
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computers

A CRUD extension to a path based testing
algorithm

Valeriia Chekanova

Supervisor: Ing. Karel Frajták, Ph.D.
Field of study: Software Engineering and Technology
May 2024

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492197 Personal ID number: Chekanova Valeriia Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Science

Open Informatics Study program:

Software Engineering Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

A CRUD extension to a path based testing algorithm

Master’s thesis title in Czech:

CRUD rozšíření algoritmu pro path based testing

Guidelines:

Oxygen (http://still.felk.cvut.cz/oxygen/) is an open freeware tool for automated generation of path-based test cases for
application processes and workflows. In Oxygen you can create a model of an application and use this model to generate
process and workflow test cases.
However, the model does not reflect the data requirements. So, for example, you can generate a scenario where you need
to display some data that was not created during the passage (e.g., switching to eShop checkout when the shopping cart
is empty). At the same time, it is possible to define CRUD matrices in Oxygen. However, the two options are not linked
and cannot be combined.
The aim of this work will be to design data structures and an algorithm to generate scenarios with defined constraints.
Validate the algorithm on a suitably chosen application (or its part) and compare it with the output of Oxygen tool.
Design the algorithm independently of Oxygen.

Bibliography / sources:

BURES, Miroslav; RECHTBERGER, Vaclav. Dynamic data consistency tests using a crud matrix as an underlying model.
In: Proceedings of the 2020 European Symposium on Software Engineering. 2020. p. 72-79.
BURES, Miroslav, et al. Testing the consistency of business data objects using extended static testing of CRUD matrices.
Cluster Computing, 2019, 22: 963-976.
BURES, Miroslav; CERNY, Tomas. Static Testing Using Different Types of CRUD Matrices. In: Information Science and
Applications 2017: ICISA 2017 8. Springer Singapore, 2017. p. 594-602.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

Ing. Karel Frajták, Ph.D. System Testing IntelLigent Lab FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________ Date of master’s thesis assignment: 05.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Karel Frajták, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to acknowledge my supervisor,
Ing. Karel Frajták, Ph.D., for his steady
guidance and invaluable advice through-
out this project. His support and exper-
tise helped me to overcome several chal-
lenges and complete this thesis. His con-
stant feedback provided me with opportu-
nities to improve my work and ensure its
quality.

I am grateful to my family for their
belief in me. It was a constant source
of motivation throughout my academic
journey. Their faith in my abilities has a
great impact on my achievements.

I would also like to thank my friends
Alex and Liza. Their support, especially
during the difficult days, gave me the
strength to preserve and complete this the-
sis. Their friendship and encouragement
have been invaluable, and I am fortunate
to know them.

Declaration
I declare that this text presents my own
work, and I have quoted all relevant
sources of information used.

To improve text quality, I have used the
cloud-based typing assistant Grammarly1,
which reviewed the grammar and spelling
of my text.

Prague, 24. May 2024

Valeriia Chekanova

1https://www.grammarly.com/

v

https://www.grammarly.com/

Abstract
Software testing plays a crucial role in
ensuring the quality and reliability of the
system through the whole development
cycle. Quality assurance of the appli-
cation usually involves verifying its be-
haviour against predefined requirements
through the creation and execution of test
cases. However, as systems become more
complex, traditional testing techniques
face challenges in generating accurate test
cases due to diverse user environments,
complex system interactions, and perfor-
mance optimization.

Model-based testing addresses these
challenges by representing the System Un-
der Test as a model that abstracts its
expected behaviour. While several tools
exist for test case generation using model-
based testing, such as Oxygen2 or Graph-
Walker3, they do not allow us to incorpo-
rate data requirements in the model. It
leads to appearing in test case step com-
binations that cannot happen in the real
world, making the whole test case infeasi-
ble. Such test cases reduce the effective-
ness of the testing process, resulting in
wasted resources that could be allocated
elsewhere.

Based on the concept of Negative Con-
strained Path-based Testing, this thesis
introduces a novel algorithm that inte-
grates constraints to prevent the genera-
tion of infeasible test cases. This approach
enhances the existing methods by address-
ing data requirements in system models.
The thesis details the development and
analysis of this algorithm. Furthermore,
it evaluates the results obtained using the
developed algorithm against the ones ob-
tained from Oxygen, focusing on metrics
such as accuracy, optimality, and the num-
ber of infeasible test cases.

By addressing the limitations of exist-
ing testing techniques using constraints,

2http://still.felk.cvut.cz/oxygen/
3https://graphwalker.github.io/

this research aims to advance software
testing practices by ensuring more reli-
able testing outcomes.

Keywords: system under test,
model-based testing, automated testing,
integration tests, path-based testing,
data cycle test, integrity constraints, test
scenarios, data integrity

Supervisor: Ing. Karel Frajták, Ph.D.

vi

http://still.felk.cvut.cz/oxygen/
https://graphwalker.github.io/

Abstrakt
Testování softwaru hraje klíčovou roli při
zajišťování kvality a spolehlivosti systému
v průběhu celého vývojového cyklu. Za-
jištění kvality aplikace obvykle zahrnuje
ověření jejího chování na základě předem
definovaných požadavků prostřednictvím
vytvoření a spuštění testovacích případů.
Jak se však systémy stávají složitějšími,
tradiční testovací techniky se potýkají s
problémy při vytváření přesných testova-
cích případů kvůli různorodým uživatel-
ským prostředím, složitým interakcím sys-
tému a optimalizaci výkonu.

Model-based testing tyto problémy řeší
nahlížením na testovací systém jako na
model, který abstrahuje jeho očekávané
chování. Ačkoliv nástroje pro generování
testovacích případů pomocí této techniky
existují, například Oxygen4 nebo Gra-
phWalker5, neumožňují nám do modelu
zahrnout požadavky na data. To vede k
tomu, že se v testovacím případě objevují
kombinace kroků, které v reálném světě
nemohou nastat. Následně se celý testo-
vací případ stává neproveditelným, což
vede ke snížení efektivity testování.

Tato práce vychází z konceptu Negative
Constrained Path-based Testing a zavádí
nový algoritmus, který integruje constra-
inty do modelu systému, aby se zabránilo
generování nesplnitelných testovacích pří-
padů. Poté se výsledky algoritmu hodnotí
ve srovnání s výsledky algoritmu Oxygenu,
přičemž zaměřuje na metriky jako je op-
timalita a snížení počtu nesplnitelných
testovacích případů.

Diplomová práce se zaměřuje na ome-
zení existujících testovacích technik po-
mocí zavedení constraintů a klade si za cíl
zlepšit stávající přístupy v testování soft-
waru zajištěním spolehlivějších výsledků
testů.

4http://still.felk.cvut.cz/oxygen/
5https://graphwalker.github.io/

Klíčová slova: system under test,
model-based testing, automatizované
testování, integrační testy, path-based
testing, data cycle test, integritní
omezení, testovací scénáře, integrita dat

Překlad názvu: CRUD rozšíření
algoritmu pro path based testing

vii

http://still.felk.cvut.cz/oxygen/
https://graphwalker.github.io/

Contents
1 Introduction 1
1.1 Motivation . 2
1.2 Task Definition 2
1.3 Objectives . 3
1.4 Thesis Structure 3

Part I
Theoretical part

2 Essential Theory 7
2.1 System Under Test 7

2.1.1 Characteristics of the SUT . . . 7
2.1.2 Importance of Understanding

the SUT . 8
2.2 Testing Techniques 8

2.2.1 Manual and Automated Testing 8
2.2.2 Black-box, White-box, and

Grey-box Testing 9
2.2.3 Testing Pyramid 9

2.3 Model-Based Testing 11
2.3.1 Directed Graphs: Unifying

MBT Models 11
2.4 Path-Based Testing 12

2.4.1 Test Case 13
2.4.2 Test Coverage Criteria 13

2.5 State Transition Testing 14
3 Data Handling in Testing 17
3.1 Data Flow Analysis 17
3.2 Data Cycle Test 18
3.3 Infeasible Test Cases 20
3.4 Constraints in UML Diagrams . . 20

3.4.1 OCL . 22

Part II
Analysis

4 Related work 27
4.1 Negative Constrained Path–based

Testing . 27
4.2 Condition–Classification Tree

Method . 27
4.3 Heuristics–based infeasible path

detection . 28
4.4 Detecting Interprocedural

Infeasible Paths 29
4.5 Cross–verification of CRUD

matrices . 29
4.6 Extension of CRUD matrix 30

4.7 Summary . 30
5 Analysis 31
5.1 Oxygen . 31
5.2 Solution proposal 33

5.2.1 Graph structure 33
5.2.2 Constraints 34
5.2.3 Path Generation 34
5.2.4 Choice of Technologies 36

Part III
Development

6 Development 43
6.1 Algorithm Overview 43
6.2 Application Architecture 44

6.2.1 Input Processing 44
6.2.2 Constraints 45

6.3 Testing . 45
6.3.1 Test Data Preparation 45

6.4 Evaluation 46
6.4.1 Algorithm Validation on a Real

Application 46
6.4.2 Computed Results 48

Part IV
Conclusion

7 Conclusion 55
7.1 Future Research Directions 56

Appendices
A Bibliography 59
B List of Abbreviations 63

viii

Figures
1.1 Screenshot of Oxygen GUI 3

2.1 Testing Pyramid diagram, source:
[9] . 10

2.2 UML Activity Diagram Notation,
source: [16] . 12

3.1 Data-flow graph, source: [20] . . . 18
3.2 An example of CRUD matrix,

source:[21] . 19
3.3 A UML diagram with OCL

constraints, source: [28] 21

4.1 Condition–Classification Tree
Method, source: [32] 28

5.1 Selection of parameters for test
case generation in Oxygen 31

5.2 The principle of test path
generation for TDL–1 employed in
Oxygen. Source: Lab 11, course
BE4M36ZKS at CTU FEL 33

5.3 A motivational example 1.1 for
e–shop modelled as a directed graph
using Oxygen 37

5.4 E–shop: path №1 generated by
Oxygen . 38

5.5 E–shop: path №2 generated by
Oxygen . 39

5.6 E–shop: path №3 generated by
Oxygen . 40

6.1 The screenshot of failed test for
https://e-shop.webowky.cz/ in
Cypress . 49

Tables
2.1 Comparison of Black-box,
White-box, and Grey-box Testing
Techniques . 10

2.2 Test Case for Login Functionality 13

5.1 Test Paths for motivational
example 1.1 generated by Oxygen
employing TDL–1 coverage 32

6.1 Edge IDs and their corresponding
names . 46

6.2 Comparison of the results obtained
from the Constraint Algorithm and
Oxygen Algorithm 52

ix

https://e-shop.webowky.cz/

Chapter 1
Introduction

Application testing is an important part of the whole cycle of software
development, starting from gathering requirements and concluding with
implementation and maintenance. Testing increases the chances that the
software meets its requirements before reaching end-users, which in turn
reduces the risk of customer dissatisfaction, errors, and potential harm to the
company’s reputation.

As software becomes more complex, testing becomes more challenging.
One of the approaches to ensure the complex system’s quality is Model-
Based Testing (MBT). The idea is to represent a System Under Test (SUT)
as an abstract model reflecting the desired system’s behaviour. It allows
abstracting from specific implementations and focusing on the logic and
interactions between components. Automatic test case generation from such
models is generally more efficient than manual, unorganized methods. [1]

Nevertheless, the effectiveness of the testing process relies on the accuracy
and completeness of the models used for test generation. Making too many
simplifications while modelling, having differences in abstraction level, or
changes in the system behaviour over time may introduce inconsistencies
between the system and testing model. In turn, it will result in less precise
SUT representation, leading to the generation of test cases that inaccurately
reflect system behaviour and characteristics. Not only is creating an error-free
model often difficult, but creating a complete model can also be challenging
due to resource limitations. Nevertheless, even a well-designed model would
not be able to guarantee a lack of defects in the SUT. Still, refining the models
enhances their accuracy, thereby reducing discrepancies and improving the
validity of generated test cases. [1]

The SUT model allows us to design various tests, including unit tests,
integration tests, and End–to–End (E2E) tests. However, the thesis focuses on
E2E tests as they are essential in identifying defects throughout the application
flow by mimicking user interactions. The accuracy of E2E testing heavily
depends on the quality of the test data used. In MBT, preparing precise
test data that reflect real-world usage can be challenging due to the model’s
abstraction. As a result, test data and scenarios derived from incomplete
models may not accurately represent the expected system behaviour and
could even be infeasible as they may never occur in the real world. [1]

1

1. Introduction
1.1 Motivation

Consider the following SUT: an e-commerce platform that allows users to
log in, log out, add and remove products from the cart, and go to checkout.
For this model, a tool for automatic test case generation may create the
following test case: a user logs into the e-shop and immediately navigates to
the checkout without adding any items to the shopping cart. This scenario is
infeasible because the checkout process requires items in the cart to proceed.

Another example within the same SUT may be a test case where a user
logs in and attempts to remove a non-existent item from the cart. Evaluating
this test case would incorrectly indicate a failure, as the absent item cannot
be removed even though the login and item removal functionalities may be
working correctly.

In complex systems, identifying such infeasible test cases may not be
straightforward. Testers might spend considerable time investigating these
errors and searching for bugs in correctly implemented features. Not only
does this waste the tester’s time, but it also diverts resources from important
issues.

This thesis aims to develop strategies that mitigate test failures caused
by incorrect test case generation despite correct feature implementation. By
refining the existing testing approaches, this work attempts to mitigate the
generation of infeasible test cases, thereby improving the efficiency of software
testing.

1.2 Task Definition

There exist several applications for automatically generating test cases, for
example, GraphWalker1or Oxygen2 developed by the System Testing Intel-
Ligent Lab 3 at Czech Technical University. In general, MBT allows the
representation of SUT in different ways, such as Finite State Machines, UML
State Machines, or Pre/Post Models. Oxygen allows the representation of
the SUT as a UML activity diagram or as a directed graph. Based on this
model, Oxygen automatically generates test cases (testing paths) with spec-
ified test coverage (see screenshot 1.1). Despite its advanced capabilities,
the existing applications have a significant limitation: they cannot reflect
SUT’s data requirements. A tester can create a graph representing the user’s
actions within the SUT, but they cannot define specific data requirements for
action execution. For instance, Oxygen might create a test path that requires
displaying data that does not yet exist within the test.

Therefore, the task is to develop an algorithm to generate test cases that
consider data requirements. The applied constraints will make generated test
cases more realistic, thus making the testing process more effective.

1https://graphwalker.github.io/
2http://still.felk.cvut.cz/oxygen/
3http://still.felk.cvut.cz/index.html

2

https://graphwalker.github.io/
http://still.felk.cvut.cz/oxygen/
http://still.felk.cvut.cz/index.html

......................................1.3. Objectives

Figure 1.1: Screenshot of Oxygen GUI

1.3 Objectives

The primary objectives of this thesis are to:. Understand the factors that lead to the generation of infeasible test cases.. Design and implement an algorithm that ensures the test cases accurately
reflect data requirements.. Evaluate and compare the results obtained by the implemented algorithm
with those from Oxygen. Validate tests generated by the proposed
algorithm and Oxygen on a real application as a part of the evaluation.. Discuss the limitations of the implemented solution and propose future
development directions.

1.4 Thesis Structure

The theoretical chapters describe core software testing techniques with a
primary focus on test case design. This helps to understand the problem
of automatically generated infeasible tests, which occur primarily due to
unmet data requirements. The "Related work" chapter provides an overview
of research in the area of generating feasible test cases and assesses its suit-
ability for the thesis needs. Subsequently, the "Analysis" chapter details the
proposed application design, emphasizing the reasons behind the chosen test-
ing technique, design patterns, and algorithms. The "Development" chapter
then describes a solution that employs constraints in test case generation.
The algorithm implementation, analysis and testing are described in detail.
Finally, the evaluation of the work is presented, including details of achieved
objectives, a comparison with Oxygen’s results, and future directions for
work.

3

4

Part I

Theoretical part

5

6

Chapter 2
Essential Theory

This chapter contains fundamental theory describing challenges in test case
preparation.

The discussion begins with exploring the System Under Test (SUT), high-
lighting the potential challenges that may arise during modelling and consec-
utive evaluation of different systems. This helps to understand the impact of
SUT’s characteristics on testing strategies.

Further, the chapter gives an introduction to Model–Based Testing, de-
scribing its representational methods, which form the basis for the subsequent
introduction of Path-Based Testing and State Transition Testing. This section
highlights the importance of selecting appropriate modelling techniques for
effective SUT evaluation.

Additionally, the chapter describes the concept of test cases with their
characteristics and examples. This includes examining how test cases are
designed and used to validate the functionality of SUT.

Concluding the chapter, a definition of Test Coverage is provided. This
part discusses important coverage criteria for reliable and effective testing.

2.1 System Under Test

The System Under Test (SUT) is a system that is being evaluated during
testing. Understanding the SUT is necessary for effective test planning and
execution, as the complexity of the SUT significantly impacts the choice of
testing strategy. [2]

2.1.1 Characteristics of the SUT

The SUT has several characteristics that may influence the testing strategy
[1]:.Complexity of the SUT significantly affects the choice of a testing

strategy. For example, a complex SUT may require a multilayered
testing approach, which involves tests validating the system’s behaviour
from an external perspective and exploring the internal mechanisms
(so-called functional and structural techniques). [1]

7

2. Essential Theory
.Dependency refers to the dependency of the SUT on external systems

or APIs that are not part of the main system but are important for its
operation. The presence of a dependency on other systems may require
verification of the communication between them. [1]. Stability of the SUT is crucial in determining the frequency and intensity
of testing phases. Stable systems might require less frequent but thorough
testing cycles to verify that existing functionalities perform correctly
after modifications. [1]. Scalability of the SUT determines how well the system can handle
increased loads without dropping performance. This characteristic influ-
ences resource allocation for stress testing and selecting an environment.
[1]

2.1.2 Importance of Understanding the SUT

A proper understanding of the SUT allows us to create more effective test
strategies, which can reduce wasted resources by focusing on the most critical
areas. It has the following objectives:. Identifying Critical Test Areas helps to prioritize different system

parts and ensure that the most important parts of the system are still
covered even with a limited amount of resources. [3]. Effective Test Coverage metrics can be designed only with a proper
understanding of the SUT’s functionality priorities. For example, a
higher Test Coverage should be chosen for higher-priority methods. [3]. Predicting Potential Failures would be impossible without knowledge
of the most error-prone parts of SUT. [2]

Understanding the SUT affects every decision in the testing lifecycle, from
selecting the appropriate testing strategy to assessing the final system quality.
Thus, a thorough analysis of the SUT is important before initiating the testing
process. [3]

2.2 Testing Techniques

Software application testing can be executed using several methods. The
suitability of the methods is dependent on the SUT characteristics. [4]

2.2.1 Manual and Automated Testing

The SUT can be tested manually or automatically. The choice of approach
depends on the SUT’s features and budget, timeline, and testing objectives.
[4]

8

.................................. 2.2. Testing Techniques

.Manual Testing is conducted by human testers and is beneficial due
to its flexibility. It allows one to identify issues connected with user
experience quickly. Among its disadvantages are labour-intensiveness and
proneness to human error. This makes it more suitable for exploratory
testing in smaller projects or those with rapidly changing requirements.
[4].Automated Testing utilizes tools and scripts to execute test cases,
facilitating rapid test execution and repeatability. This method is op-
timal for regression testing and large projects where tests must be run
repeatedly. Although the initial setup and maintenance of automated
tests require some effort, the benefits, such as increased test coverage
and precision, often justify the initial setup costs. [4]

2.2.2 Black-box, White-box, and Grey-box Testing

Software quality can be assessed from internal or external perspectives, with
Black-box testing evaluating the software externally, while White-box testing
focuses on internal system workings. Grey-box testing combines the mentioned
techniques, using partial knowledge of internal structures while maintaining
an external focus on functionality. [5]

Table 2.1 compares these techniques in terms of their advantages, disad-
vantages, and suitability to systems.

2.2.3 Testing Pyramid

The Testing Pyramid is a model that helps to structure a testing strategy and
focus tests at different application levels. Depending on granularity objectives,
the tests may be unit, integration, and end-to-end. The pyramid approach
highlights a typical distribution of test types: having more low-level unit tests
over fewer high-level end-to-end tests. [8].Unit Testing level forms the pyramid’s base and involves testing indi-

vidual pieces of code in isolation. Unit tests ensure that each component
functions correctly before integrating with others. Unit tests are fast, reli-
able, and inexpensive to automate, thus facilitating regression mitigation
during later development stages. [8]. Integration Testing focuses on the interactions between components.
It verifies that different parts of the application work together as expected.
This type of testing is important for identifying issues that occur when
separately tested units are combined into a full system. [8]. End-to-End Testing is at the top of the pyramid. It involves testing the
entire application for dependencies, data integrity, and communication
with other systems, interfaces, or databases to ensure it works in a real
scenario. This type of testing is usually limited due to its complexity
and the required resources. [8]

9

2. Essential Theory
Testing Type Definition Advantages Disadvantages
Black-box
Testing

Tests the func-
tionality of
an application
against its
specifications
without inter-
nal knowledge
[5].

Focuses on
user experi-
ence; does
not require
knowledge of
the codebase
[6].

May miss
structural
defects since
it does not
examine the
code internally
[5].

White-box
Testing

Involves de-
tailed testing
of the internal
logic and code
structure [2].

Provides thor-
ough coverage,
identifying
hidden errors
within the code
[2].

Requires
detailed pro-
gramming
skills and may
not assess the
user’s perspec-
tive [2].

Grey-box
Testing

Combines
black-box and
white-box test-
ing with some
knowledge of
the internal
data structures
and algorithms
but not the full
details [7].

Balances be-
tween user
perspective
and code per-
spective [7].

Less detailed
than white-box
testing in
code coverage
may require
higher skills
than black-box
testing [7].

Table 2.1: Comparison of Black-box, White-box, and Grey-box Testing Tech-
niques

Table 2.1 presents a Testing Pyramid diagram illustrating the different
layers of testing, from unit tests at the base to E2E tests at the top.

Figure 2.1: Testing Pyramid diagram, source: [9]

10

................................. 2.3. Model-Based Testing

2.3 Model-Based Testing

Model-Based Testing (MBT) is an approach to testing SUT by describing
its expected behaviour and structure through a model created according
to project requirements. Preparing a SUT model during MBT can identify
potential errors in the requirements and facilitate early bug detection. [10, 1]

The SUT can be presented in several ways:. State Machines are suitable for systems with distinct state transitions
as they offer precise modelling of state behaviour. [11]. Petri Nets are effective for complex, concurrent processes. The concept
is adopted from systems with asynchronous behaviours. [12].UML Activity Diagrams are dynamic models that visually represent
the workflow of a system, illustrating the sequence of activities and the
conditions controlling the flow. Flowcharts serve a similar purpose and
are considered predecessors to Activity Diagrams. [13]. Entity-Relationship Diagrams are primarily used in database systems
to visually represent data models, mapping out entities, their attributes,
and their relationships. This representation is most suitable for testing
database integrity and operations. [14]

Each modelling technique offers unique advantages covering different SUT
aspects [1].

2.3.1 Directed Graphs: Unifying MBT Models

Directed graphs offer a visual and analytical way to represent the order of
actions that may be executed within the SUT or to model existing dependen-
cies within the SUT. Thus, it serves as a unifying structure that can present
different MBT approaches. [15]

Within MBT, SUT may be represented as a directed graph G = (N, E),
where N is a set of nodes, and E is a set of edges between these nodes. A
subset Ne ⊆ N contains the end nodes of the graph, and likewise, a subset
Ns ⊆ N contains the starting nodes of the graph, where Ne ̸= ∅ and Ns ̸= ∅.
A test case t is a sequence of nodes n1, n2, . . . , nm, with a corresponding
sequence of edges e1, e2, . . . , em−1, where each edge ei = (ni, ni+1) ∈ E,
ni ∈ N , and ni+1 ∈ N . The test case t begins with a start node n1 ∈ Ns and
ends with an end node nm ∈ Ne. The test case t can be denoted either as
a sequence of nodes n1, n2, . . . , nm or as a sequence of edges e1, e2, . . . , em−1.
The test set T is a collection of such test cases. [15]

A state machine may be projected on a graph where states are nodes and
transitions are edges. This allows us to use graph algorithms for further
analysis and testing. [15]

The stakeholders are not always able to provide a directed graph repre-
sentation of the SUT. Therefore, understanding how the activity diagram

11

2. Essential Theory
may be transferred to a directed graph is worthwhile. Figure 2.2 presents
the notation of the UML Activity Diagram. Transforming a UML activity
diagram into a directed graph involves mapping its components to nodes and
control flows to edges. Based on the presented representation of SUT, the
conversion might look in the following way:.The Start Node is the initial node with only outgoing edges..Action States are converted into nodes connected by directed edges

representing the Control Flow..Decision Nodes and Fork constructs incoming nodes with multiple
outgoing edges for conditional paths..The End Node is the terminal node with no outgoing edges. It marks
the process as completed.

Following these steps, each element and interaction within the activity
diagram is represented using a directed graph, facilitating analysis with graph
theory.

Figure 2.2: UML Activity Diagram Notation, source: [16]

2.4 Path-Based Testing

Path-Based Testing is an approach to creating test cases based on a directed
graph representation of the SUT. [15]

12

..................................2.4. Path-Based Testing

2.4.1 Test Case

A Test Case is a detailed description of a test that contains the steps, condi-
tions, and expected outcomes necessary to validate the functionality of the
SUT. [4] The table 2.2 contains a test case for verifying the login functionality
of an application.

Test Case ID Actions Input Data Expected Re-
sult

TS01 ..1. Access the
login page...2. Enter user-
name...3. Enter
password...4. Click the
’Login’
button.

login: user1,
password:
pass123

Dashboard is
displayed.

Table 2.2: Test Case for Login Functionality

Test cases help us to systematically verify system behaviour, find defects,
and validate the system against specified requirements. Additionally, test
cases may serve as an effective communication tool between the testing team
and stakeholders. [4, 1]

Although it is possible to generate test cases manually, this solution is not
feasible for extensive or error-sensitive applications (e.g. aviation software)
as it may lack precision and repeatability. [1]

2.4.2 Test Coverage Criteria

Test coverage criteria are quantitative measures used to determine the extent
to which the SUT has been tested. It may serve as a metric to assess the
completeness of the test cases in uncovering potential defects. Higher coverage
increases the chance of detecting errors, thereby improving the reliability and
quality of the software application. Nevertheless, 100 % coverage does not
mean the SUT has no errors. [17]

Coverage criteria are important for several reasons:. Identifying untested parts of a program. Coverage criteria help
identify system areas not covered by tests. It may serve as a guide for
developers to extend the test base. [8]

13

2. Essential Theory
.Reducing risks. By aiming for higher coverage, developers can reduce

the risk of regression by ensuring that code changes do not introduce
errors in existing code. [8]. Enhancing software maintenance. The project with a higher test
coverage is safer to refactor, making the application more maintainable
over time. [8]

There are several test coverage criteria precisely described in [15]:. Edge Coverage requires each edge e ∈ E to be present in the test set
T at least once..All Node Coverage requires each node n ∈ N to be present in the test
set T at least once.. Edge-Pair Coverage criterion requires T to contain each possible pair
of adjacent edges in G..Prime Path requires each reachable prime path in G to be a sub-path
of the test case t ∈ T . A path p from e1 to e2 is prime if (1) p is simple,
and (2) p is not a sub-path of any other simple path in G. A path p is
simple when no node n ∈ N is present more than once in p (i.e., p does
not contain any loops); the only exceptions are e1 and e2, which can be
identical (p itself can be a loop).

All Node and All Edge Coverage may be used for less intensive testing,
which is typically enough for low-risk applications. In contrast, Edge-Pair
Coverage and Prime Path Coverage are suitable for critical applications where
the risk of failure has significant consequences. [18, 15]

2.5 State Transition Testing

State Transition Testing (STT) is a technique used to verify a SUT’s behaviour
in reaction to events. The idea is to model SUT as a state machine consisting
of many states, transitions between them, and events that trigger them.
Testing includes checks for every transition and for the system handling
invalid transitions. It helps ensure the correctness of processing state changes.
The difference from other testing methods is that the response of the SUT
depends on its state, so it is not required that they always correspond 1:1
with the process diagram. STT is mostly useful for systems where events and
their historical states influence responses, for example [19]:. Embedded Systems: Based on the sequence of the events, special

behaviour might be required by these systems. [19]. Interactive Applications: An example is user interfaces, where the
available actions may differ depending on the current state (e.g., options
change depending on whether a user is logged in). [19]

14

................................2.5. State Transition Testing

State Transition Coverage Criteria measures the adequacy of testing
state transitions in a SUT. Although there are similarities with the coverage
types used in Path-Based Testing, it is important to define these criteria
to prevent ambiguity. The choice of State Transition Coverage Criterion
depends on the available resources and the criticality of the SUT. [19]. 0-switch Coverage. This type is also referred to as state coverage,

which requires each state to be visited at least once. This basic coverage
level ensures that every state is reachable and can handle the minimum
valid input. This coverage should be used for non-critical applications
only. [19]. 1-switch Coverage. This level extends 0-switch coverage by ensuring
that all direct transitions between states are tested at least once. It
verifies the system’s behaviour for every possible single-event transition
between states. [19].N-switch Coverage. In N-switch coverage, sequences of N transitions
are tested. This type of coverage is more thorough as it checks the
system’s behaviour over sequences of events, not just single transitions.
The most popular is the 2-switch coverage, which tests the transition
between states due to a sequence of two events. This type is preferable
for critical applications because it provides a high probability of defect
detection even at the price of higher resource demands. [19].All-paths Coverage. All-paths coverage is the strongest criterion,
requiring testing every possible path through the state machine. [19]

15

16

Chapter 3
Data Handling in Testing

This chapter outlines existing approaches to the management of data in soft-
ware testing. It begins with the introduction of advanced testing techniques
such as Data Flow Analysis (DFA) and Data Cycle Test (DCyT). Further, the
chapter addresses the challenge of infeasible test cases by outlining strategies
to identify and exclude them. Finally, the Object Constraint Language (OCL)
will be described as a tool to present the constraints within the UML models.

Understanding the described methodologies is crucial for selecting the
proper testing technique and successful algorithm development.

3.1 Data Flow Analysis

Data Flow Analysis (DFA) is a white-box technique for identifying abnormal-
ities in data usage. The main principle is analysing identified critical points
in its lifecycle. The critical points are where objects are defined, processed,
and destroyed. It may work on the code level as well as on the object level.
[20]

The analysis involves identifying several key points in the data flow [20]:

.Definition points are the places where the objects are instantiated, or
the values are assigned, specifying the starting points of the data paths..Modification points are places where data is modified..Reference points are locations where a variable or object is accessed
without modification.. Evaluation points refer to a place that computes one or more objects.

Using these points, we can construct data flow graphs that map out each
object’s flow through the path execution. The graph example is shown in
figure 3.1. Graph analysis helps identify anomalies such as unused, undefined,
or misused objects. [20]

17

3. Data Handling in Testing

Figure 3.1: Data-flow graph, source: [20]

DFA can be used in the compiler’s design to optimize the code and ensure
it is correct. Precisely, it works in dead code elimination, strength reduction,
and register allocation. By analyzing the data flow through compilation
stages, DFA facilitates the detection of redundant instructions and improves
the efficiency of generated machine code. [20]

To conclude, this approach helps to identify where data is defined and used.
It can be utilized for ensuring that there is no attempt in generated test cases
to use data before its initialization or once it is destroyed. [20]

3.2 Data Cycle Test

Data Cycle Test (DCyT) is a testing technique that validates data integrity
and corrects data processing concerning the SUT. [15]

In contrast to DFA, DCyT operates abstractly on the general data entities
instead of operating on critical points. Furthermore, DCyT integrates a
CRUD matrix to check data operations. [15]

Further, DCyT may improve coverage criteria for STT (refer to Section
2.5), where the Update operation of the CRUD matrix usually corresponds
to state transitions. However, it must be noted that DCyT is not one-to-one
with STT. [15]

The principle behind DCyT is mapping the interactions between system
functions and data entities to identify operations allowances for different
entities [15]. The example of the CRUD matrix is presented on figure 3.2.

18

................................... 3.2. Data Cycle Test

Figure 3.2: An example of CRUD matrix, source:[21]

The structure of a CRUD matrix in general is defined as follows [15]:
Let F = {f1, . . . , fn} represent the set of all functions within the System

Under Test (SUT), and E = {e1, . . . , ep} denote the set of all data entities
considered for the test design. The CRUD matrix M is then represented by
M = (mi,j)n,p, where n = |F | and p = |E|. Each element mi,j in the matrix
indicates the operations performed by function fi ∈ F on entity ej ∈ E, such
that mi,j = {o | o ∈ {C, R, U, D}} if and only if function fi is authorized to
execute the operation o on entity ej .

According to the selected methodology, DCyT may apply various rules to
verify data integrity [15]:. It builds scenarios with the SUT present functions Create (C), Read (R),

Update (U), and Delete (D) operations..The testing scenario should be in the form: Create (C), then either a
combination of Read (R) and Update (U), and ending with Delete (D)..There should be a Read (R) after each Create (C), Update (U), and
Delete (D) to keep the consistency.. If capacity is limited, not all functions can be covered. This may mean
the CRUD operations must be prioritized according to the function’s
importance.

In the context of the thesis, the CRUD matrix incorporated by DCyT may
improve accuracy of generated test cases. This may be achieved by ensuring

19

3. Data Handling in Testing
that abstract graph models used for test generation accurately represent
the real-world operations on entities. As a result, test engineers may more
effectively translate data requirements presented by the CRUD matrices into
the constraints form.

3.3 Infeasible Test Cases

Infeasible test cases describe a certain state that cannot happen in the real
world due to violating data requirements or action orders. [22]

To better understand the problem of infeasible test cases, consider the
following examples:..1. Creating the order with an empty cart A user logs in to the e-shop

and goes to checkout without having added any items previously to the
cart. The scenario is invalid: creating an order with an empty cart is
meaningless...2. Removal of the item without prior addition A user tries to remove
an item from their shopping cart that was never added. Removing an
item that does not exist in the cart is impossible.

Identifying and excluding such infeasible test cases are important to keep
the testing process flawless. It can be done in the following ways:.Validation of Preconditions is a process that checks that all conditions

are met before a test step can be executed. This includes checking state
prerequisites and data availability. [22].Model Refinement means updating the model to reflect infeasible
states and transitions in the application. [22].Use of Constraint Solvers refers to the application of automated tools
that use constraints to determine whether a specific test case is feasible.
They help check if the conditions of a test case can be met. [22]

3.4 Constraints in UML Diagrams

Constraints allow us to describe how the operations change the state of the
SUT. When used properly, the constraint prevents the system from producing
undesired behaviour and ensures that it adheres to business and logical
rules. Thus, it simplifies SUT maintenance for developers, testers, and other
stakeholders and increases system reliability. [23]

Constraints are usually applied to activity diagrams by annotating transi-
tions with conditions that must be met for the transition to occur. These
conditions are based on the values of attributes or the occurrence of specific
events. It ensures that transitions occur in appropriate contexts. [23]

20

............................. 3.4. Constraints in UML Diagrams

In the thesis context, constraints may be defined on the SUT to prevent
particular edge combinations from appearing in the testing paths.

The constraints may be presented in several ways, namely:.Natural Language. Natural language constraints are written in plain
language, making them understandable for stakeholders who usually are
not familiar with formal notation. This approach is beneficial during
the early design and requirement analysis stages, though it may lead to
ambiguities later. [24]. Pseudocode. Pseudocode provides a balance between formal and infor-
mal languages. It is useful for bridging the design and implementation
gap in a structured format. [25].Graphical Notations. Graphical notations use visual symbols or
extensions to UML for constraints representation. This method effectively
expresses simple conditions but may not be optimal for more complex
ones. [26].Object Constraint Language (OCL). OCL is one of the most precise
methods for defining constraints. It is used for detailed, unambiguous
constraint specification, ensuring precision in defining system require-
ments and behaviours. However, its effectiveness depends on the author
of the constraints and its accuracy. Moreover, It may not be optimal
for simple systems, as the initial time invested in learning this complex
notation (essentially a new programming language) may not be worth it.
[27]

Figure 3.3 presents an example of a UML diagram with OCL constraints.

Figure 3.3: A UML diagram with OCL constraints, source: [28]

21

3. Data Handling in Testing
3.4.1 OCL

The Object Constraint Language (OCL) is a formal language developed by
IBM that enhances UML. Its purpose is to precisely specify conditions and
rules that cannot be expressed graphically on UML models. Constraints can
present business rules and logical conditions to ensure the system functions
correctly. [27, 29] The OCL has several advantages [29]:.Precision. OCL offers high precision for the specification of complex

rules, which is important for validating the behaviour of especially
complex SUTs..No Side Effects. OCL expressions do not affect the state of the SUT
but assert truths about the model, thus ensuring design consistency and
correctness.. Formal Syntax and Semantics. OCL has a well-defined syntax and
semantics that avoid ambiguity.

Syntax Overview

Programming languages heavily inspire OCL’s syntax. The structure of an
OCL expression is based on the object-oriented approach, where expressions
are formed concerning objects and their properties. It is important to note
that OCL is a declarative language specifying which conditions must be held
without defining how they are maintained. [29]

The context specifies the element within a UML model to which a con-
straint applies. Typically, it is a class, an attribute, or an operation. [29] For
example:

context Person

OCL introduces basic types such as Integer, Real, Boolean, and String
and collection types like Set, Bag, Sequence, and OrderedSet. Collections
can be manipulated through operations like

select, reject, collect, forAll, exists

facilitating complex data manipulation directly in the model’s constraints
[29].

Common Expressions

OCL has several elements representations [29]:. Invariants must always hold for class instances. For example, in a
banking application, an invariant might ensure that the balance of any
account must never be negative:

22

............................. 3.4. Constraints in UML Diagrams

context Account inv: self.balance >= 0

.Preconditions must be met before operation execution. They ensure
the system is in the correct state before the operation starts. For instance,
before a withdrawal operation, one might check that the amount to be
withdrawn is less than the current balance:

context Account::withdraw(amount : Real)
pre: amount > 0 and self.balance >= amount

.Post-conditions specify the system’s state after an operation. For
example, after a deposit operation, the balance should be increased by
the deposited amount:

context Account::deposit(amount : Real)
post: self.balance = self.balance@pre + amount

.Guard Conditions control the operations flow. A guard condition
specifies that a state transition can only occur if a certain condition
is met, e.g., transitioning from a ‘Checking‘ to an ‘Approved‘ state is
allowed only if a document’s status is ’Valid’. Although it is not a part of
OCL itself, it is often used in state and activity UML diagrams. [30] An
example of the mentioned situation described using OCL is the following:

context Document::approve()
pre: self.status = 'Valid'

OCL language may be used as an extension of the proposed algorithm to
formally define constraints that prevent the generation of infeasible test paths.
Employing OCL provides a precise way to express conditions, leading to a
better definition of constraints closer to real application requirements.

23

24

Part II

Analysis

25

26

Chapter 4
Related work

This chapter reviews existing academic papers that focus on problems related
to data treatment in automatic test case generation.

4.1 Negative Constrained Path–based Testing

Authors of [31] suggest extending traditional path–based testing by intro-
ducing negative constraints to prevent the execution of particular system
parts.

The introduced constraints are :.Type EXCLUSIVE: An action A must NOT be followed by an action
B in a test case in a test..Type ONLY ONCE: An action A can be followed by an action B in a
test case in a test set only once.

Although Negative Constrained Path–based Testing (NCPT) may look
similar to the DFT, its usage is not limited to positive constraints and
provides thorough test coverage. It helps to ensure that testing is possible
under various system states and that asynchronous operations are efficiently
done. Moreover, it allows us to mimic outages in the test environment.

The paper outlines the theoretical foundation of the idea but lacks details
on its implementation. Additionally, while the paper introduces an approach
that may help solve the situation, the introduced constraints are insufficient
to address the thesis motivation.

4.2 Condition–Classification Tree Method

Condition–Classification Tree Method (CCTM), an enhancement in test case
generation from UML activity diagrams, is introduced in [32]. This method
transforms decision points and guard conditions from activity diagrams into
a structured form called condition classification trees. It aims to identify
defects while optimising testing resources. 4.1 illustrates the main steps of
the methods.

The CCTM algorithm works in three main steps:

27

4. Related work.......................................1. Generation of Condition–Classification Trees: Each decision point
in the UML activity diagram and its associated guard conditions are
transformed into a condition–classification tree. This tree reflects the
branching logic of the activity diagram...2. Creation of Test Case Tables: Once the trees are created, they are
used to construct test case tables. The table is structured to reflect
the hierarchical and conditional relationships defined in the condition–
classification trees...3. Test Case Generation: Finally, test cases are generated from the test
case table by selecting combinations of conditions that represent valid
paths through the software’s workflow.

Figure 4.1: Condition–Classification Tree Method, source: [32]

Nevertheless, CCTM cannot prevent the occurrence of specific action
combinations in the resulting test scenarios.

4.3 Heuristics–based infeasible path detection

Authors of [33] describe a method of identifying infeasible paths using heuris-
tics.

In this approach, the program is initially executed with arbitrary inputs. It
allows the generation of execution traces, analyzed using predefined empirical
properties. It helps to identify common patterns presented in infeasible paths.
An example of such a pattern could be a consistent failure to meet certain
conditions even with varying inputs.

The method’s main idea is to predict path infeasibility by applying heuristic
rules based on the observed patterns of infeasibility. If a path is marked as
infeasible, the test generation for this path is terminated. Then the inputs

28

........................ 4.4. Detecting Interprocedural Infeasible Paths

are adjusted accordingly. The implementation is developed in Java and uses
evolutionary algorithms.

However, while this method improves test data quality, it does not solve
the problem of mitigating infeasible test path generation.

4.4 Detecting Interprocedural Infeasible Paths

Authors of [34] propose to detect infeasible paths by integrating interprocedu-
ral dataflow analysis with symbolic propagation mapping (ISPM). It allows
modelling the value–passing process at each call site across generated whole
program paths (WPPs). This technique aims to improve the consistency and
accuracy of static testing by finding discrepancies early.

The ISPM facilitates examining the connections between formal and actual
parameters at places of function calls. Also, it maps the links between call
site variables and the return values of the invoked functions. This mapping
is crucial for controlling the flow of values across function boundaries. As
a result, it allows for identifying infeasible paths that extend over multiple
procedures and loops.

This method allows us to evaluate the feasibility of paths incrementally
as they are generated. This can be achieved by using the mapped data.
Consequently, a path is marked as infeasible if, at any point, no values can
satisfy the path conditions.

Although this approach helps us mitigate impractical paths, implementing
its concepts from the code level to the UML activity diagram is challenging due
to the lack of a clear relation between the variables and entities. Additionally,
the suggested approach is not easily customizable, making it difficult for test
developers to specify the conditions that make the test infeasible.

4.5 Cross–verification of CRUD matrices

Cross-verification of CRUD matrices, as introduced in [35], involves comparing
matrices created by different stakeholders at various stages of development.
This technique aims to improve the consistency and accuracy of static testing
by identifying discrepancies early on.

Cross-verification, along with other enhanced static testing techniques,
has significantly reduced the number of undetected data consistency defects.
These methods greatly improve the overall quality and efficiency of the testing
process. This is especially true in complex systems such as enterprise and
IoT environments, where consistency is paramount.

However, while this method enhances data quality in test scenarios, it does
not address the generation of infeasible test cases.

29

4. Related work.....................................
4.6 Extension of CRUD matrix

Authors of [36] propose to extend CRUD matrices by new operations that
aim to improve data relationship management and optimize test coverage:.Operation Influenced (I): Data entity e1 is influenced (denoted as

I(e2) by the function f ∈ F if the function f uses a data entity e2
through one or more of the C, U, D operations, and the particular data
content of entity e1 is changed as a consequence of function f, which
primarily uses the entity e2. In a CRUD matrix, the situation described
above is captured by operation I(e2) in the cell for the function f and
entity e1..Operation Best Read (B): This operation helps select the most
significant read operation based on various criteria, such as the extent
of data attributes covered, frequency of access, and importance from a
testing perspective.

Consequently, the sequence of operations in the test cases is dynamically
created based on the interactions defined in the CRUD matrix.

However, expanding CRUD matrices adds complexity and emphasizes static
data relationships. This approach may not be ideal for dynamic interactions
and state changes in certain software systems. Generating paths for Activity
diagram–based models may require a more dynamic approach.

Although the proposed extension can improve data management, it does
not directly solve the problem of generating infeasible paths, which is a key
focus of this thesis. Consequently, this method is not suitable for achieving
the thesis’s objective.

4.7 Summary

This chapter has reviewed various methodologies from recent academic re-
search that address challenges associated with data treatment in automatic
test case generation. Each method tackles distinct parts of the problem and
offers specialized solutions to mitigate the issue of infeasible test paths.

Among the methods reviewed, the concepts introduced in [31] are shown
to be the most suitable for thesis needs. While methods like the Extension
of CRUD Matrix focus on static data relationships, the proposed method is
designed to handle dynamic interactions and state changes effectively. The
proposed method analyzes feasibility directly during the test case generation
process, reducing the occurrence of infeasible test paths more efficiently than
heuristics-based approaches. In contrast with the interprocedural dataflow
analysis approach, the proposed method is easily customizable. Thus, test
developers can easily specify conditions for test infeasibility determination.

30

Chapter 5
Analysis

The chapter justifies the reasons for the chosen testing technique and tech-
nologies. Also, it describes Oxygen capabilities for generating test scenarios.
Moreover, it introduces a constraint that helps to solve the example from the
thesis motivation. In conclusion, it analyzes the limitations and usage areas
of the proposed solution.

Starting from this chapter, the terms "test cases" and "path in the graph"
are used interchangeably, while a "test step" in the generated test case is
considered to mean the same as a graph’s edge.

Figure 5.1: Selection of parameters for test case generation in Oxygen

5.1 Oxygen

Oxygen1 is an experimental platform for research in MBT developed by the
Faculty of Electrical Engineering at the Czech Technical University in Prague2.
The platform–independent application is written in Java and supports XML,
CSV and JSON formats for importing/exporting graphs and test cases. The
test cases may be generated using SUT representations as a directed graph

1http://still.felk.cvut.cz/oxygen/
2http://still.felk.cvut.cz/

31

http://still.felk.cvut.cz/oxygen/
http://still.felk.cvut.cz/

5. Analysis
or activity diagram. Section 2.3.1 describes how these representations can
be used interchangeably. To obtain test cases, a user should specify the
desired test coverage TDL–N and choose between the Process Cycle Test
or the Prioritized Process Test technique. Figure 5.1 shows the abilities for
parameters setup.

Recall the situation stated in the thesis motivation 1.1: e–shop is a SUT
where users can log in, sign up, browse items, add items to the card, and
create an order. An activity diagram modelled for such a SUT using Oxygen
is presented on figure 5.3. Test paths generated using test coverage TDL–1
for this example are presented in the table 5.1.

Path Steps Feasibility
1 START - web loading - is logged in - does not

add items to the cart - creating the order -
order is created – END

Infeasible

2 START - web loading - is not logged in - is not
registered - signing up - successful registration
– signing in - items browsing - adds items to
the cart - adding items to the cart - finishing
the order - creating the order - order is created
– END

Feasible

3 START - web loading - is not logged in - is
registered - signing in - items browsing - does
not add items to the cart - creating the order –
order is created - END

Infeasible

Table 5.1: Test Paths for motivational example 1.1 generated by Oxygen
employing TDL–1 coverage

The principle of test path generation for TDL–1 can be generalized for
TDL–N. The idea is to generate all possible edge combinations for each
decision point. Then, we need to combine the generated combinations into
test paths so each path starts in the ‘Start‘ node and ends in one of the ‘End‘
nodes. One can see the principle as close to the Dominoes game. The process
is executed until all edges are used. The example presented on 5.2 can be
seen in the following way:

Firstly, we generate all edge combinations for each vertex and write them in
the row "combinations" for the appropriate node. Then, we need to combine
the obtained combinations into test cases. As can be seen, we can directly
obtain the test path 1 - 2 - 4 - 6 - 9; note that there is no way to extend
this path as the 9 edge already leads to the finish vertex. After this operation,
there are only edges 5, 7, 3, 8, 9 left. Let’s start by employing edge 5
and use as many combinations as possible while creating a test path. This
way, we can get 2 - 5 - 7 - 8. Nevertheless, the path should start from
the starting vertex, so we need to add edge 1 to the beginning of the path
and get 1 - 2 - 5 - 7 - 8. After this step, we only need to cover edge
3. Again, the path should start from the starting vertex, so we append

32

...................................5.2. Solution proposal

edge 1 to it, getting 1 - 3. As a result, we have paths 1 - 2 - 4 - 6 - 9,
1 - 2 - 5 - 7 - 8 and 1 - 3 that cover the presented graph using test
coverage TDL-1.

Figure 5.2: The principle of test path generation for TDL–1 employed in Oxygen.
Source: Lab 11, course BE4M36ZKS at CTU FEL

It can be seen that the 1st and 3rd test scenarios are infeasible – an order
cannot be created when the cart is empty. Explicitly, the sequence of edges
does not add items to the cart -- order is created is infeasible. It
can also be seen this way: an edge adds items to the cart should always
precede order is created.

A graph traversal resulting in a feasible test scenario (№2) is shown on 5.5,
while 5.6 and 5.4 present graph traversals resulting in infeasible test scenarios.

5.2 Solution proposal

This section describes the requirements on the implemented algorithm and
provides details on the constraints definition, its usage and limitations.

5.2.1 Graph structure

As shown in 5.1 for a SUT modelled as a directed graph, Oxygen generates test
cases represented as a sequence of edges, not vertices. Therefore, making the
proposed algorithm generate test cases as a sequence of edges is intuitive, thus
facilitating the comparison results obtained from these algorithms. Oxygen
allows a graph to have cycles by implementing a separate algorithm that
executes TDL reduction for graph cycles. Also, it allows parallel edges in the
graph by an internal representation using a dummy node. Nevertheless, these
factors do not significantly affect the application of the constraints in the
proposed algorithm. Therefore, I consider a Directed Acyclic Graph without
parallel edges in the implemented algorithm.

33

5. Analysis
5.2.2 Constraints

I propose implementing a newly defined constraint FOLLOWS together with
constraints described in [31] to prevent particular edge combinations from
occurring in the generated test cases.

The proposed constraint FOLLOWS specifies that if an edge A occurs in a
test path, another B must appear before it in the path. For example, the
constraint E FOLLOWS B means that edge B always precedes edge E in any
path. For example, for the mentioned constraint, a path A --> B --> E and
B --> C --> E are valid (B precedes E), while A --> E is invalid (there is
no B before E). Analogously, D EXCLUDES E would mean that edge E cannot
follow D in the path (even non–consequently), so D --> B --> C is valid,
while D --> E --> C and D --> C --> E are not. The proposed constraint
representation is the optimal approach in the current development phase as
it is not as complex as OCL and facilitates debugging and application testing.
Still, the proposed implementation leaves space for an easy extension to OCL
in future work.

Currently, the implementation supports FOLLOWS, EXCLUDES, and ONLY_ONE
constraints. However, the ONLY_ONE constraint at the moment does not
prevent any combinations from occurring in the path. This is because of the
graph’s structure (recall, it is DAG), which prevents any edge from appearing
more than once in a path.

This notation will be used for the following examples: Create−C, Read−R,
Update − U and Delete − D.

The reason for the infeasibility of the early presented test case may be
generalized in the following way: the object is read before it was created. It is
forbidden to Read, Update or Delete objects before Creation. The described
rule can be generalized further: the C operation on an object should precede
any other operation in a testing path. Moreover, we should avoid situations
where the C operation is called after executing C and before D. For example,
C --> U --> C is not allowed, while C --> D --> C is allowed.

The presented observation may be a good starting point for a tester to
identify constraints for the SUT. These constraints then need to be applied
to the SUT.

5.2.3 Path Generation

Developing the desired algorithm may be separated into two parts: all possible
path generation in the first step and filtering infeasible paths by constraints
application in the second step. This approach is not the most effective, as
large inputs will result in high computational demands caused by test case
re–generation. Therefore, the approach when the constraints are applied
during path generation, without the need for additional re–evaluation, is
desirable.

Evaluation of Result paths:
The computational effectiveness of the developed algorithm is not stated

in the thesis objectives. Moreover, the computational complexity of the algo-

34

...................................5.2. Solution proposal

rithm implemented in Oxygen is unknown. Thus, the only thing considered
in the evaluation is the quality of generated test cases, described in terms of
generated paths, the total number of edges, and the number of infeasible test
cases based on predefined constraints.

Test coverage: As a test coverage, Edge Cover was chosen, as it is
supported by Oxygen, facilitating the evaluation of the results.

Considering the requirements on test cases for TDL–1 without applied
constraints, which start in a starting node and end in one of the finishing
vertices, the observations for a graph representation can be formulated more
formally:

Objective: Find the paths set T that cover all edges in a directed, acyclic
and unweighted graph G = (N, E). Each path should start in a starting node
start and end in one of the ending nodes ei ∈ Ne. Neither cycles nor parallel
edges are allowed.

There might be several options to implement this algorithm by utilizing
genetic algorithms similar to those described in [37, 38, 39]. Another option to
provide an effective time complexity is modelling the problem as a well–known
optimization problem and reusing an existing solution. Several representations
for the current problem may exist, such as Minimal Flow problem [40],
Minimum Path Cover or Hamiltonian Cycle Problem. A similar approach is
presented in [41].

Algorithm Overview: The idea is to generate all possible paths using a
Depth–first search (DFS) while considering the constraints during generation.
Then, the set of generated test cases should be optimized based on the
predefined criteria, namely in terms of test path amount and the total length
of the test set.

As the core algorithm step is to find all paths from the starting node to all
end vertices, there is also a need to have defined starting and ending vertices.
To make it closer to Oxygen representation, the user only chooses the start
node; ‘finish‘ vertices are automatically recognized as the vertices that do not
have outgoing edges.

It is worth mentioning that ensuring the desired coverage TDL–1 (appearing
of all edges in the resulting test paths) may not be possible for some constraints
in particular graphs. Consider the example from 5.3. If the constraint
"Order is created" FOLLOWS "Adds items to the cart",
is applied, the edge "Does not add items to the cart with the proposed
constraint definition will never appear in test cases. The reason is that the
only possible way of getting from this edge to the ‘End‘ vertex is by passing
edge ‘Does not add items to the cart‘, which requires edge ‘Adds items to the
cart‘ to be present in the current path. This is impossible for the presented
graph’s structure.

If the user has just recently registered and logged into the e-shop for the
first time, the presented action combination "Does not add items

to the cart" -> "Order is created" is indeed infeasible. Nevertheless,
the combination becomes feasible when an item has been added to the cart
during the previous user’s session. This situation may be reflected in future

35

5. Analysis
constraint extensions, as it depends on the state of the SUT. Moreover, the
presented constraint definition can be seen as static because of its inability
to be readjusted during test generation. Making constraints be processed
dynamically is another direction for future work.

5.2.4 Choice of Technologies. Java 22. Although there is no requirement for integration with Oxygen
yet, I decided to implement the solution in Java. This way, it will be
easier to integrate in the future. The chosen (not LTS 3 version) is caused
by my eagerness to check new features, such as unnamed variables and
string patterns. Apart from that, Java 22 offers improved performance,
new language features, and enhanced security. [42]..Maven. This build tool allows me to manage libraries, which I use for
Spring, JUnit, etc. Maven provides a structured approach to project
management, making dependency management and build processes more
streamlined than other tools like Gradle. [43]. JUnit 5 testing framework allows me to check that the application
operates as intended. It provides a flexible testing framework that
supports features like parameterized tests. Details on JUnit 5 usage in
the project can be found in Chapter 6.3. [44]. SonarQube helps make the code more secure and improves its quality
by enforcing coding standards. [45]. Spring Boot is used for convenient logging and property handling. It
simplifies the configuration and setup process, allowing me to speed up
the development. Additionally, this framework offers web capabilities, so
in future, the application can be easily extended with web functionality
if needed. [46].Cypress was chosen for its ease of setup (compared to Selenium,
for example), real-time reloading, and ability to work with mod-
ern JavaScript frameworks. Cypress provides a user-friendly environ-
ment, unlike Puppeteer, primarily focusing on headless browser test-
ing. It is used to validate the implemented algorithm for the e-shop
https://e-shop.webowky.cz/ and compare the results with Oxygen.

3https://en.wikipedia.org/wiki/Java_version_history

36

https://e-shop.webowky.cz/
https://en.wikipedia.org/wiki/Java_version_history

...................................5.2. Solution proposal

Figure 5.3: A motivational example 1.1 for e–shop modelled as a directed graph
using Oxygen

37

5. Analysis

Figure 5.4: E–shop: path №1 generated by Oxygen

38

...................................5.2. Solution proposal

Figure 5.5: E–shop: path №2 generated by Oxygen

39

5. Analysis

Figure 5.6: E–shop: path №3 generated by Oxygen

40

Part III

Development

41

42

Chapter 6
Development

The chapter details the proposed algorithm. Further, it describes implemented
design patterns and provides ideas on how they may be useful for future
application extensions. The chapter ends by detailing the strategies employed
to guarantee application quality.

6.1 Algorithm Overview

Objective: Let G = (V, E) be an unweighted DAG without parallel edges,
where V is the set of nodes and E is the set of edges. Denote start ∈ V as a
starting node for each path, and Ne ⊆ V as the set of ending nodes.

The objective is to find the set of paths T that covers all edges E in graph
G. Each path π ∈ T should start at a starting node start and end at an
ending node ei ∈ Ne. All paths must satisfy the defined constraints.

Structure: The implemented algorithm aims to find the path set that meets
the requirements specified in 5.2.3.

The algorithm starts by finding all paths that meet the constraints. This
part is based on a recursive DFS algorithm. The key differences from the
classic DFS implementaion are constraint checking via the CanIncludeEdge
method, storing all valid paths, and allowing vertices to be revisited in
different paths.

Once the set of all possible paths is found, it should be ensured it meets the
criteria extensively defined in 5.2.3. The implemented algorithm iteratively
selects the subset that provides the maximum unique coverage, adds it to
the cover and updates the covered elements. This process continues until
all elements in the universe are covered or no more useful subsets can be
added. In the consecutive optimization pass, the algorithm removes redundant
subsets by ensuring each subset in the final cover adds unique elements not
already covered by previously included subsets.

The presented approach does not guarantee an optimal solution; however,
it is favoured for its simplicity and reasonably good performance in test
instances.

43

6. Development.....................................
6.2 Application Architecture

Given the exploratory nature of the proposed application, which aims to
validate the suitability of the chosen method, it is evident that several
extensions may be needed in future. Therefore, the application architecture
should be designed to implement these extensions easily.

6.2.1 Input Processing

The implemented application can process both input obtained from Oxygen
in JSON format and the ones defined in plain text. Edge ID is not mandatory;
it will be autogenerated when not specified. The text file should have the
following format:

// VERTICES
START A B C D E F
// EDGES
START A 1
START B 2
START C 3
A D 4
B F 5
C E 6
D E 7
// CONSTRAINTS
5 FOLLOWS 3

Oxygen already supports several types of exports and may support more in
future. Therefore, a Strategy design pattern was implemented. It allows an
easy extension to support further input formats if such requirements arise. The
core component of this design is the GraphInputStrategy common interface
for all concrete strategies that read graph data from different formats, such
as manual entries, JSON files, or potentially XML files in the future.

The following strategies are already a part of the presented solution:.ManualInputStrategy: Implements the GraphInputStrategy for
reading graph data from manually prepared text files. This strategy is
particularly useful during development and allows to use the application
without prior graph generation in Oxygen..OxygenJsonInputStrategy: Used for reading graph data from JSON
files exported from Oxygen.

The GraphReaderContext references a GraphInputStrategy. This setup
allows the application to change the reading strategy based on the
app.input.source in the application.properties processed by Spring
framework.

44

....................................... 6.3. Testing

By isolating the input reading logic into specific strategy classes, the system
remains open for extension but closed for modification. New input formats
can be supported by introducing new strategy classes without changes in
existing code, thus following SOLID’s Open/Closed Principle 1.

6.2.2 Constraints

Applying constraints is considered the main objective of the thesis. Hence, I
prioritize its quality, considering scenarios for potential extensions.

Consider, for example, a new requirement on applying constraints across
multiple paths. This could be implemented by extending the existing apply
method or introducing new methods in the EdgeConstraint interface to
handle collections of paths.

EdgeConstraint Base Class

The EdgeConstraint class is an abstract base class implementing
IEdgeConstraint for different edge constraints. It encapsulates an
expression attribute that holds the original value of the constraint before
parsing, which may be a human-readable string or a formal OCL definition
suitable for parsing. Keeping the original expression in the constraint allows
its dynamic changes in runtime in the future.

ConstraintParser

ConstraintParser interface separates parsing logic from constraint repre-
sentation and application. It facilitates the addition of new parsing methods
without modifying the existing code.

ANTLRConstraintParser is a placeholder for an ANTLR-based parser that
may be implemented when new requirements for more complex parsing arise.

6.3 Testing

The application is extensively covered with unit and e2e tests using the JUnit 5
framework; some tests are parameterized with custom-defined input-providing
methods.

6.3.1 Test Data Preparation

Testing path generation without constraints. E2E tests aim to verify the
correctness of the generated paths. For this, the results generated by Oxygen
are taken as the reference base. Since there can be multiple methods to
create a set of paths, it is impractical to design tests that validate the precise

1SOLID is an acronym for five design principles intended
to make object-oriented designs more maintainable, source:
https://www.digitalocean.com/community/conceptual-articles/
s-o-l-i-d-the-first-five-principles-of-object-oriented-design

45

https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://www.digitalocean.com/community/conceptual-articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design

6. Development.....................................
presence of elements in the resulting paths. Therefore, I defined the criteria
that must be met to consider the tests successful. They are the following:.The Generated set of paths should cover all edges in the graph (TDL-1

test coverage)..The number of generated paths is not more than the one generated by
Oxygen..The number of edges in the paths is not more than the one generated by
Oxygen (thus, revisiting edges is minimized).. Each path starts in a starting vertex and ends in one of the ‘Finish‘
vertices.

Listing 1 presents paths assertions used in the implemented JUnit tests.

Testing path generation with constraints. Although Oxygen was the
trustworthy baseline for basic inputs, it cannot generate test paths with
employed constraints. Therefore, I manually computed the expected outputs
and prepared test files. For inputs with constraints, E2E tests assert the
exact appearance of specific paths in the resulting set.

6.4 Evaluation

This section contains the evaluation of the proposed algorithm against the
Oxygen, including the motivational example and several other graphs.

6.4.1 Algorithm Validation on a Real Application

This section describes the results obtained for the example from thesis moti-
vation. The table 6.1 presents the mapping of edge-id to edge-name that was
used for modelling:

Edge ID Edge Name
1 Web loading
2 Is not logged in
3 Is logged in
4 Is registered
5 Is not registered
6 Items browsing
7 Successful registration
8 Adds items to the cart
9 Does not add items to the cart
10 Finishing the order
11 Order is created

Table 6.1: Edge IDs and their corresponding names

46

......................................6.4. Evaluation

Oxygen

The test paths generated by Oxygen for the e-shop SUT from 5.1 without
applied constraint are the following:

Test case №1: [1, 3, 9, 10, 11]

1. Web loading
3. Is logged in
9. Does not add items to the cart
10. Finishing the order
11. Order is created

Test case №2: [1, 2, 5, 7, 6, 8, 10, 11]

1. Web loading
2. Is not logged in
5. Is not registered
7. Successful registration
6. Items browsing
8. Adds items to the cart
10. Finishing the order
11. Order is created

Test case №3: [1, 2, 4, 6, 9, 10, 11]

1. Web loading
2. Is not logged in
4. Is registered
6. Items browsing
9. Does not add items to the cart
10. Finishing the order
11. Order is created

The presented test case set will be referred to as ‘Test Suit Oxygen‘ later.

Implemented algorithm

For the same SUT, with the applied constraint 11 FOLLOWS 8,
which is the edge ID representation of "Order is created" FOLLOWS
"Adds items to the cart",

the implemented algorithm generates the following test paths:

Test Case №1 [1, 2, 4, 6, 8, 10, 11]

Test Case №2 [1, 2, 5, 7, 6, 8, 10, 11]

Test Case №3 [1, 3, 8, 10, 11]

The generated test paths are interpreted as the following test cases:
Test case №1: [1, 2, 4, 6, 8, 10, 11]

47

6. Development.....................................
1. Web loading
2. Is not logged in
4. Is registered
6. Items browsing
8. Adds items to the cart
10. Finishing the order
11. Order is created

Test case №2: [1, 2, 5, 7, 6, 8, 10, 11]

1. Web loading
2. Is not logged in
5. Is not registered
7. Successful registration
6. Items browsing
8. Adds items to the cart
10. Finishing the order
11. Order is created

Test case №3: [1, 3, 8, 10, 11]

1. Web loading
3. Is logged in
8. Adds items to the cart
10. Finishing the order
11. Order is created

The presented test case set will be called ‘Test Suit Constraint‘ later.

Evaluation

The tests for validating generated test cases were prepared using the Cypress
framework for publicly accessible e-shop https://e-shop.webowky.cz/. The
example of the implemented test can be found on listing 2.

Two out of three tests have failed in the ‘Oxygen Test Suit‘: test №1
and test №3. The problem arises while attempting to locate the "Potvrdit
Objednávku" (Create an order) button, as seen on the screenshot 6.1. It
results in a false evaluation of the SUT as malfunctioning, even though it
functions as intended.

There were no test failures in the second test suite; all three tests passed
successfully.

6.4.2 Computed Results

The following parameters are used for evaluating the test cases generated by
Oxygen and by the newly implemented algorithm:.Amount of test cases, which corresponds to the number of generated test

paths. The smaller amount means better performance as testers need to
execute/prepare fewer tests.

48

https://e-shop.webowky.cz/

......................................6.4. Evaluation

Figure 6.1: The screenshot of failed test for https://e-shop.webowky.cz/ in
Cypress

.Total amount of steps in the test cases. It corresponds to the total
amount of edges in the generated test paths. The shorter test cases are
beneficial for resource preservation..Amount of infeasible test cases based on defined constraints. Although
Oxygen does not allow for defining any constraints, this metric helps
evaluate the proposed algorithm..Amount of uncovered edges. Some edges may be left covered (therefore,
TDL-1 will not be guaranteed) due to the application of the constraint
preventing particular edge combinations from being present in a path.

The results obtained using TDL-1 coverage are presented in 6.2.
It can be seen that not only were the test scenarios sometimes shorter, but

their number was also reduced, particularly for larger graphs. Additionally,
the implemented algorithm effectively prevents the generation of infeasible
test cases. However, this comes at a cost: some edges may not appear in
the test cases due to the applied constraints. These results align with the
assumptions made in the analysis section and are, therefore, expected.

49

https://e-shop.webowky.cz/

6. Development.....................................

1 assertAll(
2 () -> assertTrue(doSubsetsCoverSet(cover,

graph.getIdsOfGraphEdges()),↪→

3 "Computed paths should cover all edges in the graph"),
4 () -> assertTrue(actualCoverSize <= expectedCoverSize,
5 String.format("Number of found paths

(%d) should not exceed the number
(%d) than Oxygen computed:

↪→

↪→

6 JSON=%s CSV=%s", actualCoverSize,
expectedCoverSize, manualFile,
resultsFile)),

↪→

↪→

7 () -> assertTrue(actualTotalEdges <= expectedTotalEdges,
8 String.format("Total number of edges

in paths (%d) should not exceed
those (%d) found by Oxygen:
JSON=%s CSV=%s", actualTotalEdges,
expectedTotalEdges, manualFile,
resultsFile)),

↪→

↪→

↪→

↪→

↪→

9 () -> cover.forEach(
10 path -> {
11 Integer firstEdge = path.isEmpty() ? null :

path.getFirst();↪→

12 Integer lastEdge = path.isEmpty() ? null :
path.getLast();↪→

13 assertTrue(firstEdge != null &&
Objects.equals(↪→

14 graph.getEdgesById().get(firstEdge).sourceVertex,
startVertex.getId()),↪→

15 "Path should start from the START vertex.");
16 assertTrue(lastEdge != null &&

graph.getFinishVertices().contains(↪→

17 graph.getEdgesById().get(lastEdge).targetVertex),
"Path should end at a finish vertex.");↪→

18 })
19);

Listing 1: Implemented assertions for validating generated paths

50

......................................6.4. Evaluation

1 it('Test Case 3: Logged in, adding items to the cart, and
finishing the order', function () {↪→

2 cy.visit('https://e-shop.webowky.cz/');
3 cy.wait(2000);
4

5 cy.contains('Přihlásit se').click();
6 cy.contains('Už jste zaregistrován?').click();
7

8 cy.get('#txt_login_email').
9 type('john.doe_test@example.com');

10 cy.get('#txt_login_password').
11 type('securePassword123');
12 cy.get('#btn_login').click();
13

14 cy.get('img.logo.img-responsive').click();
15 cy.wait(2000);
16

17 cy.get('.ajax_add_to_cart_button').
18 first().click();
19 cy.contains('Produkt byl úspěšně přidán do nákupního

košíku').↪→

20 should('be.visible');
21

22 cy.reload();
23 cy.get('a[title="Zobrazit můj nákupní košík"]').click();
24

25 fillAddressForm();
26

27 simulateObjednatButton();
28 });

Listing 2: A test implemented in the Cypress based on the test case generated
by the Constraint algorithm

51

6. Development.....................................

Graph
ID Algorithm Edges/

Nodes
Test Cases/
Total Steps Constraint Infeasible Uncovered

Edges
1 Constraint 13/9 5/19 – 0 0

Oxygen 13/9 5/19 – 0 0
2 Constraint 10/8 4/16 – 0 0

Oxygen 10/8 4/16 – 0 0
3 Constraint 23/16 13/43 – 0 0

Oxygen 23/16 14/46 – 0 0
4 Constraint 23/16 11/34 – 0 0

Oxygen 23/16 12/37 – 0 0
5 Constraint 12/10 3/20 – 0 0

Oxygen 23/16 12/37 – 0 0
6 Constraint 13/9 5/19 – 0 0

Oxygen 13/9 5/19 – 0 0
7 Constraint 25/13 12/52 – 0 0

Oxygen 25/13 13/54 – 0 0

5F Constraint 23/16 2/15 12 FOLLOWS 7
8 FOLLOWS 7 0 3

Oxygen 23/16 12/37 12 FOLLOWS 7
8 FOLLOWS 7 1 0

6E Constraint 13/9 5/19 4 EXCLUDES 10 0 0
Oxygen 13/9 5/19 4 EXCLUDES 10 1 0

6M Constraint 13/9 5/19 4 EXCLUDES 10
10 FOLLOWS 2 0 0

Oxygen 13/9 5/19 4 EXCLUDES 10
10 FOLLOWS 2 1 0

7E Constraint 25/13 12/52 3 EXCLUDES 24
13 EXCLUDES 25 0 0

Oxygen 25/13 13/54 3 EXCLUDES 24
13 EXCLUDES 25 1 0

7M Constraint 25/13 10/45

9 FOLLOWS 2
21 FOLLOWS 13
6 EXCLUDES 25
5 EXCLUDES 25

0 2

Oxygen 25/13 13/54

9 FOLLOWS 2
21 FOLLOWS 13
6 EXCLUDES 25
5 EXCLUDES 25

6 0

Table 6.2: Comparison of the results obtained from the Constraint Algorithm
and Oxygen Algorithm

52

Part IV

Conclusion

53

54

Chapter 7
Conclusion

This thesis has explored several aspects of test scenario generation for data-
centric applications. Specifically, it focused on extending MBT by reflect-
ing the data requirements of SUT using constraints. Consequently, a new
Constraint, "FOLLOWS", has been introduced as an extension to Negative-
Constrained Path-based testing.

In this thesis, I addressed the limitations of the Oxygen tool, specifically
its inability to reflect data requirements into the automatic generation of test
cases. To address this limitation, I designed and implemented an algorithm
capable of generating scenarios with defined constraints. It allows the model
to be accurately abstracted, which in turn restricts the generation of infeasible
test cases. Afterwards, the algorithm was validated on Webowky1 e-shop and
several abstract graphs, demonstrating its effectiveness in generating realistic
test cases. The comparison with the Oxygen tool output highlighted the
presented approach’s advantages.

The thesis also researches existing ways of constraint representation. Al-
though a basic approach was chosen, there is space for future extension
to OCL notation. To support such enhancements, the proposed architec-
ture is designed to be easily extensible, specifically allowing for the smooth
integration of additional constraints, input formats, and parsing techniques.

This research contributes to enhancing testing processes by addressing
the need for more realistic test scenarios. By preventing scenarios where
a test cannot continue because the defined constraints were not met due
to inconsistent data, the implemented algorithm improves the quality and
reliability of test scenarios.

In summary, this thesis has successfully met the initial objectives, namely:. Designing and implementing an algorithm that considers data constraints
in path-based test case generation..Validating the algorithm on a real application.. Evaluation of the algorithm’s capabilities over the Oxygen in generating
valid test scenarios.

The primary contributions of this work include:
1https://e-shop.webowky.cz/

55

https://e-shop.webowky.cz/

7. Conclusion......................................
. Identification of Infeasibility Factors - the situations leading to the

generation of infeasible test cases were identified and carefully described.. Implementation of the algorithm that allows to prevent particular parts
of the system from appearing in the test cases.

7.1 Future Research Directions

While the proposed algorithm addresses many of the limitations of existing
MBT tools, there are still places for future extensions.

The algorithm’s efficiency heavily relies on the initial model’s completeness
and the accuracy of constraints. Therefore, introducing additional constraints
and refining their definitions using OCL can provide better results for more
complex systems. Moreover, allowing constraints to be applied across multiple
paths can improve the algorithm’s versatility. Additionally, there may be
proposals to keep the desired code coverage even when constraints are applied.
Extending the algorithm by the ability to handle cycles and parallel edges
within the model will allow for more realistic scenarios. Proposing techniques
for dynamically managing constraints will enable the model to adapt to
changes in real-time.

The algorithm may be optimized to work with large data. Investigating
ways for such enhancement may involve using mathematical optimization.

By focusing on the presented ideas, the implemented algorithm can be
further enhanced, making it a more powerful tool for generating accurate test
cases.

56

Appendices

57

58

Appendix A
Bibliography

1. UTTING, Mark; LEGEARD, Bruno. Practical Model-Based Testing: A
Tools Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2006. ISBN 0123725011.

2. MYERS, Glenford J.; SANDLER, Corey; BADGETT, Tom. The Art
of Software Testing. 3rd ed. John Wiley & Sons, 2011.

3. INTERNATIONAL SOFTWARE TESTING QUALIFICATIONS
BOARD. ISTQB Glossary of Testing Terms. 2024. Available also from:
https://glossary.istqb.org/en_US/home. Accessed: 2024-04-13.

4. AMMANN, Paul; OFFUTT, Jeff. Introduction to Software Testing.
Cambridge: Cambridge University Press, 2016. ISBN 9781107172012.
Available from DOI: DOI:10.1017/9781316771273.

5. FEWSTER, Mark; GRAHAM, Dorothy. Software Test Automation.
Addison-Wesley Longman Publishing Co., Inc., 1999.

6. KANER, Cem. Exploratory Software Testing. Addison-Wesley Profes-
sional, 2013.

7. BEIZER, Boris. Black-Box Testing: Techniques for Functional Testing
of Software and Systems. Wiley, 1995.

8. MYERS, Glenford J.; SANDLER, Corey; BADGETT, Tom. The Art
of Software Testing. 3rd. Wiley Publishing, 2011. ISBN 1118031962.

9. HEADSPIN. The Testing Pyramid Simplified for One and All [https:
//www.headspin.io/blog/the-testing-pyramid-simplified-for-
one-and-all]. 2021. Accessed: 2024-04-13.

10. KOSMATOV, Nikolai. Constraint-based techniques for software testing.
In: Artificial intelligence applications for improved software engineering
development: New prospects. IGI Global, 2010, pp. 218–232.

11. PELESKA, Jan; HUANG, Wen-ling. Complete model-based equivalence
class testing. International Journal on Software Tools for Technology
Transfer. 2016, vol. 18, no. 3, pp. 265–283.

12. AHMAD, Farooq; QAISAR, Zahid Hussain. Scenario Based Functional
Regression Testing Using Petri Net Models. In: 2013 12th International
Conference on Machine Learning and Applications. 2013, vol. 2, pp. 572–
577. Available from DOI: 10.1109/ICMLA.2013.179.

59

https://glossary.istqb.org/en_US/home
http://dx.doi.org/DOI: 10.1017/9781316771273
https://www.headspin.io/blog/the-testing-pyramid-simplified-for-one-and-all
https://www.headspin.io/blog/the-testing-pyramid-simplified-for-one-and-all
https://www.headspin.io/blog/the-testing-pyramid-simplified-for-one-and-all
http://dx.doi.org/10.1109/ICMLA.2013.179

A. Bibliography.....................................
13. BRIAND, Lionel C.; LABICHE, Yvan. A UML-based approach to

system testing. Software and Systems Modeling. 2003, vol. 1, no. 1, pp.
10–42.

14. CHEN, P. P. The Entity-Relationship Model: Toward a Unified View of
Data. ACM Transactions on Database Systems. 1976, vol. 1, no. 1.

15. BUREŠ, Miroslav. Model-based Software Test Automation. habilitation
theses. 2018.

16. EDUCBA. UML Activity Diagram: Components and Symbols. 2023.
Available also from: https : / / www . educba . com / uml - activity -
diagram/. Accessed: 2024-04-13.

17. ROTHERMEL, Gregg; HARROLD, Mary Jean. Selecting tests and
identifying test coverage requirements for modified software. Proceedings
of the 2nd ACM SIGSOFT symposium on Foundations of software
engineering. 1994.

18. LEE, Jihyun; KANG, Sungwon; JUNG, Pilsu. Test coverage criteria for
software product line testing: Systematic literature review. Information
and Software Technology. 2020, vol. 122, pp. 106272. ISSN 0950-5849.
Available from DOI: https://doi.org/10.1016/j.infsof.2020.
106272.

19. TRETMANS, J. Model based testing with labelled transition systems.
In: Formal Methods and Testing: An Outcome of the FORTEST Network.
Springer, 2008, pp. 3–38.

20. KOELBL, A.; JACOBY, R.; JAIN, Himanshu; PIXLEY, C. Solver
technology for system-level to RTL equivalence checking. In: 2009,
pp. 196–201. Available from DOI: 10.1109/DATE.2009.5090657.

21. KAZEMI, Ali; ROSTAMPOUR, Ali; HAGHIGHI, H.; ABBASI, Sahel.
A conceptual cohesion metric for service oriented systems. Journal of
Web Engineering. 2014, vol. 13, pp. 302–332.

22. JORGENSEN, Paul C. Software Testing: a Craftsman’s Approach.
Fourth. Auerbach Publications, 2013.

23. FOWLER, Martin. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. 3rd ed. Addison-Wesley Professional, 2004.

24. ROSENBERG, Doug; STEPHENS, Matt. Use Case Driven Object
Modeling with UML: A Practical Approach. Addison-Wesley Professional,
1999.

25. SOMMERVILLE, Ian. Software Engineering. 9th ed. Addison-Wesley,
2011.

26. OMG Unified Modeling Language (OMG UML), Version 2.5.1. 2017.
Available also from: https://www.omg.org/spec/UML/2.5.1.

27. WARMER, Jos; KLEPPE, Anneke. The Object Constraint Language:
Getting Your Models Ready for MDA. Addison-Wesley Professional,
2003.

60

https://www.educba.com/uml-activity-diagram/
https://www.educba.com/uml-activity-diagram/
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2020.106272
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2020.106272
http://dx.doi.org/10.1109/DATE.2009.5090657
https://www.omg.org/spec/UML/2.5.1

..................................... A. Bibliography

28. QUERALT, Anna; ARTALE, Alessandro; CALVANESE, Diego; TE-
NIENTE, Ernest. OCL-lte: A dcidable (Yet Expressive) fragment of
OCL. CEUR Workshop Proceedings. 2012, vol. 846.

29. CABOT, Jordi; GOGOLLA, Martin. Verification and Validation of
UML and OCL Models in Practice. Software and Systems Modeling.
2012, vol. 11, no. 4, pp. 573–580.

30. BARUZZO, Andrea. A unified framework for automated UML model
analysis. 2008. Available also from: https://www.dimi.uniud.it/
assets/dottorato/phd.thesis.baruzzo.pdf. PhD thesis. University
of Udine.

31. BUREŠ, Miroslav; KLÍMA, Matěj. Negative Constrained Path-based
Testing. System Testing IntelLigent Lab (STILL), Dept. of Computer
Science, FEE, CTU in Prague. 2023.

32. KANSOMKEAT, Supaporn; THIKET, Phachayanee; OFFUTT, Jeff.
Generating test cases from UML activity diagrams using the Condition-
Classification Tree Method. In: 2010 2nd International Conference on
Software Technology and Engineering. 2010, vol. 1, pp. V1-62-V1–66.
Available from DOI: 10.1109/ICSTE.2010.5608913.

33. NGO, Minh Ngoc; TAN, Hee Beng Kuan. Heuristics-based infeasible
path detection for dynamic test data generation. Information and Soft-
ware Technology. 2008, vol. 50, no. 7, pp. 641–655. ISSN 0950-5849. Avail-
able from DOI: https://doi.org/10.1016/j.infsof.2007.06.006.

34. GONG, Huiquan; ZHANG, Yuwei; XING, Ying; JIA, Wei. Detect-
ing Interprocedural Infeasible Paths via Symbolic Propagation and
Dataflow Analysis. In: 2019, pp. 282–285. Available from DOI: 10.1109/
ICSESS47205.2019.9040767.

35. BURES, Miroslav; CERNY, Tomas. Static Testing Using Different Types
of CRUD Matrices. In: KIM, Kuinam; JOUKOV, Nikolai (eds.). Infor-
mation Science and Applications 2017. Singapore: Springer Singapore,
2017, pp. 594–602.

36. BURES, Miroslav; RECHTBERGER, Vaclav. Dynamic Data Consis-
tency Tests Using a CRUD Matrix as an Underlying Model. In: Dynamic
Data Consistency Tests Using a CRUD Matrix as an Underlying Model.
2020, pp. 72–79. Available from DOI: 10.1145/3393822.3432333.

37. ZHANG, Xiaoyan; LIU, Weihua; MA, Zengbin. Test Case Generation
for Object-Oriented Software Based on Genetic Algorithms. In: IEEE
International Conference on Quality, Reliability, Risk, Maintenance,
and Safety Engineering. 2008.

38. ZHENG, Qing; YAO, Xin; MU, Yi; ZHANG, Qiang. An Improved
Genetic Algorithm for Test Case Generation Based on Path Analysis.
In: International Conference on Computer Engineering and Technology.
2010.

61

https://www.dimi.uniud.it/assets/dottorato/phd.thesis.baruzzo.pdf
https://www.dimi.uniud.it/assets/dottorato/phd.thesis.baruzzo.pdf
http://dx.doi.org/10.1109/ICSTE.2010.5608913
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2007.06.006
http://dx.doi.org/10.1109/ICSESS47205.2019.9040767
http://dx.doi.org/10.1109/ICSESS47205.2019.9040767
http://dx.doi.org/10.1145/3393822.3432333

A. Bibliography.....................................
39. YAO, Xin; ZHENG, Qing; MU, Yi. A Survey of Genetic Algorithms in

Test Generation for Structural Testing. Journal of Software Engineering
and Applications. 2014.

40. ÇALIŞKAN, Cenk. New Algorithms for the Minimum Flow Problem.
In: 2016.

41. FRÖHLICH, Peter; LINK, Johannes. Automated Test Case Genera-
tion from Dynamic Models. In: BERTINO, Elisa (ed.). ECOOP 2000

— Object-Oriented Programming. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 472–491. ISBN 978-3-540-45102-0.

42. ORACLE. Java SE Development Kit 22 Documentation. 2023. Available
also from: https://www.oracle.com/java/technologies/javase/
22-relnotes.html. Accessed: 2024-05-12.

43. SMART, Y.; FERGUSON, J. Maven: The Complete Reference. O’Reilly
Media, 2021.

44. TEAM, JUnit. JUnit 5 User Guide. 2023. Available also from: https:
//junit.org/junit5/docs/current/user-guide/. Accessed: 2024-
05-12.

45. QUEZADA SARMIENTO, Pablo; GUAMAN, Daniel; BARBA
GUAMÁN, Luis Rodrigo; ENCISO, Liliana; CABRERA, Paola. Sonar-
Qube as a tool to identify software metrics and technical debt in the
source code through static analysis. In: 2017.

46. SPRING. Spring Boot Documentation. 2023. Available also from: https:
//docs.spring.io/spring-boot/docs/current/reference/html/.
Accessed: 2024-05-12.

62

https://www.oracle.com/java/technologies/javase/22-relnotes.html
https://www.oracle.com/java/technologies/javase/22-relnotes.html
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://docs.spring.io/spring-boot/docs/current/reference/html/
https://docs.spring.io/spring-boot/docs/current/reference/html/

Appendix B
List of Abbreviations

CCTM Condition–Classification Tree Method

DAG Directed Acyclic Graph

DCyT Data Cycle Test

DFA Data Flow Analysis

DFS Depth–first search

MBT Model-Based Testing

NCPT Negative Constrained Path–based Testing

OCL Object Constraint Language

STILL System Testing IntelLigent Lab

STT State Transition Testing

SUT System Under Test

63

	Introduction
	Motivation
	Task Definition
	Objectives
	Thesis Structure

	Theoretical part
	Essential Theory
	System Under Test
	Characteristics of the SUT
	Importance of Understanding the SUT

	Testing Techniques
	Manual and Automated Testing
	Black-box, White-box, and Grey-box Testing
	Testing Pyramid

	Model-Based Testing
	Directed Graphs: Unifying MBT Models

	Path-Based Testing
	Test Case
	Test Coverage Criteria

	State Transition Testing

	Data Handling in Testing
	Data Flow Analysis
	Data Cycle Test
	Infeasible Test Cases
	Constraints in UML Diagrams
	OCL

	Analysis
	Related work
	Negative Constrained Path–based Testing
	Condition–Classification Tree Method
	Heuristics–based infeasible path detection
	Detecting Interprocedural Infeasible Paths
	Cross–verification of CRUD matrices
	Extension of CRUD matrix
	Summary

	Analysis
	Oxygen
	Solution proposal
	Graph structure
	Constraints
	Path Generation
	Choice of Technologies

	Development
	Development
	Algorithm Overview
	Application Architecture
	Input Processing
	Constraints

	Testing
	Test Data Preparation

	Evaluation
	Algorithm Validation on a Real Application
	Computed Results

	Conclusion
	Conclusion
	Future Research Directions

	Appendices
	Bibliography
	List of Abbreviations

