
F3 Faculty of Electrical Engineering
Department of computers

Master thesis

Min-max optimization methods in
adversarial learning
Training robust neural network classifiers, including S4

Bc. Tomáš Kasl
Open informatics / Artificial intelligence

2024
https://gitlab.fel.cvut.cz/kasltoma/diploma-thesis
Supervisor: doc. Ing. Tomáš Kroupa, Ph.D.

https://gitlab.fel.cvut.cz/kasltoma/diploma-thesis

Acknowledgement / Declaration

Firstly, I would like to thank my su-
pervisor, doc. Tomáš Kroupa, for being
patient with me. I would also like to
thank my other teachers for preparing
me for this personal milestone. Also,
I would like to express my thanks to-
wards Mgr. Dmytro Mishkin, Ph.D.,
prof. Ing. Václav Šmídl, Ph.D. and RN-
Dr. Milan Straka, Ph.D. for providing
me with a consultation. Most impor-
tantly, however, I would like to express
my gratitude towards my friends, family
and fellow CTU students, for they have
been a great support not only along
making this project but also for the
whole study period.

I, Tomáš Kasl, declare that this mas-
ter thesis is my work and that I have list-
ed all sources of information used within
in accordance with methodical instruc-
tions for observing ethical principles in
the preparation of university theses.

Prague, May 24, 2024

Já, Tomáš Kasl, prohlašuji, že jsem
předloženou práci vypracoval samostat-
ně, a že jsem uvedl veškeré použité
informační zdroje v souladu s Metod-
ickým pokynem o dodržování etických
principů při přípravě vysokoškolských
závěrečných prací.

V Praze, 24. 5. 2024

iii

Abstrakt / Abstract

Tato diplomová práce se soustředí
na zvýšení odolnosti klasifikačních neu-
ronových sítí proti datům, která byla
záměrně upravena (především gradi-
entními metodami) za účelem obelstění
klasifikátoru. Toho se snaží docílit
úpravami procesu učení neuronových
sítí modifikacemi, které vychází z pří-
stupu dvouhráčové teorie her. Skrze
experimenty, kromě úspěšnosti metody
robustního učení, zhodnotí také její
složitost na implementaci a zvýšení
výpočetní náročnosti.

Klíčová slova: robustní klasifikace; ro-
bustní učení; teorie her; neuronové sítě;
adversariální data; diplomová práce;

This thesis focuses on enhancing the
resilience of neural network classifiers
against adversarially modified data
(mainly by gradient-based methods), so
that they are misclassified. It tries to
achieve this by employing a two-player
game-theoretical approach, modifying
the training process of neural networks.
Through experimentation, the study
evaluates the effectiveness of this ap-
proach in improving classifier resistance
to adversarial samples. Additionally,
it explores the difficulty of its imple-
mentation as well as an increase in the
computational complexity.

Keywords: robust classification; ro-
bust training; game theory; neural net-
works; adversarial data; master thesis;

iv

Contents /

1 Introductions 1
1.1 Motivation 1
1.2 The thesis outline 2

2 Two-player game, robust learning4
2.1 The problem definition 4
2.2 Game theory 6

2.2.1 Notation and intuition 6
2.2.2 Foundations and the

Outline 8
2.2.3 Nash Equilibrium 9
2.2.4 Quick problem recapit-

ulation 10
2.2.5 Multi-Step Projected

Gradient Step Solution . . 10
2.2.6 Additional notes 12

3 Attacks on Neural Net-
works, Regularizations 14

3.1 Attack introduction 14
3.2 Approaches - gradient-

based attacks 14
3.2.1 FGSM - Fast Gradient

Sign Method 15
3.2.2 PGD - Projected Gra-

dient Descent 16
3.3 Approaches - Foolbox 16

3.3.1 Spatial attack 17
3.4 Regularization 17

3.4.1 Training data modifi-
cation - augmentation . . . 18

3.4.2 Dropout 19
4 Neural network models 21

4.1 Implementation, hardware . . . 21
4.2 Basic feed-forward, dense

model 23
4.3 Model S4 23
4.4 Recurrent - LSTM 24
4.5 Recurrent - GRU 24
4.6 Datasets - overview 25

5 Experiments and outcomes 26
5.1 MNIST numbers 26

5.1.1 Outline of the experiments 26
5.1.2 Experiment outcomes . . . 29

5.2 German road signs 33
5.3 Speech Commands 37

5.3.1 Outline of the exper-
iments - direct sound
processing 37

5.3.2 Outline of the exper-
iments - spectrogram
processing 39

5.3.3 Experiment outcomes . . . 40
5.4 UrbanSound8K 45

5.4.1 Outline of the exper-
iments - direct sound
processing 45

5.4.2 Outline of the exper-
iments - spectrogram
processing 48

5.4.3 Experiment outcomes . . . 48
5.5 Training Time increase 50

6 Conclusion and discussion 51
6.1 The effect of robust learning . . 51
6.2 Synergy with regularizations . . 51
6.3 Computational price of the

robust learning 52
6.4 Conclusions 52

References 53

A Additional results 55
A.1 MNIST results 55
A.2 GTSRB results 56
A.3 SpeechCommands results . . . 57
A.4 UrbanSound8K results 59

B Assignement 60

v

Chapter 1
Introductions

1.1 Motivation

In recent years, artificial neural networks have been increasingly used for various kinds
of tasks, very often pushing out alternative machine learning approaches, and in some
sense nowadays basically dominating the field of AI.

While generative models are gaining momentum in the scientific race in recent
months, it is the classification models, which are the best understood and are being
deployed into production in various crucial day-to-day live scenarios. Some very
prevalent examples known for being targeted by artificial data can be scanning license
plates on highways by police cameras, when checking whether the drivers are adhering
to the traffic rules1, or unlocking a smartphone by face recognition.

Other noteworthy examples, which will be used as motivation for this thesis, are
these:

The task of classification of the road signs on the highways by cameras of autonomous
vehicles, so that they understand, what traffic rules applies2.

Another one is deploying sound classifiers with microphones in the streets of my
hometown to automatically notify the police department when dangerous sounds ap-
pear, such as gunshots or someone screaming 3.

Many more examples come to mind, the point is that the domain of using neural
networks as classifiers is large, and growing further still.

However, as these neural networks are increasingly deployed into real-world scenarios,
the question of their exploitability, and the possibility to make them misclassify (either
accidentally, or purposefully with malicious intents) is also gaining importance. The
latter option is the main topic of this thesis.

Even when the trained classifiers can have almost perfect accuracy, at least when it
comes to naturally occurring data, we must consider the presence of attackers, which
are motivated to fool it. It does not necessarily matter, whether the person’s motivation
is some personal gain (monetary or other), or to cause harm, or something else entirely.
Any mistake made by the classifier might be costly, and it is reasonable to expect the
presence of people (called 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝑠) seeking to purposefully cause those mistakes.

Imagine putting, for example, a sticker on a STOP sign on a highway, so that it
is understood as some irrelevant sign by the autonomous vehicle, which could lead to
1 https://platerecognizer.com/alpr-research/
2 https://www.tesla.com/ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA15

2C.html
3 https://nasregion.cz/bezpecnost-v-plzenskych-ulicich-budou-hlidat-specialni-detektory-

zvuku-308092

1

https://platerecognizer.com/alpr-research/
https://www.tesla.com/ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA152C.html
https://www.tesla.com/ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA152C.html
https://nasregion.cz/bezpecnost-v-plzenskych-ulicich-budou-hlidat-specialni-detektory-zvuku-308092
https://nasregion.cz/bezpecnost-v-plzenskych-ulicich-budou-hlidat-specialni-detektory-zvuku-308092

1. Introductions .
multiple unnecessary accidents. Or altering the sound of nigthly gunshots so that is
not recognized by the police’s sound detection system, making their arrival late.

This thesis focuses on the topic of training the neural network classifier with these
adversaries in mind, making the classifiers resistant against such attacks, and increasing
the accuracy even for artificially conjured samples.

The strife for the robustness is a complex field, without an explicit solution or algo-
rithm, and without an obvious direction of how it should be solved. Multiple various
approaches have been proposed, and in this thesis, I attempt to increase the neural
network-based classifier’s resistance against the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples by modeling the
situation as a two-player game.

Following mainly the paper “Solving a class of non-convex min-max games using
iterative first order methods [1]”, I will try to make the classification models robust
against such attacks, using the game-theoretical min-max approach.

The methods outlined there could possibly be upscaled to be used also in the large
generative models, as they are already targeted by data perturbations, for example
artists modifying the pixels of their art imagery, such that the difference is unnoticed
by a human eye, yet they make the models’ learning of their art style much more
difficult4.

While there is a valid argument to be made, that every specific model is vulnerable
against a different specific perturbation of the classified data, since the models of neural
networks used ultimately end up quite often similar, one attack can actually fool a set
of models 5.

The main questions to be explored, through several straightforward experiments, are:

Mainly, how well do they, when trained this way, actually perform, meaning how
their accuracy changed towards general data, and how much they make the models
resistant against the modified data. Then the difficulty of implementing such robust
learning techniques and the computational demands of their implementation. Multiple
architectures are tested to see, whether the effects of the robust learning are shared
across the whole neural network domain, or if there are some conditions to be met.

Also, we will have a look at how well are they in symbiosis with other commonly
used methods of so-called regularizations applied to the training process.

1.2 The thesis outline

Firstly, (in Chapter 2), I will describe the exact problem definition. Following this,
I will outline the main ideas, as well as the motivations, behind the game theoretical
min-max model of the situation and just briefly compare this approach to alternative
ones.

After that (in Chapter 3) follows an enumeration of attack methods and regulariza-
tion techniques commonly used to mitigate the phenomenon of overfitting.

4 https://glaze.cs.uchicago.edu/what-is-glaze.html
5 https://platform.openai.com/docs/models/overview

2

https://glaze.cs.uchicago.edu/what-is-glaze.html
https://platform.openai.com/docs/models/overview

. 1.2 The thesis outline

Then (in Chapter 4), I will enumerate neural architectures considered in the experi-
ments. Also, a brief explanation of the code implementation used for the experiments,
as well as an explanation of the experiments themselves.

Finally (in Chapter 5), there will be the outcomes gathered from running the exper-
iments, what do they mean, and what that means for us.

Everything is then concluded (in Chapter 6) by a discussion, about how much is
implementing this approach then worth it, considering its performance and cost.

3

Chapter 2
Two-player game, robust learning

2.1 The problem definition
The main goal for us, the designers of the classification models, remains the maximiza-
tion of its accuracy on the data presented to it. But this time also with the presence
of an adversarial agent, who generates purposefully confusing data samples, in mind.
Importantly, we expect the change, that is being done to the specific samples, to be in
some sense 𝑠𝑚𝑎𝑙𝑙, focusing on misclassification caused by perturbation of some realis-
tic, naturally existing data. To increase clearness, in this thesis, I will refer to 𝑛𝑎𝑡𝑢𝑟𝑎𝑙,
𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙, 𝑟𝑒𝑎𝑙, 𝑡𝑟𝑎𝑖𝑛 and 𝑡𝑒𝑠𝑡 data samples:

By 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 samples are meant samples created the natural way, e.g. images made
by taking a photograph, etc. For these examples, we expect the data samples to be
generated randomly and independently from some (unknown) distribution.

By the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples are meant the samples generated by the attacker, seek-
ing to fool our classifier. These samples are based on 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 examples, which have
been artificially modified, based on the knowledge of the classifier. Thus, they are not
expected to be generated randomly, but they remain 𝑛𝑒𝑎𝑟 the original distribution of
the original sample.

By 𝑟𝑒𝑎𝑙 samples are meant samples, that the classifier can be expected to face,
whenever it is deployed into the real world, and so it consists of both the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 and
the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples.

The 𝑡𝑟𝑎𝑖𝑛 and 𝑡𝑒𝑠𝑡 samples are the datasets used for training and validating the
neural network model. They are possibly modified by some random change, or modified
to be the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples, which can be understood from the context.

The task of classification of the 𝑖.𝑖.𝑑. generated 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data is the classical domain
of training the neural networks, where the models try to learn/estimate the data classes’
distributions. The training algorithm is usually based on 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑑
(SGD) over a differentiable loss function (for classification usually cross-entropy), de-
rived from the theory 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (MLE). The basics are well
explained in a little textbook [2].

Since the amount of the training data is limited, and the training algorithm is iterative
and stochastic, the learned estimates of the distributions usually end up being imperfect,
albeit often very close to the real distributions.

Mainly, regarding the topic of this thesis, there is a tendency of (local) overfitting,
where the learned parameters only 𝑏𝑎𝑟𝑒𝑙𝑦 classify specific training samples correctly,
and the classification border (well visible in Figure 2.1.) is too close. And because of
the nearby classification border, even a small change to the specific sample can make
the model to misclassify.

4

. 2.1 The problem definition

The task of classification robustness of the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data is not yet definitely
solved, as is usually the case when it comes to the presence of some 𝑒𝑛𝑒𝑚𝑦. We would
like to come up with a modification of the usual training procedure, so that the accuracy
on 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data remains as high, but the model is robust towards the artificially created
𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples, too. There are multiple, diverse approaches being explored.

Clearly, the data labeled as 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 can be generated randomly, from their re-
spective distributions, too. They are, however, in some sense outliers, and thus not
very common, and following the classical 𝑆𝐺𝐷, not really that impactful.

One natural approach to increasing the classifiers’ robustness, well explained in the
work of Theoretically Principled Trade-off between Robustness and Accuracy [3], is to
directly mitigate the overfitting tendency. The idea is to purposefully push the borders
of classification areas further from the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 samples by forcing the 𝜖-neighborhood
of a train sample to be classified correspondingly. That idea follows the approaches used
in other classical machine learning methods, where it usually improves the accuracy on
the 𝑟𝑒𝑎𝑙 data. Importantly, a small change to a data sample is less likely to make the
model misclassify, making the 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟’s task harder.

Figure 2.1. Left figure: decision boundary learned by natural training method. Right
figure: decision boundary learned by their adversarial training method. Both methods

achieve zero natural training error. Picture taken from a source [3].

Another approach is to model the situation in the min-max game-theoretic frame-
work, which is being explored in this work. We expect the presence of attackers willing
to purposefully exploit the models’ imperfections, meaning that 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 modifica-
tion to the data shifts it in some 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, not just in the general area of the
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 samples. The challenge is to retain accuracy against the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data high,
while we want the models to be resistant against exactly against the carefully prepared
𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples.

That leads to the notion of a game of two players, the classifier and the attacker,
which is explained in the following section.

5

2. Two-player game, robust learning .

2.2 Game theory

2.2.1 Notation and intuition

In this section, I try to outline a plausible motivation, why modeling the task of the
robust classifier under the framework of two-player Game Theory makes sense, and
following this, how can it be used to design an algorithm.

Let’s have a neural network, used as some classifier, denoted as 𝑓. Given data sample
𝑥 and its learned weights 𝘄, 𝑓 returns its prediction:

̂𝑦 = 𝑓(𝑥; 𝘄)

The classifier is 𝑆𝐺𝐷 trained using a differentiable (in our case the categorical cross-
entropy) loss function (comparing the predicted class ̂𝑦 with the real class 𝑦):

𝐿(̂𝑦, 𝑦)

By completing the training process, we want to create a classification model mini-
mizing the value of the loss function by learning the 𝑟𝑖𝑔ℎ𝑡 values of the models’ weights
𝘄, that is:

𝘄∗ = arg min
𝘄

𝐿(𝑓(𝑥𝑖; 𝘄), 𝑦𝑖)

As outlined in the paper Non-convex Min-Max Optimization: Applications, Chal-
lenges, and Recent Theoretical Advances [4], we expect the presence of an attacker,
whose goal is to force the model to misclassify by making an 𝜖-𝑠𝑚𝑎𝑙𝑙 change to the data
sample.

More specifically, we define 𝜖 (𝜖 ∈ 𝑅, 𝜖 > 0), which limits the size of the vector 𝛿
representing the data perturbation. Given a trained model, the attack is performed,
in our case, by maximizing the neural network’s loss function for the specific presented
data samples, that is:

𝛿∗
𝑖 = arg max

𝛿𝑖:||𝛿𝑖||≤𝜖
𝐿(𝑓(𝑥𝑖 + 𝛿𝑖; 𝘄∗), 𝑦𝑖) = arg max

𝛿𝑖:||𝛿𝑖||≤𝜖
min

𝘄
𝐿(𝑓(𝑥𝑖 + 𝛿𝑖; 𝘄), 𝑦𝑖)

Notice that 𝛿𝑖 is a different vector for each data sample, attacks on different samples
are therefore independent of each other. Also notice that it does not prescribe a specific
norm || ⋅ ||, and thus any norm can be used.

An example of an 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data sample is then

𝑥𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙
𝑖 = 𝑥𝑖 + 𝛿𝑖 𝑠.𝑡. ||𝛿𝑖|| ≤ 𝜖

It is well known that even for very small values of 𝜖 (making the perturbation 𝑠𝑚𝑎𝑙𝑙,
sometimes possibly even humanly indistinguishable), the data modification can have a
huge effect on the classification outcome.

6

. 2.2 Game theory

When we expect the model to be interacted with by such an attacker, it is a natural
idea to swap the 𝑚𝑖𝑛 and 𝑚𝑎𝑥 (thus creating a classifier maximizing the accuracy
against the fraudulent data) and to define the training task as

𝘄∗ = arg min
𝘄

max
𝛿𝑖:||𝛿𝑖||≤𝜖

𝐿(𝑓(𝑥𝑖 + 𝛿𝑖; 𝘄), 𝑦𝑖)

which is the standard 𝑚𝑖𝑛-𝑚𝑎𝑥 definition of the robust learning task.

The issue is that this optimization is generally non-convex in the minimization, and
non-concave in the maximization, making it problematic to solve. This will be addressed
later.

The expectation of this definition is, given a classification model 𝑓, the weights 𝘄∗

provide the best accuracy against the 𝑤𝑜𝑟𝑠𝑡 type of data samples. Such a model can
therefore be seen as the best possible model against the (hypothetical) most successful
attacker, even though its accuracy might be non-optimal when presented with another
type of data.

That is a one-sided model of the situation, with the intuition being: let there be the
most successful attacker possible, and so let’s train the classifier in such a way, that it
has the best performance against this attacker. Let’s consider the attacker’s point of
view, too. His motivation is to gain some advantage by making the model misclassify.
He is concerned with the details of the classifier only to the extent, that lets him exploit
it; he is indifferent, whether the model has been trained with his presence considered.
As such, the min-max definition of the problem remains meaningful.

Consider, however, that many models of neural networks put into production are
often very much alike. If a fast and reliable model for image classification is required,
quite commonly, the whole problem is solved by downloading the EfficientNetV2 (pre-
sented in the paper EfficientNetV2: Smaller Models and Faster Training [5]), or some
other widely used model. Similarly, all the 𝑙𝑎𝑟𝑔𝑒 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 models are based on models
with self-attention transformer neurons. The attacker can therefore theoretically use
one specific classification model for experimentation, and then prepare the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙
samples against the whole class of existing classifiers.

This is the motivation of the zero-sum two-player game. The designer of some
(broadly used) classifier 𝑖𝑠 𝑎𝑤𝑎𝑟𝑒 of the presence of the attacker, and the attacker
𝑖𝑠 𝑎𝑤𝑎𝑟𝑒 of the fact the models are trained against his struggles. He might be, there-
fore, motivated to create the optimal attack against the robustly-trained classifiers,
too.

Under the assumption of a zero-sum two-player game, the value of min-max solution
is equal to the value of max-min (that would lead to game solution in the so-called
Nash equilibrium), whenever the loss function is convex in 𝑚𝑖𝑛 and concave in 𝑚𝑎𝑥.
But since that is not the case, here, the methods for finding such equilibrium cannot
be used.

Thus, we must take another approach to solve the optimization task, employing a
relaxed definition of the equilibrium, as presented in the next section.

7

2. Two-player game, robust learning .
2.2.2 Foundations and the Outline

Let’s consider a general two-player zero-sum game. The players (𝑝1 and 𝑝2) decide to
take some actions (from their respective action spaces), which lead to some outcome
of the game. For the outcome, both players are rewarded some with score, in our case
penalized by the loss. Naturally, both players try to minimize their own loss received
from playing the game. The whole dynamic of the two-player games is well explained
in the textbook Multiagent Systems [6].

Because of the zero-sum nature of the game, the received loss of one player is always
equal to the gain of his opponent. That allows us to view the two players as the
minimizing player, and the maximizing player.

Let’s consider the game of these two players:

. The minimizing player (the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟) tries to minimize the error rate of the neural
network by modifying its parameters against data prepared by the attacker.. The maximizing player (the 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟) tries to maximize the error rate of the neural
network classifier by modifying the data samples.

They both strife for the best strategy against the other player.

A continuous two-player zero-sum game in defined as:

𝐺 = (Θ, Α, 𝐿)

where:

. Θ is the action space for 𝑝1, Θ ⊆ 𝑅𝑚, where 𝑚 is the size of the weights w. Α is the action space for 𝑝2, Α ⊆ 𝑅𝑛, where 𝑛 is the size of the data samples 𝛿𝑖. 𝐿: Θ×Α → 𝑅, is the loss function giving the first player’s cost for the chosen actions.

Notes:

. Θ might the same as Α, but it is not a requirement. It is enough to model only one utility function 𝐿, since 𝐿1(𝜃𝑖, 𝛼𝑗) = −𝐿2(𝜃𝑖, 𝛼𝑗)
(where 𝐿𝑖 is the loss function of the respective player)

Because, in the zero-sum game scenario, the players’ loss functions are linked like
that (minimizing own loss is the same as increasing the opponents loss), we can model
the whole situation of finding the optimal strategies against each other, given the loss
function 𝐿, as:

min
𝜃∈Θ

max
𝛼∈Α

𝐿(𝜃, 𝛼)

These conditions are expected to hold for the rest of the thesis:

. Θ and Α are both convex sets. 𝐿 is a continuously differentiable function

8

. 2.2 Game theory

2.2.3 Nash Equilibrium

A Nash Equilibrium [7] of the zero-sum game is a pair of strategies (of the two players),
such that none of the players has an incentive to change their strategies; any one player
is unable to get a better outcome by just changing his own strategy. That means it is
a stable pair of strategies, generally considered as the 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 of the game.

In our setting, this corresponds to a pair of strategies, so that the classifier cannot
reach better accuracy on the data (including the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙), and the attacker cannot
make more effective 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples when facing such classifiers.

The standard definition of Nash Equilibrium is a pair:

(𝜃∗, 𝛼∗) ∈ Θ × Α

ensuring the equilibrium in the players’ costs, that is:

𝐿(𝜃∗, 𝛼) ≤ 𝐿(𝜃∗, 𝛼∗) ≤ 𝐿(𝜃, 𝛼∗) ∀𝜃 ∈ Θ, ∀𝛼 ∈ Α

For cases, where the action spaces are finite sets, some Nash Equilibria always exist,
and can be found by solving a linear program. In cases where 𝐿(𝜃, 𝛼) is convex in 𝜃 and
concave in 𝛼, some Nash Equilibria always exist, but finding them is not a straight-
forward task..

For cases, where 𝐿 is neither convex (in 𝑚𝑖𝑛) nor concave (in 𝑚𝑎𝑥), as explained in
[1], global Nash Equilibria might not exist at all, and even finding local Nash Equilibria
is generally NP-hard.

Because the loss function of a neural network usually is not convex nor concave, a
relaxed definition of the equilibrium is used, called the First Order Nash Equilibrium
(FNE) (see Definition 2.1 in [1]), which is defined as a pair:

(𝜃∗, 𝛼∗) ∈ Θ × Α

s.t.:
⟨∇𝜃𝐿(𝜃∗, 𝛼∗), 𝜃 − 𝜃∗⟩ ≥ 0 ∀𝜃 ∈ Θ

⟨∇𝛼𝐿(𝜃∗, 𝛼∗), 𝛼 − 𝛼∗⟩ ≤ 0 ∀𝛼 ∈ Α

The reason why these conditions are more constraining than the usual definition of
critical points

(𝜃∗, 𝛼∗) 𝑠.𝑡. ∇𝜃𝐿(𝜃∗, 𝛼∗) = ∇𝛼𝐿(𝛿∗, 𝛼∗) = 0

is that we are searching only for critical points specifically corresponding to the min-
max relation.

In the work [1] it is shown, if Θ and Α are both non-empty, compact and convex, and
if 𝐿 is twice continuously differentiable, then there exists a pair (𝜃∗, 𝛼∗), which is a FNE
of the game. However, its existence is not sufficient for its practical localization, since
the second continuous derivation is often out of the scope, and thus iterative algorithms
are usually used for the optimization tasks in practice.

9

2. Two-player game, robust learning .
Therefore, it is necessary to also define even less restrictive term, the 𝜖-First Order

Nash Equilibrium (𝜖-FNE), which is again a pair (𝜃∗, 𝛼∗) which satisfies:

Χ(𝜃∗, 𝛼∗) ≤ 𝜖 𝑎𝑛𝑑 Υ(𝜃∗, 𝛼∗) ≤ 𝜖,

where

Χ(𝜃∗, 𝛼∗) : = − min
𝜃

⟨∇𝜃𝐿(𝜃∗, 𝛼∗), 𝜃 − 𝜃∗⟩ 𝑠.𝑡 𝜃 ∈ Θ, ||𝜃 − 𝜃∗|| ≤ 1

Υ(𝜃∗, 𝛼∗) : = max
𝛼

⟨∇𝛼𝐿(𝜃∗, 𝛼∗), 𝛼 − 𝛼∗⟩ 𝑠.𝑡 𝛼 ∈ Α, ||𝛼 − 𝛼∗|| ≤ 1

This definition of (𝜖-FNE) guarantees that neither player can improve their outcome
by more than 𝜖 when using first-order information (by modifying only own strategy)

The paper [1] proposes an algorithm, which is proven to find such 𝜖-FNE for the
optimization task, if the inner 𝑚𝑎𝑥 problem is concave. It is also shown, how this can
be achieved for the broader task of classification, and possibly even even for the use of
neural networks.

2.2.4 Quick problem recapitulation

We want to define a min-max optimization problem (interpretable as a two-player
game), where the attacker maximizes the NN’s error rate over the data (achieved by
intentionally modifying the data), and the NN’s trainer strifes for the minimization of
the error rate against such opponent:

min
𝘄

𝑁
∑
𝑖=1

max
𝛿𝑖 : ||𝛿𝑖||∞≤𝜖

𝐿(𝑓(𝑥𝑖 + 𝛿𝑖; 𝘄), 𝑦𝑖)

where:. 𝑥𝑖 is the specific data sample presented to the neural network. 𝛿𝑖 is the perturbation of the data. 𝑓(𝑥𝑖; 𝘄) is the prediction of the neural network given its weights 𝘄. 𝐿(̂𝑦𝑖, 𝑦𝑖) is the neural network’s loss function given the sample 𝑖, 𝑖 ∈ 1, ..., 𝑁. 𝑁 is the size of the used dataset. 𝜖 is the maximal change allowed for the data change

We require the inner maximization to be 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 in 𝛿𝑖.

2.2.5 Multi-Step Projected Gradient Step Solution

Following the approach defined in [1], we can transform the problem into:

min
𝘄

𝑁
∑
𝑖=1

max{𝐿(𝑓(̂𝑥𝑖0(𝘄); 𝘄), 𝑦𝑖), ..., 𝐿(𝑓(̂𝑥𝑖𝐶(𝘄); 𝘄), 𝑦𝑖)}

where each ̂𝑥𝑖𝑗(𝘄) is the result of a targeted attack on sample 𝑥𝑖 aiming at changing
the output of the network to label 𝑗 (𝐶 is the number of considered data classes). The

10

. 2.2 Game theory

function 𝑓(𝑥, 𝘄) is the output of the final fully-connected layer of the neural network,
where each neuron corresponds to a classification class. 𝐿(𝑓(𝑥, 𝘄), 𝑦) is then the output
of the usual softmax and categorical cross-entropy loss function.

Let’s denote the output of the final neuron (before the softmax) corresponding to
the class 𝑗 as 𝑍𝑗(𝑥, 𝘄).

The values ̂𝑥𝑖𝑗(𝘄) are obtained iteratively as:

𝑥𝑘+1
𝑖𝑗 = 𝑃𝑟𝑜𝑗𝐵(𝑥,𝜖)[𝑥𝑘

𝑖𝑗 + 𝛼∇𝑥(𝑍𝑗(𝑥𝑘
𝑖𝑗, 𝘄), −𝑍𝑦𝑖

(𝑥𝑘
𝑖𝑗, 𝘄))]

for all of the data samples 𝑥𝑖 in the training dataset. The initial value is naturally
set as:

𝑥0
𝑖𝑗 : = 𝑥𝑖𝑗

However, this is still an optimization problem, which is non-convex in 𝘄 and non-
concave in 𝑥. We can approximate this finite max problem with an alternative concave
problem over a probability simplex T:

min
𝘄

𝑁
∑
𝑖=1

max
𝘁∈𝗧

𝑀
∑
𝑗=0

𝘁𝗷 (𝐿(𝑓(𝑥𝐾
𝑖𝑗 , 𝘄), 𝑦𝑖)

so that 𝑡 is a probability distribution over 𝐶 elements, that is:

𝗧 = {𝘁 ∈ 𝑅𝐶 | 𝘁 ≥ 𝟬, ||𝘁||𝟭 = 𝟭}

which is non-convex in w, but concave in t. It therefore fulfills the conditions required
for the robust learning algorithm, which is utilized in this thesis (see formula (70) in
[1]).

Instead of coming up with a completely new 𝑆𝐺𝐷-based algorithm for training the
neural network, authors of the paper propose a way how to incorporate the iterative
solution of the inner concave maximization problem into the outer minimization prob-
lem, which is already being solved by the classical 𝑆𝐺𝐷-𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛, mainly by
modifying the computation of the 𝑙𝑜𝑠𝑠 function to take all these possible 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙
samples into account apriori.

The outcome of such training process should then be a classifier with the maximal
accuracy against the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples (generated by gradient-based attacks).

11

2. Two-player game, robust learning .
The pseudocode of the modification of the training algorithm is following:

Multi-Step Projected Gradient, algorithm 1:
Extension of the categorical cross-entropy loss

inputs: 𝑏𝑎𝑡𝑐ℎ of data 𝑥𝑖, 𝑦𝑖 number 𝜖, number 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒, number 𝐾
output: the robust loss 𝐿𝑏𝑎𝑡𝑐ℎ

(1) duplicate every 𝑥𝑖 and 𝑦𝑖 in the 𝑏𝑎𝑡𝑐ℎ 𝐶-times

(2) set 𝑥0
𝑖𝑗 : = 𝑥𝑖𝑗 ∀𝑖 ∈ 1, ..., 𝑁, ∀𝑗 ∈ 1, ..., 𝐶 in the 𝑏𝑎𝑡𝑐ℎ

(3) for 𝑘 = 1, ..., 𝐾:

(𝑎) compute the gradient 𝗚𝑏𝑎𝑡𝑐ℎ = ∇𝑥(mean(𝑍𝑗(𝑥𝑘−1
𝑖𝑗 , 𝘄), −𝑍𝑦𝑖

(𝑥𝑘−1
𝑖𝑗 , 𝘄)))

(𝑏) compute 𝑥𝑡𝑒𝑚𝑝
𝑖𝑗 : = 𝑥𝑘−1

𝑖𝑗 + sign(𝗚𝑏𝑎𝑡𝑐ℎ) × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒

(𝑐) compute 𝑥𝑘
𝑖𝑗: = min𝑒𝑙𝑒𝑚𝑒𝑛𝑡−𝑤𝑖𝑠𝑒 (𝜖 , max𝑒𝑙𝑒𝑚𝑒𝑛𝑡−𝑤𝑖𝑠𝑒 (− 𝜖 , 𝑥𝑡𝑒𝑚𝑝

𝑖𝑗 − 𝑥𝑘−1
𝑖𝑗))

(4) compute logits 𝑃𝑖𝑗𝑐 ∀𝑖 ∈ 1, ..., 𝑁, ∀𝑗 ∈ 1, ..., 𝐶, ∀𝑐 ∈ 1, ..., 𝐶 in the 𝑏𝑎𝑡𝑐ℎ

(5) compute the softmax 𝜎𝑖𝑗𝑐 : = 𝑒𝑥𝑝(𝑃𝑖𝑗𝑐)
∑𝐶

𝑗=1 𝑒𝑥𝑝(𝑃𝑖𝑗𝑐)
∀𝑖, 𝑗, 𝑐 in the 𝑏𝑎𝑡𝑐ℎ

(6) update 𝘄 by passing 𝐿𝑏𝑎𝑡𝑐ℎ : = −mean𝑖(max𝑗𝑐 (𝜎𝑖𝑗𝑐)) to the backward pass

2.2.6 Additional notes

Firstly, notice that the approximation of the optimal 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples is done it-
eratively in 𝐾 steps. Is is, therefore, possible to generate increasingly more successful
samples by lowering the 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 and increasing the value of 𝐾, but with considerable
computational cost.

While for the backward backpropagation we require one complete gradient computa-
tion (done via the differential chain-rule over all the layers of the neural network), this
algorithm requires 𝐾 more of them.

Also, let there be 𝑏 data samples in the processed 𝑏𝑎𝑡𝑐ℎ. In addition to the increased
computational complexity, the algorithm must keep 𝑏 + 𝑏 ⋅ 𝐶 sample copies in its
memory at all times. If this lowers the size of processable batch, it will have as an
effect that each epoch must be learned for higher number of smaller batches, further
increasing the training time.

Also notice that the algorithm uses max-norm || ⋅ ||∞ as the the 𝜖-limit for the
modification of the data.

A possible issue with the presented line of reasoning and the proposed algorithm
is that it puts too much focus on the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples, as only those are now
considered for the loss computation. Is it possible the unknown data distributions
have so much overlay, so that the algorithm (ignoring the unmodified data) actually
considerably decreases the accuracy towards the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data? I propose a modification
of the algorithm, so that it considers both the worst-case 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data as well as
the unchanged data.

12

. 2.2 Game theory

By computing the loss function both for the worst case 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data sample and
the unmodified samples, we can intuitively reduce the possible decrease of accuracy
on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data, even when we possibly break the math behind making the inner
optimization concave. Thus, this modification is also worth experimenting with (see,
e.g. Figure 5.20.). The change is only in the step (4).

Multi-Step Projected Gradient 2, algorithm 2
Extension of the categorical cross-entropy loss

inputs: 𝑏𝑎𝑡𝑐ℎ of data 𝑥𝑖, 𝑦𝑖 number 𝜖, number 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒, number 𝐾
output: the robust loss 𝐿𝑏𝑎𝑡𝑐ℎ

(1) duplicate every 𝑥𝑖 and 𝑦𝑖 in the 𝑏𝑎𝑡𝑐ℎ 𝐶-times

(2) set 𝑥0
𝑖𝑗 : = 𝑥𝑖𝑗 ∀𝑖 ∈ 1, ..., 𝑁, ∀𝑗 ∈ 1, ..., 𝐶 in the 𝑏𝑎𝑡𝑐ℎ

(3) for 𝑘 = 1, ..., 𝐾:

(𝑎) compute the gradient 𝗚𝑏𝑎𝑡𝑐ℎ = ∇𝑥(mean(𝑍𝑗(𝑥𝑘−1
𝑖𝑗 , 𝘄), −𝑍𝑦𝑖

(𝑥𝑘−1
𝑖𝑗 , 𝘄)))

(𝑏) compute 𝑥𝑡𝑒𝑚𝑝
𝑖𝑗 : = 𝑥𝑘−1

𝑖𝑗 + sign(𝗚𝑏𝑎𝑡𝑐ℎ) × 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒

(𝑐) compute 𝑥𝑘
𝑖𝑗: = min𝑒𝑙𝑒𝑚𝑒𝑛𝑡−𝑤𝑖𝑠𝑒 (𝜖 , max𝑒𝑙𝑒𝑚𝑒𝑛𝑡−𝑤𝑖𝑠𝑒 (− 𝜖 , 𝑥𝑡𝑒𝑚𝑝

𝑖𝑗 − 𝑥𝑘−1
𝑖𝑗))

(4) compute logits 𝑃𝑖𝑗𝑐 ∀𝑖 ∈ 1, ..., 𝑁, ∀𝑗 ∈ 1, ..., 𝐶, ∀𝑐 ∈ 0, ..., 𝐶,
where 𝑐 = 0 is the set of unmodified samples, in the 𝑏𝑎𝑡𝑐ℎ

(5) compute the softmax 𝜎𝑖𝑗𝑐 : = 𝑒𝑥𝑝(𝑃𝑖𝑗𝑐)
∑𝐶

𝑗=1 𝑒𝑥𝑝(𝑃𝑖𝑗𝑐)
∀𝑖, 𝑗, 𝑐 in the 𝑏𝑎𝑡𝑐ℎ

(6) update 𝘄 by passing 𝐿𝑏𝑎𝑡𝑐ℎ : = −mean𝑖(max𝑗𝑐 (𝜎𝑖𝑗𝑐)) to the backward pass

13

Chapter 3
Attacks on Neural Networks, Regularizations

3.1 Attack introduction

There are multiple ways to undermine the neural network models’ performance. For
example, one can infect the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 data of the learning phase, so that the model
becomes predisposed to end up biased in a desired way. Such a scenario can also
be modeled in the way of a two-player min-max problem, the main drawback of this
approach is clear, thought. There is a requirement for direct access to the training
data pool even before the model training process starts, and that is generally not a
possibility.

The methods considered in this thesis, however, are the ones, which only require
access to an already trained model. These attack methods then consequently learn
from the models’ responses in order to modify the data in malicious ways.

3.2 Approaches - gradient-based attacks

A common attack approach is to modify the data slightly before it is presented to the
neural network, in the direction of its gradient (over the classifier’s parameters), so that
it is misclassified, either arbitrarily, or as some desired class.

We consider:

. 𝑥 as the specific data presented to the neural network. 𝑓(𝑥, 𝘄) as the prediction of the neural network given its weights 𝘄. 𝐿(̂𝑦, 𝑦) as the neural network’s loss function. 𝜖 as the maximal change allowed for the data change. 𝛿 is a bias in the direction of the gradient

The outcome of the gradient-based attacks is a data sample 𝑥𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 generally
created as:

𝑥𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 = 𝑥 + 𝛿 𝑠.𝑡. |𝛿𝑖| ≤ 𝜖 ∀𝛿𝑖 ∈ 𝛿

meaning every observation (e.g. a pixel) in a data sample (e.g. in a picture) can be
modified by at most ±𝜖.

We need to specify some small value of 𝜖 so the change of the data remains 𝑠𝑚𝑎𝑙𝑙,
which is advantageous for multiple reasons. Firstly, it ensures the perturbation of the
data does not become too large to get out of the attacker’s scope, being too difficult
or costly to actually perform. It also reduces the chance the data is easily identified as

14

. 3.2 Approaches - gradient-based attacks

adversarial by some other observer, as the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data sample becomes too much
of an outlier of the class distribution.

These attacks are known to be especially successful in laboratory conditions, however
with a drawback of their own. They require the access to the specific neural network
model, against which the attack is performed. This can be achieved in the scenario
of preparing the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples against a widely reused model, such as the
pre-trained EfficientNETV2.

The interesting characteristic of such attacks is that, by limiting the change by the
value of 𝜖, the sample 𝑥𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 is basically indistinguishable from the original 𝑥, as
the difference between the two seems to be just a random noise of small values.

3.2.1 FGSM - Fast Gradient Sign Method

It is a straightforward modification of the data in the direction of the gradient. It has
been proposed in the paper Explaining and Harnessing Adversarial Examples [8] in
2014 by Google, very soon after the beginning of the 2010s period of neural networks’
renaissance.

The main message was that even well-trained classifiers with high confidence in the
data classification can be confused into misclassification by just a tiny modification of
the data sample.

Doing that, the authors presented an innate vulnerability of the neural networks used
as the classifier. Besides that, they also outlined an initial countermeasure, trying to
incorporate the FGSM-attacked samples into the classical SGD learning process.

The formula used for creating the modified data in this thesis, following the previously
set notation is:

𝑥𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 = 𝑥 + 𝜖 ⋅ 𝑠𝑖𝑔𝑛(∇𝑥 𝐿(𝑓(𝑥, 𝘄); 𝑦))

Figure 3.1. The infamous picture with pandas taken from Explaining and Harnessing Ad-
versarial Examples [8]

As seen in the picture, even such a naive attack can have a huge impact on the
classifier’s performance. Notice, also, how the modified image can appear to be identical
to the original one, at least to a human eye. In the case of data, which has some noise
present just by its nature (like imperfections of a camera), it might be difficult to even
distinguish, which samples have been modified, beforehand.

15

3. Attacks on Neural Networks, Regularizations .
3.2.2 PGD - Projected Gradient Descent

This is a natural extension of the previous method, originally designed again by Google
researches, in multiple papers [9] simultaneously (there, it is not called PGD, but ’Basic
Iterative Method’).

For a specified number 𝐾 iterations, we change the data samples in smaller steps.
The implication is that this attack method still makes the total change to the samples
relatively small but with potentially even higher success of fooling the model. It also
requires considerably more computational power.

The formula for the modified data is:

𝑥𝑘+1
𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 = 𝐶𝑙𝑖𝑝𝑥0,𝜖(𝑥𝑘

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 + 𝛼 × 𝑠𝑖𝑔𝑛(∇𝑥𝐿(𝑓(𝑥(𝘄); 𝑦)))

for 𝑘 in 0, ..., 𝐾

where the function 𝐶𝑙𝑖𝑝𝑥0,𝜖 again limits the final change by the value of 𝜖, meaning,
for every number in the data sample, every new value is at most 𝜖-different from the
original value. See the step (3.c) of Algorithm 1.

Interestingly enough, the same authors (Alexey Kurakin, Ian J. Goodfellow and
Samy Bengio) in the paper Adversarial Machine Learning at Scale [10] try (besides
other things) to solve the task of robust learning by adding the PGD-modified samples
to the training process of a neural network, which are created on the fly during the
forward pass. That is really not that different idea from the one explored in this thesis.

They did not, though, find much success with such an approach. Specifically, they
say: ’We also tried to use iterative adversarial examples during training, however we
were unable to gain any benefits out of it. It is computationally costly and we were
not able to obtain robustness to adversarial examples or to prevent the procedure from
reducing the accuracy on clean examples significantly.’

3.3 Approaches - Foolbox

For the task of creating 𝑎𝑑𝑣𝑒𝑠𝑎𝑟𝑖𝑎𝑙 data samples (mainly focused on images) to achieve
the misclassification, there is a framework called ’Foolbox - Fast adversarial attacks to
benchmark the robustness of machine learning models [11]’. It contains code for many
various already prepared attacks. Generally, these attack methods try to modify the
picture in some ways, observing the model’s classification decision and confidence, and
then providing you with the most likely one to be misclassified.

The great thing about the framework is the implementation of an interface for plug-
ging into the main libraries for developing the neural networks, Keras, Torch and JAX
for Python. Instead of reimplementing the whole attack method, you can only point
the Foolbox’s API to the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑥) method of your classifier.

16

. 3.4 Regularization

3.3.1 Spatial attack

This is arguably the most likely non-𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙, naturally appearing reason of mis-
classification, as it rotates and translates the picture in different directions and angles,
something you can expect to encounter when, for example classifying, the road signs. A
sign can be rotated on its stand in such a way, that it confuses the trained classification
model. Interestingly, it also works quite well as a targeted attack method.

The clear drawback of the Foolbox attacks is that they are aimed mainly at the image
classification, and so their use is limited.

Figure 3.2. Examples of the data samples by a spatial attack, picture taken from Exploring
the Landscape of Spatial Robustness [12].

While it can be argued this type of attack is also a 𝑠𝑚𝑎𝑙𝑙 change to the original
data sample, it does not comply with the condition of modifying each pixel of the data
sample by at most 𝜖.

This makes it more of an exercise in curiosity of how well (and if even at all) does
the robust learning process (aimed against gradient-based attacks) generalizes onto
completely different kinds of attacks.

3.4 Regularization

The term regularization is generally used as a large collection of varying approaches
commonly used to reduce the tendency of the model’s overfitting. The idea is to (hope-
fully) increase accuracy on 𝑡𝑒𝑠𝑡 and later 𝑟𝑒𝑎𝑙 data by making the neural network’s
training process more 𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡.

The crucial characteristic all the methods share is that they are disabled upon fin-
ishing the training period.

Finally, the algorithm of the robust training can be seen as a form of regularization,
too. It clearly is a modification of the SGD learning process, which is completely
inactive after the training period is over, while it is expected to increase accuracy on
𝑟𝑒𝑎𝑙 data.

17

3. Attacks on Neural Networks, Regularizations .
3.4.1 Training data modification - augmentation

A common approach is to directly modify the training dataset by adding specific, for
example even the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙𝑙𝑦 crafted samples, into the training set. The trained
model, being trained also on the inconvenient examples, should be, intuitively, much
less likely to be successfully attacked.

Generally, however, the samples are (randomly) modified at the moment they are
loaded in a batch to process the training step. Doing so means the random modifications
to a single sample are different for each epoch without the requirement of a larger
memory or dataset.

For the image modification, there are quite obvious adepts to be used. In this work,
these specific random alterations (augmentations) are present under the process of
training with regularization:

. Random noise added to the pixels. Random resize (enlargement only). Random crop to receive the original size again. Random rotation (up to 30 degrees)

Adding the random noise can be seen as some poor, random attack within the frame-
work of the 𝜖-gradient-based attack. The other transformations do not fulfill the condi-
tion to only modify the data by ±𝜖, yet they might be able to increase the robustness,
too. They can be seen simply as a means of enlarging the training dataset, so the neural
network is trained on a larger number of 𝑢𝑛𝑖𝑞𝑢𝑒 samples, making it potentially more
successful against the spatial attacks.

There are, of course, other commonly used augmentations, but their usage is not
implicitly beneficial. Take, for example, a horizontal flip. That is a common regulariza-
tion method, basically doubling the size of the training dataset. Let’s have an image of
a horse with a head on the left side of the image, then the flipped image with the head
on the right side of the image is again a valid, different image of a horse. A horizontally
flipped image of the MNIST number 3, though, is not necessarily a valid data sample
anymore.

For the modification of sound samples (explained later), similar things can be con-
structed, one must only remember that the data no longer represent 2D objects (e.g.
rotating the sample does not have the same meaning anymore). In this work, these
specific random alterations are present under the framework of training with regular-
ization:

. Random noise added to the sample. Randomly masking sections with zeros. Resampling (decreasing the sample rate)

While these procedures generally increase the loss during the training period (as every
training sample presented to the neural network has never been seen by it before), it
makes the model better estimate the classes’ sample distributions.

18

. 3.4 Regularization

3.4.2 Dropout

It is another classic regularization method, but this one is not meant to tamper with the
data samples themselves. The basic idea is that during the learning phase, every neuron
has a specified shared probability 𝑝 to be independently disqualified for a learning
step. The motivation behind this idea is to force every single neuron into learning and
providing some specific information, about the seen data, on its own. Without this,
usually, multiple unique information pieces are gathered by a combination of multiple
neurons, instead of these information pieces being identified independently. This process
then often leads to higher accuracy on the test data [13].

A known issue is that while dropout is very powerful in feed-forward deep neural
networks, in recurrent neural networks, it has to be executed carefully. Ignoring some
processed data during the pass through the network, in recurrent models, not only
corresponds to hiding some part of the data, but also tampering with the current inner
state of the network.

It is naturally expected, for this regularization method, to be the most noticeable
with the classical, non-recurrent, neural network models.

Figure 3.3. During training (left), it sets activations at random to zero with probability
p and applies a multiplying factor to keep the expected values unchanged. During the
test/validation phase (right), it keeps all the activations unchanged. Image taken from [2].

In Figure 3.3, there is a simple schematic, of how the dropout can be easily imple-
mented - zeroing out values passed to/from the specific layer of the neural network.
Generally, this can be done to any layer within the network, but with varying success
to improve the accuracy. It is taken from the textbook for neural networks, Little Book
of Deep Learning [2].

19

3. Attacks on Neural Networks, Regularizations .

Figure 3.4. Picture taken from the paper Dropout: A Simple Way to Prevent Neural
Networks from Overfitting [13]

Figure 3.4. shows the general consequence of using dropout on the learned weights of
the neurons. Instead of chaotically identifying patterns as elaborate linear combinations
of neurons, each one of them is trained to search for one specific information.

The intuition, of why this should increase the robustness of the trained model, is,
therefore, simple: the noise-like small, 𝜖-limited perturbation to the data samples,
should have much lesser impact on the well-defined neurons seen on image (b).

20

Chapter 4
Neural network models

4.1 Implementation, hardware

For the code implementation, I have taken and expanded the codebase provided by the
work of Annotated S41. For convenience and possible validation of my results, I have
included the file requirements.txt with all libraries (and their versions) used. The
Python version used is Python 3.10.12 [GCC 11.4.0].

The codebase is written in Python, leveraging multiple libraries for machine learning
projects. The most crucial one is the framework JAX2. It is quite a recent framework
for Python, developed by Google, which provides multiple great features, such as:

. Gradient (and hessian) computation of arbitrary real-valued functions. Custom implementation of NumPy, which is a superset of the original library. Convenient access to GPU/TPU hardware. Precompilation of code onto the GPU/TPU hardware for computation efficiency. Extensive language for explicitly defining&using vectorized operations

The JAX framework consists of a whole ecosystem of libraries, a noteworthy example
being Flax, which provides code intended for the development of neural networks. For
example, it provides the AdamW algorithm for 𝑆𝐺𝐷 training and the LSTM/GRU
neural cell implementation.

Because of the just-in-time (JIT) compilation onto the GPU/TPU hardware, the
runtime efficiency is beyond its competition. Many empirical experiments commonly
propose JAX as 𝑓𝑎𝑠𝑡𝑒𝑟 than Keras and Torch (both when JIT compiled and completely
interpreted 3) by a few percent. Importantly, the efficiency of the computation of
gradients of real-valued functions is incomparable to the other libraries, as seen in the
plot. 4

1 https://srush.github.io/annotated-s4/
2 https://jax.readthedocs.io/en/latest/index.html
3 https://github.com/hengyuan-hu/jax-vs-pytorch
4 https://towardsdatascience.com/jax-vs-pytorch-automatic-differentiation-for-xgboost-

10222e1404ec

21

https://srush.github.io/annotated-s4/
https://jax.readthedocs.io/en/latest/index.html
https://github.com/hengyuan-hu/jax-vs-pytorch
https://towardsdatascience.com/jax-vs-pytorch-automatic-differentiation-for-xgboost-10222e1404ec
https://towardsdatascience.com/jax-vs-pytorch-automatic-differentiation-for-xgboost-10222e1404ec

4. Neural network models .

Figure 4.1. Comparison of the algorithm (including a gradient computation) run times
written in JAX and in PyTorch.

That is a crucial reason to implement the experiments of this thesis in JAX instead
of PyTorch, as the algorithm for robust learning is based on gradient computation. As
shown later, even on (close to) current high-end hardware and JAX implementation, a
single epoch of training can take hours, even for small neural networks.

Provided with the means of simple gradient computation, implementation of Algo-
rithm 1 was not terribly difficult. It is enough to overload the implementation of the
broader loss function implementation, the gradient in it is analogous to the one used
for backpropagation. One must only be careful with the larger number of the tensors’
axes.

The biggest drawback, however, is the fact JAX has basically no inter-compatibility
with other Python frameworks for neural network development, such as the aforemen-
tioned Keras and Torch.

An important note is that, while the JAX ecosystem is multiplatform, much of the
advanced functionality (like direct access to GPU/TPU) is only accessible on Linux
machines. This makes the implementation codes of this thesis (at least for the time
being) non-executable on computers with other operating systems.

The whole codebase was designed for use with data series processing by neural net-
works, like the naive SSM and S4 architectures. To perform the image classification,
to simulate the dataseries processing, the images are fed into the neural networks pixel
by pixel, which in reality is a somewhat uncommon and sub-optimal approach for this
task, and is thus just an artificially created exercise.

In the code, this is achieved using the JAX’s VMAP (vectorizing map) feature,
mapping each pixel onto the neural network’s input, one by one, in conjunction with
the library Functools.Partial, allowing for currying (from the functional programming
paradigm) the shared or static values.

The dataset loading process is done naturally, as is the standard in the field, by
extending the Torch classes of Dataset and DataLoader. The transformations (both
for the conveniences and regularizations) are done employing the functionality provided
by TorchVision.transformations and TorchAudio.transformations.

I use the code for the S4 architecture definition basically unchanged, most of the
code (such as the model training process) is greatly modified to incorporate the robust
learning of S4 as well as possibly other models. Other parts of the code, such as loading
different datasets, loading/saving the models to disk, plotting, and of course the attacks
are a complete addition.

22

. 4.2 Basic feed-forward, dense model

The 𝑆𝐺𝐷 implementation of the neural network’s training is quite classical AdamW
with weight decay, computing the gradient over a batch of the data samples, with either
the cosine learning rate schedule, starting at value 0.1, or constant one. All of the data
samples have been apriori shifted into the range < −1, 1 > to keep the domain small,
and more importantly, shared across the datasets.

Generally, all the metaparameters (size of the neural network as well as metaparam-
eters regarding the training process) are specified and loaded from the config.yaml
file.

For the computation itself, both a personal computer:

. CPU: AMD Ryzen 5, 2600 (6cores/12threads). RAM: 32GB DDR4. GPU: Nvidia GTX 1070, 8GB VRAM

as well as CTU’s (Czech Technical University, alma mater) RCI supercomputer clus-
ter is used. The cluster node is:

. CPU: Intel Xeon Scalable Gold 6146/6150 (4cores). RAM: 40GB DDR4. GPU: Nvidia Tesla V100, 32GB VRAM or Nvidia Tesla A100, 40GB VRAM

As noted before, the robust training algorithm is quite VRAM demanding (the com-
putation is of course being done by GPU), and so the RCI’s Teslas with much more of
VRAM well surpass the capabilities of any reasonable personal computer.

4.2 Basic feed-forward, dense model

A classic network built from fully connected layers, where the output layer consists of
𝐶 neurons, each corresponding to the predicted likelihood of its class. Their outputs
are put into softmax to select the predicted class.

This is the only non-recurrent model of neural network used. Therefore, the whole
data sample is always presented to its input layer at once, not in the serial manner. This
is controlled by the parameter series when creating the dataloader in file data.py.
The model’s presence in this thesis is mainly for validation of the outcomes and perhaps
some kind of reality-check, since it is the most basic and commonly used model in this
kind of experiments.

The neural network consists of the input layer, which has the input size equal to the
size of the data samples, and has the output size of 𝑑. It is followed by the hidden
layer, with both input and output size equal to 𝑑, and finally the output layer, with the
output size equal to 𝐶. The inequality used is ReLU.

4.3 Model S4

The architecture called S4 is another step in the evolution of State Space Models (SSM).
These models have large state matrices of learned parameters to keep the trace of the
inner state of the models, making them good in dealing with data series. SSMs are
achieving high performance in the series processing by different approach than widely
used recurrent models like LSTM’s or Transformers.

23

4. Neural network models .
As is the case with other architectures for dataseries processing, the SSM’s can be

used also for data generation tasks, and not only for prediction or classification tasks.
That is, however, outside the scope of this thesis.

Main drawbacks of SSMs are the necessity of learning the huge amount of parameters
in their state matrices, and especially the numerical instability. A basic implementation
of SSM is by far outclassed by a basic implementation of the LSTM architecture.

These are the motivation of the S4 architecture, which strifes to replace the huge
amount of values in the state matrices by learning functions generating the numbers
expected to be in the matrices instead.

By solving the clear issues of SSMs, the S4 (and its similar architectures) model is an
interesting competitor to the 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛-module based Transformer architectures, which
are currently dominating the market (being the backbone of, for example, the famous
GPTs).

4.4 Recurrent - LSTM

The LSTM (Long short-term memory) architecture was the first advanced successful
model of recurrent neural networks, being in development since the mid 1990’s. A
neuron of the LSTM model has an input, output and memory gate. Until the end of
the decade, it has been successfully improved by, for example, being extended by the
𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒, and computational optimizations; overall, it holds 8 matrices of learned
parameters.

Since then, it has been the general go-to architecture for processing data series, while
it witnessed barely any additional improvements.

In this work, the model is given a time-record one by one from the data sample,
recurrently updating its inner state, and finally sent to the output (fully connected) layer
after the last time tick, on which the softmax is computed. No complex architecture,
such as a bothdirectional implementation, is present, as optimizing an architecture
towards a specific task is not the focus of the thesis.

4.5 Recurrent - GRU

The Gated Recurrent Unit (GRU) has been developed much later as a computationally
more efficient alternative to the LSTM. The inner state of the cell is represented only
using one tensor (instead of 2 in LSTM), and retains only 6 matrices of learned weights.

The strange relation between the GRU and the LSTM architecture is that they
empirically perform, on average, the same. Sometimes, on specific use-cases, however,
one or the other excells and far surpasses the other one. The decision regarding which
one should be used for a specific task is usually decided by trying both and selecting
the one, which has better performance.

In this thesis, the high-level GRU model is the same as the LSTM’s.

24

. 4.6 Datasets - overview

4.6 Datasets - overview

. MNIST numbers - dataset of grayscale images of (handwritten) digits has become the
most used dataset for experiments connected to training neural networks. It consists
of simple data (only one color channel). Importantly, it has been used in both the
paper presenting the robust learning algorithm, as well as the paper presenting the
S4 neural network architecture, so it is natural for it to be present in this thesis as
well, for the sake of consistency, even though the image classification is not a natural
fit for dataseries-oriented neural networks.. Presented by The MNIST Database of Handwritten Digit Images for Machine

Learning Research [14]

. GTSRB (German Traffic Sign Recognition Benchmark) - dataset is a collection of
pictures of road signs (of 43 types/classes) photographed under various conditions,
distances and angles. The main difference between the GTSRB and the MNIST
dataset is the GTSRB images are RGB (meaning 3 channels per pixel instead of
1). It is used only for a quick experiment of how well the dataseries models, attack
methods and the robust training process generalize from single-channel to tripple-
channel data (as shown leter - poorly), and how is the accuracy affected for 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
data under the robust training.. GTSRB (German Traffic Sign Recognition Benchmark) 5

. Speech Commands - dataset of voice recordings (samples of one-second audio) of 35
commands for controlling e.g. a vehicle. Data series of this type clearly suits the S4’s
intended purpose better. Being a standard Torch dataset, it allows for simple data
transformations, such as convolution or resampling, or the transformations used for
the regularization. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition [15]

. UrbanSound8K - dataset of sound recording common to hear in a downtown (10
classes, e.g. “a drill“), up to 4 seconds long. While the nature of the data is the same
as with the Speech commands, there are few key differences. Firtly, these are not
speech recording, but sounds with high periodicity instead. They are also recorded
with higher numnber of different devices and under varying conditions. Lastly, it is
not a Torch dataset, meaning it requires another means of data processing before it
can be put into the neural network.. UrbanSound8K - Urban Sound Datasets 6

5 https://benchmark.ini.rub.de/
6 https://urbansounddataset.weebly.com/urbansound8k.html

25

https://benchmark.ini.rub.de/
https://urbansounddataset.weebly.com/urbansound8k.html

Chapter 5
Experiments and outcomes

5.1 MNIST numbers

5.1.1 Outline of the experiments

The first dataset used is the classic MNIST dataset of rasterized hand-drawn digits.
In this thesis, this dataset consists of data samples of the shape [784,1], meaning 784
(28*28) pixels of a single color channel, only 784 values per one image. The individual
values are not binary {black, white}, while it may seem like that from the ilustration,
but are spanned over the whole greyscale interval.

Figure 5.1. An ilustrative subset of the MNIST dataset, picture taken from a paper [14]

Firstly, let’s have a look on examples of the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples, which are cre-
ated using the attack methods presented above, created by my implementation. In each
of the following figures, there are always 3 images, the original one, the adversarially
modified one, and their difference (which has been somewhat pronounced for a better
visibility).

The gradient-based attack methods were constraind by 𝜖 : = 0.1, for the PGD attack,
the number of iterations is 𝐾 : = 40 and 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 : = 0.01.

26

. 5.1 MNIST numbers

Figure 5.2. The example of PGD attack on MNIST

Figure 5.3. The example of FGSM attack on MNIST

Figure 5.4. The example of spatial attack on MNIST

All three of the samples were succesfull in fooling the non-robustly trained S4 archi-
tecture, and the samples were misclassified. Notice how the FGSM and PGD attack
methods produce quite similar attack vectors 𝛿.

For the experiment, all four mentioned architectures of neural networks are trained
on the dataset in four scenarios:

. Basic, non-robust AdamW training. Robust training, using Algorithm 1. Basic, non-robust with regularizations enabled. Robust (Algorithm 1) training with regularizations enabled

27

5. Experiments and outcomes .
After finishing the training process, we are interested in:

. Accuracy on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples. Accuracy on the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples. Symbiosis between the robust training and the regularizations. Influence of these on reached values of loss function on 𝑡𝑒𝑠𝑡 data. Increase in the computational cost of the robust training

For all of the 4 architectures and 4 scenarios, the parameters used in the experiment
are in the config file:

. Size of each layer (number of neurons per layer): 128. Size of the recurrent hidden state: 64. Batch size: 20. Epochs: 10. Learning rate: 0.001. Weight decay: 0.001. Iterations of the robust learning algorithm: 8. Stepsize of the robust learning algorithm: 0.15

With these metaparameters, the models have these numbers of learnable weights
(that is, the minimization domain of the player - 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟:

. Feed-forward - 151562 parameters. GRU - 133642 parameters. LSTM - 166410 parameters. S4 - 100618 parameters

The player - 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 is maximizing over creating the attack vector of size 784 per
data sample.

As stated previously, the S4 architecture, as well as the recurrent ones, is meant to be
used for time-series data processing, not for image classification. This task is therefore
somewhat artificially defined, and it is achieved by feeding the neural models images
pixel-by-pixel.

The exception to this is the plain feed-forward dense (FF) neural network, which is
used for verification of the observed outcomes, as its implementation is simple and its
learning process fast. This FF model receives the images as a 1D flattened array of
pixels in one go.

These chosen parameters represent the upper limit of what can be computed on a
personal computer. I use the CUDA computing cores (accessed by the JAX library)
on my GTX 1070 with 8GB of VRAM. As seen on the following screenshot, the ro-
bust learning process of the S4 architecture, with these parameters, barely fits on the
hardware, as seen on the following figure 5.5.

28

. 5.1 MNIST numbers

Figure 5.5. Graphics card utilization

5.1.2 Experiment outcomes

The experiments have been run multiple times, and the outcomes generally stay very
similar. These are taken from a specific experiment run. Since the MNIST dataset is
so simple, it is well handled by Algorithm 1.

Firstly, let’s observe the table of reached accuracies:

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3 Spatial

FF 95.6 71.3 3.9 44.5 27.0 95.5
FF robust 96.5 90.7 54.5 86.4 27.0 96.2
FF regul. 86.6 25.2 0.0 6.6 0.1 82.4
FF robust+reg. 90.9 64.2 22.8 50.9 5.6 8.4
GRU 95.7 36.8 0.1 63.2 8.7 0.0
GRU robust 95.6 94.4 92.0 94.8 93.7 0.0
GRU regul. 94.8 46.0 0.4 53.6 5.1 0.0
GRU rob.+reg. 94.5 91.8 88.3 92.6 90.1 0.0
LSTM 91.7 19.1 0.9 23.4 7.7 0.0
LSTM robust 93.9 91.0 86.6 92.4 90.5 0.0
LSTM regul. 83.4 35.5 15.9 40.2 25.6 0.0
LSTM rob.+reg. 95.6 94.0 90.7 94.6 93.4 0.0
S4 98.2 93.3 34.5 90.4 36.2 5.0
S4 robust 97.9 96.5 91.4 96.4 92.2 2.8
S4 regul. 96.1 87.5 24.6 80.0 18.8 0.0
S4 robust+reg. 97.0 95.2 89.5 95.2 90.3 0.2

Table 5.1. Accuracy of the different scenarios reached for the MNIST dataset, Algorithm
1

29

5. Experiments and outcomes .

Several things are directly clear. The basic feed-forward dense model is clearly more
resistant against the spatial attacks, probably because the spatial patterns remain sim-
ilar after the attack. Since the shift in pixels corresponds into large time-difference
observed by the other models, they are affected more. The regularization methods do
not appear to increase the resistance, though. A possible explanation is that random
resize and crop may create difficult samples. Take for example cutting-out the upper
part of the number 7, resulting in a sample basically identical to the number 1

Because of that, I have decided to re-run the experiment with smaller set of reg-
ularizations, employing only the random noise, rotation and dropout. This seems to
produce much more convenient numbers. The outcomes are:

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3 Spatial

FF regul. 86.6 25.2 0.0 6.6 0.1 82.4
FF robust+reg. 90.9 64.2 22.8 50.9 5.6 8.4
GRU regul. 94.8 46.0 0.4 53.6 5.1 0.0
GRU rob.+reg. 94.5 91.8 88.3 92.6 90.1 0.0
LSTM regul. 83.4 35.5 15.9 40.2 25.6 0.0
LSTM rob.+reg. 95.6 94.0 90.7 94.6 93.4 0.0
S4 regul. 96.1 87.5 24.6 80.0 18.8 0.0
S4 robust+reg. 97.0 95.2 89.5 95.2 90.3 0.2

Table 5.2. Accuracy of the different scenarios reached for MNIST dataset, reduced set of
regularizations used, Algorithm 1

Notice that the S4 model appears to reach higher accuracies than the other models,
suggesting it is a good alternative for the dataseries processing. The LSTM model has
generally been somewhat outclassed by the GRU model on this dataset, which is also
computationally less demanding.

Because the relation of between the robust learning and the other regularizations is
not clear, I only put the plots of accuracies without the regularizations, here. The rest
of them can be seen in the Appendix A.

30

. 5.1 MNIST numbers

Figure 5.6. Accuracies reached by the non-robust training on MNIST

Figure 5.7. Accuracies reached by non-robust training on MNIST

The robust training method proved advantageous, generally even slightly increasing
the accuracy on the 𝑡𝑒𝑠𝑡 dataset. It seems, however, it provides no advantage against
the spatial attack. With the exception the feed-forward model, the models retained
accuracy close to 90% even with the PGD attack with the sample change of 𝜖 : = 0.3.

31

5. Experiments and outcomes .
Even though the resistance against the gradient-based attacks is not absolute, it is

quite high in this example, and the algorithm is thus worth consideration when training
a model into real-world usecase.

The increase in computation demand is, however, a clear drawback. While one epoch
of the basic, non-robust learning takes around 35 seconds for the feed-forward model,
one epoch of the robust learning takes roughly 1300 seconds (a bit over 20 minutes),
making the even the short 10epoch-long experiment take several hours. For the S4,
the time has increased from 75 to 1400 seconds, for GRU, it changed from 260 to 2300
seconds, and for LSTM, it went from 220 to 2100 seconds. The time required by the
training process is roughly 65times longer.

Following are the plots of the accuracy progress during the epochs of the training
phase. This has been measured on a model with lower number of neurons for better
ilustration, but similar, less pronounced fenomena can be seen, too. All of the actual
experiments’ outputs and data can be viewed on inside the outcomes folder.

Figure 5.8. Accuracy progress on the MNIST dataset, non-robust training

32

. 5.2 German road signs

Figure 5.9. Accuracy progress on the MNIST dataset, robust training

The plots on figures 5.8. and 5.9. support the idea of understanding the robust
training algorithm as another form of regularization, as it reduces the tendency of over-
fitting, which consequently lead to the accuracy drops in certain epochs visible on the
figure 5.6.. Instead, the models are pushed into generating more general distributions
of the data samples, pushing the accuracy up even for the 𝑏𝑒𝑛𝑖𝑛𝑔 data samples.

Overall, the approach of the robust training proved to be very succesfull on this
dataset, with the only drawback being the increase in computation cost. The experi-
ments thus confirm the findings presented in the original paper.

5.2 German road signs

The GTSRB (German Traffic Sign Recognition Benchmark) dataset is a collection of
pictures of road signs photographed under various conditions, from various angles, etc..

It is thus another dataset used for the image classification, intended to possibly
support the outcomes achieved on MNIST.

The data samples are RGB images, which means 3 channels per pixel, corresponding
to 43 types (classes). That means there are now 3072 (3*32*32) values per each sample.
In this thesis, for the serial-data NN models, these samples are streams of the 3 color
channels in parallel, that is, with the shape of [1024, 3].

33

5. Experiments and outcomes .

Figure 5.10. An ilustrative subset of the GTSRB dataset, picture taken from a paper 1

This time, the data are much more complex, having and having much more clas-
sification classes makes the task further more difficult. For that reason, I have ran
the experiment on the CTU’s RCI cluster, running on NVidia’s Tesla V100, providing
considerably more computing power.

In order to contain the higher complexity of the data samples, I have increased the
size of the models, this time, the metaparameters are:

. Size of each layer (number of neurons per layer): 224. Size of the recurrent hidden state: 324. Batch size: 24. Epochs: 20. Learning rate: 0.001. Weight decay: 0.001. Iterations of the robust learning algorithm: 8. Stepsize of the robust learning algorithm: 0.15

With these metaparameters, the numbers of trainable weights of the neural network
models are:

. S4 - 807775 parameters. FF - 662623 parameters

Again, let’s start by having a look on the examples of the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples:

1 https://paperswithcode.com/dataset/gtsrb

34

https://paperswithcode.com/dataset/gtsrb

. 5.2 German road signs

Figure 5.11. PGD attack on GTSRB

Figure 5.12. FGSM attack on GTSRB

Figure 5.13. Spatial attack on GTSRB

Notice, that the attack vector of the PGD attack is so tiny, it cannot even be printed
properly. In the online version, the vector is actually (barely) visible. Yet, even such a
small change to the image was enough to make the non-robustly trained S4 architecture
misclassify.

Let’s have a look on the table of reached accuracies:

35

5. Experiments and outcomes .

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3 Spatial

FF 81.7 13.3 3.9 25.5 8.7 0.0
FF robust 47.4 11.3 0.9 16.4 6.7 0.0
FF regul. 76.0 11.6 4.3 23.3 9.1 0.0
FF rob.+reg. 43.6 9.2 1.0 13.4 5.5 0.0
S4 64.9 0.0 0.0 5.7 6.4 0.0
S4 robust 35.9 3.0 0.7 4.8 3.0 0.0
S4 regul. 62.0 0.5 0.2 5.7 3.4 0.0
S4 rob.+reg. 33.0 2.9 0.1 4.3 3.0 0.0

Table 5.3. Accuracy reached on GTSRB, Algorithm 1

On the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data, models trained with the vanilla training process have by far the
best accuracy (remember there are 43 classes considered, much more than the previous
MNIST), which is not that surprising. Interestingly, the robust training appears to
have no meaningful impact on the models’ performance on the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples,
either.

It appears, though, this dataset is beyond the capabilities of used neural network
models. Even the S4, generally outperforming the GRU and LSTM architecture, strug-
gles to gain any reasonable performance, here. Clearly, convolutional neural networks
designed specifically for image recognition would be a better fit for this task. It does
not make sense to dive deeper into the image classification.

Regarding the computation time increase, for the dense model, time per epoch went
from 27 seconds to 41 seconds, barely changing at all, but for the S4 model, the increased
from 41 seconds to roughly 650 seconds (11 minutes per epoch).

The conclusion then seems to be that the robust training is worth only when the
size of the classifier allows for containing the whole complexity of the dataset. Because
other wise, not only is the increase in computational demands not worth it, it does not
appear to grant any benefit at all.

For clearance, let’s also add the plot of the accuracy and loss (on the 𝑡𝑒𝑠𝑡 dataset)
progression during the epochs, this time for the dense model, without regularizations.

36

. 5.3 Speech Commands

Figure 5.14. Plot for the feed-forward model. The robust (blue lines) training keeps the
Loss (right axis) much higher, while keeping the accuracy (left axis) lower.

As the image classification is not a good fit for these neural networks, let’s not explore
this settings further.

5.3 Speech Commands

5.3.1 Outline of the experiments - direct sound processing

A reasonable alternative classification task could then be the task of classifying sounds.
The SpeechCommands dataset contains very small sound recordings (around 1 second
long) of 35 voice commands (105829 samples in total), all of them already resampled
to the same 16Khz sample rate. The dataset is also provided via the Torch ecosystem,
and thus easy to load and use.

The initial idea is to process the sound recording just as it is captured by the mi-
crophone, a time series of audio samples/values. This makes the data samples quite
long (and thus difficult to train on, as for the recurrent neural network, the gradient
must be computed for the whole chain of recurrent entries), and not really used in
reality. But it supports the idea of simple input modification to force the classifier into
misclassification.

Each 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 data sample is then represented in shape [16000, 1], far surpassing the
previous datasets in size per sample. Computing the adversarial gradients and their
memory demands proved to be an issue. Remember, that the memory consumption of
the algorithms increases together with the number of considered label classes.

To tackle these issues, I had to cut down the number of classes, specifically, I only
took the commands zero, one,...,nine, and I also employed one 1D convolution before
filling the neural network with the training samples.

37

5. Experiments and outcomes .
For the chosen classes, there are still 38908 samples in the dataset, more than enough

for this experiment. They are randomly split into the 𝑡𝑟𝑎𝑖𝑛 (80%) and 𝑡𝑒𝑠𝑡 (20%)
datasets.

Again, this experiment has been run on the CTU’s RCI cluster to help with the time
and computational demands.

The metaparameters chosen for the experiment runs are:

. Size of each layer (number of neurons per layer): 64. Size of the recurrent hidden state: 128. Batch size: 16. Epochs: 16. Learning rate: 0.001. Weight decay: 0.001. Iterations of the robust learning algorithm: 10. Stepsize of the robust learning algorithm: 0.05

We are testing the same scenarios with the same models as with the MNIST dataset,
just without the spatial attack (as it obviously does not make the same intuitive sense,
these sounds are not 2D images, and rotation by an angle is not defined).

Here, you can see a section of a recording of command four, and how the different
attacks changed it.

Figure 5.15. PGD (𝜖 = 0.3) attack on the command four.

38

. 5.3 Speech Commands

Figure 5.16. Gradient-based attacks on the command four.

As shown, the gradient-based attacks have the tendency to modify the original sam-
ple differently in different sections of the recordings. Somewhere, just amplifying the
values is the most advantageous change possible. Other times, the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 sample
chaotically jumps around the original sample in order to exploit the learned weights of
the neural network.

5.3.2 Outline of the experiments - spectrogram processing

Because, as shown in the following section, the performance appears quite poor, I have
tried the classification also with the much more common way of processing the sound
signal. That is using the so-called Mel spectrogram [16]2

Using this transformation, based on Fourier transforms over short time periods, the
data samples become much more 𝑑𝑒𝑛𝑠𝑒 in some sense, consisting of much fewer indi-
vidual values. These can be computed in real-time, as the sound is recorded, but the
drawback is that it is much more difficult to generate the original sound back from it.
Thus, the idea of filtering, or directly changing real-world sounds in some way, is now
not as straightforward. Thorough gradient can possibly be computed nonetheless 3.

Out of curiosity, and to increase the dataset variance, I have tried the experiments
with 2 distinc cases of this transform, firstly using just the Mel spectrogram (with
nfft=1024 parameter)4, and secondly following the spectrogram by AmplitudeToDB5

transformation to simplify the data samples even further, as shown in the following
images:

2 https://www.cs.brandeis.edu/~cs136a/CS136a_docs/KishorePrahallad_CMU_mfcc.pdf
3 https://github.com/SarthakYadav/audax
4 https://pytorch.org/audio/main/generated/torchaudio.transforms.Spectrogram.html
5 https://pytorch.org/audio/main/generated/torchaudio.transforms.AmplitudeToDB.html

39

https://www.cs.brandeis.edu/~cs136a/CS136a_docs/KishorePrahallad_CMU_mfcc.pdf
https://github.com/SarthakYadav/audax
https://pytorch.org/audio/main/generated/torchaudio.transforms.Spectrogram.html
https://pytorch.org/audio/main/generated/torchaudio.transforms.AmplitudeToDB.html

5. Experiments and outcomes .

Figure 5.17. PGD attack (𝜖 = 0.1) on the spectrogram on the command four.

Figure 5.18. PGD attack (𝜖 = 0.1) on the spectrogram, followed by AmplitudeToDB, on
the command four.

The metaparameters chosen for the experiment runs are:

. Size of each layer (number of neurons per layer): 120. Size of the recurrent hidden state: 196. Batch size: 32. Epochs: 16. Learning rate: 0.001. Weight decay: 0.001. Iterations of the robust learning algorithm: 10. Stepsize of the robust learning algorithm: 0.05

5.3.3 Experiment outcomes

Firstly, let’s observe the table of reached accuracies when using Algorithm 1 for training,
on the first, direct sound recording classification approach:

40

. 5.3 Speech Commands

Model Plain PGD0.1 PGD0.2 FGSM0.1 FGSM0.2

FF 10.8 0.0 0.0 0.0 0.0
FF robust 10.8 0.0 0.0 0.0 0.0
FF regula. 10.3 0.0 0.0 0.0 0.0
GRU 83.7 0.0 0.0 14.1 9.4
GRU robust 47.4 0.0 0.0 19.3 20.8
GRU regul. 14.7 0.2 0.0 15.3 11.2
LSTM 55.5 0.0 0.0 18.0 10.8
LSTM robust 32.2 0.2 0.2 25.3 16.2
LSTM regul. 10.8 0.0 0.0 0.0 0.0
S4 81.0 0.0 0.0 9.2 9.1
S4 robust 55.2 0.0 0.0 20.3 20.8
S4 regul. 12.5 0.0 0.0 0.8 10.3

Table 5.4. Accuracy reached for the SpeechCommands dataset, direct sound processing,
Algorithm 1

Clearly, the performance is far from great, both for the robust and the nonrobust
training. Interestingly, while the robust training by Algorithm 1 seems to somewhat in-
crease the resistance to FGSM attacks, robustness against PGD attacks remains nonex-
istent, and accuracy on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data also decreases dramatically. Since the data
samples are quite long, the training process takes a considerable amount of time, making
the robust training process of each model roughly 20 hours long.

For the LSTM architecture, computation time went up from 8 minutes to 76 minutes,
for GRU it went up from 12 minutes to 47 minutes, and for S4 from 0.75 minutes to 21
minutes.

Figure 5.19. Accuracy progression of the LSTM network on the SpeechCommands dataset,
direct sound processing, Algorithm 1

41

5. Experiments and outcomes .

As Figure 5.19. suggests, that training the models, which already took many hours,
probably won’t increase the accuracy significantly more. Moreover, Algorithm 1 did
not provide any meaningful benefit at all.

For comparison, let’s have a look at the accuracy reached when using the Spectrogram
(followed by AmplitudeToDB) approach. The models were trained using Algorithm 1:

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF 70.3 9.6 9.1 68.2 63.8
FF robust 70.5 11.6 10.8 62.8 59.2
FF regul. 11.9 10.0 9.9 10.1 8.3
FF robust+reg. 12.9 9.3 8.0 10.2 9.0
GRU 92.1 47.0 44.6 88.7 85.4
GRU robust 21.2 88.7 86.4 14.1 12.8
GRU regul. 14.3 11.0 10.7 9.0 7.2
GRU robust+reg. 12.5 10.1 10.0 11.4 10.4
LSTM 92.0 50.3 47.6 89.7 87.0
LSTM robust 25.6 87.9 86.5 15.3 13.8
LSTM regul. 13.2 9.5 9.1 8.3 6.9
LSTM robust+reg. 14.2 11.0 10.8 10.3 9.7
S4 93.1 62.2 59.8 89.9 87.0
S4 robust 21.7 88.8 87.6 18.5 15.4
S4 regul. 13.4 8.5 7.6 7.5 6.2
S4 robust+reg. 12.9 11.0 10.6 10.8 9.8

Table 5.5. Accuracy reached for the SpeechCommands dataset, spectrogram+Ampli-
tudeToDB processing, Algorithm 1. See Figure A.3..

With the exception of the feed-forward dense model, the classifiers trained without
both robust reached an accuracy of over 90%. They also have quite high resistance
against the attack methods. The robust training process greatly increased the accuracy
against the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples created by PGD, but decreased the accuracy on
the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples almost to zero. It looks like it is too focused on the worst-case
samples, and completely trades the potential robustness for accuracy on the unchanged
data.

Motivated by that, I have decided to rerun the experiments with Algorithm 2, with
my proposal to also include the unmodified data in the robust training process. Also,
since it appears like augmentation of the original sound recording does not help with
the training process, I have tried augmenting the spectrogram representations instead.
Other parameters remained the same. These were the results:

42

. 5.3 Speech Commands

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF 70.3 9.6 9.1 68.2 63.8
FF robust 67.3 9.9 9.5 58.2 54.3
FF regul. 59.8 14.9 14.2 52.2 47.9
FF robust+reg. 60.8 72.1 70.3 54.1 55.2
GRU 92.1 47.0 44.6 88.7 85.4
GRU robust 90.0 87.4 85.1 87.0 83.6
GRU regul. 92.5 72.9 69.6 88.7 85.7
GRU robust+reg. 93.2 65.8 91.9 87.8 84.4
LSTM 92.0 50.3 47.6 89.7 87.0
LSTM robust 90.3 88.0 86.1 81.9 78.3
LSTM regul. 91.2 63.5 60.9 84.1 81.4
LSTM robust+reg. 93.3 68.0 65.4 91.1 89.0
S4 93.1 62.2 59.8 89.9 87.0
S4 robust 90.4 88.3 86.5 81.9 78.3
S4 regul. 91.1 75.9 73.3 88.0 85.5
S4 robust+reg. 94.0 75.3 72.8 91.5 89.1

Table 5.6. Accuracy reached for the Speech Commands dataset, spectrogram+Ampli-
tudeToDB processing, Algorithm 2

Overall, the accuracies reached are quite high, given the relatively small dataset. It
shows the correct data transformation can enable much more precise classification.

Surprisingly, the best accuracy was generally (with the exception of the dense model)
reached by Algorithm 2 proposed in the previous chapter in conjunction with the ran-
dom regularizations, even on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples.

That again suggests that there are use cases, for which the robust training approach
is a welcomed addition to the training process.

Algorithm 2 does not have the best performance on neither the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 nor
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples, on average, however, provides much higher accuracy than the
Algorithm 1 proposed in the cited paper [1]. That is well visible in the following Figure
5.20.

43

5. Experiments and outcomes .

Figure 5.20. Accuracies reached by the two robust algorithms, GRU, SpeechCommands
dataset, spectrogram+AmplitudeToDB processing

For the sample representation using only the Mel Spectrogram (without the Ampli-
tudeToDB transform), the outcomes were (not as good as in the previous experiment):

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF 39.4 1.5 0.0 21.1 12.4
FF robust 37.4 5.2 0.8 24.5 14.6
FF regul. 38.5 0.9 0.0 23.1 13.1
FF robust+reg. 39.1 2.5 0.0 25.1 15.5
GRU 85.0 4.1 0.1 48.9 32.4
GRU robust 80.9 31.6 11.5 73.1 60.9
GRU regul. 83.0 16.5 0.3 58.5 33.4
GRU robust+reg. 82.1 25.7 9.9 75.2 62.2
LSTM 82.1 8.0 0.3 44.6 26.1
LSTM robust 79.6 29.1 10.8 71.3 59.3
LSTM regul. 82.3 16.5 0.5 57.7 31.1
LSTM robust+reg. 80.9 26.6 9.2 74.1 60.9
S4 81.4 13.5 1.0 33.4 18.6
S4 robust 75.9 28.3 10.9 64.8 44.6
S4 regul. 77.3 15.4 0.6 35.1 13.3
S4 robust+reg. 76.2 29.4 6.5 62.4 39.8

Table 5.7. Accuracy reached for the Speech Commands dataset, spectrogram only process-
ing, Algorithm 2

44

. 5.4 UrbanSound8K

5.4 UrbanSound8K

5.4.1 Outline of the experiments - direct sound processing

The second dataset used for the task of sound classification. It consists of 8732 (hence
the name) audio files of urban sounds (see the description at the beginning of the chap-
ter) in WAV format. The sampling rate, bit depth, and number of channels may vary
from file to file, as it has been recorded by different devices under various conditions.

For the transformation of a sound file into a NumPy array, so that it can be further
processed and put into the neural network, I have used the Python library Wave. Af-
terwards, when all the samples are transformed, a classic Torch dataset and dataloader
can be created.

In general, the recordings last 2-4 seconds. That makes the data samples even larger,
in general roughly with the shape [40000, 1]. This requires setting batch size even lower.

The data samples consist of these 10 classes:. air conditioner. car horn. children playing. dog bark. drilling. engine idling. gun shot. jackhammer. siren. street music

To again tackle the issues with the VRAM demands of the gradient computation,
and because a few hundred examples per class can be considered too low of a training
set, I have re-labeled the samples into two classes: the dangerous class consists of
dog bark, gun shot, siren, and the benign class consists of the rest. Such a grouping
is completely artificial, and in practice would anyway be dependent on the customer
seeking the trained classifier.

Otherwise, the setup and layout of the experiments remains the same as with the
SpeechCommands dataset, that is:. Size of each layer (number of neurons per layer): 196. Size of the recurrent hidden state: 240. Batch size: 16. Epochs: 16. Learning rate: 0.001. Weight decay: 0.001. Iterations of the robust learning algorithm: 10. Stepsize of the robust learning algorithm: 0.05

This time, the numbers of learnable weights are:. Feed-forward - 2574722 parameters. GRU - 353154 parameters. LSTM - 438610 parameters. S4 - 493922 parameters

45

5. Experiments and outcomes .
Here, you can again see a section (with 2 zooms) of a recording of the sound of

children playing (the 𝑏𝑒𝑛𝑖𝑔𝑛 class), and how the different attack methods change it.

Figure 5.21. Example of PGD (𝜖 = 0.3) attack on the sound of children playing

Figure 5.22. Example of PGD (𝜖 = 0.3) attack on the sound of children playing

Following are the attack examples on the sound of a dog barking (the 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠
class):

46

. 5.4 UrbanSound8K

Figure 5.23. Example of PGD (𝜖 = 0.3) attack on the sound of a dog barking

Figure 5.24. Example of PGD (𝜖 = 0.3) attack on the sound of a dog barking

Again, the gradient-based attacks move the values of the original sample to different
directions based on the section of the recording, the adversarial shift is not the same
everywhere.

47

5. Experiments and outcomes .

5.4.2 Outline of the experiments - spectrogram processing

Similarly as with the dataset of speech commands, there are experiments with classify-
ing the sounds, after they have been transformed into the Mel spectrogram. Otherwise,
the setup remains the same.

For the sake of consistency, both Mel spectrogram and Mel spectrogram+Apli-
tudeToDB transformations are tested, and both are classified by both Algorithm 1
and Algorithm 2.

Some interesting outcomes are presented in the next section, the rest of them are
in Appendix A. Interestingly, this time, the difference between the accuracies in the
different tasks is not even remotely close.

5.4.3 Experiment outcomes

Firstly, let’s again observe the table of reached accuracies, with the direct sound pro-
cessing approach, tackled by Algorithm 1:

Model Plain PGD0.1 PGD0.2 PGD0.3 FGSM0.1 FGSM0.3

FF 71.8 71.4 71.4 71.4 71.4 71.4
FF robust 71.8 71.4 71.4 71.4 71.4 71.4
GRU 77.7 89.3 87.9 66.9 87.1 73.9
GRU robust 74.3 44.6 43.2 42.8 71.4 71.4
LSTM 78.0 72.3 71.8 71.4 71.9 70.9
LSTM robust 74.2 11.7 10.3 10.1 70.0 69.9
S4 78.0 72.3 71.8 71.4 71.9 70.9
S4 robust 77.6 20.8 16.7 15.6 72.2 71.4

Table 5.8. Accuracy reached for the UrbanSound8K dataset, direct sound sample process-
ing, Algorithm 1

In this situation, Algorithm 1 somehow decreased the accuracy across the board,
both on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data, but mainly on the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 samples. I do not have a
good explanation for that.

The time increase was again noticeable, for LSTM, it went up from 275 seconds
(around 5 minutes) per epoch to roughly 3800 seconds (a bit over an hour). For the S4
model, it went up from 51 seconds to 1000 seconds when employing Algorithm 1. For
the GRU model, it went up from 440 to 4200 seconds. The train time for the dense FF
architecture was 0 seconds in both cases, as it did not have to unwind the recurrent
gradient.

The remaining are only the numbers from trying the classification based on spec-
trogram+AmplitudeToDB processing instead. There are both the {Algorithm 1, Algo-
rithm 2}

48

. 5.4 UrbanSound8K

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF 67.9 12.8 12.2 65.9 61.3
FF robust 70.5 11.6 10.8 62.8 59.2
FF regul. 11.9 10.0 9.9 10.1 8.3
FF robust+reg. 12.9 9.3 8.0 10.2 9.0
GRU 80.1 68.9 58.0 74.1 64.8
GRU robust 78.9 67.1 61.0 75.8 72.9
GRU regul. 78.8 68.9 60.1 74.5 65.5
GRU robust+reg. 77.8 58.1 48.5 62.2 50.6
LSTM 79.5 67.5 51.8 70.2 61.7
LSTM robust 77.3 65.3 55.0 72.6 66.7
LSTM regul. 79.7 57.8 14.8 62.4 55.5
LSTM robust+reg. 79.3 60.7 52.7 72.5 63.6
S4 79.8 65.1 43.6 70.7 65.5
S4 robust 79.6 71.4 70.3 73.4 67.6
S4 regul. 77.5 24.3 14.6 67.4 61.1
S4 robust+reg. 77.3 71.4 69.2 73.0 63.9

Table 5.9. Accuracy reached for the UrbanSound8K dataset, spectrogram processing, Al-
gorithm 1

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF robust 75.8 64.2 52.8 71.9 60.2
FF robust+reg. 78.2 63.4 25.1 68.9 60.0
GRU robust 79.9 63.0 55.4 75.4 67.0
GRU robust+reg. 80.5 59.6 39.2 57.7 45.2
LSTM robust 77.3 66.6 58.5 75.7 72.0
LSTM robust+reg. 80.5 60.5 54.7 63.4 57.1
S4 robust 78.7 70.6 60.5 71.7 63.0
S4 robust+reg. 79.2 70.6 57.2 68.2 55.9

Table 5.10. Accuracy reached for the UrbanSound8K dataset, spectrogram processing,
Algorithm 2

On this dataset, Algorithm 1 appears to successfully increase the resistance against
the gradient-based attacks, basically without affecting the accuracy on 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data
samples. Sadly, the increase is generally not that big.

As expected, the performance of Algorithm 2 is somewhere between non-robust train-
ing and Algorithm 1.

Overall, there seems to be no clear pattern, and from this experiment, it is difficult
to support the time invested in either Algorithm 1 or Algorithm 2, when it comes to
this specific classification task.

49

5. Experiments and outcomes .

5.5 Training Time increase

Let’s have a look at the figure of times required for the training epoch. These are
various recorded time increases on different architectures, sizes of the neural network
and other parameters, but it still provides a quick idea, of what the relation is.

Figure 5.25. Plot of the trend of the increase of the required time by the robust training
process

Even though the specific points in Figure 5.25. were taken from various architectures
classifying various datasets, the trend appears to be linear, where the robust training
done by Algorithm 1 takes roughly one order of magnitude more time. Run time of
Algorithm 2 is almost identical to the time of Algorithm 1.

50

Chapter 6
Conclusion and discussion

6.1 The effect of robust learning

As confirmed in this thesis, the game-theoretical approach and the derived Algorithm
1 is very successful on the MNIST dataset. Not only does it provide high resistance
against the gradient-based modified, adversarially crafted samples using the Fast Gra-
dient Sign Method and the Projected Gradient Descend Method. It also acts as a form
of regularization of the training process, with the ability to increase the accuracy even
on 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples.

The general outcome, however, is not so conclusive, and hugely depends on the
specific situation. There are instances, as seen in Table 5.4., where it possibly only
decreases the accuracy on 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples, without granting any resistance against
the attacks, providing only disadvantages

As seen in Table 5.5, the robust training can provide high resistance against the
gradient-based attacks, yet decimate the accuracy on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data at the same
time; that can be possibly resolved by a slight modification of the approach (Algorithm
2), as seen in the Table 5.6.

The robust training, however, does not appear to significantly increase the models’
performance against other types of attacks based on creating the 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data
samples.

Generally speaking, it seems Algorithm 1 (or its modifications) can be advantageous
only in those cases when the dataset is well containable by the neural network and is
thus prone to overfitting.

6.2 Synergy with regularizations

In all instances, the random noise (and possibly other regularization methods) decreased
the provided robustness against the gradient-based attacks. An explanation could be
that the added noise just shifts the optimal gradient-based attack in another direction.

The resistance against the attacks usually remains much higher than without the
robust training, and there are some cases, where it increases accuracy even on the
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data, it is thus a beneficial combination.

No definitive answer can be said, though.

51

6. Conclusion and discussion .

6.3 Computational price of the robust learning

The increase in computation time demand is not negligible. Even with the JAX imple-
mentation running on dedicated TPUs, which can be considered the best scenario, the
run time can easily reach several hours per epoch. Generally said, as shown in Figure
5.25, the required time for robust training is an order of magnitude longer.

Also, if the batch size must be reduced because the algorithm must keep a modified
data sample copy of each considered class (as explained in Chapter 2) in the memory,
and thus requiring considerably more of it, the run time of the training phase can be
increased even further.

6.4 Conclusions

Provided with a comfortable gradient computation, implementation of the algorithm
of the robust training is not that difficult. It has the opportunity to make the neural
network robust against 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 data samples, making the accuracy almost as high
as on the 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 data samples. It possibly even increases the performance on 𝑛𝑎𝑡𝑢𝑟𝑎𝑙
data samples, acting as some kind of regularization method. Unfortunately, it does not
seem to increase performance against non-gradient attack methods.

It appears that the algorithm’s performance does not depend on a specific architec-
ture, as the effect on all the tested models is very similar. When considering the usage
of robust training, the specific neural network used is not important, which is good.
Just changing the specific neural network in a specific use case, when retaining the
robust training, will have predictable outcomes.

Its performance seems to be the best when the classifier tends to overfit. In such use
cases, however, other classification algorithms, rather than a neural network, might be
considered. Still, a similar robustness approach can be constructed for those classifiers,
too. If the computational cost is not an issue, or if it is well justified, extending the
training algorithm for robustness might be worthy of the investment. Motivated by the
fact we can expect some neural networks to be commonly re-deployed with the pre-
trained weights, the robust training only can make its performance potentially higher.
It is not, however, a simple case, and not always does the implementation of this robust
training algorithm even provide any benefit. It is not the case of “just use the algorithm,
it always provides additional resistance against adversarial“.

The decision then depends on answering the question, whether the potential benefits
outweigh the cost of the long training process, even if it possibly does not provide any.

52

References

[1] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, and Meisam
Razaviyayn. Solving a Class of Non-Convex Min-Max Games Using Iterative First
Order Methods. 2019.
https://arxiv.org/pdf/1902.08297. Advances in Neural Information Process-
ing Systems 32, 2019, pages 14 905-14 916..

[2] François Fleuret. The Little Book of Deep Learning. Alanna Maldonado, 2023.
ISBN 9789732346495.

[3] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui,
and Michael I. Jordan. Theoretically Principled Trade-off between Robustness and
Accuracy. 2019.
https://arxiv.org/pdf/1901.08573. NeurIPS 2018 Adversarial Vision Chal-
lenge.

[4] Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar San-
jabi, and Mingyi Hong. Non-convex Min-Max Optimization: Applications, Chal-
lenges, and Recent Theoretical Advances. 2020.
https://arxiv.org/pdf/2006.08141. EEE Signal Processing Magazine, 2020,
37.5, pages 55-66..

[5] Mingxing Tan, and Quoc V. Le. EfficientNetV2: Smaller Models and Faster Train-
ing. 2021.
https://arxiv.org/pdf/2104.00298. https://pytorch.org/vision/main/mod-
els/efficientnetv2.html.

[6] Yoav Shoham, and Kevin Leyton-Brown. Multiagent Systems. Cambridge Univer-
sity Press, 2008. ISBN 9780521899437.

[7] John Nash. Non-Cooperative Games. September 1951.
https://www.cs.vu.nl/~eliens/download/paper-Nash51.pdf. In: Annals of
Mathematics, Second Series, Vol. 54, N𝑜. 2 , pages 286-295 .

[8] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Har-
nessing Adversarial Examples. 2015.
https://arxiv.org/pdf/1412.6572. ICLR 2015: San Diego, CA, USA.

[9] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. 2017.
https://arxiv.org/pdf/1607.02533. International Conference on Learning
Representations, 2016.

[10] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial Machine Learning
at Scale. 2017.
https://arxiv.org/pdf/1611.01236. International Conference on Learning
Representations, 2017.

[11] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A Python tool-
box to benchmark the robustness of machine learning models. In: Reliable Machine

53

https://arxiv.org/pdf/1902.08297
https://arxiv.org/pdf/1901.08573
https://arxiv.org/pdf/2006.08141
https://arxiv.org/pdf/2104.00298
https://www.cs.vu.nl/~eliens/download/paper-Nash51.pdf
https://arxiv.org/pdf/1412.6572
https://arxiv.org/pdf/1607.02533
https://arxiv.org/pdf/1611.01236

References .
Learning in the Wild Workshop, 34th International Conference on Machine Learn-
ing. 2017.
https://arxiv.org/pdf/1611.01236. https://github.com/bethgelab/fool-
box/tree/master.

[12] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Alek-
sander Madry. Exploring the Landscape of Spatial Robustness. 2017.
https://arxiv.org/pdf/1712.02779. Proceedings of the 36th International
Conference on Machine Learning, June 2019.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. 2014.
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf. Jour-
nal of Machine Learning Research 15, (2014) 1929-1958.

[14] Li Deng. The MNIST Database of Handwritten Digit Images for Machine Learning
Research. 2012.
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6296535.
IEEE Signal Processing Magazine, Volume: 29, Issue: 6, November 2012, Pages
141 - 142 .

[15] Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recog-
nition. 2018.
https://arxiv.org/pdf/1804.03209.

[16] Boyang Zhang, Jared Leitner, and Samuel Thornton. Audio Recognition using Mel
Spectrograms and Convolution Neural Networks. 2019.
noiselab.ucsd.edu/ECE228_2019/Reports/Report38.pdf.

54

https://arxiv.org/pdf/1611.01236
https://arxiv.org/pdf/1712.02779
https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6296535
https://arxiv.org/pdf/1804.03209
noiselab.ucsd.edu/ECE228_2019/Reports/Report38.pdf

Appendix A
Additional results

A.1 MNIST results
Firstly, here is the effect of the robust training parameters, going from 8 to 10 iterations
(𝑘), but decreasing the 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 from 0.15 to 0.05., making the worst-case 𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙
modification more precise. Because more gradients had to be computed, the computa-
tional time increased again, roughly by 10 percent (for GRU, time increased from 2300
to 2540 seconds).

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF robust 96.2 91.9 69.7 89.3 51.9
GRU robust 95.6 94.2 92.1 94.6 93.2
LSTM robust 92.7 89.6 85.5 91.3 90.0
S4 robust 98.4 96.9 93.5 97.0 94.2

Table A.1. Accuracy of the different scenarios reached for MNIST dataset, smaller 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒,
Algorithm 2

These scores are almost identical to the initial experiment, which implies that the
algorithm’s performance is not that sensitive to the chosen parameters.

Figure A.1. Plot of the effect of the different values of stepsize of the algorithm

55

A Additional results .

A.2 GTSRB results

Figure A.2. Progress of the accuracy reached on the GTSRB dataset

When training the neural networks using Algorithm 1, there is a clear tendency to
learn slower. Nothing, however, indicates the accuracy should become considerably
better with further epochs.

To support this claim, though, I have also tried to train the dense FeedForward neural
network for 50 epochs, and under Algorithm 1, it never surpassed 53.3%. You can see
the output of this specific experiment, as well as the others, in folder outputs on the
associated GIT repository.

56

. A.3 SpeechCommands results

A.3 SpeechCommands results

This is the plot of accuracies under the attack methods, corresponding to Table 5.5.,
for simpler comprehension. The robust training makes the neural network more robust
against the PGD attacks but does not provide a real advantage overall.

Figure A.3. Plot corresponding to Table 5.5., SpeechCommands classification, Mel spec-
trogram+AmplitudeToDB, Algorithm 1

Following is the plot of progress of the accuracy on the 𝑡𝑒𝑠𝑡 datatest, and the loss on
the 𝑡𝑟𝑎𝑖𝑛 dataset, supporting the idea of the robust training as a form of regularization.

57

A Additional results .

Figure A.4. Higher Increase in accuracy on the 𝑡𝑒𝑠𝑡 data when the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 loss is increased.
See Table 5.6.

Figure A.5. Higher Increase in accuracy on the 𝑡𝑒𝑠𝑡 data when the 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 loss is increased.
See Table 5.7.

58

. A.4 UrbanSound8K results

A.4 UrbanSound8K results

Figure A.6. Comparison of performance of Algorithm 1 and Algorithm 2 (see Table 5.9.
and 5.10.) on UrbanSound8k classification

And finally, a comparison of Algorithm 1 and Algorithm 2 on the UrbanSound8K
dataset, with the Mel spectrogram+AmplitudeToDB transformation. The outcomes
are, in this setting, very similar.

Model Plain PGD0.1 PGD0.3 FGSM0.1 FGSM0.3

FF 84.5 48.2 42.3 78.1 69.9
FF Alg.1 84.1 48.8 43.9 79.1 71.6
FF Alg.2 84.7 43.1 36.2 77.0 71.1
GRU 90.5 39.8 39.1 79.8 75.8
GRU Alg.1 90.4 40.9 39.9 84.6 82.1
GRU Alg.2 90.1 43.1 41.1 86.1 84.7
LSTM 89.1 41.8 41.6 81.6 77.1
LSTM Alg.1 87.6 43.7 42.4 78.6 74.5
LSTM Alg.2 88.1 43.4 42.6 72.4 67.8
S4 88.3 40.3 38.5 85.5 79.6
S4 Alg.1 89.2 42.5 40.9 87.2 81.1
S4 Alg.2 89.2 41.3 39.6 87.2 81.4

Table A.2. Accuracy reached for the UrbanSound8K dataset, Mel spectrogram+Ampli-
tudeToDB processing

59

Appendix B
Assignement

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474747Osobní číslo:TomášJméno:KaslPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Metody min-max optimalizace v adversariálním učení

Název diplomové práce anglicky:

Min-max optimization methods in adversarial learning

Pokyny pro vypracování:

Min-max problems in adversarial and robust ML involve optimizing models against worst-case scenarios to enhance
security and reliability. Adversarial ML focuses on identifying and mitigating vulnerabilities through min-max frameworks,
where attackers maximize model errors while defenders minimize them. Robust ML aims to develop algorithms resilient
to such attacks, ensuring model performance remains stable even under adversarial conditions. This dynamic interplay
enhances model robustness, making ML systems more secure and dependable in real-world applications. The goals of
the thesis are the following.
1. To implement the robust version of the model of classifier based on [3] or [2] and the methods of min-max optimization
(GDA and its variants).
2. To analyze the properties of found solutions from the viewpoint of optimization and game theory.
3. (Optional) If possible, to build the classifier model on the new S4 architecture [1].

Seznam doporučené literatury:

[1] Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with structured state spaces." arXiv
preprint arXiv:2111.00396 (2021).
[2] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn, “Solving a class of non-convex min-max games
using iterative first order methods,” in Advances in Neural Information Processing Systems 32, 2019, pp. 14 905-14 916.
[3] M. Razaviyayn et al. Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances.
IEEE Signal Processing Magazine, 2020, 37.5: 55-66.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Tomáš Kroupa, Ph.D. centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 09.02.2024

Platnost zadání diplomové práce: 21.09.2025

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)

podpis vedoucí(ho) ústavu/katedrydoc. Ing. Tomáš Kroupa, Ph.D.
podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

60

. .

III. PŘEVZETÍ ZADÁNÍ

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

61

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Introductions
	Motivation
	The thesis outline

	Two-player game, robust learning
	The problem definition
	Game theory
	Notation and intuition
	Foundations and the Outline
	Nash Equilibrium
	Quick problem recapitulation
	Multi-Step Projected Gradient Step Solution
	Additional notes

	Attacks on Neural Networks, Regularizations
	Attack introduction
	Approaches - gradient-based attacks
	FGSM - Fast Gradient Sign Method
	PGD - Projected Gradient Descent

	Approaches - Foolbox
	Spatial attack

	Regularization
	Training data modification - augmentation
	Dropout

	Neural network models
	Implementation, hardware
	Basic feed-forward, dense model
	Model S4
	Recurrent - LSTM
	Recurrent - GRU
	Datasets - overview

	Experiments and outcomes
	MNIST numbers
	Outline of the experiments
	Experiment outcomes

	German road signs
	Speech Commands
	Outline of the experiments - direct sound processing
	Outline of the experiments - spectrogram processing
	Experiment outcomes

	UrbanSound8K
	Outline of the experiments - direct sound processing
	Outline of the experiments - spectrogram processing
	Experiment outcomes

	Training Time increase

	Conclusion and discussion
	The effect of robust learning
	Synergy with regularizations
	Computational price of the robust learning
	Conclusions

	References
	Additional results
	MNIST results
	GTSRB results
	SpeechCommands results
	UrbanSound8K results

	Assignement

