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Abstract

In the maritime domain, navigation and collision avoidance traditionally rely on
human vision, which is limited, especially under adverse environmental conditions.
This thesis addresses the integration of multimodal object detection using thermal
and RGB images to enhance situational awareness in these environments. A deep
learning-based approach is introduced for correspondence search and homography
estimation, enabling precise alignment and annotation propagation. This alignment
is subsequently used to create a high-quality dataset. Several state-of-the-art archi-
tectures and our proposed architectures are trained and evaluated on this dataset,
revealing that leveraging a second modality leads to improved performance across
various metrics. Notably, transformer-based architectures like CMX show the high-
est performance but at the cost of increased complexity and inference times. Simpler
models, such as our proposed WNet-S, demonstrate competitive results with better
efficiency, indicating that complexity does not always correlate with better perfor-
mance.

Keywords Object Detection, Sensor Fusion, Semantic Segmentation, Naval Com-
puter Vision
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Abstrakt

V oblasti ndmoini navigace je pfi vyhybani se kolizim tradi¢né spoléhano na lidsky
zrak, ktery je ale omezeny predevsim v nepfiznivych podminkédch. Tato prace
se zabyva integraci multimod&lni detekce objektu pomoci termélni a RGB obra-
zové kamery pro zlepseni situa¢niho povédomi v téchto podminkach. Je pfedstaven
piistup zaloZzeny na hlubokém uceni pro vyhleddvani korespondenci a odhad ho-
mografie, ktery umoznuje presné zarovnani a propagaci anotaci skrz modality.
Toto zarovnéni je nasledné pouzito k vytvofeni datasetu. Na tomto datasetu
je natrénovano a vyhodnoceno nékolik state-of-the-art architektur a architektur
navrzenych v této praci. Vysledky benchmarku ukéazaly, ze vyuziti druhé modality
zlepsuje vykon napfi¢ ruznymi metrikami. Zvl4sté architektury zalozené na trans-
formerech, jako je CMX, dosahuji nejvyssiho vykonu, avsak za cenu zvysené slozitosti
a delsich ¢astu inferenci. Jednodussi modely, jako nas navrzeny WNet-S, vykazuji
konkurenceschopné vysledky s lepsi efektivitou, coz naznacuje, ze slozitost ne vzdy
koreluje s lepsim vykonem.

Klicova slova Detekce objektu, Senzorova fize, Sematickd segmentace, Ndamoini
Pocitacové Vidéni
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Chapter 1

Introduction

In the maritime domain, the reliance on human vision for navigation and collision avoid-
ance has long been a cornerstone of seafaring tradition. However, this dependence poses in-
herent limitations on situational awareness, particularly in adverse environmental conditions
characterized by reduced illumination or unfavorable weather. Despite advancements in com-
puter vision in other sectors, the integration of such technologies into maritime practices
remained relatively underexplored until recently. Moreover, autonomous navigation builds
solely on GPS- or radar-based planning with little attention to computer vision. However,
leveraging the visual information the intermediate surroundings offer would serve for imme-
diate collision avoidance with objects that are not visible using GPS or radar. Such a device
is attached to the ship directly and can recognize collision threats and warn the conductor
or navigation system in time. Such a system can be of crucial importance for smaller vessels,
on whom a barrel in the water may pose an existential danger. These systems have recently
been brought to market by companies such as SEA.AI, in cooperation with which this thesis
was created. Images of their systems can be seen in Figure 1.1.
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Figure 1.1: Multimodal naval devices offered by SEA.AI. Sentry, Offshore, and Competition
left to right.
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For image processing with this purpose in mind, object detection or prospective instance
segmentation, essentially a version of semantic segmentation, are suitable algorithms. In re-
cent years, there has been a notable shift in the approach to object detection and semantic
segmentation, transitioning from traditional computer vision algorithms to methods based
on deep learning. Among these, convolutional neural networks (CNNs) have demonstrated
remarkable results in addressing the challenges posed not only by semantic segmentation and
object detection [44] but also in image classification [48] or more complex methods such as
correspondence search among pairs of images. The segmentation and detection tasks are es-
sential in computer vision applications and find diverse uses in areas such as robotic sensing,
video surveillance, and autonomous driving. The evolution towards deep learning-based tech-
niques has marked a significant trend, represented by higher usage of various neural network
architectures to achieve more accurate outcomes in a variety of computer vision tasks.

However, as the prevailing standard in object detection or semantic segmentation is the

CTU in Prague Department of Computer Science
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utilization of neural networks designed exclusively for processing RGB images captured by
visible light cameras, the performance is susceptible to degradation under unfavorable lighting
or weather conditions. For instance, many algorithms struggle to detect objects in near-total
darkness accurately. In contrast, thermal imaging cameras can operate effectively across di-
verse lighting scenarios. Unlike visible light cameras, which function within the wavelengths
from 0.4pum to 0.7um, the visible light spectrum, thermal imaging cameras generate images
from the longwave infrared (LWIR) part of the spectrum, which consists of wavelengths from
8um to 12pm. This radiation is emitted by all objects with normal outdoor temperatures and
thus is naturally independent of the visible light [2]. All these features combined suggest that
the information provided by thermal cameras is a valuable complement to RGB information
and is more robust to adversarial environmental conditions. Moreover, integrating thermal
images can enhance RGB image segmentation algorithms by providing an alternative scene
representation, which is often a plus for deep-learning methods.

After all, the concept of multimodal fusion with the aim of deep-learning algorithm
accuracy improvement is nothing new [2]. These methods have already found their usage
in areas such as autonomous vehicles, aviation, surveillance, and even the movie or gaming
industry, where these methods are combined with depth sensors to create more accurate 3D
models. Generally, the additional sensor typically used provides thermal, depth, or polarization
data.

Therefore, integrating thermal and RGB images presents a promising avenue for advanc-
ing object detection and semantic segmentation techniques, particularly in scenarios where
conventional RGB-based methods or human vision falter due to challenging environmental
conditions. Analogous applications in various other fields support this approach.

While building on the abovementioned, this thesis aims to propose and implement an
algorithm for segmentation and object detection using multimodal RGB and thermal marine
visual data provided by SEA.AI. However, this task firstly requires dataset preprocessing as
the initial data is unsuitable for this purpose right off the shelf. Additionally, the outcomes of
this study should include a comparison with both state-of-the-art methods and the methods
currently employed in SEA.AI devices, considering performance and resource demands, given
that current algorithms are deployed on edge devices with limited computational capabilities.

Thesis outline

Chapter one introducs the motivation behind the research, emphasizing the potential
benefits of integrating thermal and RGB images for semantic segmentation in maritime appli-
cations. The goals of the thesis were outlined, focusing on proposing an algorithm for object
detection using multimodal visual data and exploring its applications in improving naval
navigation along with appropriate data preprocessing pipelines.

Chapter two reviews existing literature on semantic segmentation, object detection, and
multimodal image processing. It defines key concepts and challenges in semantic segmentation
using multimodal visual data, providing a foundation for subsequent discussions.

The third chapter provides an overview of the dataset used in the study, detailing its
features, acquisition process, sensor description and details, and preprocessing methods, such
as alignment and subsampling. This chapter sets the stage for implementing the proposed
algorithm by ensuring the dataset’s suitability for multimodal semantic segmentation and
object detection tasks.

CTU in Prague Department of Computer Science
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Chapter four outlines the proposed algorithms for object detection using multimodal
RGB and thermal data. It also discusses additional approaches sourced from existing literature
for comparison purposes, highlighting similarities and differences with the proposed algorithm
as well as combinations of these methods.

The fifth chapter presents the results of the implemented methods and details the bench-
marking experiments conducted to evaluate their performance. All the metrics used for the
evaluation are also introduced there. This chapter provides insights into the effectiveness and
efficiency of the proposed algorithm compared to existing methods as well.

The final chapter summarizes the findings of the study and discusses their implica-
tions for maritime navigation and safety. It also identifies potential areas for future research
and concludes the thesis with reflections on the contributions made to the field of semantic
segmentation in maritime applications.

CTU in Prague Department of Computer Science
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Chapter 2

Related work

It was highlighted above that there is a marine industry’s demand for robust and prompt
potential threat and object detection on collision course capabilities. However, these can be
compromised in low-light or adverse weather conditions. To address this potential detec-
tion vulnerability, the fusion of thermal and RGB images emerges as a compelling solution.
Thermal imaging technology, operating beyond the constraints of visible light, offers distinct
advantages in capturing scene details regardless of lighting variations. Deployed on top of such
technologies are deep learning algorithms, such as object detection, instance segmentation, or
main semantic segmentation.

Semantic segmentation is an image processing method that involves densely labeling pix-
els of predefined categories with the label of their respective category. The primary algorithm
used in this realm for RGB image processing is UNet [42]. However, much evolution suc-
ceeded this initial architecture, such as state-of-the-art methods DeeplabV3 [28] introducing
atrous convolution, or transformer-based architecture ViT-Adapter [9]. The work dedicated to
multimodal semantic segmentation is outlined in the first section of this chapter, Chapter 2.

Object detection is a crucial image processing technique that involves assigning bound-
ing boxes to objects of interest within an image, thereby determining their locations. Histori-
cally, this task has been predominantly tackled using Convolutional Neural Networks (CNNs),
usually coupled with some region proposal part, an example of which is Fast-RCNN [39]. An-
other approach replaces the region proposal with a predefined grid with predefined box shapes,
where the bounding boxes are estimated in a single forward pass, an approach introduced in
YOLO [38]. These methods are further extended into instance segmentation, where individual
masks for each detected object are generated, bridging the gap between the aforementioned
techniques. Notable advancements in this field include subsequent iterations of YOLO [27]
models and the development of MaskRCNN [31]. However, these architectures are not adopted
in this work for multimodal sensor fusion, as more of the multimodal salient object detection
architectures and benchmarks are based on the same principles as the semantic segmentation
architectures [18]. Moreover, also the reference architecture from SEA.AI is built this way.
The instances are separated later from the segmentation outputs in a postprocessing phase.

Multimodal semantic segmentation

In the realm of RGB and thermal image (RGBT) joint semantic segmentation, the
cornerstone was set by MFNet [29] by publishing an aligned multimodal dataset with pixel-
precise annotations of street scenes intended for autonomous vehicles (RS RGBT Dataset).
The publication also proposed a symmetric double encoder architecture for segmentation re-
sembling U-Net [42], with a notable departure: feature summation at each level instead of
concatenation. The encoder MFNet employs is VGG16 [45] with slight modifications to al-
low for the processing of higher-resolution images. This architecture was built upon in other
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works, starting with RTFNet [24] and FuseSeg [22], preserving the double encoder architec-
ture while altering the feature fusion strategies. Two-stage architecture PST900 [21] followed,
achieving worse results in the RS Dataset, but was published with another dataset from the
environment of the DARPA Subterranean Challenge. The two mentioned datasets are used
as the architecture benchmarks by the community in most of the published papers on the
RGBT segmentation topic.

Following these initial publications, other architectures were typically built upon the
same basis of the symmetric double encoder using mainly ResNet [37], MobileNet [32], or
VGG as the encoder. However, the main difference again came with fusion strategies. These
fusion strategies are discussed further in Section 4.1 This division is, however, only a coarse
one; each of the publications usually comes with a unique approach to fusion itself, replac-
ing the original concatenation and summing strategies in the initial publications. However,
after the initial publications, the number of published architectures increased significantly
with minimal changes in mean accuracy on the RS RGBT dataset, often bringing a much
higher computation cost as a tradeoff. As the explored task of detection needs to run at
a considerable frame rate to be helpful in such near real-time perception edge devices, the
networks with high inference times, which often stem from complex network architecture, are
infeasible. Therefore, not all of them need to be mentioned due to marginal accuracy improve-
ments over the older implementations, too complex architecture, or lack of implementation or
implementation details.

Graded-Feature Multilabel-Learning Network (GMNet) [14] achieved the first consid-
erable leap forward from the initial publications by introducing custom Shallow and Deep
Feature Fusion Modules and a triple loss computed on boundaries, binary masks, and se-
mantic masks. Even though it was published in 2021, this model has remained among the
state-of-the-art models until today. What is more, it is also implemented with a lighter back-
bone. Another mention should go to MMSMCNet [8], which outperformed GMNet even with
ResNet50 backbone, considered lightweight in this context. The final mentioned CNN-based
RGBT architecture is Context-Aware Interaction Network [1], a recent publication with Mo-
bilenet backbone, outperforming the previously mentioned architectures and preserving rea-
sonable complexity for our usage while lowering the number of parameters in comparison to
the previously mentioned methods.

With the recent rise of transformer architectures in natural language processing
(NLP) [35], they also spread into most of the computer vision tasks such as object detec-
tion [17], image segmentation [13] or classification. Transformers thus also inevitably appeared
in multimodal sensor fusion. Recognizable architecture based on this technology is Cross-
modal fusion for RGB-X semantic segmentation with transformers (CMX) [7], which targeted
multiple RGB-X modalities at once and became state-of-the-art in all of them, including
RGBT or RGB and depth (RGBD). Even though this architecture is too memory-demanding
for our use case, it is worth mentioning and using as a baseline. Let us use this network as a
transition to a different additional sensor to RGB. Prevalent modalities explored in 2D sensor
fusion and consequent semantic segmentation are thermal, depth, and RGB images. Even
though this thesis operates solely with RGBT, a significant amount of work has been pub-
lished on RGBD combination with promising results. Since the architectures are very similar
to those published in the RGBT domain, they are very well utilizable for RGBT, which was
among other results shown in CMX. Therefore, some of those methods should be mentioned
as well.

The prevalent architecture feature for RGBD segmentation is a symmetric double en-
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coder, too. The cornerstone representative for RGBD is FuseNet [30], with architecture very
similar to MFNet, also using VGG16. This architecture was extended by RDFNet [34], us-
ing however Resnet152 as the backbone, making it more complex. However, RDFNet stays
among SOTA until today. A notable architecture is also ACNet [23], which adds a third en-
coder used for merged feature maps. Moreover, the maps are merged using attention modules.
Again, most of the other architectures bring only a small improvement to the results on the
benchmarking datasets, so only a few of them are mentioned here. The first mention here
goes to SGNet [4], bringing focus on a high number of frames per second (FPS), and CEN-
Net [10], which is a more efficient update of the previous architecture RefineNet [33], allowing
for higher FPS, too. EMSANet [11] is another mention here, which is one of the RGBT se-
mantic segmentation architectures with the fewest parameters. The current state-of-the-art in
non-transformer architectures is SA-Gate [16] using DeeplabV3+ decoder. The most notable
in the field of transformers are CMX, as mentioned above, and its more efficient successor,
DFormer [6].

Some of the architectures mentioned here for both modalities were trained on the dataset
created in this work and are introduced more in-depth in Chapter 4, and the benchmark result
details are shown in Chapter 5.

CTU in Prague Department of Computer Science
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Chapter 3

Dataset

In the first part of this chapter, Section 3.1, the devices used for data collection are
described. Then in Section 3.2 is shown the calibration and preprocessing of data from Sentry,
and the preprocessing consisting of calibration and homography construction for data from
Offshore is then discussed in Section 3.3. These preprocessing steps for both devices are then
followed by the same subsequent alignment process to obtain homography suitable for the
dataset needs outlined at the beginning of this chapter. This process is discussed in Section 3.4.
The next part of this chapter Section 3.5 copes with the abundance and repetitiveness of the
data in the provided dataset. The chapter is closed with an overview of the dataset that was
created and a recapitulation of the steps performed in Section 3.6.

3.1 Devices description

Since the thesis focuses on RGBT sensor fusion and object detection in marine envi-
ronments, it is built on a dataset comprising data obtained from RGB and thermal sensors
collected in open waters provided by SEA.AI. Two types of devices were used to produce the
data. The first device is SEA.AI Sentry, and it generates four data streams: narrow field of
view (FoV) RGB, narrow FoV thermal, wide FoV RGB, and wide FoV thermal. The FoV
values, along with the focal lengths of all the cameras, are shown in the device schematic in
Figure 3.1. The second device, SEA.AI Offshore, produces three image streams —one fisheye
RGB camera in landscape ratio and two slightly overlapping portrait ratio thermal streams
with narrower FoV than RGB camera. However, even the fused thermal streams have a FoV
much smaller than the RGB one. Device details are shown in the schematic in Figure 3.2.
Both datasets are divided into collections called trips, where one trip is a sequence collected
by one device throughout a voyage of a variable length.

The final dataset for the work is to be made of pairs of images (RGB and thermal
images) with a single ground-truth target. The target can be a mask, bounding boxes, or
both, depending on the computer vision task to be performed. However, the modalities are
annotated separately, and the sensors always have different fields of view, resolution, and
aspect ratio (the strength of these effects depends on the device and stream used), and the
annotations are always in the frame of the respective modal. To obtain a desired dataset, we
need to find an alignment between each tuple of images with high precision so that the ground
truth targets can be correctly projected into one frame, which can be used to compute losses
effectively after joint semantic segmentation or another task. Also, the images themselves
need to be, at minimum, approximately aligned. If the aspect ratios and FoVs of models
were completely different, it would be challenging for the network to find the corresponding
parts of the images so that they can be projected into a single output. It would also need
to select with respect to which input the output would be framed. Moreover, it is necessary
to highlight the importance of the alignment step through the lens of annotations. It allows
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8/52 3.1. DEVICES DESCRIPTION
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Figure 3.2: SEA.AI Offshore device chart used
for data collection with Fov angles and focal
lengths, thermal cameras are on the sides, and
RGB camera is in the middle.

Figure 3.1: SEA.AI Sentry device chart with
FoV angles and focal lengths used for data
collection. Thermal cameras are on the right,
and RGB cameras are on the left.

for the propagation of features even if available in only one of the channels in the training
dataset. This unavailability can be due to the nature of the object or environmental conditions.
Thus, a single ground truth frame is created, containing all the relevant information in both
modalities and to which outputs are compared. The network also learns to leverage features
that are available in a single sensor. One can argue that it would be advantageous if the
detection network were robust to such slight misalignments between images. However, the
perfectly aligned tuples can be slightly misaligned during augmentation before training to
reach such an effect while still maintaining the advantages that aligned targets bring.

However, the misalignment is not caused solely by the factors mentioned above. The
thermal and RGB cameras don’t have synchronized clocks, so the closest timestamps pair the
images. The desynchronization gives some space for misalignment of the frames from different
channels. However, the main source of misalignment stems from the camera parameters itself.
Even though cameras are calibrated, i.e., intrinsic and extrinsic parameters are provided, the
limited calibration precision is visible after constructing the homography from the parameters
and mapping from RGB to thermal space. An example of an image after such a mapping for
Sentry narrowFoV is shown in Figure 3.3 and Offshore in Figure 3.5. A necessary remark is
that the cameras have different camera origins. Namely, the cameras are mounted at different
positions, the separation being in the orders of magnitude of 10 cm. This difference is not an
issue for distant objects but would introduce some misalignment for close objects, such as parts
of the ship visible in the camera’s field of view or objects that are too close. Nevertheless, we
typically do not deal with objects as close as to cause the misalignment, so we can rely on the
image pairs preprocessed using the provided calibration parameters. Additionally, stemming
from the distance assumption, translation of the camera origin is not included in the extrinsic
parameters, so all the calibrations below work only with rotations.

CTU in Prague Department of Computer Science
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3.2 Sentry dataset preparation

The part of the provided dataset produced by the Sentry device consists of videos. Still,
as the temporal dependency is not leveraged in this work, the video datasets are converted to
images, and these are grouped within modal and FoV to frame tuples, i.e., tuples of narrow
FoV thermal and narrow FoV RGB and the same for wide FoV. In this work, only the narrow
FoV data are used, as a simple pinhole model can be used for modeling the camera; also, no
undistortion is needed, and what is more, the streams have the same viewing direction, so
they capture similar information. As mentioned before, cameras are calibrated so that we can
construct homography mapping RGB images to thermals or vice versa. If the reader would
like to learn more about homographies and homogenous coordinates, these are introduced,
e.g., in Ref. [52]. The projective mapping between RGB and thermal is built from calibration
matrices for the pinhole camera model, which is of the form

fx 0 =
K=10 fy Yo | (3.1)
0O 0 1

where f, and f, are a focal lengths and x¢ and yg are center offsets in z and y axes respectively.
Their typical values are shown in Figure 3.1. For a more detailed explanation of calibration
matrices and camera parameters, please refer to Ref. [52]. Along with the internal camera
parameters, the extrinsic rotation parameters for the cameras, which are roll, yaw, and pitch
angles, are also provided. From these angles, the rotation matrix can be constructed as

R= Ryaw : Rpitch : Rroll (32)

for each of the sensors. The two matrices, R and K, are then composed into one homogra-
phy matrix with the corresponding matrices for the other sensor, resulting in a projective
transformation that maps the RGB image to the selected thermal one as

Hpr = Kr-Rr-Rp' - Kg', (3-3)

where the subscript 7' corresponds to thermal-related matrices and R to RGB. The RGB
image warped onto the thermal in this way is shown in Figure 3.3. The inverse of this matrix
is then a mapping from thermal to RGB

Hrp=Hp', = Kr-Rr- R;' - K; ' (3.4)

The thermal image warped onto the RGB one in this way is shown in Figure 3.4, and it shows
the difference in the FoV, which is very slight in comparison to the difference for offshore in
the next section.

3.3 Offshore dataset preparation

The preprocessing stage for the dataset collected using Offshore devices was performed
similarly to that of Sentry. In this case, however, the dataset is provided already as frame
tuples (three-membered in this case; RGB, thermal left, and thermal right), which are again
grouped by timestamp, with the difference that the thermal channels are synchronized, as the
two thermal cameras are using the same clock. Then, the RGB image is undistorted using

CTU in Prague Department of Computer Science



10/52 3.4. PIXEL-PRECISE ALIGNMENT

Figure 3.3: Overlapped RGB and thermal im- Figure 3.4: Overlapped RGB and thermal im-
ages after applying Hr_,7 constructed from ages after applying Hr_,p constructed from
camera parameters for Sentry. camera parameters for Sentry.

calibration parameters obtained from checkerboard calibration. This results in the undistorted
RGB image and a new calibration matrix for the camera that would virtually produce the
undistorted image. This new camera matrix is of the format shown at Eq. 3.1. As undistor-
tion is out of the scope of this work, for further details on checkerboard calibration and image
undistortion, please refer to Ref. [52]. Moreover, there are different Offshore devices on which
the dataset was collected, and as each was calibrated separately, there are also multiple undis-
torted calibration matrices. Therefore, only a single example of such an undistorted k-matrix

is shown as
539.2 0 766.1

Knew = 0 540.0 587.6] . (3.5)
0 0 1

For the mapping from RGB to thermal image, we also need to consider external camera
parameters, which are again yaw, pitch, and roll angles arranged into one matrix R as in
Eq. 3.2 for each of the sensors. These two matrices are then composed into one homography
for either the left or right camera as indicated at Eq. 3.3. Results after this initial homography
warping can be seen in Figure 3.5. The inverse of this transformation is a mapping from
thermal image to RGB image as indicated in Eq. 3.4. Results of such mapping using both
thermal frames are illustrative of the differences in the FoV for thermal and RGB channels
and can be seen in Figure 3.6.

3.4 Pixel-precise alignment

Even though the alignment pipeline starts with the homography warping based on
calibration parameters, the modal images need to be further aligned for reasons outlined in
previous sections. What was called modal alignment so far is also known in the literature as
image registration [56]. Image registration is the process of aligning multiple pieces of data
into one coordinated system. This can include various data types such as photographs, sensor
data, or data from different times or viewpoints —in the case of this thesis, we are processing
images from various sensors and views. There are two main approaches to image registration:
spatial and frequency domain. The most used method in the frequency domain is the phase
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Figure 3.5: Overlapped RGB and Figure 3.6: Overlapped RGB and both thermal images
thermal images after applying after applying Hy_, r constructed from camera param-
Hp_ 7R constructed from camera eter for Offshore.

parameters for Offshore.

correlation —a translation estimation method that is resilient to occlusions or noise. This
method is based on the fast Fourier transform (FFT). Phase correlation can also be used to
determine rotation and scaling differences between two images by converting them to log-polar
coordinates [54]. Since rotation estimation is translation-invariant, it is a common practice to
estimate rotation first, rotate the image, and estimate translation.

In the spatial domain, a common approach is feature-based, meaning that the first
step is feature detection and description [41] on both images, using handcrafted methods
such as SIFT [53] or ORB [46] or deep-learning-based methods, e.g., SuperPoint [26]. The
word handcrafted in the machine learning context means methods that are not learnable. The
features are matched, again using handcrafted methods often based on nearest neighbor search
such as in FLANN [49] or learned techniques such as SuperGlue [20]. Finally, a homography
matrix is estimated based on the correspondences using mostly RANSAC-based approximates
for relative pose camera estimation.

Note that all the images shown in this section are from the Sentry dataset unless said
otherwise, simply to consistently outline the methods, but the results are shown at the end of
the section, also on the data from Offshore, to illustrate the transferability of the developed
approaches.

From now on, we assume that the homography provides the main projective warping,
and the remaining differences can be parametrized as an affine transformation, i.e., transfor-
mation allowing only for scale, rotation, and translation. This allows us to use the frequency
domain, as only scale, rotation, and translation between images can be estimated with FFT.
Another assumption is that the initial homography aligns the images reasonably well, so the
affine transformation will only have a certain effects-magnitude, i.e., the parameters of the
transformation are small. We can use this to automatically register homography outliers or
reduce the hypothesis space automatically.
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Figure 3.7: Original RGB image, preprocessed RGB image and thermal image.

3.4.1 Frequency domain methods

The experiments were conducted in the same order as outlined —starting in the fre-
quency domain. The methods used in this section are described in Ref. [50], but the authors
use a different notation. Firstly, the three-channel RGB data needs to be transformed into a
single-channel grayscale, which can be easily achieved using, e.g., the OpenCV library. The
next step is preprocessing. RGB image preprocessing is applied to compensate for the different
nature of images. Methods tested are color inversion, Contrast-limited Adaptive Histogram
Equalization (CLAHE) [55], Wallis filter [57] or Gaussian blur to remove noise. An exam-
ple image preprocessed with CLAHE, color inversion, and blur is shown in Figure 3.7 along
with the original RGB image and a corresponding thermal image. The experiments below are
conducted on images with the preprocessing shown above since it outperformed other prepro-
cessing methods in experiments. Moreover, results with no preprocessing were not alignable
at all.

Let us continue with the outline of translation estimation first. Its core method, the
phase correlation, is also the cornerstone of rotation estimation further in this section. The
phase correlation produces a complex function whose maximum magnitude corresponds to
the shift estimate between the two input images. The landscape of such a process is shown
in Figure 3.8. The figure contains a cropped version to the window of size 120 x 120, as 30 is
by far the maximum shift we assume between the images in the dataset. The landscape was
created from twice the same image but once shifted by (-7,8) pixels. The displayed landscape
is produced using

F(Itn) o F(IrcB)"
CSPD(Iyn, Irc) = 3.6
i TRGB) = (71 o F(Tncs)| (3.6)
for the computation of the cross power spectral density (CPSD), where F is a 2D fast Fourier
transform (FFT), (-)* symbolizes complex conjugate and o and | - | are element-wise prod-
uct and absolute value. The landsacape for shift estimation between thermal image I;;, and
preprocessed RGB image Irgp is then computed from CSPD as

r = FL(CSPD(Iyy, IraB)). (3.7)

This discrete function is then searched for its maximum, as explained before, resulting in the
shift coordinates as

(82, 8y) = argmax, (1), (3.8)

which yields the shift z and y direction estimate.
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Figure 3.8: Ideal objective function landscape Figure 3.9: Ideal objective function landscape
cropped to window size of 120 x 120 for FFT- cropped to window size of 60 x 60 for FFT-
based translation estimation. based rotation and scale estimation.

Figure 3.11: FFT-based alignment estimation result with a suitable pair from the dataset on
the right and typical results on the left.

However, when we apply the same process to the pair of RGB and thermal images
from the dataset, the typical result does not satisfy the alignment requirements for ground-
truth propagation. We obtain a correct translation on a suitable pair of images, which can
be seen in the right part of Figure 3.11, but the typical result can be seen on the left. A
standard (normalized and cropped) landscape for a combination from the dataset can be seen
in Figure 3.12. We can see that the results do not satisfy the pixel-precise criteria.

However, it still remains to tackle the rotation differences, as different rotations can
cause the poor outcomes above. Moreover, FFT-based rotation estimation is translation in-
variant, which means it is a suitable first step. After the preprocessing, a windowing function
is applied to avoid issues with the periodicity of the FFT —typically Hann window. Then, the
images are transformed using FFT. The log-polar transform of the magnitude of the frequency-
domain images is applied. For the polar transformed magnitudes, refer to Figure 3.14. Images
transformed in such a way are then used in the cross-correlation described above, yielding a
shift in the log-polar space. The landscape of the result of this process is shown in Figure 3.9.
The figure contains a cropped version to the window of size 60 x 60. The landscape was cre-
ated from twice the same image but once rotated by -5 degrees. From that shift in log-polar
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Figure 3.12: A typical FFT translation esti- Figure 3.13: A typical FFT rotation and scale
mation objective function landscape. estimation objective function landscape.

Figure 3.14: Log-polar transform of the magnitude of the frequency-domain images.

space, the rotation in degrees is computed as shift,/h * 360, where h is the height of the
image. Again, we can find some good results on suitable images, an example of what can be
seen in the right part of Figure 3.16. Note that this result is after both correct rotation and
translation estimation. However, most images are misaligned even after this step, as seen in
the same Figure 3.16 on the left. The landscape of a rotation estimation function of a typical
image pair from the dataset is in Figure 3.13.

The experiments have shown that these methods work perfectly on artificially trans-
formed images. In the case of a cross-modal application, FFT-based alignment works only in
some cases where the image pairs are suitable. It is challenging to provide any further specifi-
cations of suitability since it can’t certainly be said from the experiments. Still, from the image
pairs that were successfully aligned, it seems that a clear horizon is not enough, and some
dominant, such as a big ship or long wave after a dinghy, needs to be present. From the CPSD
landscapes, we can also deduce that the translation is generally more stable since its landscape
seems smoother and with clearer peaks. However, the performance is not as good as needed
for this application. It can be caused by the different perceptions of wave or sky patterns, and
since this is the most prevalent feature of the images, such an apparent correspondence as a
small ship can be then dominated by the noise from the environment. Another cause can also
be the relative movement of waves and floating objects. One of the main issues is also the fact
that there are not many options in terms of robustness or generalization-across-more-images
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Figure 3.16: FFT-based rotation and scale estimation result with a suitable pair from the
dataset on the right and typical results on the left.

improvements for these methods.

3.4.2 Spatial domain methods

The mentioned problems of frequency-domain methods naturally lead to spatially ori-
ented approaches, as basing the transformation method on significant features, such as floating
objects, seems promising.

In the correspondence-search-based approaches, we start with converting the RGB image
to grayscale, too, as the thermal image is grayscale, and some methods also need the input to
be grayscale. It is followed by preprocessing again to make the images as visually similar as
possible, as the features to be extracted are based on the visual aspect. Color inversion has
proved to be a crucial step here.

A typical pipeline for correspondence search starts with feature detection, followed by
feature description, which results in vector-described features. This is precisely how Scale-
invariant feature transform (SIFT) works. These vectors are then compared among images
using a vector similarity with algorithms such as k-nearest neighbors, and tentative matches
are thus made. SIFT is considered a baseline method in most computer vision experiments
since it is robust and well-known by the community. In the experiments, SIFT delivered results
similar to the other tested handcrafted methods, such as the ORB extractor (Oriented FAST
and Rotated BRIEF). Correspondences obtained using ORB on a single image pair are shown
in Figure 3.17. The other method shown in this chapter for comparison works similarly from
a high-level point of view. Still, the first difference is that it is not handcrafted but built on
two unsupervised deep-learning-based algorithms. The first part is SuperPoint (SP), which
produces the features described as those mentioned for SIF'T. However, matching is not based
simply on vector similarity; it also takes into account some geometric restrictions. This is then
a task of Graph Neural Network (GNN)-based SuperGlue (SG). The resulting correspondences
for this method can be seen in Figure 3.18.

The next step is to estimate a projective transformation from the tentative matches.
This is typically done using the RANSAC (Random Sample Consensus) algorithm, which
randomly selects a number of points needed to compute the transformation. The transfor-
mation is computed using a closed-form solution, and then support from other correspon-
dences is computed given some threshold (often in px) for a point to be considered a support
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Figure 3.17: Correspondences found using ORB feature extractor and exhaustive matching
on a single image pair.

Figure 3.18: Correspondences found using SP feature extractor and SG matcher on a single
image pair.
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Figure 3.20: Transformations estimated form SP+SG correspondences. General projective
transformation is on the left, affine on the right.

point. For more information on RANSAC, please refer to [52]. In these experiments, we used
custom-implemented RANSAC for two reasons. Firstly, we want to be able to search for also
different types of transformation than the general projective one, i.e., affine transformation
(translation, scale, and rotation) or rigid transformation (no scale), since we assume that the
pre-alignment tackles other deformations. For this, custom closed-form transformation solvers
were implemented along with RANSAC implementation.

Moreover, since the images were pre-aligned, we can expect only a small magnitude of
the transformation, and if the homography is transforming the image more than expected, we
would like to keep the original pre-alignment instead of delivering some non-realistic defor-
mation. This magnitude is easy to compute in the case of rigid transformation, where we can
take an angle from the rotation part and the magnitude of the translation vector from the
homography matrix and threshold these two values. In affine transformation, the scale also
needs to be extracted as the determinant of the rotation part, which is also straightforward
to the threshold. The decomposition of homography into affine transformation components is

H= [O‘f’ ﬂ , (3.9)

where « is the scale, R is the rotation matrix and t is the translation vector. However, in the
case of general homography, it is not as straightforward to estimate the individual components.
However, we can again use the abovementioned assumption and restrict ourselves to the affine
transformation to overcome this problem. The experiments show that the results tend to be
more robust and seem less overfitted to the given set of correspondences with the affine
transformation. A comparison of these transformations can be seen in Figure 3.20.

Naturally, even this approach does not work for some image pairs, even quite frequently.
Especially when images that are a bit hazy, the horizon is blurred, or images that do not con-
tain any significant patterns, such as boats or waves, there are whole sequences where no cor-
respondences are found. However, unlike in the previous FFT-based approach, there is a space
for robustness and generalization improvement in the correspondence search. The space stems
from the following observation. Once the transformation is estimated, it is usable throughout
the whole sequence - in particular, when estimated as an affine transformation because the
overfitted projective transformation has a higher error when generalizing to other images in
the sequence. The images aligned and shown in Figure 3.22 were taken in the same sequence
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as the one in Figure 3.20 but using the transformation from those correspondences. With this
observation, we can also eliminate the assumption that the non-perfect time synchronization
is the cause of misalignment on our dataset and attribute it to the limited calibration.

Figure 3.22: Image pairs transformed using affine transformation estimated on a different
image pair in the same sequence.

This observation opens the door for a new method, which collects correspondences over
more images in one trip, as long as the same device is used. Once enough correspondences
are distributed all over the image, the estimate’s uncertainty is sufficiently decreased, and
the transformation parameters can be estimated. This estimate can then be used everywhere
throughout the sequence and also align images, which would be unalignable if attempted
separately. The example of correspondences collected throughout the whole sequence can be
seen in Figure 3.23. Then, images aligned using transformation estimated from these collected
correspondences are to be seen at Figure 3.25. On the left is a typical image that would be
alignable even on its own, but the image on the right has no significant features and a hazy
horizon, so its alignment using any of the explored approaches would be hardly possible, but
with the correspondence-collecting method, we receive a sufficient alignment.

The approach developed in this section yields a homography Hp estimated from corre-
spondences. This, in composition with the initial homography Hg_,7 estimated from calibra-
tion parameters creates the correct mapping

Hfyyp = Hp - Hr o1, (3.10)

that can be used to warp RGB images to the thermal ones. Its inverse would again produce
a transformation from thermal to RGB. Even though the development was shown solely on
Sentry data, it was also tested on the Offshore datasets, leading to similarly satisfactory
results. The result of RGB mapped to the thermal left image can be seen in Figure 3.26 and
the other way round is shown in Figure 3.27.

This framework seems robust enough and sufficient for the needed ground-truth align-
ment. In need of higher precision, a method called GlueStick is also notable, which creates
correspondences based not only on points but also on lines detected in both images. It would
be natural to detect the horizon in the image and use it for more precise rotation estimation
using such an algorithm. However, the horizon is often not clear enough since images can be
hazy or hardly visible due to a shady border between land and water.

Now, after estimating the secondary homography we use after the pre-alignment from
camera parameters, we can construct a full projective transformation from RGB to thermal
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Figure 3.23: Correspondences found using SP+SG over a sequence of 40 images. The images
are also shown at the top for better visibility.

Figure 3.25: Image pairs aligned using transformation estimated from correspondences col-
lected over 40 images.

image space (or vice versa) as shown in Eq. 3.10. This homography can be used to transform
the ground-truth (GT) masks, such as bounding boxes, in the case of the SEA.AI dataset.
Examples of GT annotations for RGB and thermal images, respectively, can be seen in Fig-
ure 3.29.

In our case, the annotations are bounding boxes. Therefore, the ground truth can be
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Figure 3.27: Overlapped RGB and both thermal images

Figure 3.26: Overlapped images
8 PP & after applying finetuned HE . .

after applying finetuned H E TR

Figure 3.29: Example of ground truth bounding boxes for RGB and thermal images.

transformed from RGB to thermal by simply using the HJE _, g for each corner of the bounding
box b = (b, by) and normalization as

bt by
AbL| =Hf p- byl (3.11)
1 1

where ) is a normalization factor and b = (b¢, b?’;) are boudning box corner coordinates in

the thermal image. It is only necessary to crop the bounding boxes so that they do not fall
outside of the images, which is easily done for each corner as

] <o [4]. [0 5]

where H and W are the height and width of the new image size, while min() and max() are
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element-wise vector functions. GT masks propagated from both modalities to both the RGB
and thermal images are shown at Figure 3.31.

Figure 3.31: Ground truth boxes projected into RGB and thermal images respectively from
both modalities.

3.5 Distilling the data

At this point, we have aligned data tuples with ground truth targets. However, the
number of annotated images tuples created this way is close to 700,000. Training the number
of models benchmarked in Chapter 5 would be infeasible with this amount of data. Moreover,
the data mainly comprises sequences, meaning many very similar frames are in the dataset.
Therefore, the next goal is to reduce the amount of available data while maintaining the
information provided in the dataset. Because of the amount of sequences in the dataset, a
natural approach that comes to mind is simply subsampling. In other words, select some
sampling period N and then select every N-th sequence image. Subsampling would result
in the desired size of the dataset provided N is chosen correctly. While this is a simple
to implement and effective approach, it ignores the need for some more dynamic N, as some
scenes are very short and might be easily missed. On the other hand, if the ship is motionless, it
still collects many almost identical images. Dynamic N is also needed as the objects are moving
at different speeds, and some of them might be missed completely or in a very unrepresentative
position. In contrast, the slow objects would appear in many frames, thus depriving the dataset
of its richness. A better approach would be to use some variant of box tracking algorithm,
such as KCF [5] to track the annotated bounding boxes across images and, if some important
change in annotated scenery occurs, to use that image in the training dataset. While this
approach delivers more of what we seek, it still needs to consider the unannotated aspects
of scenery. These caveats lead to the approach used in this work. The dataset images are
processed using embeddings. Embeddings are vectorized representations of images (in our
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case, but are often used also in natural language processing (NLP) as vectorized versions of
tokens) that exhibit certain properties, such as that embedding of visually similar images
should be close (with respect to some metric defined in the space of the embeddings) to each
other or not close for images that are different. Let’s define an encoder as a function

fo i [0,1]2HW L RN (3.13)
where [0, 1]3XHXW is the RGB image space and R" is the embedding space, with H being
image height and W image with and N a dimension of the embedding space that depends on
the encoder used. In this function, a visual transformer-based encoder trained on the cityscapes
dataset with N = 512 was used as the encoder. After computing these embeddings for each
image, we can perform some dimensionality reduction procedure to cluster the embeddings in
some domains, where we can visualize the embeddings and verify the similarity of images in the
clusters. Methods typically used for dimensionality reduction are based on SVD decomposition
and can be Principal Component Analysis (PCA), Uniform Manifold Approximation and
Projection (UMAP), or t-distributed Stochastic Neighbor Embedding (TSNE), with the latter
used in our case for trips longer than 100 samples and UMAP otherwise. All the methods are
introduced and explained in greater detail at [51]. The embeddings of one sequence from the
offshore dataset projected into a plane are shown in Figure 3.32.

Figure 3.32: 512-dimensional embeddings of images from one offshore dataset trip projected
into a plane and clustered using DBScan.

After projecting the embeddings into lower dimensional space, we can perform clustering
(this is also more challenging in higher dimensions due to the sparseness of the vectors in that
space and higher computational costs). Clustering is basically a method of grouping closeby
data points together. Typically used methods are K-Means, DBScan, or AffinityPropagation,
all described in Ref. [51]. In the case presented here, DBScan is selected as the main clustering
algorithm due to its speed and the fact that the number of clusters does not need to be
specified in advance and thus results in the natural clustering of a dataset depending on
method parameters, which are e and minima number of samples per cluster. Automatically
selecting a number of clusters is also what is expected from an algorithm for automated dataset
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distillation. The clustering of the embeddings of images from one Offshore dataset trip is shown
in Figure 3.32. Visualized are also image examples from some clusters to outline the algorithm’s
efficacy. However, this step leaves the user with very coarsely clustered embeddings, and if one
were to select just a single image from each cluster, it would reduce the size of the dataset by a
factor of hundreds. Moreover, how should one choose a single sample representative of all the
hundreds of samples when the samples still vary inside a single cluster, as seen in Figure 3.32.
Since we operate in a clustered vector space, choosing a centroid or an image closest to the
centroid is a very natural answer. While this addresses the selection question, the too-big
reduction factor and, from it, stemming limited representativeness of the selected sample is
resolved with a second round of clustering. These main clusters can be divided into subclusters
of virtually the same images, among which one representative is selected as the one closest to
the centroid. The number of chosen subclusters in this stage can be enforced to ensure at least
some specified reduction factor by using an algorithm such as KMeans, the results of which are
shown in Figure 3.34 and where K is the input parameter that can be computed as K = N./ f,,
where N, is a number of images in a cluster, and f, is a reduction factor. Alternatively, the
number of subclusters can be defined automatically by a clustering algorithm that does not
need it as an input, such as DBScan or Affinity Propagation. Subclusters obtained with
Affinity Propagation are shown in Figure 3.33 with the visualizations capturing examples of
the images to demonstrate the quality of the proposed method. Selection between the sub-
clustering method is more of an empirical trait as it depends on the usage of the final dataset,
the number of samples on the input, and the nature of the dataset.

Figure 3.33: One cluster obtained by DBScan subclustered with Affinity Propagation and
centroid samples marked with x.
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Figure 3.34: One cluster obtained by DBScan subclustered with K-Means and centroid samples
marked with x.

3.6 Resulting dataset

There are only a few videos labeled in both thermal and RGB channels in the Sentry
dataset. Therefore, these are reserved for testing purposes. The bulk of the data comes from
the offshore dataset, where the initial count is 1M image triplets (RGB, thermal left, and
thermal right). These were then filtered to the ones captured on devices with calibration data
available. The filtered triplets were then all pre-aligned using these calibration parameters.
Then, correspondences were collected for images in every trip separately, one trip typically
consisting of a few thousand triplets. After gathering at least 3500 correspondences for each
of the two pairs (RGB left projection with thermal left image and the same for right), the
finetuning affine transformation H was constructed and used to transform every second
RGB into left and right along with its annotation, thus resulting in two RGB and thermal
image tuples with merged ground truth. For each trip, a visual sanity check was performed to
make sure the transformation was successful (it was not always the case, as some trips were
not properly synchronized or too textureless to collect any correspondences). All these steps
combined resulted in approximately 350,000 annotated image pairs. RGB-only embeddings
were computed using a visual transformer-based encoder for images of each trip. These RGB
512-dimensional embeddings were projected into 2D with TSNE (or UMAP for the sequences
under 100 samples) and clustered using DBScan with parameters of ¢ = 2.1 and a minimal
number of samples per cluster selected as one since single outliers are an excellent addition to
the final dataset. Each cluster was then subsampled using AffinityPropagation with a damping
parameter of 0.65. An example of the annotated pairs from the resulting dataset can be seen
in Figure 3.35. The final dataset numbers around 16,000 samples.
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Figure 3.35: 12 RGB and thermal pairs with merged ground truth masks from the distilled
and aligned dataset.
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Chapter 4

Approach overview

This chapter details the architectures that are benchmarked in the next chapter of this
thesis. Some of the architectures were already outlined in Chapter 2, and these are described
here in more detail. Nevertheless, this chapter also introduces our proposed and baseline archi-
tectures formerly used in the SEA.AI devices. Firstly, architectures for multimodal semantic
segmentation are discussed in Section 4.1, and then their trianing details are discussed in
Section 4.2.

4.1 Multimodal semantic segmentation

4.1.1 U-Net based architectures

U-Net is a cornerstone architecture for semantic segmentation and also serves as a
baseline for our benchmark. The initial applications of U-Net were in biomedical image seg-
mentation, such as brain image segmentation [42]. Nevertheless, U-Net implementations have
also found their use in other fields, such as physical sciences [3].

It is based on encoder-decoder architecture, where the encoder extracts features from the
input image, and the decoder upsamples the features to the original image size. The encoder-
decoder architecture is connected by skip connections, which allow the decoder to use the
features from the encoder at the same level. These connections allow the network to learn
both high-level and low-level features. The depth (i.e., the number of downsampling blocks)
and channels obtained in each depth vary among implementations and available computational
resources. A diagram of our implementation of the original U-Net architecture is shown in
Figure 4.1.

The Double 2D Convolution operation consists of two 2D convolutional layers with a
kernel size of 3 x 3, a stride of 1, and a padding set to preserve the resolution, followed by a
rectified linear unit (ReLU) non-linear activation function. It is an industry-standard to use a
batch normalization layer after the convolutional layers, which is also used in our implementa-
tion, but this differs from the original implementation. Batch normalization learns parameters
of batch mean and standard deviation to normalize them to 0 and 1, respectively. This stabi-
lizes the training procedure and acts as a regularizer, which helps to prevent overfitting [40)].
The Maxpooling operation is a 2 x 2 layer with a stride of 2, which selects the maximal value
from the 2 x 2 window. This operation can be replaced by a stride of 2 in the first convolu-
tion operation in the subsequent Double 2D Convolution following the original Maxpooling
operation. An upsampling with linear interpolation and factor 2 is used for the Upsampling
operation, followed by a single 2D convolution layer. This upsampling layer can be replaced
by transposed convolution. Lastly, in place of the 2D convolutional layer mentioned so far,
one can use a normal 2D convolution layer or something called separable convolution, which
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Figure 4.1: Our variation on the original U-Net architecture.

is a depthwise convolution followed by a pointwise convolution. The differences between these
types of convolution are shown in Figure 4.2. The main advantage of separable convolution
is the significant reduction of the number of parameters and, therefore, computation costs.
This reduction was leveraged in MobileNet [32]. Both of the 2D convolution versions are more
explored in the benchmark. The number of channels and specific resolution values are inten-
tionally omitted in the schematic, as it differs across the UNet version used in this benchmark.

Now, to obtain an architecture capable of multimodal data processing, the modalities
need to be fused at some point. The fusion can then be approached in several ways. The
first aspect that is often different among the architectures for the fusion is the point in the
processing pipeline where the features are fused. In this light, fusion can be divided based on
the part of the stage where they are fused into pre-encoder or input fusion, multilevel fusion,
and output fusion. These strategies are visually overviewed in Figure 4.3.

A typical input fusion approach included in most publications, at least as an ablation
study, is adding the other modality as an additional channel to the input RGB image, thus cre-
ating a 4-channel image input image I, € [0, 1]HXWX4 instead of typical Irap € |0, 1]HXWX3.
The 4-channel approach was explored in ablation studies, e.g., [22] or [24], but was shown to
be inferior to the other fusion strategies. The rest of the fusion approaches introduce separate
encoders for each modality and then fuse the features at some point. The output fusion was
used in the early works, such as [29], or ablation study of [24]. Even though it led to some im-
provement over the RGB-only model or 4-channel approach, it was shown to be inferior to the
multilevel fusion [24]. Multilevel fusion is then the one generally adopted in the multimodal
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Figure 4.3: Typical architecture concepts for processing multiple modalities: multilevel, out-
put, and input fusion.

field [7], [22], [24], as overviewed in Chapter 2.

We mentioned previously that the double-encoder approach requires a fusion strategy
to combine the features from both encoders. Therefore, another differentiation aspect among
the architectures stems from the fusion strategy itself, i.e., it is based on how the features are
fused independently of where they are fused in the architecture. Some architectures even use
multiple fusion strategies at different depth levels [14].

A general double-encoder U-Net (W-Net) architecture with a multilevel black-box fusion
strategy is shown in Figure 4.4, with the fusion strategy denoted by F block. This architec-
ture was inspired by U-Net and the prominent architecture features leveraged in multimodal
computer vision. Note that U-Net architecture contains skip-connections (connections prop-
agating the encoded features to the decoded ones on the same depth level) at each level so
that the encoded fused information from both modalities is propagated at each level to the
corresponding decoder level, and this is the also the case for the dual-encoder U-Net. These
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connections are also displayed in the figure.
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Figure 4.4: U-Net double encoder architecture.

The multiple dots in the figure represent the option of a deeper encoder. Note that
the encoder and decoder are also, in this general figure, more of a schematic black box, as
there is no particular restriction on the compression or decompression strategy or number of
channels produced in each layer. Now, as we have introduced the WNet architecture, we can
compare it to the state-of-the-art architectures and see that most of them can be reorganized
to a variation of this schematic architecture; in particular, all of the architectures presented
in this chapter fit the outlined scheme. One of the minor differences in the strategies is that
only some outlined connections are used or that sometimes there are more outputs from the
decoder block for multiple losses taken from different decoder levels. The latter applies to, e.g.,
GMNet [14] or CAINet [1]. The more significant difference is the encoder backbone, where
the most common are ResNet, DenseNet, or some visual transformer, but this is not specified
in the schematic either, so all of these options can be used for WNet, too. The encoder is
then the primary determinator of computation capacity and the number of parameters of the
model. These aspects stem from the encoder depth, the number of channels in the layers,
and the convolution type. Nevertheless, the most significant contribution of the individual
architectures is the fusion strategy, i.e., the F block in our figure.

This fusion can be simply an element-wise addition of the features, their concatena-
tion, or any more complex approach. A more complex fusion block can have even trainable
parameters and any number of concatenations, summations, multiplications, flattenings, and
similar operations compressed into one block. This block can even produce more than one
output, which is used for different purposes, such as fusing into modality encoders, deeper
layers, or decoders. The fusion strategies are presented in more detail in the following sections
corresponding to the models that introduced them.

Nevertheless, UNet and its double-encoder WNet version are used in several flavors in
the benchmark; the tweaks to the architectures defining these flavors are marked with model
name suffixes. Firstly, UNet is used as a simple baseline with simple 1-channel input: a thermal
image and channel numbers of {32,64,64,128,256} and separable convolutions everywhere
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besides the first and last one. This network is named UNet-S in the benchmark, where the
S stands for separable convolution. The thermal image is chosen over RGB, as it is (i) more
robust to adverse environmental conditions, (i) has a higher resolution, and (iii) is used in
the single-modality SEA.AT architecture, which is also included in the comparison. Secondly,
the already discussed 4-channel version of this UNet is also included in the benchmark named
UNET-S4. Additionally, we include a version of the UNet that uses only RGB images, named
UNet-S3, where the number 3 in the suffix stands for three channels of RGB. The other
architectures tested in the benchmark are various WNet flavors. In all of them, both encoders
are taken from the UNet implementation and, in some, the decoder, too. The only difference
is that the last upsampling block in the decoder, whose function is replaced by a simple
upsampling of the result, is omitted in the same way as is described in LNSeg Section 4.1.2.
This replacement significantly reduces the number of parameters and computation costs, while
our experiments showed that the performance is not significantly affected. In the first flavor,
the fusion strategy is simply an addition of the features from both encoders on all levels,
which does not change the dimensionality with regard to the UNet implementation, so the
decoder with concatenation can be used directly. This architecture is almost identical to the
one used in [22]. This model is called WNet, and benchmarked is also WNet-S, a version with
separable convolution employed, which is denoted by the suffix S. There is also a version named
WNet-NS that does not use separable (NS) convolution but normal 2D convolution. The last
of these simple models is WNet-S-DP, which is a deeper version with {32, 64, 128,256,512}
channels, deeper stands for DP. Moreover, the modularity of our implementation allows for a
combination of WNet with encoders or fusion strategies from other models. However, these
will be introduced in more detail in their respective sections. All the models mentioned in
this subsection were trained using binary cross-entropy loss [36] with logits, where logits are
the raw output of the network before the activation function is applied. Logits are used to
increase the numerical stability [36].

4.1.2 LNSeg

LNSeg [19] is an architecture formerly used in the SEA.AI Offshore devices, and it now
serves as a baseline for our experiments. Firstly, it is a suitable baseline as its complexity
and inference speed are good indicators of the performance needs of the SEA.ATI edge devices.
Moreover, we can use the model with both the original weights, trained on the full thermal
segmentation dataset comprising 400,000 images (LNSeg-ORI), and the weights trained on our
distilled dataset version to compare the distillation effect on training. Note that this model was
trained and evaluated on 16-bit thermal data, while the benchmark models are trained and
evaluated on 8-bit data, so the comparison is not entirely fair, but it is a rough representative
of the effect of the dataset distillation. As mentioned, this architecture is deployed only on
thermal images because thermal images are a more robust detection source. Because of the
higher robustness and absence of a calibration good enough for sensor fusion, the thermal
image was used as the only source of detections in the areas where thermal information is
available and RGB otherwise. The differences in the fields of view are shown in Section 3.3.
Therefore, it makes sense to compare the performance of the thermal-only model with the
multimodal models, as they would replace LNSeg at the same place in the pipeline, where
both modalities are available.

The LNSeg architecture is a variation of a simple UNet architecture with a single encoder
and decoder. It can almost fit onto the schematic in Figure 4.1 with minor tweaks shown in
Figure 4.5. Firstly, downsampling is performed with a stride of 2 in the first convolutional
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layer instead of Maxpooling. The Double 2D Convolution operation is replaced with Triple
2D Convolution. The upsampling is done with the nearest upsampling layer instead of bilinear
upsampling, followed by a single 2D convolution layer. Moreover, the last upsampling block is
omitted, and the second to last upsampling block is connected to the output layer. The output
is then interpolated to the original resolution. The lack of the last upsampling block, along
with the separable convolutions, significantly reduces the parameter number and computation
costs. The number of channels is [32, 64,64, 128, 256]. Lastly, the concatenation from UNet is
replaced by an element-wise addition. This architecture is named LNSeg-S in the benchmark.
There is also a version with 4-channel input, LNSeg-S4, which is used for comparison with the
other architectures. The last version is LNSeg-S3, which takes as an input only RGB images.
All the models mentioned in this subsection were trained using binary cross-entropy loss with

logits.
= Double 2D Convolution \

& Upsampling & 2D Conv.

L Strided Triple
= Qutput 2D Convolution

Bilinear upsampling

Encoder Decoder
S S >
S NS

Y

T _—é

Figure 4.5: Variation on the original U-Net architecture used in LNSeg.

4.1.3 RTFNet

RTFNet [24] is one of the early architectures that introduced the multilevel fusion
strategy for RGB and thermal images. The main distinction from the general WNet scheme
is that the thermal image is fused in a one-way manner into RGB at each decoder level using
a simple element-wise addition. The output of the RGB encoder is then processed by several
upsampling blocks, but there are no skip connections from the encoder levels. The encoder
backbone is ResNet, and to keep the architecture to the complexity limitations posed by the
SEA.AT devices, we trained the network with a ResNet18 backbone. While benchmarking
ResNet, we introduced a few modifications to the original architecture, such as the number
of input layers, where the thermal encoder was initially designed with three channels but
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has only one channel in our case, and the output layer, where the number of classes was
set to C' = 1. The number of channels was changed for all the architectures in this section.
Moreover, the original architecture was terminated with a ReLU layer, which prevented us
from training with binary cross-entropy loss with logits. Therefore, another output layer was
added to the architecture This architecture is named RTFNet18 in the benchmark, where the
18 in the name stands for the size of ResNet used. For more architecture details, please refer
to the original paper [24]. Both models mentioned in this subsection were trained using binary
cross-entropy loss with logits.

4.1.4 GMNet

GMNet [14], in comparison to the previous architecture, introduced more complex fusion
strategies, namely Shallow and Deep Feature Fusion Modules (SFFM and DFFM). The SFFM
blocks are used in the first two levels of the decoder, and the DFFM blocks in the last three.
The schematics and further architecture details of these blocks can be found in the original
paper [14]. As the first architecture overviewed in this work, GMNet introduces multiple
training losses, particularly boundary loss, binary mask loss, and semantic mask loss. The
boundary loss is computed using binary cross entropy loss between the boundaries of the
predicted masks and the ground truth masks regardless of class. This loss is omitted in our
training, as the boundaries are vague rectangles around the objects, and it is not an essential
part of the detection process. The binary mask loss is then computed using binary cross-
entropy loss between the predicted binarized masks regardless of the class and the ground
truth binary masks. This loss is kept with our training, but we use binary cross-entropy loss
with logits. The semantic mask loss is computed using Lovasz softmax loss [25] between the
predicted semantic masks and the ground truth masks. The semantic, boundary, and binary
loss weights used in the original implementation are [0.4,0.3,0.3]. Even though we use only
a single class, we keep the semantic loss because it is taken from a different part of the
architecture than the binary loss and uses a different function. However, we use Lovasz hinge
loss instead of Lovasz softmax loss, as the outputs are only binary, and Lovasz hinge loss is
designed for binary outputs [43]. We keep the ratio of the two used losses the same as in the
original implementation. The architecture schematic is shown with our tweaks in Figure 4.6.
Again, the encoder backbone for GMNet architecture is ResNet. In the benchmark, there
are several flavors of GMNet, namely GMNet18, a dual-loss-trained GMNet with a ResNet18
backbone. Then GMNet18-1L, where 1L stands for a single loss, is the same architecture with
binary loss omitted, and finally, GMNet34, which has a ResNet34 backbone.

4.1.5 CMX

CMX [7] is the only transformer-based architecture in the benchmark. Specifically, we
trained CMX versions with two backbones, SegFormer [13] MiT-b0 and MiT-b2, named CMX-
b0 and CMX-b2 in the benchmark where the suffixes b0 and b2 stand for the backbone size.
CMX also introduces two fusion strategies: the Cross-Modal Feature Rectification Module
(CMFRM) and the Feature Fusion Module (FFM). The CMFRM is used at all levels of the
encoder for cross-modal information flow before propagation to the next level. In contrast,
the FFM is used for the fusion of the modality data before feeding it into the decoder. The
CMX paper [7] also delivers implementations of several decoders, namely Fully Connected
Head Network (FCN), Multi-Layer Perceptron (MLP), and Atrous Spatial Pyramid Pooling
(ASPP), which was introduced in [28]. The decoder used in the final implementation of CMX
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Figure 4.6: GMNet variation with custom MLP encoder on our proposed WNet.

is the MLP, which we also used in the CMX networks trained for our benchmark, as the other
two encoder heads were inferior to MLP in our experiments, too. A Schematic of the CMX
architecture with MLP decoder is shown in Figure 4.7, as the MLP schematic is missing in
the original paper. In the schematic, the ‘Map to embedding space‘ connection represents a
linear layer that maps the input so that the number of channels is a pre-specified embedding
dimension. This block is then upsampled to the spatial resolution of the first encoder layer so
that the outputs from all layers can be concatenated in the channel dimension, resulting in
four times embedding dimension number of channels. Nevertheless, please refer to the original
paper for a more detailed description of the architecture or other fusion strategies. Moreover,
the results CMX presented in the paper were reinforced by promising results delivered in our
initial experiments, so we decided to replace the backbone with our UNet separable convolution
version to reduce the number of parameters and computation costs and train a WNet version
with custom fusion or head. Therefore, there is WNet-CX architecture in the benchmark that
uses the CMX fusion strategies with the WNet’s {32, 64, 64, 128, 256 }-channeled encoder and
decoder. Other CMX-WNet crossover architectures are WNet-MLP, which replaces in WNet
the previously employed WNet encoder with the MLP encoder from CMX, and WNet-CMX,
which uses both the MLLP encoder and the CMX fusion strategies. All the models mentioned
in this subsection were trained using Binary cross-entropy loss with logits.

4.1.6 SA-Gate

SA-Gate is an architecture initially developed for RGBD semantic segmentation. How-
ever, as it showed promising results in the RGBD domain, we also tested it in the RGBT do-
main. It is yet another architecture with the ResNet backbone, but it introduces an attention-
based fusion strategy. This architecture focuses on the noisy features of cross-modalities by
introducing attention mechanisms. The attention mechanisms have already been used in com-
puter vision tasks to select the most representative and informative regions of input signals.
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Figure 4.7: CMX variation with custom MLP encoder on our proposed WNet.

This attention usage is similar to the mechanism used in natural language processing (NLP),
where the model learns to focus on the essential parts of the input [35]. The attention-based
module is called Separation-and-Aggregation (SA) Gate, from which we induced the archi-
tecture name, as there is none explicitly given in the paper [16]. For further details on the
architecture, please refer to the original paper. This module is very similar to CMFRM in
the CMX architecture. The inspiration from SA-Gate is also mentioned in CMX. However,
in contrast to CMX, SA-Gate modules are also used as input to the decoder, but there is
also one connection, which is at the decoder’s first level. In the original implementation, two
losses are used. One is computed between the network output and the ground truth, and
the other, auxiliary loss, is calculated between the upsampled low-resolution encoder output
process through a single convolutional auxiliary layer and the ground truth to enforce correct
information propagation through the decoder. A cross-entropy loss was used for both losses,
which we replaced with a binary cross-entropy loss because of only binary output. We kept
the original weights for the two losses, [1,0.2]. There are then three versions of the SA-Gate
architecture in the benchmark, SA-Gatel8, SA-Gatel8-1L, and SA-Gate34, where the number
in the name represents the ResNet backbone used, and 1L stands for a single loss version.
Lastly, the same double loss architecture with an auxiliary output as in SA-Gate was adopted
in the WNet-S architecture named WNet-S2L, where the 2L in the suffix stands for two losses.

4.2 Training details

All the models were implemented in Pytorch and trained on NVIDIA GeForce RTX
4070 Ti. Optimizer Adam was used with a learning rate of 5 - 10~4, which was changed to
1-107% or 5- 107 depending on architecture used. All the models were trained with aug-
mentation techniques, namely random horizontal flip and affine random transformation from
the Albumentations library [15]. The affine transformation includes random scale, rotation,
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shear!, and translation. The training was performed for 60 epochs with a multistep learning
rate scheduler. The learning rate was reduced by a factor of 0.1 twice at epochs 40 and 50
of the training. The mean Intersection over Union (mlIoU) metric was used to save the best
model, computed on the evaluation dataset for every epoch. This metric is introduced in Sec-
tion 5.1. The training and validation split was 75% and 25%, which was performed on the
full training set, a description of which is provided in Chapter 3. However, the split was not
performed on images randomly to prevent information leaks from training to validation set
across the same scene. The split was done with whole trips assigned to training or validation
in approximately the desired ratio. A separate test set was generated for the final evaluation
of the models in Chapter 5. The used batch size was four due to the limited GPU memory of
16GB.

!Shear is indeed not an affine transformation, but it is still part of the affine transformation augmentation
function in Albumentations.
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Chapter 5

Results

This chapter aims to compare architectures presented in Chapter 4 and evaluate their
performance on a test dataset composed again in the way introduced in Chapter 3. Another
goal is to identify the architectures’ essential features by introducing them with different
tweaks and comparing their performance on the same dataset. The features can be specific
fusion architectures, encoders, decoders, or convolution types. The tweak-based approach is
similar to the approach adopted typically in the ablation studies of current papers dealing
with CNN architectures. All the architectures and their modifications are trained on the same
dataset (the dataset was introduced along with the creation procedure in Chapter 3), and the
tweaks (named as flavors or versions) were presented in Chapter 4 along with the architectures.
In this chapter, the used metrics are first introduced for segmentation along with results in
Section 5.1, then the object detection metrics and results are introduced in Section 5.2.

5.1 Segmentation metrics and results

For each input image pair of RGB image I; € [0,1**”*" and thermal image T} €

[0, 1}HXW, each of the tested architectures M; produces is a tensor O;; = M;(l;), where
0;; € [0, 1]CXHXW7 where C' is the number of classes. The output O;; is typically interpreted
as a probability distribution over the classes, where the class with the highest probability is
chosen as the predicted class. As this work aims to explore whether the multimodal fusion
can improve the general object detection capabilities in the image, and since the multi-class
classification could act as a confounder, we decided to have a single class of a ‘general floating
object‘. In other words. In our case, C' = 1. In this single-class case, the output is interpreted
as a probability of the pixel belonging to the class rather than to the background.

In order to evaluate the segmentation or obtain production results, a confidence thresh-
old needs to be set, and the pixels with a probability higher than the threshold are considered
the predicted object. This way we obtain a mask, which is matrix OiTj € {0, 1}V what is
the same format as the ground truth masks G;; € {0, 1}HXW have. With these pairs in hand,
we can compute the metrics for each image.

The first of the used metrics is mean Intersection over Union (often also referred to as
Jaccard Index), which stands for an equation

OL A Gyj TP
IoU = | i ial _ : (5.1)
]Oij\/Gij] TP+ FP+ FN
where V is element-wise logical or, and A is a logical and. The operation | - | then represents

the sum of all the elements in the matrix. In the context of the evaluation of semantic segmen-
tation, T'P stands for a number of the true positive matrix elements, F'IN for false negative,
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Figure 5.1: Several segmentation metrics computed for more confidence thresholds with maxi-
mums marked. All the metrics computer for three benchmarked models: WNet-S-DP, LNSeg-
ORI and CMX-b2.

F'P for false positive, and T'N for true negative. Another used metric is the Dice coefficient
(also called F1 score), defined as

B Q‘OZ;AGU‘ B 2T P

DC = = ’
0L+ Gyl 2TP+FP+FN

(5.2)

where + is an element-wise addition in the middle part of the equality. Since the F1 score is
the harmonic mean of precision and recall, we should also specify precision and recall

TP
N=——— .
Reca TPLEN’ (5.3)
and TP
Precision = ————. 5.4
recision = m— s (5.4)

The last of the used metrics is the Matthews coeflicient

MO — TP-TN —FN -FP (5.5)
~ /(TP +FP)(TP+ FN)(TN + FP)(TN + FN) ‘

With all the metrics set, we can reopen the topic of confidence threshold. The threshold
is a hyperparameter, and the choice of the threshold can significantly affect the results. As one
would strive to choose the threshold optimally in the production environment based explicitly
on the model’s performance on the validation, we evaluate the model with multiple thresholds
first and choose the best one for each of the architectures to preserve fairness. The metric
curves for the thresholds with maximums of the metrics marked are presented in Figure 5.1
for three sample models. The results for other models are very similar.

To choose the threshold for each model, we selected the threshold corresponding to the
maximum of the mean IoU metric, as it is the most conservative metric. With the threshold
selected, each metric was computed separately for each image and then averaged over the
whole test dataset. The results are presented in Table 5.1. The table also contains the average
time (in milliseconds) needed for a single-sample model inference on the test dataset. All
the models were running on the same unoccupied GPU in evaluation mode. The table also
shows the model’s size in millions of parameters and the selected threshold. The best results
are highlighted in bold. The models are separated by a horizontal line into groups of the
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Table 5.1: Segmentation benchmark results. The time is in milliseconds, the size is in millions
of parameters, and the threshold is the confidence threshold.

model time size  thr iou dice matthews precision recall
RTFNet18 4.13 31.00 0.28 31.74 39.76 41.18 40.43  45.73
GMNet18 6.70 31.98 0.25 33.17 41.11 42.39 42.38 45.94
GMNet18-1L.  6.66 31.87 0.28 32.76  40.57 41.81 41.73  45.42
GMNet34 8.14 52.20 0.22 32.04 39.88 41.16 40.40  45.55
SAGatel8 428 9.82 0.35 3293 40.80 42.11 42.28  45.60
SAGatel8-1L  4.38 9.67 0.30 32.99 40.95 42.33 42.35  46.27
SAGate34 5.71 14.99 0.32 34.46 42.46 43.74 43.72  47.39
WNet-S 3.52 0.62 0.28 33.13 41.12 42.46 43.38  45.32
WNet-NS 294 517 032 32.69 40.57 41.97 43.66  44.23
WNet-S2L 3.62 0.64 0.35 31.88 39.92 41.34 42.69  44.30
WNet-S-DP 3.67 225 0.28 32.82 40.89 42.29 43.22  45.32
WNet-MLP 2.24 088 0.32 3296 41.07 42.41 44.52  44.15
WNet-CMX 5.06 495 0.25 3241 40.51 41.97 42.61  45.53
WNet-CX 5.18 4.51 0.25 32.67 40.46 41.76 42.15 45.41
CMX-b0 6.98 12.11 0.30 33.99 41.84 43.05 42.03  47.48
CMX-b2 11.68 66.56 0.38 36.67 44.61 45.76 46.37 48.29
LNSeg-54 1.99 035 0.28 31.99 39.89 41.29 4220  44.46
UNet-54 240 0.29 0.25 31.68 39.68 41.19 41.98  44.82
LNSeg-ORI 225  0.36 0.38 31.94 40.41 41.70 40.27  46.74
LNSeg-S 2.02 035 0.22 30.67 38.36 39.87 41.17  43.26
UNet-S 231 0.29 0.22 30.40 38.20 39.58 40.70  42.50
LNSeg-S3 2.04 035 0.15 16.52 23.00 24.57 22.45 31.48
UNet-S3 228 0.29 0.10 16.17 22.57 24.28 21.91  31.87

same architecture type. The architecture types are double-encoder, single-encoder with four-
channel input, single-encoder thermal input and single-encoder RGB input. The model names
correspond to the names introduced in Chapter 4, and the tweaks are marked with model
name suffixes. If the ResNet backbone is used, there is a number 18 or 34 in the name, which
corresponds to the version of the ResNet backbone. The 1L suffix stands for the single-loss
training for architectures originally trained with multiple losses. For CMX, the suffixes b0
and b2 denote the backbone used, Segformer MiT-b0 or MiT-b2. If the suffix contains the
letter S, it means that a separable convolution was used, and NS means the opposite. The
suffix 2L denotes that the model was trained with two losses. The suffix DP is used in the
trained models with more channels in each layer, giving the model more parameters and,
thus, more computation capabilities. Then there are WNet and CMX crossovers WNet-MLP,
WNet-CMX, WNet-CX, more details on which can be found in Section 4.1.5. The number 4
in LNSeg-S4 and UNet-S4 stands for the number of channels in the input. The number 3 in
LNSeg-S3 and UNet-S3 stands for the number of channels in the input, meaning that only
RGB input is used. Finally, LNSeg-ORI is the original LNSeg model without any tweaks and
original weights trained on the original full datasets.

We can see that all the other architectures strongly dominate the solely RGB input
models. The resolution of the RGB image is lower than the thermal image, and the RGB
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image is more affected by the environment, so it is a good additional modality, but it does not
work well as a standalone modality. Therefore, it is excluded from the further discussion. We
can see that inference time is not strictly linearly dependent on the number of parameters,
as the number of parameters is not the only factor affecting the inference time but also the
architecture structure. As this observation is challenging to make from the table, these results
are visualized in Figure 5.2. Note that this might change when the models are deployed on
the edge devices, as graph optimization is also performed when the models are compiled be-
fore the deployment. However, the inference time in the development environment can still
be a reasonable indicator of the model’s performance on the edge device, as most architec-
tures are based on the same components and architecture concepts. As the main criterion in
the production deployment on the near-real-time device is the inference time, another plot
was constructed to show the dependence between inference time vs. the mean IoU metric in
Figure 5.3.

‘ »  RTFNetl8 e WNet-NS
101 » GMNetl8 +  WNet-S2L
m e GMNet18-1L s«  WNet-S-DP
E 8- ¢ ¢ GMNet34 WNet-MLP
£ = SAGatel8 WNet-CMX
6 . . * SAGatel8-1L WNet-CX
9 ¢ * SAGate34 +  CMX-bO
g N i * = LNSeg-S o CMX-b2
£ * e e LNSeg-S4 =  UNet-S4
a e, ¢ LNSeg-ORI e UNet-S
21 & »  WNet-S
0 20 40 60

Num. parameters [mil]

Figure 5.2: The number of parameters vs. the inference time of benchmarked models.
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Figure 5.3: The inference time of benchmarked models vs. their seg. IoU score.

Finally, four example images from the test dataset with the generated segmentation
masks and ground truth are presented in Figure 5.4 for the models CMX-b0, RTFNet18, and
LNSeg-S.

From the results presented in this section, we can make several observations. The first
and most important conclusion we can make is that introducing the second modality into
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RGB Thermal Ground-truth RTFNet18 CMX-b0

LNSeIS

Figure 5.4: Samples from the aligned test set with segmentation masks visualized as collage.
RGB image, thermal image, ground-truth mask, and outputs of RTFNet18, CMX-b0, and
LNSeg-S from left to right for each row.

the detection process is beneficial, as the models with the second modality (RGB image
in our case) in the input have superior performance in the segmentation task compared to
single-modal architectures. Even the 4-channel-input variants of the models have a better
performance than the 1-channel-input variants. Nevertheless, the segmentation scores are
dominated by the double-encoder models. Secondly, we can see that the assumption that the
bigger the encoder, the better the segmentation results hold for all models that were trained
with multiple encoder sizes besides GMNet. Moreover, there is no clear stance that one can
take on the general beneficiality of multiple loss training, which, on the other hand, leads
only to an improvement in the case of GMNet. However, we can see that the benchmark
is dominated by the biggest model, CMX-b2, a transformer architecture that also has the
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highest inference time. Its smaller version, CMX-b0, a significantly smaller model in terms
of parameters and inference time, is also among the best models. If we look at the inference
time vs. the IoU score ratio, among the best models can be counted CMX-b0, SAGate34,
WNet-MLP, and WNet-S.

5.2 Object detection metrics

Our pipeline uses the segmentation results for bounding box extraction and object
detection. Therefore, the object detection metrics are also computed for those. The process of
bounding box extraction is done by finding the connected components of the mask, and then
the bounding box is fitted around every component. The score or confidence of each bounding
box is simply the mean of the mask’s pixel-wise confidence. After these two steps, the output
is the same as any other object detection model, i.e., for each input image pair, it is a list of
bounding box coordinates with their confidence and class. Again, in our case, there is only
one class. The metrics are then computed as typical for object detection algorithms described
below.

The main metric used for object detection evaluation is the Average Precision (AP).
It builds on three core concepts: precision, defined in Eq. 5.4, recall from Eq. 5.3, and the
intersection over union (IoU). IoU was already introduced in the context of segmentation
evaluation in Eq. 5.1; the gist of it is the same, but we were comparing two matrices, so it
was evaluated pixel-wise. Here, we are comparing two rectangles, so the approach is area-wise,
and it cannot be computed using TP, FP, and FN as there are no such values for areas.
Therefore, let us start with IoU in the context of object detection. IoU is a measure of the
overlap between two bounding boxes A, B, and it is defined as

|AN B

IOU = m,

(5.6)

where |A N B is the area of the intersection of the bounding boxes, and |A U B]| is the area
of their union. Then, naturally, the more these two bounding boxes overlap, the higher the
IoU. In order to find correct detections, we typically define an IoU threshold th. Based on this
degree of overlap, the detected bounding box is a true positive if the IoU is higher than the
set threshold with some ground-truth bounding box and a false positive otherwise. With this
classification, we can easily define TP as the number of true positive bounding box detections,
FP as the number of false positive bounding box detections, etc. AP is computed as the area
under the precision-recall curve, where the precision and recall are defined in Eq. 5.3 and
Eq. 5.4. The precision-recall curve is built using detections ordered by their confidence. A
variation of the original 11-point Pascal VOC interpolation algorithm [47] is used to estimate
the average precision from the area under the precision-recall curve. Namely, its 101-point
version is implemented in the pycocotools library [44]. This process results in the AP™ for an
initially specified IoU threshold th. However, having a single threshold to assess our detection
model’s performance might not be robust enough, as a single threshold may induce a bias
in the results. Also, it can be more lenient for some models than others. Therefore, the final
AP value is computed as a mean over multiple IoU thresholds. In the case of pycocotools,
the thresholds are at an interval of [0.5,0.95] with a step of 0.05. Moreover, the AP can be
computed for objects of different sizes. We defined four size categories: small, medium, large,
and valid. Valid encompasses all three categories and shares a lower bound of 1.75x 1.75px with
the small category. This lower bound is used to filter out the small objects that are not relevant
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Table 5.2: Detection benchmark AP results for various detection size classes. All in percents.

model valid small medium large

APY5 AP APY5 AP  AP%5 AP APY5 AP

RTFNet18 33.96 13.35 1342 458 42.80 15.04 71.39 31.48
GMNet18 36.27 14.63 13.76 491 50.19 1849 7091 32.25
GMNet18-1L. 3741 1533 13.82 4.68 53.05 19.20 7148 33.32
GMNet34 3490 1398 12.04 4.12 46.65 16.72 70.54 31.78
SAGatel8 37.66 14.48 18.05 6.42 50.21 17.75 68.63 29.31
SAGatel8-1L 37.50 14.81 1814 6.52 46.53 17.03 71.19 31.63
SAGate34 4096 16.01 19.73 6.94 5297 1944 76.33 3291
WNet-S 4226 16.35 2349 8.55 57.32 21.13 65.52 27.58
WNet-NS 39.22  15.23 2354 849 51.29 1859 61.29 26.14
WNet-S2L 3748 14.18 2158 7.79 50.65 18.60 58.73 24.16
WNet-S-DP  41.18 15.70 23.87 842 53.20 1937 65.87 27.73
WNet-MLP 39.15  14.86 23.57 831 51.34 1890 61.98 25.32
WNet-CMX  40.15 15.11 23.26 8.23 50.92 1859 65.75 26.75
WNet-CX 41.56 15.83 2241 797 56.02 2045 66.43 27.53

CMX-b0 41.39 16.56 20.24 7.10 54.38 20.17 74.88 34.02
CMX-b2 45.17 18.67 21.87 7.72 60.75 23.20 76.60 36.77
LNSeg-54 4095 1546 23.70 837 54.54 20.22 64.17 26.40
UNet-S4 39.23 1457  23.63 838 54.81 1954 59.38  23.69
LNSeg-ORI 34.61 14.00 8.24 2.87 51.14 1778 7575  35.52
LNSeg-S 3772 1430 2192 791 5196 18.41 5540 23.38
UNet-S 36.53 13.41 2256 7.82 49.17 17.60 53.73 20.94

for the detection and would be filtered out as noise even in production deployment. The other
two thresholds between size categories are 8 x 8px and 20 x 20px. For more information on
AP computation details, refer to [12].

Even though AP is a good metric for a robust comparison of overall model performance,
there are also other indicators that we want to extract from the model outputs. Sometimes,
more specific analysis is needed, such as the model’s precision or false positive rate. False
positive and false negative rates and the precision and recall stemming from them are typically
essential metrics in the context of autonomous vehicles, where an overlooked object or false
alarm can cause severe issues. In the specific context of SEA.AT systems, an alarm system is
connected to the detections, so the precision, recall, and their harmonic mean, the F1 score,
are good indicators of potential reliability for the user. Therefore, we also compute the TP,
FP, FN, precision, recall, and F1 scores for each size range. The IoU threshold used in the
tables related to these indicators is 0.5. The results are presented in Table 5.3 for the F1 score,
precision, and recall, and the rest are presented in Table 5.4.

Besides the table representation of AP and detection scores, we also visualized the results
vs the inference time as in the segmentation case. These results are presented in Figure 5.5
for AP values and in Figure 5.6 for the detection F1 score. The FP number vs. inference time
is then shown in Figure 5.7. All of the plots were computed from the ‘valid’ size class and
with an IoU threshold of 0.5.

Finally, a visualization of the extracted bounding boxes from the segmentation masks
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Table 5.3: Detection benchmark precision, recall and F1 score results for various detection
size classes. All in percents.

model valid small large
prec rec f1 prec rec f1 prec rec f1
RTFNet18 4541 42.88 44.11 28.62 23.54 25.83 7836 76.06 77.19
GMNet18 46.47 4477 45.60  28.77  24.56  26.50 76.07 75.57 75.82
GMNet18-1L  49.80 45.19 4739 31.64 24.02 27.31 76.82 7557 76.19
GMNet34 46.87 43.63 45.19 28.86 23.18 25.71 7831 74.10 76.15
SAGatel8 50.56 47.44 4895 35.06 29.32 31.93 69.67 76.71 73.02
SAGatel8-1L 49.18 47.70 48.43 34.51 30.52 3240 74.38 78.01 76.15
SAGate34 50.82  50.70 50.76 34.89 31.91 33.33 72.96 &83.06 77.68
WNet-S 50.66 51.61 51.13 37.27 36.48 36.87 70.02 71.50 70.75
WNet-NS 49.82 49.95 49.89 38.39 36.85 37.60 62.95 68.89 65.79
WNet-S2L 43.90 48.52 46.09 30.71 34.80 32.63 64.21 66.61 65.39
WNet-S-DP 48.28 51.58 49.87 35.32 38.11 36.66 69.42 72.48 70.92
WNet-MLP 44.39 50.64 4731 3296 37.09 3490 61.24 7231 66.32
WNet-CMX  48.86 50.11 49.48 3598 36.30 36.14 67.37 73.29 70.20
WNet-CX 51.65 51.12 51.38 37.63 3582 36.71 69.27 73.78 71.45
CMX-b0 53.47  50.67 52.03 37.70 3239 34.84 76.12 80.46 78.23
CMX-b2 56.06 54.22 55.13 40.01 35.34 37.53 81.48 82.41 81.94
LNSeg-54 48.38 50.64 49.48 35.11 36.54 35.81 68.95 70.52 69.73
UNet-S4 48.19 49.79 4897 36.42 35.76 36.09 61.73 68.57 64.97
LNSeg-ORI 33.76 4190 37.39 13.18 16.92 14.82 78.22 80.13 79.16
LNSeg-S 47.84 4826 48.05 35.99 35.34 35.66 66.49 61.40 63.84
UNet-S 4591 48.06 46.96 34.35 36.54 35.41 61.97 62.38 62.18
¢ « RTFNet18 e WNet-NS
441 # GMNet18 ¢ WNet-S2L
s GMNet18-1L = WNet-S-DP
421 i . + GMNet34 WNet-MLP
% a0 ¢ « SAGatel8 WNet-CMX
= .. e SAGatel8-1L WNet-CX
< ] + SAGate34 *  CMX-bo
* * & . #»  LNSeg-S o CMX-b2
361 ° . o LNSeg-54 «  UNet-54
R ¢ LNSeg-ORI e UNet-S
34 ] h . #  WNet-S
2 4 6 10 12

Inference time [ms]

Figure 5.5: The inference time of benchmarked models vs. their Average Precision value.
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Table 5.4: Detection benchmark number of true positive, false positive and negative detections
for various detection size classes.

model valid small medium large
tp fp fn tp fp fn tp fp fn tp fp fn

RTFNet18 1316 1582 1753 391 975 1270 460 501 337 467 129 147

GMNet18 1374 1583 1695 408 1010 1253 504 452 293 464 146 150
GMNet18-1L 1387 1398 1682 399 862 1262 525 420 272 464 140 150
GMNet34 1339 1518 1730 385 949 1276 501 469 296 455 126 159

SAGatel8 1456 1424 1613 487 902 1174 500 327 297 471 205 143
SAGatel8-1L 1464 1513 1605 507 962 1154 479 399 318 479 165 135
SAGate34 1556 1506 1513 530 989 1131 517 338 280 510 189 104
WNet-S 1584 1543 1485 606 1020 1055 540 346 257 439 188 175
WNet-NS 1533 1544 1536 612 982 1049 500 322 297 423 249 191
WNet-S2L 1489 1903 1580 578 1304 1083 503 379 294 409 228 205
WNet-S-DP 1583 1696 1486 633 1159 1028 507 347 290 445 196 169
WNet-MLP 1554 1947 1515 616 1253 1045 496 430 301 444 281 170
WNet-CMX 1538 1610 1531 603 1073 1058 487 326 310 450 218 164
WNet-CX 1569 1469 1500 595 986 1066 523 287 274 453 201 161

CMX-b0 1555 1353 1514 538 889 1123 525 321 272 494 155 120
CMX-b2 1664 1304 1405 587 830 1074 574 324 223 506 115 108
LNSeg-54 1554 1658 1515 607 1122 1054 516 349 281 433 195 181
UNet-54 1528 1643 1541 594 1037 1067 515 355 282 421 261 193
LNSeg-ORI 1286 2523 1783 281 1851 1380 515 548 282 492 137 122
LNSeg-S 1481 1615 1588 587 1044 1074 520 387 277 377 190 237
UNet-S 1475 1738 1594 607 1160 1054 488 350 309 383 235 231
55.01 y * RTFNetl8 s WNet-NS
525 +  GMNet18 +  WNet-S2L
. . o  GMNet18-1L = WNet-S-DP
5007, =, + GMNet34 WNet-MLP
24751 % ¢ . » SAGatel8 WNet-CMX
5 . . » SAGatel8-1L WNet-CX
n 45.0 . ¢ + SAGate34 = CMX-bO
Cars » LNSeg-S o CMX-b2
o LNSeg-54 *  UNet-S4
40.0 + LNSeg-ORI e UNet-S
375 = WNet-S
2 4 6 8 10 12

Inference time [ms]

Figure 5.6: The inference time of benchmarked models vs. their detection F1 Score.
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Figure 5.7: The inference time of benchmarked models vs. their number of false positives.

is presented on four example images in Figure 5.8 for the models CMX-b0, RTFNet18, and
LNSeg-S.

From the results in this section, we can see the main result from the previous sec-
tion reinforced, i.e., the use of the other modality is beneficial in all metrics used for object
detection. Moreover, the metrics are again mostly dominated by the bigger transformer archi-
tecture, with its smaller version closely following. However, the previous conclusion about the
size of the encoder now holds only for CMX in all the metrics from this section, thus making
it not a strong conclusion. However, the CMX fusion strategy has proven effective since its
implementation into WNet with a normal WNet head often outperforms the original WNet,
and most of the architectures are in the same inference-time range. We can also see from the
tables that most of the false positives and false negatives come from the small object category.
Moreover, we have demonstrated that the distillation procedure retains the model’s perfor-
mance while reducing the training time. This improvement can be seen between the models
LNSeg-ORI and LNSeg-S, where the first was trained on the entire dataset, and the second
was trained on the distilled dataset, while the performance is better for the newly trained one.
This may be accounted for by the usage of augmentation. Notable is also the decreasing trend
of the number of false positives with the inference time. Another conclusion we can reach is
that the number of parameters of the architecture and its complexity are not always the most
reliable performance indicators. Bigger and more complex architectures such as RTFNet or
GMNet are excellent examples of this, as WNet-S matched their performance in most metrics,
while remaining a way smaller and simpler model. Lastly, we can outline models that deliver
a good performance vs. inference time ratio: WNet-S, WNet-CX, CMX-b0, and SAGate34.
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Thermal Ground-truth RTFNet18

Figure 5.8: Samples from aligned test set with extracted bounding boxes visualized as collage.
RGB image, thermal image, ground-truth mask, and outputs of RTFNet18, CMX-b0, and
LNSeg-S from left to right for each row.
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Chapter 6

Conclusion and oulook

This work explored the origin and possible solutions to thermal and RGB multimodal
object detection challenges on datasets collected in marine environments. Firstly, the dataset,
sensors, and collection methodology were introduced. However, the explored machine learning
task requires robustness and precision, which demands high-quality training data. Thus, we
developed processing methods related to alignment and data distillation to obtain such a
dataset. The first challenge with the dataset was the misalignment between the modalities. The
first explored approach to misalignment is an FFT-based translation and rotation estimation.
These methods were not robust enough for the marine environment and often malfunctioned
due to visual differences between thermal and RGB images. Therefore, another approach
was introduced based on correspondence search using deep learning followed by homography
estimation. This approach proved more robust, based even on a single image pair. Moreover,
the correspondences can be collected through more images in the same sequence. Thus, images
with no distinct features can also be aligned if at least some correspondences are found in
the sequence. Therefore, the latter approach was used for image alignment and propagating
ground-truth annotations from both modalities to create a single training target with sufficient
precision. The size of the aligned dataset was reduced while striving to maintain most of its
information using embeddings and clustering methods to less than one-twentieth of the original
size.

Several state-of-the-art models were then trained on the gathered dataset, our proposed
models, and a model formerly used in SEA.AI devices. All the models were then evaluated on a
separate test dataset to identify architectures and features suitable for multimodal segmenta-
tion in marine environments. Several metrics were used for the benchmarking. These included
segmentation and object detection metrics, which were computed directly on thresholded seg-
mentation outputs in the first case and after bounding box extraction from the outputs in the
latter. From the results, we made several observations. Firstly, leveraging a second modality
has shown to be an improvement in all of the metrics in the benchmark. Most of the bench-
marks were dominated by transformer-based architecture CMX, which is, on the other hand,
the one with by far the highest inference times and one of the most complex architectures,
However, besides this architecture, we cannot conclude that the bigger the inference time or
the more complex the architecture, the better the performance. There are opposite examples
in the benchmarks, where simple architectures such as WNet-S reached very similar results to
the more complicated and slower GMNet or RTFNet. However, isolating a single architecture
feature that would be the best in all the metrics while maintaining a reasonable complexity to
run in a near-real-time regime is impossible besides the double encoder element. However, we
can point out architectures with a consistently high ratio of performance to inference time,
such as WNet-S, SAGate34, WNet-CX and CMX-b0.

Future work building on these results may include exploring the inference times after
compilation, as the graph optimization can alter the inference time. Also, as SA-Gate and
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WNet-S consistently performed well, extracting the SA-Gate fusion strategy and training
WNet architecture makes sense as one of the future experiments. With the segmentation and
bounding box extraction results showing significant improvement after introducing the second
modality, using the multimodal fusion strategies in traditional object detection architectures
such as YOLO or MaskRCNN is also a promising extension to the benchmark. Another start-
ing point for future research is that the dataset distillation method has proven efficient enough
for our purpose. It has even shown some improvement in the training results, so the logical
development is to explore the effects of the model training in a more controlled environment to
draw more definitive conclusions. Future research may also explore the environmental effects
on the results of all the models, such as day vs. night time or snowy vs. rainy environment.
Lastly, as multimodal fusion, in this case, has shown improvements in detection performance,
fusion with more modalities, such as LIDAR data, may bring even more improvement.
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