can be harvested there. There are 11 types of biomes such as
lush, barren, frozen, toxic, volcanic, and marsh [2].

Subnautica (2018) [42] is a survival game set on an ocean planet with
various biomes such as deep-sea trenches, kelp forests, and coral reefs. The
biomes offer different resources and challenges for the player. Exploring the
different biomes is a core gameplay aspect of Subnautica.

2

... 1.1. Biomes

Figure 1.2: Some of the biomes in Terraria. From left to right, top to bottom:
Forest, Underground Mushroom, Undeground Jungle, Corruption [32]. Source:
Re-Logic

Figure 1.3: Some of the biomes in Subnautica. From left to right, top to bottom:
Mushroom Forest, Grassy Plateaus, Grand Reef, Kelp Forest [30]. Source:
Unknown Worlds Entertainment

RimWorld (2018) [41] is a colony building and management game with
different biomes such as tundra, desert, and tropical jungle that affect the
gameplay. Depending on the biome in which the player started his colony,
he can face unique challenges, for example, low temperatures, short growing
season, heatwaves, lack of trees to harvest wood from, or dangerous wild ani-
mals and diseases. The game takes place on small 2D procedurally generated
maps in different parts of the world. There is only one biome on the whole
map, but maps in different parts of the world can have different biome.

3

1. Introduction ..

Figure 1.4: The surface biomes from the game Subnautica. Each biome acts as
a small-scale ecosystem reflecting those found in real world. Every biome offers
unique flora and fauna to explore and various resources to gather [6]. Source:
Subnautica Wiki [5]

In general, biomes are used in computer games to create a varied and
interesting environment, add challenges and variety to the gameplay, and
inspire players to explore.

1.2 Location-based games

Almost everyone has a smartphone nowadays. It has a potent GPU, a GPS
module, and often also mobile internet and is always readily available in one’s
pocket. That is why it makes sense to craft immersive interactive experiences
for these devices such as location-based games. Here are some examples of
well-known location-based games from recent years:

Pokémon Go (2016) [43] is a mobile game where the player moves in the
game world by walking in the real world and where he locates, captures,

4

..................................... 1.2. Location-based games

Figure 1.5: An overview of Earth biomes and how they change depending on
changing moisture and temperature. Source: Mellisa A. [7]

Figure 1.6: Generated planet in RimWorld with different biomes visible. Source:
Ludeon Studios

trains, and battles virtual creatures, which appear on the in-game map as if
they were in the player’s real-world location.

Ingress (2013) [44] is the predecessor of Pokémon Go also by the developer
Niantic. Ingress is a game about territory control. Device GPS is used to
interact with portals in user’s proximity. Portals are placed in places of

5

1. Introduction ..

Figure 1.7: Some of the biomes in RimWorld. From left to right, top to bottom:
Temperate Forest, Boreal Forest, Cold Bog, Tropical Rainforest [31]. Source:
Ludeon Studios

Figure 1.8: Pokémon Go screenshots. From left: catching Pokémon, taking
photos of Pokémon in augmented reality, walking on the world map. Source:
Niantic [33]

interest such as statues, community hubs, unique architecture etc. [3].
Geocaching (2000) is an outdoor activity in which participants use a GPS

device to hide and seek containers, called "caches", at specific locations marked
by coordinates all over the world. The players use the coordinates to find the

6

..................................... 1.2. Location-based games

Figure 1.9: Ingress screenshots. Grey portals are unclaimed, green and blue
portals are claimed by the green and blue player factions. The orange circle
repesents the player’s area of influence. The blue area is the are claimed by the
blue faction. In the last screenshot the user is selecting a resonator to put on a
portal to claim it or to upgrade it. Source: Niantic [33]

caches. Those can be found in parks, trails, urban areas, and even underwater.
The caches usually contain a logbook where finders log their visit and they
can also trade small items through the caches with other players.

7

8

Chapter 2
Related work

2.1 Why do people play location-based games?

Perhaps the most well-known location-based game is Pokémon GO. To un-
derstand why players are drawn to such games, we will discuss a study and
survey by Alha et al. [16], which was distributed in Finnish Pokémon GO
groups on Facebook.

These were some of the reasons why respondents started playing the
game: They found the game interesting and fun, liked its novelty, and felt
that it was different from other games. Some saw funny pictures of the game
on social media. They mentioned the importance of positive characteristics of
playing, such as spending time outside, getting physical exercise, or exploring
new areas. Some played because it was a good opportunity to meet new
people, and some were excited by the "treasure hunt"-like gameplay. The
nature of the game was described as being casual, easy to play, and easy to
install.

These were some of the reasons why respondents continued playing
the game: progression, achieving personal goals, joy of discovery, collecting.
People still found the positive aspects of playing important: exercise, being
outdoors, and the game being a reason to walk. This was important for
the depressed. The game mechanics became one of the main reasons to
continue playing. Social features such as meeting other people, teaching
others the game mechanics and comparing progression were important. The
game provided surprises and was rewarding.

And these were the most important reasons why people stopped playing:
1) The current situation of the respondent - lack of time, lack of

money, poor weather, having reached his personal goals in the game, his
phone not working, not having internet, etc.

2) Slow progression - the leveling curve was seen as being too steep,
people mentioned slow advancement to the next level and little new content.
The survey authors also mention that it would be good if the developer added
more short term goals for the player so that the player can celebrate "small
victories" more often instead of grinding for the long-term goals.

3) Bugs - bugs were the third most important reason to quit and the
survey authors say that it is important to focus more on quality control.

9

2. Related work..
Furthermore, the respondents did not like the game content being concen-

trated mainly in city centers. Some saw the game as shallow and simple.
Some found the game to be unrewarding, random in its rewards, lacking a
challenge, and too competitive. The main reason for Pokémon GO achieving
a wide player base was previous experience with the Pokémon franchise,
where the characters are simple and attractive. An interesting thing about
Pokémon GO is that it enables binge playing (apart from what is common in
the free-to-play mobile games genre), meaning it does not limit the time the
player can spend with the game per session. The reason why it can do this is
that it includes enough long-term goals that even with constant playing it
takes a long time to finish them.

2.2 Why Pokémon GO is not mainly about
augmented reality (AR)

A definition of augmented reality: "Augmented reality is an interactive ex-
perience that enhances the real world with computer-generated perceptual
information. Using software, apps, and hardware such as AR glasses, aug-
mented reality overlays digital content onto real-life environments and objects"
[17].

A discussion of the results of a qualitative survey by Rapp et al. [18] states
that although Pokémon GO is sometimes called an AR game, AR is hardly
ever used in the game, AR features suffer from bad usability and actually
make playing the game harder. When players describe the game as an AR
game, they mostly mean the link between the real and virtual world in the
game, but that is done by the geolocation feature. The main effect of the AR
feature can be seen in traditional and social media, where the app was used
to take funny pictures of Pokémon.

2.3 Physics based approach to biome generation

Fischer et al. in their paper AutoBiomes [15] deal with creation of a tool that
automatically creates a virtual environment using a pipeline that consists of
four steps: generation of rough base-terrain, climate simulation, biome-based
terrain refinement, and asset placement. What is interesting is that the terrain
changes based on the biome selected for that area. For the computation of
the biome distribution, they use a physics-based approach that is in contrast
to often used noise methods. They developed a climate simulation but had to
keep it computationally relatively simple to keep the computation fast. The
goal of this approach was to add physically plausible realism to the terrain.
They say that if they used noise functions instead, the result would be less
realistic and would require more fine-tuning. In the simulation, they compute
temperature, wind, precipitation, and in the end biome classification.

But the question is whether this approach would be good for us because
we think that when we keep the terrain elevation around the user the same as

10

..................................... 2.4. Ecosystem simulation

Figure 2.1: An example of the result terrain and biome distribution of Auto-
Biomes. Source: Fischer et al. [15]

in the real world, it helps him to orient better in the environment and better
plan his walking path through the environment. In future work, the terrain
could be modified locally, on a small scale, according to its biome so that the
overall shape of the terrain is not changed, and at the same time the biomes
get more detail.

2.4 Ecosystem simulation

In a paper by Ecormier-Nocca et al. [14] they describe their approach to plant
generation, where input is provided by the user. The input consists of a digital
elevation model terrain description and other information for computing
environmental resources for plants, namely minerals map, terrain orientation,
latitude, altitude and extreme temperatures at sea level, describing the
targeted climate. They extracted yearly moisture, extreme temperatures, and
sun-light maps of the terrain from this input.

They recognized that animals have an important impact on the appearance
of the environment, they create trails, clearings, and even affect erosion.
The key to simulating this is the competition for resources. They track the
resources for each species using a graph, along with resource location and
accessibility. In their result, visible animal trails are present.

2.5 Who and when should generate the
environment?

Smith et al. [1] ask whether the environment should be generated on a client
or on a server and whether online, while the player is playing, or offline when

11

2. Related work..

Figure 2.2: Animal trails were generated using a graph that maps resources and
species-specific accessibility of the environment. Source: Ecormier-Nocca et al.
[14]

the game is being loaded or when it is being developed. If the generator runs
online and frequently, then performance is a big concern and it can result in
us needing to compromise quality. On the other hand, if the generator runs
offline, there are lower demands on its speed, and it has to store and load the
generated content efficiently.

We will be generating parts of the environment around the player while he is
playing, so we will be doing online generation. If we generated environment on
a server, it would mean less work for the client, better battery life, and more
data sent over the network. The server would know what the environment
around the player looks like (which could be useful if we wanted the server
to influence the gameplay or to add some multiplayer functionality in the
future), but the work the server has to do for every player would probably
add up. If we generated the environment on the client, we could possibly
have an almost offline client apart from downloading streets, buildings, and
elevation data. The client would deplete its battery faster and we could be
more limited by performance.

2.6 Player searching in the environment

Smith et al. [1] discuss how PCG facilitates exploration, allowing players to
navigate and explore the environment, discover surprises, and enjoy unique
experiences similar to those in Minecraft. Additionally, players might en-
counter smaller PCG elements within the environment, similar to those in the
Borderlands game. The key takeaway is that generators should create content

12

.. 2.7. Urban forestry

that is both unexpected and exciting for players to discover. The introduction
of surprise and diversity presents challenges. It might involve integrating
minor, manually crafted content into the generator or meticulously designing
grammar rules and weights.

2.7 Urban forestry

Niese et al. [4] recognized in their work that vegetation in cities is heavily
affected by pruning and also by the surrounding urban area. They used
a neural network for learning plant distribution in land lots. The neural
network learns from satellite images and adjusts the parameters of a planting
strategy within a parameter space. They identified several common vegetation
placement strategies, which can be seen in figure 2.3. We used the Semi-
Random strategy as an inspiration for our work.

2.8 Digital terrain modeling

Galin et al. [9] recognize that terrain is crucial for 3D scenes. Their work is an
overview of current techniques for modeling and authoring terrain. They talk
about procedural modelling, physically-based simulation and example-based
methods that use scanned real world terrain. They divide terrain representa-
tions into elevation models and volumetric models that allow overhangs.

The elevation model can be in the form of function representation or
discrete heightfields representation or layered representation. The function
representation requires little memory, but the evaluation of the function can
be computationally expensive. The discrete heightfields representation is the
most common; it is a regular 2D grid of points where each point has a height
value assigned. The accuracy of this representation is limited because of the
regular spacing of the points. The terrain between the points is reconstructed
using bi-linear interpolation. In our work, we use this representation. Higher-
order interpolation is more computationally intensive and also requires using
points from larger neighborhood for the computation. This representation is
more memory-intensive than function representation. Layered representation
describes different layers of terrain as ordered functions. It is used to model
sediments and to simulate erosion.

Volumetric models allow terrain with overhangs, caves, and arches. There
are 3 possible representations listed in the work: function representation,
voxel representation, and hybrid representation. Function representation is
seldom used in practice due to its complexity. In voxel representation the
space is divided into a 3D regular grid, where each cell is assigned a material.
The disadvantages of voxel representation are high memory cost and difficult
modeling of gentle slopes. We see the hybrid representation as a combination
of voxel and layered representations. It divides the terrain into columns and
stores the materials in the columns as intervals of constant material. On the
surface, the terrain is smoothed by a convolution.

13

2. Related work..

Figure 2.3: Vegetation placement strategies. Source: Niese et al. [4]

In the paper by Galin et al. procedural generation refers to the creation of
terrain without the simulation of physical processes or the incorporation of
real-world data.

Subdivision schemes iteratively add more and more detail to input terrain.
Faulting introduces many faults with different angles to a flat terrain and
displaces the terrain in one direction from the fault up and in the other
direction down. Noise functions can be used to generate infinite terrains.
Using multiple noises with differing scales and amplitudes, one can construct

14

...................................... 2.9. Modelling plant life

Figure 2.4: Types of terrain representation. Source: Galin et al. [9]

Figure 2.5: Subdivision scheme, Faulting, and Noise. Source: Galin et al. [9]

terrain that looks real. When adding additional noises, the new noise usually
has a higher frequency and a lower amplitude. By this procedure, we can
create a fractional Brownian motion, which is also referred to as turbulence.

In our work, we procedurally generate the terrain only partly because we
use real terrain input in the form of discrete heightfields, and we increase its
detail using interpolation and random displacement.

2.9 Modelling plant life

Pirk et al. [10] describe the different modules that make up a plant, how
branches tend to grow towards light and bend towards it. They grow against
gravity. They tend to avoid each other. They compete for space and resources.
From the view of an ecosystem, the plants are modules and they too compete
for resources. The authors also show how plants are pruned near buildings, and
how they bend towards light when near a building. Wind also affects the shape
of the plant. A branch can break when the acting forces exceed some threshold.
They describe procedurally generating plants using a procedural model with
some parameters such as growth rate, gravitropism, and phototropism. They
use a fitness function to maximize the similarity of an input plant and the
generated plant. In the end, they explore user assisted plant modeling that
combines L-systems and user-provided sketches.

15

2. Related work..
2.10 Overview of procedural content generation

Smith et al. [1] says that PCG is is in its essence a data compression
method, it can generate vast environments and it helps with replayability and
adaptability. A small team of game developers can avoid hand-crafting a world
when they use PCG. Content can be generated by running a simulation on
some initial content, or the environment can be constructed by using some
pre-made pieces, or by using grammars, or by optimization - searching for
some optimal combination of components utilizing some evaluation function,
or by setting some constraints and then running a solver that searches for all
possible solutions.

2.11 Generation of villages

Emilien et al. [11] present an original solution to procedural generation of
different types of villages on rough terrain. The geometry of buildings adapts.
They state that a village is defined by a road network, parcels of land, and
3D building models. They generate all of these.

Figure 2.6: A generated highland settlement. Source: Emilien et al. [11]

They achieve this through a three-step process. First, they progressively
generate houses seeds and roads that connect them, this creates a village
layout. New houses appear near roads, and the road network is also extended
when a new house appears. In the second step they create parcels of land
using an anisotropic land conquest method - each house seed claims a part of
a road, and from there iteratively conquests the land. The conquest has some
cost, and each parcel of land is assigned some fund. The conquest cost cannot
exceed this fund. In the third step they generate buildings adapted to the
terrain using an Open Shape Grammar that they introduced. The authors
use interest maps to determine which parts of the land are more favorable to
settlers, they also consider water availability, fortifications, and other factors.

16

.............................. 2.12. Procedural generation of populations

In our work we do not generate villages but some simpler form of village
generation could be considered for future work.

2.12 Procedural generation of populations

Veld et al. [12] state that procedurally generated worlds are often devoid of
people. They present a method for generating a socially connected population
on any terrain. They praise Dwarf Fortress [45] for creating worlds with diverse
population, simulating history, creating towns, populations, and relations.
Their work differs from Dwarf Fortress in that it also allows the influence
of designer intent. They simulate on the level of population, not individual
characters. They simulate migration, collapse, and relations of populations.
A large amount of characters is generated. They state that the tool is good
for generating narrative and quests for RPG games. They were inspired by
history simulation in Dwarf Fortress and complex relations in Crusader Kings
II [46] that change during the game. For generating settlements, they got
inspired by the work by Emilien et al. we mentioned before.

Figure 2.7: A generated world with population. We can see mining settle-
ments, farming settlements, military settlements, fishing settlements, and relatios.
Source: Veld et al. [12]

The input of the method is a landscape, and the output is characters
within a population. Settlements consists of districts, districts have needs
for resources. A settlement has the needs of its districts. A character
resides in a district and has relations with characters and settlements. The
district generates products, has needs for products, and allows its parent
settlement to use some types of relations. A product is a resource such as
fish or wood. These are present if water is near or woods are nearby. A

17

2. Related work..
relation applies to a set of settlements and has a preferred distance and a
maximum distance. Relations between settlements are a strong basis for
relations between individual characters. Using relations, settlements exchange
resources. The simulation of the world is done in iterations.

They also introduced village prototypes. Using this, a designer can, for
example, encourage a village to be a fishing village by setting a rule that its
villagers will be more effective at fishing. As a result, the village prefers to
be close to the sea. Or the village prototype could be a farmer village, etc.

2.13 Generating plants maximizing vegetation
cover

Gasch et al. [24] present a procedural modeling method for placing plants
in an environment. They attempt to maximize vegetation cover while being
subject to a set of constraints such as terrain characteristics or plant species.
The method has three steps.

Figure 2.8: Plant distribution. From left: initial seed distribution, plant species
assigned, and sizes adjusted so that the sizes are maximum. Source: Gasch et al.
[24]

The first step is the distribution of seeds, where they are placed in a regular
grid and then their position is offset using a uniform distribution sample,
where the maximum offset is half of the spacing size in the grid. In the second
step, a species is assigned to each seed. This is done first for a few seeds
using the abiotic features of the terrain. The species of the remaining seeds
is determined by evaluating the influence of the species of the neighboring
seeds. This is done using a k-nearest-neighbor classifier with k = 3. The
abiotic features the authors considered include only the slope and height of
the terrain. And third, constraints are applied. They use a set of inequalities
that represent different constraints of the individual plants. The inequalities
are solved using linear programming. Using this, they obtain the maximum
size of each plant within the constraints, maximizing the vegetation cover.
Each plant has its circle with the same size as the plant, and the circles of
different plants cannot intersect. The circle of a plant has both maximum
and minimum possible sizes depending on the plant species.

In our work we also work with minimum and maximum plant sizes; the
Variable-Radii Poisson-Disc Sampling method also generates plant positions
with circles with variable radii that do not overlap.

18

..............................2.14. Dynamic generation of terrain chunks

2.14 Dynamic generation of terrain chunks

Nahodil P. [27] presents a system for the procedural generation of a 3D
environment along a train track. The terrain is meant to dynamically generate
and unload as the train travels through the environment. To achieve this, he
divides the environment into chunks. The chunks to be rendered are put into
a priority queue and ordered based on their distance from the camera.

Figure 2.9: Chunks in a circle around the camera. Light green are the generated
chunks, dark green are the chunks that are being generated, and red are the
chunks that are too far away and are being destroyed. Source: Nahodil P. [27]

We used this work as inspiration when creating our chunk management
system. But our chunks are being generated and unloaded in a circle around
the player character, not around the camera.

2.15 Terrain adjustment under roads

Kyzr O. [28] presents a tool for Unity that allows procedural generation of
outdoor scenes. The scenes can contain roads, paths, erosion, water bodies,
and rivers. The user can choose what he wants to include. The terrain is
generated using a noise function, and erosion is applied. The environment is
divided into chunks, and the generation result is saved into a texture. The
computation is done using a compute shader and the texture size on highest
settings is 4096x4096 pixels. The texture dictates the height of the terrain.
The roads generated by the tool follow the control points and can carve
through terrain or make it higher.

19

2. Related work..
We used the way the roads affect the terrain, carve into it or make it higher,

as an inspiration for our work.

Figure 2.10: A generated road where the surrounding terrain is adjusted, either
moved up or down. Source: Kyzr O. [12]

20

Chapter 3
Procedural generation of biomes

In this chapter, we discuss our approach. It includes dividing the world into
chunks, creating terrain, creating streets and buildings, dividing the world
into areas that are assigned biomes later, creating vegetation, and creating
quest items.

3.1 Design

First, we discuss the general design of our system for procedural generation
of environment to provide an overview of what we are doing and how. We
will discuss the details in the implementation section.

Because we want our geolocated environment to cover the whole surface of
Earth, we split the environment into parts called "chunks" and we generate
in real-time only those chunks that are close to the user. We also want the
generation to be stable, so that the environment is the same every time it is
generated for a given GPS location. That is useful because different users
will see the same generated environment in the same location, and it also
helps us to make connections between chunks seamless.

For creating terrain, we use real world elevation data of the terrain in the
form of a discrete height-field representation that is the most used for terrain
[9]. From that we create a terrain mesh.

For creating street and building models, we again use real-world data. In
the input data, the streets are represented as polylines and the buildings as
polygons. We create the streets directly from the polylines, adding appropriate
width, and we create the buildings by triangulation of the polygons and
extrusion upwards.

We want the biomes to be spread uniformly in the environment in order to
keep all biome types at a reasonable distance from the user. This is done to
aid the gameplay, when, for example, the player needs to gather a resource
from a specific biome. We divide the environment into areas using a Voronoi
diagram. To create the diagram, we create its input points. We call them
biome centers. We generate these points in a regular grid and uniformly
randomize their positions within their grid cells. The result of this are areas
with visibly straight edges. We can fix this by distorting the edges using a
noise function [13] to achieve a more natural look.

21

3. Procedural generation of biomes

Figure 3.1: Example of our generated environment. In the image we can
see orange streets, blue buildings, the knight chess piece represents the player
character. We implemented 4 different biomes and the system could easily work
with more in the future. The closest biome to the camera is the Desert, behind
it is the Oasis, next is Plains and behind it Forest.

Using noise functions we generate two variables for every biome center -
temperature and moisture. Each of the biomes that can be generated has
some value range of these variables assigned. Using the variables we assign a
biome to each biome center and to its area. We can determine the biome of
any point by comparing the distances (which we distort using a noise function

22

..3.1. Design

so that we have a distorted Voronoi diagram similar to the one shown in
figure 3.2) to nearby biome centers. The biome of the point is then the same
as the biome of the closest biome center.

The terrain is represented by a mesh, the mesh is divided into rectangular
cells, and each cell is made of two triangles. The biome of a cell is determined
by finding the biome of a middle point of the cell.

Figure 3.2: A Voronoi diagram with input points visible and a Voronoi diagram
distorted using a noise function. Source: Stadnik V. [25], Rudi dev [13]

For generating positions for vegetation placement in the chunk we got
inspired by the Semi-Random placement strategy, shown in figure 2.3 and
used by Niese et al. [4] and we also use the Variable Radii Poisson-Disc
Sampling they used. It creates a set of points where every point is the center
of a circle with a random radius, and these circles are not allowed to intersect.

Not all of the generated points are used for creating plants, some are
discarded. Which points are discarded is random, it is affected by settings,
by a noise function that creates meadows, and also by the biome of the point
because each biome has its own vegetation density value. In addition, each
biome has a set of plants that can grow in it and every plant is assigned some
probability of growing in the biome.

Each terrain cell is assigned a biome texture based on its biome. The
textures of neighboring cells are blended together in a shader.

23

3. Procedural generation of biomes

Figure 3.3: Visualization of the result of our implementation of the Variable
Radii Poisson-Disc Sampling. The radii of the red spheres correspond to the
radii of the circles used in the sampling.

3.2 Implementation

In this chapter, we discuss the implementation of the biome generation
system in more detail. The git repository with the source code can be found
at https://gitlab.fel.cvut.cz/mrazmic7/diploma-thesis-public.

3.2.1 Division of Earth surface into chunks

We divide the surface of the Earth using the Geohash [26] system. Using
this system, parts of the surface are assigned ids. The way it works is simple
and is explained in an article [20]. The surface of Earth is represented as a
rectangle and we recursively divide it in half. With each division, we write
into the id number a zero or a one. We use integer identifiers at zoom level
32. We use an NGeoHash [35] package to get the id of a point’s area or to
get the neighbors of an area.

3.2.2 Terrain

We obtain the input data with the elevation of the terrain in a discrete
height field representation that Galin et al. [9] states is the most common
representation of the terrain. From that we create a triangle mesh. To
make the terrain more detailed, we create additional vertices by interpolating
existing vertices and adding a random height offset.

To get elevation data of chunk terrain we use Google Elevation API [8].
The API takes as input the latitude and longitude of a set of points and
returns their elevations. There is a maximum of 500 points that can be in

24

https://gitlab.fel.cvut.cz/mrazmic7/diploma-thesis-public

.. 3.2. Implementation

Figure 3.4: Integer Geohash area id creation visualized. Source: Whelan P. [20]

Figure 3.5: Visualization of adding new vertices to terrain. The red points are
the input points, the green points are the interpolated points.

one request and the spatial resolution of the SRTM dataset [34] (the API
uses this dataset as a source of its elevation data) is about 30 meters. So in
a chunk we create a grid of 22 times 22 points with spaces of about 30 m
between and request the elevation of these points from the API. We use the
returned elevation data to create a terrain mesh.

3.2.3 Converting between GPS and Unity coordinates

For the conversion we defined two important GPS points - one we call the
"reference origin" and the other the "world origin". When converting, we use
the double data type in our code and convert using the reference point. From
the result we subtract the world origin and convert it to float data type. This
can be then used in unity as a transform. We continually recalculate the
world origin so that it is never further away than 50 km from the player. That
should be a reasonable distance for not experiencing the negative effects of
float data type inaccuracy.

For the conversion we assume the latitude of the reference point - that
results in distortion in some parts of the world but the procedurally generated
environment is continuous and stable. Let’s expand on this a bit:

For the conversion we at first assume an ideal sphere with the radius of the
Earth. We know that one degree of latitude corresponds to some distance
in meters. But for longitude it is more difficult because it depends on the
latitude of the point. So we do a little hack and we assume the same latitude
everywhere - the latitude of the reference point. That means that the further
we get from the latitude (or negative latitude) of the reference point, the

25

3. Procedural generation of biomes
more inaccurate the conversion becomes. But the conversion still works,
the distances are just distorted. That means we assume a cylinder where
the latitude is mapped accurately to meters and the longitude to meters is
mapped accurately only at the latitude and negative latitude of the reference
point. As we get closer to the equator, the longitude meters become more
squashed than in reality and as we get closer to the south and north poles,
the longitude meters become more stretched than in reality.

Figure 3.6: Visualization of how our GPS to Unity coordinates conversion works.
The red point is the reference point, the green point is the one we are converting.
The green line is a part of a latitude circle, the blue line is a part of the longitude
circle projected onto a cylinder. We move on the green line using longitude or
x coordinate and on the blue line using latitude or z coordinate. The orange
circles are the latitude circles at the latitude of the reference point.

3.2.4 Streets and buildings

We get the input data for building and street generation as a vector descrip-
tion, a building is represented by a polygon made of points, and a street is
represented by a polyline.

We download OpenStreetMap (OSM) data from http://overpass-api.de.
Into the request we add the GPS boundaries of the area in which we want to
download the OSM data. We download the data in XML format. In these
data, we care only about the Node, Way, and Relation XML nodes. Nodes are
points with latitude and longitude information attached and ways reference
these nodes by their IDs. We extract the ways that represent streets and
buildings. We use the Relation nodes that represent multipolygon building,
and from that we use only the outer way. This is a quick solution, it could
be improved in the future. For example, support for making holes inside the
polygon using inner ways of the Relation node could be added.

The way that represents a street contains node IDs in order. We render the
streets using the LineRenderer Unity component. We differentiate the width
of the created street based on what kind of street it is, because there are
several kinds of streets in OSM (there they are called highways). We divide

26

http://overpass-api.de

.. 3.2. Implementation

the street into smaller segments and place the endpoints of the segments onto
the terrain using physics raycasting.

The way that represents a building contains IDs of nodes of the buildings
outline, these can unfortunately be written in the OSM in clockwise or
counterclockwise order. We detect in which order they are written using an
algorithm that sums angles at each node of the polygon and based on the
final sum we decide. Then we triangulate the polygonal surface using the
ear clipping triangulation algorithm. We also create walls of the buildings by
extruding the outline. That is done by creating additional triangles and points
that are then inputted into a MeshFilter Unity component. The resulting
GameObject of the building then contains two objects, one contains the walls
MeshFilter and the other the roof MeshFilter. We then put the buildings
onto the terrain. For every point of the building outline we check using a
Unity physics raycast at what height it intersects with the terrain mesh. We
take the values of the lowest height at put the building at that height. We
assign random colors to the buildings.

We create building mesh from a polygon describing its layout using an Ear
clipping algorithm [19] and we create its walls by extruding its layout upwards.
The building is placed onto the terrain again using physics raycasting, the
height of the lowest point of the layout is used.

3.2.5 Biomes

We generate points in a regular grid, slightly randomize their positions and
use these new points as input to create a Voronoi diagram. We call these
points "biome centers." The result of this is areas with visibly straight edges.
We can fix this using Perlin noise [13] to achieve a more natural look. In
every chunk we generate 4 biome centers, each positioned in one quarter of
the chunk. To achieve continuity of biomes across chunk borders, a chunk
also generates biome centers of its neighbor chunks. We determined that
generating two additional biome centers in a direction is enough, but that
means to generate all four biome centers of every neighbor chunk anyway.

We achieve stable randomization of the biome center position by setting a
seed for the random generator beforehand. The seed is based on the latitude
and longitude of the initial biome center position. When creating the seed,
we scale latitude and longitude differently so that biome centers, that are
close to each other, are not offset similarly.

To a biome center we assign a biome. Each biome type has some temper-
ature and moisture range assigned. Temperature and moisture values of a
point are generated using two Perlin noise functions. As input to the Perlin
noise, we use latitude and longitude, which we also scale. Experimentally, we
arrive at the scaling values we used. We scale the input for temperature by
100 and the input for humidity by 200. Using the resultant temperature and
moisture we assign a biome to the biome center.

We determine the biome of a point using distances to the nearest biome
centers. The distances are additionaly distorted using Perlin noise. Biome of
the point is the same as the biome of the nearest biome center. We combine

27

3. Procedural generation of biomes

Figure 3.7: Biome centers, represented using yellow balls, before and after being
randomly offset. We can see one chunk and its four biome centers. This chunk
also generates biomes centers of its neigbors so it can independently generate its
biomes without the other chunk having to be loaded.

Figure 3.8: Biome centers visualized using yellow balls. The chunk shown in
previous figures is now selected, its borders are orange and its triangles and cells
(made of 2 triangles) are visible.

bigger and smaller offset. For creation of each offset we use two perlin noises.
For the first offset we scale the noises by value 1150, for the second offset by
value 2300. We arrived at these values experimentally. We also transformed
the range of the offsets from range < 0, 1 > to range < −1, 1 >. Before
applying the offsets to distances, we scale them by terrain cell size and the
bigger offset by number 5 and the smaller offset by number 2.5. In the
following code you can again see how we apply the values we got using Perlin
noise.

Vector3 movePointForColoringByBiomes(Vector3 point)

28

.. 3.2. Implementation

{
GpsVector gps = Gps.instance.ConvertUnityCoordsToGps(point);
Vector2 cellSizes = new Vector2(cellWidthInX, cellHeightInZ);

int seedX, seedZ;
float gpsScale, offsetsScale;
Vector2 randomAddition = Vector2.zero;

seedX = 723;
seedZ = 189;
gpsScale = 1150.0f;
Vector2 biggerOffsets = generateOffsetUsingPerlinNoise(gps, seedX, seedZ, gpsScale);

seedX = 500;
seedZ = 1000;
gpsScale = gpsScale*2;
Vector2 smallerOffsets = generateOffsetUsingPerlinNoise(gps, seedX, seedZ, gpsScale);

offsetsScale = 5.0f;
randomAddition = biggerOffsets * cellSizes * offsetsScale;

offsetsScale = offsetsScale /2;
randomAddition += smallerOffsets * cellSizes * offsetsScale;

point += new Vector3(randomAddition.x, 0, randomAddition.y);

return point;
}

3.2.6 Generating vegetation

For generating potential positions for vegetation placement in the chunk we
got inspired by the Semi-Random placement strategy used by Niese et al.
[4] and we also use the Variable Radii Poisson-Disc Sampling. It creates
a set of points where every point is the center of a circle with a random
radius, and these circles are not allowed to intersect. This approach creates a
natural-looking distribution of points. For the implementation we got inspired
by Lague S. [36].

We accelerate the placing of vegetation by creating a grid of cells where
each side of a cell is equal to square root of minimum possible circle radius
and thus in every cell there can be at maximum one plant. Sadly the circles
can overlap on chunk borders but it is not very noticeable. This could be
fixed in the future so that placing trees is seamless across the borders.

Some of the generated points are used for creating vegetation. Which points
are selected to use depends on the vegetation density parameter, lushness
parameter (both set in the application settings) and on the point’s biome.
Point’s biome is determined by which biome center is the closest to it, but

29

3. Procedural generation of biomes

Figure 3.9: Visualization of the result of our implementation of the Variable
Radii Poisson-Disc Sampling. The radii of the red spheres correspond to the
radii of the circles used in the sampling.

the distances are slightly distorted using a Perlin noise. The same strategy is
used also for determining the biome of terrain cells. Most biomes have more
than one plant species that can be generated in it, each species has a set
probability. Lushness is used to create "meadows" - we use a Perlin noise to
select areas where there is no vegetation generated. The lushness parameter
determines the size of these areas.

3.2.7 Terrain textures

We logically divide the terrain into cells, where a cell consists of 2 triangles.
When determining the biome of a cell, we measure the distance of the middle
of the cell from nearby biome centers and we slightly distort the distances
the same way as before.

To achieve continuity of biomes between neighboring chunks, each chunk
generates also some biome centers of its neighboring chunks, 2 biome centers
in every direction. By visualizing how big the area that a biome center can
influence is, we arrived at the number 2.

We programmed a surface shader for the terrain that blends the biomes
of its cells. The texture of a terrain pixel is influenced by biome textures
of cells that are within a distance of 2 cells from the pixel. To achieve
continuity of cell biome texture blending between chunks, each chunk has to
generate some additional cells from its neighbor chunks. That means that
each chunk generates 2 cells beyond the chunk borders in every direction. We
use a surface shader so that shadows can be displayed on the terrain. When
programming the shader we got inspired by Beider V. [37].

30

.. 3.2. Implementation

Figure 3.10: Example of terrain with blending biome textures.

3.2.8 Terrain smoothing under streets

To smooth the terrain under streets we got inspired by Kyzr [28], where
he describes road generation on terrain. The road is able to cut through
terrain or to tighten it. In our approach, we choose a smoothing radius and
go through every vertex of the street, and check the height of every terrain
vertex within the smoothing radius of a street vertex. We average these
heights and level the terrain vertices within the smoothing radius around the
street vertex by interpolating the old heights and the average height using
a factor alpha. This factor is determined using a smoothstep function - it
takes the distance of a terrain vertex from the street vertex (with maximum
distance being the smoothing radius) and converts it to range from 0 to 1,
where the values around 0 and 1 are smoothed.

3.2.9 Chunk terrain normals stitching

The terrain was visibly not continuous on chunk borders before. Every terrain
vertex has a normal. On chunk borders there are multiple vertices in the same
position, but each of them has different normal. We fixed this by the following
method: When a chunk is created, it checks what neighboring chunks exist
around it. Then it gets the normals of vertices that are on mutual borders
and averages all of the normals of vertices that share a position. Than it
saves the averaged normals to every affected chunk.

31

32

Chapter 4
Game prototype

The player character changes its in-game location according to the change of
the device’s GPS location and rotates based on data received from the device’s
compass. The movement of player is interpolated to eliminate stutters that
were present when we used the sensor data directly. The camera controls
are adapted for usage on a touchscreen, swiping rotates the view around the
player character and pinching zooms the view.

4.1 Using and simulation GPS data

We get the device’s current GPS sensor readings through Unity. The position
changes quite frequently and there can be big jumps. We create our own GPS
position called game GPS and we get it by interpolating between the old game
GPS and the current sensor readings so that the movement is smoother. We
also added a threshold, if the position changes by more than a few hundred
meters, the game GPS changes immediately to the new position. Player
orientation is changed based on the data received from the device’s compass.
It is also interpolated to prevent unwanted twitching. We are essentially
"bridging" the device GPS and in the game is used the game GPS.

We can also change the source of the GPS data to a simulated GPS, where
we control what location is simulated and we can smoothly change it using a
virtual joystick. The options for enabling and changing the simulated GPS
are available through a settings window in the prototype. When using the
simulated GPS, the game GPS is determined by the simulated GPS instead
of by the GPS read from the device sensor.

The player position is the same as the game GPS all the time.

4.2 Chunk generating and unloading

We set a chunk-generating distance, which is a radius of the area around
the player in which to generate chunks. Each time we generate the chunk
that is closest to the player and currently there is a 1 second delay set before
generating another chunk. We set this delay so that the prototype doesn’t
freeze for too long at a time. We find the candidate chunks for generating by

33

4. Game prototype ..

Figure 4.1: Joystick UI and the player character in a forest biome.

recursively looking at geohash neighbors of another chunk. When an existing
chunk is too far away from the player (chunk-generating distance we set +
200 meters), the chunk is destroyed to free up resources.

4.3 Camera control

The camera controls are designed for the touch screen, so the user can rotate
the camera by swiping the screen with one finger and zooming in or out by
pinching in or out with two fingers. There are limits to the angle of the
camera so the user can’t rotate the view to look straight down or straight up.
If we detect that the camera is under terrain or slightly above it, the camera
is pushed upwards.

34

.. 4.4. Quest

Figure 4.2: Screenshots from early prototype. The white circles are the places
where the user touches the screen. (Left) The user is zooming in the view using
a two finger gesture. (Right) The user is rotating the view using a one finger
gesture.

4.4 Quest

To be able to test the prototype with users, we designed a quest. Into the
desert and forest biomes we randomly place the sword and shield items and
the player’s task is to find them. The quest is accessible through a button in
the prototype, a quest window appears with the initial quest description and
the player has the option to accept the quest. The text in the quest window
changes based on what stage the quest is currently in. There are 3 texts -
One is the initial description, the second is when the quest is accepted but
not yet completed and the third is after the quest was completed. After the
player accepts the quest he is supposed to start walking around, search for

35

4. Game prototype ..

Figure 4.3: Screenshot from early prototype. Here we can see terrain, buildings
and streets without biomes. The buildings are placed on top of the terrain.

the two biomes and there he should look for the items requested. If he clicks
on the item and is within 100 meters distance of it, the item is picked up.
Otherwise a message appears that says he is too far away. There is a UI that
tracks the quest objectives, it tells the player the name of the quest, what
items is he supposed to find and how many items he already found. After he
picks up enough items, he can complete the quest.

4.5 Settings

There is a settings window accessible through the button "DevTools". In this
window there are toggles to enable or disable different parts of the UI, to
enable using building heights from OSM when generating building objects,

36

... 4.5. Settings

Figure 4.4: Quest window

a toggle to enable GPS simulation, a selection of positions to set as the
simulated GPS, a slider that changes chunk generating distance parameter,
a slider that changes lushness parameter, a slider that changes vegetation
density parameter.

Chunk generating distance affects the distance in which we will generate
chunks and unload them. Lushness affects how big the "meadows" areas where
no vegetation grows are. Vegetation density affects how many of the potential
vegetation positions generated by Variable Radii Poisson-Disc Sampling will
be used in the end.

37

4. Game prototype ..

Figure 4.5: From left: enabled building heights, settings window.

Figure 4.6: Quest objectives UI

38

Chapter 5
Results

5.1 Screenshots

Figure 5.1: From left: Barrandov Terraces, Charles Square.

39

5. Results ..

Figure 5.2: From left: Central Park, Santo Domingo.

40

... 5.2. User Testing

5.2 User Testing

In total we tested the game prototype with 3 users and a few other users
tried it. On the next two pages is the testing document, which contains an
introduction for the prototype testing for the user, some instructions for the
one conducting the test and a questionnaire. We tried to not reveal too much
about the game and how it is controlled during the testing, we let the users
to discover it on their own and it was mostly successful.

We will number the responses where it makes sense, the numbers correspond
to the questions in the questionnaire, which can be found in the appendix.

5.2.1 Testing with the first user

1) He liked the game very much, 2) he found the controls to be fluent, the
compass to be quite sensitive. 3) He would somehow highlight the nearest
pickable object to be able to find it more easily. 5) He praised that the game
was a good reason to walk outside and the game wasn’t difficult. 7) He had
difficulty finding the items, but he also says that this is probably the goal
of the game, to search for the items, so he doesn’t view it as a mistake. 8)
He would like to how some indication of where the nearest item is, like in
geocaching. 9) The biomes are used for indicating where items could be, also
specific enemies could spawn in different biomes. 10) He liked the vegetation
models. 11) Thanks to the 3D terrain he could predict whether he will go
uphill or downhill, useful. 12) He could predict the difficulty of path he chose
thanks to the 3D terrain. 13) He would maybe change the textures of streets
and buildings, but on the other hand it is good that they are distinct. 14) A
relaxing game that gets you outside. 15) Has experience with Pokémon GO
and Geocaching. 16) For such game it is important that it is simple and there
is not too many things. 17) It is good that the game gets people moving.
18) He likes discovering new places, he likes discovering new paths through
areas he already knew. 19) He would like to see an adaptation of LARP (Live
action role-playing game) - meeting real people, exchanging resources with
them in the game, fighting them.

5.2.2 Testing with the second user

1) He found the game to be interesting, and says it has potential. 2) He
liked the walking aspect because it provides exercise, he can be in nature
and it provides opportunities to be social. 3) He found the environment in
the game to be better to orient in than Google Maps because it is in 3D. 4)
When he found the items, he felt fulfilled and happy. 5) He rates the game
8 out of 10 points, he would like to see more quests. 6) He got stuck when
he was searching for a shield, he found a forest but it was behind the Vltava
river and he couldn’t easily get there. 7) He liked that the game is good for
health, he didn’t like that the game doesn’t save progress. 8) He would add
progression and progression saving, multiplayer. 13) He would add a snow

41

5. Results ..
biome and he would make the streets black or grey, to not be so "flashy". He
says that the items he is supposed to find should be well visible instead. 15)
He tried Pokémon Go, it was a new style of game. 16) He says that having
lots of updates and not being pay to win is important for such a game. 17)
He likes that he can make new friends through the game, doesn’t like that he
needs to have internet to play it and it is also not suited for the disabled.

5.2.3 Testing with the third user

He would like to be able to click outside of a window to close it. He would like
to be able to click a button titled "yes" when the quest asked him a question
instead of clicking "close". He would like to see some introduction to the
game instead of just directly being presented with the first quest, something
along the lines of "Welcome to our kingdom". 1) He likes the game, he likes
the visual style of it. He wasn’t able to see the items in the distance and that
is wrong. He made some suggestions for what to add into the game: shame
some locations where you can hide your items so that you don’t lose them if
your character is killed. Also he suggested expanding the first quest by going
to a village and asking there where you could find the items. You would
have to search around in the game and ask instead of directly being handled
information where to find the items. You could also find the items by chance.
2) He likes that the game makes you walk. 3) He knew where to walk, he
didn’t see where the character is facing. 4) He thinks the desert biome is
prevalent, as a result he found the sword much more easily than the shield
(which is in the forest biome). 5) He rates the game 8/10, likes the fantasy
or medieval theme. 6) He got stuck when searching for the shield, the forest
biome was too small. 7) He liked the appearance of the game, liked the desert
biome, he didn’t like that the items were not distinctive enough. 8) He would
add villages, animals, enemies, the safe space for items in a pub or in a village.
9) He suggested that the vegetation could blend more between the biomes,
now it is not possible that for an example a tree from a forest would grow
on the edge of desert biome. 10) He rates the biomes and vegetation 9/10
points, he would make the desert less prominent. 11) 3D terrain he rated
8/10. 12) The paths helped him to orient himself, he didn’t see buildings
because there were none in the park where we tested. 13) He would change
the appearance of the buildings, the transparent blue doesn’t fit the medieval
style. 14) He would describe this game as Pokémon Go in medieval times.
15) He has experience with Pokémon Go and Harry Potter: Wizards Unite
from the same company. He also has experience with a game called Grim
Soul: Survival. It is not a location-based game, but he mentioned some of its
features that could be added to our game. 16) He says that in such a game
the theme is important, also it is important to have some distant goal and a
storyline. 17) He likes that the game makes you walk, what he doesn’t like is
that it drains the battery of your device and although you are outside, you
are still on the phone. 18) In a game of this type he likes to make progress
and he also likes when the game has interesting updates.

42

... 5.2. User Testing

5.2.4 Testing with some other users

A user praised the text of the quests, he thinks they are very fun and that we
should continue what we are doing. He said that he didn’t use the buildings
at all for orientation, he only used the streets. He would like to be able to
move the map without having to walk. Probably to search for the items that
are far away from his character this way. He is also missing a map scale to be
able to estimate how far he will have to walk. One user said that he would
change the appearance of the streets to have some texture.

Before we added the quest stages, there was only the introduction text of
the quest. One user who tested the prototype at that time was disappointed,
he felt he didn’t get his dopamine surge when almost nothing happened
after he completed the quest, only a little message saying "quest complete"
appeared. Another user was disappointed when no flashy effect appeared
after picking the quest item. The item just... disappeared after being picked
up. Clicking on the quest items was sometimes difficult, we experienced
it with multiple users. We should fix that. It was interesting to see that
multiple users tried to pick the items up by walking over them. And when
being shown that they can pick the items by clicking, they were surprised
by the distance (up to 100 meters) from which the items can be picked up.
Maybe we could shorten the pick up distance.

5.2.5 User testing results discussion

During the testing we realized that it would be probably better if the items
showed up only when the user came near because the users had difficulty
finding the items, that were far away because they were quite small at that
distance. We could maybe also limit more the render distance so that the
user has to walk more around. Now the users search for the small almost not
visible items in the distance and and then they walk right towards them. The
searching is difficult and there is not much element of surprise included.

The benefits of the game according to the users are: makes you walk,
exercise, good for health, makes you orientate yourself, you can socialize with
others, make new friends, you can get to know your surroundings better.

The cons of the game are: it needs an internet connection, it drains the
battery fast, it is not suited for the disabled.

It looks like for some reason the desert biome is the most prevalent of the
four, 2 users noticed it. It has something to do with how we combine two
Perlin noise functions together or it could be caused by the interplay of how
we scale the Perlin noise functions and how far away from each other the
biome centers are.

Generally the users praised the appearance of the game, the visual style,
the models. What some of them would change are the streets and buildings
appearance. We agree with that, the colors of buildings and streets should
be more subtle, a texture should be added and they could be merged into
the terrain texture as seen in some other games (for example Dragon Quest
Walk).

43

5. Results ..

Figure 5.3: The buildings and streets in the game Dragon Quest Walk are
represented as textures. Source: Square Enix [21]

During the testing, we noticed that after a player accepts the quest, he is
no longer able to see the introduction text of the quest so he has to remember
where to find the sword and the shield. We recognized this mistake and
helped the users during testing.

5.3 Performance

For testing the performance of our system we created several test cases. The
basis for every test case is the default configuration 5.1 and on top of that
some variables are modified. We measured the frame times during generation
of environment and plotted them into a graph.

We listed the variable domains in table 5.2, location details in table 5.3,
and device specifications in table 5.4. Screenshots of the testing locations can
be found in section 5.1.

44

... 5.3. Performance

Parameter Value
Vegetation density 69%
Vegetation lushness 90%

Chunk generating distance 530 m
Device PC

Location Charles Square

Table 5.1: The default configuration

Variable Domain
Vegetation density 0%, 50%, 100%

Device PC, OnePlus Nord 2, Xiaomi Redmi 6
Location Charles Square, Barrandov Terraces, Central Park

Chunk generating distance 250 m, 700 m, 1000 m

Table 5.2: Variable domains

Location City GPS
Charles Square Prague 50.076104, 14.418764

Barrandov Terraces Prague 50.026896, 14.393643
Central Park New York 40.774031, -73.970967

Table 5.3: Location details

Device PC OnePlus
Nord 2 5G

Xiaomi
Redmi 6

CPU
AMD

FX-8320
Mediatek

Dimensity 1200
Octa-core 2.0 GHz

Cortex-A53

GPU
NVIDIA GTX

1050 Ti
Mali-G77

MC9
PowerVR
GE8320

RAM 16GB 8GB 3GB

OS Windows 10 Android 12 Android 9

Resolution 2160 x 1080 2400 x 1080 1440 x 720

Table 5.4: Device specifications

45

5. Results ..
We measured the average frames per second (FPS) after the generation

was done and entered the measurements into a table 5.5.

Test case - Default configuration with ... Average FPS after
generation completed

Vegetation density = 0% 115
Vegetation density = 50% 108
Vegetation density = 100% 106
Device = PC 107
Device = OnePlus Nord 2 5G 30
Device = OnePlus Nord 2 5G,
Chunk generating distance = 1000 m 30

Device = Xiaomi Redmi 6 8
Location = Charles Square 107
Location = Barrandov Terraces 117
Location = Central Park 95
Chunk generating distance = 250 m 141
Chunk generating distance = 700 m 100
Chunk generating distance = 1000 m 80

Table 5.5: Measurements of average FPS in different testing cases after environ-
ment generation completed. The FPS on mobile is capped at 30 by Unity.

In the default configuration we did additional measurements about down-
load and processing the OSM data, because that is the most demanding part
of the system. The average amount of downloaded OSM data for a single
chunk was 345 kBytes, downloading it took on average 971 ms and processing
it took on average 1009 ms. In total 7 chunks are downloaded when using
the default configuration, so the true demands are download time around 971
ms, processing time around 7063 ms, and 2.415 mBytes.

We also roughly measured (using Stats in Unity in the Game window)
how many triangles are being rendered when we put the camera in such
position that all chunks are visible. In the default configuration there are
292.5k triangles rendered, in the default configuration with location changed
to Barrandov Terraces, 1.4M triangles are rendered, and in the default
configuration with location changed to Central Park, 1M triangles are rendered.
From this we can see that vegetation contributes most triangles to the scene
triangle count because the area around Charles Square is mostly composed
of buildings.

Graphs with frame times for the test cases are shown below. There is an
intentional delay of one second before the system sends a request to download
data from another chunk (otherwise the program would just freeze for a
long time without the user being able to do anything in that time). After
the chunk data are downloaded, the program freezes briefly while the chunk
content is generating. The large spikes in the graph mostly correspond to
generation of one chunk, but sometimes more than one spike joins together
because the download of data took longer than usual.

46

... 5.3. Performance

In the first test case, we measured using the default configuration and
we altered the vegetation density to be 0%. That means no vegetation was
generated. We can see 7 spikes as the individual chunks were loading, and the
longest time chunk generation took was 1s. After the last chunk has finished
loading, the spikes end and the average FPS after that is listed in table 5.5.

Figure 5.4: Test case: Default configuration with Vegetation density = 0%

When vegetation density was higher, the longest time chunk generation
took reached almost 1.4 s.

Figure 5.5: Test case: Default configuration with Vegetation density = 50%

47

5. Results ..
With vegetation density set to 100%, the longest chunk generation time

was around 1.1 s.

Figure 5.6: Test case: Default configuration with Vegetation density = 100%

Here, two chunks were generated in one frame. This test case has the same
configuration as the default configuration because the device used is a PC.

Figure 5.7: Test case: Default configuration with Device = PC

48

... 5.3. Performance

On the faster android phone with which we tested the generation was
surprisingly fast. Generating a chunk took about 0.4 s. That means that
when users tested our game prototype, the game environment was generated
within 10 seconds. When they played the game and moved farther from the
location where they began, generation of a new chunk took 0.4 s.

Figure 5.8: Test case: Default configuration with Device = OnePlus Nord 2 5G

This test case used an inexpensive android phone released in 2018. Gen-
eration of a single chunk took around 4 seconds, which is the slowest we
measured.

Figure 5.9: Test case: Default configuration with Device = Xiaomi Redmi 6

49

5. Results ..
Here, the location is Charles Square, it is again the same configuration as

the default configuration.

Figure 5.10: Test case: Default configuration with Location = Charles Square

Chunk generation speed in Barrandov Terraces is surprisingly fast, mostly
around 0.4 s. We suppose this is because there is much less OSM data to be
downloaded and processed than in the Charles Square.

Figure 5.11: Test case: Default configuration with Location = Barrandov
Terraces

50

... 5.3. Performance

The chunk generation speed in Central Park is also faster than in Charles
Square, we again suppose this is because there is less OSM data to be processed
than in Charles Square. The immediate surroundings of this location are
mostly greenery without many buildings or streets.

Figure 5.12: Test case: Default configuration with Location = Central Park

Here, we see only two spikes because more chunks did not fit within the
limited distance of 250 m.

Figure 5.13: Test case: Default configuration with Chunk generation distance
= 250 m

51

5. Results ..
Here we see more chunks being generated with the chunk generation distance

set to 700 m.

Figure 5.14: Test case: Default configuration with Chunk generation distance
= 700 m

When we set the chunk generation distance to 1000 m, we see even more
chunks being generated. The generation now takes 40 s to finish.

Figure 5.15: Test case: Default configuration with Chunk generation distance
= 1000 m

52

... 5.3. Performance

We added one final test case with the more performant Android phone and
large chunk generation distance. The environment was completely generated
in 30 seconds. The one big spike appears probably because of the data
download being delayed.

Figure 5.16: Test case: Default configuration with Chunk generation distance
= 1000 m and Device = OnePlus Nord 2 5G

5.3.1 Profiling

We profiled the program using the default configuration shown in table 5.1.
We did basic Unity profiling and then deep profiling. We focused on the
frames that were the slowest and summarized the result of the standard
profiling in figure 5.17 and the results of the deep profiling in figure 5.18.

Figure 5.17: Profiling result, each function has its percentage of total computa-
tion time. The function hierachy is visualized using indentation.

We can see that building and street generation and game objects destruction
have the greatest performance impact. GameObjects are destroyed when
the freshly generated vegetation collides with street or building colliders.
GameObjects are also destroyed when a chunk gets too far away from the
player.

53

5. Results ..
In deep profiling result, we see that almost all of the computation time

is taken by the Generate buildings and streets function. What is surprising
is that smoothing terrain under the streets takes 8% of time, loading XML
document 12% of time and Poisson-disk sampling takes 46% of time. It seems
that our sampling implementation should be improved. We see that getting
sample from normal distribution is also quite demanding, consuming 17% of
time. Identifying biome of a point takes in total almost 10% of time.

Figure 5.18: Deep profiling result, each function has its percentage of total
computation time. The function hierachy is visible from the indentation.

Now we know what to focus on when trying to optimize the program in
the future. We should focus on improving our implementation of Poisson-disk
sampling and on normal distribution sampling because we think there we will
be able to easily achieve the biggest performance boost.

54

Chapter 6
Conclusion and Future Work

6.1 Conclusion

In this work we created a system for geolocalized procedural generation of
a game environment, and we also created and tested with users a simple
game using this system. The system divides the Earth surface into areas
for which it generates terrain, streets and buildings based on real data and
also generates biomes and vegetation not based on real data but designed to
support playability. The player character moves using the GPS and compass
sensor data of the mobile device, the player can move and zoom the camera
using gestures, pick up items and complete a simple quest.

We showed how to create a system that combines two popular concepts in
games. Those are procedural generation of biomes (as seen for example in
Minecraft) and location-based gameplay (as seen for example in Pokémon
Go). This combination is a novel idea and based on the responses from the
users in the user testing we see that it has a potential, players find it fun and
they ask for more content they could play. We thought that our generation
system is quite slow, but when looking at the Frame time over time graph of
the mobile device we tested on, it is actually quite good. The environment is
loaded within 10 seconds after launching the game and then generating one
new part of the world takes only 0.4 seconds for which the game freezes. This
generation could be further optimized or split using a coroutine into multiple
frames.

6.2 Future work

Future work could focus on making the generation faster based on information
we discussed in the profiling section. We could add additional biomes and
plants. We could identify some additional data in OpenStreetMap or use
some other points of interest source to create game objects at interesting real
world places. Representation of water areas should be added, multipolygonal
buildings should be better supported, currently we don’t support making holes
in polygons and we don’t support combining a polygon from multiple ways.
The streets and buildings should be made more subtle, textures could be

55

6. Conclusion and Future Work
added to them and we could think of ways of integrating them into the terrain
texture. On the other hand pickable items should be made better visible. The
desert biome should be less represented in the game. The player character
should be improved so that the player sees better where it is heading. The
direction of the character should be dependent also on the current movement
direction character and not only on compass readings.

56

Bibliography

[1] Smith, G. (2015). Procedural Content Generation: An Overview.

[2] Biome. (n.d.). No Man’s Sky Wiki. Retrieved May 15, 2024, from https:
//nomanssky.fandom.com/wiki/Biome

[3] Ingress (video game). (n.d.). Wikipedia. https://en.wikipedia.org/
wiki/Ingress_(video_game)

[4] Niese, T., Pirk, S., Albrecht, M., Benes, B., & Deussen, O. (2022).
Procedural Urban Forestry. ACM Transactions on Graphics, 41(2), 1–18.
https://doi.org/10.1145/3502220

[5] Subnautica Wiki user Bioness. Subnautica Labelled Map Zones
and Textures. (n.d.). Subnautica Wiki. Retrieved May 15, 2024,
from https://subnautica.fandom.com/wiki/Crater_Map?file=
Subnautica_Labelled_Map_Zones_and_Textures.png

[6] Biomes (Subnautica). (n.d.). Subnautica Wiki. Retrieved May 15, 2024,
from https://subnautica.fandom.com/wiki/Biomes_(Subnautica)

[7] Melissa, A. (2010, November 11). Summary#6 World Biomes.
http://anamelissa-scienceclass.blogspot.com/2010/11/
summary6-world-biomes.html

[8] Get Started | Elevation API | Google for Developers. (n.d.). Re-
trieved May 15, 2024, from https://developers.google.com/maps/
documentation/elevation/start

[9] Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M., Benes,
B., & Gain, J. (2019). A Review of Digital Terrain Modeling. Computer
Graphics Forum, 38(2), 553–577. https://doi.org/10.1111/cgf.13657

[10] Pirk, S., Benes, B., Takashi Ijiri, Li, Y., Deussen, O., Chen, B., &
Radomir Měch. (2016). Modeling plant life in computer graphics. https:
//doi.org/10.1145/2897826.2927332

[11] Emilien, A., Bernhardt, A., Peytavie, A., Cani, M.-P., & Galin,
E. (2012). Procedural generation of villages on arbitrary terrains.

57

https://nomanssky.fandom.com/wiki/Biome
https://nomanssky.fandom.com/wiki/Biome
https://en.wikipedia.org/wiki/Ingress_(video_game)
https://en.wikipedia.org/wiki/Ingress_(video_game)
https://doi.org/10.1145/3502220
https://subnautica.fandom.com/wiki/Crater_Map?file=Subnautica_Labelled_Map_Zones_and_Textures.png
https://subnautica.fandom.com/wiki/Crater_Map?file=Subnautica_Labelled_Map_Zones_and_Textures.png
https://subnautica.fandom.com/wiki/Biomes_(Subnautica)
http://anamelissa-scienceclass.blogspot.com/2010/11/summary6-world-biomes.html
http://anamelissa-scienceclass.blogspot.com/2010/11/summary6-world-biomes.html
https://developers.google.com/maps/documentation/elevation/start
https://developers.google.com/maps/documentation/elevation/start
https://doi.org/10.1111/cgf.13657
https://doi.org/10.1145/2897826.2927332
https://doi.org/10.1145/2897826.2927332

6. Conclusion and Future Work
The Visual Computer, 28(6-8), 809–818. https://doi.org/10.1007/
s00371-012-0699-7

[12] B. Veld, B. Kybartas, R. Bidarra, & Meyer, J. J. C. Meyer (2016).
Procedural generation of populations for storytelling.

[13] User Rudi dev. (2022, January 27). Biome generation explained | Voronoi
diagrams into biomes. YouTube. https://www.youtube.com/watch?v=
D9_FB6hWnME

[14] Ecormier-Nocca, P., Cordonnier, G., Carrez, P., Moigne, A.-M., Memari,
P., Benes, B., & Cani, M.-P. (2021). Authoring consistent landscapes
with flora and fauna. ACM Transactions on Graphics, 40(4), 1–13. https:
//doi.org/10.1145/3450626.3459952

[15] Fischer, R., Dittmann, P., Weller, R., & Zachmann, G. (2020).
AutoBiomes: procedural generation of multi-biome landscapes. The
Visual Computer, 36(10-12), 2263–2272. https://doi.org/10.1007/
s00371-020-01920-7

[16] Alha, K., Koskinen, E., Paavilainen, J., & Hamari, J. (2019). Why do
people play location-based augmented reality games: A study on Pokémon
GO. Computers in Human Behavior, 93, 114–122. https://doi.org/10.
1016/j.chb.2018.12.008

[17] ‌Augmented Reality: The Future of Manufacturing. (n.d.). SAP. Re-
trieved May 2, 2024, from https://www.sap.com/cz/products/scm/
industry-4-0/what-is-augmented-reality.html ‌

[18] Rapp, D., Niebling, F., & Latoschik, M. E. (2018). The Impact of
Pokémon Go and Why It’s Not about Augmented Reality - Results from a
Qualitative Survey. 2018 10th International Conference on Virtual Worlds
and Games for Serious Applications (VS-Games). https://doi.org/10.
1109/vs-games.2018.8493442

[19] Eberly, D. (2002). Triangulation by Ear Clipping. https://www.
geometrictools.com/Documentation/TriangulationByEarClipping.
pdf

[20] Whelan, P. (2011). Geohash Intro - Big Fast Blog. Retrieved May 15,
2024, from https://bigfastblog.com/geohash-intro

[21] Fuller, A. (2019, June 3). Square Enix Announces Dragon
Quest Walk. RPGamer. https://rpgamer.com/2019/06/
square-enix-announces-dragon-quest-walk/

[22] Intel. (n.d.). Real-Time Systems Overview and Examples. Intel. Re-
trieved May 21, 2024, from https://www.intel.com/content/www/us/
en/robotics/real-time-systems.html

58

https://doi.org/10.1007/s00371-012-0699-7
https://doi.org/10.1007/s00371-012-0699-7
https://www.youtube.com/watch?v=D9_FB6hWnME
https://www.youtube.com/watch?v=D9_FB6hWnME
https://doi.org/10.1145/3450626.3459952
https://doi.org/10.1145/3450626.3459952
https://doi.org/10.1007/s00371-020-01920-7
https://doi.org/10.1007/s00371-020-01920-7
https://doi.org/10.1016/j.chb.2018.12.008
https://doi.org/10.1016/j.chb.2018.12.008
https://www.sap.com/cz/products/scm/industry-4-0/what-is-augmented-reality.html
https://www.sap.com/cz/products/scm/industry-4-0/what-is-augmented-reality.html
https://doi.org/10.1109/vs-games.2018.8493442
https://doi.org/10.1109/vs-games.2018.8493442
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://bigfastblog.com/geohash-intro
https://rpgamer.com/2019/06/square-enix-announces-dragon-quest-walk/
https://rpgamer.com/2019/06/square-enix-announces-dragon-quest-walk/
https://www.intel.com/content/www/us/en/robotics/real-time-systems.html
https://www.intel.com/content/www/us/en/robotics/real-time-systems.html

... 6.2. Future work

[23] Mojang Studios. (2021, December 5). Minecraft [Screenshots by YouTube
user MaxStuff]. Retrieved May 21, 2024, from https://www.youtube.
com/watch?v=f_fWH8eJJgg

[24] Gasch, C., Sotoca, J. M., Chover, M., Remolar, I., & Rebollo, C.
(2022). Procedural modeling of plant ecosystems maximizing vegetation
cover. Multimedia Tools and Applications. https://doi.org/10.1007/
s11042-022-12107-8

[25] Vadim S. Simple Approach to Voronoi Diagrams. (2015, March
4). CodeProject. https://www.codeproject.com/articles/882739/
simple-approach-to-voronoi-diagrams

[26] Geohash. (n.d.). Wikipedia. Retrieved May 15, 2024, from https://en.
wikipedia.org/wiki/Geohash

[27] Nahodil, P. (2023). Creating 3D scenes for a train simulator.

[28] Kyzr, O. (2023, May). Procedural Generation of Outdoor Scenes. https:
//dcgi.fel.cvut.cz/en/theses/2023/kyzrondr/

[29] Biome. (n.d.). Minecraft Wiki. Retrieved May 21, 2024, from https:
//minecraft.fandom.com/wiki/Biome

[30] Biomes (Subnautica). (n.d.). Subnautica Wiki. Retrieved May 21, 2024,
from https://subnautica.fandom.com/wiki/Biomes_(Subnautica)

[31] Biomes. (n.d.). Rimworld Wiki. Retrieved May 21, 2024, from https:
//rimworldwiki.com/wiki/Biomes

[32] Biomes. (n.d.). Terraria Wiki. Retrieved May 21, 2024, from https:
//terraria.fandom.com/wiki/Biomes

[33] Shanklin W. (2023, June 29). Image of Pokémon Go.
In article “Pokémon Go” developer Niantic is laying off
230 employees. Engadget. https://www.engadget.com/
pokemon-go-developer-niantic-is-laying-off-230-employees-180438129.
html

[34] Earth Science Data Systems, N. (n.d.). SRTM. Earthdata. https://
www.earthdata.nasa.gov/sensors/srtm

[35] klink, jemerick. NGeoHash package. Retrieved from https://www.nuget.
org/packages/NGeoHash

[36] Lague S. (2018, November 23). [Unity] Procedural Object Placement
(E01: poisson disc sampling). YouTube. https://www.youtube.com/
watch?v=7WcmyxyFO7o

[37] Beider V. (2022, August 6). Godot - Rimworld style tilemap shader
tutorial. YouTube. https://www.youtube.com/watch?v=91fkApi8RUQ

59

https://www.youtube.com/watch?v=f_fWH8eJJgg
https://www.youtube.com/watch?v=f_fWH8eJJgg
https://doi.org/10.1007/s11042-022-12107-8
https://doi.org/10.1007/s11042-022-12107-8
https://www.codeproject.com/articles/882739/simple-approach-to-voronoi-diagrams
https://www.codeproject.com/articles/882739/simple-approach-to-voronoi-diagrams
https://en.wikipedia.org/wiki/Geohash
https://en.wikipedia.org/wiki/Geohash
https://dcgi.fel.cvut.cz/en/theses/2023/kyzrondr/
https://dcgi.fel.cvut.cz/en/theses/2023/kyzrondr/
https://minecraft.fandom.com/wiki/Biome
https://minecraft.fandom.com/wiki/Biome
https://subnautica.fandom.com/wiki/Biomes_(Subnautica)
https://rimworldwiki.com/wiki/Biomes
https://rimworldwiki.com/wiki/Biomes
https://terraria.fandom.com/wiki/Biomes
https://terraria.fandom.com/wiki/Biomes
https://www.engadget.com/pokemon-go-developer-niantic-is-laying-off-230-employees-180438129.html
https://www.engadget.com/pokemon-go-developer-niantic-is-laying-off-230-employees-180438129.html
https://www.engadget.com/pokemon-go-developer-niantic-is-laying-off-230-employees-180438129.html
https://www.earthdata.nasa.gov/sensors/srtm
https://www.earthdata.nasa.gov/sensors/srtm
https://www.nuget.org/packages/NGeoHash
https://www.nuget.org/packages/NGeoHash
https://www.youtube.com/watch?v=7WcmyxyFO7o
https://www.youtube.com/watch?v=7WcmyxyFO7o
https://www.youtube.com/watch?v=91fkApi8RUQ

6. Conclusion and Future Work
[38] Re-Logic. (2011). Terraria [Video game].

[39] Mojang Studios. (2011). Minecraft [Video game].

[40] Hello Games. (2016). No Man’s Sky [Video game].

[41] Ludeon Studios. (2018). RimWorld [Video game].

[42] Unknown Worlds Entertainment. (2018). Subnautica [Video game].

[43] Niantic. (2016). Pokémon Go [Video game].

[44] Niantic. (2013). Ingress [Video game].

[45] Bay 12 Games. (2022). Dwarf Fortress [Video game].

[46] Paradox Development Studio. (2012). Crusader Kings II [Video game].
Paradox Interactive.

60

Appendix A
Content of electronic appendix

Folder Content

bin .apk installation file for Android
src source code of the generation system and the game prototype
latex source code of the thesis
images screenshots
readme user manual
thesis this pdf file

61

62

Appendix B
User manual

B.1 Installation

In the electronic appendix in the folder bin, you can find a .apk file. Install
this on an Android device. The app needs permission to read the GPS
location of the device and needs a connection to the Internet to download
data from the Google Elevation API and overpass-api.de.

B.2 Using the app

The app should detect the GPS location of the device and start generating
the environment around the location. The character of the player moves
according to the GPS and compass sensor data of the device. The view can
be zoomed in by pinching the screen with two fingers and rotated around by
swiping with one finger. After pressing the button Quest, a quest window
appears and a quest can be accepted. You are then expected to start walking.
The quest instructions help you find the needed quest items. You can see
how many you have collected so far in the UI. After collecting enough, you
can press the quest button again. Now the content of the quest window is
different, and you can complete the quest.

B.3 Settings

The settings can be found under the DevTools button. A settings window
appears. Here, you can enable some of the UI elements, enable using building
heights. Next, you can enable GPS simulation. The app keeps track of two
GPS sources, one is the device GPS sensor (real GPS), and the other is the
simulated GPS. You can set the initial simulated GPS by selecting a location
in the dropdown and clicking the Set simulated GPS button. After that, you
can override the real GPS by the simulated GPS by enabling the Enable GPS
simulation toggle. You can use the joystick UI to easily modify the simulated
GPS. If simulated GPS is enabled, the character will move around when you
touch the joystick. The last option in the dropdown sets the simulated GPS
to copy the GPS of the current real GPS. This is useful when you want to

63

B. User manual..
explore the surroundings of your current physical location without having to
walk. (We purposely hid this option from the testers of our app to keep their
motivation to walk.)

The Chunk generating distance slider sets how far the chunks will be
generated and after what distance they will be unloaded. The Vegetation
lushness slider sets the size of areas where no plants grow. Vegetation density
sets what how many plants are considered for generation before some further
biome-specific rules are applied. The button Regenerate chunks discards the
currently loaded chunks. Then, new chunks should be generated with the
current settings.

64

Appendix C
User testing document

C.1 Introduction

You will be testing a prototype mobile game. The game environment is
three-dimensional and combines a representation of real terrain, houses and
roads with generated biomes and vegetation. You move around in the game
environment by walking in the real world. The test will take place outdoors
and will require an estimated walk of several hundred meters. The testing
will consist of two phases - in the first, you will try out the app and attempt
to complete a task, which you will find under the "Quest" button. In the
same time, you will say out loud what you are doing and why you are doing
it, as well as your current impressions. In the second phase you will fill in a
questionnaire where you will answer several questions.

We may take audio or video recordings during the testing to improve the
quality of the data collected. All data collected will be anonymised before
publication and it will not be possible to identify the test participant from
the data.

Please pay close attention to your surroundings while testing so as not to
compromise your personal safety.

C.2 What we will observe during the testing phase

How intuitive are the controls? Do users understand the biomes and their
meaning? How well can users navigate the game world? Do users understand
where to look for items to complete a task? We will track any hiccups as
users progress through the application and observe why they happened.

C.3 Questionnaire..1. What is your impression of the game?..2. What do you think about controlling the game by walking?..3. How well were you able to navigate the environment?

65

C. User testing document4. What was it like for you to find the items needed to complete the task?..5. How much did you enjoy the game?..6. Did you get stuck anywhere during the game?..7. What did you like and what did you not like?..8. What would you improve or add?..9. What do you think is the importance of biomes and vegetation in the
game?...10. How did you like the biomes and vegetation?...11. How did you like the three-dimensional terrain in the game?...12. How did the roads and buildings help you find your way around?...13. How would you change the roads and buildings?...14. How would you describe this type of game?...15. What experience do you have with similar games?...16. What do you think is important in a game like this?...17. What do you think are the advantages and disadvantages of this type of
game?...18. What do you enjoy about this type of mobile game and why do you keep
coming back to it?...19. Would you be interested in playing a game of this type and what would
you be able to do in your ideal game?

66

	Introduction
	Biomes
	Location-based games

	Related work
	Why do people play location-based games?
	Why Pokémon GO is not mainly about augmented reality (AR)
	Physics based approach to biome generation
	Ecosystem simulation
	Who and when should generate the environment?
	Player searching in the environment
	Urban forestry
	Digital terrain modeling
	Modelling plant life
	Overview of procedural content generation
	Generation of villages
	Procedural generation of populations
	Generating plants maximizing vegetation cover
	Dynamic generation of terrain chunks
	Terrain adjustment under roads

	Procedural generation of biomes
	Design
	Implementation
	Division of Earth surface into chunks
	Terrain
	Converting between GPS and Unity coordinates
	Streets and buildings
	Biomes
	Generating vegetation
	Terrain textures
	Terrain smoothing under streets
	Chunk terrain normals stitching

	Game prototype
	Using and simulation GPS data
	Chunk generating and unloading
	Camera control
	Quest
	Settings

	Results
	Screenshots
	User Testing
	Testing with the first user
	Testing with the second user
	Testing with the third user
	Testing with some other users
	User testing results discussion

	Performance
	Profiling

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Content of electronic appendix
	User manual
	Installation
	Using the app
	Settings

	User testing document
	Introduction
	What we will observe during the testing phase
	Questionnaire

