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Abstract

A vital part of healthcare is creating, processing and storing good quality medical
documentation. The task is, however, time-consuming and burdens the medical care
workers heavily. This thesis’s goal is to explore the possible automation of part of
this process. Concretely, it focuses on automatically generating the Hospitalization
summarization paragraph of the Discharge report, an important medical document
ensuring continuity of care. To this end, two Czech text medical datasets from two
departments of the Institute for Clinical and Experimental Medicine (IKEM) are
used. The datasets are analyzed and preprocessed for the task. Language models
based on the Transformer architecture, pretrained on multilingual datasets are uti-
lized. The models are further fine-tuned on the datasets, that are preprocessed for
a text summarization task. Both extractive and abstractive text summarization ap-
proaches are explored. All the models are evaluated using automatic metrics. The
automatic metrics show that abstractive summarization methods outperform the
extractive ones on the task. Further, manual evaluation of the best performing ab-
stractive summarization models is also conducted, showing that the models solve the
task correctly on over 40% of the test samples. The manual evaluation also shows
that the automatic metrics measuring the quality of the generated summary (using
the summary written by the doctor as a reference) are consistent with the manually
assigned quality labels, which justifies their use.

Keywords Machine Learning, Natural Language Processing, Summarization, Ab-
stractive Summarization, Extractive Summarization, Medical Documentation
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Abstrakt

Zásadńı součást́ı zdravotńı péče je vytvářeńı, zpracováńı a uchováváńı kvalitńı
zdravotnické dokumentace. Tento proces je časově náročný a značně zatěžuje
zdravotnický personál. Ćılem této práce je prozkoumat možnost automatizace části
tohoto procesu. Konkrétně se tato práce zaměřuje na automatické generováńı
odstavce ”Pr̊uběh hospitalizace” v propouštěćı zprávě, což je d̊uležitý lékařský doku-
ment pro zajǐstěńı kontinuity péče. V práci jsou použity dva české textové lékařské
datasety ze dvou odděleńı Institutu Klinické a Experimentálńı Medićıny (IKEM).
Datasety jsou nejdř́ıve zanalyzovány a zpracovány do vhodného formátu. Jako
základ řešeńı úlohy jsou využity jazykové modely založené na architektuře Trans-
former, předtrénované na v́ıcejazyčných datasetech. Tyto modely jsou dále učeny
na našem datasetu zpracovaném do formátu vhodného pro sumarizaci textu. Jsou
prozkoumány jak extraktivńı, tak abstraktivńı př́ıstupy k sumarizaci textu. Všechny
modely jsou hodnoceny pomoćı automatických metrik. Ty ukazuj́ı, že abstraktivńı
metody funguj́ı lépe v porovnáńı s těmi extraktivńımi. Dále je provedeno manuálńı
hodnoceńı nejlepš́ıch abstraktivńıch model̊u, které ukazuje, že modely generuj́ı
pr̊uběh hospitalizace správně na v́ıce než 40% testovaćıch vzorćıch. Manuálńı hod-
noceńı dále ukazuje, že automatické metriky měř́ıćı kvalitu generovaného pr̊uběhu
hospitalizace (v porovnáńı s pr̊uběhem hospitalizace napsaného lékařem) jsou konzis-
tentńı s manuálńım ohodnoceńım, což ospravedlňuje jejich použit́ı.

Kĺıčová slova Strojové učeńı, Zpracováńı přirozeného jazyka, Sumarizace, Abstrak-
tivńı sumarizace, Extraktivńı sumarizace, Zdravotnická dokumnetace
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Chapter 1

Introduction

Recent advancements in Artificial Intelligence and Natural Language Processing bring a
promise of revolutionizing various domains, including healthcare. A promising application of
these technologies is the automation of medical documentation processing. It has been widely
discussed, especially in the context of omnipresent digitalization, that medical care workers
are burdened with time-consuming clerical work. Simply reducing the amount of paperwork
is not possible, as processing the medical documentation and keeping good quality records is
vital to ensure continuous high-quality healthcare.

One type of critical document in healthcare is the Discharge report. It gives a concise yet
thorough description of the patient’s hospital stay, detailing the reason for hospitalization and
the patient’s relevant current problems. Crafting the report is time-consuming and requires
retrieving information from several medical documentation notes.

In this thesis, we explore the possibility of partially automating this task by using a
Language Model to generate the Hospitalization summary paragraph of the discharge report.
The hospitalization summary paragraph gives a concise story of the hospitalization and is
important to ensure good continuity of patient care. While creating and processing medi-
cal text documentation is generally a challenging task requiring the domain knowledge of a
medical specialist, the hospitalization summary usually contains information that can already
be found in an admission report, documentation concerning examinations and procedures,
or other medical notes. This makes it reasonable to formulate the automatic generation of
the hospitalization summary paragraph as Text Summarization (a natural language process-
ing task), which can be solved with a method based on a suitable state-of-the-art language
model.

To experiment with this, we obtained two Czech datasets from the Institute for Clinical
and Experimental Medicine (IKEM) in Prague. Each dataset is from a different department
and contains samples with information about hospitalizations, including the Discharge re-
port with the hospitalization summary. We define the task as automatically generating the
hospitalization summary using the other information about the hospitalization as the source
text.

To our best knowledge, there is no published work focused on using language models
to generate discharge reports in the Czech language and the research on processing Czech
medical documentation in general is very limited.

CTU in Prague Department of Computer Science
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1.1 Thesis structure

The thesis is structured as follows. Chapter 1 introduces the goal of this thesis and
the motivation behind it. In Chapter 2, we describe the summarization task as a natural
language processing problem. The language models we use, together with approaches for their
evaluation are introduced. We shortly present related problems and publications in Chapter
3, all concerning natural language processing tasks in the context of the medical domain. In
Chapter 4, we introduce the real-world medical text datasets provided by IKEM, we show how
we preprocess the data and subsequently analyze it. We describe our approach and methods
for solving the task in detail in Chapter 5. In Chapter 6, we experimentally compare our
methods through both automatic and manual evaluation. We summarize our results, discuss
possible improvements and future work, and conclude this thesis in Chapter 7.

CTU in Prague Department of Computer Science



2. PRELIMINARIES 3/58

Chapter 2

Preliminaries

This chapter serves as the groundwork for this thesis. All the topics we discuss are con-
cerned with natural language processing. Natural Language Processing (NLP) is a subfield of
computer science concerned with processing and manipulating text using computer programs.
In this thesis, we only consider machine learning approaches to NLP and generally call them
Language Models. In the following text, we first define the summarization task in Sec. 2.1.
Then, we explore the used language models in Sec. 2.2, covering the original Transformer ar-
chitecture, upon which all modern language models are based, continuing with a description
of tokenization and description of all the various models we use in the experiments in this
thesis. A discussion about various techniques of inference using the language models follows
in Sec. 2.3. In Sec. 2.4, we describe techniques to train large models efficiently. The chapter
is closed with Sec. 2.5, describing the evaluation of language models, mainly discussing the
metrics we use.

2.1 Summarization

Automatic text summarization is an NLP task that involves condensing input text into
a shorter, more concise version with the goal of retaining the most important information and
meaning of the original text. In this thesis, we generally denote the input text as source and
the output text as summary. There are two main approaches to summarization:

• Extractive summarization aims to identify and extract important sentences or sub-
sequences from the source. The resulting summary is a concatenation of such identified
sentences or text spans.

• Abstractive summarization creates new text based on the content of the source. It
is not constrained to only use sentences or text spans of the original text. Abstractive
summaries can contain new words or utilize some background information from pre-
training or finetuning (we explain these processes in Sec. 2.2). The goal ultimately is
to output a summary a human would write. By choosing specific data for fine-tuning,
the model can be trained to output summaries that conform to some specifications. The
summaries in the training data might be less or more concise, technical or scholarly, etc.

A common problem with abstractive summarization (and open text generation using
language models in general) is hallucination. Hallucination happens when the model generates
content that is not inferable from the source. While hallucination in some contexts might not
be problematic, it can cause the model to produce summaries that are factually incorrect,
which we want to avoid. We use terminology from [6] to speak about the generated text in

CTU in Prague Department of Computer Science
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the context of hallucination. We say a generated summary is faithful if it is consistent and
truthful to the source text. We denote a generated summary factual if it is based on fact.

2.2 Language Models

NLP has advanced in recent years mainly due to increased computing capacity and
data availability. An abundance of training data is supplied by using self-supervised and un-
supervised training paradigms, which allows to use large amounts of data scraped from the
internet. This is contrary to a supervised paradigm, where (usually) human-annotated data
are required, which are costly and time-consuming to acquire. Further, the Transformer archi-
tecture [37] allows to process words (more specifically, tokens) of its input in parallel during
training, better utilizing the increased compute power. In contrast, previous mainstream ar-
chitecture for NLP - Recurrent Neural Networks - prevented parallelization due to computing
non-linear dependencies between input sequence elements. These advancements in NLP ar-
chitectures, together with ever-increasing computing effectiveness (most notably of Graphic
Processing Units allowing parallel computations), make it possible to process unprecedented
amounts of text data using models with up to billions of trainable parameters during train-
ing, creating language models, that can be fine-tuned to various downstream tasks with great
results. Language models with large amounts of trainable parameters that are trained to have
general-purpose language manipulation capabilities are being called Large Language Models
(LLMs) today.

Training LLMs in self-supervised and unsupervised fashion on large amounts of gen-
eral domain text data is called pretraining. The training is carried out on multiple (tens or
hundreds) GPUs, spanning weeks or even months. A pretrained language model or LLM is
usually not very useful on its own. To use it on a downstream NLP task (such as question
answering, text classification, or summarization), the model needs to be fine-tunned To fine-
tune pretrained language model on a specific downstream task, only a small amount of data
and computation time is needed compared to resources used for pretraining. This setting is
beneficial, as the fine-tuned model utilizes the language representations learned by the model
during the long and resource-heavy pretraining, allowing the use of a single pretrained model
as a base model for multiple downstream tasks, not training a language model from scratch
each time. Experiments have repeatedly shown that increasing the number of trainable pa-
rameters and the amount of data used during pretraining propagates to better results of the
fine-tuned models, motivating the recent scaling of LLMs.

One common approach to solve an NLP task is to take a state-of-the-art (SOTA) pre-
trained model, create a high-quality supervised dataset for the required downstream task and
fine-tune a specialized version of the language model on it. Another more recent approach
called Instruction Fine-Tuning (IFT), fine-tunes the pretrained model on a dataset of in-
structional prompts and corresponding outputs. Such datasets are usually created manually.
This type of pretraining allows the model to follow general instructions, rather than only
perform specific tasks.

We now follow with a description of the base Transformer architecture followed by an
introduction of tokenization. Next, we describe individual pretrained language models we use
as a base of our methods. While there is an abundance of language models existing today
with new ones appearing every month, most of them are pretrained (and optionally fine-
tuned) on solely English data. A significant amount of language models are being trained on
multilingual corpora, but those, usually, only contain a handful of most-spoken languages. To

CTU in Prague Department of Computer Science
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ensure good performance on our task, we limit our choice of models to the ones that are trained
on multilingual datasets that specifically contain Czech pretraining data. This significantly
narrows our options. Further, we need the models’ weight to be publicly available to be able to
use it as a starting point (checkpoint) which we fine-tune on our task-specific dataset. We first
describe XLM-RoBERTa (Sec. 2.2.3) which we use for our extractive summarization method.
In Sec. 2.2.4 - Sec. 2.2.6, we describe the language models (mBart, mT5 and AYA) we fine-
tune for the abstractive summarization approach. Lastly, we describe Sentence Transformer
in Sec. 2.2.7. We use it as one of the similarity metrics for the pseudo-labeling method with
which we create training data for the extractive summarization approach.

2.2.1 Transformer

All SOTA language models today use the Transformer architecture [37], built on top of
a self-attention mechanism. Self-attention mechanism allows to model dependencies between
elements of its input sequence irrespective of their distance and enables parallel computation.

The bare attention is a function mapping n queries and m key-value pairs to n outputs.
Queries, keys, values and outputs are represented as rows of matrices Q ∈ Rn×dq , K ∈ Rm×dq ,
V ∈ Rm×dv . The attention is computed as:

Attention(Q,K, V ) = softmax

(
QKT√

dq

)
V. (2.1)

The Transformer uses a multi-head version of the attention function, which first creates
h different linear projections of Q, K, V and applies the attention function to each of them:

MultiHead(Q,K, V ) = Concat(head1, . . . ,headh)W
O, (2.2)

headi = Attention(QWQ
i ,KWK

i , V W V
i ), (2.3)

where WQ
i , WK

i , W V
i , WO are learnable parameters. This allows for different attention heads

to attend to different positions of the input sequence and was shown to achieve better perfor-
mance compared to simple attention.

Self-attention is a modification, where queries, keys and values are all the elements of
the input sequence. The function therefore becomes:

MultiHead(X) = Concat(head1, . . . ,headh)W
O, (2.4)

headi = Attention(XWQ
i , XWK

i , XW V
i ), (2.5)

where X is a matrix of the input sequence elements.

The Transformer is composed of an encoder and a decoder, each composed of several
corresponding blocks, as illustrated in Fig. 2.1. Each encoder block consists of multi-head
self-attention followed by a fully connected feed-forward network, which consists of two layers
with a ReLU activation function in between. A residual connection is applied to both the self-
attention and the feed-forward network. After each residual connection, a layer normalization
is applied. The first encoder block takes the inputs encoded in the embeddings (explained
further in Sec. 2.2.2). Since self-attention is independent of the order of elements in the
input, a positional signal is also added to the embedded input elements. While the original
Transformer used a sinusoidal positional embedding, it is now more common to use learned
position embeddings.

CTU in Prague Department of Computer Science
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Figure 2.1: Illustration of the Transformer model architecture. Consisting of N encoders (left
block) and N decoders (right block). Taken from [37]

The decoder block differs from the encoder block by also including a standard attention
layer that performs multi-head attention on the output of the last encoder block (key and
values), and the output of the decoder block self-attention layer (queries). The self-attention
in the decoder block is masked, ensuring (together with the shifted outputs) that it can
not attend to subsequent positions, making predictions for position i depend only on known
outputs at positions less than i.

Language models based on the Transformers architecture utilize it either as it is, or use
only the decoder or the encoder part. We describe these three options in more detail:

• Encoder only models use only the encoder part of the Transformer architecture. For
each input token, they output a fixed-sized embedding.

• Decoder only models use only the decoder part of the Transformer, which is uni-
directional, and the model is therefore auto-regressive. Their output can be described
as:

P (ui|u0, . . . , ui−1; Θ), (2.6)

where ui is the token to be predicted at time-stamp i and u0, . . . , ui−1 is the predicted
output sequence so far.

• Encoder-Decoder models use the full Transformer architecture. As described above,
the input sequence representation from the last encoder block is used as one of the
inputs of the decoder blocks. The decoder then autoregressively generates an output

CTU in Prague Department of Computer Science
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token sequence. This can be considered as conditional text generation. This type of
architecture is also called sequence-to-sequence.

When training the decoder or encoder-decoder model to output a specific sequence, a
teacher forcing mechanism is used. If the decoder would be used in the same way as during
inference, where the previously generated output tokens are used as the decoder input, the
loss function would provide too noisy learning feedback. Instead, at each time step, the true
output tokens are supplied on the input of the decoder, teacher forcing the model to learn the
correct output sequence.

2.2.2 Tokenization

A crucial part of language modeling is tokenization, a process of splitting a text into
tokens (words or subwords). The tokens can be converted to IDs using a look-up table. In
the Transformer architecture (and all language models we use in this work), each token ID
corresponds to a learnable embedding (row of the input embedding matrix). A collection of all
unique tokens a tokenizer (and therefore a language model) distinguishes is called vocabulary
and its size is limited. This is mainly due to constraints on the size of the embedding matrix
due to memory. Using limited vocabulary size means not every unique word can be represented
with a different token. Sub-word tokenization ensures any text sequence can be encoded as
tokens (and therefore token IDs with the corresponding embeddings). Deciding how to assign
the sub-words to tokens is not a trivial task. Tokenizers are trained on the large pretraining
data corpora with a focus on ensuring the most occurring words/sub-words are represented
with a single token and only the less occurring words/sub-words are split into multiple tokens.
The three most commonly used algorithms for training tokenizers are Byte-Pair Encoding,
WordPiece and SentencePiece.

Byte-Pair Encoding (BPE) [39] works by creating a base vocabulary consisting of all
characters that occur in the dataset. It then iteratively learns merge rules to create a new
token from two tokens, until the vocabulary is of the desired size. BPE counts the frequency of
each possible merged token pair in the dataset and picks the one that occurs most frequently.
A modification of BPE, Byte-level BPE, works in the same way, but it uses bytes as the
base vocabulary. This is beneficial, as the base vocabulary is only of size 256 (compare to
the number of all possible Unicode characters) while ensuring every possible character can be
represented using this vocabulary.

WordPiece [41] works very similarly to BPE. It also initializes the vocabulary with
every character present in the dataset but differs in how it learns the merge rules. Instead
of choosing the most frequent token pair to merge, it chooses the pair that maximizes the
likelihood of the dataset. This is equivalent to finding a token pair, with the maximal score:

score =
freq of pair

freq of first token× freq of second token
. (2.7)

SentencePiece [33] was created to alleviate problems with processing multilingual
datasets. Concretely, the previous tokenizers assume the input text uses spaces to separate
words, which is not true in all languages (e.g. Chinese, Japanese, Thai). To solve this, Sen-
tencePiece treats the input as a raw input text, including the space in the set of characters
to include in the base vocabulary. It then uses BPE or Unigram algorithm [32] to build the
vocabulary.

Tokenizer is not used only for encoding the input text, but also for decoding the model
output. Language models output probability distribution over the vocabulary for each output
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token. From this probability, each token is sampled (see Sec. 2.3), resulting in generated output
(e.g. summary) consisting of token IDs. The tokenizer is used to decode those IDs into the
generated output text.

In the following text, whenever we talk about the input or output of a language model,
we automatically consider the use of the model’s tokenizer for the encoding and decoding, if
not specified otherwise.

2.2.3 XLM-RoBERTa

To describe XLM-RoBERTa introduced in [21], we start by introducing Bidirectional
Encoder Representations from Transformers (BERT) [26]. When published, BERT achieved
new SOTA results on several NLP tasks. Its architecture consists of a bidirectional multi-layer
Transformer encoder. Authors of BERT argue that the bidirectional nature of the encoder
allows the model to learn deep representations that lead to better performance on downstream
tasks.

Bert uses the WordPiece tokenizer. The first token of every sequence starts with a spe-
cial classification token [CLS], whose final hidden state is used for the sequence representation
in classification tasks. During pretraining, sentence pairs are differentiated by separating with
special separation token [SEP] and by adding a learned embedding to every token of a sen-
tence indicating whether it belongs to sentence A or B. Since the architecture is bidirectional,
the standard language modeling objective cannot be used, as the model can see the next
token it ought to predict. To overcome this, authors of [26] pretrained the model using two
unsupervised tasks described below.

• Task 1: Masked LM
A certain percentage (15% in the case of BERT) of the input tokens is masked at
random. If a token is chosen to be masked, it is replaced by a special token [MASK] 80%
of a time, a random token 10% of a time, and kept unchanged 10% of a time. Output
representations of the masked tokens are then trained to predict the original tokens
using the cross-entropy loss.

• Task 2: Next Sentence Prediction
Training data for this task can be also generated from unlabeled data. Two sentences
are packed in a sequence and differentiated with [SEP] token and sentence embedding.
50% of the time, the second sentence is the one that actually follows the first sentence
in the training corpus. In the other samples, the second sentence is chosen at random.
The last hidden representation of [CLS] token (output of final encoder block) is used to
train the model to predict this binary task with a linear classifier.

The BERT model was first pretrained on these two tasks and subsequently fine-tuned on
supervised data of a respective downstream task.

Authors of [29] noticed that the BERT model was severely undertrained. They dropped
the Next Sentence Prediction task, increased the batch size and amount of data used for
pretraining, modified hyperparameters and trained the model for more optimization steps.
The trained model called Robustly Optimized BERT Approach (RoBERTa) and using the
same architecture as BERT, achieved SOTA results again.

Both models introduced in this section were trained on purely English text corpus.
To generalize the RoBERTa model for multilingual data, authors of [21] built a multilingual
dataset consisting of CommonCrawl Corpus1 in 100 languages. The resulting XLM-RoBERTa

1https://commoncrawl.org/
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model achieved SOTA results on multilingual language tasks.

The XLM-RoBERTa model uses learned, but fixed-sized positional embedding. This
limits the length of the input sequence it can process to 512 tokens.

2.2.4 mBART

We again first describe the BART model [27], as it precedes its multilingual version
mBART. BART’s architecture is identical to the full Transformer (the Encoder-Decoder)
described in Sec. 2.2.1. It only differs by substituting the ReLU activation functions for GeLUs.
BART is pretrained unsupervisedly by corrupting documents and then optimizing the model
to reconstruct them by computing loss between the original document and the output of the
model using the cross-entropy between the true and predicted tokens. Authors of [27] tried
several mechanisms to corrupt the document, settling for two tasks that were crucial according
to an ablatation study:

• Task 1: Text Infilling
A certain number of text spans are sampled, with span lengths chosen at random. Each
such span is replaced by a single [MASK] token. The model is then trained to predict the
missing spans.

• Task 2: Sentence Permutation
Sentences of a document are permuted randomly. The model is trained to output sen-
tences of the document in the original order.

The multilingual version of BART, mBART, was introduced in [22]. It is again trained
on a dataset extracted from Common Crawl, consisting of 25 languages. The model uses the
same architecture and pretraining tasks as BART, but appends a special language token to
the input and target sequence, as it is intended to be used for translation.

The mBART model again uses fixed-sized positional embedding. It can process input
sequences with maximal length of 1024 tokens.

2.2.5 mT5

The Text-to-Text Transfer Transformer (T5) is a sequence-to-sequence model intro-
duced in [23]. The architecture closely follows the original encoder-decoder Transformer up
to some modifications. The layer normalization is applied before the residual connection. It
is also simplified - activations are only rescaled and no additive bias is applied. Instead of
using fixed positional embedding at each input position, T5 uses relative embeddings. In gen-
eral, relative embedding produces learned embedding based on the offset between the key and
query compared in the self-attention mechanism. T5 simplifies this and only uses a learned
scalar as the positional embedding, which is added to the corresponding logit in attention
computation. This learned positional embedding is shared across all the encoder and decoder
blocks for efficiency. Pretraining is done on Colossal Clean Crawled Corpus (C4) created from
Common Crawl. Authors of [23] used orders of magnitude more data than previous work.
The dataset is also cleaned and preprocessed to contain only reasonably clean and natural
English text. The pretraining task consists of leaving out random spans (approximately 15%)
of the input sequence and training the model to predict them. Contrary to BART predicting
the whole document, whose corrupted version is supplied as the input, T5 is trained to only
predict the missing spans during the pretraining.

After the pretraining, the model was fine-tuned on several downstream tasks. All
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the downstream tasks were formulated as sequence-to-sequence problems (e.g., using
Translate to Czech: Hello world. as input and teacher forcing the model to predict
Ahoj světe.). With this representation, the model can be fine-tuned on several downstream
tasks at the same time.

The T5 model also differs from previously released models by the amount of data and size
of the model used. The relationship between the performance of the model on the downstream
tasks and its scale in size was also explored. The general finding is that a model with more
parameters pretrained on a larger amount of data for more training steps performs better.

To create a (massively) multilingual version of T5, authors of [18] created mC4 - a
multilingual version of C4 comprising of data in 101 languages. The resulting model, mT5,
was pretrained on the same task and published in several model sizes. Both T5 and mT5 use
the SentencePiece tokenizer. The vocabulary size of the multilingual version was increased to
accommodate the need for more base tokens.

Due to the relative positional embedding, the mT5 model does not have a limitation on
the length of the input size. Increasing input length, however, increases memory consumption
and computational time significantly due to the attention mechanism.

2.2.6 AYA

Part of the success of the modern large language models is attributed to the Instruc-
tion Fine-tuning, which involves fine-tuning the model on pairs of prompts and corresponding
completions. Fine-tuning on such data was shown to improve the helpfulness and instruction
following capabilities of LLMs significantly. Most of the IFT datasets, however, are primarily
English, making recent model advancements hard to reach for other (especially low-resourced)
languages. This inequality motivated authors of [2] to create model AYA by curating a mul-
tilingual IFT dataset.

The largest pretrained version of the mT5 model (mT5-xxl) was used as a base model.
It was further Instruction fine-tuned on a multilingual (101 languages) instruction dataset.
The dataset was curated from multiple sources:

• Samples created by transforming specific multilingual datasets (e.g., QA or summariza-
tion) into instruction response pairs (as was done for fine-tuning mT5).

• Human annotated instruction samples (following the prompt - completion scheme) cre-
ated by fluent speakers of various languages. Gathering a good quality multilingual IFT
dataset was a large collaborative effort, which resulted in the AYA dataset [1], published
in parallel with the model.

• Samples from existing English IFT datasets, which were translated into various lan-
guages.

• Samples of human-annotated prompts from ShareGPT2 with synthetic English comple-
tions from Cohere’s Command model3. The decision to use the completions from the
Command model was made due to the ChatGPT’s license which does not allow training
on the outputs of their model. The English samples were then machine-translated into
various languages.

Compared to previous works, the authors of AYA also significantly expanded the amount and
number of types of evaluation schemes and datasets used.

2https://sharegpt.com/
3https://cohere.com/models/command
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Using those various data sources of IFT samples, the authors of AYA experimented with
an ablation study to obtain the optimal representation of the various languages and types of
tasks in the training dataset to create a model with the best performance. Compared to
other models comparable in size, also trained on multilingual instruct datasets (albeit smaller
and containing fewer languages), the AYA achieved SOTA results on the proposed evaluation
benchmarks.

2.2.7 Sentence Transformer

Sentence Transformer (previously called Sentence-BERT) [30] is motivated by sentence-
pair NLP tasks such as semantic textual similarity. Previously, such tasks required feeding
both sentences into a BERT-like model, which required many forward passes through the
model to make multiple comparisons. This could have potentially been very computationally
demanding if a large collection of sentences were to be considered. In Sentence Transformer,
authors fine-tuned a pretrained model (originally BERT, but many other models are used as
the base model today) using one of three objective functions:

• Classification Objective Function classifies pairs of sentences into three categories
according to the Natural Language Inference (NLI) task (contradiction, entailment,
neutral):

o = softmax(Wt(u, v, |u− v|)), (2.8)

where u and v are embeddings of the two sentences, (u, v, |u− v|) is a concatenation of
the embeddings and their element-wise difference andWt ∈ R3n×3 is a matrix of trainable
parameters. A cross-entropy loss is minimized to optimize this objective function.

• Regression Objective Function computes cosine similarity between two sentences
using their respective embeddings u and v. It is a regression task and a squared-error
loss is optimized.

• Triplet Objective Function works by comparing three sentences: anchor a, a positive
sentence (similar to anchor) p and a negative sentence (not similar to anchor) n. A triplet
loss is computed as:

max(||sa − sp|| − ||sa − sn||+ ϵ, 0), (2.9)

where sx is an embedding of sentence x and ϵ is the triplet loss margin.

The model was finetuned on several datasets using the appropriate objective function, out-
performing other sentence embedding approaches on various benchmarks.

To create a multilingual Sentence Transformer, authors of [30] extended the monolingual
Sentence Transformer in [24]. The original monolingual model (teacher) is used to create
an embedding of an English sentence. The sentence is translated and a multilingual model
(student) is trained to mimic the embedding of the English sentence from the teacher with
its embedding of the translated sentence. They call this approach multilingual knowledge
distillation and demonstrate its effectiveness in more than 50 languages.

2.3 Inference

During inference (summary generation) with generative language models, we assume
autoregressive language generation. The assumption is that the probability distribution of
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the generated word sequence can be decomposed into the product of conditional next-word
probabilities:

P (w1:T |W0) =

T∏
t=1

P (wt|w1:t−1,W0), (2.10)

where W0 is the input text to be summarized. The length of the summary T is determined
dynamically during generation by detecting that the model generates an end-of-sequence
token.

There are multiple methods to approach the generation, and we describe the three most
used ones. Greedy search is the simplest. At each timestamp t, it greedily selects word wt

with the largest probability as the next generated word:

wt = argmaxwP (w|w1:t−1) (2.11)

While simple, greedy search comes with a drawback. The sampling might miss high-probability
words that follow after low-probability words.

This problem can be alleviated by Beam search. During inference, it keeps the most
likely num_beams of possible outputs (called hypotheses) at each timestamp. This setting en-
sures we generate an output sequence that is more probable than the one from greedy search.

Another approach is Sampling. Instead of always picking the most propable token (or
n most propable tokens in case of Beam search), it samples the next word from the conditional
distribution:

wt ∼ P (w|w1:t−1). (2.12)

This makes the generation non-deterministic. The distribution P (w|w1:t−1) is usually tam-
pered with to make it more likely that high-probability words are sampled. The output soft-
max temperature T can be modified:

ezi/T∑
j e

zj/T
, (2.13)

to create a more or less sharp distribution. Top-K Sampling can be employed. It samples from
only the top k most probable predictions. Choosing the right k can be problematic with this
method, as the probability mass encompassed by the top-k most probable tokens can vary
greatly. Top-p Sampling is more satisfactory in this regard. It chooses the smallest amount of
the most probable words until the cumulative probability exceeds the threshold p.

2.4 Parameter-Efficient Fine-Tuning

Modern SOTA language models significantly increased in scale, utilizing large amounts
of GPUs to train a single model for weeks or months at a time. The scale increased to such
an extent that fine-tuning these models to downstream tasks can be too costly or impractical.
With some models and setups, even just the inference can be too slow or memory intensive.
Multiple approaches are being researched and utilized to alleviate this.

An often-used technique to decrease computation time and memory is to use more
efficient float data types. The commonly used options are fp16 (used with mixed precision
training), bf16 (available on Ampere and newer GPU architectures, also utilized with mixed
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precision training), or tf32 (also available on Ampere and newer). While making it possible
to do training and inference more efficiently, those techniques alone do not solve the presented
problem with large-scale language models. We follow with a description of three techniques
that aim to make the training or inference more efficient and accessible: Low-Rank Adaptation
of Large Language Models, Quantization and Efficient Finetuning of Quantized LLMs.

2.4.1 LoRA: Low-Rank Adaptation of Large Language Models

Low-Rank Adaptation (LoRA) [16] focuses on making fine-tuning more efficient. During
fine-tuning, traditionally, all weights of the pretrained model are updated and the fine-tuned
model contains the same amount of parameters as the pretrained model. This is not only
inconvenient but can also cause challenges when deploying multiple fine-tuned models for
various downstream tasks. For reference, the AYA model we use has 13B parameters, but
significantly larger models, like GPT-3 [20] with 175B trainable parameters, exist. Only the
process of loading such models to the memory is time-consuming, considering that during
deployment, the need to switch to a different fine-tuned version to process another downstream
task might arise.

LoRA solves this by freezing the weights of the pretrained model and only training
injected rank decomposition matrices of the model parameters. This is inspired by previous
works [34] [19] that show that learned parameters of over-parametrized models (which LLMs
certainly are) reside on low intrinsic dimension. Denoting parameters of the pretrained model
Φ0 and the updated parameters as Φ0 + ∆Φ, authors of LoRA then hypothesize that the
change in model’s weights during fine-tuning ∆Φ is also of low rank. They therefore propose
to represent the parameter increment with fewer parameters Θ as ∆Φ = ∆Φ(Θ), where
|Θ| ≪ |Φ0|. Choosing a low rank for the representation of the weights increment, the number
of parameters to train during LoRA fine-tuning can be as low as 0.01% of the original model
size.

The low-rank representation of parameter update is illustrated in Fig. 2.2. Layers of

Figure 2.2: Visualization of LoRA reparametrization. Taken from [16]. W denotes the original
pretrained weights (denoted W0 in (2.14)). Matrices A and B are used to represent the change
in weights during fine-tuning, their initialization is denoted in the figure.

language models can be represented with matrix multiplications. LoRA represents the update
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of matrix weights as:

W0 +∆W = W0 +BA, (2.14)

where W0,∆W ∈ Rd×k are the original pretrained weights and the change of the weights
through fine-tuning, respectively. B ∈ Rd×r, A ∈ Rr×k are the matrics of the low-rank de-
composition of ∆W and r ≪ min(d, k) is the rank. The W0 is frozen during training (it is not
updated with backpropagation). Output of matrix multiplication (forward pass) h = Wx can
than be represented as:

h = (W0 +∆W )x = (W0 +BA)x, (2.15)

where x is the input and h is the output of the matrix multiplication. When applied to
language models (the Transformer architecture), only the attention weights WQ, WK , W V

and WO (see Equation (2.3)) are optimized.

This setting reduces the memory usage during training by up to 2/3. Switching two fine-
tuned models based on the same pretrained weights amounts to simply subtracting one set of
the low-rank parameter updates and adding another one for a different downstream task.

Through empirical experimentation, authors of LoRA show that this proposed fine-
tuning scheme does not lead to a significant decrease in the performance of the models.

2.4.2 Quantization and QLoRA: Efficient Finetuning of Quantized LLMs

Quantization focuses on representing each of the model’s parameters using fewer bits,
utilizing either k-bit float or integer. This is done to decrease the memory footprint and
improve inference speed. There is usually a tradeoff between the quantized model accuracy
and memory and run time reduction. This tradeoff and various quantization techniques are
discussed, for example, in [4].

While the quantization techniques alone can reduce the memory footprint of LLMs
significantly, they only work for inference and their use for fine-tuning is not straightforward.
Motivated by this, authors of QLoRA: Efficient Finetuning of Quantized LLMs [3] combine
a new quantization technique with LoRA fine-tuning approach and show that it is possible
to fine-tune quantized 4-bit model without performance degradation compared to standard
16-bit fine-tuning. To combine LoRA and quantization, the authors of QLoRA introduce a
novel data type and improvements to the quantization mechanism and optimizer.

2.5 Evaluation

Evaluating text generation tasks is a notoriously hard problem and an open research
question. In this thesis, we use n-gram overlap metric Rouge and two model-based metrics
BERTScore and AlignScore-CS to automatically assess the quality of the generated summary.
While the first two metrics are designed to compare the generated summary with a human-
written reference summary, AlignScore-CS focuses on assessing the factuality of the generated
summary using the source document as a reference.

All the metrics we use output a score in the range (0, 1). We rescale it by multiplying
it by 100 for better readability.
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2.5.1 Rouge

Rouge, or Recall-Oriented Understudy for Gisting Evaluation [43], is an automatic met-
ric for evaluating text similarity, used mainly to evaluate automatic summarization and ma-
chine translation. It compares the automatically produced text against a human-produced
reference (or multiple references). It is a traditionally used evaluation metric in NLP research,
as it is simple, computationally efficient and easily interpretable. In this work, we use the two
most frequently used variants of rouge: Rouge-N and Rouge-L.

In the original paper [43], Rouge-N is introduced as the recall between candidate and
reference summary:

Rouge-NR(r, c) =

∑
gramn∈r Countmatch(gramn, r, c)∑

gramn∈r Count(gramn, r)
, (2.16)

where r, c are the reference (human-produced) and the candidate (automatically generated)
summaries respectively, n is the length of n-grams gramn, Count(gramn, r) is the amount
of n-grams gramn in the reference summary r and Countmatch(gramn, r, c) is the number of
n-grams gramn co-occurring in the reference summary r and the candidate summary c.

A precision rouge metric can also be defined:

Rouge-NP(r, c) =

∑
gramn∈r Countmatch(gramn, r, c)∑

gramn∈cCount(gramn, r)
, (2.17)

which can be used together with the recall to compute the F-score:

Rouge-NF(r, c) = 2
Rouge-NR(r, c)Rouge-NP(r, c)

Rouge-NR(r, c) + Rouge-NP(r, c)
. (2.18)

We report the F-score when comparing our methods in this work (as do most recently pub-
lished works on summarization) and compute the Rouge-1 and Rouge-2 versions using uni-
grams and bigrams respectively.

Rouge-L compares reference and candidate using their longest common subsequence.
The recall, precision and F-score are computed as

Rouge-LR(r, c) =
LCS(r, c)

|r|
(2.19)

Rouge-LP(r, c) =
LCS(r, c)

|c|
(2.20)

Rouge-LF(r, c) = 2
Rouge-LR(r, c)Rouge-LP(r, c)

Rouge-LR(r, c) + Rouge-LP(r, c)
, (2.21)

where LCS(r, c) is the length of the longest common subsequence of r and c.

The original implementation published with the paper [43] uses stemming and stop
word removal as a preprocessing step. However, this preprocessing is prepared only for the
English language. We instead use a Rouge-raw version introduced in [35], which is language
agnostic and computes n-grams without preprocessing using stemming or stop word removal.
Stop word removal is not a straightforward task for the medical text data we use, as removing
some words can noticeably change the meaning of a sentence. We further tried to use a
lemmatization tool for the Czech language [40], but due to often occurring abbreviations and
imperfect stylization of the text, it did not perform well.
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2.5.2 BERTScore

BERTScore [25] is a model-based automatic text similarity metric. It leverages prerained
encoder-only model BERT to create contextual embeddings of words (more specifically, to-
kens) in reference and candidate text, which it then matches using cosine similarity. It has been
shown to correlate with human judgment. The metric computation is visualized in Fig. 2.3.
More specifically, precision, recall and F-score metrics can be computed as follows:

Figure 2.3: Illustration of BERTScore computation. Taken from [25]. Tokens of reference and
candidate text are embedded using an encoder-only language model. The embeddings are
compared in a pairwise manner using cosine similarity. The score is then computed using
(2.22) - (2.24).

BERTScoreR(r, c) =

∑
ri∈r maxcj∈c r

⊤
i cj

|r|
(2.22)

BERTScoreP(r, c) =

∑
cj∈cmaxri∈r r

⊤
i cj

|c|
(2.23)

BERTScoreF(r, c) = 2
BERTScoreR(r, c)BERTScoreP(r, c)

BERTScoreR(r, c) + BERTScoreP(r, c)
, (2.24)

where r and c is the reference and candidate summary respectively, ri ∈ r and cj ∈ c are
individual tokens of reference and summary and ri and cj are contectual embeddings (outputs
of BERT model) of ri and cj respectively. The embedding vectors ri, cj are normalized, the
cosine similarity is therefore simply r⊤i cj . The original paper also uses IDF weights to include
importance weighting of individual tokens when computing the final score. This is, however,
by default not used, as the corpus is usually too small to learn proper IDF weights. We use
the default setting.

In comparison to Rouge, BERTScore considers the context in which words (represented
by tokens) are used, making it theoretically able to recognize synonyms and infer the meaning
of unknown words from the context.

Authors of BERTScore studied how the metric compares with human judgment. They
used the results to choose the best-pretrained language model to use to compute the contextual
embeddings of the inputs. For the Czech language, layer 9 of ’bert-base-multilingual-cased’ is
the recommended one to use.
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2.5.3 AlignScore-CS

Another metric we use to compare the models, AlignScore [12], focuses on factuality.
It measures factual consistency between text pairs. More specifically, its goal is to evaluate
whether all information in a claim is contained in a context, ensuring that the claim does not
contradict it. Having the metric defined as such, it is natural to use it to evaluate the factual
consistency of a summary generated by a language model.

Authors of AlignScore took a holistic approach to training the metric, motivated by
limitations of previous works. Previously, similar metrics were usually trained on a single
NLP task (sometimes from a single domain), leading to limited generalizability. The training
procedure of AlignScore unifies a wide range of data sources and tasks to train a general infor-
mation alignment model. More specifically, 15 datasets spanning 7 NLP tasks were used for the
training. The utilized tasks are NLI (Natural Language Inference), QA (Question answering),
paraphrasing, fact verification, information retrieval, semantic similarity and summarization.
The authors evaluated the metric on various large-scale evaluation benchmarks and showed
that their approach substantially outperforms previous SOTA metrics. It is also on par with,
or better than, metrics based on orders-of-magnitude larger language models (such as GPT-4).

The main part of the metric is the Unified Alignment Function trained by unifying train-
ing of the aforementioned NLP tasks. All the NLP tasks are transformed into a single text
input containing a text pair: text a (the context) and text b (the claim). The Unified Align-
ment Function is trained with three output heads, each for a different type of the alignment
label y: binary, 3-way classification (choosing between ALIGNED, NEUTRAL and CONTRADICT) or
regressive. The output head is chosen based on the presented task. The unification of the
training is visualized in Fig. 2.4.

Figure 2.4: Unified Alignment Function Training on various NLP tasks. Taken from [12]. The
figure shows examples of various NLP tasks (on the left) being transformed into the unified
(text a + text b) format (in the middle). The function outputs corresponding labels based on
the task (on the right).

The Unified Alignment Function is computed by computing the embedding of the input
sequence (concatenation of text a and text b) using the RoBERTa language model. The con-
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textual embedding of the classification token (beginning-of-sequence token) is then processed
with one of the three individual heads for either the 3-way classification (logistic regression),
binary classification (logistic regression) or linear regression. The joint loss function is com-
puted as a sum of the losses from the individual tasks.

Instead of naively computing the AlignScore metric by passing context and claim into
the Unified Alignment Function, the context is split into roughly 350-token chunks, and the
claim is split into sentences. Each sentence of the claim is then evaluated against each context
chunk using the alignment function. For each claim sentence, the highest alignment score is
selected. The alignment scores of sentences of the claim are then averaged to compute the
final factual consistency score. The computation is illustrated in Fig. 2.5.

Figure 2.5: AlignScore visualization Taken from [12]. The figure shows the splitting process of
the context into roughly 350-token chunks. Each context chunk is compared with each claim
sentence. The AlignScore is computed by gathering the maximal score for each claim and then
taking the average.

This chunking was shown to perform better than evaluating the alignment function on
the sentence or document level. Further, it allows AlignScore to evaluate context-claim pairs
even if the context is longer than the 512 maximal supported input sequence length of the
RoBERTa model. By default, the output of the 3-way classification head (probability of the
model predicting the ALIGNED label) is used to compute the alignment during inference, as it
was shown in an ablation study to perform the best.

Until now, we discussed the original AlignScore published in [12], which was fine-tuned
using only English datasets, using the RoBERTa model which itself was pretrained on an
English-only corpus. To make it possible to use AlignScore for Czech data, colleagues of mine,
Marian Krotil and Martin Hubal, translated the used training and benchmarking data to
Czech. They used both Czech and English data to train a Czech version AlignScore-CS and
replaced the pretrained RoBERTa with its multilingual version XLM-RoBERTa. Otherwise,
they followed the training procedure from [12]. The trained metric showed similar results to
the original AlignScore on both the translated and the English benchmarks.
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Chapter 3

Related Work

In this chapter, we briefly discuss research related to the goal of this thesis. Text sum-
marization is a well-researched natural language processing task. Relevant publications, how-
ever, mostly focus on summarization datasets consisting of general domain English text. Our
datasets are in the Czech language and of a specific medical domain. The amount of related
publications is therefore severely limited. We discuss some works, all focusing on English data,
that either attempt to solve a similar task to ours, or research another summarization problem
with medical data.

A similar task to ours, generating a Brief Hospital Course (BHC) summary, was explored
in [9], [7], [13] and [14]. BHC is a succinct summary of an entire hospital encounter embedded
within a discharge summary (an equivalent of the discharge report used in Czech healthcare).
The task is formulated as generating a BHC summary by multi-document summarization,
utilizing all kinds of medical notes describing the patient’s hospital stay. Per this description,
the task is similar to what we are trying to achieve with the datasets from IKEM.

Authors of [9] experiment with generating BHC summary on two datasets. MIMIC-
III [38] is a dataset of US Internal Care Unit (ICU) patient admissions and contains data
about 47,951 unique admissions. The other dataset, KCH, was extracted from [31]. It is
a dataset consisting of 1,586 admissions of UK patients who suffered a stroke. The work
experiments with both extractive and abstractive methods and also with their ensemble. The
authors report better performance using the abstractive methods, compared to extractive
summarization. Specifically, they use the BART model and show better performance with first
pretraining it on a SumPubMed [15], a summarization dataset of English scientific medical
articles. Interestingly, using the T5 model yields worse results compared to BART in their
experiments. This is contrary to the results we report in Chapter 6, where the multilingual
version of T5 outperforms the multilingual version of BART.

Authors of [7] and [13] study generating the whole discharge summary using the in-
patient records (a type of daily notes about the patient during hospitalization). Both works
conduct a data analysis to find out if the task is possible. In other words, they study if the
source texts contain enough information to successfully generate the summaries. They con-
clude all information needed to generate the discharge summary is not always available in
the text records documenting a patient’s hospital stay. Physicians sometimes use a piece of
information they remember or make a diagnostic conclusion only when writing the discharge
summary. Other times, the information in the hospitalization summary is contained in the
patient’s past medical records, examination results, surgical reports or medication notes.
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Further, according to [14], as much as 46% of the discharge summary is copied and pasted
as is from past medical records and 36% imported from structured data sources. This leaves
a relatively small portion of the discharge report to be written manually by the physician,
which serves as a good motivation for automating the task.

In [11], the task of medical text summarization was studied across multiple English clin-
ical text datasets. The study compared several LLMs, choosing GPT-4 as the best-performing
option. With this model, they further conducted a study with several physicians to compare
if they preferred the automatically or manually created summary, measuring completeness,
correctness and conciseness. The results showed that the GPT-4 generated summaries are
more complete and contain fewer errors compared to the human summaries.

We also want to highlight another useful application of text summarization in healthcare,
further motivating the use of language models in this domain. Another vital part of healthcare
is a patient-doctor conversation, which is followed by the physician writing structured notes
describing the patient’s health state and plan for treatment. Writing such notes is another
time-consuming work medical experts need to focus on. Authors of [8] and [17] experiment
with automating the process using language models to create structured notes.

All the related works focus on using English clinical datasets. While the difference
in language compared to our datasets is obvious, the structure of clinical notes in different
countries can also differ, making us cautious to make strong conclusions. Some of the proposed
techniques are not even possible. This includes pretraining the abstractive summarization
model on a large medical summarization corpus, before fine-tuning it on the downstream task
(generation of the hospitalization summary), as there is no available large medical text corpus
in the Czech language. Although some of the works show promising results, generally the topic
of using language models in the clinical domain has not been thoroughly researched yet.
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Chapter 4

Datasets

We were provided with two datasets from Institute for Clinical and Experimental
Medicine (IKEM). The datasets consist of thousands of samples. Each sample contains several
text paragraphs containing information about a patient’s hospitalization. The paragraphs are
extracted from an admission report and a discharge report, both concerning a single hospi-
talization.

The samples are anonymized. We are only provided with a generated patient’s ID. As
there are patients with multiple hospitalizations in the dataset, we use the IDs to prevent cross-
contamination of the training and validation set with hospitalizations of the same patients.
Dates of procedures, patient ages, and all names are also redacted.

The two datasets are from different departments: Acute Cardiology and Hepatogas-
troenterology. In Sec. 4.1, we first describe the datasets’ structure, which is identical for both.
Then, we define the summarization task we are trying to solve with the data in Sec. 4.2.
Next, in Sec. 4.3, we outline the process used to clean and preprocess the data. We finish with
analyzing the datasets and describing how they differ in Sec. 4.4, setting ground for explaining
why some methods might work better on samples from one department compared to another.

To illustrate the datasets, we show one sample from each preprocessed dataset in Ap-
pendix A.

4.1 Dataset structure

Each hospitalization sample contains two IDs and several text paragraphs:

• Hospitalization ID
Generated ID unique for each hospitalization.

• Patient ID
Generated ID of each patient. One patient might have gone through several hospital-
izations. With this ID, we can ensure we create the training, validation, and test splits
such that no two splits contain hospitalizations of the same patient.

• Current problems (Nynějšı́ onemocněnı́)
During patient admission, the patient’s history and current condition are considered, and
a report is written. Extracted from the current problems paragraph of the admission
report.

• Admission findings (Objektivnı́ nález)
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Describes results of patient examination during admission. Extracted from the admission
report.

• Admission conclusion (Závěr při přijetı́)
Conclusion paragraph from the admission report.

• Hospitalization reasons (Důvod hospitalizace)
Summary of reasons for the hospitalization. Extracted from the discharge report.

• Procedures (Operace)
Summary of interventions performed on the patient during the hospitalization. Ex-
tracted from the discharge report.

• Examinations (Vyšetřenı́)
Summary of examinations performed on the patient during the hospitalization. Ex-
tracted from the discharge report.

• Hospitalization summary (Průběh hospitalizace)
Overall summary of the hospitalization from the discharge report.

4.2 Task description

A natural way to formulate a summarization task on the dataset structure described
above is to generate the Hospitalization summary using all the other text paragraphs as
a source. The hospitalization summarization contains more concise information about the
patient’s admission, a summary of important findings, and the results of the interventions
and medical examinations. It is also the last part of the discharge report the doctor gets
to write, and it should be a reasonably concise and informative paragraph summarizing the
patient’s hospitalization, pinpointing the crucial information for ensuring good continuity of
medical care.

A more realistic task of creating the hospitalization summary would be better defined
as summarizing not only the text paragraphs provided in the dataset but also utilizing all the
text medical documentation about the patient’s hospitalization. This includes the patient’s
historical documentation, the admission report, a full report of each examination and inter-
vention carried out during the hospitalization, and all daily notes and reports. With all such
data available as the source, we could even attempt to solve the task of writing the whole
discharge report, which could still be reasonably defined as a summarization task, generating
the individual paragraphs of the report individually, possibly with the help of some retrieval
methods.

As the focus of this thesis is on an initial exploration of using NLP methods for medical
texts in the Czech language, we focus on the simplified task defined above to make the problem
more tractable, considering, for example, the limitations on the length of the input sequence
of the used language models.

4.3 Preprocessing the data

We preprocess the provided datasets in several ways to make them more fit for the
summarization task we just defined. We first create the source input by concatenating the
following paragraphs: Current problems, Admission findings, Admission conclusion, Hospi-
talization reasons, Procedures, and Examinations. Before the concatenation, each paragraph
is prepended with its name in Czech (for example, Důvody hospitalizace for Hospitaliza-
tion reasons). Due to the universal nature of the sequence-to-sequence language models, such
source input created by concatenation and the hospitalization summarization paragraph used
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as the target summary could already be used for fine-tuning a language model. There are,
however, several other ways we preprocess and clean the dataset to make it more suitable for
our experiments.

Due to the limited input sequence length some of the language models we chose to use in
our experiments can process (namely the mBart and XLM-RoBERTa), we create a subset of
the datasets by filtering out samples with source input longer than the allowed length (which
is 1024 tokens for both the models, after modifying the embedding layer of XLM-RoBERTa,
as explained later in Sec. 5.3). Filtering shorter discharge reports also approximately coin-
cides with filtering the reports of less complicated hospitalizations. Such hospitalizations are
usually planned. The patient comes for scheduled examinations or interventions, and nothing
unexpected happens during the hospital stay. The amount of interventions and examinations
is usually lower than during a more complicated hospitalization. The discharge reports of such
hospitalizations are usually shorter, and the hospitalization summary is more predictable and
less complicated. Therefore, we hypothesize that solving the task on this filtered subset should
be easier and can serve as a good stepping stone to experiment with our methods.

While the filtered dataset with shorter input sequences allows us to compare all methods
we use on the same data, we also fine-tune some models on the complete unfiltered dataset. The
performance might be worse due to the more complicated hospitalizations, but the complete
datasets are approximately double the size of the filtered ones. As the number of samples in
the filtered datasets is considerably low, and the performance of fine-tuned models generally
increases with more training samples, we want to experiment with the influence of these two
factors.

By empirically analyzing the dataset, we found that the hospitalization summary para-
graph tends to contain some sentences with information that cannot be found in the concate-
nated source. Examples include information about the discharge of the patient (e.g., Dim-
itován v kardiopulmonálně stabilńım stavu., which translates to The patient was discharged
in cardiopulmonary stabilized state), change in medication (e.g., Z medikace vysazen Myfenax
a Valcyte, navýšen Prednison., or Myfenax and Valcyte was withdrawn from the medication,
dosage of Prednison was increased. in English) or some diagnostic conclusion that is included
in neither the Examinations nor Procedures paragraph.

For most of these unsourced sentences, we should be able to find the source of in-
formation in the other text documentation concerning the hospitalization (for example, the
patient’s medical condition on the day of discharge could be found in the appropriate daily
note). However, we speculate there might be some unsourced sentences that could not be gen-
erated, even if the model had access to all the existing relevant text medical documentation.
This could happen if some of the unsourced sentences are written based on information the
doctor remembers or infers (makes a diagnostic conclusion) during the discharge report writ-
ing. Generally, if the hospitalization summary paragraph contains information that cannot
be found elsewhere, the task of automatically generating it cannot be achieved perfectly. We
want to avoid training the model to generate such unsourced sentences, as this might cause it
to hallucinate or attempt to make a diagnostic conclusion based on the available information,
which is not how we formulate the task. Instead, we want the model to extract and reformu-
late existing information, even if that means leaving the hospital summarization paragraph
incomplete, requiring further review and completion by the doctor. While it might be true
that language models could generate a valid diagnostic conclusion given sufficient context and
relevant information (some works do focus on this area of research, for example, [10]), it is
not how we formulate the task in this thesis.
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To alleviate the possible problem with hallucinations, we attempt to filter out two
categories of the unsourced sentences that we empirically found to appear often in the data.
Using a regex heuristic, we attempt to filter out sentences from the hospitalization summary in
the Acute Cardiology dataset if they contain information about the discharge of the patient or
medication modification. In the Hepatogastroenterology dataset, we decided only to filter out
the discharge sentences, as filtering out the sentences about medication modification was too
noisy, discarding valid sentences often. Further, it contained unsourced medication sentences
less often than the Acute Cardiology dataset.

Finally, we cleaned all special characters, replaced anonymized dates with shorter se-
quences to safe input sequence lengths (using DD instead of anonymized date XX.XX.XXXX),
and filtered out samples (hospitalizations) with empty Hospitalization summary paragraph,
as we considered those to be faulty, creating unnecessary noise in the training dataset.

We gather all the patients (using the Patient ID) for each dataset and split them into
train, validation, and test subsets. We then create the dataset splits by fetching all the hos-
pitalizations of the patients in the corresponding splits.

4.4 Analysing the datasets

The samples of both datasets are of the same structure, but their content differs to some
extent. Medical conditions with which patients are hospitalized are different but might overlap
in some cases. During hospitalizations, patients go through different types of examinations and
operations depending on the department. Different departments might have different stylistic
requirements and habits, such as how concise or fluent the paragraphs must be.

Particularly, we noticed that in samples from the Hepatogastroenterology dataset, sen-
tences tend to be more fluent, and they are more often being reformulated when transcribed
from the source paragraphs to the hospitalization summary. In samples of the Acute Car-
diology dataset, sentences seem to be more often copied as they are when transcribed into
the hospitalization summary, being reformulated only slightly and less often. We support this
observation by computing the Rouge score of the true summary in Table 4.1, using the source
text as the reference. We believe this might cause summarization methods to perform better

Dataset Rouge-1 Rouge-2 Rouge-L

Acute Cardiology 20.08 11.87 15.61
Hepatogastroenterology 15.17 7.63 11.38

Table 4.1: Comparsion of how extractive are summaries written by a doctor. The Rouge score
between the true hospitalization summary and the source text is computed for both datasets.

on the Acute Cardiology dataset, primarily when evaluated using the automatic text similar-
ity metrics, as the model can learn to extract spans of the source while reformulating them
only slightly.

We now briefly summarize both datasets’ sizes in terms of the number of samples and
lengths of the inputs. In table Table 4.2, we describe and compare the number of samples
(hospitalizations). The Hepatogastroenterology dataset is considerably smaller. Due to its
smaller size, we only use 500 patients for the validation and test split, leaving the remaining
patients for training, The larger Acute Cardiology dataset allows us to use more (800) patients
for validation and testing.
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Split
Acute Cardiology Hepatogastroenterology

#Patients #All #Short #Patients #All #Short

Train 11015 13026 5983 3099 5203 2543
Validation 800 952 433 500 821 428
Test 800 926 421 500 851 400

Table 4.2: Size of the datasets in terms of number of patients and hospitalization samples.
#All denotes the size of the complete dataset, while #Short denotes the size of the dataset
with long samples filtered out.

To get a better idea about the size of the individual samples, we look at some basic
statistics of the filtered Acute Cardiology dataset in Table 4.3 and the complete Acute Car-
diology dataset in Table 4.4. For this, we compute the lengths of the source and summary in

Mean Std Q1 Q2 Q3

Source
#Sentences 18.5 6.3 14 18 23
#Words 340.3 65.8 297 347 391
#Tokens 841.7 154.6 739 862 966

Summary
#Sentences 5.0 2.0 4 5 6
#Word 68.8 27.5 50 66 84
#Tokens 165.2 65.0 120 158 201

Token compression ratio 5.9 3.0 4.1 5.3 6.9

Table 4.3: Basic statistics for the filtered Acute Cardiology dataset

Mean Std Q1 Q2 Q3

Source
#Sentences 27.0 12.9 18 24 34
#Words 491.2 187.4 354 452 596
#Tokens 1205.4 450.9 882 1104 1452

Summary
#Sentences 5.9 2.7 4 5 7
#Word 86.0 38.8 59 79 106
#Tokens 206.6 93.1 141 191 255

Token compression ratio 6.7 3.2 4.5 5.9 7.6

Table 4.4: Basic statistics for the complete Acute Cardiology dataset

the context of sentences, words, and tokens (using the mT5 tokenizer).

We compute the same basic statistics for the filtered Hepatogastroenterology dataset in
Table 4.5 and the complete Hepatogastroenterology dataset in Table 4.6. Statistics of both
the Acute Cardiology and the Hepatogastroenterology datasets are comparable, considering
both the filtered and complete versions. The datasets consisting of all samples contain longer
samples than the filtered versions, but the difference is not very large. Still, we see that the
median is approximately 1000, which results in halving the size of the datasets when filtering
out samples longer than 1024 tokens.

We note that the relation between the number of words and tokens is relatively small
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Mean Std Q1 Q2 Q3

Source
#Sentences 17.6 6.0 13 17 22
#Words 326.0 63.3 283 332 376
#Tokens 828.3 157.3 723 843 954

Summary
#Sentences 3.7 1.8 3 3 5
#Word 58.5 28.6 38 52 73
#Tokens 144.3 71.6 94 129 181

Token compression ratio 7.0 3.5 4.6 6.3 8.5

Table 4.5: Basic statistics for the filtered Hepatogastroenterology dataset

Mean Std Q1 Q2 Q3

Source
#Sentences 28.1 15.7 17 24 35
#Words 489.7 225.7 332 423 583
#Tokens 1234.1 555.9 842 1071 1466

Summary
#Sentences 4.8 2.7 3 4 6
#Word 79.6 45.8 47 69 101
#Tokens 197.5 113.8 115 171 252

Token compression ratio 7.4 3.8 4.8 6.5 9.0

Table 4.6: Basic statistics for the complete Hepatogastroenterology dataset

(less than 0.5 words per token). In contrast, one token represents approximately 0.75 words
on a general-domain English corpus. First, this difference is caused by using Czech (an under-
represented language in the dataset used for pretraining), and second, by the nature of the
medical domain text we are dealing with. Some abbreviations (e.g., abbreviations for medical
conditions or drugs) are not occurring enough (if at all) in the pretraining dataset used to
train the tokenizer. Those abbreviations are therefore usually represented by tokens character
by character. This causes the limited input sequence length of the language models to be a
greater burden than if we were to use general-domain English data, which is more efficiently
represented by the tokenizer. It can also hinder the performance on the summarization task,
as the abbreviations and unknown words are not presented to the attention mechanism as a
single object, making it harder to learn the appropriate contextual relationships.

We also compute the ratio of the number of source tokens to the number of summary
tokens, showing us how ’compressive’ the model should be. This number is slightly higher for
the Hepatogastroenterology dataset.
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Chapter 5

Methodology

This chapter describes the summarization methods we use to solve the task presented in
Sec. 4.2. We discussed some requirements for the proposed methods for the task of automatic
hospitalization summary generation with IKEM. The data occurring in the hospitalization
samples are of a sensitive nature, as they contain private medical information. This makes
it desirable to use an on-premise solution to process such data, utilizing both open-source
language models and hardware owned by the facility, instead of using LLMs provided as
a service (e.g., OpenAI’s GPT or Google’s GEMINI). Solving the task on-premise is also
preferable in terms of reliability and consistency. While companies such as OpenAI and Google
can provide very reliable service (concerning speed and uptime), the LLMs they provide tend
to be updated often, possibly changing their behavior and making the consistency of a solution
utilizing them questionable. Naturally, the requirement to solve the task on-premise also brings
the question of computational demands. While the companies providing LLMs as a service
have a vast amount of computing power to run massive language models, we need to consider
the scale of the models if they should be used on-premise. For this, we compare language
models of various sizes, investigating whether a relationship exists between the model scale
and performance on the provided datasets.

We first briefly describe generative language models that we fine-tune for the abstractive
approach in Sec. 5.1. In Sec. 5.2, we explain our approach for pseudo-labeling the datasets
for extractive summarization, which is followed by a description of the supervised extractive
method in Sec. 5.3. We conclude by discussing how we implemented the methods, the data
processing, and the experiments in Sec. 5.4.

5.1 Models for abstractive summarization

To find out how well the defined task can be solved using the abstractive summarization
approach, we compare several generative sequence-to-sequence language models.

To experiment with the mBART model, we use the large version and fine-tune the
pretrained ’facebook/mbart-large-cc25’1 checkpoint. The model was pretrained with a goal
to be later fine-tuned for translation task by appending the input sequence with a token
indicating the source language (e.g., <En> for English) and prepending the target sequence
(labels) with the target language token (e.g., <De>) for translating to German. To fine-tune it
for a summarization task that transforms the source into the summary without changing the

1https://huggingface.co/facebook/mbart-large-cc25
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language, we use the same language token to append the source and prepend the summary
with. The resulting source-summary pair is Long medical text<Cs> / <Cs>Concise summary,
as both the source and summary are in Czech (with <Cs> being the language token for Czech
language).

To experiment with the mT5 model, we use three different sizes of the architecture,
t5-small2, t5-base3 and t5-large4. The pretrained model checkpoint (not fine-tuned on any
downstream tasks) is used for each model size. The mT5 model does not require any further
preprocessing to be done on our dataset (apart from tokenizing it).

To include a very large language model in our experiments, we fine-tune AYA from
the provided checkpoint ’CohereForAI/aya-101’ 5 of the pretrained and Instruction fine-tuned
model. As discussed in Sec. 2.2.6, fine-tuning the model on IFT dataset should increase the
model performance on general instruction following tasks. This motivated us to try to pre-
process the samples of our fine-tuning datasets by wrapping the source text with instruction,
as illustrated in Fig. 5.1. We compared an AYA model fine-tuned on the instruction-wrapped

Jsi lékař a ṕı̌seš propouštěćı zprávu po hospitalizaci pacienta. Tohle jsou informace o
hospitalizaci: SOURCE TEXT Napǐs odstavec ”Pr̊uběh hospitalizace” na základě těchto
informaćı. Použ́ıvej jenom uvedené informace.

Figure 5.1: AYA model input wrapped with instruction.

source as well as on the source without the instruction and concluded it does not change the
performance of the model. Due to the size of the AYA model, we had to use QLoRA (see
Sec. 2.4.2) to be able to train the model due to large GPU memory requirements.

Finally, we compare the number of parameters of the language models we experiment
with in Table 5.1.

Model #Parameters

mBart 0.7 B
mt5-small 0.3 B
mt5-base 0.6 B
mt5-large 1.2 B
AYA 12.9 B

Table 5.1: Number of parameters of the language models used for the abstractive summariza-
tion approach.

5.2 Pseudo-labeling

Extractive summarization methods choose sentences (or subsequences of the source text)
to be included in an extractive summary. The task is usually defined as a supervised one, and

2https://huggingface.co/google-t5/t5-small
3https://huggingface.co/google-t5/t5-base
4https://huggingface.co/google-t5/t5-large
5https://huggingface.co/CohereForAI/aya-101
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a labeled dataset is needed for the training. The labels should be binary, signifying which
sentences of the source text to extract. Manual annotation would be impractical and time-
consuming in the case of our datasets. To enable experimenting with extractive summarization
without human-annotated data, we experiment with several pseduo-labeling algorithms to
create the labeling automatically, utilizing the target summary, which is available. This is
quite a common approach, for example, used in [28]. We use similar methods but experiment
with more similarity metrics. Pseudo-labeling was also used in [5], but it ¡sonly explored the
use of the pairwise approach (described below).

The pseudo-labeling methods we experiment with are either pairwise or greedy. The
pairwise approach first splits the source and summary into sentences and notes, respectively.
We split the source text into sentences using SentenceSplitter6, a text-to-sentences splitter
based on a heuristic algorithm by Philipp Koehn and Josh Schroeder [42]. To split the sum-
mary text into notes, we first split it into sentences using the same approach but further split
each sentence into sub-sentences (which we call notes) when we encounter the comma charac-
ter. For each summary note, pairwise pseudo-labeling selects a source sentence most similar
according to the used similarity metric. Multiple summary notes can be paired with the same
source sentence. We parse the resulting selected source sentences as a set, ensuring there are
no duplicates. During the dataset analysis, we noticed that the sentences in summaries are
usually more dense in information, and assigning only one sentence from the source text to
a single summary sentence would lead to information loss. This motivated us to split the
summary into notes instead, as described above.

The greedy approach iteratively selects sentences of the source until an ending condition
is met or the maximal number of sentences is selected. We set the limit to ten sentences in all
our experiments, referring to Table 4.3 and Table 4.5. At each iteration, the greedy approach
considers each unselected source sentence individually as a candidate sentence to be selected.
The candidate sentence is concatenated with all previously selected source sentences (using
the respective order of the sentences in the source), and this candidate extractive summary
is compared with the target human-written summary using a similarity metric. At the end
of each iteration, we select the candidate sentence that increases the similarity the most.
Note that adding a new candidate sentence to the extractive summary can also decrease the
similarity. If no candidate sentence increasing the similarity is found, or the maximum number
of sentences in the extractive summary is reached, the iteration stops.

We use three similarity metrics jointly with the two approaches described above:

• Rouge - The metric is described in Sec. 2.5.1. We use a sum of the Rouge-1 and Rouge-2
F-scores as the similarity metric.

• BertSCORE - We use the F-score of the BertSCORE from Sec. 2.5.2
• SentenceTransformer - To compare the similarity of two sentences using the Sen-
tenceTransformer (Sec. 2.2.7), we embed both sequences using the model and use the
cosine similarity of the embeddings as the metric.

Illustrative results of both pairwise and greedy pseudo-labeling methods can be found
in Appendix A.

6https://github.com/mediacloud/sentence-splitter
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5.3 Model for extractive summarization

For the extractive summarization method, we use a similar approach to [28], where
they use an encoder-only BERT [26] model to embed the input sequence. As discussed before,
BERT is a model trained on purely English corpus, not suitable for the Czech or another
non-Enlish language. While a multilingual version, mBERT, exists, the XLM-RoBERTa, the
multilingual version of the more robustly optimized RoBERTa, achieved better results on
various downstream tasks. For this reason, we decided to use the XLM-RoBERTa encoder
model (see Sec. 2.2.3 for detail) as a base of our extractive summarization method, as was
also done in [5]. Concretely, we use the large version and load the pretrained checkpoint
’xlm-roberta-large’7.

The method first processes the tokenized source using the encoder, outputting an em-
bedding (a vector) for each token. Embeddings of tokens representing sentences of the source
sequence are then gathered and processed using a linear sigmoid classifier, outputting binary
prediction.

Before passing the source input sequence to the encoder, we need to prepare the input
to be able to obtain a representation of the individual sentences. We preprocess the source
by wrapping each sentence with a BOS (beginning of a sequence) token ⟨s⟩ and EOS (end of
sequence) token ⟨/s⟩. When the tokens of the input sequence are embedded using the encoder,
we take all the embeddings of the BOS tokens and use those as the representations of the
sentences. The process is visualized in Fig. 5.2. All the E⟨s⟩ embeddings are gathered and

Source

This is sentence 1. This is sentence 2.

Preprocessed source

⟨s⟩This is sentence 1.⟨/s⟩⟨s⟩ This is sentence 2.⟨/s⟩

Tokens

T⟨s⟩, TThis, Tis, Tsentence, T1, T⟨/s⟩, T⟨s⟩, TThis, Tis, Tsentence, T2, T⟨/s⟩

Tokens embeddings

E⟨s⟩, EThis, Eis, Esentence, E1, E⟨/s⟩, E⟨s⟩, EThis, Eis, Esentence, E2, E⟨/s⟩

Figure 5.2: Visualization of the input sequence processing by the extractive method.

processed with the linear classifier:

ŷ = σ(WE⟨s⟩ + b), (5.1)

where σ is a sigmoid function and W , b are learnable parameters. The loss is computed as a
binary cross entropy against the target pseudo-label y.

7https://huggingface.co/FacebookAI/xlm-roberta-large
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During inference, both [28] and [5] score the input sequences using the linear classifier.
They then choose the top k sentences with the highest score. This is unsuitable for our
datasets, as choosing the right k is problematic. While the final summaries usually have 4-6
sentences, the crucial information might be scattered throughout several more or fewer source
sentences, making this inference setting impractical. Instead, we used the final linear layer
as the classifier it was trained to be. During inference, we compute the score for each source
sentence. If it is higher than 0.5, we include it in the extractive summary.

The XLM-RoBERTa encoder model has a limited input sequence length of 512 tokens.
This limitation is caused by the fixed size of the positional embedding layer. As our datasets
with short samples contain samples with up to 1024 tokens, we need to modify the encoder to
be able to process them. To allow for longer inputs, we concatenate two copies of the original
learned positional embedding layer, creating new positional embedding that allows the encoder
to process sequences of double the length. As the source text in our datasets is structured
into individual paragraphs, we believe the positional embeddings over large distances are not
too important. Only the local positional relationships need to be encoded correctly. Also, this
new positional embedding layer is further trained during the fine-tuning process, which should
help it accommodate to the changed setting.

We researched other multilingual encoder-only models that could be used in similar
settings to train an extractive summarization method. As the research is now mainly focused
on training large decoder-only models, which do not easily allow to get embeddings of the input
tokens, the XLM-RoBERTa remains the best-performing option. Since doubling the positional
embedding layer, an undocumented and not researched modification, is not an ideal solution
to the limited input sequence length, we see this limitation as one of the drawbacks in pursuing
extractive summarization for the automatic discharge report generation task. While we can
experiment with it on the filtered datasets we created, we ought to use more source data to
generate the hosptilazition summary to solve the task more thoroughly, which means longer
input sentences, rendering the extractive approach unpractical.

5.4 Implementation

We use the Transformers library8 to implement all our experiments. It provides im-
plementations of all the SOTA language models, together with distributing their pretrained
parameters. This allows us to experiment with multiple models using the same data loading
and training procedures. The library is implemented in Python and allows several machine
learning libraries (PyTorch, TensorFlow, and JAX) to be used interchangeably as the ’back-
end’. We use the PyTorch 9 version.

Data preprocessing was mainly implemented using Python and its built-in libraries
(regex, string processing). The Datasets10 library was used to work with the preprocessed
data. It also allows efficient storage of tokenized versions of the datasets, which speeds up the
training process by removing the need to tokenize the text sequences during each iteration.

To compute the SentenceTransformer embeddings and BERTScore and AlignScore met-
rics, we used the respective implementations11 12 13. We adapted the implementation of the

8https://github.com/huggingface/transformers
9https://pytorch.org/

10https://github.com/huggingface/datasets
11https://github.com/UKPLab/sentence-transformers/tree/master
12https://github.com/Tiiiger/bert score
13https://github.com/yuh-zha/AlignScore
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Rouge-raw score computation from the code provided with the SumeCzech dataset14.

All experiments were tracked using Weights & Biases 15 service, allowing us to monitor
the training and compare various runs during hyperparameter tuning.

As training the models is a resource-heavy process, we utilized the RCI16 cluster, to
which we were provided access by the supervisor. We used the computational nodes with
NVIDIA A100 GPUs, providing 40GB of GPU memory each. To allow training large mod-
els such as AYA, we used QLoRA implemented by its authors [3] in following the GitHub
repository17, accessible trough HuggingFace’s PEFT library18.

14https://ufal.mff.cuni.cz/sumeczech
15https://wandb.ai
16https://rci.cvut.cz/
17https://github.com/artidoro/qlora
18https://github.com/huggingface/peft
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Chapter 6

Results

In this chapter, we describe various experiments we conducted to evaluate the proposed
methods. In Sec. 6.1, we first compare the pseudo-labeling approaches. Then, we train the
extractive summarization method on both the filtered datasets and evaluate it. To compare
the abstractive summmarization methods, we conduct several experiments in Sec. 6.2. First,
we fine-tune all the abstractive summarization models on the filtered datasets. To see how the
performance changes if we use the complete dataset, we fine-tune a subset of the methods that
can process longer input sequences. We compare all the fine-tuned models using automatic
evaluation metrics from Sec. 2.5. Finally, in Sec. 6.3, we conduct a manual evaluation to see
how reliably the automatic metrics can asses the model performance on the presented task.

In Appendix B, we also show examples of the summaries generated by an abstractive
model concerning the manual evaluation.

6.1 Extractive summarization

In this section, we experiment with our extractive summarization method. We first
evaluate the pseudo-labeling approaches proposed in Sec. 5.2. Then, we experiment with the
extractive method itself, as introduced in Sec. 5.3, trained using annotations from the selected
pseudo-labeling approach.

For the extractive model, we first evaluate the classifier in terms of Precision, Recall and
F -score. The classifier outputs a binary label for each source text sentence, indicating whether
or not the sentence should be extracted as part of the extractive summary. We compare this
output to the ground truth labels from the corresponding pseudo-labeling algorithm and
compute:

Precision =
#Correctly extracted sentences

#Sentences extracted by model
, (6.1)

Recall =
#Correctly extracted sentences

#Sentences extracted by pseudo-labeling
, (6.2)

F -score = 2
Precision · Recall
Precision + Recall

. (6.3)

As with the text similarity metrics, we multiply the classifier metrics by 100 for better read-
ability.

Next, we concatenate the extracted sentences to create an extractive summary, which
we compare to the corresponding target summary and compute the text similarity metrics
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Rouge and BERTScore. We report those for both the model and the used pseudo-labeling
approach, denoted as Model and Oracle in the table, respectively. The oracle’s performance
also serves as an upper limit on the performance of the model.

We first tested several hyperparameter settings for all the extractive models we exper-
imented with and evaluated them on the validation dataset split. We chose the model that
achieved the highest recall. Generally, the model that achieved better recall also achieved bet-
ter precision (and F -score in turn) than a worse model, up to negligible difference. Also, we
argue recall is the better metric to optimize, as it is intuitively better to include more of the
relevant details in the extractive summary, even if we include some sentences that might not
be relevant. We used the held-out test dataset split to evaluate the best model and compute
the metrics we then report.

6.1.1 Pseudo-labeling

To evaluate the pseudo-labeling approaches utilizing different similarity metrics, we
create an extractive summary by extracting the pseudo-labeled sentences. We then compare
these extractive summaries with the corresponding human-written summaries. We report
the results in Table 6.1 (Acute Cardiology dataset) and Table 6.2 (Hepatogastroenterology
dataset). The results are computed using the validation dataset split.

Method Rouge-1 Rouge-2 Rouge-L BERTScore

Pairwise
Rouge 47.55 33.10 40.16 77.89
BERTScore 48.24 34.98 41.93 78.91
SentenceTransformer 45.28 31.86 38.90 77.63

Greedy
Rouge 36.61 27.99 32.64 57.29
BERTScore 51.46 41.12 47.62 81.25
SentenceTransformer 45.79 31.94 38.94 77.47

Table 6.1: Comparison of extractive summary created by pseudo-labeling with human-written
summaries on the Acute Cardiology dataset (validation split).

Method Rouge-1 Rouge-2 Rouge-L BERTScore

Pairwise
Rouge 39.99 23.99 33.04 75.62
BERTScore 39.49 24.34 33.36 76.51
SentenceTransformer 37.93 22.76 31.65 75.61

Greedy
Rouge 31.10 20.00 26.28 55.90
BERTScore 41.93 28.08 37.18 78.74
SentenceTransformer 37.95 22.72 31.30 75.22

Table 6.2: Comparison of extractive summary created by pseudo-labeling with human-written
summaries on the Hepatogastroenterology dataset (validation split).

Generally, we can see that the Acute Cardiology dataset seems to be more extractive
than the Hepatogastroenterology dataset. We believe this might be caused by the differences
in fluency and amount of stylistic rewriting between the datasets, as described in Sec. 4.4.
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Considering the automatic evaluation metrics, BERTScore seems to outperform the
other two similarity metrics. However, for the pairwise approach, the performance of the
different similarity metrics does not differ too significantly.

We also manually compared the results of the pseudo-labeling approaches side by side on
multiple samples. We concluded that while the greedy approach using BERTScore performs
best on the automatic evaluation, it tends not to include sentences that contain some cru-
cial information for generating the summary. Such sentences, while containing an important
atomic piece of information, might contain a lot of other subsequences with different atomic
information that are not included in the summary. The similarity metric then tends not to
select it. To illustrate this, let us consider Fig. 6.1. While the sentence from the source text

Sentence from the source text

Neńı volná tekutina v pekrikardu, jen lem tuku kolem PKS z parasternálńıch a hro-
tových projekćı, max. 3-5 mm.

Corresponding note in Hospitalization summary

Vyloučen perikard. výpotek.

Figure 6.1: Illustration of a problem with the greedy pseudo-labeling approach.

contains information (Nenı́ volná tekutina v pekrikardu) that is important to generate the
corresponding summary note, it also contains other information, which causes the similarity
during greedy sentence selection to be too low to extract this sentence. A naive solution might
be to also split the source sentences into notes, as we do with summaries. That did, however,
discard too much of the context information and achieved sub-optimal results during our
initial exploration of these methods.

While the pairwise methods improve this, they create extractive summaries that include
redundant information. Both discussed problems are inherent to the nature of the extractive
summarization approach.

Based on the results in Table 6.1 and Table 6.2, we decided to use the pseudo-labels
from the pairwise and greedy approach utilizing BERTScore as the similarity metric in the
following experiments.

6.1.2 Acute Cardiology dataset

We trained two models on the filtered version of the Acute Cardiology dataset. One
was fine-tuned on labels generated by the pairwise pseudo-labeling approach, and the other
on the labels generated by the greedy pseudo-labeling approach.

Both models were trained using the Adam optimizer [36]. We used 500 warmup steps
with a maximum learning rate of 3e-5 and a linear decay schedule afterward. A 0.2 dropout
was applied to the input of the linear classifier layer during training. The model trained on
the pairwise pseudo-labels was optimized using batch size 8, whereas the model trained on
the greedy pseudo-labels used batch size 16. We trained both models for 10 epochs, evaluating
every 200 epochs and saving the best checkpoint according to the validation loss.
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We report the classifier performance in Table 6.3 and the resulting extractive summary
evaluation in Table 6.4. According to both Rouge and BERTScore, both models perform sim-

Model Precision Recall F -score

Pairwise 66.76 57.28 62.08
Greedy 73.06 36.46 48.64

Table 6.3: Evaluation of the extractive methods on the filtered Acute Cardiology dataset. We
report the classifier metrics, precision, recall, and F -score, all computed on the test dataset
split.

Pseudo-labeling Method Rouge-1 Rouge-2 Rouge-L BERTScore

Pairwise
Oracle 48.24 34.98 41.93 78.91
Model 44.31 32.27 39.50 77.27

Greedy
Oracle 51.46 41.12 47.62 81.25
Model 42.85 35.10 41.01 75.83

Table 6.4: Evaluation of the extractive methods on the filtered Acute Cardiology dataset.
We report the text similarity metrics, Rouge and BERTSCore, computed on the test dataset
split. The metrics are computed for the oracle (the summary created by using the labels from
pseudo-labeling directly) and the summary generated by the trained model.

ilarly. As expected, they do not exceed the oracles’ performance. By evaluating the classifier,
however, we see the model trained using pairwise pseudo-labels performs better according to
the F -score. The recall of the model trained on the greedy pseudo-labels is lacking compared
to the model trained with pseudo-labels from the pairwise approach. This indicates it usually
selects only a few easiest sentences, probably the ones describing the reason for the patient’s
admission, which are almost always present in the hospitalization summary paragraph.

6.1.3 Hepatogastroenterology dataset

Again, we trained two extractive models on the Hepatogastroenterology datasets using
only the filtered version with short samples. Both models were trained with the same hy-
perparameter settings, using the Adam optimizer with a maximum learning rate of 3e-5 and
batch size 4. The warmup was set to 500 steps with linear learning rate decay afterward. The
models were trained for 10 epochs, stopping each 200 optimization steps to evaluate and save
the best checkpoint according to the loss on the validation dataset split.

Results of the extractive methods trained on the Hepatogastroenterology dataset are
reported in Table 6.5 and Table 6.6.
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Model Precision Recall F -score

Pairwise BertSCORE 61.42 48.05 53.92
Greedy BertSCORE 60.15 44.03 50.84

Table 6.5: Evaluation of the extractive methods on the filtered Hepatogastroenterology
dataset. We report the classifier metrics, precision, recall, and F -score, all computed on the
test dataset split.

Pseudo-labeling Method Rouge-1 Rouge-2 Rouge-L BERTScore

Pairwise
Oracle 39.49 24.34 33.36 76.51
Model 33.31 20.03 28.74 73.73

Greedy
Oracle 41.93 28.08 37.18 78.74
Model 32.06 20.08 28.91 72.03

Table 6.6: Evaluation of the extractive methods on the filtered Hepatogastroenterology
dataset. We report the text similarity metrics, Rouge and BERTSCore, computed on the
test dataset split. The metrics are computed for the oracle (the summary created by using
the labels from pseudo-labeling directly) and the summary generated by the trained model.

Considering the text similarity metrics, the situation is similar to the results on the
Acute Cardiology dataset. Both models perform similarly, not exceeding the oracles’ perfor-
mances. The models perform worse on the Hepatogastroenterology dataset compared to the
performance on the Acute Cardiology dataset. Interestingly, evaluating the classifier, it is con-
sistently better according to all the metrics when using the labels generated by the pairwise
pseudo-labeling approach. The performance gap between the pseudo-labeling approaches used
is, however, quite narrow.

6.1.4 Conclusion

While the models seem to predict part of the extractive summary correctly, the results
(especially compared to abstractive approaches that follow) are not very promising. The train-
ing and evaluation are further complicated due to the imperfect process of automatic label
generation through the proposed pseudo-labeling approaches. Correctly splitting the source
and summary into well-defined subsequences is also problematic, and the text similarity met-
rics are not fine-tuned to the medical-domain data we use.

Due to the unpromising results and the discussed complications with the extractive
method and pseudo-labeling, we decided, upon discussion with the supervisor, not to explore
the extractive approach further in favor of the abstractive summarization.

6.2 Abstractive summarization

In this section, we evaluate and compare the abstractive summarization methods de-
scribed in Sec. 5.1. First, we fine-tune the models using the filtered versions of the datasets.
This makes it possible to compare all the methods proposed in this thesis, together with
the extractive ones as well. Next, we fine-tune two sizes of the mT5 model on the complete
versions of the datasets to explore how the performance changes.
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For all models, we first experimented with several hyperparameter settings. For each
model, we chose the setting with which the model performed best on the validation dataset
split. We measured the performance using the automatic text similarity metrics (Rouge and
BERTScore). The ranking of the models was consistent across all the metrics. It did therefore
not happen, that one model was better than other considering one metric, but worse consid-
ering another metric. This consistency is also apparent in the results reported in the tables
below.

Apart from choosing optimal hyperparameters for the training, abstractive summariza-
tion (as a language generation task) performance is also influenced by the inference settings
(see section Sec. 2.3). We experimented with several settings for the inference. Using beam
search was shown to have the highest impact on the performance of the trained models. On
the contrary, using sampling (without beam search) decreased the performance. When com-
bining the beam search with sampling, the performance was also lower compared to using
beam search only. By modifying the temperature, top-k sampling, or top-p sampling so that
the sampling probability was sharper (originally, the most probable output tokens were even
more likely to be sampled), we were able to match the performance of the beam search alone.
We argue this is expected due to the nature of the data. The structure of the hospitalization
summary is predictable and similar for each hospitalization. Based on these findings, we use
beam search with five beams in all our experiments below without sampling, always choosing
the most probable output token.

During the training of every model, we frequently evaluate it on the validation dataset
split, saving the best-performing checkpoint according to the validation loss.

6.2.1 Filtered dataset

In this section, we report the performance of the abstractive summarization methods
on the filtered versions of both the Acute Cardiology and Hepatogastroenterology datasets.

We used the following hyperparameter settings for the models trained on the Acute
Cardiology dataset. All the models were optimized using the Adam optimizer [36] and trained
for 20 epochs (apart from AYA). The learning rate decayed linearly after warmup steps (if
there were any). The mBART model was trained with learning rate 3e-5 with batch size 4
and 2000 steps of warmup. Both mT5-small and mT5-base were trained using learning rate
1e-3 (as recommended by the paper that introduced it) and no warmup. The mT5-small was
optimized using batches of 16 samples, while the mT5-base used batches of 64 samples. To
train the mT5-large model, we used a lower learning rate 3e-4 and optimized the model using
batches of 4 samples, with no warmup. Finally, the AYA model was trained for 10 epochs only
(as it converged early and took over 10 hours to train), with a learning rate 1e-3, batches of 4
samples, no warmup. We used LoRA rank 4 and dropout 0.05 during the QLoRA fine-tuning.

We report the results of the abstractive summarization methods achieved on the filtered
Acute Cardiology dataset in Table 6.7. The performance was measured on the held-out test
dataset split, which was used neither during training nor hyperparameters tuning.

The mT5-base model performed best according to all the automatic similarity metrics.
Considering BERTScore, the margin is relatively small. We also note that mT5-base performs
best according to the factuality metric AlignScore-CS. Overall, all the models perform simi-
larly, apart from mBART, whose performance is noticeably worse. We also note that all the
abstractive models score higher than the extractive models on the corresponding dataset (see
also Table 6.4). The results show, according to all the mT5 models, that the performance is
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Model Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore-CS

extractive 44.31 32.27 39.50 77.27 —
mBART 49.63 36.95 46.31 79.76 65.03
mT5-small 53.21 40.90 50.24 81.20 66.47
mT5-base 54.13 41.95 51.10 81.48 68.50
mT5-large 52.72 40.36 49.67 80.87 67.61
AYA 53.23 40.62 49.86 81.16 67.47

Table 6.7: Evaluation of abstractive models trained on the filtered Acute Cardiology dataset.
We report text similarity metrics Rouge and BERTScore and factuality metric AlignScore-CS.
The models were evaluated on the filtered test dataset split. We also provide the results of
the extractive method trained on the pairwise pseudo-labels for reference.

not influenced by the scale of the model. The AYA model also performed similarly, showing
no effect of increased performance by using the Instruction Fine-Tuning.

For the models fine-tuned on the Hepatogastroenterology dataset, we used the following
hyperparameter settings. All the models were trained for 20 epochs again (apart from AYA).
The models were optimized using the Adam optimizer with a linearly decayed learning rate
after an optional warmup. The mBART model was trained with the same setting as on the
Acute Cardiology dataset, using learning rate 3e-5, batch size 4, and warmup of 2000 steps.
Both mT5-small and mT5-base models were trained with learning rate 3e-4, batch size 8, and
no warmup. The mT5-large mode was trained using learning rate 3e-5, batch size 8 and 1000
steps of warmup. To fine-tune the AYA model, we used learning rate 1e-3 with batch size
4. We trained the model for 10 epochs with no warmup steps, using the same LoRA setting
during QLoRA fine-tuning as before.

The performance of models fine-tuned on the filtered Hepatogastroenterology dataset is
reported in Table 6.8. We report the performance achieved on the held-out test dataset split.

Model Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore-CS

extractive 33.31 20.03 28.74 73.73 —
mBART 38.67 22.31 34.38 76.63 53.33
mT5-small 44.78 28.78 40.96 79.06 55.05
mT5-base 44.40 28.39 40.66 78.90 57.92
mT5-large 44.96 29.04 41.31 79.26 60.88
AYA 43.95 27.64 39.64 78.82 59.09

Table 6.8: Evaluation of abstractive models trained on the filtered Hepatogastroenterology
dataset. We report text similarity metrics Rouge and BERTScore and factuality metric
AlignScore-CS. The models were evaluated on the filtered test dataset split. We also pro-
vide the results of the extractive method trained on the pairwise pseudo-labels for reference.

The relative performance is similar to the performance of the models on the Acute
Cardiology dataset, apart from the models achieving generally worse results. The mBART
model is again outperformed by all the other models. The mT5 family of models seems to
perform best on the data, but it is hard to decide which size is the best. The mT5-large model
achieves the best text similarity results with a small margin (mT5-small being close behind).
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It is also the best model according to the factuality metric AlignScore-CS. As before, all the
abstractive models perform better than the extractive ones (see also Table 6.6).

Conclusion

We fine-tuned and compared all the abstractive models on the filtered versions of
the datasets. The abstractive methods performed better than the extractive ones. On both
datasets, mBART was outperformed by the other models. The performance of the mT5 mod-
els and the AYA model are very similar. We believe this might be caused by imperfections
of the dataset, mainly the occurrence of the unsourced sentences discussed in Sec. 4.3. Our
hypothesis is the model learns to generate the summary by extracting the information from
the source text, that is usually present in the target summary. The model is, however, not
able to generate a better summary that would be more similar to the target summary, as the
needed information is not present in the source. This creates a performance boundary that the
model cannot exceed even if we use larger models that tend to perform better than smaller
ones on most benchmarks. We also note that the filtered datasets contain quite small amounts
of samples, which might also make it hard for the model to learn to properly generalize. We
explore the performance of the trained models in more detail during the manual evaluation
in Sec. 6.3.

6.2.2 Complete dataset

We discussed in Sec. 4.3 that by filtering out the samples with long source input se-
quences, we are approximately filtering out more complicated hospitalizations. We hypothe-
sized that it should therefore be easier (the models should perform better) to solve the task of
automatically generating the hospitalization summary. To experiment with this, we trained
abstractive summarization models on the complete datasets containing all the samples. While
the complete datasets contain some more complicated cases, the overall dataset size (in terms
of samples) is approximately double the size, which might also affect the performance, as
using more training samples traditionally correlates with better performance.

As the complete datasets contain samples with longer inputs (up to 3000 mT5-base
tokens), we were only able to fine-tune mT5-small and mT5-base models. The mT5-large and
AYA required too much memory, causing the training process to fail. The mBART model is
only able to process input sequences shorter than 1024 tokens and could not be used for the
complete dataset.

Both models trained on the Acute Cardiology dataset were optimized using the Adam
optimizer with learning rate 1e-3 with linear decay and no warmup. The mT5-small model
was trained for 20 epochs with batch size 16. The mT5-base model was trained only for 10
epochs with batch size 32.

We report the models’ performance on the complete Acute Cardiology dataset in Ta-
ble 6.9. Both models achieve similar performance. According to the Rouge metrics, the models
perform worse compared to when they were trained and evaluated on the filtered version of
the dataset (see Table 6.7). This confirms that the longer (possibly more complicated) samples
make it harder for the model to solve the task. On the other hand, the model-based metrics,
BERTScore and AlignScore-CS do not indicate a strong performance decrease.

We further evaluate the models trained on the complete version of the Acute Cardiology
dataset using the filtered version of the dataset in Table 6.10. The results show a performance
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Model Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore-CS

mT5-small 51.23 38.90 47.74 80.41 68.83
mT5-base 51.49 39.12 47.84 80.52 67.90

Table 6.9: Evaluation of abstractive models trained on the complete Acute Cardiology dataset.
The models were evaluated on the complete test dataset split. We report text similarity
metrics Rouge and BERTScore and factuality metric AlignScore-CS.

Training data Model Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore-CS

Complete
mT5-small 55.25 43.05 52.28 81.93 69.70
mT5-base 55.52 43.43 52.55 81.95 67.98

Filtered
mT5-small 53.21 40.90 50.24 81.20 66.47
mT5-base 54.13 41.95 51.10 81.48 68.50

Table 6.10: Comparison of abstractive models trained on the filtered and complete Acute
Cardiology dataset. The models were evaluated on the filtered test dataset split. We report
text similarity metrics Rouge and BERTScore and factuality metric AlignScore-CS.

increase over the models trained solely on the filtered dataset (see Table 6.7). This supports our
hypothesis that the dataset consisting of more samples could increase the models’ performance.

On the complete Hepatogastroenterology dataset, we fine-tuned both models using the
Adam optimizer for 20 epochs and linearly decayed learning rate without warmup steps.
The mT5-small model was trained with learning rate 1e-3 and batches of 16 samples. The
mT5-base model was trained using learning rate 3e-4 and batch size 32.

We evaluated the models on the complete test split of the full Hepatogastroenterol-
ogy dataset, and we report the results in Table 6.11. The performance is significantly worse

Model Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore-CS

mT5-small 38.16 23.45 34.25 76.44 54.11
mT5-base 39.05 24.12 34.97 76.80 58.53

Table 6.11: Evaluation of abstractive models trained on the complete Hepatogastroenterology
dataset. The models were evaluated on the complete test dataset split. We report text
similarity metrics Rouge and BERTScore and factuality metric AlignScore-CS.

compared to the models trained and evaluated on the filtered version of the dataset (see Ta-
ble 6.8), again confirming that the samples with longer source text are more complicated for
the model.

We again evaluated the models trained on the complete Hepatogastroenterology dataset
on its filtered version and report the results in Table 6.12. While the performance margin is
lower, we see the same pattern as with the Acute Cardiology dataset. The model trained on
the complete data outperforms the model trained on the filtered datasets when we compare
them both on the filtered dataset test split. The mT5-large model trained on the filtered
version of the datasets, however, still outperforms both the models trained on the complete
dataset according to the factuality metric AlignScore-CS
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Training data Model Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore-CS

Complete
mT5-small 44.33 28.43 40.66 79.06 54.21
mT5-base 45.48 29.52 41.71 79.51 58.18

Filtered
mT5-small 44.78 28.78 40.96 79.06 55.05
mT5-base 44.40 28.39 40.66 78.90 57.92
mT5-large 44.96 29.04 41.31 79.26 60.88

Table 6.12: Comparison of abstractive models trained on the filtered and complete Hepato-
gastroenterology dataset. The models were evaluated on the filtered test dataset split. We
report text similarity metrics Rouge and BERTScore and factuality metric AlignScore-CS.

Conclusion

On both datasets, we confirmed the performance decreased when using the complete
dataset. By evaluating the models trained using the completed dataset also on the filtered
versions, we found out it performs better compared to the models trained only on the filtered
data. We came to the conclusion this is caused by more samples being present in the complete
datasets, even though some of the samples might be more challenging.

6.3 Manual evaluation

Until now, we have relied on automatic text evaluation metrics. The metrics were shown
to correlate with human judgment to some extent. However, our datasets are specific due to
medical domain text, frequent use of abbreviations, and being in Czech. These factors might
cause the automatic evaluations to be imprecise. To make a step toward a more thorough
analysis of the model’s performance, we evaluate some of the models by means of manual
annotation of the predicted summaries. We are interested in two metrics we want to measure
through the manual evaluation. First, we want to measure how factual and faithful the gen-
erated summaries are. And, second, we assess the general quality of the generated summaries
related to how we defined the task.

Measuring factuality and faithfulness (we use these terms as defined in Sec. 2.1) is
quite straightforward. We compare the generated summary with the source text and the true
summary. We annotate the generated summary as follows:

• Faithful, if all the information contained in the generated summary can also be found
in the source text. In other words, if the generated summary is factually consistent with
the source text and there are no hallucinations.

• Factual, if all the information contained in the generated summary can be found in the
source text or in the true summary. Using this label, we want to distinguish situations
in which a model generates information that can not be found in the source text (it is
unsourced) but is actually factual according to the true summary written by the doctor.
The summarization models often tend to generate a sentence stating that a particular
procedure or surgery was carried out without complication. While this information is
not to be found in the source text as is, there is also the absence of any information
about the procedure being problematic. In such cases, we believe the model is factual,
even though we say it is hallucinating.

• Unfactual, if some information contained in the generated summary is not factually
consistent with the source text or the true summary written by the doctor.
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Measuring the overall quality of the generated summary is more complicated. A medical
expert might be able to quickly decide whether the generated summary is sufficient or not.
We have no means to gather medical experts’ evaluations of the generated summaries at the
moment, so we decided to manually evaluate the summaries ourselves. To make the manual
evaluation more rigorous and as unbiased as possible, we define rules for how we evaluate the
generated summaries. We need to incorporate the fact that our training data contains some
unsourced sentences in the target summaries into our evaluation rules, making the evaluation
more intricate. To evaluate a sample, we compare the generated summary, the true summary
written by a doctor, and the source text. We choose one of the following labels:

• Bad, if the generated summary contains only the reason for admission or contains
almost no information compared to the true summary. The reason for admission is
either the first sentence of the Current problems or Hospitalization reasons paragraphs.
The sentence is usually copied to the summary as it is, and it is therefore very easy
for the model to predict this part of the hospitalization summary, and we see that as
insufficient completion of the defined task.

• Sufficient, if the generated summary includes the correct hospitalization reason (ac-
cording to the true summary). It also needs to include some of the other information
contained in the true summary written by the doctor. It might not include all the infor-
mation, either due to the model not performing well or some of the information being
unsourced.

• Good, if the generated summary includes all the information contained in the true
summary written by a doctor, which can be sourced in the source text. This means the
generated summary might not contain the unsourced sentences from the true summary.
We do this to evaluate how well the model can extract all the relevant information,
irrespective of how sourced or not the sentences of the true summary actually are.

• Perfect, if the generated summary includes all the information in the true summary
written by a doctor. The amount of such samples is influenced not only by the model
performance but also by how often true summaries contain unsourced sentences.

We evaluated two models on the Acute Cardiology dataset. The first evaluated model
is the best-performing model trained on the filtered version of the dataset, the mT5-base. We
also evaluated the mT5-base model trained on the complete dataset. We chose to evaluate
this model, as it performed better than the first model trained only on the filtered version
(see Table 6.10) and to continue the comparison of the models from Sec. 6.2.2. Both models
were evaluated on the test split of the filtered dataset.

To evaluate each model, we randomly chose 50 samples of the filtered Acute Cardiology
dataset. We evaluated the generated summaries in terms of general quality and factuality,
assigning the labels described above. The results are reported in Table 6.13 and Table 6.14.
In both tables, we report how many of the 50 random samples were assigned various quality or
factuality labels. We further evaluate samples of each label using the automatic text similarity
and factuality metrics and report those in the tables as well.

We used the same process to manually evaluate the mT5-large model (best-performing)
trained on the filtered Hepatogastroenterology dataset and we report the results in Table 6.15.
We chose to evaluate only this model on the Hepatogastroenterology dataset, as the other
models (even if trained on the complete version of the dataset) performed similarly.

We can infer various findings from the results. We first want to comment on the perfor-
mance of the models according to the manually assigned labels. We claim that the performance
of both models evaluated on the Acute Cardiology dataset is similar (see Table 6.13 and Ta-
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Category Count Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore

Perfect 22%(11) 72.28 63.16 72.28 88.42 61.56
Good 22%(11) 56.68 43.37 53.76 83.12 66.19
Sufficient 40%(20) 49.41 37.82 46.38 79.69 68.49
Bad 16%(8) 37.02 21.98 32.70 75.98 61.90

Faithful 64%(32) 55.70 43.95 52.78 82.36 69.03
Factual 20%(10) 53.61 38.62 50.37 81.20 53.50
Unfactual 16%(8) 49.83 38.89 47.85 80.15 65.78

Table 6.13: Manual evaluation of mT5-base abstractive summarization model trained on the
filtered Acute Cardiology dataset. Randomly selected 50 samples from the filtered test
dataset split were manually assigned labels based on the quality and factuality of the generated
summary.

Category Count Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore

Perfect 6%(3) 68.66 56.59 66.79 86.89 66.02
Good 38%(19) 58.43 46.19 56.10 82.80 63.03
Sufficient 40%(20) 58.43 45.16 54.73 83.33 70.99
Bad 16%(8) 46.17 35.11 42.88 77.01 77.79

Faithful 68%(34) 56.07 44.00 52.98 81.79 73.73
Factual 26%(13) 61.15 47.54 58.08 83.96 61.72
Unfactual 6%(3) 50.95 39.14 49.27 81.46 42.88

Table 6.14: Manual evaluation of mT5-base abstractive summarization model trained on the
complete Acute Cardiology dataset. Randomly selected 50 samples from the filtered test
dataset split were manually assigned labels based on the quality and factuality of the generated
summary.

ble 6.14), according to the distribution of the quality labels. The only notable difference is
the distribution of Perfect and Good samples. Both perfect and good generated summaries
contained all the important information that could be inferable from the source text. This
means that both labels say the model solved the defined task correctly. The perfect generated
summaries are better, as they contain all the information the true summary does. Such cases
are, however, limited to the samples where the source text contains all the needed information,
which means the distribution of good and perfect generated summaries is to some extent more
affected by the dataset properties and by only sampling 50 samples to evaluate, and not by
the model performance. We note that only 16% of the evaluated samples were assigned the
quality label Bad. Those were summaries that we evaluated to not contain any useful part
of the hospitalization summary. The rest (84%) generated summaries did solve the task at
least partially, according to the task definition and our evaluation scheme described above.
According to the factuality labels, only 16% (and only 6% for the second model evaluated on
the Acute Cardiology dataset) of the generated summaries contained unfactual information.
Over 60% samples were hallucination-free (assigned the Faithful label), utilizing strictly only
information contained in the source text.

The model trained and evaluated on the Hepatogastroenterology dataset performed
worse according to the manually assigned labels (see Table 6.15). While the total amount of
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Category Count Rouge-1 Rouge-2 Rouge-L BERTScore AlignScore

Perfect 8%(4) 70.44 52.64 67.51 88.84 52.92
Good 36%(18) 53.06 36.76 50.42 82.32 60.64
Sufficient 30%(15) 47.07 30.78 43.74 79.69 59.21
Bad 23%(13) 46.36 32.67 43.62 79.64 59.70

Faithful 46%(23) 54.77 30.83 52.86 82.51 59.94
Factual 36%(18) 52.19 33.46 48.75 82.50 60.67
Unfactual 18%(9) 38.47 24.14 34.15 76.10 55.20

Table 6.15: Manual evaluation of mT5-base abstractive summarization model trained on the
filtered Hepatogastroenterology dataset. Randomly selected 50 samples from the filtered
test dataset split were manually assigned labels based on the quality and factuality of the
generated summary.

perfect and good generated summaries (44%) is the same as above when evaluating the Acute
Cardiology models, the model generates more summaries that we evaluate as bad (not solv-
ing the defined task at all). Factuality-wise, the model hallucinates more, with only 46% of
the generated summaries being Faithful. During the manual evaluation, we noticed the true
summaries contained some unsourced information more often than in the Acute Cardiology
dataset, which could explain why the model trained on the Hepatogastroenterology dataset
hallucinates more. This observation is supported by the fact that while manually evaluating
the generated summaries on the Hepatogastroenterology dataset, more samples were labeled
as Factual (containing factual, although hallucinated information) or Unfactual than in the
case of Acute Cardiology dataset. The worse performance of the model on the Hepatogas-
troenterology dataset is consistent with evaluation using the automatic text similarity and
factuality metrics (see Sec. 6.2).

Using the manually evaluated samples, we also want to discuss how the assigned quality
and factuality labels correlate with the corresponding automatic metrics. Considering both
Rouge and BERTScore, the values are generally higher for samples assigned better quality
labels (with Perfect being the best) across both datasets. There are some irregularities be-
tween Good and Sufficient labels in Table 6.14 and Sufficient and Bad labels in Table 6.15,
which show the metrics are not perfect for evaluating the task. While not perfect, the auto-
matic metrics prove to be a useful proxy for evaluating the models through this analysis. Our
conclusion is that the automatic metrics can be used to evaluate our task, even though it deals
with domain-specific Czech text data, but should be used together with manual evaluation to
assess the performance more thoroughly, also considering the training data imperfections and
limitations.

For the factuality label, we are mainly interested in the relationship with the values
of AlignScore-CS. On the Acute Cardiology dataset, the Faithful samples achieve a higher
AlignScore-CS score than Factual and Unfactual samples, which is expected, as those contain
information not contained in the source text. However, focusing on Table 6.13, we see the
difference between AlignScore-CS of Faithful and Unfactual samples is not large, but we
would expect it to be for a useful factuality metric. Further, on the Hepatogastroenterology
dataset, the Faithful samples score worse according to the AlignScore-CS than the Factual
samples, even though those contain hallucinated content. These observations lead us to believe
that the AlignScore-CS metric is not very useful for evaluating the facticity of generated
summaries on our medical domain datasets. Our conclusion is that while the AlignScore-
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CS achieves favorable results on Czech language general-domain benchmarks, using it on
medical domain text would probably need some further domain-specific finetuning, as assessing
factuality requires more involved text understanding than assessing text similarity. We also
note that the Unfactual samples are generally evaluated worse in terms of automatic text
similarity, showing that, expectedly, the factually correct generated summaries are evaluated
as better in terms of quality by the automatic metrics.

We provide examples of the generated summaries in Appendix B. The example sum-
maries were generated by the best-performing models trained on the filtered datasets. For
each model, we show one model-generated summary labeled as Good and one model-generated
summary labeled as Sufficient.

6.3.1 Further observations

During the manual evaluation, we noticed a few other properties of the datasets and the
generated summaries we want to mention. While we understand the need for data anonymiza-
tion, it can cause some problems. More specifically, we noticed that the hospitalization sum-
maries often mention a medical examination that followed a specific number of days after
some procedure. While the source text contains information about both the procedure and
the examination, the dates are obfuscated, making it impossible for the model to predict the
summary correctly.

The abstractive models tend to only copy various parts of the source text to create the
summary, without paraphrasing it or leaving out anything in between. While this is expected,
as these types of summaries often occur in the training data, there are samples where it
is desirable for the model to paraphrase an examination conclusion or leave out some sub-
sequence of a sentence. Samples where this is needed are not represented often enough in the
training dataset, making it hard for the model to learn the right behavior, as copying parts
of the input is the easiest way for it to optimize the loss function.

This is related to our next observation. The model is often too wordy, including an
unnecessary amount of information when reporting admission reason, examination conclusion,
or procedure.

6.4 Discussion

We experimented with solving the defined task of automatic hospitalization summary
generation with both extractive and abstractive methods. The extractive methods, while pre-
dicting non-trivial summaries, did not achieve favorable results, especially compared to the
abstractive models. We compared abstractive models trained on both filtered and complete
versions of the datasets, confirming that the datasets with all samples are more complicated to
solve but also that using more training samples (although some are more complicated) tends
to increase the performance of the model when evaluated on the less complicated samples.
We concluded by manually evaluating two models trained on the Acute Cardiology dataset
and one model trained on the Hepatogastroenterology dataset. This allowed us not only to
evaluate the individual models’ performance but also to assess how well the automatic text
similarity and factuality metrics correlate with the manual evaluation labels. We found out
that the text similarity metrics Rouge and BERTScore can be used effectively as a proxy for
the models’ general performance. Comparing manual evaluation with the factuality metric
AlignScore-CS showed that the metric is not able to assess the factuality of the generated
summaries effectively. We hypothesize this is caused by the medical nature of the data we
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use, and an effective automatic factuality metric would have to be further fine-tuned for this
domain.
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Chapter 7

Conclusion

In this thesis, we dealt with the task of automatically generating the hospitalization
summary paragraph contained in a discharge report, an important medical document sum-
marizing a patient’s hospital stay. Currently, the manual generation of discharge reports is
a time-consuming task. Automating clerical work in the medical domain has the potential
to save physicians valuable time that can be devoted to patient care, thus increasing the
well-being of doctors and patients alike.

In Chapter 2, we defined the general NLP task of text summarization and described
the abstractive and extractive approaches for solving it. We described the Transformer ar-
chitecture, highlighting its role in the recent significant increase in language model capabil-
ities. We reviewed various SOTA language models, ranging in different model sizes, archi-
tectures (encoder-only or sequence-to-sequence) and pretraining schemes. While high-quality
pretrained language models are abundant today, we were restricted by the model’s ability to
understand and generate text in the Czech language. Also, not all models (their implementa-
tion and pretrained weights) are openly available, further limiting our choice. To facilitate the
training of a large language model, we described a parameter-efficient approach to finetuning
we use: QLoRA. We also discussed automatic text similarity and factuality metrics for the
evaluation of the models on our task.

In Chapter 3, we briefly reviewed relevant works to further motivate the use of language
models in the clinical domain. These related works address similar tasks to the goal of this
thesis, but using English clinical datasets. Since our dataset is in Czech, the findings are not
directly transferable but can serve as a valuable reference.

In Chapter 4, we introduced two Czech medical text datasets we obtained from IKEM.
The datasets are from the Department of Acute Cardiology and the Department of Hepato-
gastroenterology. We precisely defined the task of generating the hospitalization summary
paragraph using samples of the datasets and explained various preprocessing steps we un-
dertook to prepare the data for the task. We followed by thoroughly analyzing the datasets
and hypothesizing how the findings might affect the models’ performance. We also identified
imperfections of the dataset, that might hinder the possibility of solving the defined task.

We described in detail the methods we implemented and used in our experiments in
Chapter 5. We explained our extractive summarization method together with various pseudo-
labeling approaches needed for the supervised training. For the abstractive summarization
approach, we described various pretrained multilingual sequence-to-sequence language models
we fine-tuned on our datasets during experiments.
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We conducted several experiments to test how well the proposed methods can solve the
defined task in Chapter 6. We started by evaluating the pseudo-labeling approach needed for
the supervised training of the extractive method. Using the best-performing pseudo-labeling
approach based on the BERTScore metric, we fine-tuned the extractive method on both
datasets and evaluated the models with automatic metrics. While the methods generated
non-trivial summaries, the performance was not promising, compared to the abstractive sum-
marization methods explored afterward. Training of the extractive method was further com-
plicated due to difficulties with generating high-quality pseudo-labels and imperfections of the
dataset. We decided not to explore the extractive approach further due to the complications
and subpar performance, in favor of the abstractive summarization models.

To experiment with the abstractive approach, we fine-tuned several models. Initially, we
fine-tuned the models on the filtered version of the datasets (containing only short samples),
to be able to compare all our methods, as some have limited length of input they can process.
The models showed higher performance on the Acute Cardiology dataset, as we hypothesized
during the data analysis. On both datasets, mT5 models showed the best performance. We
also fine-tuned the models on the complete versions of the datasets, where they performed
worse. This confirmed the longer samples are more complicated to generate the hospitalization
summary with, as we expected. Interestingly, when evaluated on the filtered datasets, the
models fine-tuned on the complete versions of the datasets outperformed those fine-tuned on
the filtered datasets, showing the benefit of using more samples to train language models.

We concluded the experiments by manually evaluating the best-performing models. The
best-performing model fine-tuned on the Acute Cardiology dataset predicted the hospitaliza-
tion summary correctly on 44% tested samples, with only 16% samples being evaluated as
not solving the task properly at all. The model also showed a low tendency to generate un-
factual information (6-16%). We also used the manually assigned quality and factuality labels
to infer whether the automatic metrics are a good proxy for the real model performance on
our task. We concluded that while the Rouge and BERTScore metrics are consistent with
the manual evaluation of the generated summary quality, the AlignScore-CS factuality metric
showed inconsistent results.

We believe this thesis serves as a good starting point for further research on applying
language models for processing Czech clinical data. We showed that upon fine-tuning, the
model can solve the defined task to some extent. We also identified problems with the dataset
and common mistakes in the model-generated summaries. A natural next step for future
research would be to incorporate more medical notes (for example all the daily notes) as a
source to generate the hospitalization summary. Another approach to consider is to generate
the whole discharge report using multiple medical documents concerning the hospitalization
as a source. As shown in the related work, the models benefit from pretraining on medical
text corpus before being fine-tuned for the specified task, this should also be explored but will
be problematic due to the inaccessibility of freely available Czech clinical text corpus.
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Large Czech news-based summarization dataset,” in Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan: European
Language Resources Association (ELRA), May 2018. [Online]. Available: https://www.aclweb.
org/anthology/L18-1551.

[36] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” no. arXiv:1412.6980,
Jan. 2017. doi: 10.48550/arXiv.1412.6980. arXiv: 1412.6980 [cs].

[37] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is All you Need,” in Advances in Neural
Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.

[38] A. E. Johnson, T. J. Pollard, L. Shen, et al., “Mimic-iii, a freely accessible critical care database,”
Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[39] R. Sennrich, B. Haddow, and A. Birch, “Neural Machine Translation of Rare Words with Subword
Units,” no. arXiv:1508.07909, Jun. 2016. doi: 10.48550/arXiv.1508.07909. arXiv: 1508.07909
[cs].
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Appendix A

Illustrative datasets samples

Source

Nyněǰśı onemocněńı:

Pacientka se známou achaláziíı j́ıcnu, po 2. etapech aplikaci butulinotoxinu, 2x po impakci sousta,
dnes přicháźı pro 2 dńı trvaj́ıćı dysfagii. Od včereǰska cca 30 minut po jakémukoliv perorálńımu přijmu
zvraćı, netoleruje ani tekutiny, nebrála ani léky. Jinak bez obt́ıž́ı, bez teplot, pr̊ujem neměla. Dýchá se dobře.

Objektivńı nález:

Při vědomı́, orient. plně, klidná, bez alter. celk. stavu, spoluprac., eupnoe, acyan, anikter, hydratace sńıžena,
výživa v normě. Izokorie, skléry b́ılé, spoj. lehce bledš́ı, jazyk plaźı středem, suchš́ı, bez patol. povlaku. Krk
bez hrubé patologie, patol. uzliny ani šž nehmatám, náplň krčńıch žil nezvýšena. Jizva po sternotomii klidná,
dýcháńı bilat. čisté, difúzně oslabené, skĺıpkové, akce srdečńı pravidelná, ozvy 2, snad slabý systol. šel. na hrotě.
Břicho lehce nad niveau, dýchá volně v celém rozsahu, palp. bolestivé v pravém dolńım kvadrantu, kde hmatná
i bolestivá oblá rezistence v pr̊uměru cca 6cm, v okoĺı défense, Blumberg +, Rovsing -, Plenies negat, břicho
jinak ve zbylých kvadrantech měkké, volně prohm, palp. nebol, aperit, bez patol. rezistence, poklep dif. bub.
Perist př́ıtomna. DKK bez otok̊u, bez zn. TEN

Závěr při přijet́ı:

Recediva dysfagie.

Důvod hospitalizace:

Impakce sousta

Operace:

Vyšetřeńı:

Gastroskopie DD

Po lokálńı př́ıpravě a premedikaci i.v. zaveden př́ıstroj GIF 190 Zaseknuté tuhé sousto nad kardíı - provedena
jeho postuopná extrakce ROTHE kličkou, pak kardíı lze celkem volně do žaludku a norm. nál. do duodena.
Diostálńı j́ıcen iritovaný, zdeformovaný

Závěr: Extrakce uv́ızlého sousta nad kardíı, jinak obraz achalazie s lehkou dilataćı a atyp. peri-
staltikou, jinak norm. nál. do duodena Defromace a iritace term. j́ıcnu

Hospitalization summary

XX-letá pacientka s achalázíı j́ıcnu, po 2. etapách aplikace botulotoxinu a opakovaně po impakci sousta, byla
přijata na KH pro dysfagii. DD provedena gastroskopie s extrakćı uv́ızlého sousta nad kardíı, jinak byl popsán
obraz achalazie s lehkou dilataćı.

Figure A.1: Sample from Hepatogastroenterology dataset with pseudo-labeled sentences. Sen-
tences highligted in green are pseudo-labeled by the BERTScore greedy approach. Sentences
with bold orange font are pseudo-labeeld by the BERTScore pairwise approach.
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Source

Nyněǰśı onemocněńı:

XX-letý polymorbidńı pacient se susp. levostrannou ARVD/C, s recidivuj́ıćımi KT, s implanto-
vaným BiV ICD, stp. opak. RF ablaćıch endo i epikardiálńıch jak pro KT tak FiS, posledńı pro
perzistentńı FiS DD, nyńı hospitalizován k RFA pro daľśı epizody KT.

Subj. námahová dušnost NYHA III - rychleǰśı ch̊uze po rovině, ch̊uze do kopce, do schodu po 1. patře, v klidu se
nezadýchává, v noćı se produšnost nebud́ı; bolesti anginozńıho charakteru neguje; palpitace mejsou časté, sṕı̌se
má častěj́ı motáńı hlavy s pocity slabosti a nejistoty; nohy neotékaj́ı. Bez dyspeptických a dysurických
pot́ıž́ı.

Objektivńı nález:

Orientovaný, spolupracuj́ıćı, bez celk. alterace, eupnoe, dobře hydratován, bez cyanosy, bez ikteru. Hlava a krk
s přiměř. nálezem, št. žl. nezvětš., uzliny 0, karotidy bez šelestu, š́ıje volná, jazyk vlhký, bez povlaku, plaźı
středem. Normálńı náplň krčńıch žil. Hrudńık symetrický, klenutý, nadkĺıčky a axily volné. Dýcháńı čisté,
skĺıpkové, bez vedleǰśıch fenomen̊u. AS pravidelná, 2 ohran. ozvy, šelest nedif., břicho klidné, palp. nebol, bez
rezist, H+L nezvětš., perist. +, DK bez otok̊u a zn. TEN, varixy klidné, pulzace nad AF bilat. +/+, bilat. bez
šelest̊u, periferie teplá, fyziol. barvy.

Závěr při přijet́ı:

XX-letý polymorbidńı pacient se susp. levostrannou ARVD/C, recidivuj́ıćı KT. s implantovaným
BiV ICD, stp. opak. RF ablaćıch endo i epikardiálńıch jak pro KT tak FiS, posledńı pro perzis-
tentńı FiS DD, hospitalizován k RFA pro daľśı epizody KT.

Důvod hospitalizace:

Hospitalizace k reRFA KT

Operace:

Elektrofyziologie DD

Reablace pro KT u pacienta s DKMP - provedena biplárńı ablace mezikomorového basálńıho
septa, dále ablace v kapsičkách ao chlopně

Vyšetřeńı:

Echokardiografie KK DD

levá komora lehce dilatovaná (EDD 71 mm), s těžce omezenou ejekčńı frakćı (20-25%), porucha kinetiky: difúzńı
hypokiknéza, dyskinéza hrotu, relativně nejlepš́ı kinetika lat. stěny, normálńı geometrie, normálńı tloušťka septa,
bez trombu v dutině LK - ověřeno podáńım SonoVue 1ml; levá śıň středně dilatovaná (LAVi 46.8 cm3/m2);
malá až středńı mitrálńı regurgitace (2/4); aortálńı chlopeň trojćıpá, bez vady, normálńı velikost aorty v sinusech
valsalva, normálńı velikost ascendentńı aorty; pravá komora nedilatovaná, s normálńı systolickou funkćı; pravá
śıň dilatovaná; malá trikuspidálńı regurgitace (1/4, PG 20 mmHg), nejsou př́ıtomné známky klidové plicńı
hypertenze, elektroda(y) v pravostranných srdečńıch odd́ılech; malá pulmonálńı regurgitace (1/4); perikard bez
separace

Závěr: LK dilatovaná s EDD 71mm a těžce omezenou EF 20-25%. Bez významné valvulopate.
Normálńı funkce PK. Bez trombu v dutině LK (ověřeno podáńım SonoVue).

Hospitalization summary

XX-letý polymorbidńı pacient s DKMP (susp. levostranná ARVD/C), s recidivuj́ıćı KT, s implantovaným BiV
ICD, stp. opak. RF ablaćıch endo i epikardiálńıch jak pro KT tak i pro FiS, nyńı pro daľśı epizody KT byl
hospitalizován k RFA KT. Echokardiograficky LK dilatovaná s těžce omezenou EF 20-25%, normálńı funkce
PK, bez trombu v dutině LK (ověřeno podáńım SonoVue), bez významné valvulopate. DD provedena bipolárńı
ablace mezikomorového basálńıho septa, dále ablace v kapsičkách ao chlopně, výkon bez komplikaćı. Pobyt na
odděleńı nekomplikován, telemonitoricky bez záchytu setrvalé arytmie, dle kontrolńı echokg. po výkonu perikard
bez výpotku.

Figure A.2: Sample from Cardiology dataset with pseudo-labeled sentences. Sentences high-
ligted in green are pseudo-labeled by the BERTScore greedy approach. Sentences with bold
orange font are pseudo-labeeld by the BERTScore pairwise approach.
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Appendix B

Abstractive model predictions

Summary written by doctor

XX-letý muž s asymptomatickou parox. FIS nyńı přijat ke kryoablaci. Laboratoř vstupně bez pozoruhodnost́ı,
echokg porucha relaxace LKS, lehce dilatov. LS, lehká stacionárńı dilatace asc. aorty, jinak věku přiměřený
nález. DD provedena kryoablace - IPŽ, výkon nekomplikovaný, tř́ısla bez postpunkčńı patologie, echokg bez PV.
Za daľśı monitorace klidný SR.

Model-generated summary

XX-letý muž s asymptomatickou parox. FIS nyńı přijat ke kryoablaci. Laboratoř vstupně bez pozoruhodnost́ı.
Echokg normálńı velikost a normálńı systolická funkce obou komor, porucha relaxace LK, lehce dilatovaná levá
śıň, lehká stacionárńı dilatace asc. aorty, nevýznamné AV regurgitace, bez známek PH. DD kryoablace - IPŽ,
výkon nekomplikovaný, tř́ısla bez postpunkčńı patologie, echokg s odstupem bez výpotku. Za daľśı monitorace
klidný SR.

Figure B.1: An example of summary generated by the mT5-base model fine-tuned on the
filtered Acute Cardiology dataset, which was labeled as ’Good’ during manual evaluation.
The true summary written by the doctor is displayed above for comparison.

Summary written by doctor

Pacientka po kombinované transplantaci jater a ledviny s bilat. nefrektomíı (DD) pro polycystozu, byla přijata k
provedeńı protokolárńı biopsie štěpu. Výkon i následná observace proběhly bez komplikaćı. Histologicky patrny
metabolické změny štěpu (převážně velkokapénková steatóza s ballooning degeneraćı v 85 % hepatocyt̊u), s
mı́rnou imunitńı reakćı proti štěpu.

Model generated summary

Pacientka po kombinované transplantaci jater a ledviny s bilat. nefrektomíı pro polycystosu byla plánovaně
přijata k provedeńı protokolárńı biopsie jater. Výkon i následná observace byly bez komplikaćı. Histologicky
popsány metabolické změny jaterńı tkáně (převážně velkokapénková steatóza s ballooning degeneraćı v 85 %
hepatocyt̊u), s morfologíı mı́rné imunitńı reakce proti štěpu (RAI 2-3/9 – indeterminate).

Figure B.2: An example of summary generated by the mT5-large model fine-tuned on the
filtered Hepatogastroenterology dataset, which was labeled as ’Good’ during manual
evaluation. The true summary written by the doctor is displayed above for comparison.
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Summary written by doctor

XX-letý obézńı hypertonik, s dlouhodobě perzistuj́ıćı Fis (CHA2DS2VASc:1, antikoagulovaný Warfarinem, DD
po thorakoskopické IPŽ), byl elektivně přijatý k endovazálńı RFA. Dle j́ıcnoné echokardiografie bez intrakardiálńı
trombózy, LKS nedilat., konc. remodelovaná s hraničńı EF, bikuspidálńı ao chlopeň se stopovou regurgitaćı, asc.
aorta s dilataćı na 38mm, dále malé AV regurgitace s dilat. LS (LAVi 38.8 cm3/m2), PKS dilat. s hraničńı
systolickou funkćı, PFO s L-P zkratem bez pr̊ukazu P-L, bez zn. PV. Provedena re-IPŽ všech pĺıcńıch žil, dále
extenzivńı ablace stropńı i zadńı dolńı linie, dosažen blok na dolńı zadńı linii, bloku na stropě LS nelze dosáhnout.
Dle kontrolńıho TTE bez PV po výkonu.

Model-generated summary

XX-letý obézńı hypertonik, DD po thorakoskopické IPŽ, byl elektivně přijatý k endovazálńı RFA. Echokardio-
graficky EF LK 55% IAS s triviálńım LP zkratem, PL zkrat nezobrazuji, ouško s normálńımi rychlostmi bez
tromb̊u, malá MiR, malá TriR, triviálńı echogenńı separace kolem PK jinde perikard naléhá. Provedena RFA po
COBRA ablaci - reizolace všech žil samostaně ostiálně, nedokončen box, blok na zadńı dolńı linii v LS, výkon
bez komplikaćı. Tř́ısla po výkonu klidná.

Figure B.3: An example of summary generated by the mT5-base model fine-tuned on the
filtered Acute Cardiology dataset, which was labeled as ’Sufficient’ during manual eval-
uation. The true summary written by the doctor is displayed above for comparison.

Summary written by doctor

Polymorbidńı XX-letý pacient planovaně přijat k provedeni septotomie v celkové anestézii. Pacient běhen hospi-
talizace bez známek komlikace výkonu a celkové anstézie. Pro lehkou kardiálńı dekompenzaci pośılena chronická
diuretická terapie za hospitalizace. Po výkonu tekutiny toleruje.

Model generated summary

Pacient s Zenkerovým divertiklem byl přijat plánovaně k Z-POEM/septotomii. Výkon i následná observace
proběhly bez komplikaćı.

Figure B.4: An example of summary generated by the mT5-large model fine-tuned on the
filteredHepatogastroenterology dataset, which was labeled as ’Sufficient’ during manual
evaluation. The true summary written by the doctor is displayed above for comparison.
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Appendix C

Attached files

While not useful without the data we cannot publish, we provide the implementation of
the used models and experiments for reference. The attached files have the following structure:

requirements.txt
scripts

create_abstractive_dataset.py
create_dataset.py
create_extractive_dataset_xlmr.py
generate_naive_and_random_extractive_summary.py
pseudo_label_for_evaluation.py
train_abstractive_aya.py
train_abstractive_mbart.py
train_abstractive_mt5.py
train_extractive_xlmr.py

setup.py
src

data
abstractive_dataset.py
extractive_dataset.py
lemmatize.py
pseudo_labeling.py
rouge_raw.py
text_dataset.py
text_splitting.py

evaluate.py
model

abstractive.py
extractive.py

vizualization
print.py
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