
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

End-to-end control on F1/10 Autonomous
Car using Neural Network

Marek Žuffa

Supervisor: Ing. Jaroslav Klapálek
Field of study: Artificial intelligence
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483799 Personal ID number: Žuffa Marek Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Artificial Intelligence Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

End-to-end control on F1/10 Autonomous Car using Neural Network

Master’s thesis title in Czech:

End-to-end řízení F1/10 autonomního auta s využitím neuronových sítí

Guidelines:

1. Get familiar with ROS2 and F1/10 autonomous racing cars.
2. Conduct a review of using reinforcement learning for end-to-end control on cars. Consider both model-free and
model-based approaches.
3. Select and implement at least one model-free and at least one model-based reinforcement learning method for neural
networks.
4. Tune the hyper-parameters of both networks in the simulation, compare their performance.
5. Using the conclusions from the simulator, deploy and test both networks on the F1/10 car. Identify and discuss the
simulation-to-reality gap.
6. Compare the performance of implemented solutions with reactive control approaches (e.g., Follow the Gap algorithm).
7. Evaluate your results and document everything thoroughly.

Bibliography / sources:

1. S. Macenski et al., "Robot Operating System 2: Design, architecture, and uses in the wild," Science Robotics vol. 7,
May 2022, doi: 10.1126/scirobotics.abm6074
2. J. Betz et al., "Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing," in IEEE Open Journal of
Intelligent Transportation Systems, vol. 3, pp. 458-488, 2022, doi: 10.1109/OJITS.2022.3181510
3. A. Brunnbauer et al., "Latent Imagination Facilitates Zero-Shot Transfer in Autonomous Racing," 2022 International
Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 7513-7520, doi:
10.1109/ICRA46639.2022.9811650

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Jaroslav Klapálek Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 18.09.2023

Assignment valid until: 16.02.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Jaroslav Klapálek
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to express my gratitude to Ing.
Jaroslav Klapálek for the valuable infor-
mation, guidance, and help while writing
this thesis. Furhtermore, I would also like
to thank my family and friends for all
their support during the writing of this
thesis, as well as throughout my studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.
Prague, date 24th May 2024
Marek Žuffa

v

Abstract
This thesis focuses on autonomous end-to-
end control of an F1TENTH model car in
a single-agent racing environment. After
reviewing already existing solutions, two
methods were selected: a model-free algo-
rithm, TD3, and a model-based algorithm,
Dreamer. The environments for simula-
tion and real-life scenarios are described.
The methods are described along with the
theory needed to understand them. The
tracks used as training and testing sce-
narios are presented. The result times
are shown with the trajectories from the
simulation. The results are documented
and discussed. Both agents trained on
the CIIRC track managed to safely com-
plete a lap with a better time than the
Follow the Gap algorithm provided as a
baseline. Finally, a few improvements to
the simulation model, as well as to both
model-free and model-based algorithms,
are proposed.

Keywords: End-to-end control,
F1TENTH, Autonomous driving,
Reinforcement Learning, Race track, Lap
time

Supervisor: Ing. Jaroslav Klapálek

Abstrakt
Táto práca sa zameriava na autonómne
riadenie modelu vozidla F1TENTH v pro-
stredí pretekov s jedným agentom. Po pre-
skúmaní už existujúcich riešení boli vy-
brané dve metódy. TD3, algoritmus ktorý
nepoužíva model, a Dreamer, algoritmus
ktorý sa spolu s reakciami snaží odhadnúť
aj model okolia. Opísané sú prostredia pre
simuláciu a reálne scenáre experimentov.
Metódy sú opísané spolu s teóriou po-
trebnou na ich pochopenie. Uvádzajú sa
trate použité ako tréningové a testovacie
scenáre pre experimenty. Sú uvedené časy
výsledkov s trajektóriami zo simulácie. Vý-
sledky sú zdokumentované a diskutované.
Oba agenti úspešne zvládli prejsť kolo s
lepším časom ako Follow the Gap algo-
ritmus ktorý bol použitý pre porovnanie.
Na záver sa navrhuje niekoľko vylepšení
simulačného modelu, ako aj algoritmov
bez modelu a algoritmov založených na
modeli.

Kľúčové slová: Riadenie end-to-end,
F1TENTH, Autonómne riadenie,
Posilované učenie, Pretekárska dráha,
Čas na kolo

Preklad názvu: End-to-end riadenie
F1/10 autonomného auta s využitím
neuronových sietí

vi

Contents
1 Introduction 1
2 Literature review 3
2.1 Methods . 3

2.1.1 Model-free 3
2.1.2 Model-based 5

2.2 Safety . 5
2.3 Online Learning 6
2.4 Environments and platforms 6
3 Problem statement 9
3.1 Problem statement 9
3.2 Training environment 10
3.3 F1TENTH platform 11
4 Neural networks in control theory 13
4.1 Modular and classic control

approaches . 13
4.1.1 Pure pursuit 14
4.1.2 Model predictive control 14
4.1.3 Follow the gap 14

4.2 Partial End-To-End 14
4.3 End-To-End 15
4.4 Imitation Learning 15

4.4.1 Distribution shift problem (and
its solutions) 16

4.5 Reinforcement Learning 17
4.5.1 Reward signals 17
4.5.2 Model-free and model-based

algorithms . 19
4.5.3 Temporal difference learning . 19
4.5.4 On-policy and Off-policy

Learning . 20
4.5.5 Q-Learning 20
4.5.6 Actor-critic methods 21
4.5.7 Deep Reinforcement Learning 22
4.5.8 Transfer from simulation to real

world . 22
5 Methods 25
5.1 Model-free methods 25

5.1.1 Deep Deterministic Policy
Gradient . 25

5.1.2 Twin Delayed DDPG 28
5.1.3 Implementation 29

5.2 Model-based methods 30
5.2.1 Dreamer 30

5.3 Reward signal 34

6 Experiments 37
6.1 Columbia . 37
6.2 Austria . 38
6.3 Treitlstrasse 38
6.4 CIIRC . 39
7 Results 41
7.1 Baseline: Follow the Gap

algorithm . 41
7.2 Columbia . 42

7.2.1 Training 42
7.2.2 Evaluation 43

7.3 Austria . 45
7.3.1 Training 45
7.3.2 Evaluation 45

7.4 Treitlstrasse 47
7.4.1 Training 47
7.4.2 Evaluation 47

7.5 CIIRC . 49
7.5.1 Training 49
7.5.2 Evaluation 50

7.6 Real-life experiments on CIIRC
track . 51
7.6.1 Dreamer agents 52
7.6.2 TD3 agents 52

7.7 Discussion 52
7.7.1 TD3 algorithm 52
7.7.2 Dreamer algorithm 53

8 Future work 55
8.1 Environment and platform 55
8.2 Model-free agent 56
8.3 Model-based agent 56
8.4 Utilizing additional information 56
9 Conclusion 59
Bibliography 61

vii

Figures
3.1 F1TENTH build 11
3.2 F1TENTH platform top view. . . 12

4.1 Control pipelines 13
4.2 The actor-critic architecture 21
4.3 Kernel generation [12] 23

5.1 Components of Dreamer. 31

6.1 Columbia track. 37
6.2 Austria track. 38
6.3 Treitlstrasse track [17]. 38
6.4 CIIRC track. 39

7.1 Evaluation of the Follow the Gap
agent. 42

7.2 The trajectories of the Follow the
Gap agent. 42

7.3 The course of the training for the
Columbia agent. 43

7.4 Evaluation of the Columbia agent. 43
7.5 The trajectories of the Columbia

Dreamer agent. 44
7.6 The trajectories of the Columbia

TD3 agent. 44
7.7 The course of the training for the

Austria agent. 45
7.8 Evaluation of the Austria agent. 45
7.9 The trajectories of the Austria

Dreamer agent. 46
7.10 The trajectories of the Austria

TD3 agent. 46
7.11 The course of the training for the

Tretlstrasse agent. 47
7.12 Evaluation of the Treitlstrasse

agent. 48
7.13 The trajectories of the

Treitlstrasse Dreamer agent. 48
7.14 The trajectories of the

Treitlstrasse TD3 agent. 49
7.15 The course of the training for the

CIIRC agent. 49
7.16 Evaluation of the CIIRC agent. 50
7.17 The trajectories of the CIIRC

Dreamer agent. 50
7.18 The trajectories of the CIIRC

TD3 agent. 51

Tables
3.1 Observation interface [22] 10
3.2 Controls interface [22] 10
3.3 F1TENTH components used. . . . 11
3.4 Measurements of the F1TENTH

platform . 12

7.1 Lap time from the real-life
experiments. 52

viii

Chapter 1
Introduction

As early as the first vehicles were made, people started racing them. People
modified their vehicles to be faster in order to achieve faster times on the
race tracks. This led to rapid development in that area, far faster than in the
commercial mass-produced vehicles. This still holds true, even to this day.

Nowadays, self-driving vehicles are becoming more popular, and the same
principle is being applied. More autonomous racing competitions are being
created as researchers and engineers are motivated to develop and compare
their progress. There are already many kinds of competitions in autonomous
racing, from scaled-down models that are more affordable and approach-
able, like DonkeyCar and F1TENTH [1], to full-sized race cars, like Indy
Autonomous Challenge or, recently, the Abu Dhabi Autonomous Racing
League. In this thesis, we focus on single-agent racing on a track. We focus
on completing a lap while optimizing the lap time.

The current standard for controlling autonomous racing platforms consists
of different modules like mapping, localization, and control. The control
modules have a direct impact on the lap times achieved. There are multiple
control methods with various complexity and adjustability. The Follow the
Gap [2] algorithm is a simple reactive algorithm that follows the deepest free
space it can see. This algorithm can avoid obstacles, but it cannot navigate
through tight turns. Slightly more complex is Pure Pursuit [3], a trajectory
follower algorithm. This algorithm is dependent on the given trajectory that
needs to be computed. A highly adjustable approach is the Model Predictive
Control [4] algorithm. This algorithm solves an optimization problem while
utilizing the vehicle model. This leads to its biggest downside: a model needs
to be measured and provided. If this model is too simple, the results will not
be as good as those of a more complex one. Implementing a complex model
is not trivial and, in many instances, impossible as we cannot measure all
the information needed to design one. In addition, if the agent gets into an
undefined situation, the agent fails, which leads to poor scalability.

Machine Learning approaches like Imitation and Reinforcement Learning
provide end-to-end solutions to these problems. If the agent learns from
the experience or guidance of a teacher, just like humans, it can resolve
unseen situations by utilizing said experience. It also does not need a defined
model as it can predict one from interacting with the environment. This

1

1. Introduction
approach is still in its early stages compared to other well-established ones.
Nevertheless, it is gaining traction as the limits of the classical control methods
are approached. Due to the nature of learning from experience, most of the
experiments are still held in the simulation environment.

In this thesis, we aim to implement, train, and test two Reinforcement
Learning agents. Two approaches are tested, model-free and model-based.
The model-free approach chosen is the TD3 [5] algorithm, and the model-
based approach is the Dreamer [6] algorithm. The platform chosen for testing
is the F1TENTH [1] model race car. To our knowledge, no one tried the
TD3 algorithm on a real-life race track at the time of writing this thesis. The
Dreamer agent was once successfully tested, and we build on it in this work.
We introduce a modification to the algorithms that penalizes slow progress on
the track. Both agents are trained in simulation and tested in both simulation
and real life. This way, we can show the difference between simulation and
real environment, the sim-to-real gap.

The second chapter of this thesis reviews and discusses other end-to-end
approaches that solve similar problems. The third chapter defines the problem
and describes the environment and the platform used. Next, in the fourth
chapter, we introduce the theoretical basics to help explain and understand
the methods used to solve the given task, after which, in the fifth chapter, we
describe the methods used. In the sixth chapter, we provide the experiment
scenarios, in the seventh, the results of these experiments are presented and
discussed. We suggest improvements for the simulation environment, as well
as for both agents, in the eight chapter, future work. The ninth chapter draws
the conclusion.

The videos of the real-life experiments, as well as the implementation can be found on:
https://github.com/CTU-F1T/DP-End-to-End-Control.

2

Chapter 2
Literature review

This section describes and discusses other approaches to similar tasks. Apart
from the possible methods that can be used for end-to-end control, the safety
of end-to-end methods, the simulation environments, and real-life platforms
are discussed.

2.1 Methods

The main categorization of Reinforcement Learning methods is model-free
and model-based. Model-free methods are less complex as only the actions
of the agent are trained and predicted. This leads to less computing in one
step. Thus, the model-free methods require fewer resources. This, however,
also leads to a downside, and that is they extract less information from
each interaction with the environment, which is called sample inefficiency.
Therefore, they need more experience to learn. Model-based methods are
providing a solution. While learning, they also learn the behavior of the
environment, which is more sample-efficient. Although that may be impossible
in some cases, and in some situations, it is possible, but it requires a lot of
computational power.

2.1.1 Model-free

Model-free methods are popular in robotic control, as can be seen in the
stabilization of a robot [7], many instances of race car control in [8], or
full-sized vehicle control in [9]. While having some success over the years, the
biggest known problem is their sample inefficiency.

In vehicle End-to-End control, algorithms such as TD3 [5], DDPG [10],
SAC, D4PG, PPO, are often tested [8]. The authors in [11] even managed to
show better performance than human drivers, although only in the simulator
game Gran Turismo Sport. As almost always in racing, the goal was to
achieve the fastest lap possible. The algorithm used here was SAC.

In [7], authors deal with the stabilization and control of a sk80 two-wheeler
robot. Their problem is described as a partially observable Markov decision
process (POMDP). That can help us define the world from sensors like Lidar
as stochastic and not deterministic. This is done to wrap up all the factors

3

2. Literature review
that cannot be controlled or learned. Soft Actor-Critic (SAC) algorithm was
used. In the preliminary tests, it performed better than TD3 and A2C. It
also tackles a few possible improvements like DroQ or D2RL algorithms.

In [12], a basic TD3 algorithm implementation without modifications is
used along with a supervisor system. This system keeps the agent safe during
online learning, which helps to eliminate the sim-to-real gap. This proves to
be working, and it is implemented at slower speeds. However, as a result of
these limitations, the performance and speed suffer.

This is tackled by [13]. It is also based on the same implementation of TD3
as [12]. The main idea is to change the reward function from the progress on
the track to the difference between the agent’s actions and ideal states, given
by the optimal trajectory with said states. The article claims a more stable
performance with comparable speeds to the base TD3. The minimum lap
time was still mostly done by pure TD3 without modifications. However, we
argue whether the agent could exploit the physics in the simulation without
penalization for doing not plausible actions. With the changed reward, the
agent was significantly more successful in testing, as it completed more of the
twenty test laps. The average lap time was comparable to the unmodified
TD3, although the lap times were more stable and predictable as they had
less variation. Another benefit was that this way, the agent could learn faster
as the optimal line guide as to where to slow down and where to go full
throttle. The disadvantage brought by this is the robustness of the agent. As
it learns from the optimal trajectory, the agent is hardly applicable to other
tracks. Also, the trajectory must be provided, which requires generating the
optimal trajectory, which is a difficult optimization task. This learning and
testing was only done and tested in simulation because of concerns about
crashing a real-world model car.

Beneficial modifications to the TD3 algorithm are proposed in [14]. They
use a priori knowledge to learn an efficient breaking strategy. A heuristic is
calculated to modify a reward at the beginning of the learning, and as the
learning progresses, the weight of this reward is lowered. Also, an adaptive
exploration strategy is utilized to lower the impact of the exploration noise at
higher speeds. Lastly, an adaptive action smoothing is added to avoid sudden
and strong changes. The reward function uses the road curvature to restrict
unnecessary control inputs. These changes have proven beneficial in both
safety and lap times.

Often, some modifications are utilized from other machine-learning fields.
Multiple adjustments for the DDPG algorithm are tested in [15]. Namely:
(i) Window sampling should improve understanding of the current state while
using a window of the last n states; (ii) Long Short-Term Memory helps to
utilize experience from an arbitrary number of steps; (iii) Multi-step Targets
incorporate the next n rewards obtained along the trajectory starting from the
current state and following a policy close to the current policy at time step t;
(iv) Prioritized Experience Replay focuses on learning efficiency by sampling
more frequently more important transitions. This paper shows a general
improvement in performance and robustness from the base implementation.

4

....................................... 2.2. Safety

2.1.2 Model-based

Model-based methods try to solve the sample inefficiency by using as much
information as possible. Apart from an agent, they also learn the world model
from which other predictions can be drawn. They are more complex than
model-free methods, and therefore, they require more computational power
and more time.

The world model can frequently be clearly separated from the agent, as can
be seen in [16]. Their method combines Imitation Learning and Reinforcement
Learning, where data is pre-gathered by an expert human driver at the start.
The human driver drives with various random noises injected to gather input
on behaving in unexpected, often critical, situations. This is done to provide
safety and better sample efficiency. In training, human actions are weighted
less as the agent learns to drive and minimize the loss function. The network
used is RestNet18 [16]. It is divided into policy network and predictive world
model. The world model uses multiple gated recurrent units to predict and
decode state, speed, and collisions. The problem is defined as POMDP, and
the main data input is an RGB picture from the camera.

At Wien Technical University, a model-based approach with Dreamer
network architecture [6] was successfully tested [17]. As with other model-
based approaches, it focuses on sample efficiency. Learning the world model
utilizes so-called latent imagination to create and simulate training sequences
without interacting with the environment. This method was tested on a real
model race car [17].

An attempt to implement DreamerV2 [18] to a race car was made by [19].
They modified the network by not only predicting the actions in states
but rather planning the whole trajectory with an expectancy value. The
experiments in simulation have proven a marginal improvement over prior
work [17] with a more efficient learning process and more robust agent overall.
However, this was not tested on a real car.

2.2 Safety

Safety is a big concern in RL in vehicle control, as the trained agents behave
like a black box, and we cannot track down the steps of how they made a
decision. It is one of the main reasons that most agents are only tested in
simulation and games, as can be seen in the examples provided by [8]. Safety
and reliability are tested in multiple environments in [20]. First, algorithms
TD3 and DDPG are trained and tested in a simulation, where both algorithms
drive with similar run times and success rates. The next experiment is a
real-world track, modified not to have reflective surfaces. They show that
the TD3 agent is more robust in the real world. It completes more runs
and behaves more consistently than DDPG. The last environment is on the
same track but without surface modifications. In an unmodified environment
with reflective surfaces that are problematic for Lidar rays, TD3 performed
almost the same, while DDPG crashed in most runs. Overall, they show that

5

2. Literature review
DDPG is less robust and it handles the sim-to-real gap worse than the TD3
algorithm.

2.3 Online Learning

Another way to ensure safety and overcome the sim-to-real gap is to train the
agents directly on the car in the real-world environment. With online learning,
supervision is needed to protect the car from destroying itself in the process.
The most straightforward method is to have a human supervisor overseeing
the learning [9]. This is done on a regular-sized vehicle on real roads. A
simple reward function for distance traveled with the DDPG algorithm is
used.

Another way of supervision is used in [12]. A safety kernel is generated
iteratively. If the car goes into the restricted, unsafe zone, the control is
handed over to a classic control algorithm, and a penalty goes to the agent
as if it crashed. The agent is then driven to a safe state, and the learning is
resumed. In the experiments, the car drives for 2000 steps, which is about 20
seconds, to gather data, then stops to calculate the network updates, as it is
impossible to do the calculation while driving the car autonomously.

A framework labeled FASTRLap is introduced in [21]. Several optimiza-
tions in learning are introduced to ensure that agents can learn to drive
reliably in about 10 to 20 minutes. One of the ways to achieve this is by
introducing a phase before online reinforcement learning. This phase uses
Offline Reinforcement Learning with Implicit Q-Learning (IQL) to extract a
critic for a readily available, diverse offline dataset collected on a different
robot, using a similar task objective: goal-directed velocity toward check-
points selected from a mix of future states and random points in space [21].
After that, the critic is discarded, as only the image encoder is extracted.
This encoder is optimized for extracting task-relevant data from an image.
Multiple experiments in different environments, including off-road ones, are
presented.

2.4 Environments and platforms

As hardware in robotics and vehicle control is quite expensive, most of the
time, the learning and testing are done in simulation, just as in most cases in
this survey [8]. There are some efforts made to control real cars, as highlighted
in [9, 12, 17, 20]. In a virtual environment, many simulators with gymAPI are
popular [8], like F1TENTH Gym [12, 13], the Roborace Simulator, the SVL
Simulator, TORCS [14] or Racecar Gym [17]. Besides simulators, simulation
videogames like Gran Turismo Sport can be used [11]. The simulator chosen
for this work is the Racecar Gym [22] because it uses a more complex physical
engine rather than just using a simple kinetic model as in F1TENTH Gym [23].
Other more complex simulators or games like TORCS, Carla, or Gran Turismo
Sport are, on the other hand, either computationally too demanding or too

6

.............................. 2.4. Environments and platforms

difficult to work with software-wise.
There are also multiple real-life model racing series and platforms that

are useful in research. An F1TENTH platform [1] is a popular autonomous
vehicle control research choice. It is a versatile platform that can be used
both on a track and in an off-road environment [21]. It can be outfitted with
lidar [12, 17, 21] or camera [16, 21] for vision and data gathering. Other
popular platforms are AutoRally or DonkeyCar [8]. In [9], they even controlled
a full-sized vehicle on normal roads.

7

8

Chapter 3
Problem statement

In this chapter, the problem, as well as the simulation environment and the
platform for real experiments, are defined. All of the parameters used are
described.

3.1 Problem statement

The goal of this thesis is to train and compare model-based and model-free
agents to complete a lap on a race track successfully. The agents are trained
on multiple tracks in a simulation environment and then tested in simulation
and on an F1TENTH platform in a real environment. In a real-life scenario,
the classic control agents will be used for comparison.

The problem of driving on the track can be defined as a Partially Observable
Markov Decision Process (POMDP). It is a tuple of (S,A,Ω, O, T,R), where. S is a set of states,. A is a set of actions,. Ω is a set of observations,. O is a stochastic observation function, (O : S ×Ω→ [0, 1]) returning the

probability of perceiving an observation,. T is a stochastic transition function, (T : S ×A× S → [0, 1]) returning
the transition probability between two states by applying actions in a
given state,. R is a reward function, (R : S × A × S → R) returning the numerical
reward assigned to a transition.

In our case, the observation is a lidar scan with 1080 distance point
measurements in the range [0.06 m, 10 m]. As the only sensor and observation
utilized, it forms the observation space. The used lidar is only a single plane,
measuring distances only within a certain plane that is parallel to the floor.
Thus, the track’s boundaries should be at least as tall as the distance of
lidar from the ground to be detected. A set of actions, or action space, is a
two-dimensional vector where the first element controls the electric motor,
and the second is the steering angle. Both elements are in the range [-1, 1].

9

3. Problem statement
3.2 Training environment

The simulator chosen is Racecar Gym [22]. It is made for a miniature
racecar, like F1TENTH, using the bullet physics engine with Pybullet [24].
It provides a Gymnasium [25] interface, which is an API standard for single-
agent reinforcement learning environments. The sensors provided by the
simulator are: (i) pose, (ii) velocity, (iii) acceleration, (iv) lidar, (v) RGB
camera. The interface to access the observations from the sensors:

Key Description
pose Holds the position (x, y, z) and the orientation (roll,

pitch, yaw) in that order.
velocity Holds the x, y, and z components of the translational

and rotational velocity.
acceleration Holds the x, y, and z components of the translational

and rotational acceleration.
lidar Lidar range scans.
rgb_camera RGB image of the front camera.

Table 3.1: Observation interface [22]

As stated, only the observation from the lidar scan is utilized in order to
minimize dependency on other measurements that are either not guaranteed
or may be inaccurate on the real race car. It provides 1080 rays, distributed
evenly over 270◦. The parameters are set to match the lidar on our car, so
the maximum range is 10 meters, and the minimum is set to 10 centimeters.
Control inputs, or actions, control either the motor or speed and the steering
angle of the wheels.

Key Description
motor Throttle command. If negative, the car accelerates

backward.
speed Normalized target speed.
steering Normalized steering angle.

Table 3.2: Controls interface [22]

Since using both ways to control speed is unnecessary, control of the motor
is used as it is more intuitive and similar to normal vehicle control. Both
values are one-dimensional and normalized in an interval [−1, 1]. The motor
controls are mapped to −1 as a full brake and 1 as a full throttle. The
steering is mapped to −1 as full left and 1 as full right. While additional
information about the environment and agent state is available, it is not used
as it could lead to reliance on data that the agent will not have in a real-world
environment.

10

..................................3.3. F1TENTH platform

3.3 F1TENTH platform

Figure 3.1: The F1TENTH build used in this work (without the batteries).

A 1:10 scale race car, F1TENTH [1], is used in real-life experiments and as a
model for the simulator. F1TENTH race cars are 1/10th the size of real F1
vehicles and are used as a test-bed for autonomous algorithms [8].

Part Type
Electric motor Velineon 3500 BLDC
Servo motor Traxxas 2075R

Lidar Hokuyo UST-10LX
Inertial Measurement Unit SparkFun 9DoF Razor IMU
Onboard Computing Unit NVidia Jetson TX2

Table 3.3: F1TENTH components used.

This platform is all-wheel drive with front-wheel steering. It is driven by
the electric motor using a Vedder Electronic Speed Controller (VESC). The
servo motor is used for steering. As for the sensors, our build provides lidar,
which is utilized in this work. It runs on 40 Hz and provides a 270◦ range with
0.25◦ resolution (1080 segments). Besides the lidar, an inertial measurement
unit is provided but not utilized. The software providing an interface to
everything is ROS2, which runs on the onboard computing unit.

11

3. Problem statement
Description Symbol Value Unit
Vehicle width W 0.295 m
Vehicle length L 0.535 m
Track-width Wt 0.253 m
Wheelbase Lwb 0.330 m
Center of gravity to the front wheel axis Lf 0.165 m
Center of gravity to the rear wheel axis Lr 0.165 m
LiDAR angular detection range θADR 270 ◦

Maximum steering angle δ 0.35 rad

Table 3.4: Measurements of the F1TENTH platform

Figure 3.2: F1TENTH platform top view.

12

Chapter 4
Neural networks in control theory

This chapter defines and explains the terms and the theory used in this thesis.
Section 4.5 is also a brief introduction to Reinforcement Learning and its
principles, as well as the methods that build on those principles.

4.1 Modular and classic control approaches

Sensors

Classic Autonomous Driving Software Pipeline

Perception Planning Control

Partial End-to-End

ControlNeural Network

Full End-to-End

Neural Network

Vehicle

Sensors

Sensors

Vehicle

Vehicle

Figure 4.1: Classic autonomous driving software pipeline in comparison to
partial and full end-to-end software pipeline, based on [8].

Modular approaches consist of software modules with focused tasks combined
into a pipeline. This separation into modules led to the development of
software frameworks such as Robot Operating Systems (ROS). This way, the
development of complex control systems can be streamlined, as the research
can be focused on one isolated task. The independent modules can be used
in compatible systems, not only the one they were developed on.

However, modular systems have a number of disadvantages. Different
situations regularly require different modules to be implemented. This leads
to poor scalability as implementing and developing new modules to approach
new situations is time-consuming and complex. Furthermore, not all of

13

4. Neural networks in control theory
the information is utilized. The data used is explicitly defined. Thus, the
implementation overlooks some implicit connections in the system that would
help to control it.

4.1.1 Pure pursuit

Pure pursuit [3] is a trajectory-following algorithm. It is widely known and
has been in use for years now. The algorithm calculates the curvature that
will move a vehicle from its current position to some goal position. The
algorithm chooses a goal position some distance ahead of the vehicle on the
path. The name is an analogy to the algorithm, as it literally pursues the
point chosen on the trajectory.

4.1.2 Model predictive control

Model Predictive Control [4] (MPC) is a more complex approach used to
follow a given trajectory. The approach is an optimization method to select
control inputs by minimizing the objective function. MPC does this while
satisfying given system constraints and working in a finite time horizon.
This approach can be configured by changing the objective function and
adding system constraints to achieve the desired results. However, the general
downside is greater computation cost and difficult fine-tuning.

4.1.3 Follow the gap

The Follow the Gap (FTG) algorithm is a reactive algorithm that maximizes
the gap between obstacles while moving toward the goal. The algorithm
constructs a gap array around the vehicle and calculates the best heading
angle for heading the agent into the center of the maximum gap ahead [2].
The algorithm simultaneously considers the goal point. The following of the
largest gaps is connected to goal tracking by a fusion function.

4.2 Partial End-To-End

As seen in Fig. 4.1, any part of the pipeline can be swapped with a Machine
Learning (ML) model trained for that particular task. For example, this
can be beneficial when defining a model we cannot represent analytically. A
model that predicts the behavior close enough to the real-world counterpart
may be better than one that simplifies things by relaxing the constraints
and adding unreal predicates. Neural networks can also help by encoding
high-dimensional inputs into low-dimensional representations. This can be
particularly helpful when dealing with an image input from a camera. Classic
controllers can then use this representation further as input.

14

..................................... 4.3. End-To-End

4.3 End-To-End

In end-to-end driving, the entire pipeline is swapped for a neural network.
End-to-end approaches transform sensor inputs to driving commands, and
they are treated as a single learning task [26].

The main theoretical advantage is that it can learn optimal control with
the right network configuration and with enough expert driving data for
imitation learning or enough environment interactions for reinforced learning.

With no explicitly predefined limits on the information, end-to-end models
can utilize all the data they can gather from the environment. The ML
approach allows an indirect and implicit way of reasoning for the model,
which is not possible with the modular way of control. This approach has
proven useful in many different fields, like object recognition and detection or
natural language processing. Closer to the problem in this thesis are examples
that show superhuman-level performance in ATARI video games [6, 18, 27]
and high-level performance in more complex competitive games like Starcraft
II [28], or DOTA 2 [29]. The complexity of such dynamic tasks in continuous
spaces shows that there is a reason to research vehicle control using such
approaches.

End-to-end control, however, has some flaws in practical uses. First of
all, the assumption of the ability to optimally control, predict, or solve a
problem in general in an infinite horizon is not manageable. It is not possible
as we cannot provide an infinite amount of data or experience. The learning
process itself is strongly dependent on initial conditions and configuration of
hyperparameters. A slight change in both of them may result in a significant
change in the results. That leads to an issue with interpretability and
predictability.

The transformation from the sensors’ outputs to the driving inputs is
not transparent and fully understandable. Simplistically, we can see it as a
very complicated, deterministic, non-linear mathematical function with many
parameters and weights. With no intermediate outputs, it is much harder
to trace the cause of an error. It is also very hard to explain the observed
behavior and the decisions taken [26].

4.4 Imitation Learning

Imitation Learning (IL) is a subset of Supervised Learning. In Supervised
Learning, the agent is presented with labeled training data. The agent learns
to process the data to produce the desired label or behavior. In IL, the training
dataset is composed of task executions by a demonstration teacher [30]. In
autonomous vehicle control, the expert is a human driver, and the mimicked
behavior is control of the vehicle [26]. This includes steering, acceleration,
and braking.

Alternatively, a control algorithm can be used as the teacher. The agent
tries to mimic and optimize its actions to imitate the expert driver or control

15

4. Neural networks in control theory
algorithm. This way of learning works well in simple tasks and scenarios, like
following a lane. However, in more complex situations where we do not have
the training data, this method generally fails. This leads to a Distribution
shift problem [31].

4.4.1 Distribution shift problem (and its solutions)

Since the actions are not copied exactly but rather learned from an example,
the driving observations differ from the states given by the expert driver. This
should lead to different actions where the agent lacks the required training
data. Hence, it is not prepared for unseen situations. For example, if the
agent learns from a driver who prefers staying in the middle of the road, it
might not react correctly and safely if the car goes to the edge of the road
or track. The model might not recover from an unseen state and return
to the middle of the road. Some ways of dealing with such problems are:
(i) modifing already existing data (data augmentation), and (ii) modifing the
collecting process itself (data diversification).

Data augmentation. Data augmentation [32] is useful mostly while using a
camera input. Images can be, e.g., cropped, blurred, or rotated. The artificial
images must be associated with target driving commands to recover from
such deviations. This method has been sufficient to avoid accumulating errors
in lane-keeping [26].

Data diversification. Data diversification aims to collect more diverse data
by adding different noises to the data-gathering process. This shows the
model how to behave in strange situations by putting the driver in those
situations. In [16], the data is pre-gathered with an expert human driver to
help with the first part, imitation learning. The human driver drives with
various random noises injected to gather input on behaving in unexpected,
often critical, situations. This is done to provide safety and better sample
efficiency.

On-policy learning. Another way of tackling the distribution shift problem
is using on-policy learning. This method gathers data while the model is
driving. That means the expert gives online commands to the agent during
the execution of the policy. This concept was proposed by DAgger [33]. This
leads to control situations that would not occur under normal human driving.
Nonetheless, it requires a human observer during the learning process, and
the learning must be slowed down so that the human can observe it.

Learning from an algorithm. The alternative to a human expert as a driver
is to use a control algorithm as the teacher. However, this leads to other
problems. Using a standard algorithm as a teacher means the agent would
not outperform it. If the agent gets into a state that is unsolvable for the
algorithm, it will get a bad, unreasonable command from the algorithm that it
will try to mimic, which can negatively affect the model as a whole. Another

16

................................ 4.5. Reinforcement Learning

problem is the use of a machine learning agent for states that a classic control
has already solved.

This thesis does not use Imitation Learning as it needs an expert driver,
and gathering the required data is time-consuming. Also, it has been stated
that reinforcement learning converges to better results as the immediate
reward and environment and action space [26].

4.5 Reinforcement Learning

Definition with a brief summary from [34] states that Reinforcement Learning
(RL) is trying to map situations to actions to maximize a quantifiable reward
signal. The learner is not given which actions to take but must discover
which ones yield the most reward by trying them. In the more complex and
challenging cases, actions may affect not only the immediate reward but also
subsequent future rewards. The two most important distinguishing features
of RL are training without labeled actions to learn from and delayed rewards
that would carry over the consequences of actions. The inputs and outputs
do not differ from the ones in imitation learning, apart from the driving
data that are not needed since everything is learned from experience. Both
approaches, IL and RL, can be combined. IL is used for fast learning the
basic controls at the start, with RL being used for fine-tuning and driving
optimization as in [16, 21].

4.5.1 Reward signals

A significant difference from imitation learning is that the agent has no
guidance to follow as it only relies on reward signals from the interactions
with the environment. Consequently, the choice of positive and negative
rewards greatly influences the learning process. Making these too complicated
is not beneficial as it might lead to unreadable and unpredictable behavior.
Simple reward signals help clearly define the purpose and limit unpredictable
behavior. However, it can also be beneficial to consider more complex rewards
to define what is desirable explicitly if the task at hand requires it. A
commonly used reward signal in autonomous driving on a race track is
simply the progress through the track with a bigger bonus when a lap is
completed [12]. A slightly more complex reward can be seen in [13], where the
rewards are based on the distance to the optimal race-line states to minimize
lap times. The positive reward is then:

r = 1− |vagent − voptimal| − |δagent − δoptimal|, (4.1)

where v [m · s−1] is velocity and δ [rad] is steering angle. The behavior is
further reinforced by adding a +1 reward for completing the lap.

Combining multiple reward signals can be beneficial in supporting a desired
behavior. The positive rewards for speed, progress, and lap times are enough

17

4. Neural networks in control theory
in theory but, in practice, are often reinforced by negative rewards for
collisions [13, 26] or getting into restricted zones [12]. This promotes safety
and consistency.

Collisions. The most common negative reward, or penalty, for a collision
is a large negative constant. A more complex way of discouraging collisions
and promoting safety is used in [11, 35]. Their solution is to multiply the
negative constant for crashing by the kinetic energy generated by the crash:

EK = 1
2 ·m · v

2, (4.2)

which promotes the idea that minimizing the damage by slowing down as much
as possible is better than colliding at full speed if a collision is unavoidable.
As the weight m [kg] does not differ much in the same category for racing,
the only controllable part is the velocity of the vehicle v. This is reflected in
the reward signal:

rt = rprogt − ρw · cw · ∥vt∥2, (4.3)

where t stands for time step, ρw is a binary variable that indicates a crash
(1 = crash), and cw is a constant penalty for hitting a wall.

Overtaking. Overtaking is another task that a reward signal can define. It
is a substantially more complex problem than just driving alone on the track
as fast as possible. Authors in [35] propose a solution to overtaking. Firstly,
they define a basic reward as a difference in progress in the state st at the
time t rather than progress at the moment:

rracingt = (cp(st)− cp(st−1))− ρw · cw · ∥vt∥2, (4.4)

where cp(st) stands for projection on the central line in time step t, t − 1
indicates the previous time step and the difference between the two projections
is the distance traveled in t. That encourages the agent to progress in each
time step. The reward that aims to overtake a single opponent i is defined as:

rit = ρi · cr[∆cp(sit−1s
k
t−1)−∆cp(sit, skt)]

∆cp(sit, skt) = cp(sit)− cp(skt)

ρi = ρ(sit, skt) =
{

1, |∆cp(sit, skt)| < cd

0, otherwise,

(4.5)

where k represents the agent’s car controlled by the learning policy, cd is a
hyperparameter for the detection range, and hyperparameter cr is a trade-off
between the aggressiveness of the overtaking maneuver and the safety of the
drive. The whole reward signal is defined as:

18

................................ 4.5. Reinforcement Learning

rovertakingt = rracingt − cc · ρc · ∥v∥2 +
∑

∀i∈C\{k}
rit, (4.6)

where C is a set of all cars on the track, cc is a constant for crashing with
another car, and ρc is a binary flag for collision with another car.

4.5.2 Model-free and model-based algorithms

We distinguish two types of RL based on what the RL agent is trying to
learn: (i) model-free, where only the agent and its actions are learned, and
(ii) model-based, where the environment model is also learned. As described
by [36]: “A model-based algorithm is simply any algorithm that makes use
of the transition dynamics of an environment, whether learned or known in
advance. Model-free algorithms are those that don’t explicitly make use of
the environment transition dynamics.”

Model-based algorithms. In general, model-based algorithms have marginally
better sample efficiency [17, 34, 36]. This is due to extracting information not
only about the agent itself but also about the environment and its transitions.
A perfect model is beneficial as it can simulate interactions with the environ-
ment without actually acting in it, as in [6]. The model can give foresight
to the agent as it predicts how the environment will behave, which is very
helpful in finding the optimal action or strategy.

While all of this sounds promising, model-based methods have some draw-
backs. For most problems, learning or modeling the transitions in the envi-
ronment is not straightforward. Many systems have stochastic transitions,
whose dynamics are not known precisely [36]. In that case, a model needs
to be learned as the probabilities cannot be modeled in a normal way. The
model-based methods are still in relatively early stages of development and
still face many challenges [36].

Model-free algorithms. Model-free methods are simpler than model-based
ones. While this compromises sample efficiency, the computation requires
fewer resources. The fact that no model is required means that these methods
can be used in almost any environment and applied to any task. The agent
is learning only its own values and predicting strategy and actions.

4.5.3 Temporal difference learning

Temporal difference (TD) methods combine ideas behind Monte Carlo meth-
ods and dynamic programming (DP). “Like Monte Carlo methods, TD
methods can learn directly from raw experience without a model of the
environment’s dynamics. Like DP, TD methods update estimates based in
part on other learned estimates, without waiting for a final outcome.” [34]

In general, TD methods use experience, or interaction with the environment,
to solve policy evaluation. Non-terminal states are evaluated from experience

19

4. Neural networks in control theory
in every time step t with the current estimate of current state V (St), the
observed reward Rt+1, and the current estimate of the next state V (St+1):

V (St)← V (St) + α · [Rt+1 + γ · V (St+1)− V (St)], (4.7)

where α is a constant step size parameter, and γ is a parameter for discounting
future rewards. This is known as TD(0), a base for temporal difference learning
algorithms. The whole algorithm is described in Algorithm 1.

Algorithm 1: Tabular TD(0) for estimating vπ [34]
Input: the policy π to be evaluated
Initialize V (s) arbitrarily (e.g. V (s) = 0,∀s ∈ S+)
for each episode do

Initialize S
while S is not terminal do

A ← action given by π for S
Take action A, observe reward R, and next state S′

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)]
S ← S′

end
end

4.5.4 On-policy and Off-policy Learning

The model-free algorithms are further divided into on-policy and off-policy
methods. A policy is a set of rules for an agent to determine its actions at
a given state, and it is also divided into behavioral policy and target policy.
The behavioral policy determines which actions are taken to navigate the
environment and is used for exploration. The target policy optimizes the
decision process, maximizing the reward or objective function.

The main difference between On-policy and Off-policy learning is that in an
Off-policy algorithm, these two can differ. The On-policy algorithms optimize
a chosen policy qπ by evaluating only the move chosen by the policy. The
Off-policy methods find the optimal policy q∗ because their target policy is
always greedy, which means the highest possible reward is always selected, and
other possibilities for actions in current states are ignored. An explanation is
shown in the cliff walk example [34]. On-policy leads to a safer and longer
route, while Off-policy prioritizes finding the optimal value without regard
for safety.

4.5.5 Q-Learning

Q-Learning is a model-free off-policy Temporal-Difference control algorithm
introduced in 1989 [37]. A single step is defined by:

Q(St, At)← Q(St, At) + α · [Rt+1 + γ ·max
a

Q(St+1, a)−Q(St, At)]. (4.8)

20

................................ 4.5. Reinforcement Learning

The action-value function Q is learned iteratively and updated at every step
of each episode. The Q function directly approximates q∗, the optimal action-
value function. To ensure the optimal solution and convergence are reached,
visiting and updating all state-action pairs is necessary. The full algorithm is
in Algorithm 2.

Algorithm 2: Q-Learning: An off-policy TD control algorithm [34]
Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(sterminal, ·) = 0
for each episode do

Initialize S
while S is not terminal do

Choose A from S using policy derived from Q (e.g. ϵ-greedy)
Take action A, observe R, S′

Q(St, At)← Q(St, At)+α[Rt+1+γmaxaQ(St+1, a)−Q(St, At)]
S ← S′;

end
end

The stochastic ϵ-greedy method of picking action is often used to ensure
that all states will be visited. This method chooses the best action with the
highest value with probability (1 − ϵ). Otherwise, it chooses an action at
random. This algorithm has proven optimality in the infinite horizon [37].

4.5.6 Actor-critic methods

Figure 4.2: The actor-critic architecture, taken from [34].

Actor-critic approaches are based on temporal difference methods with distinct
memory architectures separating the policy from the value function [34].

21

4. Neural networks in control theory
Labeled as the actor, the policy structure operates autonomously in action
selection, while the critic, denoting the estimated value function, rates the
actions the actor executes. This learning method is always on-policy as the
critic learns and evaluates the current policy followed by the actor. The
evaluation drives all the learning in both the actor and the critic. This value
is the sole output from the critic in the form of a single scalar signal.

4.5.7 Deep Reinforcement Learning

Deep Learning (DL) is widely used as it can solve difficult and complex tasks
in many different areas. It has proven it excels at complex nonlinear function
approximation over the years. DL is commonly used for image and object
recognition, processing and generating speech, or largely popular Natural
Language Process (NLP) models like GPT or LAMA. The principles behind
DL can be used in RL, as the function approximation can be used as a value
or policy function. Also, the representation used in Deep Neural Networks
helps with scalability and high-dimensional spaces [38]. This leads to better
scalability. The result of combining DL and RL is labeled Deep Reinforcement
Learning.

Latent space. One way to represent spaces internally in DRL is latent
space. Regularly, the observations and spaces are large and high dimensional.
This can lead to a lot of parameters being required to represent even smaller
and simpler things. In machine learning, latent spaces are a popular way to
solve this issue. In [39], latent space is defined as: “a high-dimensional vector
space in which each data item is represented as a single vector”. It encodes
meaningful data in an internal, more compact representation.

4.5.8 Transfer from simulation to real world

The sim-to-real gap is a big obstacle in autonomous driving. It is the difference
between the simulation environment and the real world. This difference
shows itself in the agent’s behavior, which receives a different response in
the simulation environment than in the real one. This leads to different
transitions from the ones the agent learned in the simulation.

This is even more apparent in DRL, where the whole end-to-end algorithm
is sort of a black box. In classical control, this problem can be mitigated by
setting the parameters for the algorithm used. However, in reinforcement
learning, you can’t change the learned functions. You may try to re-train
them in the real world [9, 12], but that brings many complications in itself.

The agent training on a real vehicle or model needs supervision to prevent
the vehicle’s destruction, e.g., a human driver to intervene when the agent
gets to a dangerous state is used in [9]. A classic control algorithm can also
be used with some form of definition and detection of a dangerous state. This
is utilized in [12]. Here, the track is divided into safe and unsafe regions. This
safety kernel lists recursively safe states. This ensures that every safe state
leads to at least one safe state. However, this method sacrifices performance

22

................................ 4.5. Reinforcement Learning

and lap time as the exploration space is heavily reduced, and the agent cannot
explore enough spaces to get a reasonable driving pace.

Figure 4.3: Kernel generation [12]

In Fig. 4.3, we can see that in a particularly dangerous curve, the DRL
agent might not have any space to learn. If the agent goes into the unsafe
zone, a classical control algorithm will take over to ensure safety, and the
learning will get a signal as if the agent crashed.

23

24

Chapter 5
Methods

In this chapter, we describe the algorithms that we use to control the car.
The chosen model-free algorithm is TD3 [5, 40]. As it is based on and tightly
connected to the DDPG [10, 41] algorithm, the description of this algorithm
is also provided. For the model-based agent, the Dreamer [6] was chosen as it
was already tested in [17].

5.1 Model-free methods

As mentioned in Section 4.5.2, the model-free methods are focused on learning
the agent’s actions based on the current observed state. It does not learn the
transitions in the environment.

5.1.1 Deep Deterministic Policy Gradient

In [10], Deep Deterministic Policy Gradient (DDPG), a model-free off-policy
algorithm, is described as “an algorithm which concurrently learns a Q-
function and a policy. It uses off-policy data and the Bellman equation to
learn the Q-function, and uses the Q-function to learn the policy.” It builds on
the foundation of all off-policy methods. If an optimal action-value function
Q∗(st, a) is known, then an optimal action a∗(st), in the state st, can be
found at any given time t by solving the following optimization problem [34]:

a∗(s) = arg max
a

Q∗(s, a) (5.1)

DDPG combines learning an approximator to Q∗(s, a) with learning an
approximator to a∗(s). The algorithm is adapted to be used in continuous
action spaces, so it is suitable for use in control and robotics [7, 8]. This
adaptation can be mainly seen in the computation of the maximum for actions
in maxaQ∗(s, a).

In the discrete and finite action spaces, we can use a tabular approach and
compute the Q-values for each action separately and then compare them. In
continuous space, the Q-values cannot be computed directly. Solving the
optimization problem can be difficult and computationally too expensive. it
would need to be solved every time an action is taken by the agent [10].

25

5. Methods.......................................
Algorithm 3: Deep Deterministic Policy Gradient [41]

Randomly initialize critic network Qϕ(s, a) and actor µθ(s) with
weights ϕ and µ

Initialize target network Q′ and µ′ with weights ϕ← ϕ′, θ ← θ′

Initialize replay buffer R
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µθ +Nt according to the current policy and
exploration noise

Execute action at and observe reward rt and new state st+1
Store transition (st, at, rt, st + 1)
Randomly sample a batch of N transitions, {(s, a, r, si+1)}
from R

Compute targets:
yi = r + γQϕ′(s′, µθ′(s′))
Update Q-function (critic) by minimizing the loss:
L = 1

N

∑
i(yi −Qϕ(s, a))2

Update the policy (actor) by one step of gradient ascent:
∇ϕ 1

N

∑
iQϕ(s, µθ(s))

Update the target networks:
ϕ′ ← ρϕ′ + (1− ρ)ϕ
θ′ ← ρθ′ + (1− ρ)θ

end
end

The Q-learning

One of the conditions is that in continuous action space, the function Q∗(s, a)
is differentiable with respect to the action argument [10]. This allows the usage
of efficient, gradient-based policy learning µ(s), which is also used to replace
costly optimization of maxaQ(s, a) with an approximation maxaQ(s, a) ≈
Q(s, µ(s)).

The approximation of Q∗(s, a) is based on the Bellman equation:

Q∗(s, a) = E
s′∼P

[r(s, a) + γmax
a′

Q∗(s′, a′)]. (5.2)

Let’s assume that the approximation is a neural network Qϕ(s, a), with
parameters ϕ, and let’s also assume we acquired a set of transitions D, that
consists of (s, a, r, s′) [10]. This tuple describes time step i that consists of
state s, the taken action a, the obtained reward r, and the resulting next
state s′. This allows the setup of a mean-squared Bellman error (MSBE)
function, which is used to approximate the error of Qϕ to the optimal Q∗

from the Bellman equation:

26

................................. 5.1. Model-free methods

L(ϕ,D) = E
(s,a,r,s′)∼D

[(
Qphi(s, a)−

(
r + γ ·max

ai+
Qϕ(s′, a′)

))2]
(5.3)

DDPG and variants of DQN are Q-learning algorithms for function approx-
imators that are largely based on minimizing the MSBE loss function. There
are two main ways DDPG can achieve this. The first one is replay buffers.

Replay buffers. They are used to store the already mentioned set of previous
experiences, D. Balancing the length of this is a part of the fine-tuning of
hyperparameters. A buffer that is too short leads to overfitting, while too long
slows down the learning too much. Since DDPG is an off-policy algorithm,
all experiences from the buffer are used, even from an outdated policy.

Another big part of minimizing the MSBE is the target networks. In DDPG,
the target for the Q-function is:

Qϕtargr + γ ·max
a′

Qϕ(s′, a′) (5.4)

The target depends on the parameter ϕ, which is also being trained. That
leads to unstable minimization of MSBE [10]. This is solved by introducing
another set of parameters, ϕtarg, which approaches ϕ but with a delay. It is
the second target network delaying the first. This network is updated once
per main network update by polyak averaging:

ϕtarg ← ρϕtarg + (1− ρ)ϕ [10] (5.5)

where ρ is a hyperparameter between zero and one that weighs the averaging.
Usually, it is set closer to one.

The maximum over the actions is computed from the target policy network,
which maximizes Qϕtarg. The target policy is then found by polyak averaging
the policy parameters over the course of training [10].

To conclude, the Q-learning part in DDPG is performed by minimizing the
MSBE loss with stochastic gradient descent:

L(ϕ,D) = E
(s,a,r,s′)∼D

[(
Qϕ(s, a)−

(
r + γ ·Qϕtarg (s′, µθtarg (s′))

))2]
(5.6)

where µθtarg is the target policy.

The Policy

The objective of the algorithm is to learn a deterministic policy µθ(s) which
gives the best action to maximize Qϕ(s, a). Again, as we consider a continuous
action space, differentiability with respect to action is presumed. With this
presumption and with respect to the policy parameters only, a gradient ascent
is applicable to solve:

max
θ

E
s∼D

[Qϕ(s, µθ(s))] (5.7)

The Q-function parameters are treated as constants in the policy learning
part.

27

5. Methods.......................................
Learning

The policy is trained in an off-policy way. Because in case that the policy is
deterministic and the agent tries to explore the environment on-policy, it will
not visit enough states with wide enough variety to get useful reward signals.
To support exploration, noise is added to the actions in learning. In the later
stages of the training, the noise might be reduced to support higher-quality
data.

5.1.2 Twin Delayed DDPG

The Twin Delayed DDPG is an algorithm based on the DDPG. Also similarly,
it is a model-free off-policy algorithm. Twin Delayed DDPG (TD3) addresses
instability and low robustness with respect to hyperparameters and fine-
tuning. In [40], authors the issues, “A common failure mode for DDPG is
that the learned Q-function begins to dramatically overestimate Q-values,
which then leads to the policy breaking because it exploits the errors in the
Q-function.”

Algorithm 4: Twin delayed DDPG [5]
Initialize critic networks Qθ1, Qθ2, and actor network πϕ with random
parameters θ1, θ2, ϕ

Initialize target networks θ′
1 ← θ1, θ′

2 ← θ2, ϕ′ ← ϕ
Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πϕ(s) + ϵ, ϵ ∼ N (0, σ)
and observe reward r and new state s′

Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′) from B
a∼ ∼ πϕ(s′) + ϵ, ϵ ∼ clip(N (0, σ∼),−c, c)
y ← r + γmini=1,2Qθ′

i

Update critics θi ← arg minθi
N−1 ∑

(y −Qθi
(s, a))2

if t mod d then
Update ϕ by the deterministic policy gradient:
∇ϕJ(ϕ) = N−1 ∑

∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)
Update target networks:
θ′
i ← τθi + (1− τ)θ′

i

ϕ′ ← τϕ+ (1− τ)ϕ′

end
end

One of the improvements over the DDPG is Clipped Double-Q learning,
as TD3 learns two Q-functions instead of one, Qϕ1 and Qϕ2. From the two
Q-values, the smaller one is used to form the targets in the Bellman error
loss functions. The learning itself is done as in DDPG with the minimization
of MSBE. The target update for the Clipped Double Q-learning algorithm is

28

................................. 5.1. Model-free methods

defined as [5]:

y = r + γ min
i=1,2

Qθ′
i
(s′, πϕ(s′)) (5.8)

This method cannot lead to additional overestimation over using the
standard Q-learning target [5]. However, it may introduce an underestimation
bias. Unlike overestimation, it does not create problems as the value of
underestimated actions will not be propagated through the policy update [5].

Another important upgrade is delaying the update of the policy network.
Authors of [5], based on the experiments, conclude with the following remark:
“If target networks can be used to reduce the error over multiple updates, and
policy updates on high-error states cause divergent behavior, then the policy
network should be updated at a lower frequency than the value network, to
first minimize error before introducing a policy update.” The update is in
the form of:

θ′ ← τ · θ + (1− τ)θ′ (5.9)

The policy and target networks are updated only after a fixed number
of d critic updates. The likelihood of repeating updates with respect to an
unchanged critic is limited by sufficiently delaying the policy updates. This
way, the computed policy updates will use a value estimate with a lower
variance, which should lead to higher-quality policy updates [5].

Another way of reducing the variance is using the Target Policy Smoothing
Regularization. The training procedure is modified to explicitly force similar
actions to have similar values. In [5], they propose to fit the value of a small
area around the target action to

y = r + E
ϵ
[Qθ′(s′, πphi′(s′) + ϵ)]. (5.10)

This change allows for smoothing the value estimate by calculating it from
similar state-action value estimates. In practice, the expectation over actions
can be approximated by averaging over mini-batches where a small amount
of noise is added to the target.

y =r + γQθ′(s′, πϕ′(s′) + ϵ),
ϵ ∼clip(N (0, σ),−c, c),

(5.11)

where σ stands for a noisy policy. The added noise is clipped to keep the target
close to the original action. This leads to safer policies and can additionally
lead to improvement in stochastic domains with failure cases.

5.1.3 Implementation

As this algorithm is used in this thesis, the implementation from the Stable
Baselines 3 [42] library is utilized. It is the base implementation of the TD3
algorithm with all hyperparameters adjustable. Pytorch [43] library is used
in the Stable Baselines 3 to implement the networks.

29

5. Methods.......................................
5.2 Model-based methods

Model-based methods learn the model of the environment in addition to
the agent’s policy. As stated in Section 4.5.2, they are more complex and
computationally more expensive as more calculations need to be done per
step of the algorithm. The reward signal from Section 5.3 is used.

5.2.1 Dreamer

Dreamer [6] is a model-based algorithm that utilizes latent imagination
to increase the sample learning efficiency. The latent imagination process
simulates the experience in the learned latent space (Section 4.5.7) with the
learned model. The agent learns long-horizon behaviors from observations
purely by latent imagination. An actor-critic algorithm is introduced to
account for rewards beyond the imagination horizon while utilizing neural
network dynamics. For this, the agent predicts state values and actions in the
learned latent space. The values are used to optimize the Bellman consistency
for imagined rewards, while the policy maximizes the values by propagating
their analytic gradients back through the dynamics.

Problem definition

The problem is formulated as a POMDP with a discrete time step t ∈ [1, T].
Action space is continuous with action at generated from the agent, at ∼
p(at|o≤t, a<t, and observation space is high dimensional. The rewards are
scalar, generated with the observation of an unknown environment. Both the
observations ot, and the rewards rt are generated by the unknown environment,
ot, rt ∼ p(ot, rt|o<t, a<t). As usual in RL, the goal is to maximize the expected
sum of rewards E

(∑T
t=1 rt

)
.

A latent dynamics model is used. It consists of 3 parts:

Representation model: p(st|st−1, at−1, ot),
Transition model: q(st|st−1, at−1),
Reward model: q(rt|st),

(5.12)

where p is the distribution that generates samples in the real environment,
and q is the approximation used to predict samples in the latent imagination.
Observations and actions are encoded to create a vector of values for the
model states st with Markovian transitions [6]. The reward model predicts
rewards given the model states, and the transition model predicts future
model states without seeing the corresponding observations. This allows
predictions in the compact latent space by the transition model without the
need to interact with the environment and its high-dimensional observations.

30

.................................5.2. Model-based methods

o1

r1 a1 r2 a2 r3
 ̂ ̂ ̂

o1
 ̂ o2o2

 ̂ o3o3
 ̂

(a) : Learn dynamics from
experience

o1

r1 a1v1 r2 a2v2 r3 a3v3
 ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂

(b) : Learn behavior in
imagination

o1 o2 o3

a1 a2 a3
 ̂

(c) : Act in the
environment

Figure 5.1: Components of Dreamer. (a) From the dataset of past experience,
the agent learns to encode observations and actions into compact latent states
(), for example via reconstruction, and predicts environment rewards (). (b)
In the compact latent space, Dreamer predicts state values () and actions ()
that maximize future value predictions by propagating gradients back through
imagined trajectories. (c) The agent encodes the history of the episode to
compute the current model state and predict the next action to execute in the
environment. Figure taken from [6]

The RL agent’s components are dynamics learning, behavior learning,
and environment interaction. Predicting the hypothetical trajectories in the
compact latent space world model is used to learn the behavior. The sequence
of actions in a learning episode can be seen in Fig. 5.1. Depending on the
problem and implementation, some of the three steps may be done in parallel.
The implementation from [17] used in this thesis is running these steps in
sequence.

Behavioral learning

The behavior is trained in the compact latent space of the learned world
model.

Imaginary environment. In the imaginary environment, the time step is
denoted as τ to differentiate between it and a timestep t in the environment.
Imagined trajectories start at the true model states st, drawn from the agent’s
experience combined with the observations. These trajectories then follow the
predictions of (i) the transition model: sτ ∼ q(sτ |sτ−1, aτ−1), (ii) the reward
model: rτ ∼ q(rτ |sτ), and (iii) the policy: aτ ∼ q(aτ |sτ). The objective is
to maximize the expected rewards with respect to the policy in an imaginary
environment:

maxE
q

(∞∑
τ=t

γτ−trτ
)
. (5.13)

Action and value models. An actor-critic approach is used to learn behaviors
with regard to rewards beyond a horizon H. Action and value models are
learned in the latent space of the world model. The action model predicts
policy, and thus action, aτ ∼ qϕ(aτ |s(τ)), for the imaginary environment, while

31

5. Methods.......................................
the value model, vψ(sτ) ≈ Eq(·|sτ)

(∑t+H
τ=t γ

τ−trτ
)
, estimates the expected

imaginary rewards for the predicted actions for each state sτ .
For both action and value models, dense neural networks are used. The

value model network has parameters ψ. The action model network with
parameters ϕ outputs a tanh-transformed Gaussian. The sufficient statistics
are predicted by the neural network [6]. This enables reparameterized sam-
pling, which treats the sampled actions as deterministically dependent on the
output of the neural network. Consequently, that allows for backpropagation
of analytic gradients through the sampling process,

aτ = tanh(µphi(sτ) + σϕ(sτ)ϵ), ϵ ∼ Normal(0, I). (5.14)

Value estimation. Value of the imagined trajectories {sτ , aτ , rτ}t+Hτ=t have to
be estimated in order to learn the action and value models. These trajectories
are developed from the world states st, which are sequence batches drawn
from the agent’s experience dataset. Using actions sampled from the action
model, the trajectories are used to predict forward for the imagination horizon
H. The state values can be estimated in multiple ways. The one used in
Dreamer is:

Vλ(sτ) ≈ (1− λ)
H−1∑
n=1

(λn−1Vn
N(sτ)) + λH−1VH

N (sτ), (5.15)

where Vλ is an exponentially weighted average of the estimates for different
k used to balance bias and variance.

Learning objective. The value estimates Vλ(sτ)∀sτ along the imagined
trajectories have to be computed in order to update the action and value
models. The action model qϕ(aτ |sτ) has the objective of maximizing the
value estimates by predicting actions and state trajectories:

max
ϕ

E
qθ,qϕ

(t+H∑
τ=t

Vλ(sτ)
)
. (5.16)

The objective of the value model vψ(sτ), in turn, is to regress the value
estimates [34]:

min
ψ

E
qθ,qϕ

(t+H∑
τ=t

1
2

∥∥∥vψ(sτ)−Vλ(sτ))
∥∥∥2)

. (5.17)

The value model is updated to regress the targets around which the gradi-
ent is stopped [34]. The action model uses analytic gradients through the
learned dynamics to maximize the value estimates. As the action model is
dependent on the value estimates, the estimates depend on the value and
reward predictions. These predictions are further dependent on imagined

32

.................................5.2. Model-based methods

states, and those are dependent and given by the imaginary actions from the
model. This chain allows the gradient of the sum of the expectations:

∇ϕ E
qθ,qϕ

(t+H∑
τ=t

Vλ(sτ)
)
, (5.18)

to be analytically computed by stochastic backpropagation. The world model
and its parameters are fixed while learning the behaviors. Reparametrization
is used for continuous actions. The latent states and straight-through gradients
are used for discrete actions.

Latent dynamics

Latent dynamics are dynamics that apply in the latent space. They are used
for simulation in the latent imagination. Three ways to learn latent dynamics
are presented in the paper that introduces Dreamer [6]. We described only
the Reconstruction, as it is used in the implementation from [17].

Reconstruction. The world model includes the following components,

Representation model: pθ(st|st−1, at−1, ot)
Observation model: qθ(ot|st)
Reward model: qθ(rt|st)
Transition model: qθ(st|st−1, at−1).

(5.19)

The observation model is only utilized as a learning signal. All of the models
are optimized jointly rather than in a sequence. This is done in order to
increase the variational lower bound:

JREC
.= E
p

(∑
t

(
J tO + J tR + J tD

))
+ const J tO

.= ln q(ot|st)

J tR
.= ln q(rt|st) J tD

.= −βKL(p(st|st−1, at−1, ot))q(st|st−1, at−1)
(5.20)

The variational lover bound, JREC, includes reconstruction terms for observa-
tions J tO, rewards J tR, and a Kullback–Leibler (KL) regularizer J tD. While in
the original paper, the representation model is implemented as a combination
of a Convolutional Neural Network (CNN) and a Recurrent State Space Model
(RSSM), in [17], it is implemented as a Multi Layer Perceptron (MLP). The
observation model is implemented as a transposed CNN, the reward model
as a dense network, and the transition model as an RSSM. The combined
parameter vector θ is updated by stochastic backpropagation [6].

Model components
Representation pθ(st|st-1, at-1, ot)
Transition qθ(st|st-1, at-1)
Reward qθ(rt|st)
Action qϕ(at|st)
Value vψ(st)

Hyper parameters
Seed episodes S
Collect interval C
Batch size B
Sequence length L
Imagination horizon H
Learning rate α

33

5. Methods.......................................
Algorithm 5: Dreamer [6]

Initialize dataset D with S random seed episodes.
Initialize neural network parameters θ, ϕ, ψ randomly.
while not converged do

for update step c = 1..C do
// Dynamics learning
Draw B data sequences {(at, ot, rt)}k+L

t=k ∼ D.
Compute model states st ∼ pθ(st|st−1, at−1, ot).
Update θ using representation learning.
// Behavior learning
Imagine trajectories {(sτ , aτ)}t+Hτ=t from each st.
Predict rewards E(qθ(rτ |sτ)) and values vψ(sτ).
Compute value estimates Vλ(sτ) via .
Update ϕ← ϕ+ α∇ϕ

∑t+H
τ=t Vλ(sτ).

Update ψ ← ψ − α∇ψ
∑t+H
τ=t

1
2
∥∥vψ(sτ)−Vλ(sτ)

∥∥2.
end
// Environment interaction
o1 ← env.reset()
for time step t = 1..T do

Compute st ∼ pθ(st|st−1, at−1, ot) from history.
Compute at ∼ qϕ(at|st) with the action model.
Add exploration noise to action.
rt, ot+1 ← env.step(at).

end
Add experience to dataset D ← D ∪ {(ot, at, rt)Tt=1}.

end

Implementation

The implementation from [17] is selected to be used in this work. It was
chosen because it has already successfully run on the F1TENTH platform.
The implementation is modified to be used with the ROS2 on our build of
the car. The reward signal described in Section 5.3 is further used. An effort
to implement Dreamer v2 [18] has been made in this work. However, the
new object design changes were too big to implement without refactoring the
whole code.

5.3 Reward signal

We present a reward signal in addition to the base reward of progress made
in a single time step used in [17]:

rprogress = (cp(st)− cp(st−1)), (5.21)

34

.................................... 5.3. Reward signal

where cp(st) is a projection on the central line in time step t. The difference
between the projections is the progress made in a single time step. We added
a small constant negative reward in each time step to promote optimization
of the lap time. The progress reward will be the same as the agent drives
faster lap times, but fewer penalties will be accrued.

As mostly the TD3 agent often got stuck in training and refused to move,
a large constant as a penalty for standing still multiple time steps was added.
This helped the agent start moving at the beginning of the learning. As the
agent learned to progress through the tracks, it did not stop, so this part of
the reward did not impact the later stages of the learning.

35

36

Chapter 6
Experiments

In this section, we introduce and describe the tracks selected for the exper-
iments. On each track, we train a TD3 [5] agent and a Dreamer [6] agent.
Agents are tested on all tracks, not only the one they were trained on. Results
are then provided in Chapter 7.

6.1 Columbia

Figure 6.1: Columbia track.

The track is 61.20 m long and constantly 3.55 m wide. This track consists of
long and wide turns. Also, it is the only track where the agent drives in a
clockwise direction. This means a lack of left-hand turns that are dominant
in the rest of the experiments. It was chosen to showcase the agent’s behavior,
which was trained in a simple environment and then tested in more complex
ones. Also, with the modified reward function (Section 5.3), optimization of
the lap time is observed.

37

6. Experiments
6.2 Austria

Figure 6.2: Austria track.

A scaled-down version of a popular F1 track based in Austria. The track is
79.45 m long, and the straights are 1.9 m wide. This track was chosen as a
more complex problem to solve for the agent. It consists of two straights
where high speed can be achieved, followed by a sequence of sharp turns
where slower speeds are needed to pass through safely.

The straights are longer than the lidar range, so it is challenging to control
the speed accordingly. If the agent is going too fast, at the moment it detects
the end of the straight, it will not be able to slow down enough for the turn.

The sequence of turns is to show the behavior in a complex sequence of turns
where the End-to-End agent does not see what is coming next. An Additional
TD3 agent from learning that did run for a shorter time is presented.

6.3 Treitlstrasse

Figure 6.3: Treitlstrasse track [17].

This is the map used for the demonstration in [17]. The track is 51.65 m long,
1.35 m wide at the starting line, and 0.90 m in the narrowest point. This
track was chosen to observe the agents behave in narrow corridors. This track
was the real-world track where the authors from [17] successfully tested the
Dreamer agent.

38

..6.4. CIIRC

6.4 CIIRC

Figure 6.4: CIIRC track.

This track is used in real-life experiments. The track consists of a 15 m long
straight followed by a wide 180◦ left-hand turn, a chicane that continues into
a tight left-hand hairpin. It is 38.20 m long and constantly 1.9 m wide. It
is the shortest one because it is within the restrictions of our environment.
It was designed to test the agent’s capability in multiple different turns
and situations. Two TD3 agents with different network architectures and
hyperparameters are trained and tested along with one Dreamer agent.

39

40

Chapter 7
Results

In this section, we describe the results of all of the experiments. We provide
a baseline of the Follow the Gap algorithm, a purely reactive algorithm
described in Section 4.1.3. This algorithm was chosen for a baseline because
it does not utilize any more information than what we use in the RL agents.

We show both agents’ training process and evaluation results on each track.
Each agent was trained for 50 hours on a cluster with the same hardware.

In the training graph, e.g., Fig. 7.3, the y axis shows the progress on the
training track, where 1 signals a completed lap. The x axis shows the number
of time steps, where one time step is 0.01 s in simulation.

The agents were evaluated on each track, not only the one they were trained
on. Each of these evaluations ran five times. We provide two bar charts and
all of the trajectories with the results.

In the first evaluation bar chart, e.g., Fig. 7.1a, we show the mean of
progress on each track. The mean lap time is shown in the second bar chart,
e.g., Fig. 7.1b. The delimiters on both bar charts show the minimum and
maximum of the shown values.

The agents’ trajectories, e.g., Fig. 7.2, are shown with the velocities at each
point. On each figure, all of the five trajectories from the evaluations are
shown. The color of the trajectory indicates the velocity. The color bar on
the right of each trajectory describes each color’s value.

7.1 Baseline: Follow the Gap algorithm

Here, we can see the baseline to compare the rest of the algorithms. As we
can see in Fig. 7.1, the Follow the Gap algorithm did not manage to complete
the Austria track, Fig. 7.2b as it crashed in sharp turns. It could not keep
going in a straight line on the straights, and it needed to adjust frequently,
which resulted in a wavy trajectory. This pattern can be seen on all tracks
except the widest one, Columbia. In some runs on Treitlstrasse, Fig. 7.2c,
the FTG crashed. One run crashed in the first corner, two runs crashed in
the tight chicane, and two managed to complete a lap. The performance on
the CIIRC track, Fig. 7.2d, and the Columbia track, Fig. 7.2a, was stable as
all the runs behaved consistently and provided the same results.

41

7. Results

COL AUT TRT CRC
0.0
0.2
0.4
0.6
0.8
1.0

Pr
og

re
ss

FOLLOW THE GAP

FTG

(a) : The progress in evaluation.

COL AUT TRT CRC
0
5

10
15
20

Ti
m

e
[s

]

FOLLOW THE GAP

FTG

(b) : Lap times achieved.

Figure 7.1: Evaluation of the Follow the Gap agent.

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.2: The trajectories of the Follow the Gap agent.

7.2 Columbia

7.2.1 Training

Both agents completed multiple laps in the training, Fig. 7.3, on the Columbia
track. The TD3 agent completed four laps in the training before an issue
happened, and the agent stopped learning and crashed to 0 reward. We
suppose it is a software problem. This problem was reoccurring. The Dreamer
agent only managed to complete two laps.

Also, in Fig. 7.3, we can see that although both agents had the same

42

...................................... 7.2. Columbia

resources and time to learn, the TD3 agent completed marginally more time
steps. This holds true for all of the experiments.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of time steps 1e7

0

1

2

3

4

Pr
og

re
ss

 o
n

th
e

tra
ck

COLUMBIA

DREAMER TD3

Figure 7.3: The course of the training for the Columbia agent.

7.2.2 Evaluation

The Columbia track is the widest, with wide turns only. This means it is the
least complex for the agents to complete. As seen in the training, the TD3
agent excelled on this track and even managed to be consistently faster than
the FTG baseline. The Dreamer agent successfully managed to complete all
testing laps.

COL AUT TRT CRC
0.0
0.2
0.4
0.6
0.8
1.0

Pr
og

re
ss

TRAINED ON COLUMBIA

DREAMER TD3

(a) : The progress in evaluation.

COL AUT TRT CRC
0
5

10
15
20

Ti
m

e
[s

]

TRAINED ON COLUMBIA

DREAMER TD3

(b) : Lap times achieved.

Figure 7.4: Evaluation of the Columbia agent.

Neither of the agents managed to finish laps on any other track than the
one they had been trained on. The progress both agents made is shown
in Fig. 7.4a. The Dreamer agent could not handle more narrow tracks, as he
moved about a meter per second on other tracks, as can be seen in Fig. 7.5.
While the TD3 agent, shown in Fig. 7.6, managed to drive at higher speeds
and almost completed the CIIRC track, Fig. 7.6d, where he did not manage
the last hairpin.

43

7. Results

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.5: The trajectories of the Columbia Dreamer agent.

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.6: The trajectories of the Columbia TD3 agent.

44

....................................... 7.3. Austria

7.3 Austria

7.3.1 Training

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of time steps 1e7

0.0

0.1

0.2

0.3

0.4

Pr
og

re
ss

 o
n

th
e

tra
ck

AUSTRIA

DREAMER TD3

Figure 7.7: The course of the training for the Austria agent.

In Fig. 7.7, we can see that the TD3 learning process is less stable and often
gets much lower rewards than it already managed to get, while the Dreamer
agent does not have such reward drops. Neither agent managed a full lap in
the training.

7.3.2 Evaluation

As no full laps were completed by either of the agents, only a bar chart with
the progress is shown Fig. 7.8. Interestingly, the learned agents performed
the best on the CIIRC track, not the Austria one.

COL AUT TRT CRC
0.0
0.1
0.2
0.3
0.4
0.5

Pr
og

re
ss

TRAINED ON AUSTRIA

DREAMER TD3

(a) : The progress in evaluation.

Figure 7.8: Evaluation of the Austria agent.

45

7. Results

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.9: The trajectories of the Austria Dreamer agent.

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.10: The trajectories of the Austria TD3 agent.

As can be seen in both Fig. 7.9b and Fig. 7.10b, the agents are not able

46

..................................... 7.4. Treitlstrasse

to get past the second turn. The turn is sharp, and as seen in Fig. 7.2b,
not even the baseline algorithm of FTG could pass this turn reliably. Apart
from both agents making progress into the first turn on the CIIRC track,
Figs. 7.9d and 7.10d, the TD3 agent managed once almost to complete half
of the Columbia track as shown in Fig. 7.10a. In Fig. 7.10d, we can see that
even though sometimes, the agent progresses further than even the Dreamer
agent in Fig. 7.9d, the behavior is less consistent as the trajectories vary a
lot.

7.4 Treitlstrasse

7.4.1 Training

Here, we also present the TD3 agent that encountered a crash of the cluster
during the training. As seen in Fig. 7.11, one TD3 agent finished the whole
training. However, it encountered the same issue as in the Columbia training.
The agent got stuck and did not progress. On the other hand, the one that
crashed showed some progress and was used in the evaluation part.

As shown in Fig. 7.11, the learning process of the Dreamer agent was more
volatile and had some reward drops.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of time steps 1e7

0.0

0.2

0.4

0.6

0.8

Pr
og

re
ss

 o
n

th
e

tra
ck

TREITLSTRASSE

DREAMER TD3 TD3-CRASHED

Figure 7.11: The course of the training for the Tretlstrasse agent.

7.4.2 Evaluation

In Fig. 7.12, we see that the Dreamer agent was the only agent who managed
to complete a lap on any track. It completed all five laps on the Columbia
track and even got better times than the Columbia Dreamer or baseline FTG
agent. The TD3 almost did not move in the evaluations, as its speed was
around one meter per second.

47

7. Results

COL AUT TRT CRC
0.0
0.2
0.4
0.6
0.8
1.0

Pr
og

re
ss

TRAINED ON TREITLSTRASSE

DREAMER TD3

(a) : The progress in evaluation.

COL AUT TRT CRC
0
5

10
15
20

Ti
m

e
[s

]

TRAINED ON TREITLSTRASSE

DREAMER

(b) : Lap times achieved.

Figure 7.12: Evaluation of the Treitlstrasse agent.

As we see in Figs. 7.13c and 7.13d, the agent in both cases progressed well
until the chicane, where it crashed at the exit. As shown in Fig. 7.14, the
TD3 agent made no noticeable progress.

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5
v[

m
/s

]

(d) : The trajectory on CIIRC.

Figure 7.13: The trajectories of the Treitlstrasse Dreamer agent.

48

..7.5. CIIRC

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.14: The trajectories of the Treitlstrasse TD3 agent.

7.5 CIIRC

7.5.1 Training

In this case, Fig. 7.15, the Dreamer algorithm clearly outperformed the TD3
one in the training. The TD3 agent had more stable rewards during the
training. The Dreamer agent managed to complete two laps while learning.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Number of time steps 1e7

0.0

0.5

1.0

1.5

2.0

2.5

Pr
og

re
ss

 o
n

th
e

tra
ck

CIIRC

DREAMER TD3

Figure 7.15: The course of the training for the CIIRC agent.

49

7. Results
7.5.2 Evaluation

The Dreamer CIIRC agent is the only agent who successfully completed a
lap on a track other than the Columbia. The time on Columbia was slightly
faster than the baseline FTG agent, while the time on the CIIRC track was
slower than the baseline.

COL AUT TRT CRC
0.0
0.2
0.4
0.6
0.8
1.0

Pr
og

re
ss

TRAINED ON CIIRC

DREAMER TD3

(a) : The progress in evaluation.

COL AUT TRT CRC
0
5

10
15
20

Ti
m

e
[s

]

TRAINED ON CIIRC

DREAMER

(b) : Lap times achieved.

Figure 7.16: Evaluation of the CIIRC agent.

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.17: The trajectories of the CIIRC Dreamer agent.

50

.......................... 7.6. Real-life experiments on CIIRC track

0

1

2

3

4

5

v[
m

/s
]

(a) : The trajectory on Austria.

0

1

2

3

4

5

v[
m

/s
]

(b) : The trajectory on Treitlstrasse.

0

1

2

3

4

5

v[
m

/s
]

(c) : The trajectory on Columbia.

0

1

2

3

4

5

v[
m

/s
]

(d) : The trajectory on CIIRC.

Figure 7.18: The trajectories of the CIIRC TD3 agent.

The Dreamer agent on the CIIRC track, Fig. 7.17d, crashed two times in
the last hairpin turn, but all trajectories are consistent and nearly identical.
Also, on the Treitlestrasse track, Fig. 7.17c, we can see that the width of the
chicane can be the difference between crashing and driving through safely.
The chicane is visibly more narrow than the one on the CIIRC track. The
TD3 agent, Fig. 7.18d, progressed through the track and crashed at the
beginning of the last hairpin turn. However, the TD3 agent is less consistent
as most runs crashed earlier in the lap.

7.6 Real-life experiments on CIIRC track

We successfully made both TD3 and Draemer agents run on our F1TENTH
platform. In this experiment, the minimum speed is set to 1 m · s−1 and the
maximum is 3 m · s−1. The minimum is set because any lower speed than
that and the motor cannot move the car. The maximum is set because of
safety and the difference in the traction between the simulation and the real
world. The agents were briefly tested with higher limits and did not have
enough grip to steer or brake in time. The lap times were measured using an
optical gate.

Only the agents trained on the CIIRC track and the FTG agent managed
to finish the track. The FTG agent used was different than the one used in
simulations. Each agent was given three tries to finish the track. Both D3
and Dreamer agents trained on the CIIRC track crashed twice in the last
hairpin turn.

51

7. Results
The agent Lap time
FTG 23.95 s
TD3 22.54 s
Dreamer 22.35 s

Table 7.1: Lap time from the real-life experiments.

7.6.1 Dreamer agents

The Dreamer agent’s trajectory in real life was not as smooth as in simulation.
The agent needed to steer more often to stay within the walls, and its
trajectory was similar to the one from FTG in simulation (Fig. 7.2d). We
argue that this is caused by the sim-to-real gap as the model in the simulation
is not that accurate since we do not possess the measurements needed to set
up everything. The traction in the simulator was set too high compared to
the actual traction on the floor the agents drove on. This was set during the
modeling of the track for the simulator, and the friction of the surface was set
as in [17]. Their experiment, like ours, was conducted indoors on a linoleum
floor.

The Columbia Dreamer agent could not stay within the walls on the straight
at the start and did not progress even to the first corner. The Dreamer agents
trained on Austria and Treitlstrasse tracks behaved closely to the simulation.
The Austria agent crashed constantly at the end of the first corner, while the
Treitlstrasse agent could not drive through the chicane successfully.

7.6.2 TD3 agents

The TD3 agents ran into the same problem as happened in training in Figs. 7.3
and 7.11. Sometimes, they only returned full steer and full throttle. This
resulted in an instantaneous crash. Only the CIIRC and Treitlstrasse (with
incomplete learning) agents provided meaningful results. The CIIRC agent,
as seen in Table 7.1, successfully completed a lap. Like the CIIRC Dreamer
agent, the CIIRC TD3 agent crashed twice in the last hairpin turn. The pace
the CIIRC agent drove was faster than in the simulation. We argue that this
results from setting the minimum speed, which helped the agent to move.

7.7 Discussion

We have successfully implemented, trained, and evaluated two Reinforcement
Learning agents. Both algorithms, TD3 and Dreamer, finished a lap in a real-
world scenario. Both algorithms used a reward signal defined in Section 5.3
to promote faster driving while not compromising safety.

7.7.1 TD3 algorithm

The implementation from Stable Baselines 3 [42] did not work properly, and
in both training and evaluation, it often returned actions that led to crashes.

52

......................................7.7. Discussion

Changing hyperparameters did not have an effect on this problem. We suspect
it ran into some software-related issues. We did not provide data from many
training attempts with the same result as the TD3 agent in Fig. 7.11.

Apart from those issues, the only agent that consistently drove faster than
2 m · s−1 was trained on the Columbia track and had an issue in the middle
of the training. The rest of the agents drove slowly and preferred to run out
of time while almost standing still rather than crash. All the data provided
was done with the hyperparameters that brought the best results.

7.7.2 Dreamer algorithm

The Dreamer algorithm performed more consistently, as can be seen from all
of its trajectories. Mistakes consistently happened in the same places. The
dreamer agent preferred to gather the reward from progressing the track and
risking the crash. This behavior is preferable as the target was to complete
a lap. Also, an expected behavior from the Dreamer agent is preferred to
the inconsistent one of the TD3 agent. This way, if a change is made to the
algorithm or the reward function, the changes in the driving can be assumed
as the result.

53

54

Chapter 8
Future work

While providing some results and succeeding in successfully completing a
lap with both model-free and model-based methods, there is a lot of work to
drive faster and safer. We suggest ideas for improvements to the simulation
environment and both model-free and model-based methods.

8.1 Environment and platform

While testing on the real car, we had to limit the speed because the model in
the simulation was not accurate enough, as mentioned in Section 7.6. Before
forcing the speed limit, the agent tried to steer and brake at higher speeds.
There was not enough grip to change the velocity or heading.

Physics simulation. The simulator used in this thesis, the Racecar Gym [22],
was built on the bullet physics engine. This engine is popular because it
provides reasonably accurate physics simulations while the computing cost is
still low. A more accurate simulator, like Project Chrono [44] or AWSIM [45],
should help with minimizing the sim-to-real gap, which is discussed in Sec-
tion 7.6.1. These simulators, however, are much more computationally expen-
sive.

Accurate models. The car used in the simulation was the default car used in
the Racecar Gym [22], with minor tweaks and changes. The accurate model
was not used as the measurements, like the exact weight of individual parts
or the wheel parameters, for our F1TENTH car have not yet been made.
The Racecar Gym simulator is highly customizable, and modeling the car
correctly and accurately should also help with a sim-to-real gap. The most
important models and parameters for driving such a car are the wheel model
and the surface model being driven on. If measured precisely, the car should
handle traction levels in a real environment much better as the model used
for the simulation will be more accurate.

55

8. Future work
8.2 Model-free agent

Software-related issues. The model-free agent has multiple flaws. Firstly,
sometimes, it keeps returning the action of [1, 1], which means full throttle
and full steer left. As it can be seen in Figs. 7.3 and 7.11, the agent gets stuck,
refuses to progress in learning, and the reward drops to 0. Investigating the
error was out of the scope of this work. We suspect the error can be in the
implementation from Stable Baseline 3 [42] or its dependencies. It may come
from the communication with the Racecar Gym [22] or in the simulator itself.
However, the observations and rewards from the simulation have been checked
and seem to be without a problem. In addition, the problem also happens
in real-life experiments, namely with the Columbia and the Austria agents,
where it did not communicate with the simulator but it communicated with
the F1TENTH car through ROS2.

Upgrades from other methods. Apart from software-related issues, up-
grades to the base implementation of the TD3 algorithm can be made. The
inspiration can be taken from [15], where multiple approaches used in other
areas of machine learning have been implemented to the DDPG algorithm. As
TD3 is based on DDPG, these approaches should be applicable similarly. We
mention and explain these improvements in the related work (Section 2.1.1).
Also, the action smoothing from [14] should result in a smoother and faster
drive.

8.3 Model-based agent

The Dreamer algorithm showed great potential. Nevertheless, the differences
between the simulation and the real environment were too large. Some
improvements could be used to achieve better performance. Many of them
have already been implemented in the newer versions of the algorithm.

New versions. As stated in Section 2.1.1, in [19], the authors tried to use
Dreamer v2 [18] to control a race car. However, the authors succeeded only
in simulation and not on a real-life platform. In 2023, the third version of
Dreamer was released [27]. The second or third version could be used to train
the agent, as both methods show great potential in controlling the games
used as baselines in the papers.

8.4 Utilizing additional information

In this thesis, we implemented two purely reactive end-to-end algorithms, TD3
and Dreamer, utilizing only the lidar as a sensor from the car. But as shown
in Table 3.3, the platform also provides an IMU. However, the measurements
from the IMU are rather noisy. If the IMU sensor inputs are filtered from
the noise, they could provide valuable information that the RL models could

56

.............................8.4. Utilizing additional information

utilize. The localization and a map can also be introduced, although it would
not be full end-to-end, only partial, as described in Section 4.2. This should
help with problems like in Figs. 7.9b and 7.10b, as the agent would know the
map ahead without observing it with the lidar. The trajectory to help the
learning could be added as in [13]. This, however, could introduce the same
problems as mentioned in Section 2.1.1, e.g., the need to compute the optimal
trajectory or the fact that the agent will not perform as well on other tracks.

57

58

Chapter 9
Conclusion

In this thesis, we successfully implemented, trained, and evaluated both model-
free and model-based end-to-end approaches to control an F1TENTH race
car, described in Section 3.3. The simulation environment used for training is
described in Section 3.2. We compare the agents’ learning processes and their
success on four different tracks in simulation and one in real life (Chapter 7).

The model-free method used in this thesis is the TD3 algorithm. The
implementation was provided by the Stable Baselines 3 library. This library
was used because it provides implementations as baselines for testing and
comparing. We added a reward function that promotes faster lap times and
discourages hard braking and standing still. The TD3 method was inconsistent
in learning and evaluation scenarios. We argue that this unexpected behavior
results from a software problem as discussed in Section 8.2. Despite these
problems, the agent trained on the simulated CIIRC track successfully finished
a lap in the real-life version of this track. The lap time was 0.19 s slower than
the model-based one while 1.41 s faster than the reactive Follow The Gap
with the given setup.

The model-based method used in this work was the Dreamer algorithm.
The implementation of the algorithm from [17] is used, as it has already
run on the F1TENTH platform. We added the same reward function as in
the model-free approach. This method behaves and trains itself much more
consistently, as can be seen in Chapter 7. However, it drove a similar lap
time to the TD3 agent in real-life scenarios. We argue that this was due to an
inaccurate model and floor setup in the simulator as mentioned in Section 8.1.
This led to limiting the maximal speed of the agent, as it could not overcome
the sim-to-real gap. The lap time was 1.6 s faster than the Follow The Gap
agent provided.

Both methods have shown potential as they managed to complete the laps.
The times were even faster than the FTG algorithm, which was beyond our
expectations. With further improvements discussed in Chapter 8, the lap times
should get even faster and the agents should behave more consistently. We
expect that the future of autonomous driving will utilize more Reinforcement
Learning. Maybe not as full end-to-end agents, but in partial end-to-end
approaches as this way, the RL agents could utilize modules for mapping,
localization, or preprocessing the sensor input. Furthermore, the models

59

9. Conclusion......................................
trained by the model-based agents might be used in approaches like Model
Predictive Control or other approaches that are highly dependent on accurate
models. This way, the advantages of classical control would support the
advantages of machine learning.

60

Bibliography

[1] F1TENTH. F1TENTH - Build Documentation. https://f1tenth.
org/build.html. Accessed: 2024-30-04. 2023.

[2] Volkan Sezer and Metin Gokasan. “A novel obstacle avoidance algo-
rithm:“Follow the Gap Method””. In: Robotics and Autonomous Systems
60.9 (2012), pp. 1123–1134.

[3] R. Craig Coulter. Implementation of the Pure Pursuit Path Tracking
Algorithm. Tech. rep. CMU-RI-TR-92-01. Pittsburgh, PA, Jan. 1992.

[4] University of Stuttgart, Model predictive control. 2022. url: https:
/ / www . ist . uni - stuttgart . de / research / group - of - frank -
allgoewer/model-predictive-control/.

[5] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. PMLR, 2018.

[6] Danijar Hafner et al. Dream to control: Learning behaviors by latent
imagination. 2019.

[7] Dominik Hodan. Reinforcement learning-based control system for the
SK8O robot. 2023.

[8] Johannes Betz et al. “Autonomous Vehicles on the Edge: A Survey on
Autonomous Vehicle Racing”. In: IEEE Open Journal of Intelligent
Transportation Systems 3 (2022), pp. 458–488. doi: 10.1109/OJITS.
2022.3181510.

[9] Alex Kendall et al. “Learning to Drive in a Day”. In: 2019 International
Conference on Robotics and Automation (ICRA). 2019, pp. 8248–8254.
doi: 10.1109/ICRA.2019.8793742.

[10] DDPG algorithm description. 2014. url: https://spinningup.openai.
com/en/latest/algorithms/ddpg.html#background.

[11] Florian Fuchs et al. “Super-Human Performance in Gran Turismo
Sport Using Deep Reinforcement Learning”. In: IEEE Robotics and
Automation Letters 6.3 (2021), pp. 4257–4264. doi: 10.1109/LRA.2021.
3064284.

[12] B Evans et al. “Accelerating online reinforcement learning via supervi-
sory safety systems”. In: arXiv preprint arXiv:2209.11082 (2022).

61

https://f1tenth.org/build.html
https://f1tenth.org/build.html
https://www.ist.uni-stuttgart.de/research/group-of-frank-allgoewer/model-predictive-control/
https://www.ist.uni-stuttgart.de/research/group-of-frank-allgoewer/model-predictive-control/
https://www.ist.uni-stuttgart.de/research/group-of-frank-allgoewer/model-predictive-control/
https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1109/OJITS.2022.3181510
https://doi.org/10.1109/ICRA.2019.8793742
https://spinningup.openai.com/en/latest/algorithms/ddpg.html#background
https://spinningup.openai.com/en/latest/algorithms/ddpg.html#background
https://doi.org/10.1109/LRA.2021.3064284
https://doi.org/10.1109/LRA.2021.3064284

9. Conclusion......................................
[13] Benjamin David Evans, Herman Arnold Engelbrecht, and Hendrik

Willem Jordaan. High-speed autonomous racing using trajectory-aided
deep reinforcement learning. 2023.

[14] Zhijie Lu et al. “Deep Reinforcement Learning Based Autonomous Rac-
ing Car Control With Priori Knowledge”. In: 2021 China Automation
Congress (CAC). 2021, pp. 2241–2246. doi: 10.1109/CAC53003.2021.
9728289.

[15] Adrian Remonda et al. Formula rl: Deep reinforcement learning for
autonomous racing using telemetry data. 2021.

[16] Peide Cai et al. Vision-based autonomous car racing using deep imitative
reinforcement learning. 2021.

[17] Axel Brunnbauer et al. Latent imagination facilitates zero-shot transfer
in autonomous racing. IEEE, 2022.

[18] Danijar Hafner et al. Mastering atari with discrete world models. 2020.
[19] Tanay Dwivedi et al. “Continuous Control of Autonomous Vehicles

using Plan-assisted Deep Reinforcement Learning”. In: 2022 22nd In-
ternational Conference on Control, Automation and Systems (ICCAS).
2022, pp. 244–250. doi: 10.23919/ICCAS55662.2022.10003698.

[20] Radoslav Ivanov et al. “Case Study: Verifying the Safety of an Au-
tonomous Racing Car with a Neural Network Controller”. In: Proceed-
ings of the 23rd International Conference on Hybrid Systems: Compu-
tation and Control. HSCC ’20. Sydney, New South Wales, Australia:
Association for Computing Machinery, 2020. isbn: 9781450370189. doi:
10 . 1145 / 3365365 . 3382216. url: https : / / doi . org / 10 . 1145 /
3365365.3382216.

[21] Kyle Stachowicz et al. “Fastrlap: A system for learning high-speed
driving via deep rl and autonomous practicing”. In: (2023), pp. 3100–
3111.

[22] Axel Brunnbauer and Luigi Berducci. racecar_gym. Version 0.0.1. url:
https://github.com/axelbr/racecar_gym.

[23] Matthew O’Kelly et al. “F1TENTH: An Open-source Evaluation En-
vironment for Continuous Control and Reinforcement Learning”. In:
NeurIPS 2019 Competition and Demonstration Track. PMLR. 2020,
pp. 77–89.

[24] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.
org. 2016–2021.

[25] Mark Towers et al. Gymnasium. Mar. 2023. doi: 10.5281/zenodo.
8127026. url: https://zenodo.org/record/8127025 (visited on
07/08/2023).

62

https://doi.org/10.1109/CAC53003.2021.9728289
https://doi.org/10.1109/CAC53003.2021.9728289
https://doi.org/10.23919/ICCAS55662.2022.10003698
https://doi.org/10.1145/3365365.3382216
https://doi.org/10.1145/3365365.3382216
https://doi.org/10.1145/3365365.3382216
https://github.com/axelbr/racecar_gym
http://pybullet.org
http://pybullet.org
https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.5281/zenodo.8127026
https://zenodo.org/record/8127025

...................................... 9. Conclusion

[26] Ardi Tampuu et al. “A Survey of End-to-End Driving: Architectures
and Training Methods”. In: IEEE Transactions on Neural Networks
and Learning Systems 33.4 (Apr. 2022), pp. 1364–1384. doi: 10.1109/
tnnls.2020.3043505. url: https://doi.org/10.1109%2Ftnnls.
2020.3043505.

[27] Danijar Hafner et al. “Mastering diverse domains through world models”.
In: arXiv preprint arXiv:2301.04104 (2023).

[28] Oriol Vinyals et al. “Grandmaster level in StarCraft II using multi-agent
reinforcement learning”. In: Nature 575.7782 (Nov. 2019), pp. 350–354.
issn: 1476-4687. doi: 10.1038/s41586- 019- 1724- z. url: https:
//doi.org/10.1038/s41586-019-1724-z.

[29] Christopher Berner et al. Dota 2 with large scale deep reinforcement
learning. 2019.

[30] Brenna D. Argall et al. “A survey of robot learning from demonstration”.
In: Robotics and Autonomous Systems 57.5 (2009), pp. 469–483. issn:
0921-8890. doi: https://doi.org/10.1016/j.robot.2008.10.024.
url: https://www.sciencedirect.com/science/article/pii/
S0921889008001772.

[31] Felipe Codevilla et al. Exploring the limitations of behavior cloning for
autonomous driving. 2019.

[32] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data
Augmentation for Deep Learning”. In: Journal of Big Data 6.1 (July
2019), p. 60. issn: 2196-1115. doi: 10.1186/s40537-019-0197-0. url:
https://doi.org/10.1186/s40537-019-0197-0.

[33] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online learning.
JMLR Workshop and Conference Proceedings, 2011.

[34] et al. Richard S Sutton Andrew G Barto. Reinforcement learning, An
Introduction, second edition. The MIT Press, 2018.

[35] Yunlong Song et al. “Autonomous Overtaking in Gran Turismo Sport
Using Curriculum Reinforcement Learning”. In: CoRR abs/2103.14666
(2021). arXiv: 2103.14666. url: https://arxiv.org/abs/2103.
14666.

[36] Wah Loon Keng Laura Graesser. Foundations of Deep Reinforcement
Learning: Theory and Practice in Python. Addison-Wesley Data & An-
alytics Series. Addison-Wesley, 2020. isbn: 0135172381; 9780135172384.
url: libgen.li/file.php?md5=202217fd5fd079d3910c39a6db4d0598.

[37] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine
learning 8 (1992), pp. 279–292.

[38] Ngan Le et al. “Deep Reinforcement Learning in Computer Vision:
A Comprehensive Survey”. In: CoRR abs/2108.11510 (2021). arXiv:
2108.11510. url: https://arxiv.org/abs/2108.11510.

63

https://doi.org/10.1109/tnnls.2020.3043505
https://doi.org/10.1109/tnnls.2020.3043505
https://doi.org/10.1109%2Ftnnls.2020.3043505
https://doi.org/10.1109%2Ftnnls.2020.3043505
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/https://doi.org/10.1016/j.robot.2008.10.024
https://www.sciencedirect.com/science/article/pii/S0921889008001772
https://www.sciencedirect.com/science/article/pii/S0921889008001772
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://arxiv.org/abs/2103.14666
https://arxiv.org/abs/2103.14666
https://arxiv.org/abs/2103.14666
libgen.li/file.php?md5=202217fd5fd079d3910c39a6db4d0598
https://arxiv.org/abs/2108.11510
https://arxiv.org/abs/2108.11510

9. Conclusion......................................
[39] Nicolas Grossmann, Eduard Gröller, and Manuela Waldner. “Concept

splatters: Exploration of latent spaces based on human interpretable
concepts”. In: Computers & Graphics 105 (2022), pp. 73–84. issn:
0097-8493. doi: https://doi.org/10.1016/j.cag.2022.04.013.
url: https://www.sciencedirect.com/science/article/pii/
S0097849322000656.

[40] TD3 algorithm description. 2018. url: https://spinningup.openai.
com/en/latest/algorithms/td3.html.

[41] Timothy P Lillicrap et al. Continuous control with deep reinforcement
learning. 2015.

[42] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations”. In: Journal of Machine Learning Research 22.268
(2021), pp. 1–8. url: http://jmlr.org/papers/v22/20-1364.html.

[43] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. url: http://
papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

[44] Project Chrono. Chrono: An Open Source Framework for the Physics-
Based Simulation of Dynamic Systems. http://projectchrono.org.

[45] Tier IV. AWSIM. https://tier4.github.io/AWSIM/.

64

https://doi.org/https://doi.org/10.1016/j.cag.2022.04.013
https://www.sciencedirect.com/science/article/pii/S0097849322000656
https://www.sciencedirect.com/science/article/pii/S0097849322000656
https://spinningup.openai.com/en/latest/algorithms/td3.html
https://spinningup.openai.com/en/latest/algorithms/td3.html
http://jmlr.org/papers/v22/20-1364.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://projectchrono.org
https://tier4.github.io/AWSIM/

	Introduction
	Literature review
	Methods
	Model-free
	Model-based

	Safety
	Online Learning
	Environments and platforms

	Problem statement
	Problem statement
	Training environment
	F1TENTH platform

	Neural networks in control theory
	Modular and classic control approaches
	Pure pursuit
	Model predictive control
	Follow the gap

	Partial End-To-End
	End-To-End
	Imitation Learning
	Distribution shift problem (and its solutions)

	Reinforcement Learning
	Reward signals
	Model-free and model-based algorithms
	Temporal difference learning
	On-policy and Off-policy Learning
	Q-Learning
	Actor-critic methods
	Deep Reinforcement Learning
	Transfer from simulation to real world

	Methods
	Model-free methods
	Deep Deterministic Policy Gradient
	Twin Delayed DDPG
	Implementation

	Model-based methods
	Dreamer

	Reward signal

	Experiments
	Columbia
	Austria
	Treitlstrasse
	CIIRC

	Results
	Baseline: Follow the Gap algorithm
	Columbia
	Training
	Evaluation

	Austria
	Training
	Evaluation

	Treitlstrasse
	Training
	Evaluation

	CIIRC
	Training
	Evaluation

	Real-life experiments on CIIRC track
	Dreamer agents
	TD3 agents

	Discussion
	TD3 algorithm
	Dreamer algorithm

	Future work
	Environment and platform
	Model-free agent
	Model-based agent
	Utilizing additional information

	Conclusion
	Bibliography

